
INFORMATICA
1/2017

STUDIA
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

No. 1/2017
January - June

EDITORIAL BOARD

EDITOR-IN-CHIEF:

Prof. Horia F. Pop, Babeş-Bolyai University, Cluj-Napoca, Romania

EXECUTIVE EDITOR:

Prof. Gabriela Czibula, Babeș-Bolyai University, Cluj-Napoca, Romania

EDITORIAL BOARD:

Prof. Osei Adjei, University of Luton, Great Britain
Prof. Anca Andreica, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Florian M. Boian, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Sergiu Cataranciuc, State University of Moldova, Chisinau, Moldova
Prof. Wei Ngan Chin, School of Computing, National University of Singapore
Assoc. Prof. Laura Dioșan, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Farshad Fotouhi, Wayne State University, Detroit, United States
Prof. Zoltán Horváth, Eötvös Loránd University, Budapest, Hungary
Assoc. Prof. Simona Motogna, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Roberto Paiano, University of Lecce, Italy
Prof. Bazil Pârv, Babeş-Bolyai University, Cl Cluj-Napoca uj, Romania
Prof. Abdel-Badeeh M. Salem, Ain Shams University, Cairo, Egypt
Assoc. Prof. Vasile Marian Scuturici, INSA de Lyon, France
Prof. Leon Ţâmbulea, Babeş-Bolyai University, Cluj-Napoca, Romania

YEAR

MONTH

Volume 62 (LXII) 2017

JUNE

ISSUE 1

S T U D I A

UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

1

EDITORIAL OFFICE: M. Kogălniceanu 1 • 400084 Cluj-Napoca • Tel: 0264.405300

SUMAR – CONTENTS – SOMMAIRE

L. Dioșan, A. Andreica, A. Enescu, The Use of Simple Cellular Automata in Image

Processing .. 5

A. Vescan, Third Case Study for the Dynamic Multilevel Component Selection 15

C. Crăciun, I. Salomie, A Filter-Based Dynamic Resource Management Framework

for Virtualized Data Centers .. 32

M. Teletin, Machine Learning Techniques for Detecting False Signatures 49

C. Șerban, A. Vescan, H.F. Pop, Preliminary Measurements in Identifying Design

Flaws .. 60

S. Albert, A Big Data Approach in Mutation Analysis and Prediction 75

I.G. Czibula, G. Czibula, D.L. Miholca, Zs. Marian, Identifying Hidden Dependencies

in Software Systems .. 90

M.-I. Bocicor, A. Pandini, G. Czibula, S. Albert, M. Teletin, Using Computational

Intelligence Models for Additional Insight into Protein Structure 107

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 1, 2017
DOI: 10.24193/subbi.2017.1.01

THE USE OF SIMPLE CELLULAR AUTOMATA IN IMAGE

PROCESSING

LAURA DIOSAN, ANCA ANDREICA, AND ALINA ENESCU

Abstract. Cellular Automata have been considered for a series of ap-
plications among which several image processing tasks. The goal of this
paper is to investigate such existing methods, supporting the broader goal
of identifying Cellular Automata rules able to automatically segment im-
ages. With the same broader goal in mind as future work, a detailed
description of evaluation metrics used for image segmentation is also given
in this paper.

1. Introduction

The one-dimensional binary-state Cellular Automata (CA) capable of per-
forming computational tasks has been extensively studied in the literature
[13, 34, 19, 23, 4]. Usually, a one-dimensional lattice of N two-state cells is
used for representing the CA. The state of each cell changes according to a
function depending on the current states in the neighbourhood. The neigh-
bourhood of a cell is given by the cell itself and its r neighbours on both sides
of the cell, where r represents the radius of the CA. The initial configuration
of cell states (0s and 1s) for the lattice evolves in discrete time steps updating
cells simultaneously according to the CA rule.

CAs have been considered for a series of applications like computer pro-
cessors, cryptography, physical reality modelling, image processing and many
others. Three-dimensional CAs have mainly been used within the framework
of chemical systems for tasks like percolation description, dissociation of or-
ganic acid in solutions, bond interactions, simulation of diffusion controlled
reaction kinetics, dissolution and many others [16].

In image processing for example, two-dimensional CAs are usually involved.
The pixels of the image represent cells of the CA and they update their state

Received by the editors: November 5, 2016.
2010 Mathematics Subject Classification. 68Q80, 94A08.
1998 CR Categories and Descriptors. A.1 [General Literature]: INTRODUCTORY

AND SURVEY; F.1.1 [Theory of Computation]: COMPUTATION BY ABSTRACT
DEVICES – Models of computation.

Key words and phrases. cellular automata, image processing.

5

6 LAURA DIOSAN, ANCA ANDREICA, AND ALINA ENESCU

based on the states of the neighbouring cells (pixels). Multiple states of CA
cells allow the processing of greyscale images or colour images. Identifying
the rules that apply to cells in order to answer a certain request in image
processing is nevertheless a nontrivial task.

Cellular Automata have been used for various image processing tasks among
which: geometric transformations, noise filtering, feature detection, edge de-
tection. Image segmentation was also approached by the means of Cellular
Automata, but there are only few attempts in the literature.

Incorporating cellular automata into image segmentation brings several ad-
vantages:

• ease of implementation;
• parallel implementation;
• the number of classes does not need to be specified before segmen-

tation is performed (both two-label and multi-label image segmenta-
tions are possible);
• extensibility (to various features extracted from images): currently,

pixel intensity values have been used as state transition rules, but
other image features such as texture or edges could be easily incor-
porated into the update mechanism;
• possibility to work with images of any dimension (the computational

complexity of the segmentation process is not directly influenced by
the image size or the number of image features).

The simplest use of CA for image processing is given by the application of
specific rules for different tasks, for example totalistic rule [6, 8, 25], majority
rule [38] or linear rule [20, 21].

Seed-based CAs represent another category of CA applied for image pro-
cessing. One of the most popular approaches found in the literature in this
sense is the GrowCut algorithm [37]. In [14] the authors show that the seeded
GrowCut proposed by Vezhnevets[37] is essentially no different from the Ford-
Bellman algorithm that computes shortest paths from a cell to all the other
cells in the CA. An unsupervised version of GrowCut is proposed in [11]. An-
other version of GrowCut, that improves its ability to correctly detect the
edges, is proposed in [1]. Other variants of GrowCut are proposed in [17, 12].
In [26] the authors propose an enhancement of GrowCut with automatic seed
selection. In [2] the image noise is reduced (and therefore the GrowCut algo-
rithm improved) by adding an anisotropic diffusion filter.

Another class of CAs applied to image processing involves methods for
finding the optimal rule for a given task. A deterministic method based on
a Hill-Climbing approach is proposed in [27]. There are also many heuristic

THE USE OF SIMPLE CELLULAR AUTOMATA IN IMAGE PROCESSING 7

methods based on Genetic Algorithms [35, 24, 32, 33, 15], Particle Swarm
Optimization [9], Genetic Programming [31, 30].

A CA based Level Set approach was proposed in [3], and continuous CAs
have been applied for image processing tasks in [29, 28].

Due to the fact that beyond the goal of this paper, our final goal is to identify
CA rules that are able to successfully segment images, we intend to study the
application of CA rules for image processing tasks which are close to image
segmentation, like edge detection. On this purpose, the aim of this paper is to
describe in detail the first class of CAs applied for image processing, namely
CAs that are using specific given rules, the class of so-called ’Simple CA’.
From the same perspective of a final goal, a detailed description of the most
popular performance measures used for evaluating the segmentation results is
also given in this paper.

2. Simple Cellular Automata for Image Processing

2.1. Totalistic rule. A CA very similar to the Conway’s Game of Life [10] is
used in [6] in order to detect the edges of an object in an image. The authors
of [6] apply this method for ultrasound kidney images. The greyscale images
are binarized prior to the application of the CA based method. A black cell is
called ’alive’ and will have the value 1, while a white cell is called ’dead’ and
will have the value 0. The Moore neighbourhood gives the neighbours of a cell;
therefore a cell has 9 neighbours, including the cell itself. In order to apply the
rule, one has to compute first the sum of the neighbours values (including the
cell itself) of each cell. The rule specifies those cells with 3 alive neighbours
or less will die of loneliness, while cells with 7 neighbors or more will die of
overpopulation. The cells with 5 neighbours will revive and the cells with 4
or 6 will keep their previous state. After one iteration of rule application, the
boundaries are detected.

The same metaphor of the Game of Life can also be found in [8]. The authors
work on binarized greyscale images, use the Moore neighbourhood and have
the same cell state meaning similar to [6]. They apply different ’survival’ rules
and find, experimentally, that the best rule is given by the survival or the
revival of the cells having 3, 4, 5, 6 and 7 alive neighbours. The results are
presented for 3 real world images, the performance of the proposed method
being only visually analyzed.

2.2. Linear rule. Due to the fact that the rule search space is significantly

large (22
9

possible rules for Moore neighbourhood) and an exhaustive search
is therefore out of question, there are researchers that focused their inves-
tigation on linear rules. The linear rules are those that can be realized by
EX-OR operation only, the search space being thus reduced to 512 rules. A

8 LAURA DIOSAN, ANCA ANDREICA, AND ALINA ENESCU

detailed presentation of theory and application of two-dimensional, null bound-
ary, nine-neighbourhood cellular automata linear rules in given in [5]. There
are 9 fundamental rules (1, 2, 4, 8, 16, 32, 64, 128, 256 - powers of 2), which
are arranged in a certain order inside a 3x3 grid which resembles a Moore
neighbourhood. Each of this 9 fundamental rules specifies which neighbour
is considered when changing the state of the current cell, based on EX-OR
operations. Adding these powers of 2 gives us other rule numbers that again
represent the neighbours that contribute to the state of the current cell at the
next iteration.

In [5] the 9 fundamental linear rules are applied for solving several image
transformation tasks like translation, generation of multiples copies, zooming,
thickening and thinning of symmetric images.

The authors of [25] apply all 512 linear rules to edge detection in one image
only and identify three groups of rules: no edge detection rules, strong edge
detection rules and weak edge detection rules. However, there is no strong
evidence of the significance of these groups of rules since only one image has
been used for testing purposes. Moreover, it is not clear how do the authors
apply the linear rules for greyscale images, since supporting theory of linear
rules deals only with binary images.

In [20], the authors show that there are 4 rules among the 512 linear rules
described above that obtain best results for edge detection. Only two images
are used in order to show the performance of these 4 rules, and one more
image is used in order to provide comparisons with other existing methods for
edge detection. However, the results are not conclusive since only 3 images
are being used and only visual evidence of the rules performance is given.
Moreover, the images are first binarized because these rules cannot be directly
applied to greyscale images.

The linear rules described above are extended to a 25 neighbourhood (ex-
tended Moore neighbourhood) in [22]. Among all resulted linear rules, the
authors find some optimal rules that can be applied to edge detection. These
optimal rules are applied to 2 images (a priori binarized) and the results are
only visually compared to the results obtained by other methods of edge de-
tection. Moreover, no details of the method used for identifying the optimal
rules are given in this paper.

3. Evaluation measures

In image segmentation, it is very important to establish how we define
similar regions or segmentations. Segmented regions and their boundaries can
be compact, discontinuous, smooth, etc. One of the most popular evaluation

THE USE OF SIMPLE CELLULAR AUTOMATA IN IMAGE PROCESSING 9

real segments
interest segment background segment

computed

segments

interest segment TP FN
background segment FN TN

Table 1. Confusion Matrix

metrics (but not very reliable) is the Dice coefficient [7]. Dice computes the
overlap between regions, quantifying the similarity of two segmentations.

Given two segmentations:

• reference segmentation (gold standard) Sr
• machine segmentation Sm

Each image point (pixel) can be classified as:

• true positive (TP): Sr(x, y) is 1 ∧ Sm(x, y) is 1
• false positive (FP): Sr(x, y) is 0 ∧ Sm(x, y) is 1
• true negative (TN): Sr(x, y) is 0 ∧ Sm(x, y) is 0
• false negative (FN): Sr(x, y) is 1 ∧ Sm(x, y) is 0

The Dice similarity coefficient is computed as the ratio between the number
of pixels belonging to the intersection (of two possible segmentations) and the
average of their sizes:

(1) CoeffDice(Sm, Sr) =
2 |Sr ∩ Sm|
|Sr|+ |Sm|

=
2TP

2TP + FP + FN

For increased reliability, one has to also look at how the values of each pixel
in the segmented image compare against some gold standard or ground truth.1

The four basic cardinalities of the so–called confusion matrix, namely the true
positives (TP), the false positives (FP), the true negatives (TN), and the false
negatives (FN) are defined as follows:

Let I(x, y) : R2 → R be a two-dimensional image and S(I(x, y)) : R2 → Ω,
Ω = {0, 1, 2, . . . , k − 1}, be a k-ry decision segmentation of the image I(x, y).

Each of these segmentations are composed by k segments, or regions, or
classes (e.g. if k = 2, then the two segments are represented by the class of
interest and the background; if k = 3, then two classes of interest and the
background will represent possible segments). In the case of k = 2 segments,
the confusion matrix can be represented as shown in Table 1.

1In order to call the reference segmentation ground truth we have to be certain that it is
so. Manual reference segmentations drawn by experts normally approximate ground truth,
in which case it can be used as gold standard, but not as the ground truth itself.

10 LAURA DIOSAN, ANCA ANDREICA, AND ALINA ENESCU

An alternative evaluation measure can be expressed as a percentage and
its values range between 0 (no overlap) and 1 (perfect agreement) using the
above values.

(2) Fβ =
(β2 + 1) ∗ Precision ∗ Recall

β2 ∗ Precision + Recall

It is also called the overlap index and makes it possible to quantify repro-
ducibility. An equivalent of the Dice coefficient is, therefore, the Fβ measure
with β = 1.

Precision is another measure that can be used to evaluate the quality of
segmentation.

(3)
TP

TP + FP

Recall is computed as the ratio between the number of positive pixels in
the reference image and the number of pixels identified as positive in the
segmented image.

(4) Recall =
TP

TP + FN

In conjunction with Precision, Recall is used in order to compute the F–
measure.

Specificity is computed as the ration between the number of negative pixels
in the reference image and the number of pixels identified as negative in the
segmented image.

(5) Specificity =
TN

TN + FP

Recall and Specificity depend on the size of segments.
There are two other measures that are related to these metrics, namely

Fallout and the false negative rate (FNR). They are defined by:

(6) Fallout =
FP

FP + TN
= 1− Specificity

(7) FNR =
FN

FN + TP
= 1− Recall

Since the last two measures are equivalent to Specificity and Recall, only
one pair ((Recall, Specificity) or (Fallout, False Negative rate)) should be used
to evaluate the performance of segmentation.

THE USE OF SIMPLE CELLULAR AUTOMATA IN IMAGE PROCESSING 11

Recall is also called Sensitivity or True Positive Rate. Specificity is also
called True Negative Rate (TNR). Fallout is also called the false positive rate
(FPR).

Another frequently used evaluation measure is the Global Consistency
Error (GCE) [18]. An error-based measure is the complement to similarity
measures, in that two segmentations are identical if an error–based measure
is 0.

This measure is computed as an average over the error of pixels belonging to
two segmentations. It compares partitions of the same image and it is tolerant
to one partition refining the other (e.g. by splitting or merging regions). For
an image I of n pixels (n = |I|) and a segmented region S, we denote the set of
all neighbour pixels to pixel p which belong to the same segmentation region
S by R(S, p). For two segmentations, one computed Sc and one reference
segmentation Sr, the asymmetric Local Refinement Error in [18] at pixel p,
LRE(Sc, Sr, p) is defined as

(8) LRE(Sc, Sr, p) =
|R(Sc, p)−R(Sr, p)|

|R(Sc, p)|
The GCE between segmentations can be defined as a mean over the error

of all points (pixels):

(9) GCE(S1, S2) =
1

|I|
min

|I|∑
i=1

LRE(S1, S2, p),

|I|∑
i=1

LRE(S2, S1, p)

By using the cardinalities previously introduced, GCE can be expressed as

follows:
GCE(Sc, Sr) = 1

|I| min

(10){
FN(FN + 2TP)

TP + FN
+
FP (FP + 2TN)

TN + FP
,
FP (FP + 2TP)

TP + FP
+
FN(FN + 2TN)

TN + FN

}
This measure is able to quantify the consistency between image segmen-

tations of differing granularities. It has the advantage of being tolerant to
(label) refinement. It makes most sense to use this measure when the two
segmentations being compared have comparable numbers of segments [36].

4. Conclusions

This paper presents in detail a class of CAs applied for image processing
tasks that are related to image segmentation, as well as a detailed description

12 LAURA DIOSAN, ANCA ANDREICA, AND ALINA ENESCU

of the most popular performance measures used for evaluating the segmenta-
tion results. As further work, an exhaustive description of CA based methods
for image processing will be performed, followed by the proposal of competitive
CA based methods for the task of image segmentation.

Acknowledgment

This work was supported by a grant of the Romanian National Authority
for Scientific Research and Innovation, CNCS - UEFISCDI, project number
PN-II-RU-TE-2014-4-1130.

References

[1] Ryan A Beasley. Semiautonomous medical image segmentation using seeded cellular
automaton plus edge detector. ISRN Signal Processing, 2012:1–9, 2012.

[2] Lei Bi, Jinman Kim, Lingfeng Wen, A. Kumar, M. Fulham, and D.D. Feng. Cellular au-
tomata and anisotropic diffusion filter based interactive tumor segmentation for positron
emission tomography. In Engineering in Medicine and Biology Society (EMBC), 2013
35th Annual International Conference of the IEEE, pages 5453–5456, 2013.

[3] Yu Chen, Zhuangzhi Yan, and Yungao Chu. Cellular automata based level set
method for image segmentation. In Complex Medical Engineering, 2007. CME 2007.
IEEE/ICME International Conference on, pages 171–174, May 2007.

[4] C. Chira, A. Gog, R. I. Lung, and D. Iclanzan. Complex systems and cellular automata
models in the study of complexity. Studia Informatica series, LV:33–49, 2010.

[5] Pabitra Pal Choudhury, Birendra Kumar Nayak, Sudhakar Sahoo, and Sunil Pankaj
Rath. Theory and applications of two-dimensional, null-boundary, nine-neighborhood,
cellular automata linear rules. CoRR, abs/0804.2346, 2008.

[6] C. Callins Christiyana, V. Rajamani, and A. Usha Devi. Article: Ultra sound kidney
image retrieval using time efficient one dimensional glcm texture feature. IJCA Special
Issue on Advanced Computing and Communication Technologies for HPC Applications,
ACCTHPCA(4):12–17, July 2012. Full text available.

[7] Lee R. Dice. Measures of the amount of ecologic association between species. Ecology,
26(3):297–302, 1945.

[8] Manoj Diwakar, Pawan Kumar Patel, and Kunal Gupta. Cellular automata based edge-
detection for brain tumor. In ICACCI, pages 53–59. IEEE, 2013.

[9] Safia Djemame and Mohamed Batouche. Combining cellular automata and particle
swarm optimization for edge detection. (14/):16–22, 2012.

[10] Martin Gardner. The fantastic combinations of john conway’s new solitaire game ”life”.
Scientific American, 223(10):120–123, October 1970.

[11] Payel Ghosh, Sameer Antani, L. Rodney Long, and George R. Thoma. Unsupervised
grow-cut: Cellular automata-based medical image segmentation. In HISB, pages 40–47.
IEEE, 2011.

[12] Andac Hamamci, Nadir Kucuk, Kutlay Karaman, Kayihan Engin, and Gözde B. Ünal.
Tumor-cut: Segmentation of brain tumors on contrast enhanced MR images for radio-
surgery applications. IEEE Trans. Med. Imaging, 31(3):790–804, 2012.

THE USE OF SIMPLE CELLULAR AUTOMATA IN IMAGE PROCESSING 13

[13] Hugues Juille and Jordan B. Pollack. Coevolving the ideal trainer: Application to the
discovery of cellular automata rules. In John R. Koza, Wolfgang Banzhaf, Kumar Chel-
lapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E.
Goldberg, Hitoshi Iba, and Rick Riolo, editors, Genetic Programming 1998: Proceed-
ings of the Third Annual Conference, pages 519–527. Morgan Kaufmann, 22-25 July
1998.

[14] Claude Kauffmann and Nicolas Piche. Seeded nd medical image segmentation by cellular
automaton on gpu. Int. J. Computer Assisted Radiology and Surgery, 5(3):251–262,
2010.

[15] Okba KAZAR and Sihem SLATNIA. Evolutionary cellular automata for image segmen-
tation and noise filtering using genetic algorithms. Journal of Applied Computer Science
& Mathematics, 11(5):33–40, 2011.

[16] A.C.J. Korte and H.J.H. Brouwers. A cellular automata approach to chemical reactions;
1 reaction controlled systems. Chemical Engineering Journal, 228:172–178, 2013.

[17] Yan Liu, H. D. Cheng, Jianhua Huang, Yingtao Zhang, and Xianglong Tang. An effec-
tive approach of lesion segmentation within the breast ultrasound image based on the
cellular automata principle. J. Digital Imaging, 25(5):580–590, 2012.

[18] D. R. Martin, C. C. Fowlkes, D. Tal, and J. Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In ICCV, pages II: 416–423, 2001.

[19] Melanie Mitchell, Michael D. Thomure, and Nathan L. Williams. The role of space in
the success of coevolutionary learning. In Artificial Life X: Proceedings of the Tenth
International Conference on the Simulation and Synthesis of Living Systems, pages
118–124. MIT Press, 2006.

[20] Jahangir Mohammed and Deepak Ranjan Nayak. An efficient edge detection technique
by two dimensional rectangular cellular automata. CoRR, abs/1312.6370, 2013.

[21] Deepak Ranjan Nayak, Prashanta Kumar Patra, and Amitav Mahapatra. A survey
on two dimensional cellular automata and its application in image processing. IJCA
Proceedings on International Conference on Emergent Trends in Computing and Com-
munication (ETCC-2014), ETCC(1):78–87, 2014.

[22] Deepak Ranjan Nayak, Sumit Kumar Sahu, and Jahangir Mohammed. A cellular au-
tomata based optimal edge detection technique using twenty-five neighborhood model.
CoRR, abs/1402.1348, 2014.

[23] Gina M. B. Oliveira, Luiz G. A. Martins, Laura B. de Carvalho, and Enrique Fynn. Some
investigations about synchronization and density classification tasks in one-dimensional
and two-dimensional cellular automata rule spaces. Electr. Notes Theor. Comput. Sci.,
252:121–142, 2009.

[24] Blanca Priego, Daniel Souto, Francisco Bellas, and Richard J. Duro. Hyperspectral
image segmentation through evolved cellular automata. Pattern Recognition Letters,
34(14):1648–1658, 2013.

[25] Fasel Qadir, Peer M. A., and Khan K. A. Efficient edge detection methods for diagnosis
of lung cancer based on two dimensional cellular automata. Advances in Applied Science
Research, 4(3):2050–2058, 2012.

[26] R. S. RajKumar and G. Niranjana. Image segmentation and classification of mri brain
tumor based on cellular automata and neural networks. International Journal of Re-
search in Engineering & Advanced Technology, 1(1):1–7, 2013.

[27] P. L. Rosin. Training cellular automata for image processing. In SCIA, pages 195–204,
2005.

14 LAURA DIOSAN, ANCA ANDREICA, AND ALINA ENESCU

[28] D. Safia and B.M. Chawki. Image segmentation using an emergent complex system:
Cellular automata. In Systems, Signal Processing and their Applications (WOSSPA),
2011 7th International Workshop on, pages 207–210, May 2011.

[29] D. Safia, D. Oussama, and B.M. Chawki. Image segmentation using continuous cellular
automata. In Programming and Systems (ISPS), 2011 10th International Symposium
on, pages 94–99, April 2011.

[30] Mohamed Sandeli and Mohamed Batouche. Multilevel thresholding for image segmen-
tation based on parallel distributed optimization. In SoCPaR, pages 134–139. IEEE,
2014.

[31] S. Sato and H. Kanoh. Evolutionary design of edge detector using rule-changing cellular
automata. In Nature and Biologically Inspired Computing (NaBIC), 2010 Second World
Congress on, pages 60–65, Dec 2010.

[32] Sihem Slatnia, Mohamed Batouche, and Kamal E. Melkemi. Evolutionary cellular au-
tomata based-approach for edge detection. In Francesco Masulli, Sushmita Mitra, and
Gabriella Pasi, editors, Applications of Fuzzy Sets Theory, 7th International Workshop
on Fuzzy Logic and Applications, WILF 2007, Camogli, Italy, July 7-10, 2007, Pro-
ceedings, volume 4578 of Lecture Notes in Computer Science, pages 404–411. Springer,
2007.

[33] Sihem Slatnia and Okba Kazar. Evolutionary cellular automata based-approach for
region detection. http://www.researchgate.net/publication/229050070, 2015.

[34] Marco Tomassini and Mattias Venzi. Evolution of asynchronous cellular automata for
the density task. In Juan J. Merelo Guervs, Panagiotis Adamidis, Hans-Georg Beyer,
Jos Luis Fernndez-Villacaas Martn, and Hans-Paul Schwefel, editors, PPSN, volume
2439 of Lecture Notes in Computer Science, pages 934–944. Springer, 2002.

[35] Blanca Maria Priego Torres, Daniel Souto, Francisco Bellas, and Richard J. Duro. Un-
supervised segmentation of hyperspectral images through evolved cellular automata.
In Manuel Graa, Carlos Toro, Jorge Posada, Robert J. Howlett, and Lakhmi C. Jain,
editors, KES, volume 243 of Frontiers in Artificial Intelligence and Applications, pages
2160–2169. IOS Press, 2012.

[36] R. Unnikrishnan, C. Pantofaru, and M. Hebert. Toward objective evaluation of im-
age segmentation algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence,
29(6):929–944, June 2007.

[37] Vladimir Vezhnevets and Vadim Konouchine. Growcut” - interactive multi-label N-D
image segmentation by cellular automata. pages 1–7. Russian Academy of Sciences,
2005.

[38] Sartra Wongthanavasu. Cellular Automata for Medical Image Processing. Cellular Au-
tomata - Innovative Modelling for Science and Engineering. INTECH Open Access
Publisher, unknown 2011.

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: {lauras, anca, aenescu}@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 1, 2017
DOI: 10.24193/subbi.2017.1.02

THIRD CASE STUDY FOR THE DYNAMIC MULTILEVEL

COMPONENT SELECTION

ANDREEA VESCAN

Abstract. The architecture of a system changes after the deployment
phase due to new requirements from the stakeholders. The software archi-
tect must make decisions about the selection of the right software compo-
nents out of a range of choices to satisfy a set of requirements. This paper
deals with the component selection problem with a multilevel system view
in a dynamic environment.

To validate our approach we have used the case study method. Three
different case studies were performed but only one is presented in the cur-
rent paper. The research design was conducted using a research question,
propositions and for interpreting the study’s findings we have used the
Wilcoxon signed ranks statistical test. The tests performed show the po-
tential of evolutionary algorithms for the dynamic multilevel component
selection problem.

1. Introduction

The problems of identification and selection the right software components
out of a range of choices to satisfy a set of requirements have received consid-
erable attention in the field of component-based software engineering during
the last two decades [9, 10].

Identification of a software architecture for a given system may be achieved
in two steps: (1) Component Identification and (2) Component Selection.
Component Identification has the scope to partition functionalities of a given
system into non-intersecting logical components to provide the starting points
for designing the architecture. The aim of Component Selection methods is
to find suitable components from a repository to satisfy a set of requirements
under various constraints/criteria (i.e. cost, number of used components, etc.).

Received by the editors: January 25, 2017.
2010 Mathematics Subject Classification. 68N01, 68T20.
1998 CR Categories and Descriptors. D.2.2 [Design Tools and Techniques]: Object-

oriented design methods, Software libraries.; I.2.8 [Problem Solving, Control Methods,
and Search]: Heuristic methods.

Key words and phrases. Case study, Research design, Component selection, Dynamic,
Multilevel, Multiobjective optimization.

15

16 ANDREEA VESCAN

This paper has focused on the component selection process, the goal being to
provide the suitable existing components matching software requirements.

The contribution of this paper is the use of the case study method
and the research design from the book of Yin [5] to validate our research
proposal for the Dynamic Multilevel Component Selection Problem
[2]. A research question and propositions are used to conduct research design.
For interpreting the study’s findings we used the Wilcoxon signed ranks sta-
tistical test. We have conducted three different experiments. The first one
was reported in [1], and the second one in [2]. The current paper reports
the third experiment. For each case study we have specified the compo-
nent selection problem. After that, the experimental studies were followed
for each considered case study: the two perspectives, changing requirements
and changing component repository. Following the replication approach to
multiple-case studies [5], each individual case study was finalized by an in-
dividual case report that will be next considered to be part of a summary
report, i.e. a cross-case conclusion. Thus, in our case the results obtained
are reported and conclusions about the potential of evolutionary algorithms
for the dynamic multiobjective multilevel component selection problem are
drawn.

