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Abstract. We get a new multiplicity result for gradient systems. Here is a very
particular corollary: Let Q@ C R™ (n > 2) be a smooth bounded domain and let
®:R? = R be a C* function, with ®(0,0) = 0, such that

()| £ [ (w0)]
p
(u,v)ER2 1+ |u|;l7 + ‘U|p

< 400

where p > 0, with p = % when n > 2.

Then, for every convex set S C L°°(Q) x L>(Q) dense in L?(Q) x L*(), there
exists (a, 8) € S such that the problem

—Au = (a(z) cos(P(u,v)) — B(x) sin(®(u,v))) Py (u,v) in Q
—Av = (a(z) cos(P(u,v)) — B(z) sin(P(u, v))) Py (u,v) in Q

u=v=0 on 9N

has at least three weak solutions, two of which are global minima in H§(Q) x
H§ () of the functional

() = (/Q |Vu(;t)\2da:—|—/ﬂ\Vv(x)|2dac)

—/Q(a(m) sin(®(u(z), v(z))) + B(x) cos(P(u(x), v(x))))dx .
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1. Introduction

Let S be a topological space. A function g : S — R is said to be inf-compact if,
for each r € R, the set g=!(] — oo, r]) is compact.

If Y is a real interval and f : S x Y — R is a function inf-compact and lower
semicontinuous in S, and concave in Y, the occurrence of the strict minimax inequality

supinf f < infsup f
y S Sy

implies that the interior of the set A of all y € Y for which f(-,y) has at least two
local minima is non-empty. This fact was essentially shown in [4], giving then raise
to an enormous number of subsequent applications to the multiplicity of solutions for
nonlinear equations of variational nature (see [7] for an account up to 2010).

In [6] (see also [5]), we realized that, under the same assumptions as above, the
occurrence of the strict minimax inequality also implies the existence of § € Y such
that the function f(-,7) has at least two global minima. It may happen that 7 is
unique and does not belong to the closure of A (see Example 7 of [1]).

In [8] and [12], we extended the result of [6] to the case where Y is an arbitrary
convex set in a vector space. We also stress that such an extension is not possible for
the result of [4]. We then started to build a network of applications of the results of
[8] and [12] which touches several different topics: uniquely remotal sets in normed
spaces ([8]); non-expansive operators ([9]); singular points ([10]); Kirchhoff-type prob-
lems ([11]); Lagrangian systems of relativistic oscillators ([13]); integral functional of
the Calculus of Variations ([14]); non-cooperative gradient systems ([15]); variational
inequalities ([16]).

The aim of this paper is to establish a further application within that network.

2. Results

The main abstract result is as follows:

Theorem 2.1. Let X be a topological space, (Y,(-,-,)) a real Hilbert space, T CY a
convez set dense inY and I : X - R, ¢ : X = Y two functions such that, for each
y € T, the function x — I(z) + (p(z),y) is lower semicontinuous and inf-compact.
Moreover, assume that there exists a point xg € X, with ¢(x) # 0, such that
(a) zo is a global minimum of both functions I and ||p(-)]| ;
(b) infrex ((2), (o)) < ll(wo)l? -

Then, for each convex set S C T dense inY, there exists y* € S such that the
function x — I(z) + {p(x),y*) has at least two global minima in X.

Proof. In view of (b), we can find Z € X and r > 0 such that

I(7) + mwo?),w(m» < I(xo) + rlle(zo)ll - (2.1)
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Thanks to (a), we have
I(zo) +rllp(zo)ll = inf (I(z) +rlle(z)l) - (2.2)

The function y — inf.ex(I(z) + (p(x),y)) is weakly upper semicontinuous, and so
there exists y € B, such that

I (1) + (p(),)) = sup inf (1(2) + (o(2).) (23)

B, being the closed ball in X, centered at 0, of radius . We distinguish two cases.

