A class of functionals possessing multiple global minima

Biagio Ricceri

To Professor Gheorghe Moroşanu, with friendship, on his 70th birthday.

Abstract. We get a new multiplicity result for gradient systems. Here is a very particular corollary: Let $\Omega \subset \mathbf{R}^n$ $(n \geq 2)$ be a smooth bounded domain and let $\Phi : \mathbf{R}^2 \to \mathbf{R}$ be a C^1 function, with $\Phi(0,0) = 0$, such that

$$\sup_{(u,v)\in\mathbf{R}^2} \frac{|\Phi_u(u,v)| + |\Phi_v(u,v)|}{1+|u|^p + |v|^p} < +\infty$$

where p > 0, with $p = \frac{2}{n-2}$ when n > 2. Then, for every convex set $S \subseteq L^{\infty}(\Omega) \times L^{\infty}(\Omega)$ dense in $L^{2}(\Omega) \times L^{2}(\Omega)$, there exists $(\alpha, \beta) \in S$ such that the problem

$$-\Delta u = (\alpha(x)\cos(\Phi(u,v)) - \beta(x)\sin(\Phi(u,v)))\Phi_u(u,v) \text{ in } \Omega$$
$$-\Delta v = (\alpha(x)\cos(\Phi(u,v)) - \beta(x)\sin(\Phi(u,v)))\Phi_v(u,v) \text{ in } \Omega$$

$$u = v = 0$$
 on $\partial \Omega$

has at least three weak solutions, two of which are global minima in $H_0^1(\Omega) \times H_0^1(\Omega)$ of the functional

$$(u,v) \to \frac{1}{2} \left(\int_{\Omega} |\nabla u(x)|^2 dx + \int_{\Omega} |\nabla v(x)|^2 dx \right)$$
$$- \int_{\Omega} (\alpha(x) \sin(\Phi(u(x), v(x))) + \beta(x) \cos(\Phi(u(x), v(x)))) dx$$

Mathematics Subject Classification (2010): 35J47, 35J50, 49K35.

Keywords: Minimax, multiple global minima, variational methods, semilinear elliptic systems.

1. Introduction

Let S be a topological space. A function $g: S \to \mathbb{R}$ is said to be inf-compact if, for each $r \in \mathbb{R}$, the set $g^{-1}(] - \infty, r]$ is compact.

If Y is a real interval and $f: S \times Y \to \mathbb{R}$ is a function inf-compact and lower semicontinuous in S, and concave in Y, the occurrence of the strict minimax inequality

$$\sup_{Y} \inf_{S} f < \inf_{S} \sup_{Y} f$$

implies that the interior of the set A of all $y \in Y$ for which $f(\cdot, y)$ has at least two local minima is non-empty. This fact was essentially shown in [4], giving then raise to an enormous number of subsequent applications to the multiplicity of solutions for nonlinear equations of variational nature (see [7] for an account up to 2010).

In [6] (see also [5]), we realized that, under the same assumptions as above, the occurrence of the strict minimax inequality also implies the existence of $\tilde{y} \in Y$ such that the function $f(\cdot, \tilde{y})$ has at least two global minima. It may happen that \tilde{y} is unique and does not belong to the closure of A (see Example 7 of [1]).

In [8] and [12], we extended the result of [6] to the case where Y is an arbitrary convex set in a vector space. We also stress that such an extension is not possible for the result of [4]. We then started to build a network of applications of the results of [8] and [12] which touches several different topics: uniquely remotal sets in normed spaces ([8]); non-expansive operators ([9]); singular points ([10]); Kirchhoff-type problems ([11]); Lagrangian systems of relativistic oscillators ([13]); integral functional of the Calculus of Variations ([14]); non-cooperative gradient systems ([15]); variational inequalities ([16]).

The aim of this paper is to establish a further application within that network.

2. Results

The main abstract result is as follows:

Theorem 2.1. Let X be a topological space, $(Y, \langle \cdot, \cdot, \rangle)$ a real Hilbert space, $T \subseteq Y$ a convex set dense in Y and $I : X \to \mathbb{R}$, $\varphi : X \to Y$ two functions such that, for each $y \in T$, the function $x \to I(x) + \langle \varphi(x), y \rangle$ is lower semicontinuous and inf-compact. Moreover, assume that there exists a point $x_0 \in X$, with $\varphi(x_0) \neq 0$, such that

- (a) x_0 is a global minimum of both functions I and $\|\varphi(\cdot)\|$;
- (b) $\inf_{x \in X} \langle \varphi(x), \varphi(x_0) \rangle < \|\varphi(x_0)\|^2$.

