
INFORMATICA
2/2024

STUDIA
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

No. 2/2024
July - December

ISSN (online): 2065-9601; ISSN-L: 1224-869X
©2024 STUDIA UBB INFORMATICA

Published by Babeș-Bolyai University

EDITORIAL BOARD

EDITOR-IN-CHIEF:

Prof. Horia F. Pop, Babeş-Bolyai University, Cluj-Napoca, Romania

EXECUTIVE EDITOR:

Prof. Gabriela Czibula, Babeș-Bolyai University, Cluj-Napoca, Romania

EDITORIAL BOARD:

Prof. Osei Adjei, University of Luton, Great Britain
Prof. Anca Andreica, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Florian M. Boian, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Wei Ngan Chin, School of Computing, National University of Singapore
Prof. Laura Dioșan, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Farshad Fotouhi, Wayne State University, Detroit, United States
Prof. Zoltán Horváth, Eötvös Loránd University, Budapest, Hungary
Prof. Simona Motogna, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Roberto Paiano, University of Lecce, Italy
Prof. Bazil Pârv, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Abdel-Badeeh M. Salem, Ain Shams University, Cairo, Egypt
Assoc. Prof. Vasile Marian Scuturici, INSA de Lyon, France

YEAR Volume 69 (LXIX) 2024

MONTH

ISSUE

DECEMBER

2

S T U D I A

UNIVERSITATIS BABEȘ-BOLYAI

INFORMATICA

2

EDITORIAL OFFICE: M. Kogălniceanu 1 • 400084 Cluj-Napoca • Tel: 0264.405300

SUMAR – CONTENTS – SOMMAIRE

L.-M. Berciu, PyDsBuilder - A Dataset Builder Written in Python Django 5

V.-E. Zarzu, LangDes: A New Approach for Improving the Performance of Prompt-Based

Image Editing in Interior Design Setting ... 23

D. Biriș, Deep Learning Approaches for Detecting Text Generated by Artificial

Intelligence ... 39

T.-V. Pricope, HardML: A Benchmark For Evaluating Data Science And Machine

Learning knowledge and reasoning in AI ... 59

Yingkai Xu, Electric Vehicle Routing Problem: A Review of Recent Approaches and

Algorithms .. 77

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIX, Number 2, 2024
DOI: 10.24193/subbi.2024.2.01

PYDSBUILDER – A DATASET BUILDER WRITTEN IN

PYTHON DJANGO

LIVIU-MARIAN BERCIU

Abstract. Data mining and the analysis of open-source projects have
become crucial in recent research, driven by the vast availability of data
across multiple programming domains. This paper focuses on two main
objectives: first, to present an experience report for designing a software
quality data mining tool, and secondly, to provide an open-source solution,
PyDs, that facilitates the creation of datasets specifically aimed at analyz-
ing software quality attributes. PyDs, leveraging Python and the Django
Framework, provides a comprehensive solution for researchers, encompass-
ing data extraction from repositories, the application of software analysis
tools, and the consolidation of results into a coherent format conducive to
in-depth experimentation and analysis. This tool addresses the pressing
need for effective data mining capabilities in evaluating software quality,
allowing the research community to harness the full potential of the vast
resources offered by open-source software projects.

1. Introduction

Open-source software development has seen a constant increase in popular-
ity and adoption [17] in both industry and academia in the recent years. Open-
source software (OSS) projects are software initiatives made freely accessible
by their creators on various online platforms, such as GitHub and Bitbucket.
These projects invite a broad audience to utilize the software, adhering solely
to the terms of the associated open-source license. The widespread accessibil-
ity of these data, which span numerous programming languages, technologies,
frameworks, and innovative solutions in various programming subdomains,

Received by the editors: 13 September 2024.
2010 Mathematics Subject Classification. 68N99.
1998 CR Categories and Descriptors. D2.0 [Software Engineering]: General – Stan-

dards; D2.9 [Software Engineering]: Management – Software Quality Assurance.
Key words and phrases. Data Mining, Software Quality Analysis Tools, Software Qual-

ity, Datasets, Dataset Builder, GitHub Mining.
© Studia UBB Informatica. Published by Babeş-Bolyai University

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International Licence.

5

6 LIVIU-MARIAN BERCIU

has significantly propelled research efforts [13]. The integration of versioning
systems plays a crucial role in these projects, as they not only facilitate collab-
orative development but also preserve a comprehensive history of the project’s
evolution. These historical data are invaluable, providing insight into devel-
opment practices, trends, and the progression of software solutions over time,
thereby enriching the research landscape with a deeper understanding of soft-
ware development dynamics.

One topic that researchers have focused on when it comes to software
projects is the assessment of software quality. Software quality is a multi-
faceted concept that refers to the degree to which a software product meets
specified requirements, customer expectations, and user needs in a reliable,
efficient, and maintainable manner. It encompasses various attributes such as
maintainability, reliability, and security. The large number of OSS projects
consisting of source code, issue tracking systems, and, more often than not,
the competition brought about by projects tackling the same software domain
has allowed researchers to review software quality in a transparent way [25].

Evaluation of software quality when it comes to open source data requires
high volumes of information to be extracted, often due to the constant compar-
ison between quality factors among a multitude of projects. Here, the concept
of data mining comes into play [4], which implies tools and solutions that
allow researchers to extract experiment data in a format that facilitates the
execution of experiments and the drawing of conclusions about the problem
studied. In the software engineering domain, examples of experiments include
analyzing the technical debt of multiple Java projects [15] and studying main-
tainability when it comes to the long-term evolution of software projects [20].
When it comes to applying artificial intelligence to software engineering, more
often than not, experiments require large amounts of data to be mined [26].
The mining of Github commit messages for natural language processing al-
gorithms [12] and learning from the structure and history of the source code
to automate the detection and fixing of bugs [8] are other applications where
data mining is valuable.

Data mining often involves custom-created software solutions that facilitate
data extraction from the internet. Some projects focus on the extraction and
visualization of issue tracker data, such as [11] and [9], while others focus on
offering a wider range of data extraction methods, focusing also on source
code, commits and diffs, such as [24].

This paper outlines an experience report for the design and implementation
of a data-mining tool specifically created for extracting datasets from software
versioning systems, such as GitHub. The primary objective of this work is
to present a detailed design proposal for a mining software repository tool

PYDSBUILDER – A DATASET BUILDER WRITTEN IN PYTHON DJANGO 7

and to provide an open source artifact called PyDs Builder, drawing from our
hands-on experience in developing a solution tailored to our research needs. In
addition, we provide an experiment scenario to demonstrate the application
and effectiveness of PyDs. We also provide suggestions on the application
of the tool in empirical research studies. In developing this tool, we reference
established methodologies for data extraction and analysis, ensuring a rigorous
approach to our development process.

The insights gained from this project are diverse and offer valuable lessons
on the challenges and strategies involved in designing efficient and scalable
data mining tools. These lessons could serve as an important resource for
researchers looking to develop or enhance their own tools, providing a practical
foundation from which to approach similar projects.

The overview of the tool on the side of the article is divided into two main
parts. The first one implies extracting issue tracking data and overall data
pertaining to a software project. Currently, the tool only supports Github as
a versioning system. The second one implies running software quality tools
such as SonarQube[23] and SZZ [22] on the extracted data, in order to further
refine the dataset and offer insights into the software quality attributes of a
specific project.

The paper is structured as follows: in Section 2 we will outline an overview of
a subset of the current data mining tools in academia. Section 3 discusses the
conceptual design of the solution. In sections 4, 5 and 6, we will go through the
architecture, database optimization, and usage of the application, reflecting
along the way the design choices matching the concept. Section 7 offers a final
overview of the challenges and experiences received while implementing the
solution. Sections 8 and 9 will underline future work, possible extensions of
the application, and concluding remarks.

2. Related Work

There has been several contributions addressing tools to mine software
repository and we intend to present those that we believe are of interest in our
approach.

PyDriller [24] is a software engineering tool created to help developers mine
Git repositories. Its main features include extracting the repository’s source
code, differences, commits, and modifications. It is a framework capable of
manipulating data and exporting them in the right format. The authors also
focused on creating a performant tool, allowing for fast-onboarding and easy
usage by developers. In opposition to our tool, PyDriller does not provide a
capability of saving the parsed data in a database for persistence, nor does it
allow extracting issue tracking data from a specific versioning system such as

8 LIVIU-MARIAN BERCIU

GitHub. It does, however, work with any git repository, as it utilizes the git
diff feature in order to parse repository data, making it, as stated beforehand,
a fast program.

GrumPy [11] is a Python and Django Framework [5] developed web-tool
with the purpose of mining issue data from issue trackers. With a focus on
GitHub as its main issue tracker of choice, the tool offers database management
capabilities without actually having database knowledge, it allows researchers
to download repositories issues data in parallel, using multiple task queues and
also provides access to data visualization features and statistical analysis of
the mined data. There are some similarities and differences between GrumPy
and our tool. On the one hand, both tools are implemented using Python and
Django. They use custom databases, different from the SQLite default that
Django comes with (MongoDB for GrumPy, PostgreSQL for our tool), and
the same is done for the queue management technology (Redis, as opposed to
RabbitMQ). Both tools also offer issue data mining using the same Github
API technology. On the other hand, GrumPy offers a visual overview on
the mined issues through a web platform, also targeting people without prior
knowledge of programming, while our tool is more technical, offering just the
Django admin panel for database visualization. In contrast, we mine more
Github information about repositories, such as Commits and Issue timelines,
while also allowing for custom tools execution in order to properly build a
dataset.

GHTorrent is another project that retrieves data from Github repositories
[10]. With this tool, the authors aim to provide persistent data and event
streams to the research community, as a service [10]. Data retrieval from
Github is done using a specifically implemented crawler, which queries for
raw data using the Github API. The extracted data are then sent to a set
of RabbitMQ queues, which further refine the data. It is important to note
here that this mechanism allows replication on multiple hosts, circumventing
the API limits by using different API tokens from multiple research teams.
Data persistence is done using MongoDB, due to the database technology’s
capability of scaling and handling of large amounts of data. While the GhTor-
rent solution allows for high amounts of data to be processed and put to the
community service, it does not process Github issues and also covers a wide
view of Github repositories, making it hard to target a specific niche. Instead,
our tool provides researchers with a solution in building their own dataset
for their specific needs, using a similar host distribution approach in order to
allow higher API limit thresholds and also supports tool execution, in order
to further enhance and interpret the data extracted.

PYDSBUILDER – A DATASET BUILDER WRITTEN IN PYTHON DJANGO 9

Lastly, Perceval [7] is a command line tool that supports a multitude of data
sources to retrieve data from, such as mailing lists, version control systems,
ticketing tools, and Q/A solutions. It comes as either a Python library or as
a command line tool, allowing for flexible usage. It is composed of multiple
back-end implementations targeting different data sources, with the possibility
of extension to support new entries, abiding by the user’s needs. While both
our tool and Perceval strive to offer data extraction and easy development
extension to researchers, there are two main differences to take into consider-
ation. Perceval [7] offers JSON-format data dumps, leaving the user to carry
the data persistence responsibility. We, on the other hand, use PostgreSQL
in order to save data directly for later use. The second difference is that there
is no analysis tools support on the raw data, leaving users to implement/use
their own data analysis pipelines. In our case, we support three out-of-the-box
tools for data analysis, allowing researchers to easily automate flows and use
the solution for an end-to-end dataset generation flow.

More often than not, tools created for data mining depend largely on re-
search purposes, and in many cases, they are created to address the specific
needs of a scientific experiment. For this reason, existing solutions are not al-
ways enough, as they often have to aggregate information from different tools,
making most of the tools rigid and hard to extend for research purposes other
than the ones they were built for.

3. Tool design

The requirement of extracting data from different sources in a consistent
and organized manner, which can be utilized for various experiments and
easily expanded, often leads to the need to create a software solution that
encompasses these aspects. When working with large amounts of data, the
need to structure and normalize the data is paramount and often involves
employing different algorithms that scan, extract and aggregate the needed
information in a form that facilitates processing. In order to do this, typically
different software tools are used and then their results aggregated in one form
or another, necessitating more effort from the researchers. The purpose of
this article is outlining the experience and actually creating a solution that
can aggregate data from different streams, under different formats, in one,
uniform, and general format that can be used for creative experiments and
extended as the researchers see fit.

An important aspect in creating a solution like this is to decide what data
formats are supported. Usually, data are extracted using API requests that
are provided by the data sources, or downloaded directly under the form of
files. Data thus often appears in JSON, CSV, YAMl or SQL formats, among

10 LIVIU-MARIAN BERCIU

many others, and are then processed into a single, uniform standard. For our
case, we see the need of supporting data conversion from the different formats
enumerated beforehand into a standardized format, such as SQL, that enables
researchers to conduct complex queries and analyses, and can also scale as the
amount of data increases.

Another important aspect is offering a way in running data extraction for
large periods of time without the constant supervision of the person using the
solution. This is done by implementing automation, under the form of task
queues, that allows cloud deployment and a clear set of instructions on how
to ensure data is processed continuously. Furthermore, the solution should be
implemented in a programming language that is popular in the programming
community, has a low learning curve and offers many out-of-the-box features
that developers can use, ensuring quick adoption and extension. Thus, another
important issue to follow is automation of data extraction.

Obtaining the data in the desired format should allow further processing by
feeding them to a data pipe of custom tools, each with its own purpose and end
results, suiting the specific needs of the researcher. The data obtained from
the execution of the tools will then be saved in the same uniform structure
decided beforehand, leaving the decision of further processing or concluding
the experiment in the hands of the user. In conclusion, if data from several
tools are needed, the decision about flow is important.

4. PYDS BUILDER SOLUTION

In the following sections, we introduce the specifics and implementation of
a data mining tool with a focus on the three important guidelines underlined
above: automation of data, format specification and flow decision.

PyDs Builder is a web, API-based solution that aims to offer a way for
researchers to create experimental datasets. It is built using Python and
Django Framework, leveraging the capabilities offered by both technologies,
such as fast development, scalability, excellent documentation, and an ORM
system allowing intuitive database manipulation.

Its main focus is extracting repository data from versioning systems, with
the incipient implementation offering support for Github. Data is processed
into the desired form and inserted into a custom database, following a pre-
established SQL schema. Data can be processed further by custom tools
in order to complete an experiment’s data acquisition goals. Afterwards, the
data can be used as the researchers see fit, either by publishing a totally new
dataset or feeding the data into an artificial intelligence solution, drawing new
conclusions and desired results.

An overall overview of the solution features is enumerated as follows:

PYDSBUILDER – A DATASET BUILDER WRITTEN IN PYTHON DJANGO 11

• Allow tool interaction through an API interface
• Extract Github repository data such as issues, issue timelines, com-
mits details and source code

• Execute software quality tools such as SonarQube [23], SZZ [22] and
PyRef [3] and ensure data persistence

• Provide automation for fast data processing
• Allow contribution and code extension through project modularity
and intuitive programming interface.

4.1. ARCHITECTURE. From an architectural point of view, a modular
monolith approach was used in order to build the application. This approach
was taken due to a few considerations. First, Django is a Python framework
that is designed as a monolith by default. It consists in a single code base,
a shared database and a single deployment. Second, Django has a native
application support, meaning it can be designed into modules such that a
single module can hold a single responsibility. From those two points came
the third, which implied that, by using modularization, we managed to create
separate code units for each tool that we support, setting boundaries so that
the shared code is held in common modules and tools don’t have to interfere
with each other. This further enriches the mission of allowing developers to
contribute to the PyDs solution by simply using the common modules already
defined to create a new module for their own specific needs.

Next, to enable automation, RabbitMQ [21] and Celery were used in order to
setup task queues. The task queue functionality provided by Celery allows the
application to perform asynchronous work in the background, while RabbitMQ
is the message broker that Celery uses in order to exchange messages and run
tasks. In this way, the application can be started, for example, on a virtual
machine in the cloud and perform work without constant supervision from the
user. Furthermore, it bypasses the HTTP request limit, allowing a task to
take from a few minutes to a few hours, depending on the needs, without the
risk of timeouts. The same rationale can be replicated on multiple instances of
virtual machines, allowing parallel execution and data extraction from multiple
sources at the same time. With this, we have covered the point about setting
up an automation mechanism for data extraction.

Data persistence was managed using PostgreSQL as the database engine of
choice. The reason this database technology was used, as opposed to using the
default SQLite Django database, was the following: it is highly scalable, han-
dling large volumes of data and concurrent users efficiently, it can be hosted in
the cloud, it supports JSON data types, and it has a robust security. In con-
trast, SQLite is a self-contained system that has no server setup, has limited

12 LIVIU-MARIAN BERCIU

scalability and concurrency, and lacks advanced features found in more com-
plex RDBMS (Relational Database Management System/s), such as ACID
transactions, complex query support and concurrency control.

Figure 1. PyDs Architecture Diagram

Figure 1 represents a visual overview of the architecture of the system. It
can be observed how the main system, comprised of common modules and the
specialized tools module, communicates with the internal modules of the data-
base instance and the task queue instance, and the external connection to the
Github API service. Common modules implement command-line functionality
and a wrapper over the Github API functionality. The modules of specialized
tools implement wrappers over SonarQube [23], PyRef [3] and PySzz [22].

4.2. TOOLS AND FLOWS. The solution code base includes support for
three software quality tools. The tools were chosen to serve the research
objectives and because of their relevance in the software quality research space
which provides ease of use for researchers to build datasets with the results of
their execution. The remainder of this section follows a short tool introduction
and the steps necessary for researchers to run the tools and extract data using
our solution. More details about tool usage can be found in Section 6.

In the context of enhancing software refactorings, PyRef [3] emerges as a
dedicated tool optimized for projects developed in Python. This tool con-
ducts a comparative analysis between two versions of a project to accurately
identify the refactorings that have occurred. PyRef is specifically engineered
to detect a suite of nine method-level refactoring operations, which include:
Rename Method, Add Parameter, Remove Parameter, Change/Rename Pa-
rameter, Extract Method, Inline Method, Move Method, Pull Up Method,

PYDSBUILDER – A DATASET BUILDER WRITTEN IN PYTHON DJANGO 13

and Push Down Method. PyRef’s ability to systematically identify and cat-
egorize method-level refactorings enhances its usefulness in gaining a more
comprehensive understanding of software evolution and maintenance practices
in Python-based projects.

In order to execute PyRef on a project, the PyRef repository must be cloned
in the solution root folder. Afterwards, the first thing to do is initialize a
repository in the system by calling the Create repository API url. The last
step is calling the PyRef API url specifying the repository and the commit
hash to be analysed. In case a commit hash is not provided, the latest release
of the repository, if any, is fetched from the database. It is important to note
that the tool will call the command ‘git rev-list ¡commit¿‘ and will compare
all pairs of commits that the command returns. The excution results will be
saved into the database.

The SZZ algorithm is used in software engineering to automatically identify
bug-introducing commits in version control systems. It operates by tracing
back from bug-fixing commits to the original commits where the bugs were
introduced, using the version history of a software project. An open source
implementation of the SZZ algorithm is PySZZ [22], a tool which we selected
based on its Python implementation and command line execution capabilities,
allowing quick integration with our tool.

For obtaining PySZZ data, the main two steps are preparing the input data
for the tool and executing the tool on the input data. The configuration
for SZZ is found in chapter 6. Calling the create input file and execute API
endpoints on the desired repository will create the input file, will execute the
tool on the input file and then, calling the extract endpoint, will save the result
into the database.

SonarQube is a static code analysis tool designed to enhance software qual-
ity standards [23]. It seamlessly integrates into the development workflow,
offering multi-language support for static analysis rules and classifying code
based on the software quality dimensions of reliability, security, and maintain-
ability. Since its inception in 2008, SonarQube has evolved significantly, as
evidenced by its frequent updates and the scholarly attention it has received,
including discussions in various scientific articles [15], [14] [19]. A noteworthy
development in its evolution is the shift from traditional issue classifications
such as bugs, vulnerabilities, and code smells towards the adoption of ”Clean
Code” principles. These principles are further delineated into categories such
as consistency, intentionality, adaptability, and responsibility, each defining
specific attributes of code quality. In order to execute the SonarQube flow,
users have to configure SonarQube on their work stations. This can be done

14 LIVIU-MARIAN BERCIU

either by following the installation steps from SonarQube’s official documen-
tation or by creating a docker container to hold the service. Subsequently,
making sure that the repository was already initialized in the database, the
endpoint sonarQube/analyze can be called. It is a POST method receiving a
body containing the repository owner, repository name, release tag, or commit
hash. It will execute SonarQube using the received information and save all
the SQ issues and SQ measures found.

We can conclude this section by reiterating the importance of deciding
about a clear flow of data extraction when it comes to integrating a
tool. From setting the incipient data such as the repository to be analyzed,
to writing the wrapping code over the tool interface, whether it is command-
line or web-based, to finally extracting and processing data in an automated
manner, each step has to be properly implemented and executed in the correct
order so that data acquisition is successful.

More endpoints are available in the project codebase due to various experi-
ments. They are left there for researchers to explore and use them as they see
fit.

5. Database optimization

The codebase includes a database architecture and entities that were used
in order to run different software engineering experiments that include data
extraction and arrangement. Next, we will take a look at some database
best practices and optimizations that can be done so that experiments run
optimally and the dataset is arranged as needed.

• Data Normalization: Minimize redundancy, improve data integrity
but balance to avoid overly complex queries. Try not to create cyclic
dependencies between table and keep a tree structure. For example,
the Repository can be the main table to which the other parts of the
database connect, but the Repository will not reference any of it’s
dependents.

• Indexing: Accelerate record retrieval in frequently searched columns,
balancing read performance with write overhead. The SQ Issue ta-
ble, which can contain millions of results, can have an index on the
commit hash field.

• Partitioning: Divide large datasets into manageable segments for
improved performance and easier management, tailored to query pat-
terns. For example, tables for SonarQube and PyRef do not have any
dependencies to eachother, being separated in their own semantic
field, ensuring data integrity and proper separation.

PYDSBUILDER – A DATASET BUILDER WRITTEN IN PYTHON DJANGO 15

• Denormalization: Introduce redundancy selectively to speed up
read operations where beneficial, with careful consideration of trade-
offs. Many-to-many tables can be added to avoid join links such
as Repository - Issue - Timeline - Commit, or table fields that can
reference the main entity (Commit references repository ID directly).

• Concurrent Access and Locking Strategies: Implement suit-
able locking mechanisms to maintain data integrity during simul-
taneous access, optimizing for the specific access pattern. Proper
selection of the database engine ensures proper concurrent access,
hence the choice of PostgreSQL over SQLite.

• Efficient Query Design: Craft queries to only fetch necessary data,
using joins effectively, and optimize regularly based on usage.

6. Execution and Usage

6.1. Installation. There are a few steps that have to be completed in order
for the tool to run successfully. The first step implies installing the project
dependencies using Python’s pip command. Afterwards, docker-compose [6]
must be used in order to start the containers necessary for the queue orches-
trator, the database and tools such as SonarQube. The tool is then started
by running the default Django command for starting a server. An important
part after starting the server is to run the database migrations in order to
setup the correct database schema to use. The exact steps for installation are
enumerated in Listing 1.

Install the requirements

pip install -r requirements.txt

Start the docker containers

docker -compose up -d

Start the server

python3 manage.py runserver

In another terminal , run the

migrations for the database

python3 manage.py migrate

Listing 1. PyDs Setup Steps

6.2. Configuration. The tool configuration is done inside the main Django
configuration file, namely ‘settings.py‘ found in the main application folder.
The settings file contains general information about configuring a Django
project, such as the logging level, database connection credentials, installed
applications, middlewares, celery queues and custom variable defined by the

16 LIVIU-MARIAN BERCIU

user. Although the public repository will contain a pre-completed configura-
tion file with examples for values, the code from Listing 2 exemplifies some of
the important configuration variables and their meanings.

