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1. Introduction

It is known that possibility theory is an alternative theory to the probability
theory, dealing with certain types of uncertainty and treatment of incomplete infor-
mation (see, e.g., [2], [4]). In the possibilistic models, all the probabilistic indicators
(like expected value, variance, probability measure, integral with respect to a mea-
sure, etc) are replaced with suitable possibility indicators. These analogies allow to
extend many classical results based on probability theory, to the possibilistic frame.
We can mention here the contributions of the first named author to results concerning
approximation by possibilistic operators (called also max-product operators), see [1],
[3], [7], [9] or to the possibilistic laws of large numbers, see, e.g., [8], and the references
therein.

In this paper we continue our researches in this directions, by extending in the
frame of possibility theory, results concerning classical integral equations.

In this sense, it is natural and of interest to replace in the classical integral
equations, the linear Lebesgue integral by various other kinds of nonlinear integrals.
Thus, in the very recent papers [5], [6], the first named author has replaced the linear
Lebesgue integral by its non linear extension called Choquet integral and studied
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the existence of the solutions for the corresponding Fredholm-Choquet and Volterra-
Choquet integral equations.

In this spirit of ideas, we study here the nonlinear equations obtained by re-
placing in the classical Fredholm and Volterra integral equations, the linear Lebesgue
integral with the nonlinear possibilistic integral (Pos)

∫
with respect to a possibility

measure Pλ generated by the possibility distribution λ. More exactly, we study the
nonlinear possibilistic integral equations

ϕ(x) = f(x) + α · (Pos)
∫

Ω

K(x, s)ϕ(s)dPλ(s), x ∈ Ω, (1.1)

with the given data α ∈ R, f : Ω → R, K : Ω × Ω → R and the unknown function
ϕ : Ω→ R in the case of Fredholm type equation, and by

ϕ(x) = f(x) + α · (Pos)
∫ x

a

K(x, s, ϕ(s))dPλ(s), x ∈ [a, b], (1.2)

with the given data α ∈ R, f : [a, b]→ R, K : [a, b]× [a, b]×R→ R and the unknown
function ϕ : [a, b]→ R, in the case of Volterra type equation.

As we will see, due to the definition of the possibilistic integral, in fact we obtain
functional equations which have solutions under some additional conditions. Also, it
is worth mentioning that while the classical Fredholm and Volterra integral equations
are linear, due to the nonlinearity of the possibilistic integral, obviously that the
Fredholm and Volterra possibilistic integral equations are nonlinear.

Section 2 contains some preliminaries on the possibility measures and integrals
we will need in the next sections. In Section 3, the existence and construction of the
solutions for the Fredholm nonlinear possibilistic integral equation (1.1). Thus, for
Pλ belonging to large classes of possibility measures, we show that this functional
equation has solutions under some appropriate conditions (similar to those in the
classical case) on the given data f , α and K.

Finally, in Section 4 we study the existence of the solutions for the Volterra
nonlinear possibilistic integral type equation (1.2).

2. Preliminaries on possibility measures and integrals

Firstly, we summarize some known concepts in possibility theory, which will be
used in the next sections. For details, see e.g. [4] or [2].

Definition 2.1. Let Ω be a non-empty set.

(i) A possibilistic (fuzzy) variable X is simply an application X : Ω→ R.

(ii) A possibility distribution (on Ω), is a function λ : Ω → [0,+∞), such that
sup{λ(s); s ∈ Ω} = V < +∞. If V = 1, then λ it is called normalized possibility
distribution.

(iii) A possibility measure is a mapping P : P(Ω) → [0,+∞), satisfying the
axioms P (∅) = 0, P (Ω) = 1 and P (

⋃
i∈I Ai) = sup{P (Ai); i ∈ I} for all Ai ∈ Ω, and

any I, family of indices.
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It is well-known (see e.g. [4]) that any possibility distribution λ on Ω, induces
a possibility measure Pλ, given by the formulas Pλ(A) = sup{λ(s); s ∈ A}, for all
A ⊂ Ω, A 6= ∅, Pλ(∅) = 0.