Then, for each convex set $S \subseteq T$ dense in Y, there exists $y^* \in S$ such that the function $x \to I(x) + \langle \varphi(x), y^* \rangle$ has at least two global minima in X.

Proof. In view of (b), we can find $\tilde{x} \in X$ and r > 0 such that

$$I(\tilde{x}) + \frac{r}{\|\varphi(x_0)\|} \langle \varphi(\tilde{x}), \varphi(x_0) \rangle < I(x_0) + r \|\varphi(x_0)\| .$$

$$(2.1)$$

Thanks to (a), we have

$$I(x_0) + r \|\varphi(x_0)\| = \inf_{x \in X} (I(x) + r \|\varphi(x)\|) .$$
(2.2)

The function $y \to \inf_{x \in X} (I(x) + \langle \varphi(x), y \rangle)$ is weakly upper semicontinuous, and so there exists $\tilde{y} \in B_r$ such that

$$\inf_{x \in X} (I(x) + \langle \varphi(x), \tilde{y} \rangle) = \sup_{y \in B_r} \inf_{x \in X} (I(x) + \langle \varphi(x), y \rangle) , \qquad (2.3)$$

 B_r being the closed ball in X, centered at 0, of radius r. We distinguish two cases. First, assume that $\tilde{y} \neq \frac{r\varphi(x_0)}{\|\varphi(x_0)\|}$. As a consequence, taking into account that $r\|\varphi(x_0)\|$ is the maximum of the restriction to B_r of the continuous linear functional $\langle \varphi(x_0), \cdot \rangle$ (attained at the point $\frac{r\varphi(x_0)}{\|\varphi(x_0)\|}$ only), we have

$$\inf_{x \in X} (I(x) + \langle \varphi(x), \tilde{y} \rangle) \le I(x_0) + \langle \varphi(x_0), \tilde{y} \rangle < I(x_0) + r \|\varphi(x_0)\| .$$
(2.4)

Now, assume that $\tilde{y} = \frac{r\varphi(x_0)}{\|\varphi(x_0)\|}$. In this case, due to (2.1), we have

$$\inf_{x \in X} (I(x) + \langle \varphi(x), \tilde{y} \rangle) \leq I(\tilde{x}) + \langle \varphi(\tilde{x}), \tilde{y} \rangle = I(\tilde{x}) + \frac{r}{\|\varphi(x_0)\|} \langle \varphi(\tilde{x}), \varphi(x_0) \rangle$$

$$< I(x_0) + r \|\varphi(x_0)\| .$$
(2.5)

Therefore, from (2.2), (2.3), (2.4) and (2.5), it follows that

$$\sup_{y \in B_r} \inf_{x \in X} (I(x) + \langle \varphi(x), y \rangle) < \inf_{x \in X} \sup_{y \in B_r} (I(x) + \langle \varphi(x), y \rangle) .$$
(2.6)

Now, let $S \subseteq T$ be a convex set dense in Y. By continuity, we clearly have

$$\sup_{y\in B_r\cap S}\langle\varphi(x),y\rangle=\sup_{y\in B_r}\langle\varphi(x),y\rangle$$

for all $x \in X$. Therefore, in view of (2.6), we have

$$\sup_{y \in B_r \cap S} \inf_{x \in X} (I(x) + \langle \varphi(x), y \rangle) \le \sup_{y \in B_r} \inf_{x \in X} (I(x) + \langle \varphi(x), y \rangle)$$

$$< \inf_{x \in X} \sup_{y \in B_r} (I(x) + \langle \varphi(x), y \rangle) = \inf_{x \in X} \sup_{y \in B_r \cap S} (I(x) + \langle \varphi(x), y \rangle) .$$

At this point, the conclusion follows directly applying Theorem 1.1 of [12] to the restriction of the function $(x, y) \to I(x) + \langle \varphi(x), y \rangle$ to $X \times (B_r \cap S)$.

We now present an application of Theorem 2.1 to elliptic systems.