The paper is organized as follows: Section 2 contains configuration and re-
configuration description problems, the description of the optimization pro-
cess, and the proposed evolutionary-based algorithm approach. Section 3
presents the reasons for using case study method and the research design,
the criteria used to interpret the findings of the results. The evaluation is
presented in Section 4. In Section 5 we apply the approach to one example to
validate the proposed approach. Some experiments are performed consider-
ing two dynamics: requirements changes over time and component repository
varies over time. Section 6 introduces the current state of art regarding the
component selection problem and analysis the differences compared with our
present approach. We conclude our paper in Section 7.

2. Dynamic Multilevel Component Selection Problem

2.1. Component Systems, Configurations and Reconfigurations. A
component [23] is an independent software package that provides functionality
via defined interfaces. The interface may be an export interface through which
a component provides functionality to other components or an import interface
through which a component gains services from other components.

A configuration [24] of a component system is described as the structural
relationship between components, indicated by the layout of components and
connectors. Reconfiguration means modifying the structure of a component

DYNAMIC MULTILEVEL COMPONENT SELECTION 17

system in terms of additions, deletion, and replacement of components and/or
connectors. While the reconfiguration transforms the structural view of a
component system, it changes the system’s functionality and service specifica-
tions. From another aspect, a reconfiguration may consist of several individual
updates or changes to components and/or connectors.

There are two type of components: simple component - is specified by the
inports (the set of input variables/parameters), outports (the set of output
variables/parameters) and a function (the computation function of the com-
ponent) and compound component - is a group of connected components in
which the output of a component is used as input by another component from
the group. For details about the component model please refer to [25].

2.2. Dynamic Multilevel Component Selection Problem Formula-
tion. An informal specification of the configuration problem is described in
the following. It is needed to construct a final system specified by input data
and output data. We can see the final system as a compound component and
thus the input data becomes the required interfaces of the component and the
output data becomes the provided interfaces, and in this context we have the
required interfaces as provided and we need to provide the internal structure
of the final compound component by offering the provided interfaces.

A formal definition of the configuration problem [25] (seen as a compound
component) is as follows. Consider SR the set of final system requirements
(the provided functionalities of the final compound component) as SR =
{r1, r2, ..., rn} and SC the set of components (the repository) available for
selection as SC = {c1, c2, ..., cm}. Each component ci can satisfy a subset
of the requirements from SR (the provided functionalities) denoted SPci =
{pi1 , pi2 , ..., pik} and has a set of requirements denoted SRci = {ri1 , ri2 , ..., rih}.
The goal is to find a set of components Sol in such a way that every require-
ment rj (j = 1, n) from the set SR can be assigned a component ci from Sol
where rj is in SPci (i = 1,m), while minimizing the number of used com-
ponents and the total cost of assembly. All the requirements of the selected
components must be satisfied by the components in the solution. If a selected
component is a compound component, the internal structure is also provided.
All the levels of the system are constructed.

The reconfiguration problem [24] is defined similarly to the configuration
problem but considering the dynamical changes of either requirements or com-
ponent. Regarding the reconfiguration problem [15], the dynamics of the com-
ponent selection problem can be viewed in two ways: the system requirements
or the repository containing the components varies over time.

18 ANDREEA VESCAN

2.3. Dynamic Multilevel Component Selection Optimisation Pro-
cess. Our approach starts by considering a set of components (the reposi-
tory) available for selection and the specification of a final system (input and
output). The optimisation process begins with the Dynamic Multilevel Com-
ponent Selection Problem Formulation (see Figure 1 for details). The result
of this step is the transformation of the final system specification as the set of
required interfaces (and the set of provided interfaces).

Figure 1. Dynamic Multilevel Component Selection Optimi-
sation Process.

In the second step, the construction of the multilevel configurations is done
by applying the evolutionary optimisation algorithm (fourth step, in Figure
1) for each time steps (from the Dynamic Changing Requirements or Dy-
namic Changing Components step). The evolutionary optimisation algorithm
is applied for each time steps (i.e. if there are still changing requirements or
components) and for each compound component from each level. The solu-
tion with best fitness value is selected at each level. The fifth step presents
the results. The problem is formulated as a multiple objective optimization
problem having 5 objectives: the number of used components, the number of
new requirements, the number of provided interfaces, the number of the initial
requirements that are not in solution, and the cost of a component (group of
components). All objectives are to be minimized.

Remark. Detailed information about the optimisation process can be
found in paper [1]. Since the current paper focuses on the research design
and case study method we give only the reference for the proposed approach
[1] and second case study paper [2] such that the reader can find the informa-
tion.

DYNAMIC MULTILEVEL COMPONENT SELECTION 19

3. Case study method and research design

The book of Yin [5] provided us with a strategy of identifying the method for
our research project, showing when to choose the case study method and how
to do research design. Defining the Research Questions is the most important
step to consider in a research study. In general, case studies are the preferred
strategy when “how” or “why” questions are being posed.

Our Research Question: How and Why do Search-based Algorithms (in our
case a Genetic Algorithm and a Random Search Algorithm) provide different
results for the Dynamic Multilevel Component Selection Problem?

Another component of the research design are the Propositions that direct
attention to something that should be examined within the scope of study.
These propositions begin to tell you where to look for relevant evidence.

Our Proposition: The Search-based Algorithms (in our case a Genetic Al-
gorithm and a Random Search Algorithm) provide different results for the
Dynamic Multilevel Component Selection Problem because in the case of Ge-
netic Algorithm the fitness of a solution is reevaluated.

Criteria for interpreting a study’s findings represents the third component
of the research design of a case study according to [5]. Statistical analysis offer
some explicit criteria for such interpretation.

Our Criteria for interpreting the study is based on the Wilcoxon signed
ranks statistical test that aims to detect significant differences between two
sample means, that is, the behavior of the two algorithms. For more informa-
tion regarding the Wilcoxon statistical test see Section 4.

After covering these components of research designs, the construction of
a theory related to our topic of study will follow. Our Theory development :
The case study will show why the Genetic Algorithm performs better than the
Random Search Algorithm.

An issue related to case studies is referring to the generalization from a
case study to theory. According to [5] statistical generalization is the common
way when doing surveys, but in doing case studies the analytic generalization
should be used. Multiple cases resemble multiple experiments and under these
circumstances the mode of generalization is analytic. If two or more cases
are shown to support the same theory, replication [5] may be claimed. The
replication logic is analogous to that used in multiple experiments. Some of
the replications might attempt to duplicate the exact conditions of the original
experiment. Other replications might alter one or two experimental conditions
considered unimportant to the original findings, to see whether the findings
could still be duplicated. Only with such replications would the original finding
be considered robust.

20 ANDREEA VESCAN

Our Replication strategy : The time steps for the dynamic changing require-
ments (Level 1) and for the dynamic changing components (Level 1, 2, and
3) were modified for Case study 2 [1] and for Case Study 3 [2]. Additional
information relating to the replication strategy is presented in paper [2].

Thus, we have selected the case study method and conducted three case
studies, the first one is a real case study for constructing a Reservation System
(reported in [1]) and the last two of them are constructed using artificial data
(the second experiment is reported in [2] and the current paper reports the
third experiment). Each individual case study was finalized by an individual
case report that will be next considered to be part of a summary report, i.e. a
cross-case conclusion. Thus, in our case the results obtained are reported and
conclusions about the potential of evolutionary algorithms for the dynamic
multiobjective multilevel component selection problem are drawn.

4. Interpreting the study

When comparing [8] two algorithms, the best fitness values obtained by
the searches concerned are an obvious indicator to how well the optimisation
process performed. Inferential statistics may be applied to discern whether
one set of experiments are significantly different in some aspect from another.
Usually we wish to be in a position to make a claim that we have evidence
that suggests that Algorithm A (Genetic Algorithm) is better than Algorithm
B (Random Search). The Wilcoxon signed ranks test [6] is used for answering
the following question: do two samples represent two different populations?
It is a nonparametric procedure employed in hypothesis testing situations,
involving a design with two samples. It is a pairwise test that aims to detect
significant differences between two sample medians, that is, the behavior of
two algorithms. The best fitness value (from the entire population) was used
for comparing the two algorithms.

The Wilcoxon signed ranks test has two hypothesis:

(1) Null hypothesis H0: The median difference is zero versus.
(2) Research hypothesis H1: The median difference is not zero, α = 0.05.

Steps of the Wilcoxon signed ranks test: Compute W− and W+, Check if
W− + W+ = n(n+1)/2, Select the test statistic (for the two tailed test the
test statistic is the smaller of W− and W+), We must determine whether the
observed test statistic Wt supports the H0 or H1, i.e. we determine a critical
value of Wc such that if the observed value of Wt is less or equal to critical
value Wc, we reject H0 in favor to H1.

Due to stochastic nature of optimisation algorithms, searches must be re-
peated several times in order to mitigate against the effect of random varia-
tion. How many runs do we need when we analyze and compare algorithms?

DYNAMIC MULTILEVEL COMPONENT SELECTION 21

In many fields of science (i.e. medicine and behaviour science) a common rule
of thumb [7] is to use at least N = 30 observations. We have also used in our
evaluation 30 executions for each algorithm.

Remark. One of the main reasons why we have used Wilcoxon signed rank
test is that the area of the study (i.e. comparing the best solutions obtained
by the two algorithms) is better represented by the median, thus we compared
the best chromosomes obtained by the two methods and not the mean of all
the chromosomes for each execution. Another reason of using non-parametric
test could be a very small sample size, but if the median better represents the
centre of the distribution, the indication is to consider the nonparametric test
even when we have a larger sample.

5. Experimental results

In this section, the proposed approach is evaluated and the results are re-
ported. According to the book of Yin [5] and as stated in Section 3 we have
conducted three different experiments. The first one was reported in [1], and
the second one in [2]. The current paper reports the third experiment.

5.1. Third case study. Component Selection Problem formulation.
The third case study uses a set of 90 available components. The final sys-
tem has one input data and two output data, the goal is to find a subset
of the given components such that all the requirements are satisfied con-
sidering the optimisation criteria specified above. The set of requirements
SR = {r1, r2} (view as provided interfaces {p1, p2}) and the set of compo-
nents SC = {c0, c1, c2, c3, c4, c5, c6, ..., c90} are given. The final system has as
input data (transformed in required interfaces) the set {r3}.

Remark. Due to lack of space the component repository is not described
in this paper but may be found at [16].

5.1.1. Experimental studies - Case 1: Dynamically changing requirements. As
in the case of the first case study, we consider two types of dynamics and, con-
sequently two experiments corresponding to each of them: the requirements
of the problem change over time, and the components available at a certain
time step change.

The algorithm was run 30 times and the number of nondominated solutions
and the number of distinct nondominated solutions were recorded for all situa-
tions. Also, the cost and the number of distinct used components in a solution
were logged. Also, the best, worse and average fitness values were recorded
for all situations.

22 ANDREEA VESCAN

Table 1. Wilcoxon statistical test for Case Study 1 - changing
requirements experiment.

L-T W− W+ Wtest N Wcritic H0 H1 p-value

L1-T0 -46 254 46 24 81 × X 0.00298
L1-T1 -1 464 1 30 137 × X 0.00000
L1-T2 -46 389 46 29 126 × X 0.00020
L2-T0 -172 38 38 20 52 × X 0.01242
L3-T0 -269.5 55.5 55.5 25 89 × X 0.00560

Three different time steps are built using artificially generated data and the
dynamics at each of these steps are: T0=The initial requirements, T1=Add
one new requirement, T2=Add one new requirement.

Performed experiments.
The role of the performed test was to see if the number of iterations and the

population size play a role in finding the Pareto solutions. The conclusions
about the findings of this type of experiments are given in Section 5.1.3.

Multilevel configurations. The compound components from level 1 are
constructed by applying the same algorithm but with different requirements
and input data. For the Second Level of the system the set of required inter-
faces is {r11, r15} and the set of provided interfaces is {p2}. For the Third
Level of the system the set of required interfaces is {r15} and the set of pro-
vided interfaces is {p17, p18}. The conclusions about the findings of this type
of experiments are given in Section 5.1.3.

Remark. We have not presented the charts regarding the influence of
population size or iteration number in finding the Pareto solutions, because we
have concentrated our findings in comparing the algorithms using the Wilcoxon
statistical test.

Wilcoxon statistical test.
In Section 4 we have described in details the Wilcoxon statistical test that

we have used to compare our Genetic Algorithm with the Random Search
Algorithm. In Table 1 the test results for the Case Study 1 - Dynamically
Changing Requirements are shown.

The Wilcoxon statistical test (see Table 1) shows that we have statistically
significant evidence at α = 0.05 to show that the median is positive, i.e. the
H0 Null-Hypothesis is rejected in favor of H1 for all levels and for all time
steps.

5.1.2. Experimental studies - Case 2: Dynamically changing components. As
in the first case study, the repository containing components changes over time.

DYNAMIC MULTILEVEL COMPONENT SELECTION 23

This modification of the available components may be seen as an update of
the COTS market, new components being available or other being withdrawn
from the market.

Four different time steps are built using artificially generated data and the
dynamics at each of these steps are: T0= The initial components, T1= Add
two new components, T2= Remove one component and add one new compo-
nent, T3= Remove one component.

Performed experiments.
The aim of the performed tests is the same as in the first case study: to

see if the number of iterations and the population size play a role in find-
ing the Pareto solutions. The conclusions about the findings of this type of
experiments are given in Section 5.1.3.

Multilevel configurations. The compound components are next con-
structed by applying the same algorithm but with different requirements and
input data. For the second level of the system the set of required interfaces
is {r11, r15} and the set of provided interfaces is {p2}. For the second level
we have two time steps: T1= No modifications of the component repository,
T2= Adding two new components.

For the third level of the system the set of required interfaces is {r15} and
the set of provided interfaces is {p17, p18}. The conclusions about the find-
ings of this type of experiments are given in Section 5.1.3. For the third level
we have three time steps: T1= No modifications of the component reposi-
tory , T2= Adding two new components and removing two old components,
T3=Removing three old components and adding one new component.

Remark. We have not presented the charts regarding the influence of
population size or iteration number in finding the Pareto solutions, because we
have concentrated our findings in comparing the algorithm using the Wilcoxon
statistical test.

Wilcoxon statistical test.
In Section 4 we have described in details the Wilcoxon statistical test that

we have use to compare our Genetic Algorithm with the Random Search Al-
gorithm. In Table 2 we have the test results for the Case Study 2 - Dynamic
Changing Components.

The Wilcoxon statistical test (see Table 2) shows that we have statistically
significant evidence at α = 0.05 to show that the median is positive, i.e. the
H0 Null-Hypothesis is rejected in favor of H1 for all levels and for all time
steps.

5.1.3. Case Report 3. The role of the conducted experiments had two direc-
tions: the first one was to see if the number of iterations and the population
size play a role in finding the Pareto solutions. The second direction was

24 ANDREEA VESCAN

Table 2. Wilcoxon statistical test for Case Study 2 - changing
components experiment.

L-T W− W+ Wtest N Wcritic H0 H1 p-value

L1-T0 -110 325 110 29 126 × X 0.02034
L1-T1 -53 298 53 26 98 × X 0.00188
L1-T2 -65 286 65 26 98 × X 0.01468
L1-T3 -56 350 56 28 116 × X 0.00800
L2-T0 -152.5 39 39 19 46 × X 0.02088
L2-T1 -197 56 56 22 65 × X 0.02202
L3-T0 0 465 0 30 137 × X 0.00000
L3-T1 0 78 0 12 13 × X 0.00222
L3-T2 0 120 120 30 137 × X 0.00064

to find out how and why do Search-based Algorithms (in our case a Genetic
Algorithm and a Random Search Algorithm) provide different results for the
Dynamic Multilevel Component Selection Problem.

According to the experiment presented in Section 5, subsection 5.1.1 and
5.1.2, outline of the results (regarding the influence of iterations number and
population size in finding the Pareto solutions) are the same as in the first
case study.

According to the Wilcoxon statistical test values presented in Section 5,
subsection 5.1.1 and 5.1.2, the outline of the results (regarding the different
results obtained by the Genetic Algorithm and by the Random Search Algo-
rithm) is as follows:

• We have statistically significant evidence at α = 0.05, to show that
the median difference is positive, i.e. the Null-Hypothesis is rejected,
in favor to H1.

5.2. Summary Report. As stated in Section 3 to generalize from a case
study to theory, the analytic generalization should be used. If two or more
cases are shown to support the same theory, replication [5] may be claimed.
Our replication strategy used time steps for the the dynamic changing require-
ments (Level 1) and for the dynamic changing components (Level 1, 2, and
3).

The time steps were modified according to Table 3: the number of time
steps were modified for each case study, and also the number or require-
ments/components modified for each time step.

In first case study we have used 4 time steps for the changing requirements
experiment and 3 for the second case study, respectively 5 time steps for

DYNAMIC MULTILEVEL COMPONENT SELECTION 25

Table 3. Replication strategy - time steps for each conducted
case study

Case study 1 [1] Case study 2 [2] Case study 3 (cur-
rent paper)

Changing requirements
T1=init req. T1=init req. T1=init req.
T2= +1R T2=+1R T2=+1R
T3= -1R and +1R T3=+1R T3=+1R
T4= +1R T4= T4=-1R
T5= T5= T5=+1R

Changing components

Level 1 Level 1 Level 1
T1=init comp. T1=init comp. T1=init comp.
T2= +2C T2=+2C T2=+2C
T3= -1C T3=-1C and +1C T3=
T4= -1C and +1C T4=-1C T4=
T5= +3C T5= T5=
Level 2 Level 2 Level 2
T1=init comp. T1=init comp. T1=init comp.
T2= +2C T2=+2C T2=+3C and -3C
T3= +3C and -1C T3= T3= +2C
T4= T4= T4= +1C and -1C
Level 3 Level 3 Level 3
T1=init comp. T1=init comp. T1=init comp.
T2= +2C T2=+2C and -2C T2=+2C and -2C
T3= -2C T3= -3C and +1 C T3= +1C and -1C
T4= +2C and -1C T4= T4= +1C and -2C

the third case study. Regarding the changing components experiment we
have used different time steps for all three levels of the case studies: 3 to
5 time steps for the first case study, 2 to 4 time steps for the second case
study, and 2 to 4 time steps for the third case study. Also, the number of
requirements/components to be changed were considered for variation: either
adding or removing 1 to 3 elements. Thus, our replications altered one or two
experimental conditions considered unimportant to the original findings, to
see whether the findings could still be duplicated. With such replications [5]
the original finding should be considered robust.

Each case’s conclusions are next considered for the summary report.

26 ANDREEA VESCAN

For each individual case, the report ([1, 2] and current paper, Section 5.1)
indicated that the proposition from Section 5 was demonstrated, i.e. “The
Search-based Algorithms (in our case a Genetic Algorithm and a Random
Search Algorithm) provided different results for the Dynamic Multilevel Com-
ponent Selection Problem because in the case of Genetic Algorithm the fitness
of a solution is reevaluated.”

Regarding the research question from Section 5, i.e. “How and Why do
Search-based Algorithms (in our case a Genetic Algorithm and a Random
Search Algorithm) provide different results for the Dynamic Multilevel Com-
ponent Selection Problem?”, the conclusions sustained by the conducted case
studies is that the Genetic Algorithm provides better results than the Random
Search Algorithm for the Dynamic Multilevel Component Selection Problem
and that we have statistically significant evidence at α = 0.05.

6. Related work analysis and discussion

This section presents the current state of art regarding the component selec-
tion problem and analyzes the differences compared with our present approach.
Component selection methods are traditionally done in an architecture-centric
manner. One approach was proposed [20], where the authors present a method
for simultaneously defining software architecture and selecting off-the-shelf
components.

Another type of component selection approach is built around the rela-
tionship between requirements and components available for use. Paper [19]
proposes a comparison between a Greedy algorithm and a Genetic Algorithm.
The discussed problem considers a realistic case in which cost of components
may be different. In relation to existing component selection methods, our ap-
proach aims to achieve goals similar to [18, 17]. The [18] approach considers
selecting the component with the maximal number of provided operations.
The algorithm in [17] considers all the components to be previous sorted ac-
cording to their weight value. Then all components with the highest weight
are included in the solution until the budget bound has been reached.

All the above approaches did not considered the multilevel structure of a
component-based system. They all constructed the final solution as a one
level system. Our previous research has studied the problem of multilevel
component selection considering multilevel configuration [25]. The proposed
evolutionary multiobjective approach provided a way of finding the “best”
solution out of a set of solutions.

Various genetic algorithms representations were proposed in [26, 27]. The
authors proposed an optimization model of software components selection for

DYNAMIC MULTILEVEL COMPONENT SELECTION 27

CBSS development. The proposed methodology involves some subjective judg-
ments from software development team, such as determination of the score of
interactions and the function ratings. We argue that our model differs by
the fact that components interactions are computed automatically based on
required and provided component interface specification. Also, regarding the
function ratings (that describe the degrees of functional contributions of the
software components towards the software modules), our approach discovers
automatically the constituent components for each module of the final system.

In [12] a hybrid approach for multi-attribute QoS optimization of component-
based software systems has been proposed. The approach is able to exploit
the approximated analytical Pareto front providing a larger number of solu-
tions with a more accurate estimate of performance and availability metrics.
In relation to this existing approach, ours aims to achieve similar goals, being
capable of obtaining multiple solutions in a single run and it can be scaled to
any number of components and requirements.

Another perspective refers to updating/adding/removing one/many require-
ments (components) from an already constructed system [24]. Our previous
research regarding this perspective was proposed in [15]. How to deal effi-
ciently with the design of systems that are able to evolve overtime and adapt
to rapid changes of their requirements was investigated in [14]. They pro-
posed some metrics definitions that are able to quantify and evaluate such
software adaptability at the architectural level. Our current approach consid-
ers dynamic modifications of the requirements of the final system, investigating
different ways of modifying the requirements, by adding new requirements or
deleting existing ones.

A similar approach considering evolution of software architecture was pro-
posed by [4]. It suggests the best actions to be taken according to a set of new
requirements. They associate to the evolution of a new requirement a set of
plans to be applied. The model select the best available evolution plan such
that it minimizes the evolution cost under reliability and performance con-
straints. In relation to this approach, our current approach also discovers the
optimal solution minimizing the final cost when new requirements are needed,
and it also considers the case that the component repository changes over time
(that was not included in the [4] study.)

In the course of experiments during the evaluation, a number of limitations
of the dynamic multilevel component selection algorithm became apparent.
First, it does not take into consideration many factors, which are effective
in component selection, such as performance and reliability. However, it is
possible to extend the algorithm to consider other factors. The quality factors
(other than cost), mapped to some existing component-based metrics may be

28 ANDREEA VESCAN

included in the fitness function of the genetic algorithm. Or the values of the
metrics may assess the final obtained solutions, offering the architect a range of
solutions with various measurements of a quality attribute or for many quality
attributes.

The second limitation refers to the NP-complete problem of the component
selection problem, therefore, like other existing methods, the proposed algo-
rithm cannot guarantee to achieve an optimal solution (using the Pareto dom-
inance principle it might be difficult to always find solutions which are better
than the ones already found). However, we have introduced a supplementary
condition for comparing two solutions which are nondominated among them
(will prefer the one for which the aggregation of all of the objectives values
lower).

7. Conclusion

The contribution of this paper is the use of the case study method and the
research design from the book of Yin [5] to validate our research proposal for
the Dynamic Multilevel Component Selection Problem [2].

We have conducted three different experiments. The first one was reported
in [1], and the second one in [2]. The current paper reports the third exper-
iment. Following the replication approach to multiple-case studies [5], each
individual case study was finalized by an individual case report that will be
next considered to be part of a summary report, i.e. a cross-case conclusions.
Thus, in our case the results obtained are reported and conclusions about the
potential of evolutionary algorithms for the dynamic multiobjective multilevel
component selection problem are drawn.

The Wilcoxon statistical test was used to compare our Genetic Algorithm
approach with a Random Search Algorithm: we have statistically significant
evidence at α = 0.05 to show that the median is positive, i.e. we obtain
better results with our approach. The tests performed show the potential of
evolutionary algorithms for this particular problem and for other similar ones.

Work-in-progress is devoted to improve the proposed approach in various
ways. First, we are integrating the approach with the approach from [13]: to
use fuzzy clustering to group similar components in order to select the best
candidate.

Ongoing work focuses on the integration of metrics to asses the quality of
the obtained solutions. We plan to integrate the evaluation of the final level
configurations (an approach that is published in [3]) in the current approach by
computing metrics values and assess and select the best solution architecture.

DYNAMIC MULTILEVEL COMPONENT SELECTION 29

References

[1] A. Vescan, An Evolutionary Multiobjective Approach for the Dynamic
Multilevel Component Selection Problem, The First International Work-
shop on Big Data Services and Computational Intelligence, in conjunc-
tion with ICSOC, 193–204, 2016.

[2] A. Vescan, Case Study Method and Research Design for the Dynamic
Multilevel Component Selection Problem, The First International Work-
shop on Big Data Services and Computational Intelligence, in conjunc-
tion with ICSOC, 130–141, 2016.

[3] A. Vescan, C. Serban, Multilevel component selection optimisation to-
wards an optimal architecture, Soft Computing Journal (accepted De-
cember 2016).

[4] V. Cortellessa and R. Mirandola and P. Potena Managing the evolu-
tion of a software architecture at minimal cost under performance and
reliability constraints, Science of Computer Programming, no. 98, pp.
439–463, 2015.

[5] Robert K. Yin Case Study Research: Design and Methods, SAGE Pub-
lications, 2009.

[6] J. Derrac and S. Garcia and D. Molina and F. Herrera, A practical
tutorial on the use of nonparametric statistical tests as a methodology
for comparing evolutionary and swarm intelligence algorithms, Swarm
and Evolutionary Computation, no. 1, pp. 3–18, 2011.

[7] Arcuri and L. Briand, A practical guide for using statistical tests to assess
randomized algorithms in software engineering, The 33rd International
Conference on Software Engineering, 1–10, 2011.

[8] M. Harman and P. McMinn and J. Teixeira de Souza and S. Yoo Search
Based Software Engineering: Techniques, Taxonomy, Tutorial , Empiri-
cal Software Engineering and Verification, no. 7007, pp. 1–59, 2012.

[9] L. Iribarne and J.M. Troya and A. Vallecillo, Selecting Software Com-
ponents with Multiple Interfaces, The 28th EUROMICRO Conference
Component-Based Software Engineering, 26–32, 2002.

[10] Christoph Becker and Andreas Rauber Improving component selection
and monitoring with controlled experimentation and automated measure-
ments, Information and Software Technology, no. 6, pp. 641–655, 2010.

[11] M. A. Khan and S. Mahmood A graph-based requirements clustering
approach for component selection, Adv. Eng. Software, no. 54, pp. 1–16,
2012.

[12] A. Martens and R.Mirandola and D. Ardagna and R. Reussner and H.
Koziolek, A Hybrid Approach for Multi-Attribute QoS Optimisation in
Component Based Software Systems, Proc. of the QoSA, 84–101, 2010.

30 ANDREEA VESCAN

[13] A. Vescan, C. Grosan, A new Component Selection Algorithm Based on
Metrics and Fuzzy Clustering Analysis, Proceedings of the 4th Interna-
tional Conference on Hybrid Artificial Intelligence Systems, pp. 621–628,
2009.

[14] D. P. Palacin and R. Mirandola and J. Merseguer Software Architecture
Adaptability Metrics for QoS-based Self-Adaptation, Proc. of the QoSA,
pp. 171–176, 2011.

[15] A. Vescan .and Grosan, C. and Shengxiang Yang A hybrid evolutionary
multiobjective approach for the dynamic component selection problem ,
Proc. of the 11th International Conference on Hybrid Intelligent Systems
(HIS), pp. 714–721, 2011.

[16] A. Vescan and C. Serban etails on case study for the dy-
namic multilevel component selection optimisation approach,
http://www.cs.ubbcluj.ro/˜avescan/?q=node/178, 2016.

[17] P. Baker and M. Harman and K. Steinhofel and A. Skaliotis Search
Based Approaches to Component Selection and Prioritization for the
Next Release Problem, Software Maintenance, The 22nd IEEE Inter-
national Conference on, pp. 176–185, 2006.

[18] M. R. Fox and D. C. Brogan and P. F. Reynolds Approximating Com-
ponent Selection, Software Maintenance, Proceedings of the 36th Con-
ference on Winter Simulation, pp. 429–434, 2004.

[19] N. Haghpanah, S. Moaven, J. Habibi, M. Kargar, S. H. Yeganeh, Approx-
imation Algorithms for Software Component Selection Problem, APSEC
conference, pp. 159–166, 2007.

[20] E. Mancebo, A. Andrews, A strategy for selecting multiple components,
SAC ’05: Proceedings of the 2005 ACM symposium on Applied comput-
ing, pp. 1505–1510, 2005.

[21] A. Abraham and L. Jain and R. Goldberg Evolutionary Multiobjective
Optimization: Theoretical Advances and Applications, Springer Verlag,
2005.

[22] C. Grosan A comparison of several evolutionary models and represen-
tations for multiobjective optimization, ISE Book Series on Real Word
Multi-Objective System Engineering, chapter 3, Nova Science, 2005.

[23] I. Crnkovic, M. Larsson, Building Reliable Component-Based Software
Systems, Artech House publisher, 2002.

[24] L. Wei QoS Assurance for Dynamic Reconfiguration of Component-
Based Software Systems, IEEE Transactions on Software Engineering,
no. 38(3), pp. 658–676, 2012.