SonarQube

SONARQUBEURL = < SonarQube URL to c a l l>

SONARQUBETOKEN = <p ro j e c t a n a l y s i s tokens>

SONARQUBEGLOBALTOKEN = <>

SONARQUBEUSERTOKEN = <>

SONARQUBE SCANNERURL = <URL of the Sonar scanner i f not

i n s t a l l e d l o c a l l y>

SONARQUBE PROJECTKEY = < s p e c i f i c p r o j e c t key to scan>

SONARQUBEUSERNAME = < l o g i n username>

SONARQUBEPASSWORD = < l o g i n password>

Github

GITHUB TOKENS = [< l i s t o f g ithub authen t i c a t i on tokens

for API c a l l s]

GITHUB ROOT DIR = <root d i r e c t o r y for github p r o j e c t s

c lon ing>

PySZZ

SZZ INPUT FILES FOLDER = < l o c a t i o n o f f i l e s pre−prepared

for PySZZ execut ion

SZZ OUTPUT FILES FOLDER = < l o c a t i o n o f f i l e s a f t e r PySZZ

execut ion>

SZZ GITHUB TOKEN = < s p e c i f i c g ithub token to run only

with PySZZ>

Listing 2. Configuration Variables Example

6.3. Usage. The basic usage of the application is done through the REST API
exposed through Django [5] views. Django has a MVT (Model View Template)
architecture, allowing developers to write API endpoints in specialized VIEW
classes. A subset of the available API calls is found in Table 1. One important
note is that, for mining Github data, we have used a similar endpoint format
as in the official Github API documentation, in order to offer familiarity for
users who have prior experience with the Github API. For exemplification

PYDSBUILDER – A DATASET BUILDER WRITTEN IN PYTHON DJANGO 17

purposes, we used the Ansible [2] and Pandas [16] repositories, as they are
some of the largest Python Github open source projects.

6.4. Data visualisation. There are two options available for visualizing the
extracted data. The first option is to utilize a specialized SQL visualization
tool that enables the examination of the database, execution of queries, and
visualization of the overall database structure. Alternatively, the Django ad-
min panel can be used to gain insights directly into the selected tables included
in the admin dashboard. Another way to view the data is by implementing
fetch requests in the API views of the tool.

7. EXPERIENCE REPORT

Developing PyDs from the ground up inevitably came with its own unique
set of obstacles. The following paragraphs outline the challenges encountered
during the development process of PyDs.

• We have made the decision to use SQL for data serialization and
database schema, instead of opting for the more direct JSON and/or
CSV formats that are commonly used for raw data. Although the
SQL approach may be more complex, we believe that the long-term
benefits, such as optimization and a rich feature set, outweigh the
disadvantages.

• The objective was to develop a universal approach for running exter-
nal tools. Since each tool has its own specific set of instructions for
execution, we were able to devise a general method by utilizing the
command line capabilities and creating wrapper classes and modules
for each individual tool.

• The selection of an appropriate database for automation is crucial.
Initially, SQLite was utilized as the preferred database option. How-
ever, it was soon realized that SQLite has limitations in terms of
capabilities and is not suitable for distributing the workload across
multiple machines. As a result, PostgreSQL was chosen as it pos-
sesses the necessary capabilities and is compatible with cloud hosting.

• The limitation of data intake was also influenced by the rate limits
imposed by open source project platforms. To address this challenge,
we developed a wrapper class that can utilize access tokens from
multiple researchers. This allows for continuous data retrieval, as
when one token reaches its rate limit, the next token in the queue is
automatically used.

18 LIVIU-MARIAN BERCIU

Purpose/Meaning API Call Method
Create a repository
database entry

/mining/repo/

github/pandas-dev/

pandas

POST

Delete a repository
from the database

/mining/repo/

ansible/ansible

DELETE

Fetch all issues for a
repository

/mining/repo/

github/ansible/

ansible/issues

POST

Fetch a specific issue for
a repository

/mining/repo/

github/ansible/

ansible/issues/123

GET

Extract timelines for
all already extracted
project issues

/mining/repo/

github/ansible/

ansible/issues/

timeline

POST

Extract an issue’s spe-
cific timeline

/mining/repo/

github/ansible/

ansible/issues/

4720/timeline

GET

Run a SonarQube
analysis for a specific
Github issue

/sonarqube/repo/

github/pandas-dev/

pandas/issue/36

POST

Run a SonarQube anal-
ysis for a commit hash
or release tag

/sonarqube/analyze POST

Run PySZZ create in-
put file

/szz/repo/

pandas-dev/pandas/

create_input_file

POST

Run PySZZ execute /szz/repo/

pandas-dev/pandas/

execute

POST

Run PySZZ extract /szz/repo/

pandas-dev/pandas/

extract

POST

Run PyRef on a reposi-
tory

/pyref/repo/

ansible/ansible

POST

Table 1. API Requests Overview

 /mining/repo/github/pandas-dev/pandas
 /mining/repo/github/pandas-dev/pandas
 /mining/repo/github/pandas-dev/pandas
 /mining/repo/ansible/ansible
 /mining/repo/ansible/ansible
 /mining/repo/github/ansible/ansible/issues
 /mining/repo/github/ansible/ansible/issues
 /mining/repo/github/ansible/ansible/issues
 /mining/repo/github/ansible/ansible/issues/123
 /mining/repo/github/ansible/ansible/issues/123
 /mining/repo/github/ansible/ansible/issues/123
 /mining/repo/github/ansible/ansible/issues/timeline
 /mining/repo/github/ansible/ansible/issues/timeline
 /mining/repo/github/ansible/ansible/issues/timeline
 /mining/repo/github/ansible/ansible/issues/timeline
 /mining/repo/github/ansible/ansible/issues/4720/timeline
 /mining/repo/github/ansible/ansible/issues/4720/timeline
 /mining/repo/github/ansible/ansible/issues/4720/timeline
 /mining/repo/github/ansible/ansible/issues/4720/timeline
 /sonarqube/repo/github/pandas-dev/pandas/issue/36
 /sonarqube/repo/github/pandas-dev/pandas/issue/36
 /sonarqube/repo/github/pandas-dev/pandas/issue/36
 /sonarqube/analyze
 /szz/repo/pandas-dev/pandas/create_input_file
 /szz/repo/pandas-dev/pandas/create_input_file
 /szz/repo/pandas-dev/pandas/create_input_file
 /szz/repo/pandas-dev/pandas/execute
 /szz/repo/pandas-dev/pandas/execute
 /szz/repo/pandas-dev/pandas/execute
 /szz/repo/pandas-dev/pandas/extract
 /szz/repo/pandas-dev/pandas/extract
 /szz/repo/pandas-dev/pandas/extract
 /pyref/repo/ansible/ansible
 /pyref/repo/ansible/ansible

PYDSBUILDER – A DATASET BUILDER WRITTEN IN PYTHON DJANGO 19

8. RESEARCH POSSIBILITIES AND EXTENSION

PyDs is a software solution that can be valuable both for researchers and
independent developers. For researchers, it provides a working framework for
running complex experiments in an automated way, ensuring data extraction
for very large datasets. While initially created for software quality experi-
ments, including running specialized software quality tools in order to uncover
maintainability, technical debt and reliability attributes of software projects,
it can be extended to allow artificial intelligence integration, it can support
multiple database engines such as MongoDB and MySQL and it can be en-
riched to extract data from other versioning and issue tracking systems such
as Bitbucket and Jira. Independent developers can greatly benefit from the
PyDs dataset generation tool by gaining enhanced insights into their projects’
maintainability and reliability, and by integrating analytics solutions on the
extracted data to suit their specific needs. The tool’s ability to integrate with
various development tools and database engines streamlines the development
workflow while offering opportunities for skill enhancement through interaction
and extension of the tool. This makes PyDs a versatile and valuable resource
for independent developers looking to innovate, improve project health, and
efficiently manage their software development processes.

PyDs is also offered as an open source project, allowing community con-
tributions and being subject of the FreeBSD license [1]. The source code
can be found by accessing the following link: https://figshare.com/s/

5dd7e88ba4e329acfa4a.

8.1. Possible scenario for tool usage. In order to expose the features of
the tool, we imagine a possible research scenario in which using PyDs Builder
can be beneficial. The objective of this study is to monitor and improve soft-
ware quality throughout the development lifecycle of a project. The aim is
to track the project’s quality trajectory, from commit to commit, and visual-
ize the evolution of issues to make informed decisions for continuous quality
improvement.

The methodology involves a streamlined process using the data mining tool.

• Selection of a Python Project: Choose a project with a sufficiently
large code base.

• Data Extraction: Utilize PyDs Builder API to fetch project data and
issues from GitHub.

• Quality Analysis: Analyze the project using SonarQube through the
integration with PyDs Builder.

• Issue Prioritization and Resolution: Identify critical issues affecting
quality and address them systematically.

https://figshare.com/s/5dd7e88ba4e329acfa4a
https://figshare.com/s/5dd7e88ba4e329acfa4a

20 LIVIU-MARIAN BERCIU

• Quality Trajectory Assessment: Evaluate changes in quality metrics
over time to gauge improvement or deterioration.

Upon analyzing the extracted data, notable trends in code quality met-
rics can be observed, particularly in the occurrence and distribution of spe-
cific types of issues across various developmental stages. Patterns between
SonarQube-reported issues and GitHub issues can be associated, shedding
light on the collaborative dynamics of the project contributors as they ad-
dressed quality concerns.

Using PyDs allows for tracking the quality trajectory of the project, iden-
tifying both problematic and beneficial commits and changes. This analysis
not only identifies areas that need improvement, but also facilitates proactive
interventions to increase overall project quality and stability. The insights
gained provide a detailed view of the project’s quality dynamics, highlighting
both strengths and areas for improvement in software development practices.

9. CONCLUSIONS

Data mining and open source project analysis have been one of the impor-
tant subjects of academia in recent years, with data availability comprising
multiple programming domains being one of the main factors for its ascen-
dance.

In this paper, we have introduced PyDs, a Python with Django Framework
solution that enables researchers to generate datasets for various scientific cri-
teria, primarily focusing on software quality attributes experiments. However,
it also allows for potential expansion to apply artificial intelligence to software
engineering. We have covered the conceptual design of the application, its
underlying principles, and delved into the implementation steps and different
perspectives. We have provided detailed instructions for setting up, config-
uring, and using the application to facilitate quick onboarding for readers.
Finally, we have explored potential avenues for extending the application and
shared our experience in developing this intricate tool.

The subsequent stages of the application involve its practical implementa-
tion in scientific settings and research projects. We are confident that PyDs
can serve as a reliable solution in these scenarios, allowing researchers to utilize
it for data extraction in popular software quality tools such as SonarQube and
SZZ algorithm implementations. Currently, PyDs only supports Github, but
there are future plans to expand its capabilities to integrate with the Jira tick-
eting system and extract CI/CD pipelines data from platforms like Jenkins,
as we believe project building steps and performance indicators can provide
valuable research data. In the end, PyDs Builder has been successfully utilized

PYDSBUILDER – A DATASET BUILDER WRITTEN IN PYTHON DJANGO 21

to create a dataset focused on open-source Python projects [18], highlighting
its flexibility and practical utility.

References

[1] The freebsd license, 2023.
[2] Ansible, I., et al. Ansible: Radically simple IT automation. https://github.com/

ansible/ansible, 2023.
[3] Atwi, H., Lin, B., Tsantalis, N., Kashiwa, Y., Kamei, Y., Ubayashi, N., Bavota,

G., and Lanza, M. Pyref: Refactoring detection in python projects. In 2021 IEEE 21st
International Working Conference on Source Code Analysis and Manipulation (SCAM)
(2021), pp. 136–141.

[4] Chaturvedi, K., Sing, V., and Singh, P. Tools in mining software repositories.
In 2013 13th International Conference on Computational Science and Its Applications
(2013), pp. 89–98.

[5] Django Software Foundation. Django.
[6] Docker, Inc. Docker: Empowering app development for developers, 2023. Accessed:

2024-02-17.
[7] Dueñas, S., Cosentino, V., Robles, G., and Gonzalez-Barahona, J. M. Perceval:

software project data at your will. In Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings (New York, NY, USA, 2018), ICSE
’18, Association for Computing Machinery, p. 1–4.

[8] Elmishali, A., Stern, R., and Kalech, M. An artificial intelligence paradigm for
troubleshooting software bugs. Engineering Applications of Artificial Intelligence 69
(2018), 147–156.

[9] Fiechter, A., Minelli, R., Nagy, C., and Lanza, M. Visualizing github issues. In
2021 Working Conference on Software Visualization (VISSOFT) (2021), pp. 155–159.

[10] Gousios, G., Vasilescu, B., Serebrenik, A., and Zaidman, A. Lean ghtorrent:
Github data on demand. pp. 384–387.

[11] Jr., J. M., Santana, R., and Machado, I. Grumpy: an automated approach to
simplify issue data analysis for newcomers. In Proceedings of the XXXV Brazilian Sym-
posium on Software Engineering (New York, NY, USA, 2021), SBES ’21, Association
for Computing Machinery, p. 33–38.

[12] Kourtzanidis, S., Chatzigeorgiou, A., and Ampatzoglou, A. Reposkillminer:
identifying software expertise from github repositories using natural language process-
ing. In Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering (New York, NY, USA, 2021), ASE ’20, Association for Comput-
ing Machinery, p. 1353–1357.

[13] Krogh, G. v., and Spaeth, S. The open source software phenomenon: Characteristics
that promote research. The Journal of Strategic Information Systems 16, 3 (2007),
236–253.

[14] Lenarduzzi, V., Lomio, F., Taibi, D., and Huttunen, H. On the fault proneness of
sonarqube technical debt violations: A comparison of eight machine learning techniques.
CoRR abs/1907.00376 (2019).

[15] Lenarduzzi, V., Saarimäki, N., and Taibi, D. The technical debt dataset. In Pro-
ceedings of the Fifteenth International Conference on Predictive Models and Data Ana-
lytics in Software Engineering (Sept. 2019), PROMISE’19, ACM.

https://github.com/ansible/ansible
https://github.com/ansible/ansible

22 LIVIU-MARIAN BERCIU

[16] McKinney, W., et al. pandas: a powerful Python data analysis toolkit. https://
github.com/pandas-dev/pandas, 2023.

[17] Midha, V., and Palvia, P. Factors affecting the success of open source software.
Journal of Systems and Software 85, 4 (2012), 895–905.

[18] Moldovan, V.-A., Berciu, L.-M., and Patcas, R.-D. The python software quality
dataset. In 50th Euromicro Conference Series on Software Engineering and Advanced
Applications (2024).

[19] Molnar, A.-J., and Motogna, S. Long-term evaluation of technical debt in open-
source software. In Proceedings of the 14th ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM) (New York, NY, USA,
2020), ESEM ’20, Association for Computing Machinery.

[20] Molnar, A.-J., and Motogna, S. A study of maintainability in evolving open-
source software. In Evaluation of Novel Approaches to Software Engineering (Cham,
2021), R. Ali, H. Kaindl, and L. A. Maciaszek, Eds., Springer International Publishing,
p. 261–282.

[21] RabbitMQ Team. Rabbitmq: Open source message broker. https://www.rabbitmq.
com/, 2023. [Online; accessed 10-February-2024].

[22] Rosa, G., Pascarella, L., Scalabrino, S., Tufano, R., Bavota, G., Lanza, M.,
and Oliveto, R. A comprehensive evaluation of szz variants through a developer-
informed oracle. Journal of Systems and Software 202 (2023), 111729.

[23] SonarSource. Sonarqube: Continuous code quality inspection tool, 2023. [Online;
accessed 10-February-2024].

[24] Spadini, D., Aniche, M., and Bacchelli, A. Pydriller: Python framework for mining
software repositories. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software En-
gineering (New York, NY, USA, 2018), ESEC/FSE 2018, Association for Computing
Machinery, p. 908–911.

[25] Spinellis, D., Gousios, G., Karakoidas, V., Louridas, P., Adams, P. J., Samo-
ladas, I., and Stamelos, I. Evaluating the quality of open source software. Electronic
Notes in Theoretical Computer Science 233 (2009), 5–28.

[26] Wangoo, D. P. Artificial intelligence techniques in software engineering for automated
software reuse and design. In 2018 4th International Conference on Computing Com-
munication and Automation (ICCCA) (2018), pp. 1–4.

Babes, -Bolyai University, Faculty of Mathematics and Computer Science, 1
Mihail Kogălniceanu, Cluj-Napoca 400084, Romania

Email address: liviu.berciu@ubbcluj.ro

https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://www.rabbitmq.com/
https://www.rabbitmq.com/

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIX, Number 2, 2024
DOI: 10.24193/subbi.2024.2.02

LANGDES: A NEW APPROACH FOR IMPROVING THE

PERFORMANCE OF PROMPT-BASED IMAGE EDITING IN

INTERIOR DESIGN SETTING

VICTOR-EUGEN ZARZU

Abstract. The topic of instruction-based image editing has gotten a lot
of attention in recent years with a lot of research conducted due to its im-
mense potential in various applications such as removing unwanted details
present in existing images or improving them. However, one of the main
problems in addressing this problem is acquiring a dataset for model train-
ing. Several methods and variations were proposed, but all of them rely
on already-existent data. We propose a method to address this problem
by creating a context-specific dataset for interior design with no previ-
ously available information by leveraging the knowledge of large language
models (LLM). Furthermore, we test and prove the efficiency of the gen-
erated dataset on InstructPix2Pix which starts to compute better results
for the interior-design setting after the fine-tuning. Moreover, we propose
an alternative solution for enhancing the localization of the edit region
through cross-attention map regularization based on a text-based segmen-
tation mask.

1. Introduction

Prompt-based image editing is the problem of modifying an input image
concerning a natural language edit prompt. Applications of this task consist of
reducing the effort in professional image editing (e.g. removing a person from
an image will transform into writing a phrase) and increasing the efficiency in
graphics.

Received by the editors: 11 October 2024.
2010 Mathematics Subject Classification. 68T05, 68T45.
1998 CR Categories and Descriptors. I.2.6 [Learning]: Subtopic – Connectionism and

neural nets; I.2.10 [Vision and Scene Understanding]: Subtopic – 3D/stereo scene anal-
ysis.

Key words and phrases. Diffusion models, Prompt-based image editing, Deep learning,
Attention, Data generation.

© Studia UBB Informatica. Published by Babeş-Bolyai University

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International Licence.

23

24 VICTOR-EUGEN ZARZU

The major challenge of this problem is generating a dataset for training and
evaluation. While each instance in the dataset needs to consist of an input
image, an edit prompt, and the image resulting from the edit of the original
one to the prompt, it is challenging to create such a dataset at scale because
of the costs involved. Furthermore, reducing the unwanted modifications in
the background and objects is also an important part of the problem, being
intensely researched and correlated with the noise in the training dataset and
the incapability of the model to map the edit instruction to the correct objects
in the image.

The main focus of this paper is distributed among three aspects. The
first part tries to answer whether a robust, high-quality, and context-specific
dataset for the task in a discussion can be generated without previously avail-
able data. Secondly, it is proved that this dataset is qualitative and improves
the IP2P model in the chosen context (interior design). Lastly, we aim to
answer if a referring expression-based image segmentation with the object(s)
under edit improves the performance of the InstructPix2Pix model in the gen-
eral case through cross-attention map regularization.

In summary, we aim to answer the following research questions.

RQ1. How to generate data for context-specific prompt-based image editing
tasks with no previously known data?

RQ2. Does the generated data improve the performance of instruction-based
image editing in the specific context?

RQ3. Does a referring expression-based image segmentation with the object
under edits improve the performance of the InstructPix2Pix model in the gen-
eral case through cross-attention map regularization?

The rest of the article is structured as follows. Section 2 presents the pre-
vious work in the area of prompt-based image editing as well as text-based
image segmentation. Afterward, the methodology that aims to respond to the
addressed research questions is presented in Section 3. Along with discussions,
we showcase the experimental results of the proposed approaches in Section
4, while the article ends with the conclusions and directions for future work
in Section 5.

2. Related work

2.1. Prompt-to-Prompt. Introduced by Hertz et al. [11], Prompt-to-Prompt
is an approach for generating two similar images based on two given prompts
based on diffusion models. The method relies on the fact that the geometry
and spatial layout of any generated image using text-guided diffusion models
depend on the cross-attention maps. The approach generates the two images

IMPROVING PROMPT-BASED IMAGE EDITING IN INTERIOR DESIGN SETTING 25

simultaneously, but while the generation of the first one is normal, in the sec-
ond one, the cross-attention maps from the first generation are injected. This
integration lasts for T timesteps and controls how similar the resulting images
should be, its value variation depending on the area that has to be edited.
However, while it tackles the problem of image editing, it is not able to edit
an already-existent image, but it opens the possibility of generating a dataset
for the prompt-based image editing task for supervised training.

2.2. InstructPix2Pix. IntructPix2Pix (IP2P) is an approach introduced by
Brooks et al. [3] for editing an already-existent image based on a given prompt.
It relies on using a Stable Diffusion [21] checkpoint, incorporating also the
input image as conditioning and applying classifier-free guidance [12]. The
guidance is done based on the initial image conditioning cI and edit prompt
conditioning cT . Furthermore, two guidance scales are introduced, one for
the image sI and one for the text sT , which can be adjusted to trade off the
importance of each conditioning in the generated sample. The training is done
in a supervised fashion on a dataset generated in two steps by leveraging the
knowledge of GPT-3 [4] and Stable Diffusion (SD) [21] combined with the
Prompt-to-Prompt approach. In the first step, GPT-3 is fine-tuned, given an
initial caption from the LAION-Aesthetics V2 6.5+ [23], to output an edit
prompt and the caption edited following this prompt. Secondly, based on the
initial and edited caption, Prompt-to-Prompt is applied to generate 100 pairs
of images followed by filtering using CLIP [20] to keep the most consistent
pairs.

2.3. Emu Edit. Introduced by Sheynin et al. [24], Emu Edit addresses the
issue of inaccurately interpreting and executing the edit instructions of In-
structPix2Pix by being trained on a variety set of problems including classic
computer vision and image editing tasks. The model architecture and training
are similar, but the diffusion model used is Emu [6], and learned task embed-
dings are injected into the U-Net architecture to enhance the accuracy of the
edit application. The data generation pipeline is also based on an LLM and
Prompt-to-Prompt but followed by a more comprehensive filtering approach
to reduce the noise and increase the consistency of the data. To generate
the textual data, the approach proposes creating via in-context learning task-
specific Llama2-70B [27] agents that, given an initial caption, are prompted to
return an edit instruction and the final edited caption along with a list of the
objects that are edited. The initial Prompt-to-Prompt solution is enhanced
to reduce the noise of the original method by binary injecting the masks of
the edited objects from the initial image during the editing process to increase
image consistency.

26 VICTOR-EUGEN ZARZU

2.4. LIME: Localized Image Editing via Attention Regularization in
Diffusion Models. LIME is a solution for reducing the unwanted modifica-
tion in the edited image through cross-attention map regularization proposed
by Enis et al. [25]. The approach relies on the property that diffusion models
can be used for text-based image segmentation tasks by leveraging their inter-
mediate features as introduced by PNVR et al. [19]. With this, the method
extracts the feature from various layers of the IP2P’s U-Net architecture, fol-
lowed by their fusing in three steps. Afterward, having a final attention map,
the Region of Interest (RoI) is computed based on the top 100 pixels in prob-
ability followed by introducing all segments that overlap at least one of these
pixels as well. Having the binary mask M computed, the method regularizes
the attention scores (QKT) within the RoI of the unrelated tokens to the edit
denoted as S (e.g. <start of text>, stop words)) as in Formula (1), where α
is a large value.

(1) R(QKT ,M) =

{
QKT

ijt − α, if Mij = 1 and t ∈ S

QKT
ijt, otherwise

2.5. GRES. Introduced by Liu et al. [14], Generalized Referring Ex-
pression Segmentation (GRES) is a new benchmark that addresses the
limitations of the original task by allowing the segmentation of multiple ob-
jects within the same image and returning an empty mask if the referred object
is not present. They also propose a model called ReLA, achieving state-of-
the-art performance in the new GRES benchmark and the original RES one.

3. Methodology

Prompt-based image editing is the problem of computing the image resulting
from the editing of an original image based on a given instruction. Existent
methods deal with this problem in the general case with no special focus on
the interior design setting, and this paper aims to improve the performance in
such a setting.

This section introduces the proposed methodology for improving the text-
based edit in the interior design setting as well as the edit localization based on
a text-based segmentation mask through cross-attention map regularization,
approaches that will facilitate the answering to the addressed research ques-
tion. Firstly, we propose a pipeline for generating context-specific datasets
with no previous data, focusing on the text and images in two different sec-
tions. Afterward, to show the efficiency of the created dataset, we fine-tune

IMPROVING PROMPT-BASED IMAGE EDITING IN INTERIOR DESIGN SETTING 27

the base InstructPix2Pix model on it. Lastly, we propose a method for im-
proving the edit localization based on ReLA’s text-based segmentation mask
through cross-attention map regularization.