In the sequel, $\Omega \subseteq \mathbf{R}^n$ $(n \ge 2)$ is a bounded domain with smooth boundary.

We denote by \mathcal{A} the class of all functions $H: \Omega \times \mathbb{R}^2 \to \mathbb{R}$ which are measurable in Ω , C^1 in \mathbb{R}^2 and satisfy

$$\sup_{(x,u,v)\in\Omega\times\mathbf{R}^2} \frac{|H_u(x,u,v)| + |H_v(x,u,v)|}{1+|u|^p + |v|^p} < +\infty$$

where p > 0, with $p < \frac{n+2}{n-2}$ when n > 2.

Given $H \in \mathcal{A}$, we are interested in the problem

$$\begin{aligned} -\Delta u &= H_u(x, u, v) \text{ in } \Omega \\ -\Delta v &= H_v(x, u, v) \text{ in } \Omega \\ u &= v = 0 \text{ on } \partial\Omega , \end{aligned}$$

 H_u (resp. H_v) denoting the derivative of H with respect to u (resp. v). As usual, a weak solution of this problem is any $(u, v) \in H_0^1(\Omega) \times H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u(x) \nabla \varphi(x) dx = \int_{\Omega} H_u(x, u(x), v(x)) \varphi(x) dx ,$$
$$\int_{\Omega} \nabla v(x) \nabla \psi(x) dx = \int_{\Omega} H_v(x, u(x), v(x)) \psi(x) dx$$

for all $\varphi, \psi \in H_0^1(\Omega)$.

Define the functional $I_H : H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbf{R}$ by

$$I_H(u,v) = \frac{1}{2} \left(\int_{\Omega} |\nabla u(x)|^2 dx + \int_{\Omega} |\nabla v(x)|^2 dx \right) - \int_{\Omega} H(x,u(x),v(x)) dx$$

for all $(u, v) \in H_0^1(\Omega) \times H_0^1(\Omega)$.

Since $H \in \mathcal{A}$, the functional I_H is C^1 in $H_0^1(\Omega) \times H_0^1(\Omega)$ and its critical points are precisely the weak solutions of the problem. Moreover, due to the Sobolev embedding theorem, the functional $(u, v) \to \int_{\Omega} H(x, u(x), v(x))$ has a compact derivative and, as a consequence, it is sequentially weakly continuous in $H_0^1(\Omega) \times H_0^1(\Omega)$.

Also, we denote by λ_1 the first eigenvalue of the Dirichlet problem

$$-\Delta u = \lambda u \text{ in } \Omega$$
$$u = 0 \text{ on } \partial \Omega .$$

Our result is as follows:

Theorem 2.2. Let $F, G \in A$, with $p = \frac{2}{n-2}$ when n > 2, and let $K \in A$, with K(x, 0, 0) = 0 for all $x \in \Omega$, satisfy the following conditions: (a₁) one has

$$\lim_{s^2 + t^2 \to +\infty} \frac{\sup_{x \in \Omega} (|F(x, s, t)| + |G(x, s, t)|)}{s^2 + t^2} = 0 \ ;$$

(a₂) there is $\eta \in \left]0, \frac{\lambda_1}{2}\right[$ such that

$$K(x, s, t) \le \eta(s^2 + t^2)$$

for all $x \in \Omega$, $s, t \in \mathbf{R}$; (a₃) one has

$$\operatorname{meas}(\{x \in \Omega : 0 < |F(x,0,0)|^2 + |G(x,0,0)|^2\}) > 0$$
(2.7)

and

$$|F(x,0,0)|^{2} + |G(x,0,0)|^{2} \le |F(x,s,t)|^{2} + |G(x,s,t)|^{2}$$
(2.8)

for all $x \in \Omega$, $s, t \in \mathbf{R}$;

 (a_4) one has

$$\begin{split} \max(\{x\in\Omega:\inf_{(s,t)\in\mathbf{R}^2}(F(x,0,0)F(x,s,t)+G(x,0,0)G(x,s,t))\\ &<|F(x,0,0)|^2+|G(x,0,0)|^2\})>0~. \end{split}$$