[25] A. Vescan and C. Grosan Evolutionary multiobjective approach for mul-
tilevel component composition, Studia Univ. Babes-Bolyai, Informatica,

DYNAMIC MULTILEVEL COMPONENT SELECTION 31

no. LV(4), pp. 18–32, 2010.
[26] C.K. Kwong and L.F. Mu and J.F. Tang and X.G. Luo Optimization

of software components selection for component-based software system
development , Computers and Industrial Engineering, no. 58(1), pp. 618–
624, 2010.

[27] P.C. Jhaa and V. Balib and S. Narulaa and M. Kalra Optimal component
selection based on cohesion and coupling for component based software
system under build-or-buy scheme, Journal of Computational Science,
no. 5(2), pp. 233–242, 2014.

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: avescan@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 1, 2017
DOI: 10.24193/subbi.2017.1.03

A FILTER-BASED DYNAMIC RESOURCE MANAGEMENT

FRAMEWORK FOR VIRTUALIZED DATA CENTERS

CORA CRĂCIUN AND IOAN SALOMIE

Abstract. Data centers adapt their operation to changing run-time con-
ditions using energy-aware and SLA-compliant resource management tech-
niques. In this context, current paper presents a novel filter-based dynamic
resource management framework for virtualized data centers. By choos-
ing and combining properly software filters performing the scheduling and
resource management operations, the framework may be used in what-if
analysis. The framework is evaluated by simulation for deploying batch
best-effort jobs with time-varying CPU requirements.

1. Introduction

High energy consumption and low Quality of service (QoS) are the main
problems in data centers. Service providers aim to reduce the energy consump-
tion, while the users demand high performance at low cost. Moreover, data
centers are dynamic systems in which the users’ requests and resource avail-
ability are time-varying. Therefore, data centers must adapt their operation
to run-time conditions using appropriate scheduling and resource management
strategies [22].

In this context, we present a novel filter-based dynamic resource manage-
ment framework for virtualized data centers. The framework extends the
Haizea lease scheduler (version 1.1) [15, 24, 26] and may assess the energy
and performance efficiency of different resource management techniques. The
framework uses software filters to perform the job scheduling, resource allo-
cation, and virtual machines’ migration operations in data centers. A data

Received by the editors: February 1, 2017.
2010 Mathematics Subject Classification. 68M14, 68M20.
1998 CR Categories and Descriptors. C.2.4 [Computer-Communication Net-

works]: Distributed Systems – Network operating systems; C.4 [Computer Systems Or-
ganization]: Performance of Systems – Design studies.

Key words and phrases. Filter-based framework, Dynamic resource management,
Virtualization.

32

RESOURCE MANAGEMENT FRAMEWORK FOR VIRTUALIZED DATA CENTERS 33

center may adapt to run-time conditions by properly replacing and combin-
ing the filters. Current work uses CPU-related filters, but similar software
components may be defined for other physical resources.

Presently, the framework has some limitations. For instance, it does not take
into account the performance degradation when more virtual machines (VMs)
are migrated simultaneously from or to the same physical machine. In addi-
tion, the framework considers the following simplified resource management
scenarios and data center configurations: resource allocation policies with job
queuing in which the jobs wait until they receive all required resources, single-
core processing units, overloaded but not underused host management, small
size homogeneous data centers, a single constraining physical resource (CPU),
simultaneously arrived jobs at the data center, periodic change of the VMs’
resource requirements, off-line VM migration as implemented in Haizea. The
framework, however, is extensible with other filters, algorithms, or resource
allocation policies.

The paper is structured as follows. Next section presents other investiga-
tions related to our dynamic resource management approach. Sect. 3 presents
the filter-based framework and the scheduling, resource allocation, and host
management filters. The framework is evaluated by simulation in Sect. 4, for
different resource allocation policies including First Fit (FF), Best Fit (BF)
and their decreasing forms, and the Gaussian-type policies defined in reference
[7]. Final section summarizes current work.

2. Related work

Different resource management frameworks for clusters, grids, or cloud en-
vironments have been developed in the last years. Many of them use virtu-
alization for dynamic resource provisioning. pMapper is a framework for vir-
tualized heterogeneous clusters, which minimizes the electrical power and the
VMs migration costs with performance guarantees [27]. The framework uses
different VM-to-host mapping algorithms based on variants of the FFD heuris-
tic. Unlike pMapper, our framework has been evaluated only for best-effort
VMs, and for this case, it does not offer performance guarantees. Entropy
consolidates the VMs in homogeneous clusters using constraint programming
[16]. Compared to our work, this framework considers both CPU and memory
as constraining resources, manages not only the overloaded but also the un-
derused hosts, and has been evaluated in real environments. The framework
presented in current paper, on the other hand, provides scheduling facilities,
by means of Haizea, and queuing options. The GREEN-NET framework re-
duces the energy consumption in large scale distributed systems by switching

34 CORA CRĂCIUN AND IOAN SALOMIE

off the unused physical resources, by aggregating the reservations, or by pre-
dicting next reservations based on history [6]. OpenNebula is an open-source
virtual infrastructure manager for private or public IaaS clouds [20, 24]. Two
extensions of this framework address issues such as energy consumption (the
Green Cloud Scheduler [14]) or advance reservation (the Haizea scheduler [15])
in data centers. Haizea is a resource manager used either as a simulator or as a
backend VM scheduler for OpenNebula [15, 23, 24, 25, 26]. Haizea defines dif-
ferent types of leases implemented as virtual machines [26], uses off-line VMs
migration, and considers the VM management time overheads. Our filter-
based framework extends Haizea with new VM scheduling, resource allocation,
and host management policies, and computes energy and performance-related
quantities for virtualized data centers. CloudSim is an event-based simulation
toolkit for private and hybrid virtualized cloud systems [4, 5]. The Cloudsim’s
core has been extended with a power package [1, 2, 3] and an interconnec-
tion network model of a cloud data center [11]. The power package contains
different energy-aware VM placement algorithms and uses power models for
specific server architectures. Our modular approach to solving the resource
management problem in data centers is close to the work presented in [2] using
CloudSim. OpenStack is a cloud operating system providing virtualized com-
puting resources to the users [21]. The resource allocation method presented in
current paper has similarities with the OpenStack’s filtering procedure. This
procedure selects the eligible hosts with the largest weighted cost scores for
allocating the VMs.

3. The filter-based framework

3.1. Framework design. The filter-based dynamic resource management
framework (Fig. 1) uses software filters to perform the VM scheduling, re-
source allocation, and host management activities. We assume that a virtual
machine has already been provisioned to each job arrived at the data center.
A job is a request addressed to a batch application or a workflow to a web
service. All jobs arrive at the data center simultaneously. The jobs’ CPU
requirements are time-varying and not known in advance. The job-to-VM
mapping is one-to-one and the resource requirements of the VM and the job
coincide. The virtualized jobs have been assimilated to the Haizea’s best-effort
leases. Henceforth, we mainly refer to the virtual machines instead of jobs.

A virtual machine is mapped on a physical machine if it receives all re-
sources required at mapping time. The CPU capacity needed for a specified
duration is the single constraining resource for the VM-to-host mapping. More
VMs may simultaneously share a physical machine if their cumulated resource

RESOURCE MANAGEMENT FRAMEWORK FOR VIRTUALIZED DATA CENTERS 35

IV
(t

0)
S

V
(t

q
)

…
F

o
-V

M

S
V

(t
q
)

L
IS

T S
E

T

V
M

i

(V
M

i,H
u
)

V
M

 S
c

h
e

d
u

li
n

g
a

n
d

 R
e

s
o

u
rc

e
 A

ll
o

c
a

ti
o

n

S
V

1(t
q)

S
V

u
(t

q
)

…

S
us
pe
nd
ed
V
M
s

o
ve
rl
o
a
d
e
d

o
ve
rl
o
a
d
e
d

H
o

st
s

co
lle

ct
io

n

……

S
V

(t
1
)

F
s

c-
V

M
F

1
(H

u,[V
M

i])
 -

 m
a

x

F
p
-H

F
2(H

v,V
M

j)
-

m
a

x

F
m
-V

M
-H (V

M
j,H

v)

V
M

i

Fsu-VM-Hu

… …

V
M

k

Fsu-VM-H1

……

V
M

j

Fsu-VM-Hv

… …

IV
(t

0)
S

V
(t

1)
S

V
(t

q)

…

S
V

(t
1)

…

IV
(t

0)
S

V
(t

q)

V
M

s
co

lle
ct

io
n

H
o

s
t

M
a

n
a

g
e

m
e

n
t

D

H
1

H
u

H
v

F
ig

u
r
e

1
.

T
h

e
fi

lt
er

-b
a
se

d
d

y
n

a
m

ic
re

so
u

rc
e

m
an

ag
em

en
t

fr
am

ew
or

k
.

N
o
ta

ti
o
n

s:
I
V

(t
0
)

-
th

e
su

b
co

ll
ec

ti
on

o
f

in
it

ia
l

V
M

s;
S
V

(t
1
),

..
.,
S
V

(t
q
)

-
th

e
su

b
co

ll
ec

ti
o
n

s
o
f

su
sp

en
d

ed
V

M
s;
H

1
,

H
u
,
H

v
-

p
h
y
si

ca
l

m
a
ch

in
es

(h
os

ts
);

V
M

k
,

V
M

i,
V

M
j

-
v
ir

tu
al

m
ac

h
in

es
;

F
sc

-V
M

-
th

e
V

M
sc

h
ed

u
li

n
g

fi
lt

er
,
F
o
-V

M
-

th
e

V
M

o
rd

er
in

g
fi

lt
er

,
F
p
-H

-
th

e
h

os
t

p
ro

v
is

io
n

in
g

fi
lt

er
,
F
m

-V
M

-
H

-
th

e
V

M
-t

o
-h

o
st

m
ap

p
in

g
fi

lt
er

,
F
su

-V
M

-H
u

-
th

e
V

M
su

sp
en

d
in

g
fi

lt
er

fo
r

h
o
st
H

u
;
F

1
an

d
F

2
-

re
so

u
rc

e
a
ll

o
ca

ti
o
n

fu
n

ct
io

n
s;

D
-

d
is

p
at

ch
er

36 CORA CRĂCIUN AND IOAN SALOMIE

requirements do not exceed the available resources. At run-time, selected VMs
from the overloaded hosts are suspended for rescheduling.

The framework gathers all virtual resources in a VMs collection,
{VMj}j=1,...,NV

, and the physical resources in a Hosts collection, {Hu}u=1,...,NH

(Fig. 1). The individual VMs and hosts have unique identifiers (ID). The VMs
collection is structured in time-labeled subcollections, which are scheduled in
the increasing order of their time label. The first subcollection, IV (t0), con-
tains the VMs provisioned to the jobs arrived at the data center at the initial
time t0. Next subcollections, SV (tq) (q = 1, 2, . . .), contain the VMs suspended
at times tq from all overloaded hosts.

The filters (Fig. 1) perform constraint or policy-based operations. The
VM scheduling filter, Fsc-VM, decides whether the VM subcollections are
represented as lists or as sets. The VM ordering filter, Fo-VM, optionally
sorts the VM lists by a specified criterion. The difference between the VM
lists and VM sets is that the VM lists are already ordered at scheduling time,
while the VM sets are not. The VMs from VM lists are scheduled, if possible,
in their queuing order. The VMs from VM sets, on the other hand, are mapped
on hosts in an order depending on the required and the available resources.
The host provisioning filter, Fp-H, allocates resources to the VMs from VM
lists, and the VM-to-host mapping filter, Fm-VM-H, allocates resources to
the VMs from VM sets. The Fp-H filter selects the destination host for an
already chosen VM, by maximizing a resource allocation function F1 depending
only on the host’s usage. The Fm-VM-H filter, on the other hand, selects
the (VM , host) pairs from a pool of VMs and a pool of hosts, such that to
maximize a resource allocation function F2. This two-dimensional function
depends both on the VMs’ required and the hosts’ available resources. Finally,
the VM suspending filter, Fsu-VM-Hu, suspends VMs from the overloaded
host Hu.

The framework executes the resource management activities in a repeated
way. The timing for framework operation is presented in Table 1. Next sections
describe the main activities of the filter-based framework.

3.2. VMs scheduling. At each scheduling time τs (Table 1), the framework
tries to schedule the virtual machines present in the VMs collection. The
scheduling policy is different for VM lists and VM sets.

3.2.1. Scheduling of VM lists. The VM lists are optionally sorted by the VM
ordering filter Fo-VM (Fig. 1). Examples of sorting the lists decreasingly by
the VMs’ CPU request are presented in the framework evaluation section. If
the initial VM list IV (t0) is ordered, then its VMs having the same property
according to the ordering criterion are sorted increasingly by their ID. If the

RESOURCE MANAGEMENT FRAMEWORK FOR VIRTUALIZED DATA CENTERS 37

Table 1. The timing for framework operation

Time Description

t0 the arrival time for all jobs

{tp}p=1,2,... the times when the VMs’ CPU requirements are changed (pe-
riodic with time period T0: tp = t0 + pT0) and when the host
management is performed

td = nT0, n ∈ Z+ the CPU time required by each VM

{tq}q=1,2,... the times when overloaded hosts are detected; {tq}q=1,2,... is a
subset of {tp}p=1,2,...

{τs}s=1,2,... the VM scheduling times (periodic with time period T0/2 or
triggered by any event1 in data center); include {tp}p=1,2,...

1 Examples of events: VMs’ suspension, migration, resumption, completion

suspended VM lists are ordered, on the other hand, then the ties are broken
by sorting the VMs increasingly, first by their last host ID and then by the
VMs’ own ID value, in case of common host.

The framework uses two scheduling policies for VM lists, FLIST and NLIST.
These policies behave differently when the next VM in the VMs collection can
not be scheduled due to lack of physical resources. At each scheduling time τs,
the framework using the FLIST policy schedules the VMs one by one, until it
encounters a VM that can not be scheduled. In this case, the FLIST policy
postpones the entire scheduling process for the next scheduling time. FLIST
resembles the First-Come First-Served (FCFS) scheduling policy. However,
for FLIST, the VMs from the same subcollection have a common time label
and are optionally ordered, while FCFS considers the VMs in the order of
their arrival time. The FLIST policy is useful when strict ordering is com-
pulsory, for example when the VMs encapsulate the web services of a business
process. For unrelated VMs, FLIST has the same drawbacks as FCFS: (a)
the VMs with low resource requirements may be delayed by VMs with high
requirements and (b) the VMs that need more processors may cause resource
fragmentation [8, 18].

Unlike FLIST, when the next VM can not be scheduled, the NLIST policy
tries to schedule the other VMs from the same subcollection as the first one.
The process continues until the subcollection is completely scheduled and then
is repeated for the next subcollections. The NLIST policy uses a list scanning
procedure that resembles the List Scheduling algorithms for independent tasks,
with no imposed partial ordering [13]. Nevertheless, in case of NLIST, the

38 CORA CRĂCIUN AND IOAN SALOMIE

VMs’ ordering at subcollection level does not depend on time as it does for
List Scheduling.

3.2.2. Scheduling of VM sets. At scheduling level, no ordering is imposed on
VM sets. The VM-to-host mapping module presented in the next section
decides the VMs’ ordering in this case. As for VM lists, the VM sets are
scheduled completely in the increasing order of their time label. The VM sets
may model, for example, bag-of-tasks applications with independent tasks
executed in parallel.

3.3. Resource allocation. The framework uses different policies (presented
in Sect. 3.3.2) to provision physical resources to the virtual machines. For
VM lists, the scheduling and ordering filters have already decided the order
in which the VMs are mapped on hosts. On contrary, for VM sets, the order
depends both on the VMs’ requirements and the hosts’ available resources,
and is decided by the resource allocation filters.

3.3.1. Resource allocation filters. The host provisioning filter, Fp-H (Fig. 1),
allocates physical resources to the VMs from VM lists. This filter maximizes
a resource allocation function F1(Hv, [VMi]), v = 1, . . . , NH , to find the desti-
nation host Hv for an already selected virtual machine VMi. The VM-to-host
mapping filter, Fm-VM-H, on the other hand, provisions physical resources
to the VMs from VM sets. For each VM set, the mapping filter chooses
iteratively the (VM , host) pairs that maximize a resource allocation function
F2(Hv, V Mj), v = 1, . . . , NH and j = 1, . . . , n (n is the set size). The searching
process is exhaustive and finds a global solution to the optimization problem.

3.3.2. Resource allocation policies. This section presents the resource alloca-
tion policies currently used by the framework: (a) the reference First Fit and
Best Fit policies and their decreasing forms (FFD and BFD), and (b) the
Gaussian-type policies G1 and G2 defined in [7]. All policies may be used for
VM lists. A variant of the BFD policy is also defined for VM sets and the G2
policy is mainly used for this type of VM subcollections.

Let denote by RCPU a VM’s required CPU share and by TCPU, UCPU,
and ACPU a host’s total, used, and respectively available CPU resources
(TCPU = UCPU + ACPU). All hosts are identical and have a unique processor
with TCPU = 100% (the CPU quantities are considered in percents, which is
numerically more efficient). A VM may be assigned only to a feasible host (a
host with ACPU ≥ RCPU) and only if it receives all required resources. If no
such host exists, the VM remains in the waiting queue until a feasible host is
found.

RESOURCE MANAGEMENT FRAMEWORK FOR VIRTUALIZED DATA CENTERS 39

The First Fit policy assigns each VM from a list to the lowest-indexed
feasible physical machine from the Hosts collection [12]. This policy uses an
F1-type resource allocation function, which takes the constant value 1 for any
feasible host and the value 0 for the other hosts. The FFD policy uses the same
resource allocation function as FF, but the VM lists are sorted decreasingly
by the VMs’ CPU request. The VM ordering filter, Fo-VM, performs this
sorting operation at scheduling level, by maximizing a function equal to RCPU.

The Best Fit policy maps each VM from a list to the host with the minimal
remained unused resources after allocation [12]. Since the current VM to be
mapped on hosts has been chosen at scheduling time (its RCPU value is known),
we define the F1-type BF resource allocation function as 1/ACPU for the fea-
sible hosts and 0 for the other hosts. The BFD and BF policies use the same
resource allocation function for VM lists, but the lists are additionally sorted
decreasingly for BFD. At its turn, the BFD policy for VM sets uses an F2-type
resource allocation function, which is RCPU/ACPU for the feasible hosts and 0
for the other hosts. This function resembles the weight factor defined for some
FFD and BFD-type heuristics proposed in the multi-dimensional Vector Bin
Packing context [10, 17].

Two Gaussian-type resource allocation policies, G1 and G2, have been de-
fined in reference [7]. These policies consolidate the VMs on physical resources
in a less greedy way than FF and BF, but more tightly than load balancing
methods. The G1 resource allocation policy is used by the host provisioning
filter Fp-H (Fig. 1) for VM lists. A given VM is assigned to the feasible
host which maximizes the G1(UCPU) Gaussian function. This function de-
pends only on the host usage and has adjustable location and width [7]. On
contrary, the G2 policy may be used either by the host provisioning filter Fp-
H, for VM lists, or by the VM-to-host mapping filter Fm-VM-H, for VM
sets. In case of VM lists, the G2 policy finds the destination host for already
selected VMs, by maximizing the F1-type function G2([RCPU], ACPU), with
fixed RCPU and variable ACPU. In case of VM sets, the G2 policy selects
the feasible (VM , host) pairs that maximize the F2-type two-variable function
G2(RCPU, ACPU) [7].

3.4. Host management. The resource requirements of the VMs deployed on
physical resources are time-varying. Therefore, at run-time, some physical ma-
chines may be underused and others overloaded. VMs migrations have proved
efficient for host management in both cases [2]. Currently, the framework con-
siders only the case of overloaded hosts; the case of underused hosts remains
as future work. A host is overloaded when the total CPU requirements of its
VMs exceed the host’s CPU resources (UCPU > TCPU). In real conditions,

40 CORA CRĂCIUN AND IOAN SALOMIE

however, the lower limit for hosts’ overloading may be some percent from the
total CPU capacity, such as 80%TCPU.

The framework performs the host management at each time tp (Table 1),
when the VMs’ CPU requirements are changed. The hosts are verified for
possible overloading in increasing order of their ID. Then, the VM suspending
filters (Fig. 1) select the VMs to be suspended from each identified overloaded
host. For example, if the host Hu is overloaded at time tq (Table 1), then
the Fsu-VM-Hu filter suspends a subset SVu(tq) from its VMs. The VMs
suspended from all overloaded hosts are collected into the SV (tq) subcollec-
tion. This subcollection is then appended to the VMs collection. When the
suspended VMs are rescheduled, they are either resumed on the same hosts or
are migrated to other hosts, depending on the result of the resource allocation
process.

Haizea, the underlying scheduler of the filter-based framework, uses “cold”
(off-line) VM migration. The VMs to be relocated are first suspended on
the initial hosts, then migrated, and finally resumed on the new hosts. The
applications encapsulated in the migrating VMs are completely stopped and
restarted at the new location. The migration time is calculated as the ratio
between the size of the VM’s memory image and the network bandwidth.

The VM suspending filters may use different policies. In our previous work
[7], we have evaluated the policy suspending the VMs with the lowest CPU
requests from the overloaded hosts. This policy was combined with the FF,
BF, and Gaussian-type resource allocation methods. Here we test two other
policies, denoted by H and L. The H -policy suspends the VMs of an overloaded
host in the decreasing order of their CPU required share. This policy reduces
the number of VMs migrations, but the migrated VMs have high resource
requirements at the destination hosts. Algorithms migrating VMs with high
resource requirements or with high values of some metrics have been presented
for example in references [2, 28, 29]. At its turn, the L-policy suspends some
VMs with low CPU requirements, but not necessarily the lowest. To our
knowledge, the L-policy has not been previously used in this form, but related
variants exist in the literature, for example the iFFD algorithm in [27] or the
HPG algorithm in [2].

The steps of the host management process at any time tp, p = 1, 2, . . .,
are presented in Algorithm 1. As in reference [2], for both VM suspending
policies, the algorithm tries first to suspend a single VM from each overloaded
host (Algorithm 1, line 5), in order to minimize the VM migration number.
Only the feasible VMs (the VMs not finishing their work in the next time
period T0) are potential candidates for suspension (line 4). The H -policy
selects the VM with the highest CPU request and the L-policy the VM with

RESOURCE MANAGEMENT FRAMEWORK FOR VIRTUALIZED DATA CENTERS 41

the lowest one, but greater than the overload. In each case, the ties are broken
by selecting the VM with the smallest ID.

If a single VM is not able to eliminate the host overload (SV u at line 5 in
Algorithm 1 is the emptyset), then more VMs are suspended from that host.
The H -policy sorts the host’s VMs decreasingly by their CPU request (line
8, with SUSP = H) and selects as many VMs as necessary to eliminate the
overload. On contrary, the L-policy sorts the VMs increasingly by their CPU
request (line 8, with SUSP = L) and then uses two steps for VMs suspension.
First, the policy selects the VMs in order until their cumulated CPU request
exceeds the host’s overload (lines 9–16). This means that by removing the
selected VMs, ACPU becomes greater than or equal to zero. Second, the list of
selected VMs is scanned backwards and the VMs which are still not causing
the host overload are restored (lines 17–28). The VMs suspended from each
overloaded host are appended to the SV list (line 30). Finally, this list is
sorted (lines 33–37) as explained in Sect. 3.2.1.

3.5. Resource management compound filters. A compound filter is a
chain of filters able to perform all resource management operations for VMs
deployment on physical resources. The compound filters evaluated in this
paper are presented in Table 2. Their VM ordering, host provisioning, and
VM-to-host mapping filters maximize the indicated objective functions, while
the VM scheduling and VM suspending filters use the specified policies. The
FF, BF, G1, and G2 compound filters for VM lists assign the VMs to the hosts
by using the host provisioning filter Fp-H. The FFD and BFD compound
filters additionally sort the VM lists before resource allocation, with the VM
ordering filter Fo-VM. The BFD and G2 compound filters for VM sets allocate
physical resources using the VM-to-host mapping filter Fm-VM-H.

4. Framework evaluation

In this section, we present the results of evaluating the framework by simu-
lation, for a set of batch jobs arrived simultaneously at the data center. A vir-
tual machine was provisioned to each job. Simulation experiments consisted in
processing 40 VMs with time-varying CPU requirements in two environments:
one with sufficient physical resources (20 hosts) and the other with insuffi-
cient resources (8 hosts). In the (40VM,20H) case, the NLIST and FLIST
scheduling policies were equivalent.

A trace of CPU requests lasting for td = 500 min was generated for each VM.
The CPU requirements of the active VMs were changed periodically based on
their trace, at times tp = t0 + pT0, for p = 1, 2, . . . and T0 = 2 min (Table 1).
The active VMs were the ones deployed on physical machines and not waiting
in queue for free resources. The VMs’ CPU required shares (in percents) were

42 CORA CRĂCIUN AND IOAN SALOMIE

Algorithm 1 Management of overloaded hosts

Input: Hosts - the host collection, {Hu}u=1,...,NH

VMs - the VM collection, {VMj}j=1,...,NV

ORDER - ordering option (Decreasing, None) for Fo-VM
SUSP - suspending policy (L, H) for Fsu-VM-H

Output: SV - suspended VMs from all overloaded hosts

1: SV ← ∅
2: for all Hu ∈ Hosts do
3: if Hu.availableCPU < 0 then
4: AV u ← Hu.feasibleActiveVMs
5: SV u ← choseOneVM(AV u, SUSP)
6: if SV u = ∅ then
7: sortIncreasingByVmID(AV u)
8: sortBySuspensionOption(AV u,SUSP)
9: for all VM i ∈ AV u do

10: if Hu.availableCPU < 0 then
11: appendVM(SV u,VM i)
12: Hu.availableCPU ← Hu.availableCPU +VM i.requiredCPU
13: else
14: break
15: end if
16: end for
17: if SUSP = L then
18: i← SV u.size
19: while i ≥ 1 do
20: VM i ← getVmByIndex(SV u,i)
21: temp ← Hu.availableCPU −VM i.requiredCPU
22: if temp ≥ 0 then
23: Hu.availableCPU ← temp
24: removeVM(SV u,VM i)
25: end if
26: i← i− 1
27: end while
28: end if
29: end if
30: appendVmList(SV ,SV u)
31: end if
32: end for
33: sortIncreasingByVmID(SV)
34: sortIncreasingByHostID(SV)
35: if ORDER = Decreasing then
36: sortDecreasingByVmRequiredCPU(SV)
37: end if
38: return SV