(iv) (see e.g. [2]) The possibilistic integral of f : Ω→ R+ on A ⊂ Ω, with respect
to the possibilistic measure Pλ induced by the possibilistic distribution λ, is defined
by

(Pos)

∫
A

f(t)dPλ(t) = sup{f(t) · λ(t); t ∈ A}.

It is clear that this definition is a particular case of the t-possibilistic integral with
respect to a semi-norm t, introduced in [2], by taking there t(x, y) = x · y.

(v) The following properties hold : for all f, g ≥ 0 and c ∈ R, c ≥ 0

(Pos)

∫
A

(f(s) + g(s))dPλ(s) ≤ (Pos)

∫
A

f(s)dPλ(s) + (Pos)

∫
A

g(s)dPλ(s),

(Pos)

∫
A

[cf(s)]dPλ(s) = c · (Pos)
∫
A

f(s)dPλ(s).

3. Fredholm possibilistic integral equations

Let us denote by B+(Ω), the Banach space of all positive and bounded functions
f : Ω → R+, endowed with the uniform norm, denoted here by ‖ · ‖. It is clear that
B+(Ω) endowed with the metric generated by the uniform norm, is a complete metric
space.

Taking into account the definition of the possibilistic integral in Definition 2.1,
the Fredholm possibilistic integral equation in (1.1), formally becomes the nonlinear
functional equation

ϕ(x) = f(x) + α · sup{K(x, s) · ϕ(s) · λ(s); s ∈ Ω}, x ∈ Ω. (3.1)

The first main result is the following.

Theorem 3.1. Let Ω 6= ∅ and Pλ be possibility measure induced by the possibility
distribution λ on Ω.

Let us also suppose that

0 ≤ K(x, s) ≤M < +∞, for all x, s ∈ Ω.

Then, for any f ∈ B+(Ω) and any 0 < α < 1
M , the Fredholm possibilistic

functional equation (3.1) has a unique solution ϕ∗ ∈ B+(Ω).

Moreover, denoting

A(ϕ)(x) = f(x) + α · sup{K(x, s)λ(s) · ϕ(s); s ∈ Ω} and An(ϕ0) = A[An−1(ϕ0)],

for any arbitrary ϕ0 ∈ B+(Ω), the following estimate holds

‖An(ϕ0)− ϕ∗‖ ≤ α ·M
1− α ·M

· ‖A(ϕ0)− ϕ0‖.
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Proof. For any x ∈ Ω fixed and ϕ ∈ B+(Ω), let us denote

T (ϕ)(x) = sup{K(x, s)ϕ(s)λ(s); s ∈ Ω}.

By hypothesis we immediately get T (ϕ) ∈ B+(Ω).
This implies that A(ϕ)(x) = f(x) + α · T (ϕ)(x) ∈ B+(Ω), for all 0 ≤ α <∞.

Let ϕ,ψ ∈ B+(Ω). We have ϕ = ϕ − ψ + ψ ≤ |ϕ − ψ| + ψ, which successively
implies

T (ϕ)(x) ≤ T (|ϕ− ψ|)(x) + T (ψ)(x),

that is

T (ϕ)(x)− T (ψ)(x) ≤ T (|ϕ− ψ|)(x).

Writing now ψ = ψ − ϕ + ϕ ≤ |ϕ − ψ| + ϕ and applying the above reasonings,
it follows

T (ψ)(x)− T (ϕ)(x) ≤ T (|ϕ− ψ|)(x),

which combined with the above inequality gives

|T (ϕ)(x)− T (ψ)(x)| ≤ T (|ϕ− ψ|)(x),

that is

| sup{K(x, s)ψ(s)λ(s); s ∈ Ω} − sup{K(x, s)ϕ(s)λ(s); s ∈ Ω}|
≤ sup{|K(x, s)ψ(s)λ(s)−K(x, s)ϕ(s)λ(s)|; s ∈ Ω}.