Then, for every convex set $S \subseteq L^{\infty}(\Omega) \times L^{\infty}(\Omega)$ dense in $L^{2}(\Omega) \times L^{2}(\Omega)$, there exists $(\alpha, \beta) \in S$ such that the problem

$$-\Delta u = \alpha(x)F_u(x, u, v) + \beta(x)G_u(x, u, v) + K_u(x, u, v) \text{ in } \Omega$$
$$-\Delta v = \alpha(x)F_v(x, u, v) + \beta(x)G_v(x, u, v) + K_v(x, u, v) \text{ in } \Omega$$
$$u = v = 0 \text{ on } \partial\Omega$$

has at least three weak solutions, two of which are global minima in $H_0^1(\Omega) \times H_0^1(\Omega)$ of the functional

$$(u,v) \to \frac{1}{2} \left(\int_{\Omega} |\nabla u(x)|^2 dx + \int_{\Omega} |\nabla v(x)|^2 dx \right)$$
$$- \int_{\Omega} (\alpha(x)F(x,u(x),v(x)) + \beta(x)G(x,u(x),v(x)) + K(x,u(x),v(x))) dx$$

Proof. We are going to apply Theorem 2.1, with the following choices: X is the space $H_0^1(\Omega) \times H_0^1(\Omega)$ endowed with the weak topology induced by the scalar product

$$\langle (u,v), (w,\omega) \rangle_X = \int_{\Omega} (\nabla u(x) \nabla w(x) + \nabla v(x) \nabla \omega(x)) dx;$$

Y is the space $L^2(\Omega) \times L^2(\Omega)$ with the scalar product

$$\langle (f,g),(h,k)\rangle_Y = \int_{\Omega} (f(x)h(x) + g(x)k(x))dx;$$

T is $L^{\infty}(\Omega) \times L^{\infty}(\Omega)$; I is the function defined by

$$I(u,v) = \frac{1}{2} \left(\int_{\Omega} |\nabla u(x)|^2 dx + \int_{\Omega} |\nabla v(x)|^2 dx \right) - \int_{\Omega} K(x,u(x),v(x)) dx$$

for all $(u, v) \in X$; φ is the function defined by

$$\varphi(u,v)=(F(\cdot,u(\cdot),v(\cdot)),G(\cdot,u(\cdot),v(\cdot)))$$

for all $(u, v) \in X$; x_0 is the zero of X. Let us show that the assumptions of Theorem 2.1 are satisfied. First, from (2.7) and (2.8) it clearly follows, respectively, that

$$\|\varphi(0,0)\|_{Y}^{2} = \int_{\Omega} (|F(x,0,0)|^{2} + |G(x,0,0)|^{2})dx > 0$$

and that

$$\|\varphi(0,0)\|_{Y}^{2} \leq \|\varphi(u,v)\|_{Y}^{2}$$

for all $(u, v) \in X$. Moreover, from (a_2) , thanks to the Poincaré inequality, we get

$$\int_{\Omega} K(x, u(x), v(x)) dx \le \eta \int_{\Omega} (|u(x)|^2 + |v(x)|^2) dx \le \frac{\eta}{\lambda_1} \int_{\Omega} (|\nabla u(x)|^2 + |\nabla v(x)|^2) dx$$
(2.9)

for all $(u, v) \in X$. In particular, since K(x, 0, 0) = 0 in Ω and $\frac{\eta}{\lambda_1} < \frac{1}{2}$, from (2.9) we infer that (0, 0) is a global minimum of I in X. So, condition (a) is satisfied. Now, let us verify condition (b). To this end, set

$$P(x, s, t) = F(x, 0, 0)F(x, s, t) + G(x, 0, 0)G(x, s, t) - |F(x, 0, 0)|^2 - |G(x, 0, 0)|^2$$
for all $(x, s, t) \in \Omega \times \mathbf{R}^2$ and

$$D = \left\{ x \in \Omega : \inf_{(s,t) \in \mathbf{R}^2} P(x,s,t) < 0 \right\} .$$

By (a_4) , D has a positive measure. In view of the Scorza-Dragoni theorem, there exists a compact set $C \subset D$, with positive measure, such that the restriction of P to $C \times \mathbf{R}^2$ is continuous. Fix a point $\tilde{x} \in C$ such that the intersection of C and any ball centered at \tilde{x} has a positive measure. Choose $\tilde{s}, \tilde{t} \in \mathbf{R} \setminus \{0\}$ so that $P(\tilde{x}, \tilde{s}, \tilde{t}) < 0$. By continuity, there is r > 0 such that

$$P(x, \tilde{s}, \tilde{t}) < 0$$

for all $x \in C \cap B(\tilde{x}, r)$. Set

$$\gamma = \sup_{(x,s,t)\in\Omega\times[-|\tilde{s}|,|\tilde{s}|]\times[-|\tilde{t}|,|\tilde{t}|]} |P(x,t,s)| .$$