RESOURCE MANAGEMENT FRAMEWORK FOR VIRTUALIZED DATA CENTERS 43

Table 2. Resource management compound filters1

```````````Compound filter
Filter Scheduling Resource allocation Host management

Fsc-VM Fo-VM Fm-VM-H Fp-H Fsu-VM-H

FF-fZ FLIST - - 1 Z = L or H
FF-nZ NLIST - - 1 Z = L or H

FFD-fZ FLIST RCPU - 1 Z = L or H
FFD-nZ NLIST RCPU - 1 Z = L or H

BF-fZ FLIST - - 1/ACPU Z = L or H
BF-nZ NLIST - - 1/ACPU Z = L or H

BFD-fZ FLIST RCPU - 1/ACPU Z = L or H
BFD-nZ NLIST RCPU - 1/ACPU Z = L or H
BFD-sZ SET - RCPU/ACPU - Z = L or H

G1-fZ FLIST - - G1 Z = L or H
G1-nZ NLIST - - G1 Z = L or H

G2-fZ FLIST - - G2 Z = L or H
G2-nZ NLIST - - G2 Z = L or H
G2-sZ SET - G2 - Z = L or H

1 FF - First Fit, FFD - First Fit Decreasing, BF - Best Fit, BFD - Best Fit Decreasing, G1 and G2
- Gaussian-type filters (the G1 filter uses the G1 resource allocation function and G2 uses G2);

Fsc-VM - the VM scheduling filter (uses the FLIST, NLIST, or SET policy), Fo-VM - the VM

ordering filter (optionally orders the VMs decreasingly by their RCPU value), Fm-VM-H - the
VM-to-host mapping filter (uses an F2-type resource allocation function), Fp-H - the host

provisioning filter (uses an F1-type resource allocation function), Fsu-VM-H - the VM suspending

filter (uses the L or H policy); RCPU - the VM CPU request, ACPU - the host available CPU.

random numbers generated uniformly between 10 and 40 and then rounded up
to the closest integer value. This range of values ensured some variation among
the VMs’ CPU traces and favored the hosts’ overloading, of interest for our
study. In the migration process, the VM memory image was off-line migrated,
with no disk image transfer. The VMs were suspended by saving their memory
state on the filesystem at a rate of 32 MB/s [25, 15]. The VMs’ resumptions
were performed at the same rate. The suspension and resumption needed 4
s each and the copy of the VM memory image other 11 s. In simulations,
the same total delay of 19 s was considered for all suspended VMs, either
migrated or later resumed on the same hosts. The Haizea’s restrictions have
been relaxed, more VMs being allowed to migrate simultaneously from or
to the same physical machine, with no performance overhead. Simulation
experiments have been repeated 100 times. All compound filters used identical
environment conditions and CPU traces within the same experiment.



44 CORA CRĂCIUN AND IOAN SALOMIE

F
F

−
fL

F
F

−
n
L

F
F

D
−

fL
F

F
D

−
n
L

B
F

−
fL

B
F

−
n
L

B
F

D
−

fL
B

F
D

−
n
L

B
F

D
−

s
L

G
1
−

fL
G

1
−

n
L

G
2
−

fL
G

2
−

n
L

G
2
−

s
L

2
3
.0

2
3
.5

2
4
.0

2
4
.5

E
n
e
rg

y
 (

k
W

h
)

F
F

−
fL

F
F

−
n
L

F
F

D
−

fL
F

F
D

−
n
L

B
F

−
fL

B
F

−
n
L

B
F

D
−

fL
B

F
D

−
n
L

B
F

D
−

s
L

G
1
−

fL
G

1
−

n
L

G
2
−

fL
G

2
−

n
L

G
2
−

s
L

7
0
0

8
0
0

9
0
0

M
ig

ra
ti
o
n
s

a

Figure 2. Boxplot representation of the consumed energy and
the VM migration number for the (40VM,8H) configuration,
L-suspending policy, and FLIST, NLIST and SET scheduling
policies, in 100 simulation experiments.

The resource management policies presented in this paper were compared
using the following metrics: the energy consumed by the physical machines,
the VMs’ total flow time (the sum of all VMs’ processing times), the num-
ber of VMs migrations, and the mean number of active hosts for the entire
makespan. The VMs migrations and the VMs suspensions with resumption
on the same hosts were counted independently. We considered that the total
electrical power of each physical machine depended linearly on its CPU usage
[9]. Moreover, the idle power represented 70% of the total power of 250 W at
full CPU utilization [1]. We assumed that the hosts were switched off when
they became idle. In all experiments, the G1 resource allocation function used
the parameters ThrL = 40, ThrH = 80, and a = 0.8, as defined in reference
[7], and the G2 function used the parameters α = 0.5 and r = 0.001.

Simulation results are presented in Figures 2 and 3. The boxplots contain
boxes from the first to the third quartile of data, whiskers extending to the
most extreme data point, but not further than 1.5 times the interquartile range
[19], the data’s median value (the horizontal line), the mean value (the full
knot, possibly overlapped by the median’s line), and outliers (the open knots).
Based on these results, we made the following observations:

(a) VM scheduling policy. In the (40VM,8H) configuration, for the same
type of compound filter, the average energy consumption was slightly smaller
for the NLIST scheduling policy than for the FLIST policy, but with a slightly
higher average VM migration number (Fig. 2). The SET scheduling policy
was closer in outcome either to NLIST (for BFD) or to FLIST (for G2). For
example, the median energy consumption and VM migration number were



RESOURCE MANAGEMENT FRAMEWORK FOR VIRTUALIZED DATA CENTERS 45

E
n
e
rg

y
 (

k
W

h
)

M
ig

ra
ti
o
n
s

A
c
ti
v
e
 h

o
s
ts

F
lo

w
 t
im

e
 (

h
)

2
3
.0

2
4
.0

2
5
.0

5
0
0

7
0
0

9
0
0

6
.8

7
.2

7
.6

F
F

−
n
L

F
F

D
−

n
L

B
F

−
n
L

B
F

D
−

n
L

B
F

D
−

s
L

G
1
−

n
L

G
2
−

n
L

G
2
−

s
L

F
F

−
n
H

F
F

D
−

n
H

B
F

−
n
H

B
F

D
−

n
H

B
F

D
−

s
H

G
1
−

n
H

G
2
−

n
H

G
2
−

s
H

4
6
0

4
8
0

5
0
0

2
6

2
8

3
0

3
2

3
4

1
0
0

3
0
0

5
0
0

1
3

1
5

1
7

1
9

F
F

−
n
L

F
F

D
−

n
L

B
F

−
n
L

B
F

D
−

n
L

B
F

D
−

s
L

G
1
−

n
L

G
2
−

n
L

G
2
−

s
L

F
F

−
n
H

F
F

D
−

n
H

B
F

−
n
H

B
F

D
−

n
H

B
F

D
−

s
H

G
1
−

n
H

G
2
−

n
H

G
2
−

s
H

3
3
3
.5

3
3
4
.5

3
3
5
.5

3
3
6
.5

(a)                   (b)

E
n
e
rg

y
 (

k
W

h
)

M
ig

ra
ti
o
n
s

A
c
ti
v
e
 h

o
s
ts

F
lo

w
 t
im

e
 (

h
)

Figure 3. Boxplot representation of the energy and perfor-
mance metrics for the (a) (40VM,8H) and (b) (40VM,20H)
configurations, L and H suspending policies, and NLIST and
SET scheduling policies, in 100 simulation experiments.

23.54 kWh and 856 for BFD-fL, 23.27 kWh and 902 for BFD-nL, and 23.29
kWh and 905 for BFD-sL.



46 CORA CRĂCIUN AND IOAN SALOMIE

(b) Metrics. The average VM migration number and the average energy
consumption had opposite behavior. A more energy efficient compound filter
was less efficient regarding the number of VMs migrations. Moreover, the
relative average behavior of the compound filters was similar for the consumed
energy and flow time in the (40VM,8H) configuration (Fig. 3a), but similar
for the VM migration number and flow time in the (40VM,20H) configuration
(Fig. 3b).

(c) Compound filters. The Gaussian-type compound filters were less energy-
efficient than the FF, FFD, BF, and BFD compound filters, but generated a
lower number of VMs migrations (Fig. 3). For example, in the (40VM,20H)
configuration, the median energy consumption and VM migration number
were 26.35 kWh and 513 for BFD-nL, 26.74 kWh and 365 for G1-nL, and
28.90 kWh and 168 for G2-nL.

(d) Suspended VMs. In the (40VM,8H) configuration, 11–14% from the total
number of VMs suspensions were resumed later on the same hosts, without
relocation. However, the compound filters’ relative average behavior was not
much affected qualitatively when considering all suspended VMs instead of
only migrated ones.

(e) VM suspending policy. In both configurations and for all compound
filters, the H -suspending policy caused a higher energy consumption and fewer
VMs migrations than the L-suspending policy (Fig. 3). In the (40VM,20H)
configuration, for instance, the median energy consumption and VM migration
number were 26.35 kWh and 513 for BFD-nL, but 27.89 kWh and 267 for
BFD-nH.

5. Conclusions

This paper has presented a filter-based dynamic resource management frame-
work for virtualized environments. The framework uses resource management
filters to perform the VM scheduling, resource allocation, and host manage-
ment operations in data centers. The framework may be used to assess the en-
ergy and performance efficiency of different resource management techniques.
The framework has been evaluated by simulation, for deploying virtual ma-
chines with time-varying CPU requirements, in small size environments with
sufficient and insufficient physical resources. Since the resource management
filters may be combined in the desired way, the framework may be included
in autonomous systems and may be used in what-if analysis.

Acknowledgments

The authors would like to thank the anonymous reviewers for their sugges-
tions and comments, which improved the paper.



RESOURCE MANAGEMENT FRAMEWORK FOR VIRTUALIZED DATA CENTERS 47

References

[1] A. Beloglazov, R. Buyya, Adaptive threshold-based approach for energy-efficient consoli-
dation of virtual machines in cloud data centers, in Proceedings of the 8th International
Workshop on Middleware for Grids, Clouds and e-Science (MGC’10), 2010, pp. 4:1-4:6.

[2] A. Beloglazov, J. Abawajy, R. Buyya, Energy-aware resource allocation heuristics for
efficient management of data centers for cloud computing, Future Gener. Comput. Syst.,
28 (2012), pp. 755-768.

[3] A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and adaptive heuris-
tics for energy and performance efficient dynamic consolidation of virtual machines in
cloud data centers, Concurr. Comput.: Pract. Exper., 24 (2012), pp. 1397-1420.

[4] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya, CloudSim:
a toolkit for modeling and simulation of cloud computing environments and evaluation
of resource provisioning algorithms, Software: Practice and Experience, 41 (2011), pp.
23-50.

[5] CloudSim. http://www.cloudbus.org/cloudsim/
[6] G. Da Costa, J.-P. Gelas, Y. Georgiou, L. Lefevre, A.-C. Orgerie, J.-M. Pierson, O.

Richard, K. Sharma, The GREEN-NET framework: Energy efficiency in large scale
distributed systems, in Proceedings of the 2009 IEEE International Symposium on Par-
allel & Distributed Processing (IPDPS’09), 2009, pp. 1-8.

[7] C. Crăciun, I. Salomie, Gaussian-type resource allocation policies for virtualized data
centers, Studia Univ. Babeş-Bolyai, Informatica, LXI(2) (2016), pp. 94-109.

[8] L. Eyraud-Dubois, G. Mounié, D. Trystram, Analysis of scheduling algorithms with
reservations, in Proceedings of the IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS’07), 2007, pp. 1-8.

[9] X. Fan, W.-D. Weber, L. A. Barroso, Power provisioning for a warehouse-sized com-
puter, in Proceedings of the 34th annual International Symposium on Computer archi-
tecture (ISCA’07), 2007, pp. 13–23.

[10] M. Gabay, S. Zaourar, Variable size vector bin packing heuristics - Application to the
machine reassignment problem, Inria, TechReport hal-00868016 (OSP. 2013). Available
online: http://hal.archives-ouvertes.fr/hal-00868016.

[11] S. K. Garg, R. Buyya, NetworkCloudSim: Modelling parallel applications in cloud sim-
ulations, in Proceedings of the 2011 4th IEEE International Conference on Utility and
Cloud Computing (UCC’11), 2011, pp. 105-113.

[12] M. R. Garey, R. L. Graham, J. D. Ullman, An analysis of some packing algorithms, R.
Rustin, ed., Combinatorial Algorithms, Algorithmics Press, New York, 1973, pp. 39-47.

[13] R. L. Graham, Bounds for certain multiprocessing anomalies, Bell System Technical
Journal, 45 (1966), pp. 1563-1581.

[14] Green Cloud Scheduler. http://coned.utcluj.ro/GreenCloudScheduler/
[15] Haizea. http://haizea.cs.uchicago.edu/
[16] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, J. Lawall, Entropy: a consolidation

manager for clusters, in Proceedings of the 2009 ACM SIGPLAN/SIGOPS International
Conference on Virtual execution environments (VEE’09), 2009, pp. 41-50.

[17] S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubramanian, K. Talwar, L. Uyeda,
U. Wieder, Validating heuristics for virtual machines consolidation, Microsoft Re-
search, TechReport MSR-TR-2011-9, Jan 2011. Available online: http://research.

microsoft.com/pubs/144571/virtualization.pdf



48 CORA CRĂCIUN AND IOAN SALOMIE

[18] A. W. Mu’alem, D. G. Feitelson, Utilization, predictability, workloads, and user runtime
estimates in scheduling the IBM SP2 with backfilling, IEEE Trans. Parallel Distrib. Syst.,
12 (2001), pp. 529-543.

[19] The R Project for Statistical Computing. http://www.r-project.org/
[20] OpenNebula. http://www.opennebula.org/
[21] OpenStack. http://www.openstack.org/
[22] I. Salomie, T. Cioara, I. Anghel, D. Moldovan, G. Copil, P. Plebani, An energy aware

context model for green IT service centers, Service-Oriented Computing. Lecture Notes
in Computer Science 6568, Springer, Berlin, 2011, pp. 169-180.

[23] B. Sotomayor, K. Keahey, I. Foster, Combining batch execution and leasing using virtual
machines, in Proceedings of the 17th International Symposium on High performance
distributed computing (HPDC’08), 2008, pp. 87-96.

[24] B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster, An open source solution for vir-
tual infrastructure management in private and hybrid clouds, IEEE Internet Computing,
Special Issue on Cloud Computing, 2009.

[25] B. Sotomayor, R. S. Montero, I. M. Llorente, I. Foster, Resource leasing and the art of
suspending virtual machines, in Proceedings of the 11th IEEE International Conference
on High Performance Computing and Communications (HPCC-09), 2009, pp. 59-68.

[26] B. Sotomayor Basilio, Provisioning computational resources using virtual machines and
leases, PhD Dissertation, Univ. of Chicago, Illinois, USA, 2010.

[27] A. Verma, P. Ahuja, A. Neogi, pMapper: power and migration cost aware application
placement in virtualized systems, in Proceedings of the 9th ACM/IFIP/USENIX Inter-
national Conference on Middleware (Middleware’08), 2008, pp. 243-264.

[28] T. Wood, P. Shenoy, A. Venkataramani, M. Yousif, Sandpiper: Black-box and gray-box
resource management for virtual machines, Comput. Netw., 53 (2009), pp. 2923-2938.

[29] H. Zhang, K. Yoshihira, Y.-Y. Su, G. Jiang, M. Chen, X. Wang, iPOEM: A GPS tool for
integrated management in virtualized data centers, in Proceedings of the 8th IEEE/ACM
International Conference on Autonomic Computing (ICAC’11), 2011, pp. 41-50.

Department of Computer Science, Technical University of Cluj-Napoca, Ro-
mania; Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: cora.craciun@phys.ubbcluj.ro

Department of Computer Science, Technical University of Cluj-Napoca, Ro-
mania

E-mail address: Ioan.Salomie@cs.utcluj.ro



STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 1, 2017
DOI: 10.24193/subbi.2017.1.04

MACHINE LEARNING TECHNIQUES FOR DETECTING

FALSE SIGNATURES

MIHAI TELETIN

Abstract. Deciding whether a handwritten signature is legit or it has
been falsified is a very complex task. Several methods have been tried out
by the graphology experts in order to detect such fraud. However, it is
obvious that it is very hard to perform such a classification. In this paper
we investigate the possibility to use some supervised learning techniques
in order to build models capable to accurately perform such an analysis.
The results reported during the testing phase of the obtained model are
encouraging for further work.

1. Introduction

Determining the authenticity of signatures is quite an old task. From an
algorithmic point of view, even though the solution for this problem was re-
searched for a long time, a state of the art solution does not exist. Furthermore,
designing a computational algorithm to cover the experience of a trained eye
of a graphology expert may seem impossible.

Obviously, in some cases this problem may be considered a very critical one.
For examples, high costly frauds can be avoided if it can be proven that they
are based on forger signatures.

Considering that this task is a very complex one and that an outstanding
experience of an expert is needed in order to perform such a discrimination,
we can say that the problem can be tackled using learning methodologies.
Designing such a complex algorithm from scratch may be much harder and
may not manage to highlight all the corner cases. However, machine learning
approaches are known to be very easily adaptable to changes [10] and are
relatively easier to be used when solving complex problems.

Received by the editors: April 26, 2017.
2010 Mathematics Subject Classification. 68T05, 62M45.
1998 CR Categories and Descriptors. I.2.6 [Computing Methodologies]: Artificial

Intelligence – Learning ; I.2.8 [Computing Methodologies]: Artificial Intelligence – Prob-
lem solving .

Key words and phrases. Machine learning, Convolutional neural networks, Support vec-
tor machines, Classification, Signature verification.

49



50 M. TELETIN

The aim of this paper is to present a machine learning approach proposed for
this binary classification, to highlight its performance by testing it against new,
unseen data. We consider that supervised learning approaches can contribute
very well in the area of research focused on this task. Furthermore, recent
research has shown that deep learning methods can be successfully applied in
this area of research [13][4]. Thus, we propose a method to solve the signature
verification problem by using a powerful existing feature extractor which is
based on deep convolutional networks. The method proposed in this paper is
novel since it combines a powerful trainable classifier that is the support vector
machine with the well known convolutional pretrained model.

The remaining of the paper is structured as follow: in Section 2 we are going
to present the problem from a machine learning perspective and to highlight
its difficulty. In Section 3 we briefly describe the models used for the task,
the support vector machine on top of the convolutional network based feature
extractor. A short overview of the related work is also presented in Section
3.2. Our approach is then presented in Section 4. We will explain our training
and testing methodologies. The performance of the model is then analysed in
Section 5. Finally, the conclusions of the work are outlined in Section 6.

2. Problem Relevance and Difficulty

The specialists in the domain of graphology have developed an amazing
sense of truth when dealing with an amazing diversity of signatures. While
some of them can easily be classified by any amateur, there are lots of amaz-
ingly imitated signatures that can only be classified as forgery by a trained
eye. Also, we can also have authentic signatures that look strange and may
fool even an expert to decide that it looks like a false one.

Even though the graphologists are recognized for performing really well
this classification, computer scientists have tried to come up with algorithmic
approaches that can assist the experts for taking this decision. However, trying
to define a set of rules capable to reproduce the natural behaviour of experts
is a very challenging task.

Nevertheless, a proper solution for defining an algorithm to recognize such
signatures can be expressed by Machine learning approaches. We are going to
highlight that supervised learning approaches such as support vector machines
combined with convolutional neural networks can prove that this problem is
solvable obtaining some good results. In this supervised learning scenario, the
model will improve its performance using a training set consisting of already
classified images of signature. This problem will be viewed from a machine
learning perspective as a binary classification problem.



MACHINE LEARNING TECHNIQUES FOR DETECTING FALSE SIGNATURES 51

Classification is one type of problem which can be solved in a supervised
manner. The aim is to learn to develop approximation functions for an un-
known function called target function. Classification deals with functions that
produce discrete output (a finite set of values, in our case the true classes:
legit and forgery).

For the presented classification problem, we are going to learn to directly
classify images of signatures. For doing so we will use a pretrained feature
extractor that is capable to determine a set of relevant features by processing
the images. Using this set of features, we can train our own model capable to
solve the discussed problem.

3. Background

3.1. Machine learning models used. In this section we are going to briefly
present the proposed machine learning models used in order to perform the
classification, the support vector machine and the convolutional neural net-
work. Furthermore we are going to summarise some of the related work.

3.1.1. Convolutional neural networks. Research results have shown that the
full automatic models such as convolutional neural networks give much more
better performance than performing manual feature extraction [9]. In the
classical approach the system was split in two subsystems:

• feature extraction module - a module which processes the given shape
(the raw input), performs diverse heuristics and produces the feature
vector which is considered to describe best the image;
• trainable classifier module - a module which learns to classify the

data using the feature vector as input.

The main problem of this approach is that its performance is directly de-
cided by the ability of the extraction module to come up with relevant and
correct sets of features [11][9]. Moreover, this module is usually implemented
from scratch, making the task of feature extraction very complicated.

One of the main reason for which this approach was no longer considered
was the development of more powerful machine learning models which could
easily handle high-dimensional input values [9]. It is now preferred to build a
full model which extracts features by itself from the data and learns to predict
the desired class. However, data preprocessing process specific to the problem
may always be needed in order to increase performance [9].

A much better approach is a model capable to associate proper classes given
an almost raw input (e.g. an image). Basically, this system will have to learn
by itself to perform the feature engineering.

Convolutional neural networks are special types of neural networks mainly
used for problems which require working with huge number of features. Unlike



52 M. TELETIN

simple neural networks, they tend to manage well feature sets that are cor-
related. One of their main possible applications is image classification. This
is due to the fact that the images are made of several hundred or thousands
pixels, having all the pixels in a neighbourhood highly correlated [9].

A convolutional architecture contains some special types of layers that are
capable to process complex input space: convolutional layers and subsampling
layers [9]. Each of these layers are composed of several feature maps capable
to learn to extract different relevant features [9]. The main advantage of
these networks is that they can easily adapt to several different problems.
Thus, one of the domains were they are successfully applied is computer vision
[9][15][11][13].

3.1.2. Support vector machine. The support vector machine (SVM) is a su-
pervised learner introduced by Cortes and Vapnik [2]. The original model was
intended to be used for binary classification. The main goal of the SVM is to
search for the optimal separating hyperplane among data in order to perform
the classification. By finding the optimal separating hyperplane, the model is
minimizing the risk to misclassify new, unseen data.

In most cases the data on which the model is trained is not linearly separa-
ble. In this case the SVM model is extended in order to support soft margins
[10]. By doing so we introduce a mapping function, named kernel. The ker-
nel function is used to map the input space into a higher dimensional space,
where a linear separating hyperplane may be computed. The linear separation
in the high dimensional space will lead to a non-linear decision boundary in the
(lower dimensional) input space [10]. Several kernel functions are available in
the literature and usually used for non-linear SVMs: linear kernel, polynomial
kernel, sigmoid kernel, radial basis function (RBF) kernel. Furthermore, the
SVM is enhanced with a new hyperparameter, C, the misclassification param-
eter. This hyperparameter lets SVM intentionally misclassify some training
data in order to improve the performance on testing [10].

3.2. Related work. One of the first approaches tested on the dataset that
we are using for our models was introduced in [6]. It represents a method
based on statistical analysis of the features expressed by the signatures. The
approach is intended to extract multiple features from images and to compute
the probability of belonging in the two discussed classes. The approach was
further discussed and extended in [5].

Classification using neural networks and different feature engineering tech-
niques are presented in [8]. The authors try to identify and to eliminate the
weak points of the process of analyzing and classifying signatures.



MACHINE LEARNING TECHNIQUES FOR DETECTING FALSE SIGNATURES 53

Machine learning approaches are discussed in [14]. The approach uses sta-
tistical learning methods in order to learn to predict the class based on the
similarity of the features between the known samples and the new ones.

Deep learning approaches including Restricted Boltzman Machines were
used in [13]. The authors have developed a verification system for this task
built on a two-step hybrid classifier system. They have proven that deep learn-
ing methods are capable to learn very well to extract relevant features with
very limited prior knowledge.

4. The proposed approach

We consider that this problem is solvable in a supervised manner since we
can use already annotated datasets of images of signatures. In this learning
scenario, the model will learn to detect whether an image contains a legit
signature or a false one, by analyzing such already annotated examples.

Our approach consists of three steps. First, a feature extraction step is
applied on the input data. For this step we are using the Tensor flow inception
graph pretrained model [15]. This model was developed by Google and it
represents a very complex convolutional neural network which is composed of
59 layers. The model was trained on a considerable set of images and was
capable to obtain state of the art accuracies on very complex problems, such
as ImageNet classification [15]. So, instead of training a new convolutional
neural network, we intend to use this pretrained model as feature extractor.

The next step consists of training a classifier on the pre-processed data.
More specifically, using the features extracted from our dataset of signatures
we aim to build a classifier that will learn to identify the forger signatures
based on such input data. A Support Vector Machine classifier will be used
for discriminating between original and false signatures. The trained SVM
will be then tested in order to evaluate its performance.

In the following we will detail the steps of our approach.

4.1. Feature extraction. Our dataset consists of annotated images of signa-
tures. From a mathematical point of view, a colored image can be viewed as
a 3 dimensional matrix, containing the values of the pixels in the RGB code.
Obviously, the dimensionality of such data is huge. Thus, directly applying a
learner such as SVM may be impossible.

Feature extractors are intended to analyze such huge input spaces and come
up with a drastically lower set of features which are as representative as pos-
sible for the original input space.

We intend to integrate the previously highlighted model, inception as fea-
ture extractor. By doing so, we use the model in order to extract the desired



54 M. TELETIN

set of features, named bottleneck features. This name suggests that the fea-
tures are coming from the latter layers of the model, making them as abstract
as possible.

4.2. Training. On the set of extracted features, a SVM is trained. In order to
do so, we take all the available samples in the dataset and we apply the feature
extractor. Furthermore, the obtained set of instances (vectors of features) is
split in 2 sets: training and testing.

In order to train the model, several hyperparameters are used, such as C,
the kernel function, the parameters of the kernel (e.g. γ for the RBF kernel).
For optimizing the hyperparameters, a grid search is performed in order to find
the best suited ones on a 10-fold cross validation approach. The grid search
performs repeated trials for each parameter across a specified interval using
geometric steps. The quality of a combination is computed as the average of
the accuracy rates estimated for each of the 10 divisions of the dataset.

4.3. Testing. The performance of the trained SVM model will be tested on
a testing set completely disjoint from the training dataset. The testing phase
will be performed on unseen data.

Since the considered problem is a binary classification one, the confusion
matrix will be computed. For building the confusion matrix and computing the
measures, we consider that the forger signatures are representing the positive
class while the negative class is represented by the original ones. A large
number of different performance metrics can be computed from the confusion
matrix. The accuracy (Acc) (Formula 1) is often used, but it is not suitable
in the case of imbalanced datasets.

(1) Acc =
TP + TN

TP + TN + FP + FN

For better evaluating the performance in case of imbalanced data, the Area
under the ROC curve (AUC) measure [3] is used in the literature as a more
relevant evaluation measure. For our classifier, the output is directly the class
label, thus on the ROC curve there is one single (Pf, Pd) point that can be
linked to the (0, 0) and (1, 1) points and the area under this curve can be
computed using Formula 2.

(2) AUC = (1− Pf) ∗Recall +
Pf ∗Recall

2
+

(1− Pf) ∗ (1−Recall)
2

In Formula (2), the recall also known as probability of detection (Pd) is
computed as Recall = TP

TP+FN and the probability of false alarm (Pf) is

Pf = FP
FP+TN . F-measure will also be reported as an evaluation measure for



MACHINE LEARNING TECHNIQUES FOR DETECTING FALSE SIGNATURES 55

the classification task. It is computed as the harmonic mean of precision and
recall, as shown in Formula (3). The precision of the classification is expressed
as Precision = TP

TP+FP .

(3) F −measure =
2 · Precision ·Recall
Precision+Recall

We report both the accuracy and the confusion matrix related measures
because by doing so we can easier interpret the performance of the model.
Moreover, since the testing set is imbalanced, these measures can be considered
very important.

5. Results and discussion

In this section we start by presenting the experimental results obtained by
applying the approach introduced in Section 4 on a publicly available dataset
of images representing signatures.

5.1. Dataset and parameters setting. The dataset used in our experi-
ments is free and publicly available [7]. It consists of 4000 annotated samples
from which 800 are forgeries. In order to construct the dataset, several persons
were asked to write down their own signature. Furthermore, another person
was asked to try to replicate the original signature.

In the dataset we have multiple signers each of them having the original
signature and some forgeries. We intend to train our model in order to dis-
tinguish between the two signature types, forgery and original in an offline
manner [6]. The available set can help the model to generalize since it consists
of both forgeries and original samples coming from several persons.

The feature extraction step (Section 4.1) is first applied. The set of bottle-
neck features extracted from our images consists of 2048 positive real num-
bers, lower than 1. The pre-processed dataset will be then used for training
the SVM.

The following sequences are used for optimizing the hyperparameters C
and γ: C ∈ {1, 5, 10, 100, 1000} and γ ∈ {1e− 1, 1e− 2, 1e− 3, 1e− 4, 1e− 5}.
The following kernels are candidates for the grid search: linear, polynomial,
sigmoid and RBF.

The best hyperparameters which were chosen by analysing the results from
the grid search are:

• kernel: RBF
• C=5
• γ=1e-2



56 M. TELETIN

5.2. Results. For our experiments we have used the scikit-learn implementa-
tion of SVM [12]. 80% of the dataset was reserved for training and on these
instances we performed a training methodology which mainly consisted of a
SVM grid search over the training set. The testing methodology described in
Section 4.3 was applied on the trained SVM using the rest of the dataset. The
obtained accuracy (Acc) was 95.1%. For the obtained accuracy we compute
the 95% Confidence Interval (CI) [1] as given in Formula (4).

(4) CI(Acc) = 1.96 ·
√
Acc · (1−Acc)

n

where n represents the number of samples in the testing set. Accordingly, the
95% confidence interval is computed as follow: [Acc−CI(Acc), Acc+CI(Acc)].
For our experiment, the reported 95% CI for the accuracy on the testing set
is [0.935, 0.966]. Thus, there is a 95% confidence that the accuracy of our
classifier ranges in the confidence interval.

The confusion matrix from Table 1 provides a better overview on the per-
formance of the proposed model.

Forgery Original Total

Signatures
Forgery 132 23 155
Original 12 548 560

Total 144 571 715
Table 1. Confusion matrix

The AUC measure computed for our classifier is 0.92 and the F-measure is
0.88. These values express a very good performance for the proposed classi-
fication model.

The dataset was reshuffled in order to repeat the random split for the train-
ing and testing sets. The proposed experiment was repeated 20 times in order
to analyze the evolution of the AUC measure. We observe in Table 2 a low
value for the standard deviation, as well as close AUC values for the minimum
and maximum AUC reported during the 20 runs. Some of the ROC curve out-
comes can be visualised in Figure 1. The random classifier (having an AUC
of 0.5) is represented in Figure 1 by the dotted red line.

min max median mode mean stdev
AUC 0.88 0.94 0.90 0.91 0.90 0.0148
Table 2. Experimental results for 20 experiments