Since for all x ∈ Ω we have

|A(ϕ)(x)−A(ψ)(x)| = α · |T (ϕ)(x)− T (ψ)(x)| ≤ α · T (|ϕ− ψ|)(x)

≤M · α · ‖ϕ− ψ‖,

passing to supremum after x ∈ Ω, we immediately obtain

d(A(ϕ), A(ψ)) := ‖A(ϕ)−A(ψ)‖ ≤M · α · ‖ϕ− ψ‖ := M · α · d(ϕ,ψ).

The hypothesis implies that d : B+(Ω) × B+(Ω) → R+ is a contraction on the com-
plete metric space B+(Ω) endowed with the metric d(ϕ,ψ) = ‖ϕ− ψ‖, which by the
Banach’s fixed point theorem implies the desired conclusion. �

Remark 3.2. In general, under the conditions in Theorem 3.1 the sequence of succes-
sive approximation cannot be written in the explicit form as in the classical linear
Fredholm integral equation (i.e. by using the so called resolvent). However, under some
additional hypothesis on the input data f , λ and K, this can be done, exemplified by
the following result.

Corollary 3.3. Let Ω = [a, b] and Pλ be the possibility measure induced by the possibility
distribution λ, supposed to be nondecreasing on Ω.
Let us suppose that α > 0, f(x) ≥ 0, K(x, s) ≥ 0, for all x, s ∈ [a, b], K(b, b) > 0,

K(·, ·) is nondecreasing in each variable on [a, b],

f is nondecreasing on [a, b].

Then, for any α < 1
K(b,b) , the Fredholm possibilistic functional equation (3.1) has a

unique solution ϕ∗ ∈ B+[a, b], nondecreasing on [a, b].
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Moreover, denoting K1(x, t) = K(x, t) and by the recurrence formula

Kj(x, t) = (Pos)

∫ b

a

Kj−1(x, s)K(s, t)dPλ(s)

= sup{Kj−1(x, s)K(s, t) · λ(s); s ∈ [a, b]}, j ∈ N, j ≥ 2,

for the sequence of successive approximation with ϕ0 positive and nondecreasing on
[a, b], we have the representation

An(ϕ0)(x) = f(x) + α · (Pos)
∫ b

a

Rn(x, t;α)f(t)dPλ(t)

+ αn+1 · (Pos)
∫ b

a

Kn+1(x, t)ϕ0(t)dPλ(t)

= f(x) + α · sup{Rn(x, t;α)f(t)λ(t); t ∈ [a, b]}
+ αn+1 · sup{Kn+1(x, t)ϕ0(t)λ(t); t ∈ [a, b]}, (3.2)

where

Rn(x, t;α) =

n∑
j=1

αj−1Kj(x, t).

Also, for the solution ϕ∗(x) we have the representation

ϕ∗(x) = f(x) + α · (Pos)
∫ b

a

R(x, t;α)f(t)dPλ(t)

= f(x) + α · sup{R(x, t;α)f(t)λ(t); t ∈ [a, b]}, x ∈ [a, b], (3.3)

with

R(x, t;α) =

∞∑
j=1

αj−1 ·Kj(x, t), x, t ∈ [a, b].

Proof. Taking M = K(b, b), the hypothesis in Theorem 3.1 are fulfilled, fact which
implies that there exists uniquely ϕ∗ satisfying (3.1).

It remains to deal with the sequence of successive approximations.
Let us choose ϕ0 be positive and nondecreasing on [a, b] (clearly it follows that

ϕ0 is bounded too). We get

ϕ1(x) = A(ϕ0)(x) = f(x) + α · (Pos)
∫ b

a

K(x, s)ϕ0(s)dPλ(s)

= f(x) + α · sup{K(x, s)ϕ0(s)λ(s); s ∈ [a, b]},
which from the hypothesis immediately implies that ϕ1(x) ≥ 0, for all x ∈ [a, b] and
ϕ1 is nondecreasing (and therefore bounded) on [a, b].

