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Dedicated to Professor Gheorghe Moroşanu on the occasion of his 70th anniversary.
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spaces. The existence of mild solutions is established under Filippov type assump-
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1. Introduction

In this note we study two classes of evolution differential inclusions. First we
consider the problem

x′′(t) ∈ A(t)x(t) +

∫ t

0

K(t, s)F (s, x(s))ds, x(0) = x0, x
′(0) = y0, (1.1)

where F : [0, T ] × X → P(X) is a set-valued map lipschitzian with respect to the
second variable, X is a Banach space, {A(t)}t≥0 is a family of linear closed operators
from X into X that genearates an evolution system of operators {G(t, s)}t,s∈[0,T ],
∆ = {(t, s) ∈ [0, T ] × [0, T ]; t ≥ s}, K(., .) : ∆ → R is continuous and x0, y0 ∈ X.
The general framework of evolution operators {A(t)}t≥0 that define problem (1.1) has
been developed by Kozak ([19]) and improved by Henriquez ([17]).

Existence results and some qualitative properties of the mild solutions of problem
(1.1) may be found in [14] in the case when X is a separable Banach space.

De Blasi and Pianigiani ([15]) obtained the existence of mild solutions for semi-
linear differential inclusions on an arbitrary, not necessarily separable, Banach space
X. Even if Filippov’s ideas ([16]) are still present, the approach in [15] is fundamental
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different: it consists in the construction of the measurable selections of the multifunc-
tion. This construction does not use classical selection theorems such as Kuratowski
and Ryll-Nardzewski’s ([20]) or Bressan and Colombo’s ([7]).

The aim of this note is to obtain an existence result for problem (1.1) similar
to the one in [15]. We will prove the existence of solutions for problem (1.1) in an
arbitrary space X under Filippov-type assumptions on F .

In several recent papers ([2, 3, 5, 12, 13, 17, 18]) existence results and qualitative
properties of mild solutions have been obtained for the following problem

x′′(t) ∈ A(t)x(t) + F (t, x(t)), x(0) = x0, x
′(0) = y0, (1.2)

with A(.) and F (., .) as above.

On one hand, the result in the present paper extends to the integro-differential
framework (1.1) the result in [12] obtained for problem (1.2) and, on the other hand,
this paper extends to second-order integro-differential inclusions a similar result in
[10] obtained for a class of first-order integro-differential inclusions.

The second class of evolution inclusions that we are considering is

x′ ∈ Ax+ F (t, x) a.e. ([0, T ]), (1.3)

x(0) +

m∑
i=1

aix(ti) = x0, (1.4)

where X is a real separable Banach space, ai ∈ R, ai 6= 0, i = 1,m, x0 ∈ X,
0 < t1 < t2 < ... < tm < T , F : [0, T ]×X → P(X) is a set-valued map and A is the
infinitesimal generator of a linear semigroup {G(t); t ≥ 0}.

The nonlocal condition (1.4) was used by Byszewski ([8, 9]). If ai 6= 0, i = 1,m
the results can be applied in kinematics to determine the evolution t → x(t) of the
location of a physical object for which the positions x(0), x(t1), ..., x(tm) are unknown
but it is known the condition (1.4). Consequently, to describe some physical phenom-
ena the nonlocal condition may be more useful than the standard initial condition
x(0) = x0. Obviously, when ai = 0, i = 1,m, one has the classical initial condition.

Existence of mild solutions of problem (1.3)-(1.4) has been obtained in [4, 6]
for convex as well as nonconvex set-valued maps. All these results are based on some
suitable theorems of fixed point theory. In our recent paper [11] it is shown that
Filippov’s ideas ([1, 16]) can be suitably adapted in order to prove the existence of
solutions to problem (1.3)-(1.4) provided the Banach space X is separable.

The result that we established in non separable Banach spaces for problem (1.3)-
(1.4) may be interpreted as extension of the result in [15] from Cauchy problems to
boundary value problems defined by nonlocal conditions and as an extension of the
result in [11] to non separable Banach spaces.

The paper is organized as follows: in Section 2 we present the notations, defini-
tions and preliminary results to be used in the sequel and in Section 3 we prove the
main results.
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2. Preliminaries

Consider X, an arbitrary real Banach space with norm |.| and with the corre-
sponding metric d(., .). Let P(X) be the space of all bounded nonempty subsets of X
endowed with the Hausdorff pseudometric

dH(A,B) = max{d∗(A,B),d∗(B,A)}, d∗(A,B) = sup
a∈A

d(a,B),

where d(x,A) = infa∈A |x− a|, A ⊂ X,x ∈ X.
Let L be the σ-algebra of the (Lebesgue) measurable subsets of R and, for A ∈ L,

let µ(A) be the Lebesgue measure of A.
Let X be a Banach space and Y be a metric space. An open (resp., closed)

ball in Y with center y and radius r is denoted by BY (y, r) (resp., BY (y, r). In what
follows, B = BX(0, 1).