MACHINE LEARNING TECHNIQUES FOR DETECTING FALSE SIGNATURES 57

Figure 1. ROC curve outcomes for multiple experiments

We illustrate in Table 3 a brief comparison between our approach introduced
in Section 4 and the similar related work described in Section 3.2. An exact
comparison can be made only with the approaches from Kovari and Charaf
[6][5], since they use for evaluation the same dataset as our case study. The
other two approaches from [14] and [13] report results on other datasets, thus
the comparison is not entirely relevant.

# Approach Performance Our approach

1 Statistical analysis [6][5] 89% 95%± 0.015
2 Statistical learning[14] 84% –
3 Deep learning[13] 85.03%± 14.25 –

Table 3. Comparison to related work based on the accuracy
evaluation measure.

If we look only to the performance measure of the approaches described
in Table 3, we observe that our approach is comparable to the related work.



58 M. TELETIN

Moreover, the 95% CI obtained by our approach is very small, compared to
the one from [13], and this proves again the performance of our model.

6. Conclusions and further work

In this paper we have presented a machine learning method based on a fea-
ture extractor that can be successfully used in solving the signature verification
problem. Considering the good results, we may say that we have confirmed
again that this complex task is suitable for machine learning solving.

Further work consists in extending the experiment on multiple benchmark
datasets in order to have a better overview of the capability of the proposed
method. Building a convolutional neural network from scratch will be also
considered.

References

[1] L.D. Brown, T.T. Cai, and A. DasGupta. Interval Estimation for a Binomial Proportion
(with discussion). Statistical Science, 16(2):101–133, 2001.

[2] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[3] Tom Fawcett. An introduction to ROC analysis. Pattern Recogn. Lett., 27(8):861–874,
2006.

[4] Mohsen Fayyaz, Mohammad Hajizadeh Saffar, Mohammad Sabokrou, and Mahmood
Fathy. Feature representation for online signature verification. CoRR, abs/1505.08153,
2015.

[5] Bence Kovari and Hassan Charaf. Analysis of intra-person variability of features for
off-line signature verification. W. Trans. on Comp., 9(11):1359–1368, November 2010.

[6] Bence Kovari and Hassan Charaf. Statistical analysis of signature features with respect
to applicability in off-line signature verification. In Proceedings of the 14th WSEAS In-
ternational Conference on Computers: Part of the 14th WSEAS CSCC Multiconference
- Volume II, ICCOMP’10, pages 473–478, Stevens Point, Wisconsin, USA, 2010. World
Scientific and Engineering Academy and Society (WSEAS).

[7] Bence Kovari and Hassan Charaf. A study on the consistency and significance
of local features in off-line signature verification. Pattern Recognition Letters,
https://www.aut.bme.hu/Pages/Research/Signature/Resources, 2013.

[8] Bence Kovari, Benedek Toth, and Hassan Charaf. Classification approaches in off-line
handwritten signature verification. WSEAS TRANSACTIONS on MATHEMATICS Is-
sue 9, 2009.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

[10] Thomas M. Mitchell. Machine learning. McGraw-Hill, Inc. New York, USA, 1997.
[11] Michael A. Nielsen. Neural Networks and Deep Learning. Determination Press, USA,

January 2016.
[12] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher,

Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Machine learning in python. J.
Mach. Learn. Res., 12:2825–2830, November 2011.



MACHINE LEARNING TECHNIQUES FOR DETECTING FALSE SIGNATURES 59

[13] Bernardete Ribeiro, Ivo Gonçalves, Sérgio Santos, and Alexander Kovacec. Deep Learn-
ing Networks for Off-Line Handwritten Signature Recognition, pages 523–532. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

[14] Harish Srinivasan, Sargur N. Srihari, and Matthew J. Beal. Machine Learning for Signa-
ture Verification, pages 761–775. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[15] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wo-
jna. Rethinking the inception architecture for computer vision. CoRR, abs/1512.00567,
2015.

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: tmic1334@scs.ubbcluj.ro



STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 1, 2017
DOI: 10.24193/subbi.2017.1.05

PRELIMINARY MEASUREMENTS IN IDENTIFYING

DESIGN FLAWS

CAMELIA ŞERBAN, ANDREEA VESCAN, AND HORIA F. POP

Abstract. Software metrics are of great importance in object-oriented
design assessment. They quantify various aspects of design entities and
play an important role in predicting design quality. Despite the fact that
software metrics have become increasingly useful, they raise several issues.
Among them, relevant to our research are the issue of setting threshold val-
ues and the problem of measurement results interpretation. Fuzzy cluster-
ing analysis is used to overcome the limitations of the existing approaches
that are using threshold values for metrics and to provide a better inter-
pretation of the obtained measurement results.

This paper focuses on metrics-based design flaw detection in object-
oriented design. A new metric, Design Flaw Entropy which measures the
distribution of design flaws into the analyzed system is introduced. To
validate the proposed approach, a case study was also proposed.

1. INTRODUCTION

Over an extended period of time software systems are often subject to a
process of evolution, applications becoming very large and complex. They
undergo repeated modifications in order to satisfy any requirement regarding
a business change. The result is that the code deviates from its original design
and the system becomes unmanageable. A minor change in one of its parts may
have unpredictable effects in completely other parts [1]. To avoid such risk
a high quality design should be preserved throughout the system life cycle.
This can be achieved by repeatedly assessing the system design, aiming to
identify in due course those design entities that do not comply with the rules,
principles and practices of a good design, and suggesting possible refactorings
or improvements to be performed.

Received by the editors: April 25, 2017.
2000 Mathematics Subject Classification. 68N30, 68T37.
1998 CR Categories and Descriptors. code D.2.8 [Software Enginnering]: Metrics

– Product metrics; code D.1.5 [Pattern recognition]: Clustering – Algorithms.
Key words and phrases. Software metrics, object oriented design, fuzzy clustering.

60



PRELIMINARY MEASUREMENTS IN IDENTIFYING DESIGN FLAWS 61

As a consequence of the above detailing, our previous work [10] was focused
on developing a methodology for quantitative evaluation of object-oriented
design. The proposed methodology is based on static analysis of the source
code and is described by a framework of four abstraction layers. A new method
for measurements results interpretation, based on fuzzy clustering technique,
is also contained in this framework.

The above mentioned proposed methodology for design assessment is com-
pleted in this paper with a new metric, Design Flaw Entropy (DFE), which
offers preliminary measurements in identifying those parts of the system design
that suffers from degradation. In other words, the DFE metric measures the
dispersion or the distribution of a specified design flaw among the analyzed
design entities. The proposed metric is based on fuzzy clustering analysis
method which aims to overcome the limitations of existing approaches that
use thresholds values for metrics used.

The rest of the paper is organized as follows. The description and relevance
of the problem of object-oriented design assessment briefly emphasizing the
main layers of the above mentioned framework is presented in Section 2. The
Design Flaw Entropy metrics is introduced in Section 3, by giving the def-
inition, representative examples and the properties. To validate this metric
in Section 4 a case study that aims to identify those classes from a software
system that are affected by ”God Class” design flaw is presented. Section 5
presents some metric-based related approaches for solving the object-oriented
assessment problem and also discuses their limitations. Finally, Section 6
summarizes the contributions of this work and outlines directions for further
research.

2. OBJECT-ORIENTED DESIGN ASSESSMENT PROCESS

In this section we aim at presenting the problem of object-oriented assess-
ment and its relevance, as well as the main steps of the software assessment
process.

The main steps needed to be performed in any software assessment process
require a clear specification of entities that are evaluated (the assessment do-
main) and of the assessment objectives, as well as the identification of methods
and techniques that offer a relevant interpretation of the assessment results
obtained (a thorny issue, insufficiently explored so far in the literature).

All the above mentioned elements are described in a formal manner in
our previous proposed methodology for object-oriented design assessment [10],
defining the contextual background for the proposed metric, metric that com-
pletes our previous work and adds more relevance to the interpretation of the
assessment results.



62 CAMELIA ŞERBAN, ANDREEA VESCAN, AND HORIA F. POP

Therefore, in what follows we briefly describe these steps of the software
assessment process:

(1) Domain Assessment identification.
(2) Setting the assessment objectives.
(3) Computing the metrics values. Fuzzy partition determination. As-

sessment results analysis.

2.1. Domain Assessment identification. The proposed methodology for
a quantitative assessment of object oriented design [10] uses static analysis of
the source code. Therefore, the assessed domain should capture only those
elements that define the structure of an object-oriented system: the design
entities (e.g. classes, packages) that are relevant for the analysis, together
with their properties (e.g. the visibility level of attributes) and the relation-
ships (e.g. methods access attributes) that exist between them. Marinescu [1]
gathers these elements into a model for object-oriented design.

Our previous work [10] has defined in a formal manner, using terms of
algebraic sets and relations, the above mentioned elements, introducing a new
background used to formally define metrics and to establish the assessment
objectives.

In what follows, the 3-tuple:

D(S) = (E,Prop(E), Rel(E))

represents the assessment domain corresponding to a software system S, where:
E represents the design entities set of S; Prop(E) defines the properties of
the elements from E, and Rel(E) represents the relations between the design
entities of the set E.

2.2. Setting the assessment objectives. The main objective of an object-
oriented software assessment is that of verifying whether the built system
meets quality factors such as maintainability, extensibility, scalability and
reusability. Fenton’s axiom [15] states that good internal structure should
provide good external quality. Consequently, the assessment objectives are
reduced to verifying if there is conformity between the software system inter-
nal structure and the principles and heuristics of good design. According to
Marinescu [1] these principles and heuristics of good design are related with
the internal quality attributes such as coupling, cohesion, complexity and data
abstraction.

A design feature that indicates deviations from good design principles is
named “design flaw” [1]. In recent years, the literature displays various forms
of descriptions for bad or flawed design such as bad-smells [12]. The commu-
nity of researchers [1, 12, 14, 5] was interested in setting a relation between
the principles of good design with the design flaws. They wanted to seek what



PRELIMINARY MEASUREMENTS IN IDENTIFYING DESIGN FLAWS 63

the violated principles or rules were for a certain design flaw or vice versa,
what were the design flaws that could propagate in code if a design principle
was violated. These design flaws or principles are than correlated with metrics
to quantify these aspects and to automate the assessment process. According
to these, the assessment objectives are reduced at identifying a list of design
entities, called “suspect” which are affected by a specified design flaw. More
detailed, being given a list of design entities AEp that are evaluated with re-
spect to a specified design flaw p, we have to establish its corresponding design
principles and for each of these principles some relevant software metrics Mp.
Based on the metrics values, computed on a given design entities set, we aim
to identify the suspect entities.

2.3. Computing the metrics values. Fuzzy partition determination.
After establishing the assessment objectives, the next step is metrics computa-
tion. In order to automatically compute these metric and to obtain the fuzzy
partition, we have developed a tool, called Metrics written in C#. Metrics is
divided in five components, Metrics Worker, Parser, Design Entities Model,
Metric Definitions and Fuzzy Analysis.

The results of the assessment, done in an automatically manner, are there-
fore, the values of selected metrics
Mp = {m1,m2, ...,mnoMp}, computed on each design entity from the assessed
design entities set AEp.

To overcome the limitation encountered when a metric based approach is
used, that of setting the thresholds for the metrics values, the fuzzy clustering
analysis is used. Thus, an entity may be placed in more that one group,
having different membership degree, obtaining a fuzzy partition defined as in
Definition 1:

Definition 1. ([10]) Fuzzy partition of the design entities.
A set UAEp,Mp = {U1, U2, ..., Uc} is called a fuzzy partition of the design entities
set AEp = {e1, e2, ..., en}, entities characterized by the values of metrics the
Mp = {m1,m2, ...,mnoMp} iff:

• Ui = (ui1, ui2, ..., uin), 1 ≤ i ≤ c;
• uij ∈ [0..1], 1 ≤ i ≤ c, 1 ≤ j ≤ n, uij – represents the membership

degree of the design entity ej to cluster i;

•
c∑

i=1
uij = 1, 1 ≤ j ≤ n – the sum of each column of U is constrained

to the value 1.

If c = 2 then U is called a binary fuzzy partition.
The fuzzy partition U best represents the cluster substructure of the data

set AEp, i.e. objects of the same class should be as similar as possible (the



64 CAMELIA ŞERBAN, ANDREEA VESCAN, AND HORIA F. POP

difference between any two metrics values of these objects is very close to
0 value), and objects of different classes should be as dissimilar as possible.
The measure used for discriminating objects (classes) can be any metric or
semimetric function (d). In our approach we have used the Euclidian distance
metric.

Fuzzy Divisive Hierarchic Clustering (FDHC) algorithm [11] was applied
to determine a fuzzy partition. The FDHC algorithm produce a binary tree
hierarchy that provides an in-depth analysis of the data set, by deciding on
the optimal number of clusters and the optimal cluster substructure of the
data set. The leaves of the binary tree hierarchy determine an optimal fuzzy
partition of the assessed entities.

Based on previously obtained optimal fuzzy partition, we have to decide
which design clusters contain suspect entities and which of them require further
investigation. This decision is influenced by the distribution of entities per
clusters (how many entities have dominant membership degree in that cluster),
being also the distribution of the analyzed design flaw into the system. It is
obvious the fact that a uniform distribution of entities per cluster highlights
a difficult re-factorization. For example, if we have a system with sixty design
entities divided into two clusters with thirty entities on each of them, it will
be hard to make a decision to redesign thirty entities out of sixty. Conversely,
if the two clusters contain eight and fifty two entities, it is much easier to
take a decision. In the following, we’ll introduce a metric to provide us with
information on defect design entities distribution. This metric measures also
the effort needed in order to restructure the system design. A high value of
this metric suggesting that the system is compromised and would require a
redesign from scratch.

The next section introduces this metric, discusses some representative ex-
amples and identifies its main properties.

3. Design Flaw Entropy Metric

As we have mentioned before, our goal is to define a metric (Design Flaw
Entropy - DFE) which could provide an in-depth analysis regarding the distri-
bution of an analyzed design flaw (the degree of its spread into the system) in
order to converge through an optimal decision regarding the set of “suspect”
design entities.

DFE is defined considering the notion of entropy adapted from communi-
cation information theory of Shannon [23]. Starting from this concept many
researchers [19, 20, 21, 22] have developed new measures for the assessment of
software products.



PRELIMINARY MEASUREMENTS IN IDENTIFYING DESIGN FLAWS 65

3.1. Design Flaw Entropy metric definition. Let us consider a fuzzy par-
tition UAEp,Mp = {U1, U2, . . . , Uc} of design entities AEp = {e1, e2, ..., en},
entities characterized by the values of metrics Mp = {m1,m2, . . . , mnoMp},
metrics selected in order to quantify a specified design flaw p.

Definition 2. We say that an entity ej ∈ AEp, 1 ≤ j ≤ n, have dominant
membership degree to cluster Ui, 1 ≤ i ≤ c, if uij = max{urj |r = 1, c}.

Definition 3. The relative frequency of occurrence or the probability of a clus-
ter Ui ∈ UAEp,Mp, denoted by p(Ui), represents the ratio between the number
of entities from AEp that have dominant membership degree to cluster Ui and
the total number of entities from AEp.

We will denote by PUAEp,Mp
= {p(U1), p(U2), . . . , p(Uc)} the probability dis-

tribution per clusters of the partition UAEp,Mp .

Definition 4. A measure of the information (self-information) contained in
a cluster Ui ∈ UAEp,Mp is defined as I(Ui) = − log2 p(Ui).

In the context of the previous definitions and notations, we can now intro-
duce the definition of the proposed metric.

Definition 5. Design Flaw Entropy (DFE) corresponding to fuzzy partition
UAEp,Mp is defined as the average of the self-information associated to each
cluster Ui ∈ UAEp,Mp. Formally:

DFE : FP (AEp,Mp)→ [0..∞],

DFE(UAEp,Mp) =
c∑

i=1

p(Ui) · I(Ui)

where FP (AEp,Mp) is the set of all fuzzy partitions of the design entities
set AEp, entities characterized by the values of metrics Mp = {m1,m2, . . . ,
mnoMp}, metrics selected in order to quantify a specified design principle or
design flaw p.

The definition of this metric can be shortly described as follows: for each
cluster c of the analyzed fuzzy partition, we compute its probability distribu-
tion as a ratio between the number of entities that have dominant membership
degree to that cluster and the total number of analyzed entities. We also com-
pute a measure of the information (self-information) contained in that cluster
that is next used in the definition of the DEF metric: the average of the
self-information associated to each cluster.



66 CAMELIA ŞERBAN, ANDREEA VESCAN, AND HORIA F. POP

3.2. Further analysis of DFE metric. Representative examples. For a
given set of entities, the value of DFE metric depends on the number of clusters
of the obtained fuzzy partition and on the entities distribution per clusters.
In order to identify the properties of this metric and to better emphasize its
meaning, several representative examples are discussed in what follows. We
compute the value of DFE metric for nine different fuzzy partitions on a set
of sixty design entities. The meaning of these values are also discussed.

The first considered partition U1 = {U1,1} has one cluster (c = 1) with the
probability distribution per clusters PU1 = (60/60), all design entities having
dominant membership degree on the same cluster. The DFE metric value
being in this case:

(1) DFE(U1) = −p(U1,1) · log2 p(U1,1) = −1 · 0 = 0.

The meaning of such a situation is that all entities are equally affected by
the analyzed design flaw, a case almost impossible to meet.

The second partition U2 = {U2,1, U2,2} has two clusters (c = 2) with the
probability distribution per clusters PU2 = (1/60, 59/60), one design entity
having dominant membership degree on the first cluster and 59 entities on the
second one. The DFE metric value being:

DFE(U2) = −(p(U2,1) · log2 p(U2,1) + p(U2,2) · log2 p(U2,2))

= −(1/60 · log2 1/60 + 59/60 · log2 59/60) = 0.12.
(2)

In this example one entity need to be reviewed.
The third partition U3 = {U3,1, U3,2} has two clusters (c = 2) with the

probability distribution per clusters PU3 = (2/60, 58/60), two design entities
having dominant membership degree on the first cluster and 58 entities on the
second one. The DFE metric value being in this case:

DFE(U3) = −(p(U2,1) · log2 p(U2,1) + p(U2,2) · log2 p(U2,2))

= −(2/60 · log2 2/60 + 58/60 · log2 58/60) = 0.21.
(3)

The U3 partition is very similar with U2, identifying two entities to be
reviewed.

The fourth partition U4 = {U4,1, U4,2} has two clusters (c = 2) with the
probability distribution per clusters PU4 = (10/60, 50/60), 10 design entities
having dominant membership degree on the first cluster and 50 entities on the
second one. The DFE metric value being in this case:

DFE(U4) = −(10/60 · log2 10/60 + 50/60 · log2 50/60) = 0.65.(4)



PRELIMINARY MEASUREMENTS IN IDENTIFYING DESIGN FLAWS 67

Now, we can observe that once the entities distribution per clusters tends
to be uniform, the DFE metric value increases. This means that the number
of entities that need to be reviewed is higher.

The fifth partition, U5 = {U5,1, U5,2} has two clusters (c = 2) with an
equiprobable distribution per clusters PU5 = (30/60, 30/60). The DFE metric
value being in this case:

(5) DFE(U5) = −(30/60 · log2 30/60 + 30/60 · log2 30/60) = 1.

In such a case the analyzed design flaw is spread on half of the system design
or even more, at least fifty percents of design entities are affected.

The sixth partition, U6 = {U6,1, U6,2, U6,3} has three clusters (c = 3) with
the probability distribution per clusters PU5 = (1/60, 1/60, 58/60), one design
entity having dominant membership degree on the first cluster, one have on
the second cluster and 58 entities on the third one. The DFE metric value
being in this case:

DFE(U6) = −(1/60 · log2 1/60 + 1/60 · log2 1/60,

58/60 · log2 58/60) = 0.45.
(6)

A case very similar with the second one, but with three clusters.
The seventh partition, U7 = {U7,1, U7,2, U7,3} has three clusters (c = 3) with

the probability distribution per clusters PU7 = (1/60, 2/60, 57/60), one design
entity having dominant membership degree on the first cluster, two have on
the second cluster and 57 entities on the third one. The DFE metric value
being in this case:

DFE(U7) = −(1/60 · log2 1/60 + 2/60 · log2 2/60,

57/60 · log2 57/60) = 0.53.
(7)

The eighth partition, U8 = {U8,1, U8,2, U8,3} has three clusters (c = 3) with
the probability distribution per clusters PU8 = (10/60, 20/60, 30/60), 10 design
entities having dominant membership degree on the first cluster, 20 have on
the second cluster and 30 entities on the third one. The DFE metric value
being in this case:

DFE(U8) = −(10/60 · log2 10/60 + 20/60 · log2 20/60,

30/60 · log2 30/60) = 1.45.
(8)

Here, we can observe again that, once the probability distribution per clus-
ters tends to be equiprobable (uniformity) the analyzed design flaw is spread
almost over the entire system.



68 CAMELIA ŞERBAN, ANDREEA VESCAN, AND HORIA F. POP

Table 1. Representative examples of DFE metric computed
on 9 partitions of 60 design entities

Uk c PUk
= (p(Uk,1), p(Uk,2), ..., p(Uk,c)) DFE(Uk)

U1 = {U1,1} 1 (60/60) 0
U2 = {U2,1, U2,2} 2 (1/60, 59/60) 0.12
U3 = {U3,1, U3,2} 2 (2/60, 58/60) 0.21
U4 = {U4,1, U4,2} 2 (10/60, 50/60) 0.65
U5 = {U5,1, U5,2} 2 (30/60, 30/60) 1
U6 = {U6,1, U6,2, U6,3} 3 (1/60, 1/60, 48/60) 0.45
U7 = {U7,1, U7,2, U7,3} 3 (1/60, 2/60, 47/60) 0.53
U8 = {U8,1, U8,2, U8,3} 3 (10/60, 20/60, 30/60) 1.45
U9 = {U9,1, U9,2, U9,3} 3 (20/60, 20/60, 20/60) 1.58

The ninth partition U9 = {U9,1, U9,2, U9,3} has three clusters, (c = 3) with
an equiprobable distribution per clusters PU9 = (20/60, 20/60, 20/60). The
DFE metric value being in this case:

DFE(U9) = −(20/60 · log2 20/60 + 20/60 · log2 20/60,

20/60 · log2 20/60) = 1.58.
(9)

Having all these representative examples into account, we can identify the
properties of the proposed metric. They are very important in order to draw
a conclusion regarding the meaning of DFE metric value. The next section
describes these properties.

3.3. Properties of the Design Flaw Entropy metric. Analyzing the in-
formation contained in Table 1 (that contains the above presented represen-
tative examples) we can conclude the following properties of DFE metric:

(1) DFE(UAEp,Mp) = 0⇔ c = 1, ∀UAEp,Mp ∈ FP (UAEp,Mp); This prop-
erty states that design flaw entropy is zero if and only if all entities
are placed on the same cluster. In this case the variety of the ana-
lyzed design flaw p is minimal, meaning that all entities are affected
on the same measure by the analyzed design flaw.

On the other hand, the possible maximum entropy occurs when
each entity is placed in a separate cluster. In such a case the number
of clusters equals to the number of entities:

DFE(UAE,M ) = − log2 1/n⇔ c = n ∧ p(Ui) = 1/n.



PRELIMINARY MEASUREMENTS IN IDENTIFYING DESIGN FLAWS 69

(2) Let us consider the set of all partitions from
FP (AEp,Mp) which have the number of clusters equals to c,

FPc(AEp,Mp) = {UAEp,Mp ∈ FP (AEp,Mp)

|UAEp,Mp = {U1, U2, ..., Uc}}.
In this case two values are important to be discussed: the mini-

mum and the maximum values of DFE metric:
• A minimum value of DFE metric is attained for the follow-

ing distribution of entities per clusters: (1/n, ..., 1/n, (n− c)/n),
where n is the number of entities. In what follows we denote
these values by MinDFE(n, c).
• On the other extreme, as the probabilities associated with each

cluster will have values closer together, the entropy will have a
higher value. At the limit, DFE reaches a maximum value for an
equiprobable distribution of elements per clusters: UAEp,Mp =

{U1, U2, ..., Uc}, p(Ui) = 1
c , 1 ≤ i ≤ c we have:

DFE(VAEp,Mp)) ≤ DFE(UAEp,Mp),
(∀)VAEp,Mp ∈ FP (AEp,Mp),
VAEp,Mp = {V1, V2, ..., Vc} we denote these values by MaxDFE(n, c).
In this case, the higher the entropy becomes, the more difficult
is to identify those design fragments that need to be reviewed.

(3) For an equiprobable distribution of elements per clusters, once the
number of clusters increases, the entropy will have a higher value:
(∀) UAEp,Mp , VAEp,Mp ∈ FP (AEp,Mp), UAEp,Mp = {U1, U2, ..., Uc},
VAEp,Mp = {V1, V2, ..., Vc, Vc+1} such that p(Ui) = 1

c , p(Vj) = 1
c+1 , (1 ≤

i ≤ c), (1 ≤ j ≤ c + 1) we have:

DFE(UAE,M ) ≤ DFE(VAE,M ).

4. Experimental evaluation

In this section we present an empirical validation of our proposed metric.
This validation is based on a case study which aims to evaluate the design of
an open source object-oriented software system, called log4net [13]. It consists
of 214 classes grouped in 10 packages.

4.1. God Class suspect identification - a fuzzy based approach. The
objective of the proposed assessment is to identify those design entities affected
by “God Class” [12] design flaw. An instance of God Class does most of the
operation tasks, leaving only minor details to a series of trivial classes; it



70 CAMELIA ŞERBAN, ANDREEA VESCAN, AND HORIA F. POP

Table 2. The distribution per clusters of the class design entities

Cluster No. of members with dominant membership degree

1.1.1 19
1.1.2 23
1.2.1 42
1.2.2 106
2.1 14
2.2 10
Total number of entities = 214

also uses the data from other classes. Briefly, God Class design flaw refers to
those classes “which tend to centralize the intelligence of the system” [1]. As a
consequence, the principle of manageable complexity is violated, as god classes
tend to capture more than one abstraction. Another shortcoming of these
pathological classes is their tendency towards non-cohesion. If we consider the
quality attributes, god classes also have a negative impact on the reusability
and understandability of that part of the system they belong to.

Marinescu [1] correlates this design flaw with the metrics: Weighted Meth-
ods per Class (WMC) [6], Tight Class Cohesion (TCC) [7], Access to Foreign
Data (ATFD) [1]. Analyzing the definitions of these metrics, we can conclude
that a possible “God Class” suspect will have high WMC and ATFD metric
values and low TCC metric values. As we mentioned earlier, due to the fact
that is hard to establish a threshold for metrics values, we have proposed a
new approach based on fuzzy clustering analysis.

The assessed entities, AEGodClass, are the set of classes from our “log4net”
application. After computing the metrics values for each class design entity,
we apply the FDHC algorithm in order to obtain the optimal fuzzy partition,
denoted as UAEGod Class,MGod Class

= {1.1.1, 1.1.2, 1.2.1, 1.2.2, 2.1, 2.2}. Table 2
contains the distribution of entities per clusters. This is a filtered information
needed for DFE metric computation. However, the complete data of this
partition is required for further analysis in order to establish the final list of
suspect entities.

An important aspect regarding this partition, is that of isolated data points.
These entities defined a new cluster for the partition denoted by UAEGod Class,MGod Class

.
In order to study the distribution of God Class design flaw into our system,

we compute the DFE metric, introduced in Section 3. The obtained value of
DFE metric, DFE(UAEGod Class,MGod Class

) = 2.22. is then compared with the
minimum (MinDFE(214,7)=0.32) and the maximum (MaxDFE(214,7)=2.81)
values of this metric, computed on a set of 214 entities distributed in 7 clusters.



PRELIMINARY MEASUREMENTS IN IDENTIFYING DESIGN FLAWS 71

The probability distribution of the corresponding partition for minimum and
maximum values of DFE metric being:

(1/214, 1/214, 1/214, 1/214, 1/214, 1/214, 198/214),

(30/214, 30/214, 30/214, 30/214, 30/214, 30/214, 34/214).

By analyzing the value of the DFE metric, we can observe that the values
are very close to the maximum value, “saying” that many parts of the software
systems must be revised. The computation of DFE metric gives us preliminary
information regarding the extent to which our system design is affected by God
Class flaw. Further analysis is needed in order to identify those classes that
need to be refactored.

5. Related approaches

This section presents the current state of art regarding the entropy metric
as a measure of object-oriented design quality and analyzes the differences
compared with our present approach.

Object-oriented design assessment are traditionally done in metrics-centric
manner. Using the notion of entropy from communication information theory,
new measures [19] were developed for the assessment of software designs. The
metric is computed using information available in class definitions. The new
complexity measure of classes is correlated with traditional complexity mea-
sures such as McCabe’s cyclomatic metric and the number-of-defects metric.
The defined entropy metric is shown to be a reliable measure in predicting the
implementation complexity of classes, given that the design of the classes does
not change substantially during implementation. In relation to this existing
approach, our proposal uses the same “initial” definition of entropy but applied
to measure design flaw in an already developed object-oriented system.

An approach was proposed in [9]. The authors propose the use of entropy as
defined in Information Theory [23], to evaluate the initial status of an object-
oriented design as well as its status after the addition of new functionality.
The difference between the entropy of the two systems provides insight to the
quality of the design in terms of how flexible it has been during the enhance-
ment of its functionality. Our approach aims to achieve goals similar to [9], to
differentiate “good”from “bad” designs by the use of an information theoretic
entropy metric. We argue that our model differs by the fact that DFE metric
can be applied for any design alteration type not only for the extension of the
system’s functionality.

Another type of metrics based assessment of an object-oriented system is
defined using only the class definition [20] and not information from the class
implementation. The proposed metric is a true design metric that can be



72 CAMELIA ŞERBAN, ANDREEA VESCAN, AND HORIA F. POP

calculated during the design phase of the software maintenance or development
life cycles, before any code has been implemented. The metric could provide a
better early indication (in the design phase rather than in the implementation
phase) of the design complexity than has been available before. Our model
retrieves information for metric computation by parsing the source but also
it could be applied at the design phase, but the amount of information beeng
limited at this stage (ex. methods’ complexity).

By replicating and extending previous studies on the entropy of software
systems, in [24] the authors defined three entropies as global metrics at the
system level, in terms of three CK metrics computed at the class level. They
extended the empirical analysis also to RFC and CBO since these CK metrics
have been shown to be correlated with fault-proneness of OO class. With the
aim of finding a global metric for describing software quality in terms of code
degradation and reduced maintainability during time, they correlated such
metrics to the variation in time of the total number of defects of the system
a good measure of defect proneness. Our current approach considers a fuzzy
partition obtained starting from any object oriented metric that is selected to
quantify features related to asessed design entities.