3.1. Dataset generation. The problem of data scarcity is a recurrent prob-
lem in prompt-based image editing tasks because of the difficulty in collecting
images before and after a specific edit instruction at scale. As stated before,
the currently available proposal for acquiring a large dataset for this task was
the generation of it. Still, all of them rely on an initial description of the
original image. Of course, there is still the option of manually creating such
a dataset, but it involves high costs and it is not scalable for large and high-
performance models. For a context-specific case like interior design, this data
is limited and not diverse enough for a good generalization of the problem.

So, we propose a method for creating such a dataset with no previous data to
respond to research question RQ1 by creating a context-specific dataset in this
fashion. The proposed approach is composed of the following two steps similar
to previous approaches: the textual data generation followed by the creation
of the paired images based on the text. Since the instruction-based image
editing is treated as a supervised learning problem, each dataset instance will
be made of an edit prompt and two images, the original one and the image
modified concerning the given prompt.

3.1.1. Text editing instructions generation. The initial generated text samples
will mimic the structure of the final dataset’s instance, but the images are
replaced with their textual descriptions. As such, each text instance will be
made of three elements: (i) the description of the initial room or object, (ii) the
edit instruction, and (iii) the initial description modified with respect to the
editing instruction.

For addressing the absence of initial descriptions, GPT-4, the large language
model used for experiments, was queried to generate all 3 components, com-
pared to [3] where the last 2 components of the tuple are generated based on
a previously known description. By leveraging the knowledge of the language
model, there is no need to fine-tune it.

Knowing that different types of rooms usually have different objects that
characterize them, room-specific agents can be created via in-context learning.
With the proposed approach, by just presenting to the language model the
format of the desired output (here JSON) and 3 other examples in that format,
it is able to generate a large amount of data in the desired format with a great
variety of responses. Moreover, to reduce the noise, GPT-4 [17] was instructed
to clearly state that the object is missing or exists in the original description
for the add and remove actions respectively. With this approach, 8,831 text
samples were generated and published on HuggingFace [29]. Intuitively, this

28 VICTOR-EUGEN ZARZU

method can be used for any specific context by just providing the language
model with examples from the targeted setting.

Additionally, the presented method has the advantage of enabling the cre-
ation of data in a hierarchical way of difficulty for the editing model: it first
creates paired captions for single objects captions followed by the ones with
a description of rooms with more objects. Compared to [3], the presented
method can be extended and used for any other special case of prompt-based
image editing, without the prior need for data, hence independence on the
existent datasets.

Moreover, for the generation of the text captions and instruction GPT-3 was
also used as an alternative before GPT-4 became publically available. While
both of them produced overwhelming and diverse results, GPT-4 was more
diverse in its outputs by different criteria computed using the site introduced
by Runker [1] as seen in Table 1.

MTLD [15] ↑ Dugast’s U2 [8] ↑ Guiraud’s Index [7] ↑ Yule’s K [9] ↓
GPT-3.5 28.13 12.83 3.87 356.49
GPT-4 32.72 13.73 4.52 278.80

Table 1. Comparison of diversity in the textual data
generated by GPT models.

3.1.2. Generating images from the paired editing instructions. Starting from
the paired editing instructions generated with the previous method, the Prompt-
to-Prompt based on the Stable Diffusion model approach is used for generating
the dataset samples in a supervised way: the image before and after the edit.
However, generating one image for each instruction does not guarantee their
consistency. For addressing this issue, similar to the approach presented in
[3], a large number of image pairs is generated for each pair of captions with
different values of p that controls the similarity between the images, followed
by CLIP-based metric filtering introduced by Gal et al. [10]. Only the top
four pairs of images that are above the image similarity threshold of 0.75 are
kept.

Compared to the values used for InstructPix2Pix, where for every pair of
captions 100 image pairs are generated before filtering, the proposed approach
splits the generation into two parts to reduce the time of generation: for the
images with single objects, 30 image pairs are generated, while for rooms with
multiple objects, 50 pairs are generated. The choice for fewer pairs for single
object images comes from the idea that the fewer the number of objects in the
image, the less diversity in the images of the same pair will be present in the

IMPROVING PROMPT-BASED IMAGE EDITING IN INTERIOR DESIGN SETTING 29

Prompt-to-Prompt generation. With this approach, 4,259 train samples and
1,129 test samples were generated. The training and testing datasets can be
accessed on HuggingFace [34, 33]. Furthermore, the generated data, not only
that is visually appealing and diverse, but it also exposes the limitations of
the InstructPix2Pix model in generalizing for the interior-design case and its
poor performance as shown in Figure 1.

Original image InstructPix2Pixg Our generation

Remove the pendant light.

Change the shape to square.

Figure 1. Comparison between the generated data and
InstructPix2Pix’s performance on it.

Furthermore, for reducing the noise introduced by the models used for gen-
eration and for increasing the dataset size, samples with an edit instruction
that does not alter the initial image are introduced for augmentation (see
Figure 2). Intuitively, this will also enforce the model to correctly identify
the Region of Interest for the edit and to learn that in some cases the given
prompt can be misleading, a problem that was not addressed in the previous
approaches. This additional dataset can be found at [29], and its effects will
be studied in the following sections. Moreover, these types of prompts with
no effect on the image were also introduced in the initial test set.

3.2. Fine-tuning InstructPix2Pix on generated dataset. Having the
previously generated data, we investigate its benefits when used to fine-tune
InstructPix2Pix in order to answer research question RQ2. However, due to
resource limitations, the training setup was modified to satisfy the computing
capabilities. For this, the training was run in float16 precision, with a batch
of only two images, and the images were resized from an initial dimension
of 512x512 to 256x256. Nonetheless, even with these restrictions, the overall
training was not affected drastically, and the results are promising. Using the

30 VICTOR-EUGEN ZARZU

training data generated with the method presented in Section 3.1, Instruct-
Pix2Pix was fine-tuned on 300 epochs with a learning rate of 10−5.

3.3. Enhancing Region of Interest detection using a Referring Ex-
pression Segmentation model. This section presents an alternative ap-
proach to the one introduced by Enis et al. [25] by leveraging the overwhelm-
ing performance of the recent text-based segmentation model, ReLA. This
section aims to respond to research question RQ3 and to explore if such a
method is improving the edit application in a general setting.

Remove the
flower pot

Remove the
chair.

Figure 2. Data augmentation with samples containing no change
in the output image

The proposed approach differs from the one introduced in LIME, just by
how the segmentation map of the region(s) under edit is computed, here using
ReLA. The usage of ReLA enhances the edit localization by being state-of-
the-art in this task, and, additionally, it allows context-dependent references
like ”The right blue chair.”.

Make the

sofas

yellow.
Llama3-8B The sofas. ReLA InstructPix2Pix

Figure 3. The pipeline for computing the edit through
cross-attention regularization using ReLA’s segmentation mask.

In order to be able to use ReLA in the editing pipeline, we propose the solu-
tion showcased in Figure 3. To use the text-based segmentation model, we first
need to create a reference to the object(s) to be edited out of the initial edit
prompt. This is achieved by creating an LLM agent via in-context learning by
injecting the task description and a couple of examples in the model’s system
prompt as highlighted in Figure 4. Here, we use the 8B version of the most
recent Llama3 [16] model. Afterward, we compute the text-based segmenta-
tion map determined by ReLA and feed it along with the initial image and

IMPROVING PROMPT-BASED IMAGE EDITING IN INTERIOR DESIGN SETTING 31

the edit prompt in the modified version of InstructPix2Pix for cross-attention
map regularization. We use the same approach of negatively regularizing the
unrelated tokens to edit (e.g. padding tokens, <start of text>, etc.) which
also offers the model more freedom in the edit application compared to the
positive regularization of the related tokens.

1 system_message = """

2 You are a bot that needs to take the reference of the text under edit

from an edit prompt or the object that affects it. Here are some

examples

3 ’Replace the top book on the desk.’ would transform into the

following reference ’The top book on the desk.’

4 ’Add a plate on the wooden table.’ would transform into the

following reference ’The wooden desk.’

5 Please return just the transformed text as the reference and nothing

more.

6 """

7

8 messages = [

9 {"role": "system", "content": system_message},

10 {"role": "user", "content": edit_prompt},

11]

Figure 4. The prompt used for extracting the object reference
from edit prompt via in-context learning with Llama3-8B.

4. Results and discussion

This section is focused on presenting the experimental results of the pre-
sented approach along with the discussions that emerged from the visuals and
analysis on the metrics.

4.1. Results. This section is focused on presenting the experimental results
of the proposed methodology for improving the edits in the interior-design
context and enhancing the edit localization through cross-attention map reg-
ularization.

4.1.1. Fine-tuning InstructPix2Pix on generated dataset. As shown in Table
2, the proposed approach improves the performance of the model consider-
ably across different metrics computed as the cosine similarity between the
features extracted using CLIP [20] and DINOv2 [18]. The various CLIP met-
rics presented in the table compute different types of similarities consisting of
the similarity between the input and output images (CLIPim), the similarity

32 VICTOR-EUGEN ZARZU

between the edited image and its textual description (CLIPout), and the sim-
ilarity between the changes in the captions and the images (CLIPdir), while
DINO only computes the similarity between the initial and edited image. The
model resulting from this experiment is publicly available on HuggingFace [30]
and can be freely used for image editing.

CLIPim ↑ CLIPdir ↑ CLIPout ↑ DINO ↑
IP2P 84.25 0.025 26.16 87.67
IP2P-FT 92.21 0.063 29.17 94.54

Table 2. Comparisons between the metrics of the base
InstructPix2Pix model and the fine-tuned one on the test set.

4.1.2. Additional fine-tuning on the dataset with unchanged images. After fine-
tuning the model on the train data, an experiment of fine-tuning the model
on the dataset with unchanged images was conducted. Doing this for more
epochs results in a model that does not apply any modifications to the image,
but fine-tuning for just one epoch does not alter the performance completely.
Unfortunately, in most cases, the model still learns just not to change the
original image at all, ignoring the edit instruction and underperforming in
most of the cases. However, in some cases, even though their number is small,
the output of this model is better than the previous one, this model also being
publicly available [31].

4.1.3. Enhancing Region of Interest detection using a Referring Expression
Segmentation model. The experiments conducted to incorporate ReLA’s seg-
mentation masks into the editing process via cross-attention map regulariza-
tion did not show positive results up to this point. However, as seen in Figure
5, it enhances the localization of the edit region by forcing the model not to
modify the unrelated background or objects. Nonetheless, the application of
the edit is not done correctly in most cases by showing colors and shapes that
are mostly random and off the edit prompt.

4.2. Discussion. The conducted experiments show improvements in instruction-
based editing for interior design images which can be extrapolated to any
context-specific case. However, there are a lot of observed particularities that
occur during the analysis of the experimental results and this section aims to
present them.

As shown and stated in Table 2, fine-tuning the base InstructPix2Pix model
on the generated data with interior-design samples improves the model’s abil-
ity to work in such an environment as shown in Figure 6. It can be seen that

IMPROVING PROMPT-BASED IMAGE EDITING IN INTERIOR DESIGN SETTING 33

the dataset not only offers the ground truth for the output image but also a
lot of knowledge that is assimilated by the model through supervised learning.

Original image InstructPix2Pix RoI +ReLA

Turn the
robin into
an origami

robin.

The generated origami bird shows blurriness and unnatural textures.

Turn the
bathtub into

a wood
bathtub.

Better localization of the edit area, but with unnormal wood texture.

Figure 5. Examples of the images edited after integrating ReLA’s
segmentation mask for cross-attention map regularization.

Even though the new model’s edits are more qualitative, there are still
problems with the editing of unwanted parts like background or objects that
are not referred to in the edit prompt. This can be seen in Figure 6 where,
in the first image, one flower from the table disappears, the table color is
changed from light grey to a slightly darker tone, and the lamp disappears.
Furthermore, in the second image, the table top is changed correctly, but the
color of the floor becomes more cherry.

4.2.1. Dataset generation. To eliminate such cases and better improve the
performance, a more qualitative dataset needs to be created. First of all, the
current dataset is not very diverse in the context and words used which is due
to the way the prompts are generated and its reduced volume. Moreover, gen-
erating the initial captions can also be done by starting from interior design
images available on the Internet and using an image-to-text model that de-
scribes the given image. After this step, the same idea introduced by Brooks
et al. [3] can be applied by fine-tuning an LLM for the generation of cap-
tion pairs. However, this method has a limitation given by the number of
publically available images for the context under discussion. This affects the
scalability of the method for various contexts and the accuracy as the image-
to-text model would also introduce noise to the dataset. For example, for the

34 VICTOR-EUGEN ZARZU

Original image InstructPix2Pixg Our generation

Add a gallery wall above the sofa.

Replace the marble top with
tempered glass.

Figure 6. The new model’s edits are a lot more qualitative than
the InstructPix2Pix’s ones for interior design.

interior design case, one such dataset is the Interior Design IKEA dataset [26]
which has only 6,000 images.

On the other hand, the introduced noise also comes from the level of image
generation but in two different aspects. Firstly, the diffusion model used, here
Stable Diffusion (SD), does not have a good understanding of interior design
scenes as shown in Figure 7 and also fails to correctly follow the given prompt.
Furthermore, there are also cases when it introduces more objects than pre-
sented in the textual description. Secondly, the noise is also introduced during
the generation with Prompt-to-Prompt followed by CLIP filtering because, in
some cases, the images do not differ only by the resulting actions expressed in
the edit prompt as seen in Figure 8.

Comparisons to related work are limited due to the recent publishing date
of Emu Edit [24] and LIME [25]. However, as stated before, all the solutions
addressed in Section 2 require at least a large volume of initial captions that
are used to build the dataset for supervised training. Compared to these, we
propose and show the effectiveness of a new approach to generate a context-
specific dataset for this task with no previously available information. Hence,
in contrast to previous work in this area, the presented approach increases the
scalability and the amount of data that can be generated by not relying on
any available information.

Furthermore, compared to the approach introduced by Enis et al. [25], us-
ing ReLA for computing the Region of Interest applies a regularization effect
only if the referred object is present in the input image. However, the LIME
approach gives a more general approach by computing the mask for all-purpose

IMPROVING PROMPT-BASED IMAGE EDITING IN INTERIOR DESIGN SETTING 35

A rustic living room with a stone
fireplace, leather sofas, a wooden coffee
table, and a bear skin rug on the floor.

A rustic living room with a stone
fireplace, leather armchairs, and a pine
coffee table with a bowl of pinecones as

a centerpiece.

Figure 7. Generated images that show the limited knowledge of
Stable Diffusion in interior design.

tasks, even for creating masks with initially non-existent objects as minimally,
but not explicitly expressed in the paper in just one example. Nonetheless,
using ReLA in the Remove and Replace tasks would offer a greater benefit
due to its better performance in text-based segmentation tasks, but with the
overhead of using an additional language model for extracting the region ref-
erence out of the edit prompt. Furthermore, this implies a growth in the time
needed to compute the edit because, in LIME, the segmentation map is com-
puted using the internal features already existent in InstructPix2Pix, while we
propose a method that uses two additional networks.

Remove the
floor-to-ceiling
windows and
replace them
with a large
artwork.

Change the
glass top to a
wooden top.

Figure 8. Examples of generated samples that do not correctly
follow the edit instruction.

36 VICTOR-EUGEN ZARZU

5. Conclusions and Future Work

This paper introduced LangDes, a new approach for improving the perfor-
mance of the instruction-based image editing task in the interior design setting.
Afterward, we proposed a promising approach for improving the future perfor-
mance on the instruction-based image editing task, followed by experimental
results and the associated discussions in Section 4.2.

The conducted experiments in the interior design setting showed overwhelm-
ing results and confirmed positive answers to the research questions RQ1-RQ3
formulated in Section 1. So, we proved that the proposed method for gen-
erating context-specific with no previous data stays valid, and we showed its
efficiency in improving the InstructPix2Pix performance in the interior-design
context. Afterward, we experimented with the integration of the text-based
segmentation model ReLA in the editing pipeline to improve the edit local-
ization. However, as an answer to research question RQ3, the current exper-
imental results only prove the localization improvement, but the application
of the edit is still not under control, with the model returning images with
random textures within the RoI.

One first direction for future work would be to increase the quality and di-
versity of the generated dataset. To increase the latter, the initial textual data
needs to be more diverse. A solution for this would be to combine the output
of multiple LLMs such as Llama2-70B [27], Gemini [2] or Mistral 8x7B [13].
On the other hand, task-room-specific agents can be created using in-context
learning, but with the disadvantage of a large number of possible combinations
that will increase the time required for the conducted experiments. Further-
more, to increase the quality and consistency of the image pairs, different
text-to-image models like Imagen [22], Muse [5] or an interior design fine-
tuned version of Stable Diffusion open-sourced at [32] can be used, as well as
applying a more comprehensive filtering pipeline as the one presented in Emu
Edit [24].

Another interesting topic is the complexity of the edit prompt. Even though
the presented work focuses on prompts with single edits of single objects, a
possible direction for experiments can be targeting more complex instructions
such as the ones involving multiple actions. This can be both seen as extra
evaluation of the model resulted from in presented work, as well as an extension
at the level of data generation for creating such samples.

As a last future work direction, we may refer to enhancing region of in-
terest detection using various RES models, along with investigating the cause
of incorrectly applying the edit despite correctly localizing the targeted area.
To improve the editing of parts of the objects, a combination of GRES and
Multi-Granularity Referring Expression Segmentation (MRES) [28] can be

IMPROVING PROMPT-BASED IMAGE EDITING IN INTERIOR DESIGN SETTING 37

used. Compared to, GRES, MRES, introduced by Wang et al. [28], supports
expressions for segmenting part-level regions of the target objects within a
model called UniRES, but with no support for a good performance with mul-
tiple objects at the same time. Having these two models, an additional deci-
sional network for detecting which type of segmentation model should be used
for computing the mask before the edit.

References

[1] Alex Reuneker. Lexical Diversity Measurements. https://www.reuneker.nl/files/

ld/, 2017. Accessed: 2024-01-15.
[2] Rohan Anil, Sebastian Borgeaud, and et al. Gemini: A Family of Highly Capable Mul-

timodal Models. CoRR, abs/2312.11805, 2023.
[3] Tim Brooks, Aleksander Holynski, and Alexei A. Efros. InstructPix2Pix: Learning to

Follow Image Editing Instructions. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2023, Canada, 2023, pages 18392–18402. IEEE, 2023.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Subbiah, and et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, volume 33,
pages 1877–1901. Curran Associates, Inc., 2020.

[5] Huiwen Chang, Han Zhang, and et al. Muse: Text-To-Image Generation via Masked
Generative Transformers. In International Conference on Machine Learning, ICML
2023, Honolulu, Hawaii, USA, volume 202, pages 4055–4075. PMLR, 2023.

[6] Xiaoliang Dai, Ji Hou, and et al. Emu: Enhancing Image Generation Models Using
Photogenic Needles in a Haystack. CoRR, abs/2309.15807, 2023.

[7] Michael Daller. Guiraud’s index. 2010.
[8] Daniel Dugast. La Statistique Lexicale. SLATKINE, 1980.
[9] G. Udny Yule. The Statistical Study of Literary Vocabulary. Cambridge University

Press, 1944.
[10] Rinon Gal, Or Patashnik, Haggai Maron, Amit H. Bermano, Gal Chechik, and Daniel

Cohen-Or. StyleGAN-NADA: CLIP-guided domain adaptation of image generators.
ACM Trans. Graph., 41(4):141:1–141:13, 2022.

[11] Amir Hertz, Ron Mokady, and et al. Prompt-to-Prompt Image Editing with Cross-
Attention Control. In The Eleventh International Conference on Learning Representa-
tions, 2023. OpenReview.net, 2023.

[12] Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance. CoRR,
abs/2207.12598:1–14, 2022.

[13] Albert Q. Jiang, Alexandre Sablayrolles, and et al. Mixtral of Experts. CoRR,
abs/2401.04088, 2024.

[14] Chang Liu, Henghui Ding, and Xudong Jiang. GRES: generalized referring expression
segmentation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, pages 23592–23601. IEEE,
2023.

[15] Philip M. McCarthy and Scott Jarvis. MTLD, vocd-D, and HD-D: A validation study
of sophisticated approaches to lexical diversity assessment. Behavior Research Methods,
42:381–392, 2010.

[16] Meta AI. Introducing Meta Llama 3: The most capable openly available LLM to date.
https://ai.meta.com/blog/meta-llama-3/, 2024. Accessed: 2024-05-10.

[17] OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023.

38 VICTOR-EUGEN ZARZU

[18] Maxime Oquab, Timothée Darcet, and et al. DINOv2: Learning Robust Visual Features
without Supervision. CoRR, abs/2304.07193, 2023.

[19] Koutilya PNVR, Bharat Singh, Pallabi Ghosh, Behjat Siddiquie, and David Jacobs.
Ld-znet: A latent diffusion approach for text-based image segmentation. In IEEE/CVF
International Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6,
2023, pages 4134–4145. IEEE, 2023.

[20] Alec Radford, Jong Wook Kim, and et al. Learning Transferable Visual Models From
Natural Language Supervision. In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, ICML 2021,, volume 139,
pages 8748–8763. PMLR, 2021.

[21] Robin Rombach, Andreas Blattmann, and et al. High-Resolution Image Synthesis with
Latent Diffusion Models. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2022, pages 10674–10685. IEEE, 2022.

[22] Chitwan Saharia, William Chan, Saxena, and et al. Photorealistic Text-to-Image Dif-
fusion Models with Deep Language Understanding. In Advances in Neural Information
Processing Systems, volume 35, pages 36479–36494. Curran Associates, Inc., 2022.

[23] Christoph Schuhmann, Romain Beaumont, and et al. LAION-5B: An open large-scale
dataset for training next generation image-text models. In Advances in Neural Infor-
mation Processing Systems, volume 35, pages 25278–25294. Curran Associates, Inc.,
2022.

[24] Shelly Sheynin, Adam Polyak, and et al. Emu Edit: Precise Image Editing via Recog-
nition and Generation Tasks. CoRR, abs/2311.10089, 2023.

[25] Enis Simsar, Alessio Tonioni, Yongqin Xian, Thomas Hofmann, and Federico Tombari.
LIME: localized image editing via attention regularization in diffusion models. CoRR,
abs/2312.09256, 2023.

[26] Ivona Tautkute, Aleksandra Mozejko, and et al. What Looks Good with my Sofa: Mul-
timodal Search Engine for Interior Design. CoRR, abs/1707.06907, 2017.

[27] Hugo Touvron, Louis Martin, Kevin Stone, and et al. Llama 2: Open Foundation and
Fine-Tuned Chat Models. CoRR, abs/2307.09288, 2023.

[28] Wenxuan Wang, Tongtian Yue, and et al. Unveiling Parts Beyond Objects: Towards
Finer-Granularity Referring Expression Segmentation. CoRR, abs/2312.08007, 2023.

[29] Victor-Eugen Zarzu. Dataset for interior design. https://huggingface.co/datasets/
victorzarzu/interior-design-edit-captions, 2024.

[30] Victor-Eugen Zarzu. Fine-tuned InstructPix2Pix model. https://huggingface.co/

victorzarzu/ip2p-interior-design-ft, 2024.
[31] Victor-Eugen Zarzu. Fine-tuned InstructPix2Pix model on the

dataset with unchanged images. https://huggingface.co/victorzarzu/

ip2p-interior-design-ft-unchanged-one-epoch, 2024.
[32] Victor-Eugen Zarzu. Interior design fine-tuned version of Stable Diffusion. https://

huggingface.co/stablediffusionapi/interiordesignsuperm, 2024.
[33] Victor-Eugen Zarzu. Testing data. https://huggingface.co/datasets/victorzarzu/

interior-design-prompt-editing-dataset-test, 2024.
[34] Victor-Eugen Zarzu. Training data. https://huggingface.co/datasets/victorzarzu/

interior-design-prompt-editing-dataset-train, 2024.

Babes, -Bolyai University, Faculty of Mathematics and Computer Science, 1
Mihail Kogălniceanu, Cluj-Napoca 400084, Romania

Email address: victor.zarzu@stud.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIX, Number 2, 2024
DOI: 10.24193/subbi.2024.2.03

DEEP LEARNING APPROACHES FOR DETECTING TEXT

GENERATED BY ARTIFICIAL INTELLIGENCE

DAVID BIRIS,

Abstract. Large language models have been a hot topic for discussion
and research for quite a few years, allowing them to infiltrate in many
industries, especially education. Their rise in popularity among students
was caused by their vast capabilities in giving quick and reliable answers to
questions on any topic. The use of these models for the purpose of generat-
ing schoolwork can be seen as a challenge to academic integrity. We inves-
tigate the development of AI capable of detecting AI-generated texts and
explore with training different types of deep learning models, on a mixed
dataset, containing essays, both human written and AI-generated, as well
as movie reviews and books. We experimented with LSTM (Long short-
term memory) and fine-tuning transformer based models. We achieve re-
sults close to the state of the art, and, in some particular cases, we surpass
a few of these models. For instance, one of our models surpasses a state
of the art model on a set of both student written and generated essays, in
terms of accuracy by up to 5%, and F1 score by up to 4%, in two different
experiments. Furthermore, our another model of ours surpasses a state of
the art model on a set of essays, but this time only in terms of precision,
by only 1%. These results indicate the potential of properly fine-tuned
transformer-based models, as well as the importance of a well-prepared
dataset.