A multifunction F : Y → P(X) with closed bounded nonempty values is said to
be dH -continuous at y0 ∈ Y if for every ε > 0 there exists δ > 0 such that for any
y ∈ BY (y0, r) there is dH(F (y), F (y0)) ≤ ε. F is called dH -continuous if it is so at
each point y0 ∈ Y .

Let A ∈ L, with µ(A) < ∞. A multifunction F : Y → P(X) with closed
bounded nonempty values is said to be Lusin measurable if for every ε > 0 there
exists a compact set Kε ⊂ A, with µ(A\Kε) < ε such that F restricted to Kε is
dH -continuous.

It is clear that if F,G : A→ P(X) and f : A→ X are Lusin measurable, then so
are F restricted to B (B ⊂ A measurable), F+G and t→ d(f(t), F (t)). Moreover, the
uniform limit of a sequence of Lusin measurable multifunctions is Lusin measurable,
too.

Let I stand for the interval [0, T ], T > 0, C(I,X) is the Banach space of all
continuous functions from I to X with the norm ||x||C = supt∈I |x(t)| and L1(I,X)
is the Banach space of (Bochner) integrable functions u(.) : I → X endowed with

the norm ||u||1 =
∫ T

0
|u(t)|dt. Denote by B(X) the Banach space of bounded linear

operators from X into X with the norm ||N || = sup{|N(y)|; |y| = 1}.
In what follows {A(t)}t≥0 is a family of linear closed operators from X into X

that genearates an evolution system of operators {G(t, s)}t,s∈I . By hypothesis the
domain of A(t), D(A(t)) is dense in X and is independent of t.

Definition 2.1. ([17, 19]) A family of bounded linear operators G(t, s) : X → X,
(t, s) ∈ ∆ := {(t, s) ∈ I × I; s ≤ t} is called an evolution operator of the equation

x′′(t) = A(t)x(t) (2.1)

if
i) For any x ∈ X, the map (t, s)→ G(t, s)x is continuously differentiable and

a) G(t, t) = 0, t ∈ I.

b) If t ∈ I, x ∈ X then ∂
∂tG(t, s)x|t=s = x and ∂

∂sG(t, s)x|t=s = −x.

ii) If (t, s) ∈ ∆, then ∂
∂sG(t, s)x ∈ D(A(t)), the map (t, s) → G(t, s)x is of class C2

and
a) ∂2

∂t2G(t, s)x ≡ A(t)G(t, s)x.
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b) ∂2

∂s2G(t, s)x ≡ G(t, s)A(t)x.

c) ∂2

∂s∂tG(t, s)x|t=s = 0.

iii) If (t, s) ∈ ∆, then there exist ∂3

∂t2∂sG(t, s)x, ∂3

∂s2∂tG(t, s)x and

a) ∂3

∂t2∂sG(t, s)x ≡ A(t) ∂∂sG(t, s)x and the map (t, s) → A(t) ∂∂sG(t, s)x is con-
tinuous.

b) ∂3

∂s2∂tG(t, s)x ≡ ∂
∂tG(t, s)A(s)x.

As an example for equation (2.1) one may consider the problem (e.g., [19])

∂2z

∂t2
(t, τ) =

∂2z

∂τ2
(t, τ) + a(t)

∂z

∂t
(t, τ), t ∈ [0, T ], τ ∈ [0, 2π],

z(t, 0) = z(t, π) = 0,
∂z

∂τ
(t, 0) =

∂z

∂τ
(t, 2π), t ∈ [0, T ],

where a(.) : I → R is a continuous function. This problem is modeled in the space

X = L2(R,C) of 2π-periodic 2-integrable functions from R to C, A1z = d2z(τ)
dτ2 with

domain H2(R,C) the Sobolev space of 2π-periodic functions whose derivatives belong
to L2(R,C). It is well known thatA1 is the infinitesimal generator of strongly con-
tinuous cosine functions C(t) on X. Moreover, A1 has discrete spectrum; namely the
spectrum of A1 consists of eigenvalues −n2, n ∈ Z with associated eigenvectors

zn(τ) =
1√
2π
einτ , n ∈ N.