First, assume that § # mggl)\ As a consequence, taking into account that r||¢(zo)||
is the maximum of the restriction to B, of the continuous linear functional {p(zg), )
(attained at the point I\Tf((x?))ll only), we have
nf (I(z) + {(2), 7)) < I(zo) +{p(0), §) < I(z0) +rllp(zo)l - (2.4)
Now, assume that y = %. In this case, due to (2.1), we have
r
inf (I(z) + (p(),9)) < I(Z) + (p(2), §) = 1(Z) + 7——7(¢(2), p(0))
zeX e (o)l
< I(wo) + rllp(zo)ll - (2.5)
Therefore, from (2.2), (2.3), (2.4) and (2.5), it follows that
sup inf (I(x) + (p(), 1)) < inf sup (I(x) + (p(x),y)) - (2.6)
yeB, t€X z€X ycB,

Now, let S C T be a convex set dense in Y. By continuity, we clearly have

sup (@(x),y) = sup ((z),y)
yEB,NS yEB,

for all x € X. Therefore, in view of (2.6), we have

sup inf (I(z) + (p(x),y)) < sup inf (I(z) + (o(x),y))

y€B,NS TE€X y€B, t€X
< inf sup (I(z) + {(p(z),y)) = inf sup (I(z)+ (p(2),y)) -
zeX yeB, rzeX yEB,.NS

At this point, the conclusion follows directly applying Theorem 1.1 of [12] to the
restriction of the function (x,y) — I(x) + (¢(x),y) to X x (B, N S). O

We now present an application of Theorem 2.1 to elliptic systems.

In the sequel, Q@ C R™ (n > 2) is a bounded domain with smooth boundary.

We denote by A the class of all functions H : 2 x R? — R which are measurable
in Q, C! in R? and satisfy

sup |H, (z,u,v)| + |Hy(z,u,v)| < 4oo
(z,u,v)EQXR2 1+ |u|p + |U|p

where p > 0, with p < % when n > 2.
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Given H € A, we are interested in the problem
—Au = Hy(x,u,v) in
—Av = Hy(z,u,v) in
u=v=0 on 0N,
H, (resp. H,) denoting the derivative of H with respect to u (resp. v).
As usual, a weak solution of this problem is any (u,v) € H§(Q2) x H () such that

/Vu(a:)V(p(x)dx:/Hu(z,u(z),v(z))ap(x)dx,
Q Q

/ Vo(a) Vip(a)de = / H (2, u(z), v(a))(x)dz
Q Q

for all ,v € HE ().
Define the functional Iy : HE(Q) x H}(Q) — R by

(/Vu |da:+/|Vv |d:c) /HH (2))da

for all (u,v) € HE(Q) x HL(Q).

Since H € A, the functional Iy is C! in H}(Q) x HZ () and its critical points are
precisely the weak solutions of the problem. Moreover, due to the Sobolev embedding
theorem, the functional (u,v) — [, H(z,u(x),v(x)) has a compact derivative and, as
a consequence, it is sequentially weakly continuous in H}(Q) x H}(Q).

Also, we denote by A; the first eigenvalue of the Dirichlet problem

—Au = Au in Q
u=0 on 0f .

Our result is as follows:

Theorem 2.2. Let F,G € A, with p = % when n > 2, and let K € A, with
K(x,0,0) =0 for all x € Q, satisfy the following conditions:
(a1) one has

SuprQ(|F($7S,t)‘ + |G(.Z‘,S,t)|)

I —0;
20 oo 52 + 2 0;
(az) there is m € |0, 2L such that
K(z,s,t) <n(s* +t?)
forallz € Q, s,t R ;
(as) one has
meas({z € Q:0 < |F(z,0,0)]* + |G(x,0,0)|?}) > 0 (2.7)
and
|F(2,0,0)|* 4+ |G(x,0,0)]* < |F(x,s,t)]* + |G(x,s,1)] (2.8)

forallz € Q, s,teR ;
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(aq) one has

meas({z € Q : ( i)nfR (F(x,0,0)F(x,s,t) + G(z,0,0)G(z, s,t))
s,t)ER2

< |F(,0,0)]* +|G(x,0,0)]*}) >0 .
Then, for every convex set S C L°°() x L>(Q) dense in L?(Q) x L?(Q), there exists
(o, B) € S such that the problem

—Au = a(z)Fy(z,u,v) + B(2)Gy(z, u,v) + Ky(z,u,v) in Q
—Av = a(z)Fy(x,u,v) + B(2)Gy(z,u,v) + Ky (2,u,v) in
u=v=0 on 00

has at least three weak solutions, two of which are global minima in HJ () x Hg ()

of the functional
1 2 2
-2 (/Q|Vu(x)| dx+/Q|Vv(x)| dx)
— /Q(oz(x)F(x,u(x),v(ac)) + B(z)G(x,u(z),v(z)) + K(z,u(x),v(x)))dr .