As a conclusion, in relation to this existing approach, our also uses the no-
tion of entropy from communication information theory [23], but applied to
measure design flaw in an object-oriented system, either for an already devel-
oped object-oriented system or for an extension of the systems functionality.
The information for metric computation is obtained by parsing the source
code, and regarding the threshold criteria our approach overcomes the limita-
tion impose by it, using a fuzzy clustering method.

6. Conclusion and Future Work

Software metrics are considered of great importance in software quality
assurance. In spite of this fact, there is a gap between the things measured and
the ones really important in terms of quality characteristics. This discontinuity
is due mainly to the fact that the methods currently used for interpreting
metrics results are at a low level of abstraction, incomplete and sometimes
irrelevant. The current paper proposes a new metric - Design Flaw Entropy
(DFE) - which completes our previous framework for object oriented design
assessment, being very useful in measurements results interpretation.

To highlight the relevance of our proposed approach, a case-study has been
used which aims to identify those classes from a software system that are
affected by ”God Class” design flaw. The source code of the open source
object-oriented software system, called log4net [13] was used.

For future work, we intend to focus our research in the following directions:



PRELIMINARY MEASUREMENTS IN IDENTIFYING DESIGN FLAWS 73

• to apply the proposed evaluation framework on more case studies;
• to repeat the evaluation for a new version of the software system,

after some suggested refactorings were applied;
• to automate the task of establishing the list of suspect entities and

the list of refactorings that could be applied.

References

[1] R. Marinescu. Measurement and quality in object-oriented design, Ph.D. thesis, Faculty
of Automatics and Computer Science, Politehnica University of Timisoara, 2003.

[2] S. Mazeiar, Li. Shimin, and T. Ladan. A Metric-Based Heuristic Framework to Detect
Object-Oriented Design Flaws Proceedings of the 14th IEEE International Conference
on Program Comprehension (ICPC06), 2006.

[3] P.F. Mihancea, and R. Marinescu. Towards the optimization of automatic detection of
design flaws in object-oriented software systems, In Proc. of the 9th European Conf. on
Software Maintenance and Reengineering, 92-101, 2005.

[4] L. Tahvildari, and K. Kontogiannis. Improving design quality using meta-pattern trans-
formations: A metric-based approach, Journal of Software Maintenance and Evolution:
Research and Practice, 16, 331-361, 2004.

[5] A.J. Riel. Object-Oriented Design Heuristics, Addison-Wesley, 1996.
[6] S. Chidamber, and C. Kemerer. A metric suite for object-oriented design, IEEE Trans-

actions on Software Engineering, 20(6), 476–493, 1994.
[7] J.M. Bieman, and B.K. Kang. Cohesion and Reuse in an Object-Oriented System, ACM

Symposium on Software Reusability, 1995.

[8] M. O’Keeffe, and M.Ó. Cinnéide. Search-based refactoring: an empirical study, Journal
of Software Maintenance and Evolution: Research and Practice, 20, 345–364, 2008.

[9] A. Chatzigeorgiou, and G. Stephanides. Entropy as a Measure of Object-Oriented De-
sign Quality, 1st Balkan Conference on Informatics (BCI’2003), 21–23, 2003.

[10] C. Serban. A Conceptual Framework for Object-oriented Design Assessment. Computer
Modeling and Simulation, UKSim Fourth European Modelling Symposium on Computer
Modelling and Simulation, 90–95, 2010.

[11] D. Dumitrescu. Hierarchical pattern classification, Fuzzy Sets and Systems 28, 145–162,
1988.

[12] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the
Design of Existing Code, Addison-Wesley, 1999.

[13] Open source project: log4net, http://logging.apache.org/log4net.
[14] R. Martin. Design Principles and Patterns:

http://www.objectmentor.com/resources/articles/Principles and Patterns.pdf, 2006.
[15] N. Fenton. Software measurement: A necessary scientific base, IEEE Transactions on

Softw. Engineering, 20(3), 1994.
[16] J. Han, and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann

Publishers, (2001).
[17] A. Jain, and R. Dubes. Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs,

New Jersey, 1998.
[18] A. Jain, M.N. Murty, and P. Flynn. Data clustering: A review. ACM Computing Sur-

veys, 31(3):264–323, (1999).



74 CAMELIA ŞERBAN, ANDREEA VESCAN, AND HORIA F. POP

[19] J. Bansiyav, C. Davis, L. Etzkorn. An entropy-based complexity measure for object-
oriented designs. Theory an Practice of Object Systems. 5(2):111–118, 1999.

[20] L. Etzkorn, S. Gholston, and W.E. Hughes. A semantic entropy metric. Journal of
Software Maintenance: Research and Practice. 14(4):293–310, 2002.

[21] A. Marcus, M. Boxall, and S. Araban. Interface Metrics for Reusability Analysis of
Components. Proceedings of the 2004 Australian Software Engineering Conference
(ASWEC’04), 2004.

[22] K. Kim, Y. Shin, and C. Wu. Complexity Measures for Object-Oriented Program Based
on the Entropy. In Proceedings of the Second Asia Pacific Software Engineering Con-
ference, 1995.

[23] C.E. Shannon, and W. Weaver. The Mathematical Theory of Communication. Urbana,
IL, University of Illinois Press, 1949.

[24] I. Turnu, G. Concas, M. Marchesi, and R. Tonelli. Entropy of some CK metrics to Assess
Object-Oriented Software Quality. International Journal of Software Engineering and
Knowledge Engineering, 23(3), 2013.

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: {camelia,avescan,hfpop}@cs.ubbcluj.ro



STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 1, 2017
DOI: 10.24193/subbi.2017.1.06

A BIG DATA APPROACH IN MUTATION ANALYSIS AND

PREDICTION

SILVANA ALBERT

Abstract. Although the technology advancement in the last few years
has been exponentially growing, there are still a lot of medical problems
that don’t have an accessible solution. One of these problems is the one
that genetics is facing: the absence of a solution for inspecting the pre-
viously reported genetic mutations. In order to confirm a mutation, the
specialists need to narrow it down based on their experience and, if present,
the few documented precedent cases. This paper focuses on presenting a
solution for analyzing big amounts of historical genetic data in an effi-
cient, fast and user-friendly way. As a proof of concept, it demonstrates
the huge role that Big Data has in genetic mutations aggregation and it
can be considered a starting point for similar solutions that aim to contin-
uously innovate genetics. The effectiveness of our proposal is highlighted
by comparing it with similar existing solutions.

1. Introduction

The volume of aggregated medical information has increased exponentially
in the last few years and it will keep increasing. DNA Sequencing is just
a few years away from becoming affordable. When that happens, the tech-
nology has to be prepared to analyze it, extract patterns, prevent anomalies
and provide accurate predictions, which will rely heavily on using big data
[21]. In our opinion, the genetic advancement should go hand in hand with
the technological advancements in order to exploit the full potential of both
branches.

The need for interdisciplinary collaboration between the genetic specialists
and software engineers has been recently identified and it is proved to be
effective [22]. This paper is the result of a brief collaboration that started by
putting the needs of the medical community on the first place and the concern
of how to develop the solution on second.

Received by the editors: April 24, 2017.
2010 Mathematics Subject Classification. 68N01, 68T05.
1998 CR Categories and Descriptors. D.2.11 [Software]: Software engineering – Soft-

ware Architectures; I.2.6[Computing Methodologies]: Artificial Intelligence – Learning .
Key words and phrases. Big data, genetics, software, machine learning.

75



76 S. ALBERT

Genetic mutation aggregation refers to the process of gathering any relevant
information about genetic mutations and storing it for future use in analysis
and visualization.

The contribution of our paper is twofold and is summarized in the follow-
ing. First, we are proposing a solution for analyzing big amounts of historical
genetic data in a very efficient and fast way, using a big data approach. The
proposed solution demonstrates the huge role that Big Data [6, 14] has in
genetic mutations aggregation and it can be considered a starting point for
similar solutions that aim to continuously innovate genetics [5]. Our second
aim is to highlight the potential of using supervised machine learning [16] mod-
els in predicting future genetic mutations. The overall purpose of the paper
is to provide demographics and metrics regarding prophylaxis, and diagnosis
of different genetic disorders and to offer a solution that allows the medical
personnel to access a comprehensive history of patients screened/diagnosed
with certain chromosome anomalies or gene mutations.

The rest of the paper is structured as follows. Section 2 presents the fun-
damental background concepts related to genetics, as well as the applicability
of Big Data in mutation analysis. Our approach in mutation analysis and
prediction using a Big Data approach is introduced in Section 3. Section 3.2
details the prediction component of the proposed solution and provides sev-
eral experimental results. An analysis of our proposal and comparison with
existing similar work is given in Section 4. Section 5 presents the conclusions
of our paper and outlines directions for further improvement and extension.

2. Background

We are presenting in the following section the main concepts involved in
our approach.

2.1. Genetic background. DNA, short from deoxyribonucleic acid is a mol-
ecule present in all living things that contains instructions needed by organisms
in order to develop and reproduce. RNA, abbreviated from Ribonucleic acid
is a molecule which plays an important role in creating proteins from DNA.

A mutation is a natural process that occurs when a cell copies the DNA
before dividing and that changes the DNA sequence.

Mutations are unavoidable; most of them arise along with the natural pro-
cess of DNA transcription and therefore corrected by efficient DNA repair
mechanisms. Usually, mutations are perceived as something bad that hap-
pened or that something got broken but there are a lot of cases when it has no
impact (the changes are in the areas of the genome that is between the genes).

Nucleotides are structural components of the DNA and RNA. There are
approximately 3.000.000.000 nucleotides in a human genome. When a cell



A BIG DATA APPROACH IN MUTATION ANALYSIS AND PREDICTION 77

divides, it is supposed to make a copy of its own DNA but sometimes, some-
thing bad happens and the result is a similar sequence that has one different
nucleotide. That small difference is called a mutation and it is depicted in
Figure 1.

Figure 1. Mutation genesis. Figure source: Understanding
Evolution [3].

Mutations can arise also from the interaction with external factors. If the
person was exposed to certain chemicals or radiation, the chances of a mutation
occurring are higher. The agents are breaking the DNA and when the cells
try to repair it, some differences can happen.

Gene data is stored in lots of different ways depending on the database.
Three of the existing disease-related variation databases are described in sec-
tion 4. Usually, mutations are stored by gene symbol with very detailed infor-
mation about the place in the DNA sequence where it happened, all kinds of
locus coordinates and all kinds of classifications based on the mutation type
(deletion, insertion, splicing, etc.).

At the time of this research, we are not aware of a system that stores both
gene data and information about the demographics of its origin because this
data is usually confidential and anonymous due to its sensitive nature. As a
result of sequencing, data can be stored in standard recognized formats. Some
of the most common ones are: Plain sequence format (containing one or more
sequences with no extra information), FASTQ (which stores both biological
sequence and quality scores and is produced by advanced sequencing instru-
ments) and EMBL (contains an id per sequence and other relevant annotation
lines before and after the sequence) [18].



78 S. ALBERT

2.2. Big data and NoSQL. Big data [20, 6] is a notion for storing large
collections of data sets and further analyzing, visualizing and transferring
them. Collecting data from all kinds of devices leads to storing a lot of data
but what is truly impressive about it is not the quantity of information but
what we can do with it. From a few terabytes of collected data that we had
stored in 2012, we got to entire petabytes now and it is still growing.

Big data can be described as large pools of data that is captured and aggre-
gated with advantages that lead to increasing modern economics, health care,
transportation and many other industries.

NoSQL [10] means Not Only SQL, implying that when designing a software
solution or product, there is more than one storage mechanism that could be
used based on the needs [19]. There are a lot of NoSQL database management
systems (at this moment, there are approximately 150 ) and they can be
classified based on their data model [19]: Key-value (Dynamo, Riak), Graph
(Allegro, Infinite Graph), Multi-model (OrientDB, FoundationDB), Document
(MongoDB, Couchbase) and Column (Accumulo, Cassandra).

One main characteristic of NoSQL databases is that it is schema agnostic;
this means that there is no need for an upfront schema design for allowing
data storage. Another important aspect is strong consistency that can be
translated in: all the clients should see the same version of data [19]. The last
characteristic that NoSQL databases need to have is partition tolerance: the
complete system should keep its properties even when deployed on separate
servers [3].

In the context of genetic mutations, the information related to a gene and
all it’s possible anomalies that need to be stored in order to perform a rele-
vant analysis is what constitutes Big Data. Each mutation entry has a series
of characteristics that will be described in Section 3.3 and the number of char-
acteristics changes constantly as the science advances. It is important to be
able to save different characteristics and not be constrained by an existing
rigid schema and that’s why NoSQL and Genomics go hand in hand.

3. Our approach

The general idea behind our proposal is to offer a solution that provides
demographics and metrics about diagnostics and mutations. It started with
the idea of creating a solution that allows the medical personnel to browse
through a comprehensive history of patients screened/diagnosed with certain
chromosome anomalies or gene mutations.

Visualizing the number of mutations by countries needs a complete database
parsing and for 1 million results, it takes a couple of minutes. One adjustment
that could make this interrogation faster is splitting the work into a number
of threads equal to the number of countries and each thread would count the



A BIG DATA APPROACH IN MUTATION ANALYSIS AND PREDICTION 79

Figure 2. Screen shot from the application with possible
filtering options.

number of mutations occurred in the given country. In the proposed solution,
inserting one million entries without optimizing performance with threads,
takes less than 12 minutes. Further optimization can be done and the time
can be decreased by using multiple servers and batch inserting using threads.
There is some bench-marking performed by Netflix that claims to have inserted
1.1 million client writes per second using Cassandra [4].

The novelty of our solution is that it stores and aggregates genetic, demo-
graphic and geographic data. The solution presented in this section is a proof
of concept and the stored data is mock data based on real genes and mutations
obtained by scraping existing databases.

From the visualization perspective, the originality factor is that based on the
multiple filters from Figure 2, the number of people that match are displayed
on the world map and the intensity of the color reflects the number of entries
per country as seen in Figure 6. The solution paints a very graphic picture
of the current situation on the globe, while other solutions are just listing
individual mutations in tabular views. The other approach requires a lot
of time, attention and work to scroll and comprehend the displayed data;
However, if that approach is still needed for reports, our solution also allows
exporting the data to Excel files.

3.1. The proposed solution. Our solution makes the following scenario pos-
sible:



80 S. ALBERT

“As a doctor, I want to see the count of women that were diagnosed at the
age of 25 with Breast Cancer, have the mutation KRAS, are currently under
treatment and were professionally exposed to chemical agent benzyl.”

The possible capabilities from the doctors perspective are represented in
the use case diagram from Figure 3.

Figure 3. Use Case Diagram of the proposed solution.

From the technical perspective, the proposed architecture contains four
main components:

(1) Creating a database that stores information about patients and their
found mutations and diseases.

(2) Creating a solution for interrogating that database with regard of
performance and scalability.

(3) The prediction engine that can help the doctors gain a better overview
of the expansion of a mutation in a given period of time.

(4) Once the results are retrieved, they are displayed in a user friendly
web interface in a way that means something for the user (position
mutations geographically with the possibility of zooming in and fur-
ther filtration based on gender, age, environmental conditions and so
on) instead of simply listing the results in a table.

The component diagram of the proposed solution is depicted in Figure 4.

3.2. The component for predicting future mutations. One of the main
components of the proposed solution is the one for future mutations prediction.

From a machine learning perspective, predictive modelling refers to ana-
lyzing historical information to make predictions about future [7]. Machine



A BIG DATA APPROACH IN MUTATION ANALYSIS AND PREDICTION 81

Figure 4. Component diagram of the proposed solution.

Learning (ML) [16] is a challenging field of Artificial Intelligence in which the
focus is to develop adaptive computer systems, able to improve their perfor-
mance from experience and through learning some specific domain knowledge.

Within the machine learning domain, a major emphasis is on supervised
learning. The systems which learn from an external supervisor are connected
to predictive modelling. The predictive models are able to make predictions
based on some training data (i.e. historical data). In supervised learning, the
learner is provided with a set of labeled examples (inputs with their known
outputs) and then it will be able to generalize from the received examples
and to predict the output when faced with an input instance unseen during
training. The chosen software for predicting mutations is Weka [9]. The
prediction engine workflow starts with the query executed on Cassandra [12]
based on the users filters. The results from the database are parsed and stored
into a csv file.

The Training Model contains 6 fields: the country code, the count of mu-
tations (retrieved based on the country and exposure factor), the date of di-
agnosis (when the mutation was discovered and entered into the system), the
gender of the patient, the exposure time(in years because it is split in intervals:
less than 1 year, between 1 and 5 years, between 5 and 10, between 10 and 20,
and over 20) and the most important field: the professional exposure factor
(the chemical element to which the person was exposed).

Examples of exposure factors: Arsenic, Asbestos, Asphalt fumes, Benzene,
Beryllium, 1-Bromopropane and many more.

The Prediction Service receives as training data the current aggregated
entries from the database. The prediction flow is depicted in Figure 5.

Counts are computed for each country based on the exposure factor and
other search criteria and saved as training data in an .arff file. That file
is read and classified and based on it, the predicted counts are computed,
then converted to JSON and finally passed on as a response to the Prediction



82 S. ALBERT

Figure 5. Activity diagram of the prediction flow.

Endpoint. This returned JSON will be handled by the UI similar to any other
result set from Cassandra and will display the results on the World Map. As
an example, Figure 6 illustrates the World map of mutation frequency by
professional exposure Arsenic.

The counts from the database for professional exposure to Arsenic for less
than one year are: Canada: 18, China: 1509, France: 1354, Norway: 18,
Niger: 975, New Zeeland: 413 and so on.



A BIG DATA APPROACH IN MUTATION ANALYSIS AND PREDICTION 83

Figure 6. World map of mutation frequency by professional
exposure Arsenic.

The results vary based on existing counts and number of years we perform
the prediction. When changed to 100 years from now, the world map looks sig-
nificantly different (because the current date and prediction dates are factored
into the generated training data)

The predicted counts in 10 years for professional exposure to Arsenic for
less than one year are depicted in Figure 7: Canada: 28, Mexico: 875, France:
22, Norway: 56, Spain: 2, Russia: 4 and Australia: 300.

3.3. Implementation details. Apache Cassandra was used for this proof of
concept because of its scalability and reliability. The reading speed is more
important than the insert because that is the main use case of the proposed
solution: analyzing existing data.

3.3.1. Persistence model. The selected model for storage contains the fol-
lowing data: Name, Identification number, Gender, Country, Date of birth,
Professional exposure (if present, with possible categories and time of expo-
sure), Age at diagnosis, Date of death, Submitted by (name of the doctor),
Details, Disorder 1 (Mutation 1 locus22, Mutation 2 locus30 . . . Mutation
n locusxy), dots Disorder m (Mutation 1 locus15, Mutation 2 locus13 . . . Mu-
tation p locuskz).



84 S. ALBERT

Figure 7. World map of mutation frequency by professional
exposure Arsenic in 10 years.

It will allow extracting information about frequency of mutation in differ-
ent regions with different characteristics. The number of stored rows can be
dynamic for each entry and this is achieved by using a non-relational database.

Having a different number of columns for each entry is important for build-
ing a system for quickly previewing mutations. That is because a patient can
have 1 disease with only one mutation while other can have 9 diseases with
1000 mutations.

The primary key contains the identification number of the person, the coun-
try identifier and the mutation entries.

A mutation entry has the following form:

A2M 12p13.31 AlzheimersDisease AACS12q24.31 Traheal Cancer

This means that on the gene A2M (which is stored with the complete name
in a separate table), on locus 12p13.31, there is a mutation that causes the
disorder: Alzheimers disease. But this patient has another mutation entry
that is separated by comma. So the mutations column contains a string that
respects the previously defined format. This way, complex information about a



A BIG DATA APPROACH IN MUTATION ANALYSIS AND PREDICTION 85

patient can be stored on a single row. The same logic applies to the professional
exposure field also; this is how a professional exposure entry looks like:

Asphaltfumes 34000

Unlike mutations, this field is optional for most patients. The first part of
the entry is the name of the substance to which the patient was exposed while
the former represents the duration of exposure in milliseconds (the patient
worked in a contaminated facility for 3 years).

The database was created with replication ={′class′ :′ SimpleStrategy′,
′replication factor′ : 3}. This means that the used strategy is enough for
evaluation purposes. The alternative is NetworkedTypologyStrategy which
needs to be used when multiple data centers are connected. The replication
factor describes the number of replicas of data on multiple nodes. It has to
be specified only when using the simple strategy. The personal identification
number, the mutation string and the country code compose the primary key.
Those are the most important properties that define an entry and are most
frequently used in searches. For searches on other criteria, indexes are created.
Although indexes are not as performant as searching only for what is contained
in the primary key, they were created in order to give the searches flexibility
because not all the parameters are filled in for every search query.

4. Discussion and comparison to related work

The solution proposed in this paper facilitates the analysis of genetic data
using a big data approach.

As a proof of concept, our proposal demonstrates the huge role that Big
Data has in genetic mutations aggregation and it can be considered a starting
point for similar solutions that aim to continuously innovate genetics. The
presented solution allows the doctors to filter the mutations, visually inspect
their frequency on the world map, predict future mutations, insert new entries
and export data in various formats. It helps by aggregating all the precedent
mutations correlated with a series of external factors. The doctor is able to
narrow it down to a reasonable number of possibilities based on the cases
that were already solved. This leads to making an informed decision of which
mutations to test for. After successfully determining the current case, the
specialist will introduce it to the global database, this way, helping future
doctors.

We chose the NoSQL approach for implementing our prototype based on
existing literature and also the following reasoning.

From a relational database perspective, this same issue could have been
resolved by having a table with all genes, another with all possible mutations



86 S. ALBERT

by gene and a third one with all the disorders linked to multiple mutations in
various genes. When trying to filter by any of the stored information, multiple
joins would need to happen.

Our intuition is that performing multiple joins would take more time than
the proposed solution but no concrete experiments were performed. Back
to our example, the patient with 1000 mutations would be inserted into the
database 1000 times having each mutation id as a foreign key or inserted once
and store in column or mutation ids separated by commas. Either way, we
assume performance would suffer because of the necessary joins that would
need to happen.

By using a non relational database instead, the number of columns can be
dynamic and it does not matter which of the stored information will be used
as a filter. Using the alternative relational approach, if we want the counts of
people that have certain disorders would mean joining with mutations to the
the different disorder ids and then with disorders to get the names. Filtering
by disorders would take more time than filtering by mutation code because
the latter means a single join operation while the first means two. By using
dynamic columns, it doesn’t matter if the entry is searched by mutation or
disorder because they are both columns on each row and it takes the same
amount of time to retrieve.

We are describing in the following existing solutions for mutation analysis
and prediction, comparing them with our proposal.

4.1. Cosmic-Catalogue of somatic mutations in cancer [15]. Cosmic
[2] is a tool that allows inspecting various mutations and their frequency. It
contains data from The Cancer Genome Atlas and the International Cancer
Genome Consortium portals but also, data can submitted directly through
their website. It is a comprehensive database that contains so far 20,981 mu-
tations and details about each. Cosmic provides statistics about mutations
but it does not contain demographics. There is no way of accessing any infor-
mation about the people that have these mutations. The main capability that
our solution provides and Cosmic doesn’t is the visualization of incidence of
mutations based on geographic location.

4.2. The Human Gene Mutation Database [11]. The Human Gene Mu-
tation Database (HGMD) [17] is a database at the Institute of Medical Ge-
netics in Cardiff, from BIOBASE that contains over 152.000 mutations. It is
a comprehensive data on human inherited disease mutations to genetics and
genomic research.

HGMD [11] provides all kinds of features for analyzing mutations but it
does not have the capability of linking the characteristics of the person with
the discovered genetic characteristics. However, it allows inspecting various



A BIG DATA APPROACH IN MUTATION ANALYSIS AND PREDICTION 87

aspects of a mutation from the strictly technical point of view. It also analyzes
candidate genes for finding disease linkage and predisposition.

However, there is no apparent correlation between exposure to exposure
factors and the subsequent mutations, like in the solution proposed in this
paper.

4.3. Orphanet [8]. Orphanet [8] is the solution that doctors in Romania
currently use. It is a European website that has the office location in Paris
and its main focus is providing content regarding rare diseases and orphan
drugs [1]. Orphanet was funded by Inserm (the French National Institute of
Health and Medical Research), the French Directorate General for Health and
the European Commission. It contains a database that is an encyclopedia
of rare diseases and it encourages the collaboration between research teams.
It is basically a search engine that provides raw information that is updated
annually. It also provides details about ongoing trials [13].

Although it is vastly used by Romanian specialists, Orphanet doesn’t pro-
vide statistics about the place where the mutations and rare conditions oc-
curred and in which circumstances (age, professional exposure, gender and
so on). There is no way to determine the likeliness of the same mutation
happening to the current patient.

Compared to the previously mentioned solutions, our approach has the
already mentioned advantages: keeps the link between the occurred mutation
and it’s details to the person that developed it. That way, advanced correlation
there can be made based on the factors that led to a mutation, a person’s
gender and age, diagnosis date, recovery rate and so one.

From the performance perspective, a direct comparison between the pro-
posed solution and other gene databases is not possible because of the way
other databases display the results: they are paginated and not aggregated;
Users can retrieve a limited amount of data at the time (depending on the
database).

Our solution’s biggest contribution that none of the alternative solutions
provide is the geographic clustering of mutations.

5. Conclusions and future work

We proposed in this paper a big data approach in mutation analysis and pre-
diction. As a proof of concept, the presented solution demonstrates the huge
role that big data has in genetic mutations aggregation and it can be consid-
ered a starting point for similar solutions that aim to continuously innovate
genetics.



88 S. ALBERT

Future work may be done in order to enhance performance and scalability of
the proposed system in order to increase the reading speed. Concrete experi-
ments using a relational approach should be performed. The capabilities of the
prediction engine could also be increased and this would lead to more accurate
predictions. The basic linear prediction that is used now, can be enhanced to
handle complex scenarios that take into consideration environmental factors
that may lead to a mutation spreading.

Acknowledgments

The author thanks Dr. Cătană Andreea who contributed to the paper by
describing the current methodologies used for genetic diagnosis and helped
identifying the need for this analytical software. She also came up with the
list of particularities that each entry in the database should have and provided
feedback on the solutions main capabilities.

References

[1] S. Ayme and J. Schmidtke. Networking for rare diseases: a necessity for europe. Bun-
desgesundheitsblatt, 2007.

[2] S. Bamford, E. Dawson, S. Forbes, J. Clements., R. Pettett, A. Dogan, A. Flanagan,
J. Teague, P.A. Futreal, M.R. Stratton, and R. Wooster. The cosmic (catalogue of
somatic mutations in cancer) database and website. Br. J. Cancer, 91(2):355–8, July
2004.

[3] Berkeley University. Understanding Evolution - The causes of mutations.
http://evolution.berkeley.edu/evolibrary/article/evo 20. Online; 2017.

[4] A. Cockcroft and D. Sheahan. The Netflix Technology Blog.
https://medium.com/netflix-techblog/benchmarking-cassandra-scalability-on-aws-
over-a-million-writes-per-second-39f45f066c9e. Online; 2011.

[5] B. Feldman, E.M. Martin, and T. Skotnes. Big data in healthcare hype and hope.
Technical report, Dr. Bonnie 360, October 2012.

[6] L. Fernandes, M. O′Connor M., and V. Weaver. Big data, bigger outcomes. AHIMA,
83(10):38–43, 2012.

[7] S. Finlay. Predictive Analytics, Data Mining and Big Data: Myths, Misconceptions and
Methods. Business in the Digital Economy. Palgrave Macmillan UK, 2014.

[8] French National Institute for Health and Medical Research. The portal for rare diseases
and orphan drugs. http://www.orpha.net/consor/cgi-bin/index.php. Online; 2017.

[9] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The
WEKA data mining software: An update. SIGKDD Explor. Newsl., 11(1):10–18, No-
vember 2009.

[10] R. Hecht and S. Jablonski. NoSQL evaluation: A use case oriented survey. In 2011
International Conference on Cloud and Service Computing, pages 336–341, Dec 2011.