The set zn, n ∈ N is an orthonormal basis of X. In particular,

A1z =
∑
n∈Z
−n2 < z, zn > zn, z ∈ D(A1).

The cosine function is given by

C(t)z =
∑
n∈Z

cos(nt) < z, zn > zn

with the associated sine function

S(t)z = t < z, z0 > z0 +
∑
n∈Z∗

sin(nt)

n
< z, zn > zn.

For t ∈ I define the operator A2(t)z = a(t)dz(τ)
dτ with domain D(A2(t)) = H1(R,C).

Set A(t) = A1 + A2(t). It has been proved in [19] that this family generates an
evolution operator as in Definition 2.1.

Definition 2.2. A continuous mapping x(.) ∈ C(I,X) is called a mild solution of
problem (1.1) if there exists a (Bochner) integrable function f(.) ∈ L1(I,X) such
that

f(t) ∈ F (t, x(t)) a.e. (I), (2.2)

x(t) = − ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0

G(t, s)

∫ s

0

K(s, τ)f(τ)dτ, t ∈ I. (2.3)
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We shall call (x(.), f(.)) a trajectory-selection pair of (1.1) if f(.) verifies (2.2)
and x(.) is defined by (2.3).

We note that condition (2.3) can be rewritten as

(2.4) x(t) = − ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0

U(t, s)f(s)ds ∀t ∈ I,

where U(t, s) =

∫ t

s

G(t, τ)K(τ, s)dτ .

Hypothesis H1. i) There exists an evolution operator {G(t, s)}t,s∈I associated to the
family {A(t)}t≥0.

ii) There exist M,M0 ≥ 0 such that |G(t, s)|B(X) ≤M , | ∂∂sG(t, s)| ≤M0, for all
(t, s) ∈ ∆.

iii) K(., .) : ∆→ R is continuous.

Hypothesis H2. i) A is the infinitesimal generator of a strongly continuous and com-
pact semigroup {G(t); t ≥ 0} in X.

ii) There exists an operator C : X → X defined by

C = [I +

m∑
i=1

aiG(ti)]
−1.

Let m0 ≥ 0 be such that |G(t)| ≤ m0 ∀t ∈ I.
According to [4] if we assume that

∑m
i=1 |ai| <

1
m0

then there exists C as in

Hypothesis H2 ii).

Definition 2.3. A continuous mapping x(.) ∈ C(I,X) is called a mild solution of
problem (1.3)-(1.4) if there exists a (Bochner) integrable function f(.) ∈ L1(I,X)
such that

f(t) ∈ F (t, x(t)) a.e. (I) (2.5)

x(t) = G(t)Cx0 −
m∑
i=1

aiG(t)C

∫ ti

0

G(ti − u)f(u)du+

∫ t

0

G(t− u)f(u)du, t ∈ I. (2.6)

Remark 2.4. If we denote

H(t, s) =

m∑
i=1

aiG(t)CG(ti − s)χ[0,ti](s) + G(t− s)χ[0,t](s),

where χS(·) is the characteristic function of the set S, then the solution x(·) in Defi-
nition 2.3 may be written as

x(t) = G(t)Cx0 −
∫ T

0

H(t, s)f(s)ds. (2.7)

Obviously,

|H(t, s)| ≤
m∑
i=1

|ai|m2
0||C||+m0 =: m ∀ t, s ∈ I.
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In what followsX is a real Banach space and we assume the following hypotheses.

Hypothesis H3. i) F (., .) : I × X → P(X) has nonempty closed bounded values and
for any x ∈ X F (., x) is Lusin measurable on I.

ii) There exists l(.) ∈ L1(I, (0,∞)) such that, ∀t ∈ I
dH(F (t, x1), F (t, x2)) ≤ l(t)|x1 − x2|, ∀ x1, x2 ∈ X.

iii) There exists q(.) ∈ L1(I, (0,∞)) such that ∀t ∈ I we have

F (t, 0) ⊂ q(t)B.

Denote L =

∫ T

0

l(s)ds.

The technical results summarized in the following lemma are essential in the
proof of our results. For the proof, we refer the reader to [15].

Lemma 2.5. i) Let Fi : I → P(X), i=1,2 be two Lusin measurable multifunctions and
let εi > 0, i=1,2 be such that

H1(t) := (F1(t) + ε1B) ∩ (F2(t) + ε2B) 6= ∅, ∀t ∈ I.
Then the multifunction H1 : I → P(X) has a Lusin measurable selection h : I → X.

ii) Assume that Hypothesis H3 is satisfied. Then for any continuous x(.) : I →
X, u(.) : I → X measurable and any ε > 0 one has

a) the multifunction t→ F (t, x(t)) is Lusin measurable on I.
b) the multifunction H2 : I → P(X) defined by

H2(t) := (F (t, x(t)) + εB) ∩BX(u(t), d(u(t), F (t, x(t))) + ε)

has a Lusin measurable selection g : I → X.