Proof. We are going to apply Theorem 2.1, with the following choices: X is the space
HY(Q) x HE(Q) endowed with the weak topology induced by the scalar product

(1, 0), (w, ) x = / (Vu(z) Vuo() + Vo) Veo())da ;

Q
Y is the space L?(Q2) x L?() with the scalar product

((f,9), (h, K))y = /Q(f(fl?)h(z) +g(2)k(z))de ;
T is L*°(2) x L>®(Q); I is the function defined by

</|Vu |da:+/|Vv |das) /Kxu (2))dz

for all (u,v) € X; ¢ is the function defined by

@(u7 U) = (F(v U(), U())7 G(a u()a U()))
for all (u,v) € X; x is the zero of X. Let us show that the assumptions of Theorem
2.1 are satisfied. First, from (2.7) and (2.8) it clearly follows, respectively, that

10(0,0)[% = / (IF(2,0,0) + |Gz, 0,0[2)dz > 0

and that
9 (0,0)13 < ll(u, v)I5
for all (u,v) € X. Moreover, from (ag), thanks to the Poincaré inequality, we get
/ K(a,u(e) vla))ds < [ (u@) + o@)P)de < - [ (Vala) P+ Vo) )iz
Q 1
(2.9)
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for all (u,v) € X. In particular, since K(z,0,0) =0 in Q and - < 1, from (2.9) we
infer that (0,0) is a global minimum of I in X. So, condition (a) is satisfied. Now, let
us verify condition (b). To this end, set

P(z,s,t) = F(2,0,0)F(x, s,t) + G(x,0,0)G(x, s,t) — |F(z,0,0)* — |G(x,0,0)|?
for all (z,s,t) € Q x R? and
D= {x €Q: inf P(x,s,t) < O} .
(s,t)ER?
By (a4), D has a positive measure. In view of the Scorza-Dragoni theorem, there
exists a compact set C' C D, with positive measure, such that the restriction of P to
C x R? is continuous. Fix a point & € C such that the intersection of C' and any ball
centered at Z has a positive measure. Choose §,t € R\ {0} so that P(%,3§,t) < 0. By
continuity, there is 7 > 0 such that
P(z,5,1) <0

for all x € C'N B(z, ). Set

v = sup |P(,t,5)] .

(w,5,t)€Qx[—|5],|8[]x [ |2],]]]
Since F,G € A, ~ is finite. Now, choose an open set A such that
CNB(z,r)CACQ

and -

- fCﬂB(i,r) P(x,3,t)dz
Y

meas(A\ (C N B(z,r))) < (2.10)

Finally, choose two functions @, € Hg(2) such that
wr) =5, o(z) =1
for all x € C' N B(z,r) ,
a(z) =0(z) =0
for all x € 2\ A and
la(@) < 3], [9(z)] <[]
for all € Q. Then, taking (2.10) into account, we have

(o (i1, ),2(0,0))y — [0(0, 0)]f% = /Q P, (), 5(2))dz

:/ Pu@am+/‘ Pla, i), 5(x))dz
CNB(&,r) A\(CNB(z,r))

< / P(2,5,t)dz + ymeas(A \ (C N B(#,7)) <0 .
CNB(z,r)

This shows that () is satisfied. Finally, fix «, 8 € L (). Clearly, the function
(z,8,t) = a(z)F(x,s,t) + B(x)F(x, s, t) + K(x,s,t)
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belongs to A, and so the functional
(uv U) - I(uv 'U) + <90(ua ”U), (O‘, ﬂ)>Y
is sequentially weakly lower semicontinuous in X. Let us show that it is coercive. Set

0 = max {||a| L= (), 18] L= @) }

6<;<)\21—77) . (2.11)

By (a1), there is ¢. > 0 such that
|F(z,5,1)| + |Gz, 5, 1) < e|s]* + [t]*) + ce
for all (z,s,t) € Q x R2. Then, for each u,v € H}(Q), recalling (2.9), we have
I(u,v) + {p(u, v), (a, B))y

> (57 1) [0Vu@P + 9ot )ds

and fix € > 0 so that

-/, |a(z)F(z,u(z),v(z)) + B(z)G(z, u(x), v(z))|dz

L 2 2 — e w(@)|? + |v(z)|?)dz — fc.meas
> (5-1) [ATu@P +9o@) s — 0e [ (u(@) + fo(o) Pz — Gcemeas(2)
> (; - )\ﬁl — ij) /Q(\Vu(:r)|2 + |Vo(x)|?)dz — fccmeas(92) .

