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Abstract. The Liénard system dx
dt

= y, dy
dt

= −f(x)y− g(x) is considered. Under
some assumptions on functions f(x) and g(x), we prove the existence of a periodic
solution of this system.
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1. Introduction

On the phase plane to periodic solutions of an autonomous system

ẋ = X(x, y), ẏ = Y (x, y)

correspond closed trajectories. Such solutions usually describe continuous periodic
processes. Periodic solutions are an important class of solutions to ordinary differential
equations, since many of the processes described by ordinary differential equations are
periodic. A large number of scientific papers are devoted to their study. At his time,
Henri Poincaré attached great importance to periodic solutions represented by closed
orbits. According to his plans, they were to become a support in the study of all other,
non-periodic movements. In a certain sense, periodic solutions are the only type of
solutions that can be completely observed in the process of their evolution, since the
entire evolution of a periodic solution is determined by the knowledge of this solution
over a finite period of time. Periodic solutions are the simplest type of oscillatory
solutions.

In 1928, Liénard [7, 8] considered equations of the form

d2x

dt2
+ f(x)

dx

dt
+ x = 0, (1.1)
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where f(x) is a polynomial of even degree. These equations arose as a generalization
of the famous van Der Pol equation [12]

d2x

dt2
+ µ(x2 − 1)

dx

dt
+ x = 0, (1.2)

which studied in detail the case f(x) = x2−1. Moreover, the generalization was infor-
mal and mathematical, and naturally arose from the nonlinear damping of vibrations
in electrical circuits considered by Liénard. Setting dx/dt = z, Liénard wrote equation
(1.1) in the following form of the system of differential equations of first order

dx

dt
= z,

dz

dt
= −x− f(x)z. (1.3)

But in his proof of the uniqueness of a periodic solution of equation (1.1), Liénard
used other system of differential equations which is equivalent to system (1.3). For
this, in system (1.3) he changed the variable z = y − F (x), where

F (x) =

∫ x

0

f(ξ)dξ, (1.4)

and obtained the system

dx

dt
= y − F (x),

dy

dt
= −x. (1.5)

Equation (1.1) is referred to as a Liénard equation, and both systems of equations
(1.3) and (1.5) are called Liénard systems.

Consider the following differential equation

d2x

dt2
+ f(x)

dx

dt
+ g(x) = 0, (1.6)

which is a generalization of equation (1.1). These equations were obtained by Levinson
and Smith [6] in 1942. Equation (1.6) as well as equation (1.1) most of authors call
the Liénard equation 1. The differential equation (1.6) have been studied in many
papers [1, 9, 5, 2, 3, 11]. Equation (1.6) one can write in the form of the system of
ordinary differential equations

dx

dt
= y,

dy

dt
= −f(x)y − g(x). (1.7)

This system can model mechanical systems, where f(x) is known as the damping
term and g(x)) is called the restoring force or stiffness. System (1.7) is also used to
model resistor inductor capacitor circuits with nonlinear circuit elements.

In papers [4, 10, 15, 13] the authors obtained conditions, under which system
(1.7) or the equivalent system

dx

dt
= z − F (x),

dz

dt
= −g(x) (1.8)

has a periodic solution.
The aim of this paper is to obtain other sufficient conditions of the existence of

a periodic solution of system (1.7).

1Some authors call equation (1.6) the generalized Liénard equation.
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2. On the existence of periodic solutions of system (1.7)

Let us find the conditions that ensure the existence of periodic solutions of system
(1.7). Note that the periodic solution of system (1.7) exists if and only if there is a
periodic solution of system (1.8). The following theorem gives sufficient conditions for
the existence of periodic solutions of system (1.8).

Theorem 2.1. Suppose that F (x) is continuously differentiable, g(x) is locally Lips-
chitz, and besides

• xg(x) > 0 for x 6= 0;
• the equation F (x) = 0 has three real roots: x = b1 > 0, x = b2 < 0, and x = 0;
F (x) > 0 for x ∈ (b2, 0) ∪ (b1,+∞); F (x) < 0 for x ∈ (−∞, b2) ∪ (0, b1);

• F (x) monotonically increases in the intervals (−∞, b2) and (b1,+∞);
F (x)→ +∞ as x→ +∞, F (x)→ −∞ as x→ −∞.

Then system (1.8) has a nontrivial (nonzero) periodic solution.