1. Introduction

Ever since the revolutionary introduction of the transformer model in 2017
[29], the artificial intelligence industry has experienced a never-before-seen

Received by the editors: 31 July 2024.
2010 Mathematics Subject Classification. 68P15, 94A12.
1998 CR Categories and Descriptors. I.2.7 [Artificial Intelligence]: Natural Language

Processing – Text Analysis; I.2.6 [Artificial Intelligence]: Learning – Deep Learning; H.3.1
[Information Storage and Retrieval]: Content Analysis and Indexing – Content Analysis and
Feature Selection .

Key words and phrases. machine learning, chatbot, AIGT, detection.
© Studia UBB Informatica. Published by Babeş-Bolyai University

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International Licence.

39

40 DAVID BIRIS,

explosion in both performance and popularity. While the transformer was
initially designed for translation tasks, it has since been adapted for a varied
range of uses in natural language processing and way beyond. Large language
models (LLMs) were introduced the very next year, with pioneers such as
OpenAI’s Generative Pre-Trained Transformer (GPT) [27] and Google’s Bidi-
rectional Encoder Representations from Transformers (BERT) [8]. One more
year later, LLMs began to be publicly accessible with the release of GPT-2,
and, in no time, people realized the immense potential of these models as chat
bots.

Today, these chat bots are everywhere and are immensely more capable
than their predecessors. They are very popular and widely used by people in
diverse everyday tasks. Moreover, tools like ChatGPT have become helpful
allies for students, when trying to do their schoolwork. According to [3], 19%
of students aware of ChatGPT admitted to having used it for schoolwork.
This number is already high, but we can safely assume that, in reality, it
might be a lot higher, since only 25% first-year computer science students
that participated in a survey for this study [5] declared to have never used
ChatGPT for their assignments.

While these tools might not yet be useful for reliably solving complex prob-
lems, they certainly can write a satisfactory essay on any topic, especially for
students in earlier grades. Research made by OpenAI [22] shows that GPT-4
on its own can even pass many exams, with high grades. Some people might
see this as concerning, since students’ usage of these tools lead to inaccuracies
in the evaluation of their text comprehension, writing abilities and both logical
and critical thinking.

To address these concerns, we create a tool designed to help both students
and teachers. We aim not to punish students for using large language models
to learn and find ideas for their assignments, which can be a good habit, but
to discourage the damaging practice of carelessly copying and pasting entire
AI-generated essays and sending them as homework solutions.

In the following, we will present the steps we took to achieve to this fin-
ished product in great detail. We will start by presenting three state of the
art models, in a section dedicated to related work. The next section will show
the employed methodology and will briefly discuss the most important archi-
tectural aspects of each of the models. The experiments section focuses on
first discussing the content of the datasets and then the processing techniques
that have been applied to the data. After that, the process of training and
hyperparameter tuning is discussed, and the section is ended with results and
a detailed comparison between our models and the state of the art presented

DEEP LEARNING DETECTION OF AI-GENERATED TEXTS 41

in the aforementioned section. The article ends with a section that draws
conclusions and brings out possible future improvements.

2. Related Work

2.1. Sentence-Level AI-Generated Text Detection with SeqXGPT.
Most AIGT (AI-Generated Text) detection strategies are made with the pur-
pose of detecting, with as high of an accuracy as possible, if an entire document
is automatically generated by a LLM, rather than using a sentence-by-sentence
approach. While this technique may be useful in many cases, people do not
generally rely solely on AI to generate entire documents, and, instead, they
often use it to modify or enhance content that was originally written by hu-
mans. These AI modifications can be simple enhancements or additions to
certain sentences, or entire new AI-generated paragraphs scattered between
human-written text. Therefore, using a sentence-level AI generated content
detection strategy is crucial in some cases.

SeqXGPT [30] is an open-source, advanced method for sentence-Level AI-
Generated text detection. Its approach consists of three parts: Perplexity
extraction and alignment, Feature Encoder and Linear Classification Layer.

The AIGT detection tests performed on SeqXGPT show a significant differ-
ence when compared to other AIGT detection methods, such as DetectGPT
[21] or Sniffer [18]. The LLMs used to construct the dataset are GPT2-x1,
GPT-Neo, GPT-J and LLaMA.

2.2. Zero-Shot AI-Generated Text Detection with Fast-DetectGPT.
According to a report by OpenAI [28], zero-shot detection uses a pre-trained
generative model on text generated either by itself or by other similar models.
This is done without subjecting the model to any supplementary training.
Zero shot means that access to human written or AIGT samples is not assumed
to perform detection. Generally, when using zero-shot AIGT detection, the
average per-token log probability of the generated text is evaluated.

This model relies on the hypothesis that language models tend to use tokens
with higher statistical probability because they have been pre-trained on lots of
human written content. In contrast, humans individually do not display such
bias since they compose texts based on contexts, meanings, and intents rather
than data and statistics [1]. This hypothesis stems from the fact that language
models try to mirror collective human writing behaviour instead of individual
human writing behaviour, therefore presenting a contextual difference in the
choice of words. This means that the conditional probability function p(x̃|x)
is much higher for an AIGT x, in comparison with human written text.

Fast-DetectGPT works in these three steps:

• Step 1. Sample alternative word choices x̃i for each token x.

42 DAVID BIRIS,

• Step 2. Evaluate the conditional probabilities p(x|x), p(x̃i|x) of these
generated samples.

• Step 3. Compare them to arrive at a detection decision:
1
n

∑
i log

p(x|x)
p(x̃i|x)

?
> ϵ

Here, x represents the entire input text, xi denotes the i-th token in x, x̃i
represents an alternative token generated as a substitute for xi, and n is the
total number of tokens in the input text. The decision to classify the text
as AI-generated or human-written depends on whether the aggregated score
exceeds the threshold ϵ.

Empirical evidence shows an increase of around 75% in detection accuracy
for Fast-DetectGPT over its predecessor, DetectGPT [21].

2.3. Adversarial learning with RADAR. In the context of AIGT detec-
tion tools, we refer as adversarial learning to the process in which two models
are trained at the same time, with two different, even opposing, goals in mind.
One of them is a generative model and the other is a discriminative model
that tries to determine, with a certain probability, whether some sample came
from the generative model or the training data [12]. The generative model’s
goal is to make the probability of the discriminative model to make a mistake
as high as possible.

RADAR: Robust AI-Text Detection via Adversarial Learning is a frame-
work for AIGT detection, that uses adversarial learning. By this method, the
discriminator is a ”two player game”, composed of the paraphraser and the
detector. These two ”players” have contrasting objectives, because the para-
phraser has to generate human-like content that should be able to avoid AI
detection, while the detector’s job is to enhance AIGT detectability. In the
training phase, the paraphraser learns to rewrite text from a dataset generated
by a target LLM, while trying to decrease the probability that the detector will
be able to discern the difference between the paraphraser’s text and human
written text. At the same time, the detector learns to compare AIGT from
the training dataset and from the paraphraser’s output with human written
text, in order to improve the detection performance [15].

3. Proposed models

The task at hand is formulated as a binary classification task with two
classes: human written, which is considered to be negative and AI-generated,
which is considered to be positive. Each input text belongs to one of these
two categories and it will be evaluated at document-level, meaning that there
will be no sentence-level analysis, such as in the case of SeqXGPT. We fine
tune some relatively lightweight transformer-based models, like BERT and

DEEP LEARNING DETECTION OF AI-GENERATED TEXTS 43

DeBERTa (Decoding-enhanced BERT with Disentangled Attention) [13], since
their small size allows them to be directly integrated in applications, without
the need of an API, unlike some newer and heavier models, that cannot directly
run on users’ personal computers. Additionally, they are free to use and open
source. For the same reason, we also train an LSTM, which turns out to be
even lighter than the transformer models, at the expense of some performance.

3.1. LSTM. We start with the implementation of a LSTM model [14]. The
text data is tokenized with the basic english tokenizer provided by PyTorch,
in the torchtext package [23]. The vocabulary is built from these tokens.
We apply padding to the sequences, since the LSTM expects constant length
inputs. We use the LSTM class from PyTorch to build the model and try
multiple sets of hyperparameters to find the ideal ones, using Wandb [2].

The training is done using K-fold cross validation, splitting the dataset in
K parts. One of the K parts is used as a validation dataset, and the other
K − 1 are used for training. This process is repeated until each of the parts
has played the role of a validation dataset. We use the KFold function from
scikit-learn [25] to set up the cross validation and we experiment with 3 − 5
splits. The data is shuffled every time before splitting to ensure that the model
does not make any connections related to the order of the entries, since the
order does not matter. We save the model for every fold and pick the one with
the highest performance.

As an optimization algorithm for gradient descent we use Adam.
The loss function used is a Binary Cross Entropy Loss, with a sigmoid over

the outputs of the model, called BCEWithLogitsLoss, in the PyTorch library:

(1) li = −wi

(
yi · log σ(xi) + (1− yi) · log(1− σ(xi))

)
for the ith example in the batch, where xi is the the ith raw output of the

neural network, yi is the actual ith truth label and wi is a weight associated
with the ith example, and can be useful if we want to give different importance
to different examples in the batch.

The overall loss for the batch is the mean if the individual losses:

(2) l(x, y) =
1

N

N∑
i=1

li,

where li is defined in Equation 1, N is the batch size and x = {x1, x2, . . . , xN},
y = {y1, y2, . . . , yN}.

For this LSTM, we create a PyTorch module (a Python class that inherits
from the Module class in PyTorch) named TextLSTM. Our final model will
have type TextLSTM. Its constructor initializes the embedding layer, giving
as parameters the size of the aforementioned vocabulary and the dimension

44 DAVID BIRIS,

of the embedding vectors, which we chose to be 100. The constructor also
initialized the LSTM class from PyTorch that we have mentioned, as well as
a linear layer called fc that maps the output of the LSTM (with dimension
hidden dim, a hyperparameter we chose to be 256) to the desired output size
(which in this case is 1), since our task is binary classification. The forward
pass function starts by embedding text and then passing it through the LSTM.
Then it takes the last layer from the hidden states and passes it through the
fc, before returning it.

3.2. BERT. We also fine-tune multiple transformer-based models, the first
one being BERT. We use bert-base-uncased, a version of BERT with 110 mil-
lion parameters. The parameters are basically the total number of weights
and biases from the transformer’s layers. It has been pre-trained only on Eng-
lish datasets. We choose the uncased version from the presumption that the
case of the letters in a text are not significantly relevant in the context of
detecting whether a text is AI-generated or not. BERT’s tokenizer includes
the functionality of encoding the tokens, but has the limitation of admitting
a maximum of only 512 tokens per input, which might cause loss of data on
entries with texts longer than that. This is why we might want to truncate
and split the text into multiple sections of 512 tokens, but then we sometimes
run into the problem of losing the necessary context for the transformer to
make the needed connections for discriminating between AI and human text.
We will handle this problem in the data preprocessing subsection 4.2. If the
tokenizer does not find a specific word in the BERT dictionary, it splits it in
the largest subwords from the vocabulary. In the rare case when the tokenizer
cannot find a subword in the vocabulary, the entire word is tokenized as un-
known [9]. If a sequence is already split in 512 tokens (the maximum number),
and we need to split a word in subwords, the sequence will be truncated to
the maximum length [8].

For training, we split the dataset into three sets: 80% of the data was used
for training, 10% for testing, and 10% for validation. The test dataset is used
only to evaluate the performance of the final model. The other two sets are
used during training, just like in the LSTM: the validation is used to evaluate
the model every evaluation frequency steps on data that is new for the model,
since it is not included in the training dataset. The number of steps in an
epoch is dependent on the batch size, since each epoch is a complete pass
through the entire dataset and the batch size indicates how many samples are
taken for each forward back propagation of the neural network layer of the
transformer. So, the number of steps in an epoch is S = dataset size

batch size .
We use AdamW as optimization algorithm for gradient descent with learn-

ing rate 5 · 10−5. During the 1500 warm up steps, the learning rate is set

DEEP LEARNING DETECTION OF AI-GENERATED TEXTS 45

to linearly increase to the desired value. The learning rate is set to linearly
decrease to 0 by the end of the training process. This learning rate scheduler
setup allows for the learning rate to stabilize the training in the early steps,
since the model has not yet had the chance to adjust to the dataset and we
risk overshooting minima of the loss function. After warm up, the learning
rate is set to gradually decrease, and this helps the model tune the weights
lightly near the end of the training.

3.3. DeBERTa. We can fine-tune more BERT-based transformers models,
such as DeBERTa [13]. We use the base version of DeBERTa, deberta-v3-base,
with around 86 million parameters. It has 12 layers and a hidden size of 768.
We split the dataset in the same way we do for the BERT model. Again, we
use the AdamW optimizer, with learning rates like 5 · 10−5 or 3 · 10−5. The
same 1500 warm up steps are followed and the learning rate linearly decays
during training.

The improvement DeBERTa brings over BERT is that it separates the con-
tent and position information in different embeddings. This approach allows
the model to more effectively focus separately on semantics and positions of
the tokens. Additionally, DeBERTa has an upgraded mask decoder which
gives it better predictions during training. With these perks, DeBERTa is
a generally more efficient and better performing model in natural language
processing tasks than BERT or RoBERTa [19].

4. Experiments

A crucial step in training a text classification model is thoughtfully com-
piling a dataset of content with diverse writing styles. The models train their
weights to find patterns that discern real texts from fake ones, so it it very
important to not accidentally introduce biases or imbalances that could skew
the model’s performance and to ensure these sources vary in tone, complexity,
and subject matter. We gather content from a wide range of sources including
books, reviews and especially essays, since our tool is created with the intent
of primarily detecting schoolwork.

4.1. Datasets.

4.1.1. DAIGT-V4. [17] is a dataset compiled from a number of different sources.
The AI-generated section has texts generated by different models: LLaMA -
15,796 texts, Mistral - 13,439 texts, Falcon - 4,536 texts, GPT - 4,161, DaVinci
- 2,099 texts, Claude - 2,000 texts, PaLM - 1,733 texts, Babbage - 698 texts,
Curie - 696 texts, Ada - 692 texts, Cohere - 350 texts. The human generated

46 DAVID BIRIS,

content is composed of argumentative essays written by 6th-12th grade stu-
dents [6]. This dataset contains a total of 27,370 human generated texts and
46,200 AI generated texts.

The dataset contains values under multiple labels, such as the text itself, a
value that tells us whether the content is AI or human generated, the name of
the model it has been generated by, as well as the prompt used for generation.
The topics (prompts) of the essays are the same for both human and AI texts.

4.1.2. DAIGT Gemini-Pro 8.5K Essays. This dataset [7] brings 8,500 more
essays generated using the same prompts as the ones from DAIGT-V4. They
are generated by GeminiPro. The CSV file contains multiple labels, such as
the text itself, a value that tells us whether the content is generated by AI or
written by humans, and also the prompt used to generate the text.

4.1.3. IMDB 50K Movie Reviews. This dataset [24] provides a set of 50,000
movie reviews from IMDB, written by humans. The CSV file provides both
the review and the opinion reflected by the person in the review (positive
or negative sentiment towards the movie), for sentiment analysis. For our
purpose, we will not need to use the sentiment, and we will use this dataset
as a collection of human written text.

4.1.4. ArguGPT. [20] provides 4,038 argumentative essays, on different topics,
written by GPT (7 models). The CSV file contains labels for the text, the
prompt, as well as an id for each text and prompt and also the individual GPT
model used for generation.

4.1.5. Raw IELTS essays. Raw IELTS essays [4] is a collection of student-
written essays, from the IELTS test. It provides a valuable amount of 4,158
essays, that should definitely help the model find different human writing
patterns, during training.

4.1.6. SeqXGPT’s sentence-level detection dataset. A section of the document-
level detection dataset used for evaluating SeqXGPT [30]. It contains, among
human generated texts, content from GPT-2, GPT-3, GPT-J, GPT Neo and
Llama. We take the GPT-2, GPT-3 and human texts for training, and leave
the rest for subsequent testing. GPT-2 and GPT-3 are extensively studied and
thoroughly evaluated models, making them suitable choices for establishing a
solid training dataset. We reserve GPT-J, GPT-Neo, and LLaMA for testing,
in order to ensure that the trained model is evaluated on texts it has not
seen during training phase. We use a total of 600 texts for training, from this
dataset, 200 human written and 400 human generated.

DEEP LEARNING DETECTION OF AI-GENERATED TEXTS 47

4.1.7. Some books. We also include some books in the dataset. Books offer
very high quality examples of human writing, while also being well edited and
well reviewed. This should help the model’s ability to detect subtle charac-
teristics of human authored text. For diversity of writing styles, we choose
both newer and older books. The books we have included in our dataset are
Crime And Punishment, The Great Gatsby, The Hunger Games, Frankenstein,
Twilight, Harry Potter, The DaVinci Code and Tarzan Of The Apes. After
splitting these books in sections of maximum 450 words (in order to have
similar length texts in the dataset) we get about 2,100 small texts.

4.1.8. Alpaca GPT4. Alpaca GPT4 [10] [26] is a collection of instruction-
following texts generated by GPT-4. It does not include essays, but these
texts might help our model understand some more diverse patterns in AI-
generated content, so it might be beneficial to not only include essays in the
training dataset. For this reason, we choose a random set of 2,100 samples
of the total 52,000. Since these texts are not essays, they have an unusual
writing style compared to the other AI-generated texts, so we choose 2,100 in
order to match the number of texts from the previous human-written dataset,
composed of books. This way, we have a balance between AI-generated and
human-written texts with different writing styles.

4.1.9. AI Vs Human Text. This dataset is a huge cluster of essays, both AI-
generated and human written essays[11]. It includes some of the datasets
presented above and many more. Since our tool targets detecting AI-generated
content in academic scenarios, this dataset is a very good choice due to its
large collection of essays, aligned with academic writing styles. This dataset
contains around 300,000 human written and 180,000 AI-generated essays. We
have used AI-generated some texts from ”AI Vs Human Text” only as a filler,
for balancing the training dataset, since we ended up with more human written
content.

4.1.10. Testing Dataset. This dataset will only be used for testing, so we do
not count it in with the other training datasets. We use another IELTS essays
dataset [16], different from the one used for training. This dataset contains
both the question that the students were asked to write the essay about, and
the student essay itself. We take a sample of these questions and ask the
most popular AI models to write essays as well. Now we have created our
test dataset with some student essays and some generated essays. We have, in
total, 1332 pieces of writing created by gpt-3.5-turbo, gpt-4-turbo and gpt-4o,
the latest model from OpenAI, as of this writing. We have generated these
essays ourselves, using the API that OpenAI has made publicly available.

48 DAVID BIRIS,

4.1.11. Data splitting. The number of texts in the final dataset and their
provenience is described in detail in Table 1. We split the dataset in three
sections: the training set (80% of the entire dataset), the validation set and
the test set (both 10%). The training set is used for the actual process of ad-
justing the weights of the model while training. The validation dataset helps
assessing the model’s performance during training and preventing overfitting
by providing a separate set of data to evaluate the immediate performance
of the model. The test set is a completely unseen section of the data, that
provides an unbiased evaluation of the model’s performance after the training
is completed.

Datasets
Dataset Name Human

Written
Texts

AI-
Generated
Texts

Total AI/Human
Ratio

DAIGT-V4 27,370 46,200 73,570 1.68
DAIGT Gemini-Pro 8.5K 0 8,500 8,500 -
IMDB 50K Movie Reviews 50,000 0 50,000 -
ArguGPT 0 4,038 4,038 -
Raw IELTS essays 4,158 0 4,158 -
SeqXGPT’s sentence-level
detection dataset

200 400 600 0.5

Alpaca GPT4 0 2,100 2,100 -
Books 2,100 0 2,100 -
AI Vs Human Text 0 22,590 22,590 -

Total 83,828 83,828 167,656 1

Table 1. Summary of datasets used.

4.2. Data preprocessing. Before doing any further processing on our dataset,
the texts have been grammatically corrected. Correcting grammar is an im-
portant step in processing our datasets. We use a special Python library called
language-tool to correct all the grammatical errors in all our texts, both AI
and human written. We do not want our model to form bias towards labeling
a text as AI just because it does not have grammatical errors. After correcting
the grammar in the texts, we see that 1,456,283 errors have been corrected in
human texts and only 631,083 in AI content. This data supports our previous
hypothesis that the model could have been biased towards labeling correctly
written text as AI, when trained on an uncorrected dataset.

DEEP LEARNING DETECTION OF AI-GENERATED TEXTS 49

Since transformer-based models like BERT or DeBERTa have a maximum
input size of 512 tokens, we cannot keep texts longer than 512 tokens in our
dataset. We could just truncate the longer texts, but this way we could lose
meaningful context from those texts. This is why we will just discard the texts
with more than 500 words. We choose to count words instead of tokens since
the BERT and DeBERTa tokenizers are different, but they both generally
split tokens as words. The reason we choose not to split them into chunks, as
we have previously done for the books dataset is because there is not enough
content that we can work with in these texts. The texts are generally only
slightly longer than 500 words, and, by keeping the surplus in a separate chunk,
we would have many short pieces of text with no context behind. We will also
discard texts with less than 50 words, since they might not provide enough
context for the AI model to properly train. The vast majority of the texts
lied in the desired range, even before this processing, as can be seen in Figure
1, but, after discarding texts that are too long or too short, Figure 2 shows
a nicer, almost Gaussian distribution of text lengths. We have discarded a
few too long or too short texts, but we still have 152,386 texts to work with,
76,534 human written and 75,852 AI-generated.

Figure 1. Initial
distribution of word
counts in the
dataset.

Figure
2. Distribution
of word counts in
the dataset, after
discarding too long
or too short texts.

4.3. Metrics. During training, we compute accuracy, loss, and validation loss
every epoch. These values, called metrics, specifically the last two, help us
interpret the progress during training. Validation loss is computed on the val-
idation dataset, and loss on the training dataset. If the two loss values become

50 DAVID BIRIS,

closer and lower, it is a good sign that the training process has steady and
good progress. Otherwise, if they are far apart, this might indicate overfitting.

We can also track the learning rate and f1 score. The f1 score is a function
of precision and recall. The precision is a metric that shows us how accurate
the positive predictions are. We will abbreviate true positives by TP, false
positives by FP and false negatives by FN. TP are the texts correctly classified
as AI-generated, and FN are texts incorrectly classified as human written.
Then, the precision has the formula Precision = TP

TP+FP . Recall is the ration

between true positives and all the actual positives: Recall = TP
TP+FN . The

f1 score measures the balance between precision and recall and has values
between 0 and 1, 1 meaning perfect precision and recall:

(3) f1 score =
2 · TP

2 · TP + FP + FN

4.4. Training and hyperparameter tuning. It is good practice to imple-
ment multiple models, based on different architectures, and tune their hy-
perparameters, in order to find the best possible solution. The deep learning
library of choice is PyTorch [23]. Hyperparameter tuning is done with Wandb.
Wandb Weights & Biases is a platform that helps with tracking a history of
experiments in machine learning. It provides the tools to log each training run
and save the training progress, the hyperparameters and the metrics of the
model (loss, accuracy, f1 score, etc.), as well as many details about the sys-
tem’s performance during training. In addition, it creates graphs with these
metrics. The sweep functionality from Wandb allows us to pre-plan multiple
sets of hyperparameters and Wandb will train the model with these multiple
possible settings so we can choose the preferred one.

When training the LSTM model, we choose to use 5 folds for k-fold cross
validation and experiment with different hyperparameters. The best results
have been achieved with the dimension of the vector space in which words
are represented (embedding dimension) set to 100. We choose the number of
neurons in the hidden layers (hidden dimension) to 256, the learning rate to
10−3 and the dropout rate to 20% of the neurons. We train this model with a
batch size of 128. The training and validation loss progress for each of these
5 folds can be seen in Figure 3.