Notice that, in view of (2.11), we have % - /\11 — g—f > 0, and so

lim — (I(u,0) + (p(u,v), (@, B))y) = +00 ,

[l (w,v)l| x =00

as claimed.

In particular, this also implies that the functional (u,v) — I(u,v)+ {p(u,v), (a, 8))y
is weakly lower semicontinuous, by the Eberlein-Smulyan theorem. Thus, the assump-
tions of Theorem 2.1 are satisfied. Therefore, for each convex set S C L>(£2) x L ()
dense in H(Q2) x H}(Q), there exists («, ) € S, such that the functional

(1, v) — % (/Q|Vu(m)|2d:c+/Q|Vv(x)|2dx)

—A(a(w)F(w7U($)av($)) + B(@)G(z, u(x), v(r)) + K(z, u(z), v(z)))dz

has at least two global minima in H} () x H}(Q2). Finally, by Example 38.25 of [17],
the same functional satisfies the Palais-Smale condition, and so it admits at least
three critical points, in view of Corollary 1 of [3]. The proof is complete. O

Remark 2.3. We are not aware of known results close enough to Theorem 2.2 in order
to do a proper comparison. This sentence also applies to the case of single equations,
that is to say when F, G, K depend on z and s only. For an account on elliptic systems,
we refer to [2].
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Among the various corollaries of Theorem 2.2, we wish to stress the following ones:

Corollary 2.4. Let K € A, with K(x,0,0) = 0 for all x € Q, salisfy condition (a2).
Moreover, let ® : R? — R be a non-constant C* function, with ®(0,0) = 0, belonging
to A, with p = %2 when n > 2.

Then, for every convex set S C L>®(Q) x L>®(2) dense in L?(Q) x L?(2), there
exists (o, B) € S such that the problem

—Au = (a(z) cos(P(u,v)) — B(x) sin(P(u,v))) Py (u,v) + Ky(z,u,v) in Q
—Av = (a(x) cos(P(u,v)) — B(x) sin(P(u, v))) P, (u,v) + Ky (z,u,v) in Q
u=v=0 on 00

has at least three weak solutions, two of which are global minima in HJ () x Hg ()

of the functional
(u,v) — % (/Q |Vu(z)|?de + /Q |Vv(x)|2dx)
— /Q(a(x) sin(®(u(z),v(x))) + B(z) cos(®(u(z),v(x))) + K(z,u(z),v(x)))dx .

Proof. Tt suffices to apply Theorem 2.2 to the functions F,G : R? — R defined by
F(s,t) =sin(P(s,t)) ,
G(s,t) = cos(P(s,t))

for all (s,t) € R% O

Corollary 2.5. Let F,G : R — R belong to A, with p = % when n > 2. Moreover,
assume that F,G are twice differentiable at 0 and that

b PO+ [GGs)]

|s]—=+o0 52

0 <[F(0)]* +|G(0)* = inf (|F ()] +|G(s)") ,

=0,

F"(0)F(0) + G"(0)G(0) < 0 . (2.12)
Then, for every convex set S C L>(Q) x L*(Q2) dense in L*(Q) x L*(Q), there exists
(o, B) € S such that the problem

—Au = a(x)F'(u) + B(z)G'(u) in Q
u=0 on 0N

has at least three weak solutions, two of which are global minima in H}(Q) of the
functional

v % /Q [Vu()de — /Q (a(@)F (u(x)) + B(x)G(ul)))dz .
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Proof. We apply Theorem 2.2 taking K = 0. Since 0 is a global minimum of the
function |F(-)|? + |G(+)|?, we have

F'(0)F(0) + G'(0)G(0) =0
and so, in view of (2.12), 0 is a strict local maximum for the function
F()F(0) + G()G(0).

Hence, (a4) is satisfied and Theorem 2.2 gives the conclusion. O
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