Also, ϕ1 is the sum of two positive and both nondecreasing functions on [a, b].
Since it is easy to prove that if F and G are both nondecreasing on [a, b] then

(Pos)

∫ b

a

[F (s) +G(s)]dPλ(s) = sup{(F (s) +G(s))λ(s); s ∈ [a, b]}

= F (b)λ(b)) +G(b)λ(b) = sup{F (s)λ(s); s ∈ [a, b]}+ sup{G(s)λ(s); s ∈ [a, b]}
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= (Pos)

∫ b

a

F (s)dPλ(s) + (Pos)

∫ b

a

G(s)dPλ(s),

we obtain

ϕ2(x) = f(x) + α · (Pos)
∫ b

a

K(x, t) · ϕ1(t)dPλ(t)

= f(x) + α · (Pos)
∫ b

a

K(x, t)f(t)dPλ(t)

+α2 · (Pos)
∫ b

a

K(x, t)

[
(Pos)

∫ b

a

K(t, s)ϕ0(s)dPλ(s)

]
dPλ(t).

If, for each fixed x ∈ [a, b] we denote F (t, s) = K(x, t) ·K(t, s) ·ϕ0(s), then F (t, s) ≥ 0
for all t, s ∈ [a, b] and F (t, s) is nondecreasing in each variable t and s. Also, since F
is bounded on [a, b]× [a, b], it follows that we can write

(Pos)

∫ b

a

K(x, t)

[
(Pos)

∫ b

a

K(t, s)ϕ0(s)dPλ(s)

]
dPλ(t)

= sup{K(x, t)λ(t) · sup{K(t, s)ϕ0(s)λ(s); s ∈ [a, b]}; t ∈ [a, b]}
= sup{sup{K(x, t)K(t, s)λ(t); t ∈ [a, b]} · ϕ0(s)λ(s); s ∈ [a, b]}

= sup{K2(x, s)ϕ0(s)λ(s); s ∈ [a, b]}

= (Pos)

∫ b

a

K2(x, s)ϕ0(s)dPλ(s),

fact which leads to the formula

ϕ2(x) = f(x) +α · (Pos)
∫ b

a

K(x, t) · f(t)dPλ(t) +α2 · (Pos)
∫ b

a

K2(x, s)ϕ0(s)dPλ(s).

Continuing these kinds of reasonings, step by step we easily get the recurrence formula

ϕn+1(x) = An(ϕ0)(x)

= f(x) +

n∑
j=1

αj · (Pos)
∫ b

a

Kj(x, t)f(t)dPλ(t)

+αn+1 · (Pos)
∫ b

a

Kn+1(x, t)ϕ0(t)dPλ(t)

= f(x) + α · (Pos)
∫ b

a

 n∑
j=1

αj−1Kj(x, t)f(t)

 dPλ(t)

+αn+1 · (Pos)
∫ b

a

Kn+1(x, t)ϕ0(t)dPλ(t)

= f(x) + α · sup{Rn(x, t;α)f(t)λ(t); t ∈ [a, b]}
+αn+1 · sup{Kn+1(x, t)ϕ0(t)λ(t); t ∈ [a, b]}.

Now, by mathematical induction we easily can prove that

0 ≤ Kn+1(x, t) ≤ [K(b, b)]n+1,



Fredholm and Volterra possibilistic equations 111

for all x, t ∈ [a, b] and n = 0, 1, ...,. This immediately implies (even uniformly with
respect to x ∈ [a, b])

0 ≤ lim
n→∞

αn+1 · (Pos)
∫ b

a

Kn+1(x, t)ϕ0(t)dPλ(t)

≤ lim
n→∞

(
[α ·K(b, b)]n+1 · (Pos)

∫ b

a

ϕ0(t)dPλ(t)

)
≤ lim
n→∞

(
[α ·K(b, b)]n+1 · ‖ϕ0‖

)
= 0

and

0 ≤
∞∑
j=1

αj−1Kj(x, t)f(t)λ(t) ≤
∞∑
j=1

(α ·K(b, b))j−1 · [K(b, b)f(b)].