Proof. As has been shown in [3, 14], any solution of system (1.8) is a clockwise rotation
around the origin, i.e. any solution that starts on the positive semiaxis of ordinate
Oz, sequentially passes the first quadrant, then the fourth, third, second, first again,
and so on. Consider the trajectory x(t), z(t) of system (1.8) in the plane Oxz starting
at the point H with the coordinates (0, zH) at the zero moment of time t (see Fig. 1).

Figure 1

Denote by J and S the points of intersection of this trajectory with the curve
z = F (x), by I and L the points of intersection of the trajectory with the straight line



50 Alexander Ignatyev

x = b1, by U and N the points of intersection of the trajectory with the straight line
x = b2, and, finally, by W and M the points of intersection of the trajectory x(t), z(t)
with the axis Oz.

Obviously, the solution x(t), z(t) is periodic if and only if the points H and W
coincide, i.e. zH = zW .

Denote

G(x) :=

∫ x

0

g(ξ)dξ.

Consider the function

v(x, z) =
z2

2
+G(x).

Its derivative along solutions of system (1.8) is equal

dv(x(t), z(t))

dt
= −z(t)g(x(t)) + g(x(t))[z(t)− F (x(t))] = −g(x(t))F (x(t)). (2.1)

The change of the function v from point H to point W is equal to

∆v = v(0, zW )− v(0, zH) =

∫ τ

0

dv(x(t), z(t))

dt
dt = −

∫ τ

0

g(x(t))F (x(t))dt (2.2)

where τ is moment of time when the trajectory x(t), z(t) reaches the point W . Assume
that zH is sufficiently large, such that xJ > b1, xS < b2. Let us show that ∆v is a
decreasing function of zH . To do this, we break the trajectory between H and W into
6 pieces, where the first piece is a segment of the trajectory between points H and
I, the second piece is a segment of the trajectory between points I and L, the third
piece is the segment of the trajectory between the points L and M , the fourth piece
is the segment of the trajectory between the points M and N , the fifth piece is a
segment of the trajectory between the points N and U , the sixth piece is a segment
of the trajectory between the points U and W . So ∆v can be represented in the
form ∆v =

∑6
i=1 ∆vi where ∆vi is the change of the function v on i-th piece of

the trajectory. On the first, third, fourth and sixth pieces, z can be represented as a
function of a variable x, because on these pieces x(t) either monotonically increases
or monotonically decreases; hence, the change of variable dt = dx

z−F (x) is quite correct.

On the second and fifth pieces we use the substitution dt = − dz
g(x) . We want

to argue that ∆v is a monotonically decreasing function of zH . So consider two tra-
jectories starting at t = 0 from points (0, zH) and (0, zH + ∆zH), where ∆zH > 0.
We denote the trajectories of system (1.8), starting at t = 0 from the points (0, zH)
and (0, zH + ∆zH) by symbols T1 and T2 respectively. By virtue of the conditions
of the theorem of existence and uniqueness of solutions of system (1.8), trajectories
T1 and T2 have no common points, hence, the trajectory T2 is located outside of
the trajectory T1, i.e. any ray emerging from the origin, first intersects the trajec-
tory T1 and then the trajectory T2. Let us discover how changes the expression for
∆vi (i = 1, . . . , 6) in the transition from the trajectory T1 to the trajectory T2.

∆v1 =

∫ b1

0

g(x)[−F (x)]

z(x)− F (x)
dx =

∫ b1

0

g(x)|F (x)|
|z(x)− F (x)|

dx.
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The value for z(x) on the trajectory T2 is more then the value for z(x) on T1, hence,
∆v1(T2) < ∆v1(T1). Here and below ∆vi(T2) and ∆vi(T1) denote the values of ∆vi
on trajectories T2 and T1 respectively.

∆v2 = −
∫ zL

zI

g(x)F (x)

[
− dz

g(x)

]
= −

∫ zI

zL

F (x(z))dz.

Taking into account that on this piece F (x) is positive and monotonically increasing
and x(z)|T2 > x(z)|T1, we obtain that ∆v2(T2) < ∆v2(T1).

∆v3 =

∫ 0

b1

g(x)[−F (x)]

z(x)− F (x)
dx =

∫ b1

0

g(x)|F (x)|
|z(x)− F (x)|

dx

In this case we also have ∆v3(T2) < ∆v3(T1).