When fine-tuning BERT, only 3 epochs are needed, since this is a transformer-
based model, pre-trained on massive datasets and has already captured a sig-
nificant number of natural language features. This is the reason why the
learning rate we set is much lower, compared to the LSTM one, specifically
10−5. During fine-tuning we only need to finely adjust the model’s weights, to
fit our new text classification purpose. We also need to set the batch size to

DEEP LEARNING DETECTION OF AI-GENERATED TEXTS 51

Figure 3. BCEWithLogitsLoss (sigmoid wrapped cross en-
tropy loss) progression in the training process of the LSTM
model (training vs validation loss), for each of the 5 folds

a lower number, 16, since the multi-head attention mechanisms of the trans-
former require much more video RAM than the LSTM architecture. The loss
progression during the fine-tuning process is displayed in Figure 4.

Figure 4. Training vs validation loss during the fine-tuning
of the BERT model.

We fine-tune DeBERTa for 4 epochs, but this time we use three sweeps to
automatically find the best hyperparameters, instead of manually changing
them and trying again. The best results are achieved with a dropout rate of
0.1, a initial, linearly decaying learning rate of 3 · 10−5 and a batch size of 16.
The first 1000 steps (first 1000 batches) in the first epoch are used as warm
up steps, to gradually increase the learning rate to the initial value of 3 · 10−5.
The model is trained for two epochs, and the training progress can be seen in
Figure 5.

4.5. Results. We will try to find a winner between our models, by subjecting
them to a few classification test on our testing dataset. We will go through all

52 DAVID BIRIS,

Figure 5. Training vs validation loss during the fine-tuning
the DeBERTa model.

the sections of the dataset, which, as previously stated, is composed of human
written and gpt-3.5-turbo, gpt-4-turbo and gpt-4o generated essays, as well as a
section from SeqXGPT’s dataset. We will begin by comparing only our three
models on the gpt-3.5-turbo section, in order to establish a baseline, and then
we will continue with a comparison with the state of the art models. We will
compare the models by calculating metrics such as accuracy, precision, recall
and f1 score for each one of them.

Model Accuracy Precision Recall F1 Score
Our LSTM model 0.78 0.78 0.78 0.78
Our BERT model 0.86 0.88 0.86 0.86

Our DeBERTa model 0.90 0.91 0.90 0.90

Table 2. Comparison between results from all our three mod-
els on 955 gpt-3.5 turbo vs 955 human texts from our testing
dataset.

By doing some tests using our testing dataset we can observe that our
DeBERTa model yields the highest performance of all three, as shown in Table
2. This result is expected, since DeBERTa is an improved version of BERT,
both in performance and in efficiency, and it also is designed to focus more
on semantics and the position of tokens, because of its different approach to
embeddings.

DEEP LEARNING DETECTION OF AI-GENERATED TEXTS 53

Next, we will subject all three models, plus some more, on a series of more
tests, and we will see if DeBERTa still retains its performance against our
other methods and also against some state of the art methods.

4.6. Comparison with other methods. We now make use of the test-
ing dataset that we’ve compiled to test our models versus some state of the
art models presented in the second section. We use different sections of the
dataset. Considering which model has generated the text is crucial when eval-
uating performance, as it allows for an assessment of whether the detection
is effective against state-of-the-art generative models or if its capabilities are
limited to identifying text generated by older, less advanced models.

Model Accuracy Precision Recall F1 Score
RADAR 0.97 0.97 0.97 0.97

Our LSTM model 0.76 0.78 0.73 0.76
Our BERT model 0.88 0.90 0.88 0.88

Our DeBERTa model 0.93 0.93 0.93 0.93

Table 3. Comparison between results from RADAR vs our
models, on a sample of 286 student essays and 286 essays gen-
erated by gpt-3.5-turbo.

The AI-generated texts from the dataset for which the models yielded the
results presented in Table 3 is different from the one in Table 2, though both
are generated by gpt3.5-turbo.

Model Accuracy Precision Recall F1 Score
RADAR 0.88 0.89 0.88 0.88

Our LSTM model 0.68 0.75 0.53 0.62
Our BERT model 0.93 0.93 0.92 0.92

Our DeBERTa model 0.84 0.86 0.84 0.83

Table 4. Comparison between results from RADAR vs our
models, on a sample of 94 student and AI essays generated by
gpt-4-turbo

This time, in Table 4, the BERT model stands on top, overtaking even
RADAR in gpt-4-turbo texts detection.

Again, our BERT model seems to classify texts from OpenAI’s latest model,
gpt-4-o very well, even slightly surpassing RADAR, as displayed in Table 5.

54 DAVID BIRIS,

Model Accuracy Precision Recall F1 Score
RADAR 0.88 0.89 0.88 0.88

Our LSTM model 0.70 0.73 0.63 0.67
Our BERT model 0.89 0.90 0.89 0.89

Our DeBERTa model 0.73 0.79 0.73 0.71

Table 5. Comparison between results from RADAR vs our
models, on a sample of 253 student essays and 253 essays gen-
erated by gpt-4o

As mentioned in the datasets section, we have used some samples from
SeqXGPT’s datasets for training, but we have also left some for testing. This
time, we will compare our results with the one from the table for document
level detection, from SeqXGPT’s paper [30], since they have already tested on
the same dataset. We will test our models and also the RADAR model on
the sections left for testing from this dataset (200 GPT-J texts, 200 GPT-Neo
texts and 200 LLaMA texts). Since we have used the human-written texts
from this dataset for training the detection models, we cannot fairly compute
precision, but we will compare the recall values, since recall is a function of
true positives and false negatives and it only deals with truly AI generated
texts. True positives are the texts correctly classified as AI-generated, and
false negatives are texts incorrectly classified as human written.s

Model GPT-J GPT-Neo LLaMA
Sniffer 0.74 0.83 0.07

Sent-RoBERTa 0.21 0.46 0.10
Seq-RoBERTa 0.26 0.40 0.72
SeqXGPT 0.96 0.99 0.90
RADAR 0.31 0.26 0.23

Our LSTM model 0.27 0.33 0.30
Our BERT model 0.95 0.97 0.89

Our DeBERTa model 0.73 0.81 0.67

Table 6. Comparison between recall values from models com-
pared in SeqXGPT’s paper, RADAR and our models, on three
of the document-level datasets from SeqXGPT’s testing sets.

DEEP LEARNING DETECTION OF AI-GENERATED TEXTS 55

RADAR and our LSTM seem to be performing particularly poorly on this
specific dataset. SeqXGPT though has outstanding performance when com-
pared to all other models in this case. Our bert model comes very close to
SeqXGPT’s performance, falling behind with only 1% accuracy when it comes
to classifying the texts from these datasets as AI generated.

Next up, we compare Fast-DetectGPT [1] with our models, on a section
of 80 texts from our IELTS student and gpt-3.5-turbo test dataset. We are
constrained to reduce the size of the test dataset for this particular experiment
due to the very heavy workload Fast-DetectGPT demands during execution.
Fast-DetectGPT yields really good results, with an impressive perfect recall,
meaning it correctly guessed all the AI generated texts, as can be seen in Table
7. Our DeBERTa model comes really close, followed by our BERT, and then
the LSTM.

Model Accuracy Precision Recall F1 Score
Fast-DetectGPT 0.97 0.95 1 0.97
Our LSTM model 0.74 0.76 0.70 0.73
Our BERT model 0.89 0.91 0.89 0.88

Our DeBERTa model 0.96 0.96 0.96 0.96

Table 7. Comparison between results from Fast-DetectGPT
vs our models, on a sample of 80 texts from our IELTS student
and gpt-3.5-turbo dataset.

5. Conclusions and Future Work

To conclude, we have focused on developing a tool that aims to diminish
academic dishonesty caused by the use of large language models. This dishon-
esty is not caused by many educationally appropriate use cases of generative
pre-trained transformers, such as researching, searching for ideas, finding an-
swers to problems in order to learn solving methods or even receiving feedback
for one’s own work. However, a problem could arise when students claim entire
AI works or very big chunks of generated content as being their own. This is
where our tool proves to be useful. We have trained multiple models with mul-
tiple architectures, on various datasets, to find, to the best of our ability, the
best configuration for creating a tool specialized to detect essays, documents
or stories generated by AI. Specifically, we have created an LSTM model, a
BERT and a DeBERTa model, which are all lightweight, free to use and open
source, so that they can all be run locally on any user’s personal computer.
Based on the comparison in the previous section, it is hard to pick a winner

56 DAVID BIRIS,

between BERT and DeBERTa, since they both perform the best between the
3 models developed by us in 3 out of 6 experiments. However, BERT surpasses
a state of the art model, RADAR in all metrics in two of our experiments,
whereas DeBERTa only manages to achieve a slightly better precision than
Fast-DetectGPT, and, therefore, we will declare the BERT model our best.

With some future improvements, these models could become part widely-
used tools in schools and universities all around the world. They could benefit
from an even larger and more diverse dataset to be trained on, which would
require much more computational power, but would also yield much better
results. Experimenting with many different other transformer based models
and different hyperparameters definitely brings potential for achieving a much
higher accuracy. Another potentially big improvement would be creating cus-
tom embeddings for specializing models in particular detection applications,
meaning detecting generated text for each school subject in particular. We
would have, for example, a model specially designed to detect biology essays,
another for history, and so on. By using our custom embeddings instead of
pre-trained ones, we could much easier train a transformer for subject-specific
tasks.

References

[1] Bao, G., Zhao, Y., Teng, Z., Yang, L., and Zhang, Y. Fast-detectgpt: Efficient
zero-shot detection of machine-generated text via conditional probability curvature,
2024.

[2] Biewald, L. Experiment tracking with weights and biases, 2020. Software available
from wandb.com.

[3] Center, P. R. About 1 in 5 u.s. teens who’ve heard of chatgpt have used it for school-
work, November 2023.

[4] Cheplukov, A. Raw ielts essays, 2024. Retrieved May 10, 2024 from https://www.

kaggle.com/datasets/arsenycheplukov/raw-ielts-essays.
[5] Cipriano, B. P., and Alves, P. ”chatgpt is here to help, not to replace anybody” –

an evaluation of students’ opinions on integrating chatgpt in cs courses, 2024.
[6] Crossley, S. A., Baffour, P., Tian, Y., Picou, A., Benner, M., and

Boser, U. The persuasive essays for rating, selecting, and understanding argumen-
tative and discourse elements (persuade) corpus 1.0. Assessing Writing 54 (2022).
https://doi.org/10.1016/j.asw.2022.100667.

[7] Demir, E. Daigt gemini-pro 8.5k essays, 2023. Retrieved May 10, 2024 from https:

//www.kaggle.com/datasets/datafan07/daigt-gemini-pro-8-5k-essays.
[8] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep

bidirectional transformers for language understanding, 2019.
[9] Face, H. Natural language processing course, chapter 6. https://huggingface.co/

learn/nlp-course/en/chapter6/6, 2023.
[10] Gallego, V. Alpaca-gpt4 dataset, 2023. Retrieved May 10, 2024 from https://

huggingface.co/datasets/vicgalle/alpaca-gpt4.

https://www.kaggle.com/datasets/arsenycheplukov/raw-ielts-essays
https://www.kaggle.com/datasets/arsenycheplukov/raw-ielts-essays
https://www.kaggle.com/datasets/datafan07/daigt-gemini-pro-8-5k-essays
https://www.kaggle.com/datasets/datafan07/daigt-gemini-pro-8-5k-essays
https://huggingface.co/learn/nlp-course/en/chapter6/6
https://huggingface.co/learn/nlp-course/en/chapter6/6
https://huggingface.co/datasets/vicgalle/alpaca-gpt4
https://huggingface.co/datasets/vicgalle/alpaca-gpt4

DEEP LEARNING DETECTION OF AI-GENERATED TEXTS 57

[11] Gerami, S. Ai vs human text, 2024. Retrieved May 10, 2024 from https://www.kaggle.

com/datasets/shanegerami/ai-vs-human-text.
[12] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,

Ozair, S., Courville, A., and Bengio, Y. Generative adversarial networks, 2014.
[13] He, P., Liu, X., Gao, J., and Chen, W. Deberta: Decoding-enhanced bert with

disentangled attention, 2021.
[14] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural computation

9, 8 (1997), 1735–1780.
[15] Hu, X., Chen, P.-Y., and Ho, T.-Y. Radar: Robust ai-text detection via adversarial

learning, 2023.
[16] Ibrahim, M. Ielts writing scored essays dataset, 2023. Retrieved

May 10, 2024 from https://www.kaggle.com/datasets/mazlumi/

ielts-writing-scored-essays-dataset.
[17] K leczek, D. Daigt-v4-train-dataset, 2024. Retrieved May 10, 2024 from https://www.

kaggle.com/datasets/thedrcat/daigt-v4-train-dataset/data.
[18] Li, L., Wang, P., Ren, K., Sun, T., and Qiu, X. Origin tracing and detecting of

llms, 2023.
[19] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,

Zettlemoyer, L., and Stoyanov, V. Roberta: A robustly optimized bert pretraining
approach, 2019.

[20] Liu, Y., Zhang, Z., Zhang, W., Yue, S., Zhao, X., Cheng, X., Zhang, Y., and Hu,
H. Argugpt: evaluating, understanding and identifying argumentative essays generated
by gpt models, 2023.

[21] Mitchell, E., Lee, Y., Khazatsky, A., Manning, C. D., and Finn, C. Detectgpt:
Zero-shot machine-generated text detection using probability curvature, 2023.

[22] OpenAI. Gpt-4. https://openai.com/index/gpt-4-research/, 2023.
[23] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,

Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A.,
Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B.,
Fang, L., Bai, J., and Chintala, S. Pytorch: An imperative style, high-performance
deep learning library, 2019.

[24] Pathi, L. N. Imdb dataset of 50k movie reviews, 2019. Retrieved
May 10, 2024 from https://www.kaggle.com/datasets/lakshmi25npathi/

imdb-dataset-of-50k-movie-reviews.
[25] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12
(2011), 2825–2830.

[26] Peng, B., Li, C., He, P., Galley, M., and Gao, J. Instruction tuning with gpt-4,
2023.

[27] Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. Improving lan-
guage understanding with unsupervised learning. OpenAI Blog (June 2018).

[28] Solaiman, I., Brundage, M., Clark, J., Askell, A., Herbert-Voss, A., Wu, J.,
Radford, A., Krueger, G., Kim, J. W., Kreps, S., McCain, M., Newhouse, A.,
Blazakis, J., McGuffie, K., and Wang, J. Release strategies and the social impacts
of language models, 2019.

https://www.kaggle.com/datasets/shanegerami/ai-vs-human-text
https://www.kaggle.com/datasets/shanegerami/ai-vs-human-text
https://www.kaggle.com/datasets/mazlumi/ielts-writing-scored-essays-dataset
https://www.kaggle.com/datasets/mazlumi/ielts-writing-scored-essays-dataset
https://www.kaggle.com/datasets/thedrcat/daigt-v4-train-dataset/data
https://www.kaggle.com/datasets/thedrcat/daigt-v4-train-dataset/data
https://openai.com/index/gpt-4-research/
https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews

58 DAVID BIRIS,

[29] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser, L., and Polosukhin, I. Attention is all you need, 2023.

[30] Wang, P., Li, L., Ren, K., Jiang, B., Zhang, D., and Qiu, X. Seqxgpt: Sentence-
level ai-generated text detection, 2023.

Babes, -Bolyai University, Faculty of Mathematics and Computer Science, 1
Mihail Kogălniceanu, Cluj-Napoca 400084, Romania

Email address: david.biris1@stud.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIX, Number 2, 2024
DOI: 10.24193/subbi.2024.2.04

HARDML: A BENCHMARK FOR EVALUATING DATA

SCIENCE AND MACHINE LEARNING KNOWLEDGE AND

REASONING IN AI

TIDOR-VLAD PRICOPE

Abstract. We present HardML, a benchmark designed to evaluate the
knowledge and reasoning abilities in the fields of data science and machine
learning. HardML comprises a diverse set of 100 challenging multiple-
choice questions, handcrafted over a period of 6 months, covering the most
popular and modern branches of data science and machine learning. These
questions are challenging even for a typical Senior Machine Learning En-
gineer to answer correctly. To minimize the risk of data contamination,
HardML uses mostly original content devised by the author. Current state-
of-the-art AI models achieve a 30% error rate on this benchmark, which is
about 3 times larger than the one achieved on the equivalent, well-known
MMLU-ML. While HardML is limited in scope and not aiming to push
the frontier—primarily due to its multiple-choice nature—it serves as a
rigorous and modern testbed to quantify and track the progress of top AI.
While plenty benchmarks and experimentation in LLM evaluation exist in
other STEM fields like mathematics, physics and chemistry, the sub-fields
of data science and machine learning remain fairly underexplored.

1. Introduction

Recent advancements in large language models (LLMs) have led to sig-
nificant progress in natural language processing tasks such as translation,
summarization, question answering, and code generation [1, 2]. These mod-
els have been extensively evaluated using benchmarks covering a wide range
of subjects, providing valuable insights into their capabilities [3, 4]. For in-
stance, the Massive Multitask Language Understanding (MMLU) benchmark

Received by the editors: 22 January 2025.
2020 Mathematics Subject Classification. 68T50, 68T07, 68T05, 68T20.
Key words and phrases. Large Language Models, Machine Learning Education, Multiple
Choice Benchmark, NLP Benchmarks, Evaluation of AI Systems.
© Studia UBB Informatica. Published by Babeş-Bolyai University

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International Licence.

59

60 TIDOR-VLAD PRICOPE

[5] assesses LLMs across diverse disciplines, including STEM fields like math-
ematics, physics, and chemistry [6, 7, 8]. However, data science (DS) and
machine learning (ML) have received relatively little attention in benchmark-
ing efforts. The MMLU test set contains only 112 machine learning questions.
Moreover, in the few instances where these domains have been explored, state-
of-the-art AI models achieve near-saturation performance, rendering existing
benchmarks less effective for distinguishing model capabilities.

It is imperative to devise novel benchmarks that keep up with the rapid
advancements in LLMs. This necessity is exemplified in the FrontierMath
benchmark [15], which introduces a future-proof evaluation for mathematics by
presenting problems that remain unsolved by over 98% of current AI models.
Such benchmarks are crucial for continuing to challenge and develop advanced
AI systems.

Data science and machine learning are foundational to modern artificial
intelligence, driving advancements in everything from healthcare to finance
[9, 10]. Mastery in these fields requires not only theoretical understanding but
also practical skills in applying algorithms, statistical methods, and computa-
tional techniques to solve complex, real-world problems [11, 12]. As AI systems
become increasingly involved in DS and ML tasks—ranging from automated
model training to data analysis—it is crucial to assess their proficiency and
reasoning abilities in these areas. However, as of January 2025, benchmarks in
this domain are very limited. The most notable examples include the test ML
subsection of MMLU (MMLU-ML) [5], which consists of 112 multiple-choice
questions, and MLE-bench [16], introduced by OpenAI, which evaluates prac-
tical ML engineering skills using a collection of 75 coding questions modeled
after Kaggle competitions.

To address this gap, we propose HardML, a benchmark specifically designed
to evaluate the knowledge and reasoning capabilities of AI models in data sci-
ence and machine learning. HardML employs the same testing framework
as MMLU, comprising multiple-choice questions, with the primary difference
being that more than one answer can be correct. It differs in scope from
MLE-bench, as it does not test coding capabilities but focuses on theoret-
ical understanding and reasoning skills based on theoretical concepts in DS
and ML. HardML uses 100 challenging multiple-choice questions, meticulously
crafted over six months to cover the most relevant and contemporary topics
in DS and ML. The questions are designed to be difficult even for experienced
professionals, such as senior machine learning engineers, thereby ensuring that
the benchmark assesses advanced understanding and critical problem-solving
skills.

HARDML 61

A key aspect of HardML is its emphasis on originality and contemporary
relevance, featuring questions that reflect the latest advancements in machine
learning from the past two years. To minimize the risk of data contamina-
tion—where models might have been trained on benchmark content, leading
to artificially inflated performance [13]—we developed primarily original ques-
tions. By ”original,” we mean that while the core concepts required to solve
these questions may be known (similar to foundational theorems in mathe-
matics), the specific applications and reasoning required are unique. These
questions span topics including natural language processing, computer vision,
statistics and statistical modeling, classical machine learning algorithms, and
more. In this paper, we also introduce EasyML, a benchmark of 85 multiple-
choice questions designed to provide a more accessible and slightly easier set
of questions than MMLU-ML for evaluating smaller language models, such as
GPT4o-mini [21] and LLaMA models with fewer than 70 billion parameters
[22].

Our evaluation of state-of-the-art AI models (o1) [20], reveals a substantial
performance gap compared to existing benchmarks [Figure 1]. Specifically,
these models exhibit an error rate of approximately 30% on HardML, which
is significantly higher than the error rate on the machine learning section of
MMLU (MMLU-ML) [5]. This disparity highlights the challenges that current
AI models face in mastering the complexities of DS and ML, particularly in
understanding nuanced concepts and applying them to non-trivial problems.

The initial motivation behind constructing this benchmark was to generate
a comprehensive set of interview-preparation questions for individuals seek-
ing positions in machine learning at leading technology companies (FAANG).
However, the interesting results obtained during large language model evalu-
ation, purely out of curiosity, led to the development of this paper. Given the
relative scarcity of specialized benchmarks in these fields compared to others
like mathematics and physics, we believe HardML fills an important gap and
provides a foundation for future research and development.

2. Data collection

The data collection involved a multi-step process spanned over 6 months.
As mentioned in the last paragraph of the introduction, the initial purpose of
this project was to form a set of question-answer for ML interview assessment
for entrance of the top tech companies. These are to be used on the platform
getaiquestions.com, which is a website similar to leetcode.com for interview
preparation. Therefore, the dataset construction wasn’t biased towards build-
ing problems that the LLMs wouldn’t be able to solve, they were fully intended
for human use.

62 TIDOR-VLAD PRICOPE

Figure 1. Comparison of error rate across 3 DS&ML bench-
marks. While existing benchmarks are approaching saturation,
HardML keeps an average level above saturation, in line with
benchmarks from other fields like MathVista [23] or AIME [24]
despite the multiple-choice nature

2.1. The collection pipeline. The collection pipeline for the development
of HardML and EasyML involved a meticulous 4-step process:

(1) Raw data collection and scraping. We have sourced approxi-
mately 400 questions from public platforms such as Glassdoor, Blind,
Quora, Stack Exchanges, YouTube, as well as from papers and books
—including those by Bishop [11]—and from our own writings and
public blogs (ptidor.com), among many other reputable sources. As
such, we specifically dedicated time in collected ideas from modern
sources - very recent interviews on the topic of the latest develop-
ment in Natural Language Understanding (NLU) or Computer Vision
(CV) and collecting ideas from recently published papers (from 2024
and 2023).

Importantly, this sourcing was not limited to simply gathering
existing interview questions. Many questions were thoughtfully de-
vised by us, inspired by theoretical concepts presented in books, pa-
pers, and online resources. This approach ensured that we had a

https://ptidor.com/single5.html

HARDML 63

reasonable amount of questions that were both original and rooted
in fundamental principles of data science and machine learning.

(2) Devising golden solutions and refinement. In this phase, we
crafted definitive ”golden” answers for each question, providing clear
and accurate solutions. Given that many sourced questions lacked
reliable and complete answers, this was a demanding and iterative
process that occupied the majority of the six-month development
period.

Each question was paired with a golden answer and a list of core
ideas—the essential elements required for a respondent to achieve
a perfect score. During this stage, we also engaged in refining the
questions, which included paraphrasing and restructuring to enhance
clarity and coherence. However, to preserve the authenticity of real-
world interview scenarios (recall that this was the purpose of this
project at that time), not all questions were extensively modified; in
some cases, we made only slight adjustments while maintaining the
original intent. Upon completion, this raw dataset amounted to an
extensive collection exceeding 150 pages (in google docs) of written
material.

(3) Adaptation to Multiple-Choice Format. This is penultimate
step of the process, and it involves transforming the refined dataset of
questions, golden answers and core ideas into machine parsable/ver-
ifiable input and output. We chose to go with the MMLU (ML)
framework of multiple-choice question format, with a small change:
at least one answer is correct, instead of exactly one that is correct,
hence increasing the difficulty. This required converting the answers
and core ideas into a structure where at least one option was correct.
This process was non-trivial, as not all questions could be adapted
without compromising their essence and level of difficulty. As a re-
sult, only about half of the initial questions and answers were success-
fully transitioned into the multiple-choice format, ensuring that the
benchmark remained challenging and faithful to its original purpose.