Therefore, for each fixed x ∈ [a, b],

Rn(x, t;α) =

n∑
j=1

αj−1Kj(x, t)f(t)λ(t),

converges (for n→∞) to R(x, t;α) · f(t)λ(t), uniformly with respect to t ∈ [a, b].
Applying now the formula

| sup{Rn(x, t;α)f(t)λ(t); t ∈ [a, b]} − sup{R(x, t;α)f(t)λ(t); t ∈ [a, b]}|
≤ sup{|Rn(x, t;α)f(t)λ(t)−R(x, t;α)f(t)λ(t)|; t ∈ [a, b]},

we immediately arrive to formula (3.3). �

Remark 3.4. It is clear that Corollary 3.3 remains valid if in its statement we replace
everywhere the word ”nondecreasing” with the word ”nonincreasing” and K(b, b) with
K(a, a).

4. Volterra possibilistic integral equations

It is known that in the classical case, the Volterra integral equation has solution
for any value of the parameter α. Unfortunately, in the case of Volterra possibilistic
integral equation, this fact does not hold in general. However, for some appropriate
choices of the possibility measure Pλ in equation (1.2), it has unique solution for any
value of the parameter α.

Let us make the notation

B+[a, b] = {f : [a, b]→ R+; f is bounded and positive on [a, b]},
endowed with the uniform norm ‖ · ‖.

For our purpose and taking into account the definition of the possibilistic integral
in Definition 2.1, in the Volterra possibilistic integral equation in (1.2) we will consider
a family of possibility measures depending on a parameter τ > 0, for which (1.2)
formally becomes the nonlinear functional equation

ϕ(x) = f(x) + α · sup{K(x, s, ϕ(s)) · λτ (s); s ∈ [a, x]}, x ∈ [a, b], τ > 0, (4.1)

where λτ , τ > 0 is a family of possibility densities defined as in Definition 2.1, (ii).
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The main result is the following.

Theorem 4.1. Let Pλτ be the possibilistic measure induced by the possibilistic distri-
bution λτ on [a, b], τ > 0.

Let us suppose that

K ∈ B+([a, b]× [a, b]× R), (4.2)

where B+([a, b] × [a, b] × R) denotes the space of all positive and bounded functions
g : [a, b]× [a, b]× R→ R+, there exists L > 0 such that

|K(x, s, u)−K(x, s, v)| ≤ L · |u− v|, for all x, s ∈ [a, b], u, v ∈ R+ (4.3)

and that
lim

τ→+∞
sup{λτ (s); s ∈ [a, b]} = 0. (4.4)

Then there exists τ0 > 0 such that for any f ∈ B+[a, b], any α > 0 and any τ > τ0,
the Volterra possibilistic integral equation (4.1) has a unique solution ϕτ ∈ B+[a, b].

Proof. For any ϕ ∈ B+[a, b], let us denote

Tτ (ϕ)(x) = sup{K(x, s, ϕ(s))λτ (s); s ∈ [a, x]}, x ∈ [a, b], τ > 0.

It is well-defined for any fixed arbitrary x ∈ [a, b], because from hypothesis on K and
λτ (s), it easily follows that as function of s, K(x, s, ϕ(s)) there exists M > 0 such
that |K(x, s, ϕ(s))|λτ (s) ≤ M , for all x, s ∈ [a, b]. In what follows, we prove that
Tτ (ϕ) ∈ B+[a, b]. For any fixed x ∈ [a, b], we immediately get

Tτ (ϕ)(x) = |Tτ (ϕ)(x)| = | sup{K(x, s, ϕ(s))λτ (s); s ∈ [a, x]}|
≤ sup{|K(x, s, ϕ(s))λτ (s)|; s ∈ [a, x]} ≤M.