∆v4 =

∫ b2

0

[−g(x)]F (x)

z(x)− F (x)
dx =

∫ 0

b2

[−g(x)]F (x)

F (x)− z(x)
dx,

whence ∆v4(T2) < ∆v4(T1).

∆v5 = −
∫ zU

zN

g(x)F (x)

[
− dz

g(x)

]
=

∫ zU

zN

F (x(z))dz.

On this piece F (x) is negative. Since x(z)|T2 < x(z)|T1, then

F (x(z))|x(z)∈T2 < F (x(z))|x(z)∈T1 ,

hence ∆v5(T2) < ∆v5(T1).

∆v6 = −
∫ 0

b2

g(x)F (x)

z(x)− F (x)
dx =

∫ 0

b2

[−g(x)]F (x)

z(x)− F (x)
dx.

Here z(x)|T2 > z(x)|T1, therefore ∆v6(T2) < ∆v6(T1). Thus it has been proved that
∆vi (i = 1, . . . , 6) decrease if zH increase, hence ∆v also decreases with increasing
zH . Let us show that

lim
zH→+∞

∆v = −∞.

To do this, it is enough to prove that

lim
zH→+∞

∆v2 = −∞.

We will show that zI increases indefinitely with unlimited increase of the value zH .
Getting rid of t in system (1.8) and passing to the argument x, we write the differential
equation which describes the orbit HIJ :

dz

dx
= − g(x)

z − F (x)
. (2.3)

According to the condition of the theorem F (x) < 0 for x ∈ (0, b1), hence

g(x)

z − F (x)
<
g(x)

z
for x ∈ (0, b1). (2.4)
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From equation (2.3) and inequality (2.4) it follows

−dz
dx

<
g(x)

z
for x ∈ (0, b1).

Separating variables and integrating, we obtain

1

2
z2(b1)− 1

2
z2H > −

∫ b1

0

g(x)dx,

whence bearing in mind that z(b1) = zI , we get that zI → +∞ if zH → +∞.
Let c ∈ (b1, xJ). Let us designate the ordinates of the intersection points of the

trajectory T1 and the line x = c on pieces IJ and JL, respectively z∗ and z∗∗. Taking
into account that L is the intersection point of the trajectory T1 and the line x = b1,
we conclude that zL < 0 (see Fig.1). Bearing in mind the continuity of the trajectory
T1, the value c ∈ (b1, xJ) we choose so close to the value of b1 that z∗∗ < 0.

Let z(x) be the solution of equation (2.3) such that z(0) = zH . We shall show
that z(c) → +∞ if zH → +∞. The inequality z − F (x) > z − F (c) holds on the
interval (b1, c) because the function F (x) monotonically increases on this interval.
Hence equation (2.3) yields

−dz
dx

=
g(x)

z − F (x)
<

g(x)

z − F (c)
.

Separating variables and integrating, we obtain

−
[

1

2
z2 − F (c)z

]z(c)
zI

<

∫ c

b1

g(x)dx,

whence (taking into account that z(c) = z∗ > 0) it follows the inequality

z(c) > F (c) +

√
[zI − F (c)]

2 − 2

∫ c

b1

g(x)dx.

Since zI → +∞ if zH → +∞, then z∗ = z(c)→ +∞ if zH → +∞.
Bearing in mind that F (x) increases for x > b1, we have

∆v2 = −
∫ zI

zL

F (x(z))dz < −F (c)(z∗ − z∗∗)

< −F (c)

[
F (c) +

√
[zI − F (c)]

2 − 2

∫ c

b1

g(x)dx

]
. (2.5)

The obtained inequality implies that ∆v2 → −∞ if zH → +∞.
If we choose zH small enough, such that the entire trajectory between points H

and W is located in the domain x ∈ (b2, b1), then obviously that ∆v > 0. Taking into
account that ∆v tends to −∞ when zH → +∞, one can conclude that there exists a
value zH > 0 such that ∆v = 0. This means that there exists a periodic solution of
system (1.8). The proof is comlpete.

Remark 2.2. If additionally to conditions of the theorem, one of the following condi-
tions
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• G(a1) = G(a2) where a1 and a2 are positive and negative roots of equation
f(x) = 0, and G(±∞) = +∞,

• f(x) is even, g(x) is odd, G(+∞) = +∞,

is satisfied, then equation (1.7) has a single periodic solution [14].
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