Since $F, G \in \mathcal{A}, \gamma$ is finite. Now, choose an open set A such that

$$C \cap B(\tilde{x}, r) \subset A \subset \Omega$$

and

$$\operatorname{meas}(A \setminus (C \cap B(\tilde{x}, r))) < -\frac{\int_{C \cap B(\tilde{x}, r)} P(x, \tilde{s}, \tilde{t}) dx}{\gamma} .$$
(2.10)

Finally, choose two functions $\tilde{u}, \tilde{v} \in H_0^1(\Omega)$ such that

$$\tilde{u}(x) = \tilde{s} , \ \tilde{v}(x) = \tilde{t}$$

for all $x \in C \cap B(\tilde{x}, r)$,

$$\tilde{u}(x) = \tilde{v}(x) = 0$$

for all $x \in \Omega \setminus A$ and

$$|\tilde{u}(x)| \le |\tilde{s}| , \ |\tilde{v}(x)| \le |\tilde{t}|$$

for all $x \in \Omega$. Then, taking (2.10) into account, we have

$$\begin{split} &\langle \varphi(\tilde{u},\tilde{v}),\varphi(0,0)\rangle_{Y} - \|\varphi(0,0)\|_{Y}^{2} = \int_{\Omega} P(x,\tilde{u}(x),\tilde{v}(x))dx \\ &= \int_{C\cap B(\tilde{x},r)} P(x,\tilde{s},\tilde{t})dx + \int_{A\setminus (C\cap B(\tilde{x},r))} P(x,\tilde{u}(x),\tilde{v}(x))dx \\ &< \int_{C\cap B(\tilde{x},r)} P(x,\tilde{s},\tilde{t})dx + \gamma \mathrm{meas}(A\setminus (C\cap B(\tilde{x},r)) < 0 \; . \end{split}$$

This shows that (b) is satisfied. Finally, fix $\alpha, \beta \in L^{\infty}(\Omega)$. Clearly, the function

$$(x,s,t) \rightarrow \alpha(x)F(x,s,t) + \beta(x)F(x,s,t) + K(x,s,t)$$

belongs to \mathcal{A} , and so the functional

$$(u,v) \to I(u,v) + \langle \varphi(u,v), (\alpha,\beta) \rangle_Y$$

is sequentially weakly lower semicontinuous in X. Let us show that it is coercive. Set

$$\theta = \max\left\{\|\alpha\|_{L^{\infty}(\Omega)}, \|\beta\|_{L^{\infty}(\Omega)}\right\}$$

and fix $\epsilon > 0$ so that

$$\epsilon < \frac{1}{\theta} \left(\frac{\lambda_1}{2} - \eta \right) \ . \tag{2.11}$$

By (a_1) , there is $c_{\epsilon} > 0$ such that

$$F(x, s, t)| + |G(x, s, t)| \le \epsilon(|s|^2 + |t|^2) + c_{\epsilon}$$

for all $(x, s, t) \in \Omega \times \mathbf{R}^2$. Then, for each $u, v \in H_0^1(\Omega)$, recalling (2.9), we have

$$\begin{split} I(u,v) + \langle \varphi(u,v), (\alpha,\beta) \rangle_Y \\ \geq \left(\frac{1}{2} - \frac{\eta}{\lambda_1}\right) \int_{\Omega} (|\nabla u(x)|^2 + |\nabla v(x)|^2) dx \\ - \int_{\Omega} |\alpha(x)F(x,u(x),v(x)) + \beta(x)G(x,u(x),v(x))| dx \\ \geq \left(\frac{1}{2} - \frac{\eta}{\lambda_1}\right) \int_{\Omega} (|\nabla u(x)|^2 + |\nabla v(x)|^2) dx - \theta\epsilon \int_{\Omega} (|u(x)|^2 + |v(x)|^2) dx - \theta c_\epsilon \mathrm{meas}(\Omega) \\ \geq \left(\frac{1}{2} - \frac{\eta}{\lambda_1} - \frac{\theta\epsilon}{\lambda_1}\right) \int_{\Omega} (|\nabla u(x)|^2 + |\nabla v(x)|^2) dx - \theta c_\epsilon \mathrm{meas}(\Omega) \,. \end{split}$$