(4) Quality control and data contamination prevention. The is
the final step of the process, focusing on rigorous quality assurance
and final checks. We meticulously reviewed each multiple-choice
question and corresponding answer to ensure accuracy, clarity, and
alignment with the benchmark’s objectives. This phase involved
collaboration with beta testers—colleagues and peers—who inter-
acted with the questions through the user interface (UI) of our plat-
form (that the project was initially intended for), getaiquestions.com.

64 TIDOR-VLAD PRICOPE

While no major errors were identified, several ambiguous cases were
detected and rectified during this stage, enhancing the robustness
and reliability of the final benchmark.

Finally, we conducted a contamination check by evaluating the
similarity of our content against existing internet sources to detect
potential plagiarism. If any high similarities were identified, the ques-
tions and answers were carefully adjusted to ensure originality. Note
that this step was applied only to HardML, as its purpose is to rig-
orously assess human ML experts. In contrast, EasyML is intended
to test the foundational knowledge and basic reasoning abilities of hu-
man entry-level professionals in DS and ML (and potentially smaller
language models), and therefore, strict rigor was a secondary consid-
eration.

2.2. Question difficulty. The difficulty assignment to each question (be-
tween Easy, Medium and Hard) was done by us, as a measure of how difficult
a question would appear in our eyes. The author of this paper is a former
Lead Machine Learning Engineer with an MSc in AI from The University
of Edinburgh with about 5 years of industry experience in machine learn-
ing. His research contributions have gathered over 80 citations and his skill
set encompasses a broad range of technologies and methodologies, including
Python, PyTorch, AWS, GCP, MLOps, distributed computing, and quantita-
tive finance. Most importantly, the author interviewed over 100 candidates
throughout his career, driven by a deep passion for interview assessment and
a commitment to excellence.

While we acknowledge and don’t refute that the difficulty assignments may
exhibit slight bias—given that they were determined by a single individual—we
have strived to represent the difficulties as accurately as possible. This is sub-
stantiated by the results of our benchmark evaluations: HardML yields a
significantly higher error rate than MMLU, indicating a higher level of diffi-
culty, whereas EasyML achieves a notably lower error rate. These outcomes
corroborate our assessments of the relative difficulties of the benchmarks.
HardML comprises only ”hard” questions (according to the categorization sys-
tem explained above) whereas MMLU-ML –though lacking an official difficulty
rating–appears to consist predominantly of ”easy” and ”medium” questions
(according to the same categorization system).

3. Dataset composition

The HardML benchmark covers a broad spectrum of contemporary Data
Science and Machine Learning spanning from basic data handling methods
and classical machine learning to the frontier of Deep Learning and Natural

HARDML 65

Language Understanding with state-of-the-art language models and modern
training pipelines utilizing tens of thousand of devices.

3.1. Dataset Statistics. The distribution over categories is shows in [Ta-
ble 1]. A comprehensive coverage of topics is essential for effectively evaluat-
ing AI systems. Accordingly, the majority of the questions in our benchmark
focus on Deep Learning, Natural Language Understanding (NLU), and Com-
puter Vision (CV). This emphasis is intentional and natural, as these fields
encompass the most novel approaches and present some of the most challeng-
ing questions in contemporary AI research. This distribution is in line with
other prominent benchmarks’ distributions like FrontierMath [15].

Category Percentage
Deep Learning 33%
Classical Machine Learning 21%
Natural Language Understanding 15%
Data Engineering 11%
Computer Vision 11%
Statistics & Statistical Modeling 9%

Table 1. Percentage distribution of DS and ML sub-fields in
the HardML dataset, representing the proportion of each clas-
sification relative to the total amount.

3.2. Comparison to related benchmarks. HardML differs from the base-
line MMLU benchmark in both size—being slightly smaller—and format: each
question in HardML may have more than one correct answer. This multi-
answer format also sets it apart from MLE-bench, which focuses on coding
tasks with a definite answer rather than multiple-choice questions. A detailed
comparison of the various datasets used in the research space for LLM evalu-
ation in machine learning is presented in Table 2.

Dataset Size Type
HardML (this paper) 100 multiple-choice
EasyML (this paper) 85 multiple-choice
MMLU [ML subset, test] 112 multiple-choice
MLE-bench (OpenAI) 75 coding

Table 2. Comparison between datasets available in the re-
search space for LLM evaluation in the field of DS and ML.

66 TIDOR-VLAD PRICOPE

3.3. Sample questions from HardML. In order to accurately provide an
intuition of the level of difficulty and form of the questions from HardML, we
display below a few examples.

Sample problem 1

Question: You want to train a LLM that can solve challenging math prob-
lems properly. To do that, you employ a team of mathematicians to devise
problems and solutions for training data. Unfortunately, you require a lot of
training data, naturally, and hence you have to employ thousands of people to
generate problems and solutions for your LLM. You need some form of qual-
ity control to understand if the mathematicians keep an overall good quality
and that your LLM won’t be trained on corrupted data. You can assume you
have 1000 people devising (problem, solution) tasks, one person submits one
task. Each task is rated from 5 choices, from 1/5 (lowest) to 5/5 (highest):
1/5,2/5,3/5,4/5,5/5. You want these people to produce, on average, a quality
of work of at least 4/5=0.8 and to be 95% sure that is the case. You cannot
check all 1000 and compute the average yourself because that would defeat
the purpose of employing these people in the first place, so then what’s the
minimum number N of random tasks you would need to check? For this ex-
ercise, you can assume that the task grades follow a normal distribution and
the variance of the overall quality is known and it’s the maximum it can be,
given the range 1/5-5/5. Make sure to normalize the grades in [0.2,1]

A) 4
B) 6
C) 7
D) 8

Answer: B

HARDML 67

Sample problem 2

Question: You measure Model FLOPs Utilisation (MFU) by counting all
floating point operations in the entire training step—including overhead—and
dividing by (time elapsed)×(theoretical hardware FLOPS). You now enable
activation (gradient) checkpointing, which re-runs parts of the forward pass
to save memory. Assuming you still count all FLOPs and include the extra
recomputations in your total, what will happen to your measured MFU?

A) MFU will strictly increase, because you are performing additional
FLOPs without proportionally more time.

B) MFU will strictly decrease, because the added time from redoing
the forward pass dominates.

C) MFU will remain exactly the same, because both FLOPs and time
scale in a fixed ratio.

D) The effect on MFU is ambiguous; you are doing more FLOPs but
also increasing the total step time, so the ratio could go up or down.

Answer: D

Sample problem 3

Question: A T5 or FlanT5 model is considered one of the best encoder-
decoder models out there (as of 2024). Why aren’t these commonly used
at scale to train large language models (LLMs) that compete with GPT-4?
Select all that apply.

A) The architecture of FlanT5 makes it harder to scale.
B) Decoder-only models allow for simpler partitioning strategies, such

as splitting along head dimensions, resulting in more balanced com-
pute, memory, and network costs.

C) T5 is like a sequence of blocks but with more edges representing
more complicated data dependencies during compute.

D) The communication between encoder and decoder in encoder-
decoder models complicates network architecture and scaling
strategies.

Answer: A, B, C, D

68 TIDOR-VLAD PRICOPE

Sample problem 4

Question: What is the difference between L2 regularization and weight decay
in the context of neural networks, and under which conditions can they be
considered equivalent?

A) L2 regularization adds a penalty to the loss function proportional
to the sum of squared weights, while weight decay multiplies the
weights by a factor slightly less than 1 after each update.

B) L2 regularization and weight decay are always equivalent, regardless
of the optimizer used.

C) L2 regularization and weight decay are equivalent only when using
stochastic gradient descent (SGD) as the optimizer.

D) Using optimizers like Adam or RMSprop breaks the equivalence
between L2 regularization and weight decay.

Answer: A, C, D

Sample problem 5

Question: The backpropagated gradient through a tanh non-linearity is al-
ways smaller or equal in magnitude than the upstream gradient.

A) True.
B) Depends on the sign of the inputs.
C) False
D) True only if all the input units are in (-1,1)

Answer: A

Sample problem 6

Question: Where is the temperature applied in the model architecture of
Chat GPT-3 or 4?

A) At the input level.
B) After the softmax layer.
C) Right before the softmax layer.
D) At beam-search level when we select the output token based on

probability.

Answer: C

We intentionally designed the benchmark to assess fairly up-to-date ad-
vancements in AI, as exemplified by questions 2, 3, and 6. Additionally,

HARDML 69

we included both reasoning-intensive questions—such as question 1, which re-
quires code implementation or meticulous hand calculations, and question 5,
which tests comprehension through a comparison between the hyperbolic tan-
gent function (tanh) and its derivative—as well as knowledge-intensive ques-
tions like question 4, which addresses a subtle nuance in the mathematical
formula for weight decay and the formula of popular optimizers.

4. Results

4.1. Accuracy on HardML. We evaluated 5 leading language models and
1 leading smaller language model (gpt-4o-mini) on our HardML dataset. Due
to limited resources and ease of use, we decided to stick only with models
from OpenAI and Anthropic, we believe these are enough to convey a good
assessment. For instance, o1 is in top 5 in Chatbot Arena LLM Leaderboard
from lmarena.ai. The results are present in [Figure 2]. We used the same
prompt and batch size for these experiments.

Figure 2. Solved questions in HardML

Based on a single evaluation of the full benchmark, we found that most
models solve aout 65% of the questions with the top performing model (o1)
being able to solve 70%. This is in line with other benchmarks from other
fields. For example, in math, current benchmarks that are considered ’hard’
like Omni-Math, MathVista and Aime have around 60%, 70% and around

70 TIDOR-VLAD PRICOPE

70% respectively in accuracy against o1. Interestingly, if we allow a ”soft”
figure for solved questions (giving partial credit when the model’s answer is a
subset of the correct answer), then the performance goes up by 5 percentage
points (to 75.08% for o1), not a drastic change.

The models are very close together in performance, the precise ordering of
model performance should be interpreted with significant caution as multiple
runs could switch a few places around. We ran 2 times to make sure the order
at the top is consistent, in both, o1 demonstrated the strongest performance.

An interesting observation is that even when the model arrives at a correct
result, the underlying reasoning may not be accurate. We made the models
output a reasoning field in the output json to observe this behaviour. For
example, GPT-4o sometimes selects numerical answers because they are intu-
itively closer to an expected magnitude (like choosing 7 over 8 because it is
smaller), rather than deriving them through rigorous proof. This illustrates
a natural limitation of the multiple-choice format—scores can be artificially
inflated due to luck or educated guesses that do not reflect true understanding.

Figure 3. Solved questions in EasyML

4.2. Human performance on HardML. Examining human performance
is particularly insightful, given that the initial intention of this project was
to assess candidates during interviews or to filter applicants competing for
positions in major technology companies. The results displayed in Figure 2

HARDML 71

include human scores for reference. Below, we explain how these human scores
were calculated:

A) The first metric (Senior Machine Learning Engineer) was obtained
during the beta testing phase of data collection (the final step). We
invited actual senior machine learning engineers—friends of the au-
thor (see acknowledgements)—to participate in several quizzes con-
sisting of 7 to 8 questions each, sampled, at random, from HardML.
Once sampled, the same quizzes were used for each person, we man-
aged to assess 5-6 quizzes per person. After aggregating the results,
we found that an individual scored, on average, approximately 5.5
correct answers out of 8 (which translates into 68.75%). Although it
is not reflective of the performance on all the questions from HardML
(only on a subset), we believe this figure is relevant to be shown.
Hence, this performance is reflected in Figure 2 and Figure 3. The
participants expressed admiration for the benchmark, noting that the
questions required significant thought and were highly challenging.

B) The second number (Top ML Researcher) is purely the author’s opin-
ion. Even though we did not have access to a globally recognized top
machine learning researcher, we posit that this benchmark would not
represent a significant challenge for individuals actively engaged in
cutting-edge ML research and who have been at the forefront of the
field for the past 20 years.

4.3. Accuracy on MMLU and EasyML. Below, we have the equivalent
diagram (Figure 4) for the 112 questions present in the testset of MMLU (ML
subset) and our proposed EasyML. Observe how o1 is still the top performer,
but the scores are significantly higher compared to HardML. Note that, we
have not displayed human assessment figures on the MMLU benchmark as
this experiment wasn’t conducted.

5. Related work

The evaluation of large language models (LLMs) has been extensively ex-
plored across various domains, leading to the development of numerous bench-
marks that assess different aspects of AI capabilities. In this section, we review
the most relevant benchmarks and studies related to our work, focusing on
those that evaluate LLMs in the context of machine learning and data science
and briefly mentioning a few impressive pieces of work on other fields from
STEM.

5.1. Multitask Language Understanding Benchmarks. The Massive Mul-
titask Language Understanding (MMLU) benchmark introduced by Hendrycks

72 TIDOR-VLAD PRICOPE

Figure 4. Solved questions in MMLU [ML]

et al. [5] has been a significant step toward assessing the broad academic and
professional knowledge of LLMs. MMLU covers 57 subjects across STEM,
humanities, social sciences, and more, including a subset dedicated to ma-
chine learning with 112 multiple-choice questions. While MMLU has provided
valuable insights into the capabilities of models like GPT-3, state-of-the-art
models have begun to approach saturation on several subjects, including ML.
This near-ceiling performance limits the benchmark’s effectiveness in distin-
guishing the advanced capabilities of newer models. Moreover, the ML subset,
due to its relatively small size and scope, may not fully capture the depth and
complexity required to evaluate nuanced understanding in ML and DS.

5.2. Benchmarks for Advanced Reasoning. To address the limitations
of existing benchmarks in measuring advanced reasoning, FrontierMath [15]
was introduced as a benchmark comprising exceptionally challenging and orig-
inal mathematical problems. These problems span major branches of modern
mathematics and are designed to require significant effort from expert math-
ematicians—often multiple hours or days—to solve. FrontierMath effectively
minimizes data contamination by using unpublished problems and employs
automated verification for reliable evaluation. Remarkably, current AI models
solve under 2% of the problems, highlighting a substantial gap between AI
capabilities and human expertise in advanced mathematics. This benchmark

HARDML 73

underscores the importance of creating future-proof evaluations that remain
challenging despite rapid advancements in AI. This paper is the inspiration for
HardML, we were impressed by it and wanted to replicate some of the work.

5.3. Practical Machine Learning Engineering Benchmarks. In paral-
lel, MLE-bench was proposed by Chan et al [16] as a benchmark to evaluate
AI agents’ performance in machine learning engineering tasks. MLE-bench
curates 75 ML engineering-related competitions from Kaggle, encompassing
tasks that require practical skills such as data preprocessing, model training,
and experimental analysis. By establishing human baselines based on Kaggle’s
publicly available leaderboards, MLE-bench provides a real-world context for
assessing AI agents in practical engineering scenarios. The benchmark evalu-
ates AI setups like OpenAI’s o1-preview with AIDE scaffolding, noting that
the best-performing agent achieves a bronze medal level in approximately 17%
of competitions.

5.4. Automated Answering and Generation of ML Exams. In the
realm of educational assessments, other researchers explored the automatic
answering and generation of machine learning final exam questions in their
work titled ”From Human Days to Machine Seconds: Automatically Answer-
ing and Generating Machine Learning Final Exams.” [25] They demonstrated
that large language models could pass ML final exams at a human level and
generate new exam questions rapidly. Their study focused on the differences
between final exams and problem sets, noting that final exams typically have
longer, multi-part questions that span a broader set of topics and require
more complex reasoning. Notably, in this paper, multiple-choice questions
were generated and tested, making it a valuable related benchmark that is, in
our opinion, underexplored.

5.5. Comparison to Our Work. Our proposed HardML benchmark fills an
important gap in existing evaluations by providing a rigorous, modern, and
challenging testbed specifically tailored to data science and machine learning.
Unlike MMLU’s ML subset, HardML offers a more difficult, more diverse and
more up-to-date set of questions that delve deeper into advanced topics. In
contrast to MLE-bench, which assesses practical engineering skills through
coding tasks, HardML focuses on theoretical understanding and the ability to
reason about complex concepts.

By emphasizing originality and minimizing data contamination, similar to
FrontierMath, we ensure that HardML remains a relevant and challenging
benchmark for current and future AI models. Additionally, by including
EasyML as a complementary benchmark for evaluating smaller language mod-
els, we address the need for scalable evaluations across different model sizes

74 TIDOR-VLAD PRICOPE

and capabilities. It is challenging to ascertain the long-term applicability of
HardML; however, we anticipate that it will remain relevant at the cutting
edge of model evaluation for at least one year.

6. Limitations

Even though HardML currently demonstrates reasonable resistance to sat-
uration, we do not believe this resilience will persist for much longer. Models
like o3 [26] have already shown improvements over previous frontier models
such as o1, and the pace of advancement in AI systems is exceedingly rapid.
One of the significant limitations of HardML is its multiple-choice format,
which allows for ”guesses” or ”educated guesses” that can artificially inflate
scores—a limitation that has been critically examined in FrontierMath. In
benchmarks like MMLU [ML], where only one answer is correct per question,
a random guess has a 1

4 chance of being correct. In comparison, in a multiple-
choice format where more than one answer can be correct, a random guess has
a probability as high as 1

15 . These probabilities are still substantial, poten-
tially diminishing the benchmark’s ability to effectively discriminate between
true understanding and chance performance.

Therefore, it is essential to develop benchmarks with automatic evaluations
that require machine-verifiable outputs, such as numerical or boolean answers.
This approach reduces the likelihood of inflated scores due to guessing. Bench-
marks like MLE-bench, which necessitate code implementation or involve ad-
vanced mathematical reasoning to arrive at the correct solution—while still
being related to data science and machine learning—are exemplary in this
regard.

Constructing challenging multiple-choice questions is particularly difficult
because adept humans or advanced AI models can employ elimination strate-
gies to identify the correct answers. This means that even if the correct an-
swers are difficult to determine, the benchmark’s effectiveness can collapse if
the incorrect options are not equally challenging to dismiss. Consequently,
every answer choice must be nuanced and not obviously incorrect. Achieving
this level of subtlety in question design is exceptionally demanding and was a
primary reason why the development of this benchmark required such a sig-
nificant investment of time. Crafting answers that appear plausible yet are
subtly incorrect is a skill in itself.

7. Acknowledgements

Special thanks to: Robin Kahlow (Senior ML Engineer at RunwayML), Geo
Badita (Senior Software Engineer at Meta), and Chady Dimachkie (Head of
ML at Abwab.ai and former Deep Learning Engineer at Nvidia) for taking

HARDML 75

the challenge and attempting HardML very thoroughly, as well as providing
invaluable feedback. Their expertise and rigorous assessments have been in-
strumental in refining the dataset and validating its efficacy. Special thanks
to Paul Chelarescu for his invaluable assistance in curating and organising the
raw database in the first step of data collection, which served as the foundation
for this work.

8. Conclusion

With this paper, we instigate to further research in the area of LLM bench-
marking for cutting edge Data Science and Machine Learning. The dataset of
HardML is present in an interactive environment on getaiquestions.com and
can also be obtained in clean json format for experiment replication or further
research here. Our work contributes to the ongoing efforts to develop bench-
marks that can effectively measure and distinguish the advanced capabilities
of AI models in rapidly evolving fields.

References

[1] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of NAACL-
HLT. Association for Computational Linguistics.

[2] Brown, T. B., Mann, B., Ryder, N., et al. (2020). Language Models are Few-Shot
Learners. In Advances in Neural Information Processing Systems, 33, 1877–1901.

[3] Wang, A., Singh, A., Michael, J., et al. (2018). GLUE: A Multi-Task Benchmark and
Analysis Platform for Natural Language Understanding. In Proceedings of the EMNLP
Workshop. Association for Computational Linguistics.

[4] Raffel, C., Shazeer, N., Roberts, A., et al. (2020). Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning Re-
search, 21(140), 1–67.

[5] Hendrycks, D., Burns, C., Basart, S., et al. (2021). Measuring Massive Multitask Lan-
guage Understanding. In Proceedings of the International Conference on Learning Rep-
resentations (ICLR).

[6] Hendrycks, D., Burns, C., Kadavath, S., et al. (2021). Measuring Mathematical Prob-
lem Solving with the MATH Dataset. In Advances in Neural Information Processing
Systems.

[7] Saxton, D., Grefenstette, E., Hill, F., & Kohli, P. (2019). Analysing Mathematical
Reasoning Abilities of Neural Models. In International Conference on Learning Repre-
sentations (ICLR).

[8] Huang, K., Altosaar, J., & Ranganath, R. (2020). ClinicalBERT: Modeling Clinical
Notes and Predicting Hospital Readmission. arXiv preprint arXiv:1904.05342.

[9] Provost, F., & Fawcett, T. (2013). Data Science and its Relationship to Big Data and
Data-Driven Decision Making. Big Data, 1(1), 51–59.

[10] Jordan, M. I., & Mitchell, T. M. (2015). Machine Learning: Trends, Perspectives, and
Prospects. Science, 349(6245), 255–260.

[11] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

https://drive.google.com/file/d/1hTiM1wu_enxAVVVtgwR8Fzaa3Ff2zEFI/view?usp=sharing

76 TIDOR-VLAD PRICOPE

[12] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer.

[13] Dodge, J., Ilharco, G., Schwartz, R., et al. (2021). Documenting Large Webtext Cor-
pora: A Case Study on the Colossal Clean Crawled Corpus. In Proceedings of the
2021 EMNLP Workshop on Datasets and Benchmarks. Association for Computational
Linguistics.

[14] He, T., Singh, M., Achiam, J., et al. (2020). Translatotron: An End-to-End Speech-to-
Speech Translation Model. arXiv preprint arXiv:1904.06037.

[15] Glazer, E., Erdil, E., Besiroglu, T., Chicharro, D., Chen, E., Gunning, A., Olsson, C.
F., Denain, J.-S., Ho, A., de Oliveira Santos, E., Järviniemi, O., Barnett, M., Sandler,
R., Vrzala, M., Sevilla, J., Ren, Q., Pratt, E., Levine, L., Barkley, G., Stewart, N.,
Grechuk, B., Grechuk, T., Enugandla, S. V. V., & Wildon, M. (2024). FrontierMath:
A Benchmark for Evaluating Advanced Mathematical Reasoning in AI. arXiv preprint
arXiv:2411.04872. Retrieved from https://doi.org/10.48550/arXiv.2411.04872.

[16] Chan, J. S., Chowdhury, N., Jaffe, O., et al. (2024). MLE-bench: Evaluating Machine
Learning Agents on Machine Learning Engineering. arXiv preprint arXiv:2410.07095.

[17] OpenAI. (2024). GPT-4o System Card. Retrieved from https://cdn.openai.com/
gpt-4o-system-card.pdf

[18] Anthropic. (2024). Introducing Claude. Retrieved from https://www.anthropic.com/
news/introducing-claude

[19] OpenAI. (2024). Hello GPT-4o. Retrieved from https://openai.com/index/
hello-gpt-4o/

[20] OpenAI. (2024). Introducing OpenAI o1. Retrieved from https://openai.com/index/
introducing-openai-o1-preview/?utmsource=chatgpt.com

[21] OpenAI. (2024). GPT-4o Mini: Advancing Cost-Efficient Intelligence. Retrieved from
https://openai.com/blog/gpt-4o-mini-advancing-cost-efficient-intelligence

[22] Meta AI. (2024). Introducing Meta Llama 3: The most capable openly available LLM
to date. Retrieved from https://ai.meta.com/blog/llama-3/

[23] Lu, Pan et al. (2024). MathVista: Evaluating Mathematical Reasoning
of Foundation Models in Visual Contexts. arXiv:2310.02255 [cs.CV]. URL:
https://arxiv.org/abs/2310.02255.

[24] (2024c). Learning to Reason with LLMs. URL: https://openai.com/index/learning-to-
reason-withllms/.

[25] Drori, I., Zhang, S. J., Shuttleworth, R., et al. (2022). From Human Days to Machine
Seconds: Automatically Answering and Generating Machine Learning Final Exams.
arXiv preprint arXiv:2206.05442. Retrieved from https://doi.org/10.48550/arXiv.2206.
05442.

[26] Pfister, R., & Jud, H. (2025). Understanding and Benchmarking Artificial Intelligence:
OpenAI’s o3 Is Not AGI. arXiv preprint arXiv:2501.07458. Retrieved from https://
arxiv.org/abs/2501.07458.