[11] Institute of Medical Genetics in Cardiff. The Human Gene Mutation Database.
http://www.hgmd.cf.ac.uk/ac/index.php. Online; 2017.

[12] A. Lakshman and P. Malik. Cassandra: A decentralized structured storage system.
SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.



A BIG DATA APPROACH IN MUTATION ANALYSIS AND PREDICTION 89

[13] S. Maiella, A. Rath, C. Angin, F. Mousson, and O. Kremp. [orphanet and its consor-
tium: where to find expert-validated information on rare diseases]. Revue neurologique,
169(Suppl 1):S3–8, 2013.

[14] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A Byers-Hung.
Big data: The next frontier for innovation, competition, and productivity. Technical
report, McKinsey Global Institute, June 2011.

[15] Ministry for Primary Industries. COSMIC, the Catalogue Of Somatic Mutations In
Cancer. http://cancer.sanger.ac.uk/cosmic. Online; v80, released 13-Feb-17.

[16] T. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition, 1997.
[17] P.D. Stenson, M. Mort, E.V. Ball, K. Evans, M. Hayden, S. Heywood, M. Hussain, A.D.

Phillips, and D.N. Cooper. The human gene mutation database: towards a comprehen-
sive repository of inherited mutation data for medical research, genetic diagnosis and
next-generation sequencing studies. Human Genetics, pages 1–13, 2017.

[18] G. Stoesser, W. Baker, and A. Broek. The embl nucleotide sequence database. Nucleic
Acids Research, 30:21–26, 2002.

[19] T. A. M. C. Thantriwatte and C. I. Keppetiyagama. NoSQL query processing system
for wireless ad-hoc and sensor networks. In 2011 International Conference on Advances
in ICT for Emerging Regions (ICTer), pages 78–82, Sept 2011.

[20] B. Wang, L. Ruowang, and W. Perrizo. Big Data Analytics in Bioinformatics and
Healthcare. IGI Global, Hershey, PA, USA, 1st edition, 2014.

[21] R. Wullianallur and V. Raghupathi. Big data analytics in healthcare: promise and
potential. Health Information Science and Systems, 2(1):1–3, 2014.

[22] B. Zenger. Can big data solve healthcares big problems? Health Byte, 2012.

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: albert.silvana@cs.ubbcluj.ro



STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 1, 2017
DOI: 10.24193/subbi.2017.1.07

IDENTIFYING HIDDEN DEPENDENCIES IN SOFTWARE

SYSTEMS

ISTVÁN GERGELY CZIBULA, GABRIELA CZIBULA, DIANA-LUCIA MIHOLCA,
AND ZSUZSANNA MARIAN

Abstract. The maintenance and evolution of software systems are highly
impacted by activities such as bug fixing, adding new features or function-
alities and updating existing ones. Impact analysis contributes to improv-
ing the maintenance activities by determining those parts from a software
system which can be affected by changes to the system. There exist hidden
dependencies in the software projects which cannot be found using common
coupling measures and are due to the so called indirect coupling. In this
paper we aim to provide a comprehensive review of existing methods for
hidden dependencies identification, as well as to highlight the limitations of
the existing state-of-the-art approaches. We also propose an unsupervised
learning based computational model for the problem of hidden dependen-
cies identification and give some incipient experimental results. The study
performed in this paper supports our broader goal of developing machine
learning methods for automatically detecting hidden dependencies.

1. Introduction

Maintenance activities such as bug fixes, updating existing features and
adding new ones make up the majority of time and costs allocated to a soft-
ware project. Each of these changes usually affects only parts of the system,
and determining the affected components (classes, modules, methods etc.) is
not a trivial problem. Impact analysis tries to identify, given a component of
a software system, the other components that would be affected by changes
to the former [7]. Existing methods for impact analysis usually consider only
direct coupling between components, but there also exists indirect coupling
[36], which creates hidden dependencies, that cannot be found using regular

Received by the editors: May 3, 2017.
2010 Mathematics Subject Classification. 68N30, 68T05, 62H30.
1998 CR Categories and Descriptors. K.6.3 [Management of computing and in-

formation systems]: Software Management – Software maintenance; I.2.6 [Computing
Methodologies]: Artificial Intelligence – Learning ; I.5.3 [Computing Methodologies]:
Pattern Recognition – Clustering .

Key words and phrases. Impact analysis, hidden dependencies identification, machine
learning, clustering.

90



IDENTIFYING HIDDEN DEPENDENCIES IN SOFTWARE SYSTEMS 91

coupling measures. Yet, not identifying them can have serious negative con-
sequences [8].

Analyzing program dependencies has an essential role in program compre-
hension, change propagation, or impact analysis [22]. The software compo-
nents need to be understood in the context in which they are defined and this
context is expressed by the dependencies between the software components.
It is fundamental for the software maintainers to discover the system’s de-
pendencies and make corresponding changes to ensure that change has been
correctly spread out and the software remains stable [37]. Among the software
component dependencies, hidden dependencies are relationships between two
seemingly independent components and are produced by a data flow inside of
a third software component [37].

The aim of this paper is to provide a systematic literature review on hidden
dependencies identification (HDI), highlighting the difficulty of the problem
as well as the limitations of the current state-of-the-art in this field. We are
also proposing a new computational model based on unsupervised learning
for the problem of hidden dependencies identification. With the broader goal
of applying machine learning [23, 24] methods for detecting parts of a soft-
ware system which are not directly coupled, we also describe the evaluation
measures usually used for assessing the performance of methods for detecting
hidden dependencies.

The remainder of the paper is organized as follows. The description of
the HDI problem, together with an illustrative example, are given in Sec-
tion 2. Section 3 presents the current state-of-the-art in hidden dependencies
identification. Section 4 contains a discussion on the limitations of existing
approaches, introduces our new machine learning perspective upon the prob-
lem and gives our incipient experimental results. We outline the conclusions
of our paper and the directions to continue the research in Section 5.

2. Problem statement and importance

A special class of program dependencies, called hidden dependencies (HD)
were introduced by Yu and Rajlich in [37]. The authors have also given ex-
amples of the software changes that these kinds of dependencies propagate in
the code [37]. HDs are particular type of data flows [31] which have an im-
portant role in software maintenance and evolution. HDs propagate changes
among the application classes of a software system and these changes are hard
to detect. As shown in [31], hidden dependencies are found even in well de-
signed software systems like JUnit, Drawlets, and Apache FtpServer. Thus, it
is of crucial importance for software developers to detect and understand such
dependencies.



92 I.G. CZIBULA, G. CZIBULA, D.L. MIHOLCA, AND ZS. MARIAN

A task of major importance for software developers is to understand HDs
since it contributes to ease the software maintenance and evolution process.
Among the software change activities that consider software dependencies we
mention [31]: impact analysis [7, 27], change propagation [28], regression test-
ing [32].

Data flows are considered to be the basis of hidden dependencies [31]. Since
the process of analyzing the data flow in a software is not an easy task, it
is very likely that software developers omit HDs rather than more explicit
dependencies, introducing, in this way, bugs into the software [31].

The omission of HDs has a major impact particularly for critical computing
systems. An example is a bug that was introduced during the evolution of the
Minimum Safe Altitude Warning software system (MSAW) and which caused,
in 1997, an aircraft crash at the Guam International Airport [9]. It has been
shown that a missed HD between two software components which seemed
independent has caused the bug in MSAW software: one component activated
the alarm at 55 nautical miles and another component deactivated the alarm
at 54 nautical miles [9].

The problem of identifying HDs is a very complex one. This is primarily
because there is no exact definition for what a hidden dependency is.

Different methods existing in the literature were developed for detecting
particular types of hidden dependencies. For example, Kagdi and Maletic
considered in [17] that there is a HD between two software entities (methods
or application classes) if the entities were changed at the same time in the
past. Two application classes were considered by Gall et al. to be dependent
[11] if they were changed by the same author and in the same time interval.

Beer et al. [5] have proposed a method for generating test data for problems
involving complex linear dependencies between variables. The authors have
suggested that software developers could specify restrictions on the values of
variables in the source code and use them to generate the test cases. The
dependencies that the authors called “complex dependencies” are able to cap-
ture semantic information that is hard to detect using traditional techniques
for program analysis.

Jenkov defines in [16] a hidden dependency as a dependency which cannot
be seen from a class’s interface. Another example of a hidden dependency is
the dependency on a static singleton, or static methods from within a method.
One cannot observe from the interface if a class depends on static methods
or static singletons [16]. These type of dependencies are hard to detect for
software developers, they can be discovered only by inspecting the code [16].

2.1. Examples of HDs. As shown in Figure 1, in JUnit 4.4, there is a hidden
dependency between the methods getTestHeader() of class Failure (Figure 2)
and the method getDescription() of class CompositeRunner (Figure 3).



IDENTIFYING HIDDEN DEPENDENCIES IN SOFTWARE SYSTEMS 93

Figure 1. Hidden dependency in JUnit 4.4

Figure 2. Failure.java

A Description object (see Figure 4) describes a test case or a test suite
which is to be run or has been run. After execution, in case of failure, the
name is printed after being decoded by the method getTestHeader() of the
class Failure.

The method getDescription() creates a Description object and encodes
fName in it. So, the method getTestHeader() will return it as a user-under-
standable label for the failed test. The methods share the test case/suite
concept.

A justification considering pre- and postconditions, for the exemplified hid-
den dependency, is provided by Vanciu and Rajlich in [31].

3. Literature review

In this section we present a literature review on the problem of hidden
dependencies identification (HDI). Despite the importance of finding hidden



94 I.G. CZIBULA, G. CZIBULA, D.L. MIHOLCA, AND ZS. MARIAN

Figure 3. CompositeRunner.java

Figure 4. Description.java

dependencies, the approaches existing in the literature for this problem have
moderate precision and recall values.

There are approaches which use previous versions of the software system and
try to identify those classes which were changed together with respect to the
same bug report [12]. Gall et al. have introduced in [12] an approach, called



IDENTIFYING HIDDEN DEPENDENCIES IN SOFTWARE SYSTEMS 95

CAESAR, that uses information about previous versions of a system to dis-
cover logical dependencies and change patterns among modules. The proposed
method is experimentally evaluated on 20 releases of a large Telecommunica-
tions Switching System. Information such as version numbers of programs,
modules and subsystems together with change reports are used for identifying
common change patterns of software modules. CAESAR determines hidden
dependencies which are not obvious in the source code, like modules that
should be restructured. Instead of using the lines of code for the previous ver-
sions of the software, the authors use structural information about programs,
modules and subsystems, together with change reports for the releases and
their version numbers. The method proposed in [12] has been proved to be
capable to identify bugs which were fixed in one version of the system but
have appeared again, in other parts of the software, in later versions.

One of the early works is [37], where Yu and Rajlich have transformed
System Dependence Graphs into Abstract System Dependence Graphs to de-
termine which class pairs have hidden dependencies. The paper discusses how
hidden dependencies impact the process of change propagation and also dis-
cusses an algorithm that indicates the possible presence of hidden dependen-
cies. Hidden dependencies are considered to be design faults which contradict
the rule “if a class A is unaware of the existence of class B, it is also uncon-
cerned about any change to B”. More exactly, a dependence between Class A
and B is a hidden dependence if: (1) class A and B are not neighbors in the
ASDG, i.e there is no direct dependence between A and B; and (2) there is a
third class C, which is dependent on both classes, and there is data flow inside
the class C that occurs between instance of class A and instance of class B.
A simple algorithm for determining hidden dependencies is introduced and a
JAVA example consisting of three classes collaborating to manage a session is
considered.

In 2004, Hassan and Holt [14] have studied change propagation in software
development. They have proposed several heuristics to predict change propa-
gation by suggesting software entities that should be modified in accordance
to the changes an entity has suffered. The heuristics have been empirically
evaluated using historical data related to several open source projects. It has
been experimentally shown that co-change data can be used to develop models
for assisting software developers during change propagation process.

Orso et. al [25] have performed an empirical comparison of two existing
dynamic impact analysis algorithms. Both algorithms use static analysis on
the call-graph of the system, but they also use traces from the execution of
the system to be analyzed. The first algorithm, CoverageImpact, constructs,
for each execution, a vector with as many elements as methods in the system
to be analyzed, and simply sets the value 1 for each executed method in this



96 I.G. CZIBULA, G. CZIBULA, D.L. MIHOLCA, AND ZS. MARIAN

vector. These vectors are used to determine the list of methods that were ex-
ecuted together with the method(s) that will be changed. This list is filtered
using a static forward slice starting from each method to be changed. The
second algorithm, PathImpact, constructs a so-called whole-path DAG (Di-
rected Acyclic Graph) from the execution traces and this DAG is traversed,
starting from the point that denotes the method to be changed, to determine
which methods are impacted by the change. The authors have performed
experiments using several versions of three Java systems to compare the pre-
cision, time and space cost of these two algorithms. The results showed that
PathImpact is more precise (it returns a shorter list of methods affected by the
changes to be performed in the system), but this precision comes at a signifi-
cant cost of space (the whole-path DAGs need a lot more space to be stored
than the binary vectors) and time. In [4], the same authors have introduced
an approach that combines the precision of the PathImpact with the speed
and small space overhead of the CoverageImpact method. In order to achieve
this, they introduce the Execute After relation, defined for two entities, which
is true if the first entity is executed after the second one. An entity can be im-
pacted by a change to another entity only if this relation is true for them. The
authors also propose a simple and fast algorithm to compute this relationship
for every pair of entities and this can be done by keeping in memory only two
vectors having as many elements as entities in the systems. Comparing the
performance of this new algorithm to PathImpact, they conclude that it is as
precise as PathImpact, but it is only slightly slower than CoverageImpact.

There are many different metrics to measure coupling between components
of a software system, but most of these metrics measure direct coupling (ac-
cording to [34], in a description containing almost 30 coupling metrics, only
two mention indirect coupling). Indirect coupling is often considered to be
simply the transitive closure of entities in direct coupling, but in many cases
such transitive closures contain most of the entities from the system. Since
indirect coupling can affect the maintainability of a software system as well,
the authors of [34] have proposed an algorithm to detect one type of indi-
rect coupling, which they call use-def coupling. By a simple example, they
show that such use-def coupling can occur when a method returns a value (in
their example this value is a String representing the type of a book), which
is given as parameter to another method (in their example a method which
checks whether the type of a book is suitable to the person who wants to
borrow it from the library). Even if the two methods are not directly coupled
(there is no direct connection between them), if the values returned by the first
method are changed, errors can be introduced into the second method. They
propose an algorithm to detect for each variable the point where the variable



IDENTIFYING HIDDEN DEPENDENCIES IN SOFTWARE SYSTEMS 97

was initialized (to see the entities to which it is coupled) and implement this
algorithm in an Eclipse plug-in, called ICD (Indirect Coupling Detector).

Yang and Tempero investigate in [33] the notion of indirect dependence
and argue that it is an important criteria for evaluating modularity. The
authors claim the importance of understanding indirect coupling (IC) due to
its “hidden” nature. They highlight the importance of determining which
forms of indirect coupling may be avoided, arguing that a system with high
levels of avoidable indirect coupling is “unmodular” [33]. The same authors,
Yang and Tempero extend in [35] their previous study and propose metrics
which express the relationship between indirect coupling and maintainability.
The proposed metrics are applied to existing Java applications.

While traditional coupling measures cannot be used for finding hidden de-
pendencies, Poshyvanyk et al. [27] have presented how a conceptual coupling
measure that considers identifier names, comments and other textual elements
of code can be used for impact analysis and can find hidden dependencies as
well. The study reports precision and recall around 20%.

Petrenko and Raylich [26] have introduced an interactive tool called JRip-
ples which is useful for iterative impact analysis. The proposed tool does
not discover HD, the software developer having the responsibility to correctly
identify the hidden dependecies during impact analysis.

In case of large software systems, computing Abstract System Dependence
Graphs can be expensive, so other approaches which are based on the order
in which different methods are called (call trace) have been introduced: if a
method is always called after another method, there might be a dependency
(hidden or not) between the classes where these methods are, as presented in
[31]. Vanciu and Rajlich [31] have proposed a dynamic technique for iden-
tifying hidden dependencies. It is based on computing ”execute completely
after” relations which are filtered based on pre- and postconditions that are
generated dynamically. For evaluation, open source software systems like JU-
nit, Drawlets and Apache FtpServer are used. The authors show that hidden
dependencies exist even in well-designed software, like the ones considered for
evaluation. For the case studies used for evaluation, the technique proposed
in [31] obtained a precision between 46% and 59% for discovering hidden de-
pendencies.

Kirbas et al. [19] have investigated the influence of the evolutionary coupling
on defect proneness. A positive correlation between evolutionary coupling and
defect measures, such as number of defects and defect density, have been con-
firmed by numerical experiments performed for a large financial legacy soft-
ware system. Two evolutionary coupling measures derived from modification
requests (MR) have been used in this study.



98 I.G. CZIBULA, G. CZIBULA, D.L. MIHOLCA, AND ZS. MARIAN

He et al. [15] have proposed Coverage and Program Structure Slicing
(CPSS) as a novel solution to fault localization. CPSS is based on Reverse
Data Dependence Analysis Model and integrates Coverage Based Fault Local-
ization (CBFL) and Program Slicing by analyzing the program structure. The
proposed method has been experimentally proven to be more effective than
existing related methods.

Kouroshfar et al. [20] have studied the effects of architecturally dispersed
co-changes on software quality. It has been experimentally shown that the
changes involving multiple architectural modules are more correlated with de-
fects than the intra-module co-changes. The study corroborates the relevance
of considering architecture in predicting software defects.

Akbarinasaji et al. [3] have proposed a suite of six metrics of logical depen-
dency among source files in a software system. The impact of these metrics
on defect prediction performance has been evaluated by applying two learning
models, the Logistic Regression and the Naive Bayes, on three different soft-
ware projects. The metrics have been used as features of the training data,
their values being derived from the timestamp information in the change his-
tory of files. The experimental results have confirmed that, if the values of
logical dependency are high, they significantly improve the performance of the
defect prediction models.

Bell [6] has studied the influence of hidden dependencies identification on
software testing. The author has shown that increasing the efficiency and the
effectiveness of testing through a good knowledge of the hidden dependen-
cies between tests improves the software reliability. In real software systems,
there are hidden dependencies between tests, which makes the testing process
harder. In such situations, the tests cannot be run in parallel, since they are
not independent (i.e. a test outcome is influenced by the execution of other
test). It has been shown in the software engineering literature [6] that these
dependencies are often difficult and hidden from the software developers. Bell
has developed a software system called VMVM for detecting different types of
dependencies between tests and has used detected information to significantly
reduce the testing time (with around 60% in average). VMVM is a Java imple-
mentation of a technique called Unit Test Virtualization, a technique which
isolates the side-effects of each unit test from other tests. It is based on a
hybrid static-dynamic analysis and automatically identifies the code segments
that may create side-effects. These segments are isolated in a container similar
to a virtual machine.

Due to the complexity of the HDI problem, there is a continuous interest
in the software engineering literature to develop more performant detectors.



IDENTIFYING HIDDEN DEPENDENCIES IN SOFTWARE SYSTEMS 99

4. Discussion

The evaluation measure which is usually used for estimating the perfor-
mance of a process that detects hidden dependencies is the precision of the
detection [31]. The precision of a HDI process is computed as the percentage
of dependencies that were correctly reported as hidden. Since the entire set of
HDs is unknown, the recall measure is impractical in this context.

After the in-depth analysis of the related work we presented in Section 3, we
can conclude that there are a number of limitations of the approaches existing
in the literature for hidden dependencies identification.

Regarding the performance of the identification process, the existing ap-
proaches have moderate precision values: in [26] the precision ranges from 6%
to 18%, [27] reports precision around 20%, while in [4], it ranges from 30% to
40%. An improvement of the performance of HDI is achieved in [31] which
reports precision between 46% and 60%.

Besides, some existing approaches rely on historical data, which is not al-
ways available (and knowledge extracted from it cannot be used for other
projects), or on the creation of different graphs which can be expensive for
large systems.

Even if there are a lot of approaches existing in the literature in the direc-
tion of impact analysis and hidden dependencies identification, to the best of
our knowledge, the applicability of machine learning methods has not been
investigated yet. Due to their ability to unconver hidden patterns in data,
we consider that machine learning models would be appropriate for detecting
hidden dependencies in software projects and that this direction may provide
valuable results in the field.

4.1. Our approach. Our first objective to achieve the long-term goal of this
research is to investigate how to improve impact analysis approaches. We are
planning to reach this objective by developing new coupling measurements to
improve the performance of estimating the impacts of future changes in soft-
ware systems. We aim to capture in the coupling measures both the structural
and conceptual aspects of coupling.

Our second research direction will be to propose machine learning meth-
ods for detecting hidden dependencies in software systems. As we deduced
from reviewing the problem of hidden dependencies identification, none of the
approaches from the literature use machine learning algorithms. Out of the
existing approaches, using call trace information seems promising. We believe
that relational association rules (RARs) [29] can be used to mine relevant
patterns in the call traces. Based on our previous experience with relational
association rule mining, we consider that RARs have the potential to improve
the precision and recall values, since low values make the existing approaches



100 I.G. CZIBULA, G. CZIBULA, D.L. MIHOLCA, AND ZS. MARIAN

impractical to be used for real systems. Besides relational association rules,
we will also investigate the applicability of unsupervised learning techniques,
such as clustering or self-organizing maps [18].

In our view, the problem of HDI can be formalized as a clustering problem.
Clustering [13] (also known as unsupervised classification) is able to differenti-
ate groups of similar objects inside a given data set through detecting hidden
patterns in data. Thus, we consider that a clustering approach may be useful
in detecting hidden dependencies.

Let us consider that a software system S is represented as a set of software
entities, S = {e1, e2, . . . , en}. Depending on the granularity of the approach,
a software entity ei ∈ S can be a software component, an application class, a
method or an attribute from a class, etc. The clustering approach we propose
for HDI consists of three main steps and is depicted in Figure 5:

• Data representation. The software entities and the existing rela-
tionships between them (inheritance, dependency, aggregation, etc.)
are extracted from the analyzed software system. Each software en-
tity will be represented by a high-dimensional vector. The challenge
will be to determine a set of software metrics relevant for deciding if
a hidden dependency exists between two entities.
• Grouping. The set of entities extracted at the previous step are

grouped in clusters using an unsupervised learning method (e.g. clus-
tering [13] or self-organizing map [30]). The goal of this step is to
obtain groups (clusters) which will contain software entities which
depend on each other (considering both direct and hidden dependen-
cies).
• HD extraction. The clusters obtained after the Grouping step will

be filtered in order to remove the direct dependencies. The remaining
entities from each cluster will provide a list of HDs.

Figure 5 contains a graphical representation of the solution we propose for
hidden dependencies identification.

4.2. Preliminary experimental results. In this section we give some in-
cipient experimental results which underline the effectiveness of using unsuper-
vised learning for detecting software dependencies. We consider an experiment
on an open source software framework, Commons DbUtils (version 1.3), a li-
brary consisting of a small set of classes which are designed to make working
with JDBC easier [1]. It consists of 22 classes, placed in three packages:

• default package - contains the core classes and interfaces of the sys-
tem.
• handlers - contains implementations for the ResultSetHandler inter-

face from the default package.



IDENTIFYING HIDDEN DEPENDENCIES IN SOFTWARE SYSTEMS 101

Figure 5. The proposed solution.

Package Class Name

default

BasicRowProcessor(BRP),
BeanProcessor (BP), DbUtils,

ProxyFactory (PF), QueryLoader (QL),
QueryRunner (QR), ResultSetHandler (RSH),
ResultSetIterator (RSI), RowProcessor (RP)

handlers

AbstractKeyedHandler (AKH), AbstractListHandler (ALH)
ArrayHandler (AH), ArrayListHandler (ALH),
BeanHandler (BH), BeanListHandler (BLH),

KeyedHandler (KH), ColumnListHandler (CLH),
MapListHandler (MPH), MapHandler (MH),

ScalarHandler (SH)

wrappers
SqlNullCheckedResultSet (SNCRS),

StringTrimmedResultSet (STRS)

Table 1. Packages and classes in the DbUtils 1.3 system.

• wrappers - contains two wrappers for the ResultSet class from the
java.sql package.

The exact classes from each package are presented on Table 1.
The application classes from DbUtils 1.3 are converted into a text cor-

pus containing the elements of the implementation code (including comments,
identifiers, etc.). Then, the corpus associated to the class is represented as a
fixed-length feature vector of numerical values. These feature vectors are unsu-
pervisedly learned using the implementation of Paragraph Vector (or Doc2Vec)
offered by Gensim [2]. Doc2Vec, a model proposed by Le and Mikolov [21],
is useful for expressing variable-length textual information as a fixed-length
dense numeric vector (paragraph vector), being an alternative to common mod-
els such as bag-of-words and bag-of-n-grams. A first advantage of Doc2Vec



102 I.G. CZIBULA, G. CZIBULA, D.L. MIHOLCA, AND ZS. MARIAN

AKH ALH AH ALH BRP BH BLH BP CLH DU KH MH MLH PF QL QR RSH RSI RP SH SNCRS STR
AKH 1.000 0.654 0.711 0.714 0.463 0.758 0.769 0.416 0.632 0.533 0.728 0.785 0.769 0.475 0.427 0.115 0.668 0.572 0.834 0.597 0.091 0.439
ALH 0.654 1.000 0.668 0.736 0.360 0.765 0.779 0.323 0.503 0.287 0.301 0.731 0.726 0.425 0.264 0.127 0.853 0.521 0.669 0.477 0.368 0.606
AH 0.711 0.668 1.000 0.950 0.511 0.918 0.900 0.269 0.814 0.473 0.644 0.956 0.941 0.616 0.485 0.253 0.769 0.727 0.704 0.812 0.382 0.585
ALH 0.714 0.736 0.950 1.000 0.481 0.895 0.899 0.328 0.792 0.556 0.561 0.952 0.978 0.695 0.558 0.341 0.840 0.682 0.698 0.760 0.455 0.614
BRP 0.463 0.360 0.511 0.481 1.000 0.547 0.557 0.373 0.418 0.147 0.547 0.501 0.447 0.160 0.473 0.286 0.413 0.322 0.489 0.395 0.254 0.523
BH 0.758 0.765 0.918 0.895 0.547 1.000 0.979 0.384 0.825 0.360 0.628 0.915 0.897 0.589 0.414 0.116 0.771 0.547 0.760 0.822 0.342 0.592
BLH 0.769 0.779 0.900 0.899 0.557 0.979 1.000 0.380 0.787 0.408 0.579 0.899 0.902 0.610 0.398 0.042 0.774 0.548 0.769 0.781 0.330 0.582
BP 0.416 0.323 0.269 0.328 0.373 0.384 0.380 1.000 0.271 0.093 0.334 0.286 0.293 0.339 0.321 0.111 0.410 0.061 0.326 0.322 0.125 0.258
CLH 0.632 0.503 0.814 0.792 0.418 0.825 0.787 0.271 1.000 0.248 0.747 0.824 0.805 0.514 0.460 0.314 0.614 0.468 0.602 0.973 0.365 0.453
DU 0.533 0.287 0.473 0.556 0.147 0.360 0.408 0.093 0.248 1.000 0.236 0.533 0.590 0.563 0.293 0.402 0.430 0.434 0.517 0.211 0.175 0.347
KH 0.728 0.301 0.644 0.561 0.547 0.628 0.579 0.334 0.747 0.236 1.000 0.673 0.617 0.186 0.479 0.153 0.440 0.489 0.602 0.715 0.057 0.195
MH 0.785 0.731 0.956 0.952 0.501 0.915 0.899 0.286 0.824 0.533 0.673 1.000 0.969 0.592 0.488 0.299 0.808 0.718 0.734 0.802 0.366 0.580
MLH 0.769 0.726 0.941 0.978 0.447 0.897 0.902 0.293 0.805 0.590 0.617 0.969 1.000 0.682 0.516 0.337 0.804 0.658 0.713 0.767 0.372 0.553
PF 0.475 0.425 0.616 0.695 0.160 0.589 0.610 0.339 0.514 0.563 0.186 0.592 0.682 1.000 0.278 0.349 0.594 0.194 0.530 0.538 0.475 0.569
QL 0.427 0.264 0.485 0.558 0.473 0.414 0.398 0.321 0.460 0.293 0.479 0.488 0.516 0.278 1.000 0.303 0.375 0.310 0.290 0.381 0.221 0.230
QR 0.115 0.127 0.253 0.341 0.286 0.116 0.042 0.111 0.314 0.402 0.153 0.299 0.337 0.349 0.303 1.000 0.330 0.266 0.138 0.292 0.221 0.119
RSH 0.668 0.853 0.769 0.840 0.413 0.771 0.774 0.410 0.614 0.430 0.440 0.808 0.804 0.594 0.375 0.330 1.000 0.618 0.768 0.629 0.466 0.662
RSI 0.572 0.521 0.727 0.682 0.322 0.547 0.548 0.061 0.468 0.434 0.489 0.718 0.658 0.194 0.310 0.266 0.618 1.000 0.503 0.468 0.199 0.418
RP 0.834 0.669 0.704 0.698 0.489 0.760 0.769 0.326 0.602 0.517 0.602 0.734 0.713 0.530 0.290 0.138 0.768 0.503 1.000 0.592 0.145 0.483
SH 0.597 0.477 0.812 0.760 0.395 0.822 0.781 0.322 0.973 0.211 0.715 0.802 0.767 0.538 0.381 0.292 0.629 0.468 0.592 1.000 0.393 0.484
SNCRS 0.091 0.368 0.382 0.455 0.254 0.342 0.330 0.125 0.365 0.175 0.057 0.366 0.372 0.475 0.221 0.221 0.466 0.199 0.145 0.393 1.000 0.815
STRS 0.439 0.606 0.585 0.614 0.523 0.592 0.582 0.258 0.453 0.347 0.195 0.580 0.553 0.569 0.230 0.119 0.662 0.418 0.483 0.484 0.815 1.000

Table 2. The absolute values of cosine similarities between
the classes from DBUtils 1.3.

over the traditional models is that it considers the semantics of the words or,
more formally, the distance between the words [21]. Therefore, private will