3. The results

Set n(t) =
∫ t

0
l(u)du, t ∈ I, denote K0 := sup(t,s)∈∆ |K(t, s)| and note that

|U(t, s)| ≤MK0(t− s) ≤MK0T.

Theorem 3.1. We assume that Hypotheses H1 and H3 are satisfied. Then, for every
x0, y0 ∈ X, Cauchy problem (1.1) has a mild solution x(.) ∈ C(I,X).

Proof. Let us first note that if z(.) : I → X is continuous, then every Lusin measurable
selection u : I → X of the multifunction t→ F (t, z(t)) + B is Bochner integrable on
I. More precisely, for any t ∈ I, there holds

|u(t)| ≤ dH(F (t, z(t)) +B, 0) ≤ dH(F (t, z(t)), F (t, 0)) + dH(F (t, 0), 0) + 1

≤ l(t)|z(t)|+ q(t) + 1.

Let 0 < ε < 1, εn = ε
2n+2 .

Consider f0(.) : I → X, an arbitrary Lusin measurable, Bochner integrable
function, and define

x0(t) = − ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0

U(t, s)f0(s)ds, t ∈ I.
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Since x0(.) is continuous, by Lemma 2.5 ii) there exists a Lusin measurable function
f1(.) : I → X which, for t ∈ I, satisfies

f1(t) ∈ (F (t, x0(t)) + ε1B) ∩B(f0(t), d(f0(t), F (t, x0(t))) + ε1)

Obviously, f1(.) is Bochner integrable on I. Define x1(.) : I → X by

x1(t) = − ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0

U(t, s)f1(s)ds, t ∈ I.

By induction, we construct a sequence xn : I → X, n ≥ 2 given by

xn(t) = − ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0

U(t, s)fn(s)ds, t ∈ I, (3.1)

where fn(.) : I → X is a Lusin measurable function which, for t ∈ I, satisfies:

fn(t) ∈ (F (t, xn−1(t)) + εnB) ∩B(fn−1(t), d(fn−1(t), F (t, xn−1(t))) + εn). (3.2)

At the same time, as we saw at the beginning of the proof, fn(.) is also Bochner
integrable.
From (3.2), for n ≥ 2 and t ∈ I, we obtain

|fn(t)− fn−1(t)| ≤ d(fn−1(t), F (t, xn−1(t))) + εn

≤ d(fn−1(t), F (t, xn−2(t))) + dH(F (t, xn−2(t)), F (t, xn−1(t))) + εn

≤ εn−1 + l(t)|xn−1(t)− xn−2(t)|+ εn.

Since εn−1 + εn < εn−2, for n ≥ 2, we deduce that

|fn(t)− fn−1(t)| ≤ εn−2 + l(t)|xn−1(t)− xn−2(t)|. (3.3)

Denote p0(t) := d(f0(t), F (t, x0(t))), t ∈ I. We next prove by recurrence, that for
n ≥ 2 and t ∈ I

|xn(t)− xn−1(t)| ≤
n−2∑
k=0

∫ t

0

εn−2−k
(MK0T )k+1(n(t)− n(u))k

k!
du

+ ε0

∫ t

0

(MK0T )n(n(t)− n(u))n−1

(n− 1)!
du

+

∫ t

0

(MK0T )n(n(t)− n(u))n−1

(n− 1)!
p0(u)du. (3.4)

We start with n = 2. In view of (3.1), (3.2) and (3.3), for t ∈ I, there is

|x2(t)− x1(t)| ≤
∫ t

0

|U(t, s)| · |f2(s)− f1(s)|ds

≤
∫ t

0

MK0T [ε0 + l(s)|x1(s)− x0(s)|]ds

≤ ε0MK0Tt+

∫ t

0

[
MK0T l(s)

∫ s

0

|U(s, r)| · |f1(r)− f0(r)|dr
]
ds

≤ ε0MK0Tt+

∫ t

0

[
(MK0T )2l(s)

∫ s

0

(p0(u) + ε1)du

]
ds
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≤ ε0MK0Tt+

∫ t

0

[
(MK0T )2(p0(u) + ε1)