Canary Wharf, London, United Kingdom
Email address: tidor@madsimpleads.com

https://doi.org/10.48550/arXiv.2411.04872
https://cdn.openai.com/gpt-4o-system-card.pdf
https://cdn.openai.com/gpt-4o-system-card.pdf
https://www.anthropic.com/news/introducing-claude
https://www.anthropic.com/news/introducing-claude
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/introducing-openai-o1-preview/?utm_source=chatgpt.com
https://openai.com/index/introducing-openai-o1-preview/?utm_source=chatgpt.com
https://openai.com/blog/gpt-4o-mini-advancing-cost-efficient-intelligence
https://ai.meta.com/blog/llama-3/
https://doi.org/10.48550/arXiv.2206.05442
https://doi.org/10.48550/arXiv.2206.05442
https://arxiv.org/abs/2501.07458
https://arxiv.org/abs/2501.07458

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIX, Number 2, 2024
DOI: 10.24193/subbi.2024.2.05

ELECTRIC VEHICLE ROUTING PROBLEM: A REVIEW OF

RECENT APPROACHES AND ALGORITHMS

YINGKAI XU

Abstract. With the rapid advancement of new energy vehicles, electric vehi-
cles (EVs) have become integral to modern transportation systems. Compared

with traditional fuel vehicles, EVs are limited by their limited battery capacity

and require reasonable charging planning to complete the designated routes effi-
ciently. Therefore, the effective routing of EVs has emerged as a critical research

focus in transportation and logistics. This study comprehensively reviews recent

advancements in the Electric Vehicle Routing Problem (EVRP) over the past
three years. First, the concepts of EVRP are introduced. Then, the problem is

classified according to energy consumption models, charging strategies, and con-
straints. Subsequently, various algorithms employed in these studies are analyzed

and summarized. Finally, based on the current state of development in this field,

the main challenges faced by EVRP and future research directions are discussed.

1. Introduction

In recent years, greenhouse gas emissions have gained global attention as a crit-
ical environmental issue. According to statistics from the European Union, carbon
dioxide emissions from road transport contribute approximately one-fifth of the EU’s
total emissions [1]. In response to climate change, the European Parliament enacted
the European Climate Act, which endorses the European Commission’s proposal to
achieve zero carbon emissions for cars and trucks by 2035 [2]. In this context, logis-
tics distribution, a vital component of urban road transport systems, has increasingly
embraced electric vehicles (EVs) as a key strategy to mitigate carbon emissions.

Schneider et al. [38] extended the Vehicle Routing Problem (VRP) by incorpo-
rating constraints on time windows and recharging and proposed a Mixed-Integer
Programming (MIP) model. This study represents a significant step in optimizing
Electric Vehicle Routing Problem (EVRP). Since then, with the rapid advancement
of the electric vehicle industry, research on EVRP has significantly increased. To

Received by the editors: 27 January 2025.
2010 Mathematics Subject Classification. 90B06, 90C11, 90C59.
1998 CR Categories and Descriptors. G.1.6 [Optimization]; I.2.8 [Problem Solving, Con-

trol Methods, and Search]: Heuristic methods.

Key words and phrases. Electric vehicle routing problem, Classification, Literature review.
© Studia UBB Informatica. Published by Babeş-Bolyai University

This work is licensed under a Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International Licence.

77

78 YINGKAI XU

systematically explore the evolution and research directions within the EVRP do-
main, several scholars have conducted comprehensive literature reviews and analyses
[34, 51, 22, 40, 48, 19]. Among these, Ye et al. [51] conducted a classified review of
110 studies, categorizing EVRP research. In contrast, Kucukoglu et al. [22] provided
a comprehensive review of 136 papers across five key dimensions: objective functions,
energy consumption models, constraints, fleet configurations, and solution method-
ologies. However, existing review studies primarily focus on research published before
2022, and there is a notable lack of systematic reviews covering EVRP developments
over the past three years. Therefore, the present study conducts an in-depth review of
recent EVRP research from 2022. A total of 42 papers from journals with an impact
factor greater than 4 were selected (to ensure high-quality, impactful research and a
feasible review scope). This study aims to provide a comprehensive literature review
of high-quality research on EVRP conducted over the past three years. First, the fun-
damental concepts of EVRP are outlined. Then, the objective functions adopted in
recent studies are reviewed, and the EVRP are categorized based on three dimensions:
energy consumption calculation, charging strategies, and constraints. Subsequently,
various solution algorithms proposed in recent studies are analyzed in depth, and
their characteristics are summarized. Finally, this field’s current state of the art is
summarized, and future research directions and potential challenges are presented.

This paper is organized as follows: Section 2 introduces EVRP. Section 3 reviews
and categorizes the relevant literature from various perspectives within the scope of
this study. Section 4 explores the solution approaches for EVRP. Section 5 discusses
a comparison of standard algorithms and provides future research directions. Finally,
Section 6 concludes the paper.

2. Electric vehicle routing problem

The EVRP aims to optimize routes for a fleet of EVs, ensuring that all customer
nodes are served while minimizing operational costs. Each route starts and ends at
a designated depot, and EVs must comply with constraints such as battery capacity
limits and time windows[54, 17]. Here, we present the mathematical formulation of
the EVRP [38]. Let V = {1, 2, . . . , n} be the set of customer nodes, with nodes
0 and n + 1 representing the initial and final depots. Define V0 = V ∪ {0} and
VN+1 = V ∪{n+1}. Let F be the set of charging stations and F ′ be the set of dummy
nodes required to allow multiple visits to charging stations. The extended sets are
defined as V ′ = V ∪F ′, V ′

0 = V ′ ∪{0}, V ′
N+1 = V ′ ∪{n+1}, V ′

0,N+1 = V ′ ∪{0, n+1}.
A fleet of homogeneous EVs K is considered. Each EV k ∈ K travels between nodes
i, j ∈ V ′

0,N+1, with distance dij , energy consumption rate h, and battery capacity Q.

Let xk
ij be a binary variable equal to 1 if the vehicle k travels from the node i to the

node j and 0 otherwise; yki be the decision variable used to track the battery level of
the vehicle k when it reaches node i. The MIP model for the EVRP is described as
follows:

min
∑
i∈V ′

0

∑
j∈V ′

n+1

∑
k∈K

dijx
k
ij(1)

A REVIEW OF EVRP 79∑
j∈V ′

n+1

∑
k∈K

xk
ij = 1, ∀i ∈ V(2)

∑
j∈V ′

n+1

∑
k∈K

xij ≤ 1, ∀i ∈ F ′(3)

∑
j∈V ′

xk
0j ≤ 1, ∀k ∈ K(4)

∑
i∈V ′

n+1

xk
ji =

∑
i∈V ′

0

xk
ij , ∀j ∈ V ′, ∀k ∈ K(5)

ykj ≤ yki − (h · dij)xk
ij +Q(1− xk

ij), ∀i ∈ V,∀j ∈ V ′
N+1, ∀k ∈ K(6)

ykj ≤ Q− (h · dij)xk
ij , ∀i ∈ F ′ ∪ {0}, ∀j ∈ V ′

N+1, ∀k ∈ K(7)

yk0 ≤ Q, ∀k ∈ K(8)

The objective function (1) aims to minimize the total distance of electric vehicles.
Constraint (2) handle the connectivity of the customer nodes. Constraint (3) ensure
that each dummy charging station can be visited at most once. Constraint (4) make
sure that each electric vehicle can be used only in one route plan. Constraint (5)
ensure that the total number of outgoing arcs is equal to the total number of incoming
arcs at customer and charging station nodes, which provides continuity in the routes.
Constraints (6)-(8) specify the battery level of an electric vehicle and ensure that it
never falls below 0.

3. Classifications of the EVRP

The EVRP is formulated to address real-world logistics distribution needs, thus
involving multiple constraints and problem variants in different application scenarios.
In order to systematically sort out the research framework of EVRP, this section clas-
sifies and summarizes the problem from multiple perspectives, including the objective
function, energy consumption model, charging strategies, and constraints.

3.1. Objective function. The objective function is the core component of the EVRP
model, directly determining the direction of the optimization problem. This section
categorizes EVRP based on commonly used objective functions in the literature. From
the collected studies, we classified and summarized 13 common optimization objec-
tives for EVRP:

(1) Total travel distance
(2) Total travel time
(3) Total number of vehicles used
(4) Total energy consumption
(5) Total fixed costs
(6) Total penalty cost
(7) Total recharging cost, recharging time or swapping battery cost
(8) Total waiting time for electric vehicles at charging stations
(9) Total delivery cost

80 YINGKAI XU

(10) Battery degradation costs
(11) Costs of carbon emissions
(12) Customer service costs
(13) Other costs

In VRP, commonly considered objective functions include environmental costs,
travel distance, and travel time [20]. By analyzing Table 1, it can be observed that
EVRP shares common objective functions with traditional VRP but also exhibits
unique characteristics specific to EVs. Among these, objectives (1), (2), and (3) are
more common in both VRP and EVRP studies, which mainly focus on the essential
factors of path optimization, such as the minimization of travel distance, travel time,
and the number of vehicles used. In contrast, objective (4) highlights the character-
istics of EV batteries, which have become one of the core topics in EVRP research.
Furthermore, compared to traditional fuel-powered vehicles, the energy replenishment
process of EVs is considerably slower. Consequently, optimizing charging time (ob-
jective (7)) has emerged as a crucial research focus in EVRP, aiming to meet routing
requirements while enhancing delivery efficiency and reducing operational costs.

3.2. Energy consumption calculation. Energy consumption models can generally
be categorized into two types: simple linear models that directly correlate energy
consumption with travel distance or travel time and nonlinear models based on vehicle
driving power and terrain load, as discussed in Lera-Romero et al. [24], Fan et al.
[15], Xiong et al. [49], Kim and Chung [21], Ren et al. [35], Wang et al. [43], Amiri
et al. [5], Ma et al. [28]. Unlike linear models, nonlinear models provide a more
comprehensive representation of the complex factors influencing vehicle operations.

Goeke and Schneider [16] introduced key factors such as air resistance, rolling re-
sistance, and gravitational force into energy consumption modelling, converting these
resistances into mechanical power and proposing a nonlinear approach to quantify
energy consumption. Lera-Romero et al. [24], Fan et al. [15], Xiong et al. [49], Fan
[14] conducted EVRP studies based on this model. Among them, Xiong et al. [49]
believes that the drivetrain of an EV will lead to a certain amount of energy loss in
the process of converting battery energy into wheel torque. So the original model was
improved by considering the loss of the driveline.

Ren et al. [35] explicitly incorporated time integration to account for dynamic
variations in speed and acceleration while also integrating factors such as departure
time, travel speed, travel distance, and load. This comprehensive approach enhances
the model’s applicability to real-world scenarios. Furthermore, Ma et al. [28] ex-
tended energy consumption models by incorporating terrain factors, motor power
losses, driving resistance, and energy consumption associated with acceleration and
deceleration, thereby improving the model’s accuracy and reliability. In the solid
waste management context, Peña et al. [32] refined energy models by extending tradi-
tional mechanical power calculations. Their approach accounts for energy use during
waste loading, compaction, unloading, and regeneration during crushing, addressing
gaps in prior research and improving model comprehensiveness for waste management
applications.

A REVIEW OF EVRP 81

Table 1. Objective functions of EVRP (Numbers 1-13 correspond
to the common objective functions, ✓indicates the presence of a cor-
responding objective function in the study).

Paper 1 2 3 4 5 6 7 8 9 10 11 12 13
Jia et al. [18] ✓
Peña et al. [32] ✓
Zhou et al. [54] ✓ ✓ ✓
Kim and Chung [21] ✓
Fan et al. [15] ✓ ✓ ✓ ✓ ✓
Woo et al. [44] ✓ ✓
Ouyang and Wang [31] ✓ ✓ ✓
Ren et al. [35] ✓ ✓
Yao et al. [50] ✓ ✓ ✓ ✓
Zhou et al. [55] ✓ ✓
Duman et al. [12] ✓
Bezzi et al. [6] ✓
Zhang et al. [52] ✓ ✓ ✓ ✓
Wang et al. [43] ✓ ✓ ✓ ✓ ✓
Wang et al. [42] ✓
Rodŕıguez-Esparza et al. [36] ✓
Moradi and Boroujeni [30] ✓ ✓ ✓
Liu et al. [25] ✓
İslim and Çatay [17] ✓ ✓
Comert and Yazgan [10] ✓ ✓ ✓ ✓ ✓
Cai et al. [7] ✓
Xiao et al. [46] ✓
Xia et al. [45] ✓
Qian et al. [33] ✓ ✓ ✓
Dong et al. [11] ✓ ✓ ✓
Sadati et al. [37] ✓ ✓
Ma et al. [29] ✓ ✓ ✓ ✓ ✓
Longhitano et al. [27] ✓ ✓ ✓
Erdem et al. [13] ✓ ✓ ✓
Amiri et al. [5] ✓ ✓ ✓
Agrali and Lee [3] ✓
Wang and Zhao [41] ✓ ✓
Lera-Romero et al. [24] ✓
Fan [14] ✓ ✓ ✓ ✓
Zhou and Zhao [53] ✓ ✓ ✓ ✓ ✓
Xiao et al. [47] ✓ ✓ ✓
Ma et al. [28] ✓ ✓ ✓ ✓
Xiong et al. [49] ✓
Souza et al. [39] ✓ ✓
Liu et al. [26] ✓ ✓ ✓
Lam et al. [23] ✓ ✓
Çatay and Sadati [8] ✓ ✓

82 YINGKAI XU

3.3. Charging strategy. Energy replenishment of EVs can be implemented in three
methods: wired charging, wireless charging, and battery swapping. In early research,
wired charging was considered the primary method for replenishing the energy of
EVs [38]. Although research has expanded into various charging strategies, wired
charging remains the most widely adopted method. Excluding battery swapping,
charging methods can generally be divided into two categories: full charging and
partial charging. Under the full-charge strategy, the EV will fully charge the battery
at a charging station [21, 55, 12, 43, 30, 25, 17, 46, 45, 11, 28, 49, 23]. In contrast, the
partial charging strategy allows vehicles to terminate charging and leave the charging
station once sufficient energy has been acquired to complete the next segment of the
journey [15, 31, 6, 42, 10, 37, 27, 13, 5, 3, 41, 47, 14].

Since EVs require some time to charge at charging stations, some researchers have
proposed battery swapping as an alternative strategy [35, 52, 7, 33, 29, 53, 39, 26, 8].
In this approach, EVs can swiftly replace their depleted batteries with fully charged
ones upon arrival at swapping stations, thereby enhancing operational efficiency in
logistics and reducing costs. Meanwhile, some researchers believe that wireless charg-
ing technology also effectively reduces the waiting time during the charging process
by incorporating it into the EVRP model [35, 31, 4]. Based on the principle of in-
ductive power transfer, wireless charging technology enables EVs to recharge without
requiring physical connectors [9]. A key advantage of this technology is its capability
to facilitate dynamic charging while the vehicle is in motion.

Furthermore, to improve the accessibility of EV charging and reduce infrastructure
costs, researchers have redirected their efforts toward mobile energy replenishment
solutions [47, 35, 8, 52]. In this paradigm, dedicated mobile energy vehicles can
travel to the location of EVs to provide on-site charging services [47] or battery
swapping services [35, 8, 52], thereby alleviating the limitations of the inflexible layout
of traditional charging stations.

3.4. Constraints of the EVRP. The EVRP involves a range of complex constraints
arising from the unique characteristics of EVs and the practical demands of their real-
world deployment. In addition to vehicle load and battery capacity limitations, com-
monly addressed constraints include time windows, pickup and delivery operations,
multi-depot configurations, and open and closed routing constraints. This section
categorises and summarises the literature concerning these common constraints.

3.4.1. Time windows. In the context of EVRP, time constraints can be categorized
into hard and soft time windows depending on the degree of flexibility allowed. Hard
time windows, which are time constraints currently used in recent studies [54, 35, 55,
12, 52, 30, 17, 7, 46, 33, 37, 13, 3, 41, 47, 26, 23, 8], impose strict time constraints
that require the service to be completed within a predetermined window. On the
other hand, soft windows provide some flexibility, allowing for slight deviations from
the designated schedule; however, exceeding the allowed time window incurs penalty
costs. This type of constraint has been gaining increasing attention in recent research
[31, 42, 5, 28]. To further enhance customer satisfaction, Zhang et al. [52] proposed the
multiple prioritized time windows model, which enables customers to specify one or

A REVIEW OF EVRP 83

more prioritized time slots in advance. In addition, Zhou and Zhao [53] introduced the
concept of mixed time windows, classifying each delivery point’s time constraints into
the expected time window and the acceptable time window. Deliveries made within
the expected time window incur no penalties, whereas those within the acceptable
time window are subject to penalty costs.

3.4.2. Pickup and Delivery. In most EVRP models, the primary role of EVs is to de-
liver goods. For instance, Duman et al. [12] proposed the Flexible Delivery EVRP, an
extension of the traditional delivery-based EVRP. In this model, each customer can
be associated with multiple delivery locations, each with a corresponding time win-
dow. EVs are dispatched from a centralized depot, and deliveries are completed at the
customer’s pre-specified locations within the predetermined time window. However,
in real-world logistics operations, customer demands can generally be categorized into
three types: pickup, delivery, or both pickup and delivery. When EVs must simulta-
neously accommodate pickup and delivery requests, the problem is the EVRP with
Pickup and Delivery. Relevant studies in this domain include [31, 55, 46, 3, 26].
Notably, Agrali and Lee [3] explored an innovative pickup and delivery model by
introducing transhipment nodes, enabling the efficient transfer and reallocation of
goods across different delivery routes.

3.4.3. Multiple Depots. The configuration of multiple depots makes path planning
more reductive to actual logistics scenarios, where vehicles can depart from multiple
depots and return after completing the assigned tasks. This model has significant
advantages in solving complex distribution needs and optimizing resource allocation.
The EVRP models of Fan [14], Wang et al. [43], Agrali and Lee [3] all adopt the
configuration of multiple depots.

3.4.4. Open/Close. In EVRP models, ’open’ and ’closed’ are commonly used to de-
fine whether vehicles must return to their depot upon task completion. In the closed
model, vehicles must return to their initial depot after completing assigned tasks,
making it the most widely applied approach in EVRP studies. A different configura-
tion, the half-open model, permits vehicles to return to the nearest depot rather than
return to their original departure depot [14].

4. Recent solution approaches to EVRP

The solution approaches for the EVRP are generally classified into exact and heuris-
tic algorithms. Exact algorithms rely on mathematical programming and commonly
utilize approaches such as Branch-and-Price and Dynamic Programming to achieve
optimal solutions. In contrast, heuristic and metaheuristic algorithms employ flexible
and efficient search strategies to approximate optimal solutions within a computa-
tionally feasible time. The distribution of EVRP solutions in this study is shown in
Figure.1. Representative methods include Large Neighborhood Search (LNS), Vari-
able Neighborhood Search (VNS), Branch-and-Price (BP), Ant Colony Optimization
(ACO), Simulated Annealing (SA), Genetic Algorithm (GA), and Tabu Search (TS).

84 YINGKAI XU

This section presents an in-depth discussion of the exact and heuristic algorithms
applied in EVRP.

LNS
29.2%

VNS
16.7%

Other
14.6%

BP
12.5%

ACO
8.3%

SA
8.3%

GA
6.2%TS

4.2%

Figure 1. Distribution of EVRP solution approaches (% is obtained
by reporting the number of uses for each algorithm to the total num-
ber of algorithms used in all research methods).

4.1. Large Neighborhood Search. LNS, as a practical heuristic approach, has
been widely applied to solving the EVRP[44, 31, 35, 52, 42, 29, 13, 5, 3, 41, 47, 28,
49, 55]. This method iteratively removes and reinserts subsets of routes to explore
better solutions efficiently. Researchers have improved its computational efficiency
and solution optimality for large-scale problems through integration with various op-
timization techniques. For example, Ren et al. [35] introduced an LNS-QL algorithm
based on Q-learning (QL) for joint drone and EV delivery, dynamically selecting de-
struction and repair operators through reinforcement learning, significantly enhancing
solution flexibility and adaptability. In the continued development of LNS, researchers
have proposed various improved Adaptive Large Neighborhood Search (ALNS) algo-
rithms to handle the complex constraints and uncertainties of EVRP effectively. For
instance, Zhang et al. [52] proposed an extended ALNS incorporating the Variable
Neighborhood Descent strategy to achieve the simultaneous optimization of EVs and
battery swapping vehicles.

4.2. Variable Neighborhood Search. VNS enhances search efficiency by dynami-
cally switching between multiple neighborhood structures, enabling the algorithm to
escape local optima. Due to its flexibility and effectiveness in exploring diverse search
neighborhoods, VNS and its variants have gained increasing attention in EVRP re-
search [54, 17, 25, 33, 39, 8]. İslim and Çatay [17] introduced a hybrid approach that
integrates VNS with a mathematical solver to address battery degradation issues in
EVs. This method employs a piecewise linear degradation cost model based on the
depth of discharge and state of charge (SoC) to assess the impact of varying charging
depths. Liu et al. [25] presented a double adaptive generalized VNS framework, which
dynamically adjusts the neighbourhood selection mechanism, substantially improving

A REVIEW OF EVRP 85

computational efficiency for unmanned EV routing problems. Moreover, Souza et al.
[39] developed an optimization algorithm based on Flexible VNS, incorporating adap-
tive perturbation and local search strategies.

4.3. Branch-and-Price. BP algorithms that combine branch-and-bound and col-
umn generation are widely used in EVRP [31, 6, 12, 24, 23]. Ouyang and Wang [31]
proposed an improved BP algorithm combined with LNS to overcome formulation
challenges faced by conventional methods. Bezzi et al. [6] introduced a path-based
BP algorithm incorporating multiple charging technologies and partial charging, us-
ing Bi-Directional Dynamic Programming to improve pricing efficiency for large-scale
problems. Duman et al. [12] developed a Pulse-enhanced bi-directional BP algorithm
with a novel column generation technique that alleviates computational bottlenecks
compared to traditional labeling methods. Lera-Romero et al. [24] proposed a BCP
algorithm for Time-Dependent EVRP with Time Windows, integrating a customer-
based routing heuristic and an efficient labeling algorithm to optimize delivery routes.

4.4. Ant Colony Optimization. ACO simulates the pheromone-based foraging be-
havior of ants and improves path selection through probabilistic decision-making and
pheromone updating iterations to efficiently solve EVRP [15, 10, 18]. Fan et al. [15]
introduced an improved ACO, which incorporates an adaptive heuristic factor that
dynamically adjusts pheromone weights based on the specific characteristics of the
problem, achieving a balance between global exploration and local exploitation. Com-
ert and Yazgan [10] investigated three distinct types of multi-objective EVRP and
proposed a hierarchical hybrid heuristic approach. The first stage employs a hybrid
ACO algorithm, integrating local search operations and the SA criterion to expedite
the convergence process of the initial solution. In the second stage, the artificial
bee colony algorithm is utilized to refine the solution further, ensuring high-quality
results.

4.5. Simulated Annealing. SA has been extensively applied to the EVRP due to its
capability of accepting suboptimal solutions during the optimization process, thereby
facilitating escape from local optima [44, 10, 3, 30, 36]. By effectively balancing ex-
ploration and utilization, SA demonstrates strong problem-solving capabilities when
combined with other heuristics. SA is frequently combined with LNS. Woo et al. [44]
proposed an optimization framework that integrates Adaptive Large Neighborhood
Search (ALNS) with SA to provide an effective solution for intelligent fleet manage-
ment. Agrali and Lee [3] proposed the SA-LNS algorithm, which leverages a greedy
heuristic for initial solution generation, SA to escape local optima via the Metropolis
criterion, and LNS for iterative refinement through destruction and repair, enhancing
routing and charging station optimization. Rodŕıguez-Esparza et al. [36] proposes
a hyper-heuristic algorithm to optimize the paths using adaptive SA and reinforce-
ment learning to minimize the total distance traveled and verifies its superiority on a
dataset for large-scale problems.

4.6. Genetic Algorithm. GA utilizes its selection, crossover, and mutation mecha-
nisms to navigate the solution space under complex constraints efficiently, providing

86 YINGKAI XU

a practical approach for solving EVRP [27, 43, 32]. In this context, Longhitano
et al. [27] proposed a GA-based EVRP approach, which comprehensively considers
key state parameters of EVs, including the SoC and the state of health. Further-
more, Wang et al. [43] proposed a bi-objective nonlinear model, utilizing Gaussian
Mixture Clustering to classify customers and reduce computational complexity. They
further introduced an improved multi-objective GA with TS to balance local and
global search, enhancing solution quality.