In conclusion Tτ (ϕ) ∈ B+[a, b] and this also implies that Aτ (ϕ) = f + α · Tτ (ϕ) ∈
B+[a, b].

Therefore, by using the hypothesis (4.3) and (4.4) too, we immediately obtain

|Tτ (ϕ)(x)− Tτ (ψ)(x)|
≤ sup{|K(x, s, ϕ(s)) · λτ (s)−K(x, s, ψ(s)) · λτ (s)|; s ∈ [a, x]}

≤ L sup{|ϕ(s)− ψ(s)|; s ∈ [a, x]}
and

|Aτ (ϕ)(x)−Aτ (ψ)(x)| = α · |Tτ (ϕ)(x)− Tτ (ψ)(x)|
≤ α · L sup{|ϕ(s)− ψ(s)|λτ (s); s ∈ [a, x]}
≤ α · L · sup{λτ (s); s ∈ [a, b]} · ‖ϕ− ψ‖,

which immediately implies

d(Aτ (ϕ), Aτ (ψ)) := ‖Aτ (ϕ)−Aτ (ψ)‖
≤ α · L · sup{λτ (s); s ∈ [a, b]} · ‖ϕ− ψ‖τ = α · L · sup{λτ (s); s ∈ [a, b]} · d(ϕ,ψ).

From condition (4.4), there exists τ0 such that for all τ > τ0 > 0 to get

α · L · sup{λτ (s); s ∈ [a, b]} < 1,

therefore d is a contraction on the complete metric space B+[a, b] and applying the
Banach’s fixed point theorem we arrive at the desired conclusion. �
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Remark 4.2. An important particular case is when K(x, s, v) := K(x, s) · v. In this
case, condition (4.2) becomes K ∈ B+([a, b] × [a, b]) and it immediately implies the
condition (4.3), with L = sup{K(x, s);x, s ∈ [a, b]}.

Remark 4.3. There are very many simple examples of families of possibilistic distri-
butions satisfying condition (4.4) in Theorem 4.1, like, for example,

λτ (s) = e−τ |s|+1, λτ (s) =
s2

τ
, λτ (s) =

| sin(s)|
τ

, τ > 0

and so on.

References

[1] Bede, B., Coroianu, L., Gal, S.G., Approximation by Max-Product Type Operators,
Springer, New York, 2016.

[2] De Cooman, G., Possibility theory. I. The measure and integral-theoretic groundwork,
Internat. J. Gen. Systems, 25(1997), no. 4, 291-323.

[3] Coroianu, L., Gal, S.G., Opris, B., Trifa, S., Feller’ s scheme in approximation by non-
linear possibilistic integral operators, Numer. Funct. Anal. Optim, 38(2017), 327-343.

[4] Dubois, D., Prade, H., Possibility Theory, Plenum Press, New York, 1988.

[5] Gal, S.G., Fredholm-Choquet integral equations, J. Integral Equations Appl., 31(2019),
no. 2, 183-194.

[6] Gal, S.G., Volterra-Choquet integral equations, J. Integral Equations Appl., 31(2019),
no. 4, 495-504.

[7] Gal, S.G., A possibilistic approach of the max-product Bernstein kind operators, Results
Math., 65(2014), 453-462.

[8] Gal, S.G., On the laws of large numbers in possibility theory, Ann. Acad. Rom. Sci. Ser.
Math. Appl., 11(2019), no. 2, 274-284.

[9] Gal, S.G., Approximation by polynomial possibilistic integral operators, Ann. Acad. Rom.
Sci. Ser. Math. Appl., 12(2020), no. 1-2, 132-141.

Sorin G. Gal
Department of Mathematics and Computer Science,
University of Oradea,
Universitatii 1, 410087, Oradea, Romania,
and
Academy of Romanian Scientists
Splaiul Independentei No. 54, Bucharest 050094, Romania
e-mail: galso@uoradea.ro, galsorin23@gmail.com
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