∫ t

u

l(s)ds

]
du

= ε0MK0Tt+

∫ t

0

(MK0T )2(n(t)− n(s))[p0(s) + ε0]ds,

i.e, (3.4) is verified for n = 2.
Using again (3.3) and (3.4), we conclude

|xn+1(t)− xn(t)| ≤
∫ t

0

|U(t, s)|.|fn+1(s)− fn(s)|ds

≤
∫ t

0

MK0T [εn−1 + l(s)|xn(s)− xn−1(s)|]ds

≤ εn−1MK0Tt+

∫ t

0

l(s)

[
n−2∑
k=0

∫ s

0

εn−2−k
(MK0T )k+2(n(s)− n(u))k

k!
du

+

∫ s

0

(MK0T )n+1(n(s)− n(u))n−1

(n− 1)!
(p0(u) + ε0)du

]
ds

= εn−1MK0Tt+

n−2∑
k=0

εn−2−k

∫ t

0

[∫ s

0

(MK0T )k+2(n(s)− n(u))k

k!
l(s)du

]
ds

+

∫ t

0

l(s)

(∫ s

0

(MK0T )n+1(n(s)− n(u))n−1

(n− 1)!
l(s)[p0(u) + ε0]du

)
ds

= εn−1MK0Tt+

n−2∑
k=0

εn−2−k

∫ t

0

(∫ t

u

(MK0T )k+2(n(s)− n(u))k

k!
l(s)ds

)
du

+

∫ t

0

(∫ t

u

(MK0T )n+1(n(s)− n(u))n−1

(n− 1)!
l(s)ds

)
[p0(u) + ε0]du

= εn−1MK0Tt+

n−2∑
k=0

εn−2−k

∫ t

0

(MK0T )k+2(n(s)− n(u))k+1

(k + 1)!
du

+

∫ t

0

(MK0T )n+1(n(s)− n(u))n

n!
[p0(u) + ε0]du

=

n−1∑
k=0

εn−1−k ·
∫ t

0

(MK0T )k+1(n(s)− n(u))k

k!
du

+

∫ t

0

(MK0T )n+1(n(s)− n(u))n

n!
[p0(u) + ε0]du

and statement (3.8) it is true for n+ 1.
From (3.8) it follows that for n ≥ 2 and t ∈ I

|xn(t)− xn−1(t)| ≤ an, (3.5)

where

an =

n−2∑
k=0

εn−2−k
(MK0T )k+1n(T )k

k!
+

(MK0T )nn(T )n−1

(n− 1)!

[∫ 1

0

p0(u)du+ ε0

]
,
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Obviously, the series whose n-th term is an converges. So, from (3.5) we infer
that xn(.) converges to a continuous function, x(.) : I → X, uniformly on I.

On the other hand, in view of (3.3) there is

|fn(t)− fn−1(t)| ≤ εn−2 + l(t)an−1, t ∈ I, n ≥ 3

which implies that the sequence fn(.) converges to a Lusin measurable function
f(·) : I → X.

Since xn(.) is bounded and

|fn(t)| ≤ l(t)|xn−1(t)|+ q(t) + 1,

we infer that f(.) is also Bochner integrable.

Passing with n → ∞ in (3.1) and using the Lebesgue dominated convergence
theorem, we obtain

x(t) = − ∂

∂s
G(t, 0)x0 +G(t, 0)y0 +

∫ t

0

U(t, s)f(s)ds, t ∈ I.

On the other hand, from (3.2) we get

fn(t) ∈ F (t, xn(t)) + εnB, t ∈ I, n ≥ 1

and letting n→∞ we obtain

f(t) ∈ F (t, x(t)), t ∈ I,

which completes the proof. �

Theorem 3.2. Assume that Hypotheses H2 and H3 are satisfied and mL < 1.

Then, for every x0 ∈ X problem (1.3)-(1.4) has a solution x(.) : I → X.

Proof. The proof follows the same pattern as in the proof of Theorem 3.1. This time

xn(t) = G(t)Cx0 −
∫ T

0

H(t, s)fn(s)ds, ∀t ∈ I,

with fn(·) as before and

|xn(t)− xn−1(t)| ≤
n−2∑
j=0

εn−2−jm
j+1LjT +mnLn−1

∫ T

0

(p0(s) + ε0)ds

for n ≥ 2 and t ∈ I. The estimate in (3.5) becames

|xn(t)− xn−1(t)| ≤ an,

where

an =

n−2∑
j=0

εn−2−jm
j+1LjT +mnLn−1

∫ T

0

(p0(s) + ε0)ds

Taking into account the fact that mL < 1, we deduce that the series whose n-th term
is an is convergent. �
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