4.7. Tabu Search. TS is a local search-based heuristic that uses a tabu list to avoid
revisiting recent solutions, helping to escape local optima. Sadati et al. [37] pro-
posed a hybrid heuristic combining VNS and granular TS. The approach starts with
a greedy insertion heuristic for initial solution construction, followed by perturbation
techniques such as position exchange and route consolidation. It concludes with a
local search to optimize customer sequencing and charging decisions. Wang et al.
[42] tackled perishable goods distribution by designing multi-compartment vehicles
to meet diverse storage needs. They developed a hybrid ALNS-TS algorithm, where
ALNS applies various removal and insertion strategies to optimize routes, and adap-
tive heuristics adjust temperature and humidity in real-time.

4.8. Other Methods. Beyond commonly used optimization algorithms, alternative
approaches have been explored for EVRP. For instance, the Double Assistant Evo-
lutionary Multitasking Algorithm [7], Iterated Local Search [21], and the Whale Op-
timization Algorithm [53]. Moreover, the Memetic Algorithm (MA) has also been
utilized [46, 11], among which Dong et al. [11] introduced an Improved MA combin-
ing global and local search, reducing operational costs by 10–25% in Dynamic EVRP.

5. Discussion

This section first discusses and compares the strengths and weaknesses of different
algorithms used in the last three years of EVRP research. Then, future research
directions are identified based on the current advancements in EVRP research.

5.1. Comparative analysis of recent algorithms for EVRP. The combination
of the BP algorithm with the column generation method provides a guaranteed lower
bound, thereby improving solution efficiency. However, since column generation relies
on the efficient solution of the shortest path problem, computational complexity grows
rapidly with the increase in problem size. In practical applications, BP needs to be
combined with heuristic acceleration strategies to balance efficiency and accuracy
[12, 31].

Although GA possesses excellent global search capabilities, it typically requires
more iterations to converge to an acceptable solution compared to heuristic methods,
leading to higher computational costs. In particular, in Longhitano et al. [27], the
integration of vehicle dynamics and SoC modeling significantly increases the compu-
tational burden of the optimization process.

ACO can explore multiple solutions simultaneously, making it suitable for global
optimization. However, in large-scale EVRP problems, the need to simulate numerous

A REVIEW OF EVRP 87

ants leads to increased computation time. Thus current research often employs a
two-level or two-stage optimization approach, where the first stage decomposes the
problem to reduce the number of variables handled per iteration, and the second stage
refines routes and optimizes charging strategies to improve solution quality.

The flexibility and global search capability of VNS make it suitable for various
complex constraints in EVRP, such as time windows [54], battery swapping [33],
and flexible deliveries [37]. Improved VNS methods, such as Flexi-VNS, dynami-
cally adjust charging strategies to enhance solution adaptability. Additionally, VNS,
combined with the alternating direction multiplier method, effectively handles energy
constraints, achieving better performance in large-scale instances.

ALNS and its variants dominate EVRP solutions. ALNS is more efficient for large-
scale problems and is easily integrated with other algorithms. For instance, ALNS
combined with SA and QL can further enhance global search capabilities. Specifically,
the combination of QL and LNS proves effective in dynamic EVRP, where QL learns
operational strategies and improves the search process based on historical experience.

5.2. Open issues. Although significant progress has been made in addressing the
EVRP, there are still challenges that require further research. Firstly, EVRP in-
volves multiple optimization objectives, such as minimizing operational costs, carbon
emissions, and customer service levels. However, existing studies often lack system-
atic research on multi-objective trade-offs. Developing more efficient multi-objective
algorithms to balance conflicting objectives remains a valuable research direction.
Secondly, a single algorithm is often insufficient to handle complex EVRP problems.
Future research can explore the combination of multiple algorithms, such as inte-
grating heuristic algorithms with reinforcement learning. Reinforcement learning is
effective in handling dynamic environments and learning complex decision-making
strategies. Lastly, future studies should also incorporate machine learning models to
predict factors such as EV energy consumption, charging demands, and traffic flow.
These predictions can be integrated into the routing process to achieve more accurate
scheduling.

6. Conclusions and future work

This study presents a comprehensive review of recent advancements in EVRP re-
search over the past three years, analyzing 42 papers from various aspects. It presents
various classifications of EVRP and examines commonly used algorithms. In terms of
objective functions, recent studies mainly focus on single or limited objectives, lacking
systematic research on multi-objectives. Regarding algorithms, LNS is widely adopted
as one of the most commonly used optimization methods and is often combined with
SA, BP, and QL to improve the depth of exploration of the solution and the ability
of local optimization. In the future, enhancing these algorithms or developing novel
hybrid optimization approaches will continue to be a promising avenue for research.
Moreover, integrating machine learning into demand or traffic predictions can further
improve EVRP solutions’ adaptability.

88 YINGKAI XU

References

[1] Co2 emissions from cars: facts and figures (infographics), 2019. URL
https://www.europarl.europa.eu/topics/en/article/20190313STO31218/

co2-emissions-from-cars-facts-and-figures-infographics.
[2] Fit for 55: zero co2 emissions for new cars and vans in 2035, 2023. URL https:

//www.europarl.europa.eu/news/en/press-room/20230210IPR74715/

fit-for-55-zero-co2-emissions-for-new-cars-and-vans-in-2035.
[3] Cansu Agrali and Seokcheon Lee. The multi-depot pickup and delivery problem

with capacitated electric vehicles, transfers, and time windows. Computers &
Industrial Engineering, 179:109207, May 2023. ISSN 03608352. doi: 10.1016/j.
cie.2023.109207.

[4] Vahid Akbari, Bülent Çatay, and İhsan Sadati. Route optimization of battery
electric vehicles using dynamic charging on electrified roads. Sustainable Cities
and Society, 109:105532, August 2024. ISSN 22106707. doi: 10.1016/j.scs.2024.
105532.

[5] Afsane Amiri, Hossein Zolfagharinia, and Saman Hassanzadeh Amin. A robust
multi-objective routing problem for heavy-duty electric trucks with uncertain
energy consumption. Computers & Industrial Engineering, 178:109108, April
2023. ISSN 03608352. doi: 10.1016/j.cie.2023.109108.

[6] Dario Bezzi, Alberto Ceselli, and Giovanni Righini. A route-based algorithm for
the electric vehicle routing problem with multiple technologies. Transportation
Research Part C: Emerging Technologies, 157:104374, December 2023. ISSN
0968090X. doi: 10.1016/j.trc.2023.104374.

[7] Yanguang Cai, Yanlin Wu, and Chuncheng Fang. Double-assistant evolutionary
multitasking algorithm for enhanced electric vehicle routing with backup batter-
ies and battery swapping stations. Expert Systems with Applications, 237:121600,
March 2024. ISSN 09574174. doi: 10.1016/j.eswa.2023.121600.

[8] Bülent Çatay and İhsan Sadati. An improved matheuristic for solving the elec-
tric vehicle routing problem with time windows and synchronized mobile charg-
ing/battery swapping. Computers & Operations Research, 159:106310, November
2023. ISSN 03050548. doi: 10.1016/j.cor.2023.106310.

[9] Tao Chen, Bowen Zhang, Hajir Pourbabak, Abdollah Kavousi-Fard, and Wen-
cong Su. Optimal routing and charging of an electric vehicle fleet for high-
efficiency dynamic transit systems. IEEE Transactions on Smart Grid, 9(4):
3563–3572, 2016.

[10] Serap Ercan Comert and Harun Resit Yazgan. A new approach based on hybrid
ant colony optimization-artificial bee colony algorithm for multi-objective electric
vehicle routing problems. Engineering Applications of Artificial Intelligence, 123:
106375, August 2023. ISSN 09521976. doi: 10.1016/j.engappai.2023.106375.

[11] Jinting Dong, Hongfeng Wang, and Shuzhu Zhang. Dynamic electric vehicle rout-
ing problem considering mid-route recharging and new demand arrival using an
improved memetic algorithm. Sustainable Energy Technologies and Assessments,
58:103366, August 2023. ISSN 22131388. doi: 10.1016/j.seta.2023.103366.

https://www.europarl.europa.eu/topics/en/article/20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics
https://www.europarl.europa.eu/topics/en/article/20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics
https://www.europarl.europa.eu/news/en/press-room/20230210IPR74715/fit-for-55-zero-co2-emissions-for-new-cars-and-vans-in-2035
https://www.europarl.europa.eu/news/en/press-room/20230210IPR74715/fit-for-55-zero-co2-emissions-for-new-cars-and-vans-in-2035
https://www.europarl.europa.eu/news/en/press-room/20230210IPR74715/fit-for-55-zero-co2-emissions-for-new-cars-and-vans-in-2035

A REVIEW OF EVRP 89

[12] Ece Naz Duman, Duygu Taş, and Bülent Çatay. A bidirectional branch-and-
price algorithm with pulse procedure for the electric vehicle routing problem
with flexible deliveries. Transportation Research Part C: Emerging Technologies,
165:104699, August 2024. ISSN 0968090X. doi: 10.1016/j.trc.2024.104699.

[13] Mehmet Erdem, Çağrı Koç, and Eda Yücel. The electric home health care
routing and scheduling problem with time windows and fast chargers. Computers
& Industrial Engineering, 172:108580, October 2022. ISSN 03608352. doi: 10.
1016/j.cie.2022.108580.

[14] Lijun Fan. A two-stage hybrid ant colony algorithm for multi-depot half-open
time-dependent electric vehicle routing problem. Complex & Intelligent Systems,
10(2):2107–2128, April 2024. ISSN 2198-6053. doi: 10.1007/s40747-023-01259-1.

[15] Lijun Fan, Changshi Liu, Bo Dai, Junyu Li, Zhang Wu, and Yuting Guo. Elec-
tric vehicle routing problem considering energy differences of charging stations.
Journal of Cleaner Production, 418:138184, September 2023. ISSN 09596526.
doi: 10.1016/j.jclepro.2023.138184.

[16] Dominik Goeke and Michael Schneider. Routing a mixed fleet of electric and
conventional vehicles. European Journal of Operational Research, 245(1):81–99,
2015.

[17] Raci Berk İslim and Bülent Çatay. An effective matheuristic approach for solv-
ing the electric traveling salesperson problem with time windows and battery
degradation. Engineering Applications of Artificial Intelligence, 132:107943, June
2024. ISSN 09521976. doi: 10.1016/j.engappai.2024.107943.

[18] Ya-Hui Jia, Yi Mei, and Mengjie Zhang. Confidence-based ant colony optimiza-
tion for capacitated electric vehicle routing problem with comparison of differ-
ent encoding schemes. IEEE Transactions on Evolutionary Computation, 26(6):
1394–1408, December 2022. ISSN 1941-0026. doi: 10.1109/TEVC.2022.3144142.

[19] Can Berk Kalaycı and Yusuf Yılmaz. A review on the electric vehicle rout-
ing problems. Pamukkale University Journal of Engineering Sciences-Pamukkale
Universitesi Muhendislik Bilimleri Dergisi, 2023.

[20] Gitae Kim, Yew-Soon Ong, Chen Kim Heng, Puay Siew Tan, and Nengsheng Al-
lan Zhang. City vehicle routing problem (city vrp): A review. IEEE Trans-
actions on Intelligent Transportation Systems, 16(4):1654–1666, 2015. doi:
10.1109/TITS.2015.2395536.

[21] Yong Jun Kim and Byung Do Chung. Energy consumption optimization for
the electric vehicle routing problem with state-of-charge-dependent discharging
rates. Journal of Cleaner Production, 385:135703, January 2023. ISSN 09596526.
doi: 10.1016/j.jclepro.2022.135703.

[22] Ilker Kucukoglu, Reginald Dewil, and Dirk Cattrysse. The electric vehicle rout-
ing problem and its variations: A literature review. Computers & Industrial
Engineering, 161:107650, 2021.

[23] Edward Lam, Guy Desaulniers, and Peter J. Stuckey. Branch-and-cut-and-
price for the electric vehicle routing problem with time windows, piecewise-linear
recharging and capacitated recharging stations. Computers & Operations Re-
search, 145:105870, September 2022. ISSN 03050548. doi: 10.1016/j.cor.2022.

90 YINGKAI XU

105870.
[24] Gonzalo Lera-Romero, Juan José Miranda Bront, and Francisco J. Soulignac. A

branch-cut-and-price algorithm for the time-dependent electric vehicle routing
problem with time windows. European Journal of Operational Research, 312(3):
978–995, February 2024. ISSN 03772217. doi: 10.1016/j.ejor.2023.06.037.

[25] Wenheng Liu, Mahjoub Dridi, Jintong Ren, Amir Hajjam El Hassani, and Shuy-
ing Li. A double-adaptive general variable neighborhood search for an unmanned
electric vehicle routing and scheduling problem in green manufacturing systems.
Engineering Applications of Artificial Intelligence, 126:107113, November 2023.
ISSN 09521976. doi: 10.1016/j.engappai.2023.107113.

[26] Xiaochang Liu, Dujuan Wang, Yunqiang Yin, and T.C.E. Cheng. Robust opti-
mization for the electric vehicle pickup and delivery problem with time windows
and uncertain demands. Computers & Operations Research, 151:106119, March
2023. ISSN 03050548. doi: 10.1016/j.cor.2022.106119.

[27] Pedro Dias Longhitano, Christophe Bérenguer, and Benjamin Echard. Joint elec-
tric vehicle routing and battery health management integrating an explicit state
of charge model. Computers & Industrial Engineering, 188:109892, February
2024. ISSN 03608352. doi: 10.1016/j.cie.2024.109892.

[28] Bingshan Ma, Dawei Hu, Yin Wang, Qian Sun, Linwei He, and Xiqiong Chen.
Time-dependent vehicle routing problem with departure time and speed opti-
mization for shared autonomous electric vehicle service. Applied Mathematical
Modelling, 113:333–357, January 2023. ISSN 0307904X. doi: 10.1016/j.apm.
2022.09.020.

[29] Hongguang Ma, Rongchao Yang, and Xiang Li. Delivery routing for a mixed
fleet of conventional and electric vehicles with road restrictions. International
Journal of Production Research, pages 1–24, 2024.

[30] Nima Moradi and Niloufar Mirzavand Boroujeni. Prize-collecting electric vehicle
routing model for parcel delivery problem. Expert Systems with Applications,
259:125183, January 2025. ISSN 09574174. doi: 10.1016/j.eswa.2024.125183.

[31] Kechen Ouyang and David Z.W. Wang. Optimal operation strategies for freight
transport with electric vehicles considering wireless charging lanes. Transporta-
tion Research Part E: Logistics and Transportation Review, 193:103852, January
2025. ISSN 13665545. doi: 10.1016/j.tre.2024.103852.

[32] David Peña, Bernabé Dorronsoro, and Patricia Ruiz. Sustainable waste collection
optimization using electric vehicles. Sustainable Cities and Society, 105:105343,
June 2024. ISSN 22106707. doi: 10.1016/j.scs.2024.105343.

[33] Bin Qian, Fei-Long Feng, Nai-Kang Yu, Rong Hu, and Yu-Wang Chen. An
alternating direction multiplier method with variable neighborhood search for
electric vehicle routing problem with time windows and battery swapping sta-
tions. Applied Soft Computing, 166:112141, November 2024. ISSN 15684946. doi:
10.1016/j.asoc.2024.112141.

[34] Hu Qin, Xinxin Su, Teng Ren, and Zhixing Luo. A review on the electric vehicle
routing problems: Variants and algorithms. Frontiers of Engineering Manage-
ment, 8:370–389, 2021.

A REVIEW OF EVRP 91

[35] Xiao-Xue Ren, Hou-Ming Fan, Ming-Xin Bao, and Hao Fan. The time-dependent
electric vehicle routing problem with drone and synchronized mobile battery
swapping. Advanced Engineering Informatics, 57:102071, August 2023. ISSN
14740346. doi: 10.1016/j.aei.2023.102071.

[36] Erick Rodŕıguez-Esparza, Antonio D. Masegosa, Diego Oliva, and Enrique
Onieva. A new hyper-heuristic based on adaptive simulated annealing and re-
inforcement learning for the capacitated electric vehicle routing problem. Ex-
pert Systems with Applications, 252:124197, October 2024. ISSN 09574174. doi:
10.1016/j.eswa.2024.124197.

[37] Mir Ehsan Hesam Sadati, Vahid Akbari, and Bülent Çatay. Electric vehicle
routing problem with flexible deliveries. International Journal of Production
Research, 60(13):4268–4294, July 2022. ISSN 0020-7543. doi: 10.1080/00207543.
2022.2032451.

[38] Michael Schneider, Andreas Stenger, and Dominik Goeke. The electric vehicle-
routing problem with time windows and recharging stations. Transportation
science, 48(4):500–520, 2014.

[39] André L.S. Souza, Marcella Papini, Puca H.V. Penna, and Marcone J.F. Souza.
A flexible variable neighbourhood search algorithm for different variants of the
electric vehicle routing problem. Computers & Operations Research, 168:106713,
August 2024. ISSN 03050548. doi: 10.1016/j.cor.2024.106713.

[40] Marios Thymianis, Alexandros Tzanetos, Eneko Osaba, Georgios Dounias, and
Javier Del Ser. Electric vehicle routing problem: Literature review, instances and
results with a novel ant colony optimization method. In 2022 IEEE Congress on
Evolutionary Computation (CEC), pages 1–8. IEEE, 2022.

[41] Weiquan Wang and Jingyi Zhao. Partial linear recharging strategy for the electric
fleet size and mix vehicle routing problem with time windows and recharging
stations. European Journal of Operational Research, 308(2):929–948, July 2023.
ISSN 03772217. doi: 10.1016/j.ejor.2022.12.011.

[42] Xin Wang, Yijing Liang, Xiangbo Tang, and Xiyan Jiang. A multi-compartment
electric vehicle routing problem with time windows and temperature and humid-
ity settings for perishable product delivery. Expert Systems with Applications,
233:120974, December 2023. ISSN 09574174. doi: 10.1016/j.eswa.2023.120974.

[43] Yong Wang, Jingxin Zhou, Yaoyao Sun, Jianxin Fan, Zheng Wang, and Haizhong
Wang. Collaborative multidepot electric vehicle routing problem with time
windows and shared charging stations. Expert Systems with Applications, 219:
119654, June 2023. ISSN 09574174. doi: 10.1016/j.eswa.2023.119654.

[44] Soomin Woo, Eric Yongkeun Choi, Scott J. Moura, and Francesco Borrelli. Sav-
ing energy with eco-friendly routing of an electric vehicle fleet. Transportation
Research Part E: Logistics and Transportation Review, 189:103644, September
2024. ISSN 13665545. doi: 10.1016/j.tre.2024.103644.

[45] Xiaoyun Xia, Helin Zhuang, Zijia Wang, and Zefeng Chen. Two-stage heuristic
algorithm with pseudo node-based model for electric vehicle routing problem.
Applied Soft Computing, 165:112102, November 2024. ISSN 15684946. doi: 10.
1016/j.asoc.2024.112102.

92 YINGKAI XU

[46] Jianhua Xiao, Jingguo Du, Zhiguang Cao, Xingyi Zhang, and Yunyun Niu. A
diversity-enhanced memetic algorithm for solving electric vehicle routing prob-
lems with time windows and mixed backhauls. Applied Soft Computing, 134:
110025, February 2023. ISSN 15684946. doi: 10.1016/j.asoc.2023.110025.

[47] Jianhua Xiao, Xiaoyang Liu, Tao Liu, Na Li, and Antonio Martinez-Sykora. The
electric vehicle routing problem with synchronized mobile partial recharging and
non-strict waiting strategy. Annals of Operations Research, June 2024. ISSN
1572-9338. doi: 10.1007/s10479-024-06069-3.

[48] Yiyong Xiao, Yue Zhang, Ikou Kaku, Rui Kang, and Xing Pan. Electric vehicle
routing problem: A systematic review and a new comprehensive model with
nonlinear energy recharging and consumption. Renewable and Sustainable Energy
Reviews, 151:111567, 2021.

[49] Hao Xiong, Yumiao Xu, Huili Yan, Haoying Guo, and Chen Zhang. Optimizing
electric vehicle routing under traffic congestion: A comprehensive energy con-
sumption model considering drivetrain losses. Computers & Operations Research,
168:106710, August 2024. ISSN 03050548. doi: 10.1016/j.cor.2024.106710.

[50] Canqi Yao, Shibo Chen, Mauro Salazar, and Zaiyue Yang. Joint routing and
charging problem of electric vehicles with incentive-aware customers consider-
ing spatio-temporal charging prices. IEEE Transactions on Intelligent Trans-
portation Systems, 24(11):12215–12226, November 2023. ISSN 1558-0016. doi:
10.1109/TITS.2023.3286952.

[51] Chong Ye, Wenjie He, and Hanqi Chen. Electric vehicle routing models and
solution algorithms in logistics distribution: A systematic review. Environmental
Science and Pollution Research, 29(38):57067–57090, 2022.

[52] Shuai Zhang, Tong Zhou, Cheng Fang, and Sihan Yang. A novel collaborative
electric vehicle routing problem with multiple prioritized time windows and time-
dependent hybrid recharging. Expert Systems with Applications, 244:122990,
June 2024. ISSN 09574174. doi: 10.1016/j.eswa.2023.122990.

[53] Binghai Zhou and Zhe Zhao. Multi-objective optimization of electric vehicle
routing problem with battery swap and mixed time windows. Neural Computing
and Applications, 34(10):7325–7348, May 2022. ISSN 1433-3058. doi: 10.1007/
s00521-022-06967-2.

[54] Saiqi Zhou, Dezhi Zhang, Bin Ji, Shaoyu Zhou, Shuangyan Li, and Likun Zhou. A
milp model and heuristic method for the time-dependent electric vehicle routing
and scheduling problem with time windows. Journal of Cleaner Production, 434:
140188, January 2024. ISSN 09596526. doi: 10.1016/j.jclepro.2023.140188.

[55] Saiqi Zhou, Dezhi Zhang, Wen Yuan, Zhenjie Wang, Likun Zhou, and
Michael G.H. Bell. Pickup and delivery problem with electric vehicles and time
windows considering queues. Transportation Research Part C: Emerging Tech-
nologies, 167:104829, October 2024. ISSN 0968090X. doi: 10.1016/j.trc.2024.
104829.

Department of Computer Science, Babes-Bolyai University, 1, M. Kogalniceanu Street,
400084, Cluj-Napoca, Romania

Email address: yingkai.x@ubbcluj.ro

	July - December
	1. Introduction
	2. Related Work
	3. Tool design
	4. PyDs Builder Solution
	4.1. Architecture
	4.2. Tools and flows

	5. Database optimization
	6. Execution and Usage
	6.1. Installation
	6.2. Configuration
	6.3. Usage
	6.4. Data visualisation

	7. Experience Report
	8. Research Possibilities and Extension
	8.1. Possible scenario for tool usage

	9. Conclusions
	References
	1. Introduction
	2. Related Work
	2.1. Sentence-Level AI-Generated Text Detection with SeqXGPT
	2.2. Zero-Shot AI-Generated Text Detection with Fast-DetectGPT
	2.3. Adversarial learning with RADAR

	3. Proposed models
	3.1. LSTM
	3.2. BERT
	3.3. DeBERTa

	4. Experiments
	4.1. Datasets
	4.2. Data preprocessing
	4.3. Metrics
	4.4. Training and hyperparameter tuning
	4.5. Results
	4.6. Comparison with other methods

	5. Conclusions and Future Work
	References
	1. Introduction
	2. Data collection
	2.1. The collection pipeline
	2.2. Question difficulty

	3. Dataset composition
	3.1. Dataset Statistics
	3.2. Comparison to related benchmarks
	3.3. Sample questions from HardML

	4. Results
	4.1. Accuracy on HardML
	4.2. Human performance on HardML
	4.3. Accuracy on MMLU and EasyML

	5. Related work
	5.1. Multitask Language Understanding Benchmarks
	5.2. Benchmarks for Advanced Reasoning
	5.3. Practical Machine Learning Engineering Benchmarks
	5.4. Automated Answering and Generation of ML Exams
	5.5. Comparison to Our Work

	6. Limitations
	7. Acknowledgements
	8. Conclusion
	References
	1. Introduction
	2. Electric vehicle routing problem
	3. Classifications of the EVRP
	3.1. Objective function
	3.2. Energy consumption calculation
	3.3. Charging strategy
	3.4. Constraints of the EVRP

	4. Recent solution approaches to EVRP
	4.1. Large Neighborhood Search
	4.2. Variable Neighborhood Search
	4.3. Branch-and-Price
	4.4. Ant Colony Optimization
	4.5. Simulated Annealing
	4.6. Genetic Algorithm
	4.7. Tabu Search
	4.8. Other Methods

	5. Discussion
	5.1. Comparative analysis of recent algorithms for EVRP
	5.2. Open issues

	6. Conclusions and future work
	References