Notice that, in view of (2.11), we have $\frac{1}{2} - \frac{\eta}{\lambda_1} - \frac{\theta\epsilon}{\lambda_1} > 0$, and so

$$\lim_{\|(u,v)\|_X \to +\infty} (I(u,v) + \langle \varphi(u,v), (\alpha,\beta) \rangle_Y) = +\infty ,$$

as claimed.

In particular, this also implies that the functional $(u, v) \to I(u, v) + \langle \varphi(u, v), (\alpha, \beta) \rangle_Y$ is weakly lower semicontinuous, by the Eberlein-Smulyan theorem. Thus, the assumptions of Theorem 2.1 are satisfied. Therefore, for each convex set $S \subseteq L^{\infty}(\Omega) \times L^{\infty}(\Omega)$ dense in $H_0^1(\Omega) \times H_0^1(\Omega)$, there exists $(\alpha, \beta) \in S$, such that the functional

$$(u,v) \to \frac{1}{2} \left(\int_{\Omega} |\nabla u(x)|^2 dx + \int_{\Omega} |\nabla v(x)|^2 dx \right)$$
$$- \int_{\Omega} (\alpha(x)F(x,u(x),v(x)) + \beta(x)G(x,u(x),v(x)) + K(x,u(x),v(x))) dx$$

has at least two global minima in $H_0^1(\Omega) \times H_0^1(\Omega)$. Finally, by Example 38.25 of [17], the same functional satisfies the Palais-Smale condition, and so it admits at least three critical points, in view of Corollary 1 of [3]. The proof is complete.

Remark 2.3. We are not aware of known results close enough to Theorem 2.2 in order to do a proper comparison. This sentence also applies to the case of single equations, that is to say when F, G, K depend on x and s only. For an account on elliptic systems, we refer to [2].

Among the various corollaries of Theorem 2.2, we wish to stress the following ones:

Corollary 2.4. Let $K \in \mathcal{A}$, with K(x, 0, 0) = 0 for all $x \in \Omega$, satisfy condition (a_2) . Moreover, let $\Phi : \mathbf{R}^2 \to \mathbf{R}$ be a non-constant C^1 function, with $\Phi(0, 0) = 0$, belonging to \mathcal{A} , with $p = \frac{2}{n-2}$ when n > 2.

Then, for every convex set $S \subseteq L^{\infty}(\Omega) \times L^{\infty}(\Omega)$ dense in $L^{2}(\Omega) \times L^{2}(\Omega)$, there exists $(\alpha, \beta) \in S$ such that the problem

$$-\Delta u = (\alpha(x)\cos(\Phi(u,v)) - \beta(x)\sin(\Phi(u,v)))\Phi_u(u,v) + K_u(x,u,v) \text{ in } \Omega$$
$$-\Delta v = (\alpha(x)\cos(\Phi(u,v)) - \beta(x)\sin(\Phi(u,v)))\Phi_v(u,v) + K_v(x,u,v) \text{ in } \Omega$$
$$u = v = 0 \text{ on } \partial\Omega$$

has at least three weak solutions, two of which are global minima in $H_0^1(\Omega) \times H_0^1(\Omega)$ of the functional

$$(u,v) \to \frac{1}{2} \left(\int_{\Omega} |\nabla u(x)|^2 dx + \int_{\Omega} |\nabla v(x)|^2 dx \right)$$
$$- \int_{\Omega} (\alpha(x) \sin(\Phi(u(x), v(x))) + \beta(x) \cos(\Phi(u(x), v(x))) + K(x, u(x), v(x))) dx$$

Proof. It suffices to apply Theorem 2.2 to the functions $F, G: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$F(s,t) = \sin(\Phi(s,t)) ,$$

$$G(s,t) = \cos(\Phi(s,t))$$

for all $(s,t) \in \mathbf{R}^2$.

Corollary 2.5. Let $F, G : \mathbf{R} \to \mathbf{R}$ belong to \mathcal{A} , with $p = \frac{2}{n-2}$ when n > 2. Moreover, assume that F, G are twice differentiable at 0 and that

$$\lim_{|s| \to +\infty} \frac{|F(s)| + |G(s)|}{s^2} = 0 ,$$

$$0 < |F(0)|^2 + |G(0)|^2 = \inf_{s \in \mathbf{R}} (|F(s)|^2 + |G(s)|^2) ,$$

$$F''(0)F(0) + G''(0)G(0) < 0 .$$
(2.12)

Then, for every convex set $S \subseteq L^{\infty}(\Omega) \times L^{\infty}(\Omega)$ dense in $L^{2}(\Omega) \times L^{2}(\Omega)$, there exists $(\alpha, \beta) \in S$ such that the problem

$$-\Delta u = \alpha(x)F'(u) + \beta(x)G'(u)$$
 in Ω
 $u = 0$ on $\partial \Omega$

has at least three weak solutions, two of which are global minima in $H^1_0(\Omega)$ of the functional

$$u \to \frac{1}{2} \int_{\Omega} |\nabla u(x)|^2 dx - \int_{\Omega} (\alpha(x)F(u(x)) + \beta(x)G(u(x))) dx$$

Proof. We apply Theorem 2.2 taking K = 0. Since 0 is a global minimum of the function $|F(\cdot)|^2 + |G(\cdot)|^2$, we have

$$F'(0)F(0) + G'(0)G(0) = 0$$

and so, in view of (2.12), 0 is a strict local maximum for the function

$$F(\cdot)F(0) + G(\cdot)G(0).$$

Hence, (a_4) is satisfied and Theorem 2.2 gives the conclusion.

References

- Cabada, A., Iannizzotto, A., A note on a question of Ricceri, Appl. Math. Lett., 25(2012), 215-219.
- [2] de Figueiredo, D.G., Semilinear elliptic systems: existence, multiplicity, symmetry of solutions, Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. V, 1-48, Handb. Differ. Equ., Elsevier/North-Holland, 2008.
- [3] Pucci, P., Serrin, J., A mountain pass theorem, J. Differential Equations, 60(1985), 142-149.
- [4] Ricceri, B., On a three critical points theorem, Arch. Math., 75(2000), 220-226.
- [5] Ricceri, B., Well-posedness of constrained minimization problems via saddle-points, J. Global Optim., 40(2008), 389-397.
- [6] Ricceri, B., Multiplicity of global minima for parametrized functions, Rend. Lincei Mat. Appl., 21(2010), 47-57.
- [7] Ricceri, B., Nonlinear eigenvalue problems, in "Handbook of Nonconvex Analysis and Applications" D. Y. Gao and D. Motreanu eds., 543-595, International Press, 2010.
- [8] Ricceri, B., A strict minimax inequality criterion and some of its consequences, Positivity, 16(2012), 455-470.
- [9] Ricceri, B., A range property related to non-expansive operators, Mathematika, 60(2014), 232-236.
- [10] Ricceri, B., Singular points of non-monotone potential operators, J. Nonlinear Convex Anal., 16(2015), 1123-1129.
- [11] Ricceri, B., Energy functionals of Kirchhoff-type problems having multiple global minima, Nonlinear Anal., 15(2015), 130-136.
- [12] Ricceri, B., On a minimax theorem: an improvement, a new proof and an overview of its applications, Minimax Theory Appl., 2(2017), 99-152.
- [13] Ricceri, B., Another multiplicity result for the periodic solutions of certain systems, Linear Nonlinear Anal., 5(2019), 371-378.
- [14] Ricceri, B., Miscellaneous applications of certain minimax theorems II, Acta Math. Vietnam., 45(2020), 515-524.
- [15] Ricceri, B., An alternative theorem for gradient systems, Pure Appl. Funct. Anal. (to appear).
- [16] Ricceri, B., A remark on variational inequalities in small balls, J. Nonlinear Var. Anal., 4(2020), 21-26.
- [17] Zeidler, E., Nonlinear functional analysis and its applications, vol. III, Springer-Verlag, 1985.

 \Box

Biagio Ricceri Department of Mathematics and Informatics, University of Catania, Viale A. Doria 6, 95125 Catania, Italy e-mail: ricceri@dmi.unict.it

84