be closer to protected than to boolean. An additional advantage over bag-of-
words is that it also takes into consideration the words order, at least in a
small context.

In our experiment with DBUtils 1.3, we computed feature vectors consisting
of 300 numerical features. We give in Table 2 the absolute values of the cosine
similarities between all pairs of feature vectors.

Our focus is to test if an unsupervised learning model is able to capture the
coupling relationship between the application classes thus avoiding to limit the
definition of coupling to a predefined similarity function (like cosine similar-
ity). A self-organizing map will be used in our experiment as an unsupervised
learning model. SOMs [30] are a type of artificial neural network which are
trained to provide a low-dimensional representation of the input space, called
a map [10]. The main characteristic of a SOM is that it preserves the topo-
logical ordering of the input data, more exactly the input instances which are
close to each other in the input space will also be close to each other on the
output map.

The 22 application classes from DbUtils 1.3 are mapped on a SOM having
a torus topology. For visualizing the SOM, the U-Matrix method [18] is used.
Figure 6 illustrates the U-Matrix visualization of the SOM trained on the
application classes from DbUtils 1.3. The darker regions on the U-Matrix
represent data that are similar while the data falling in the lighter regions are
dissimilar. Visualizing the U-Matrix for the resulting map, we observe three
regions corresponding to the three packages presented in Table 1. The classes
from the default package are displayed in red, those from the handlers package
in green, while the third package wrappers is marked with blue.



IDENTIFYING HIDDEN DEPENDENCIES IN SOFTWARE SYSTEMS 103

Figure 6. U-Matrix visualization.

Analyzing the U-matrix from Figure 6 we observe two application classes
(RowProcessor and ResultSetHandler) which seem to be misplaced in the han-
dlers package. But these two misplacements are explainable, considering the
conceptual coupling measurement we used in our experiment. The Result-
SetHandler class is conceptually coupled to the classes from the handlers
package and this type of coupling is deduced from its source code. The Row-
Processor class is close on the map to the BeanHandler class. Analyzing the
source code of the BeanHandler class we found that it contains an attribute
of type RowProcessor, which justifies their closeness on the map. Moreover,
inspecting the source code of RowProcessor class, we observe that it operates
with (Java) beans and this is expressed in its code (identifiers, comments, etc).
Thus, the representation of the classes using Doc2Vec captured the concep-
tual relationship between the classes. We can conclude that the map depicted
in Figure 6 empirically confirms our hypothesis that unsupervised machine
learning models (the self-organizing map, in our case) are able to express de-
pendencies (conceptual, in our case) between software entities. For capturing
the direct coupling between software entities, we should consider not only the
conceptual coupling, but also the structural one.

In our experiment we have focused only on direct dependencies, but we are
confident that using an appropriate data representation (i.e. vectorial rep-
resentation of the application classes), a SOM will be effective for depicting
more complex dependencies (like hidden dependencies) from a software sys-
tem. Further work will investigate different vectorial representations for the



104 I.G. CZIBULA, G. CZIBULA, D.L. MIHOLCA, AND ZS. MARIAN

software entities which are appropriate for capturing more complex software
dependencies.

5. Conclusions and future work

This paper presented in detail the problem of identifying hidden dependen-
cies in software systems, a problem of major importance during the mainte-
nance and evolution of software systems. We discussed about evaluating the
performance of the detection process and we identified the main limitations of
the existing state-of-the-art approaches.

We proposed a new computational model based on clustering for the prob-
lem of hidden dependencies identification. Such a machine learning perspec-
tive has not been proposed in the literature so far. As further work we will
investigate software metrics useful in the Data representation step from our
approach, as well as different clustering algorithms useful in the Grouping step.
Regarding the impact analysis, we target to develop coupling measurements
which capture both the structural and the conceptual aspects of coupling.

Acknowledgments

This work was supported by a grant of the Romanian National Authority for
Scientific Research, CNCS−UEFISCDI, project number PN-II-RU-TE-2014-
4-0082.

References

[1] Commons DbUtils. http://commons.apache.org/proper/commons-dbutils/index.html.
[2] RaRe TECHNOLOGIES. https://github.com/RaRe-Technologies/gensim.
[3] Shirin Akbarinasaji, Behjat Soltanifar, Bora Çağlayan, Ayse Basar Bener, Andriy Mi-

ranskyy, Asli Filiz, Bryan M. Kramer, and Ayse Tosun. A metric suite proposal for log-
ical dependency. In Proceedings of the 7th International Workshop on Emerging Trends
in Software Metrics, WETSoM ’16, pages 57–63, New York, NY, USA, 2016. ACM.

[4] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. Efficient and
precise dynamic impact analysis using execute-after sequences. In Proceedings of the
27th International Conference on Software Engineering, ICSE ’05, pages 432–441, New
York, NY, USA, 2005. ACM.

[5] A. Beer and S. Mohacsi. Efficient test data generation for variables with complex de-
pendencies. In 2008 1st International Conference on Software Testing, Verification, and
Validation, pages 3–11, April 2008.

[6] Jonathan Bell. Making Software More Reliable by Uncovering Hidden Dependencies.
PhD thesis, Graduate School of Art and Sciences, Columbia University, 2016.

[7] Lionel C. Briand, Juergen Wuest, and Hakim Lounis. Using coupling measurement for
impact analysis in object-oriented systems. In Proceedings of the IEEE International
Conference on Software Maintenance, ICSM ’99, pages 475–482, Washington, DC, USA,
1999. IEEE Computer Society.



IDENTIFYING HIDDEN DEPENDENCIES IN SOFTWARE SYSTEMS 105

[8] Daniel Conte de Leon and Jim Alves-Foss. Hidden implementation dependencies in high
assurance and critical computing systems. IEEE Trans. Softw. Eng., 32(10):790–811,
October 2006.

[9] D. Conte de Leon and J. Alves-Foss. Hidden implementation dependencies in high as-
surance and critical computing systems. IEEE Transactions on Software Engineering,
32(10):790–811, Oct 2006.

[10] N. Elfelly, J.-Y. Dieulot, and P. Borne. A neural approach of multimodel representation
of complex processes. International Journal of Computers, Communications & Control,
III(2):149–160, 2008.

[11] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling based
on product release history. In Proceedings of the International Conference on Software
Maintenance, ICSM ’98, pages 190–, Washington, DC, USA, 1998. IEEE Computer
Society.

[12] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling based
on product release history. In Proceedings of the International Conference on Software
Maintenance, ICSM ’98, pages 190–198, Washington, DC, USA, 1998. IEEE Computer
Society.

[13] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2005.

[14] Ahmed E. Hassan and Richard C. Holt. Predicting change propagation in software sys-
tems. In Proceedings of the 20th IEEE International Conference on Software Mainte-
nance, ICSM ’04, pages 284–293, Washington, DC, USA, 2004. IEEE Computer Society.

[15] Hui He, Dongyan Zhang, Min Liu, Weizhe Zhang, and Dongmin Gao. A coverage and
slicing dependencies analysis for seeking software security defects. The Scientific World
Journal, 2014:1–10, 2014.

[16] Jakob Jenkov. Understanding Dependencies. Technical report, Tech and Media Labs,
2014.

[17] Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey and taxonomy
of approaches for mining software repositories in the context of software evolution. J.
Softw. Maint. Evol., 19(2):77–131, March 2007.

[18] S. Kaski and T. Kohonen. Exploratory data analysis by the self-organizing map: Struc-
tures of welfare and poverty in the world. In Neural Networks in Financial Engineering.
Proceedings of the Third International Conference on Neural Networks in the Capital
Markets, pages 498–507. World Scientific, 1996.

[19] Serkan Kirbas, Alper Sen, Bora Caglayan, Ayse Bener, and Rasim Mahmutogullari. The
effect of evolutionary coupling on software defects: An industrial case study on a legacy
system. In Proceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM ’14, pages 6:1–6:7, New York, NY, USA,
2014. ACM.

[20] Ehsan Kouroshfar, Mehdi Mirakhorli, Hamid Bagheri, Lu Xiao, Sam Malek, and Yuan-
fang Cai. A study on the role of software architecture in the evolution and quality of
software. In Proceedings of the 12th Working Conference on Mining Software Reposito-
ries, MSR ’15, pages 246–257, Piscataway, NJ, USA, 2015. IEEE Press.

[21] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and docu-
ments. CoRR, abs/1405.4053, 2014.

[22] Steffen Lehnert. A taxonomy for software change impact analysis. In Proceedings of the
12th International Workshop on Principles of Software Evolution and the 7th Annual
ERCIM Workshop on Software Evolution, IWPSE-EVOL ’11, pages 41–50, New York,
NY, USA, 2011. ACM.



106 I.G. CZIBULA, G. CZIBULA, D.L. MIHOLCA, AND ZS. MARIAN

[23] Thomas M. Mitchell. Machine learning. McGraw-Hill, Inc. New York, USA, 1997.
[24] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.
[25] Alessandro Orso, Taweesup Apiwattanapong, James Law, Gregg Rothermel, and

Mary Jean Harrold. An empirical comparison of dynamic impact analysis algorithms.
In Proceedings of the 26th International Conference on Software Engineering, ICSE ’04,
pages 491–500, Washington, DC, USA, 2004. IEEE Computer Society.

[26] Maksym Petrenko and Vclav Rajlich. Variable granularity for improving precision of
impact analysis. In ICPC, pages 10–19. IEEE Computer Society, 2009.

[27] Denys Poshyvanyk, Andrian Marcus, Rudolf Ferenc, and Tibor Gyimóthy. Using infor-
mation retrieval based coupling measures for impact analysis. Empirical Softw. Engg.,
14(1):5–32, February 2009.

[28] Vaclav Rajlich. A model for change propagation based on graph rewriting. In Proceed-
ings of the International Conference on Software Maintenance, ICSM ’97, pages 84–91,
Washington, DC, USA, 1997. IEEE Computer Society.

[29] Gabriela Serban, Alina Câmpan, and Istvan Gergely Czibula. A programming interface
for finding relational association rules. International Journal of Computers, Communi-
cations & Control, I(S.):439–444, June 2006.

[30] Panu Somervuo and Teuvo Kohonen. Self-organizing maps and learning vector quanti-
zation for feature sequences. Neural Processing Letters, 10:151–159, 1999.

[31] R. Vanciu and V. Rajlich. Hidden dependencies in software systems. In Software Main-
tenance (ICSM), 2010 IEEE International Conference on, pages 1–10, Sept 2010.

[32] Lee White, Khaled Jaber, Brian Robinson, and Václav Rajlich. Extended firewall for re-
gression testing: An experience report. J. Softw. Maint. Evol., 20(6):419–433, November
2008.

[33] H. Y. Yang and E. Tempero. Indirect coupling as a criteria for modularity. In Assessment
of Contemporary Modularization Techniques, 2007. ICSE Workshops ACoM ’07. First
International Workshop on, pages 10–10, May 2007.

[34] Hong Yul Yang, E. Tempero, and R. Berrigan. Detecting indirect coupling. In 2005
Australian Software Engineering Conference, pages 212–221, March 2005.

[35] Hong Yul Yang and Ewan Tempero. Measuring the strength of indirect coupling. In
Proceedings of the 2007 Australian Software Engineering Conference, ASWEC ’07, pages
319–328, Washington, DC, USA, 2007. IEEE Computer Society.

[36] Hong Yul Yang, Ewan Tempero, and Rebecca Berrigan. Detecting indirect coupling. In
Proceedings of the 2005 Australian Conference on Software Engineering, ASWEC ’05,
pages 212–221, Washington, DC, USA, 2005. IEEE Computer Society.

[37] Zhifeng Yu and V. Rajlich. Hidden dependencies in program comprehension and change
propagation. In Program Comprehension, 2001. IWPC 2001. Proceedings. 9th Interna-
tional Workshop on, pages 293–299, 2001.

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: {istvanc,gabis,marianzsu}@cs.ubbcluj.ro,mdir1308@scs.ubbcluj.ro



STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 1, 2017
DOI: 10.24193/subbi.2017.1.08

USING COMPUTATIONAL INTELLIGENCE MODELS FOR

ADDITIONAL INSIGHT INTO PROTEIN STRUCTURE

MARIA-IULIANA BOCICOR1, ALESSANDRO PANDINI2, GABRIELA CZIBULA1,
SILVANA ALBERT1, AND MIHAI TELETIN1

Abstract. Proteins are large, complex molecules with crucial roles in
the functioning of living organisms. Understanding the underlying mech-
anisms by which proteins achieve their structures and substructures, as
well as those involved in the conformational transitions may contribute
to a deeper comprehension of the involved biological processes. This pa-
per investigates a new machine learning perspective upon analyzing pro-
tein conformational transitions and introduces a new formalization for the
problem, with the more general goal of uncovering interesting patterns
in protein conformational transitions. This study represents the starting
point of a research which is being conducted in order to obtain a better
comprehension of proteins’ structures and, implicitly, functions, by inves-
tigating computational intelligence methods for analyzing and deducing
proteins conformational transitions.

1. Introduction

Proteins are large, complex molecules with crucial roles in the functioning
of living organisms: they can be building blocks in the body (structural pro-
teins), they catalyze biochemical reactions in metabolism (enzymes) or they
may execute key tasks in maintaining the cellular environment. Moments af-
ter a protein is synthesized it folds, forming a stable three-dimensional (3D)
structure, which is known to define the protein’s function and which is en-
tirely dictated by the linear sequence of amino acids composing the protein
[26]. According to various external factors from the protein’s environment
(e.g. temperature, interaction with other molecules), modifications in the
protein structures occur during their biological functions. Thus, a protein

Received by the editors: May 14, 2017.
2010 Mathematics Subject Classification. 68T05, 62H30.
1998 CR Categories and Descriptors. I.2.6 [Computing Methodologies]: Artificial

Intelligence – Learning ; I.5.3 [Computing Methodologies]: Pattern Recognition – Clus-
tering .

Key words and phrases. Protein conformations, Computational Intelligence, Machine
learning, Self-organizing maps.

107



108 M.I. BOCICOR, A. PANDINI, G. CZIBULA, S. ALBERT, M. TELETIN

will acquire a limited number of alternative conformations (belonging to the
same fold), having the ability to transition between them [25]. Understanding
protein conformational transitions and protein dynamics is essential for the
comprehension of biomolecular interactions. This is of paramount importance
in the process of developing new drugs that can inhibit proteins’ uncontrolled
behaviour, which can arise in pathological cases (such as protein incorrect
folding or mutations) [15].

The contribution of the paper is summarized as follows. Our first goal is
to explore a new machine learning perspective upon studying protein confor-
mational transitions. Starting from the current state-of-the-art which refers
to the analysis of conformational changes in proteins, we propose a new com-
putational model for the problem of predicting protein conformational tran-
sitions. Secondly, we aim to provide an intuition upon the applicability of
machine learning techniques for uncovering interesting patterns in the struc-
ture of proteins. The study performed in this paper represents the starting
point of a research which is being conducted in order to obtain a better com-
prehension of proteins’ structures and, implicitly, functions, by investigating
computational intelligence methods for analysing and deducing proteins con-
formational transitions. The long-term goal of our research is to contribute
to a better understanding and to offer additional insight into the construction
and functioning of proteins.

The rest of the paper is organized as follows. Section 2 presents the moti-
vation of our approach, highlighting the importance and relevance of under-
standing protein conformational transitions, but the difficulty of the problem
as well. The biological background related to our approach is given in Section
3. The current state-of-the-art, as well as the limitations of existing approaches
related to the analysis of protein structure are presented in Section 4. Sec-
tion 5 introduces our machine learning perspective on the problem, together
with an incipient computational model. A case study which highlights the ap-
plicability of machine learning methods for analyzing protein conformational
transitions is described in Section 6. The conclusions of the paper, as well as
directions for continuing our research are pointed out in Section 7.

2. Motivation

Although the stable 3D structure of a protein is defined by a unique topology
(i.e. fold), this structure is not static and it is now widely accepted that pro-
teins are dynamic objects [25]. According to various external factors from the
protein’s environment (e.g. temperature, interaction with other molecules),
modifications in proteins’ structures occur during their biological functions.
A protein will thus acquire a limited number of conformations and will have



COMPUTATIONAL INTELLIGENCE FOR PROTEIN STRUCTURE ANALYSIS 109

the ability to transition between alternative conformations. Understanding
protein dynamics and how these conformational transitions occur is essential
for the comprehension of biomolecular interactions, which is of paramount
importance in the process of developing new drugs that can inhibit proteins’
uncontrolled behaviour [15].

When investigating the role of conformational transitions in biological func-
tion from a computational perspective, the first stage is devising a formali-
sation of the problem in question, which involves specific domain knowledge
and thus a collaboration between biologists, chemists, physicists and computer
scientists. Various formal abstractions of problems related to protein struc-
ture, or their equivalent transformations have been proven to be NP-hard or
NP-complete [7, 8], which means that there are no algorithms which can solve
these problems in realistic time. The complexity of the protein conforma-
tional transitions problem is further increased by the high dimensionality of
the space to be explored. For such classes of problems, heuristic techniques in-
spired from artificial intelligence and mathematical optimisation are certainly
suitable candidates. In addition to the difficulties mentioned above, obtain-
ing sufficient relevant experimental biological data for thorough analyses and
understanding is time-consuming and financially expensive.

Both the importance and the complexity of the problem motivate us to
investigate the usefulness of machine learning models and methods for the an-
alyzing and detecting the conformational changes in proteins. Our perspective
on the problem is new, to the best of our knowledge it has not been inves-
tigated in the literature, yet. We are confident that machine learning based
solutions are applicable and may lead to interesting and valuable information,
due to these models’ ability to discover hidden patterns in data.

3. Background

Proteins are large molecules, having significant roles in the structure, de-
velopment and functioning of living organisms. They are composed of basic
building blocks - amino acids - small molecules which chain together in order
to create proteins. The amino acids sequence forms the primary structure of
the protein, which can be represented as a string of symbols representing the
20 amino acids (they are encoded by the letters of the alphabet). Although
the sequence of amino acids is linear, the protein does not have an extended
conformation, as intramolecular forces between the amino acids lead to a fold-
ing of the protein. As soon as it is synthesized as a linear sequence of amino
acids, a protein folds in a matter of seconds to a stable three dimensional
structure called the protein’s native state. This structure of the protein is
very important, as it defines the protein’s function. However, proteins are



110 M.I. BOCICOR, A. PANDINI, G. CZIBULA, S. ALBERT, M. TELETIN

Figure 1. Structural elements and their associated symbols
of the SA. Figure source: Alessandro Pandini [19].

dynamic molecules and undergo slight changes in their structures, according
to the function they are fulfilling and depending on environmental conditions.
Understanding and tracing these conformational changes (or transitions) could
help us gain new insight into the way proteins function.

When studying protein conformations, it can be noticed that there are sev-
eral frequently occurring conformations for small fragments. These so-called
states have been determined with various methods and encoded in Structural
Alphabets (SA) [18], which contain codes for the re-occurring short conforma-
tions. There are several types of SA, derived using various methods [16]. These
are particularly useful in computational applications, as they allow represent-
ing a three dimensional structure via a one dimensional array (a sequence of
characters of the alphabet), thus facilitating analysis of protein structure.

In our study we employ the structural alphabet derived by Pandini et al.
in [18]. This is composed of 25 codes, represented by 25 letters of the (con-
ventional) alphabet, each letter representing the short structural (three di-
mensional) element composed of four amino acids in the linear sequence of
the protein. The structural elements and their associated letters of the SA
are depicted in Figure 1. The structural element is characterized by the two
angles between consecutive amino acids (more specifically, between the alpha
carbon atoms of these amino acids) and by the torsion angle formed by all
four atoms [18].

Let us consider a protein Pr, whose primary sequence is composed of n
amino acids: Pr = p1p2 · · · pn. Then, a structural conformation of protein Pr
can be represented as a sequence of letters of length n − 3, where each letter
encodes the structure formed by four amino acids in the primary sequence:



COMPUTATIONAL INTELLIGENCE FOR PROTEIN STRUCTURE ANALYSIS 111

Figure 2. 3D view of protein 1HP9. Image from the RCSB
PDB (www.rcsb.org) [2] of PDB ID 1HP9 [24] 2.

C = s1s2 · · · sn−3. Slight changes in a protein’s conformation lead to different
conformations (thus different representations). One could imagine a sliding
window of length four, passing over the protein’s structure and each group
of four amino acids is represented by a symbol of the SA. An as example,
we present protein 1HP9 1 (a toxin from scorpion venom), which has a short
primary sequence (22 amino acids): GHACYRNCWREGNDEETCKERC. A
three dimensional view of this protein is illustrated in Figure 2. Five possible
SA representations of this protein from the analysis of conformations available
in a database of molecular simulations [13] are shown below (the symbols in
these representations are symbols of the structural alphabet [18]):

• QSUWNSVVVPRIJUUVVUV

• QSUWNSVVVPRIJUUVUUV

• RSUWNSVVVPRIKUUVVUV

• QSUWNSVVVPRGKUUVVUV

• QSUWNSVVVPRGKUUVVUV

It can be noticed that all these conformations have the same length of 19
symbols (= 22 − 3) and there are very slight differences among them. The
amount of changes is consistent with the timescale of the original simulation:
conformations were recorded at intervals of 1 picosecond.

4. Literature review

Several theoretical models have been proposed for modelling conformational
transitions, among which we mention those introduced by Miyashita et al. [14],
Whtford et al. in [27], Skjaerven et al. [22]. These were employed by physics-
based computational methods, such as molecular dynamics [17] or Monte Carlo
[12] to simulate the movement of atoms. However, although having the po-
tential to offer valuable information about protein structure, these simulations

1 http://www.rcsb.org/pdb/explore/explore.do?structureId=1hp9
2This image is used according to RCSB PDB Policies & References: http://www.rcsb.

org/pdb/static.do?p=general_information/about_pdb/policies_references.html.

www.rcsb.org
http://www.rcsb.org/pdb/static.do?p=general_information/about_pdb/policies_references.html
http://www.rcsb.org/pdb/static.do?p=general_information/about_pdb/policies_references.html


112 M.I. BOCICOR, A. PANDINI, G. CZIBULA, S. ALBERT, M. TELETIN

are extremely computationally expensive and thus their time intervals are con-
siderably shorter than those of real biological conformational changes. Normal
Mode Analysis [22] and simplifications of it have been used in several cases
for modelling protein conformational transitions: Schuyler et al. present in
[21] a tool which is able to generate a transition pathway from a source to
a destination conformation and Al-Bluwi et al. use in [1] robotics inspired
methods (motion planning algorithms) to model conformational transitions.

Another technique presented by Haspel et al. in [9], who propose to trace
conformational changes from a start to a goal conformational state by mapping
the protein to a reduced representation, capturing low-energy conformations
with the help of a coarse-grained physics based energy function and applying
a sampling-based motion planning algorithm (again, inspired from robotics).
The limitations of these later solutions are that they either use relatively sim-
ple energy functions (which thus only consider a small number of energy pa-
rameters), or they provide approximations of the paths, which require further
refinement.

Raveh et al. introduce in [20] an approach called PathRover that, based
on initial external constraints can generate motion pathways. The motion
planning algorithm takes into account any available prior information and in-
corporates it into the algorithm of rapidly exploring random trees (RTT ). This
solution’s main advantage is that by using initial constraints, it narrows down
the search in high-dimensional spaces thus being significantly faster. They
managed to do that by integrating their solution into Rosetta - modelling
framework that aggregates algorithms for computational modeling and anal-
ysis of protein data. In order to successfully integrate it, they had to provide
energy functions, optimising protocols and techniques for sampling.

The generated pathways are the result of partial data assimilation in sampling-
based motion planning of molecules. As a result, each pathway has to form a
sequence that satisfies all the initial restrictions while consisting of clash-free
low-energy conformations. The challenge still remains in extracting physical
features from simulated motion and being able to bridge experimental and
computational observations. Significantly less options are explored in [20] be-
cause of the use of partial input but there is no learning involved based on
existing findings.

Cortés et al. propose in [4] a computational approach based on path plan-
ning. The technique is intended to predict the motions of the molecules of
the proteins. It is mentioned that motion planning techniques have lots of
applications in computational biology and that they can be successfully ap-
plied on protein study. The proposed approach is split in two main stages, a
geometric filtering phase and an energy based computation applied only on the



COMPUTATIONAL INTELLIGENCE FOR PROTEIN STRUCTURE ANALYSIS 113

solutions extracted from the first stage. One of the advantages of this split is
the increase in computational speed. The approach analysis shown that the
filtering stage is very effective and that it is capable to present very important
knowledge to biologists. However, the second stage still has some limitations,
since it cannot exploit all the provided knowledge.

The study we conducted on the current state-of-the-art on the problem of
identifying proteins conformational transitions revealed that a machine learn-
ing based computational model has not been investigated in the literature,
yet.

5. Theoretical model. Our proposal

As opposed to other approaches in the literature (Section 4), we tackle
the problem of determining conformational transitions in proteins from a
different angle and we derive a different formalization for it, starting from
a data set of more than 300 proteins and their associated conformations.
As described in Section 3, a protein Pr or length n can be viewed as
a word over the alphabet of 20 letters representing amino acids A =
{G,P,A, V, L, I,M,C, F, Y,W,H,K,R,Q,N,E,D, S, T}: Pr = p1p2 . . . pn,
where pi ∈ A, ∀i ∈ {1, 2, . . . , n}.

For each protein we are given thousands of different conforma-
tions, obtained by molecular dynamics simulations. Each conforma-
tion is converted into its SA representation. The structural alpha-
bet is composed of the 25 letters shown in Figure 1: SA =
{A,B,C,D,E, F,G,H, I, J,K,L,M,N,O, P,Q,R, S, T, U, V,W,X, Y }. It is
important to remark that although same symbols are being used both for
amino acids and for structural elements, these are actually completely dif-
ferent concepts (this is important to be remembered when processing and
experimenting on the data).

For each protein Pr = p1p2 . . . pn in the data set, we are given a large
number m of experimentally determined conformations (for the data set we
use, m = 10000). Therefore, for each protein we have a set S = {cj | cj =

c1jc
2
j . . . c

n−3
j , j ∈ {1, 2, . . . ,m}, ckj ∈ SA, k ∈ {1, 2, . . . n − 3}} of conforma-

tions. Considering all these conformations, a distribution matrix is computed
for each protein, which holds information about the SA elements’ distribu-
tion, for each position k, ∀k ∈ {1, 2, . . . , n − 3}. This frequency matrix can
be interpreted as a ”profile” of the protein dynamics where for each fragment
position we have a probabilistic measure of the occurrence of each letter in the
alphabet. An example of such a matrix, for the 5 conformations of the protein
1HP9 presented in Section 3, is given in Table 1. For each position in the
SA representation we compute the probability of occurrence of each symbol of



114 M.I. BOCICOR, A. PANDINI, G. CZIBULA, S. ALBERT, M. TELETIN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
G 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0
J 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0
N 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Q 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R 0.2 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
S 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
U 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0
V 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1
W 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1. Distributions of SA symbols for the example pre-
sented in Section 3.

the SA on that specific position. For simplicity, in Table 1 we only show the
distributions of the symbols occurring in the 5 conformations, but on a real
world example, all symbols of the SA are considered.

Furthermore, other useful biological information about the protein and the
composing amino acids can be considered (structure related information). For
instance, a property an amino acid is characterized by is the relative solvent
accessibility (RSA), which measures the solvent exposure of the amino acid.
This property is numerical and it can have different values for the same amino
acid, belonging to different structural environments. Another example would
be the amino acid’s hydrophobicity, a physical property which measures how
much the amino acid is repelled by water. This is important, as hydrophobic
forces are decisive factors in the protein folding process.

Considering the input information described above, we formulate the prob-
lem of determining protein conformational transitions as follows:

• Given:
– A protein, as a string of amino acids.
– Other structurally significant, biologic characteristics of amino

acids (e.g. RSA values, hydrophobicity).
– A small number of conformations (e.g. 10 conformations, de-

termined using molecular dynamic methods).
• The requirement is to solve any or both problems below:



COMPUTATIONAL INTELLIGENCE FOR PROTEIN STRUCTURE ANALYSIS 115

– Generate a matrix of probability distributions similar to the one
presented in Table 1, corresponding to all m possible conforma-
tions (even though these are not known).

– Generate all m possible conformations for the protein.

Our aim is to further formalize the problem, considering various combina-
tions of possible input data in order to be able to approach it from a ma-
chine learning perspective. Nonetheless, both requirements are difficult and
conventional machine learning techniques are very probably not sufficient for
satisfying results, therefore a more thorough investigation, as well as new or
hybrid techniques are demanded in order to solve any of the two formulations
of the problem.

6. Experiments

In this section we aim to give an empirical confirmation of our hypothesis
that machine learning methods are applicable for analyzing proteins conforma-
tional transitions. More specifically, our focus is to highlight that unsupervised
learning methods are able to capture patterns among the conformations of the
same protein, as well as relationships between related proteins, relations which
are confirmed from a biological perspective.

We considered an experiment consisting of seven proteins (codes: 1ASH,
1DLW, 1ECA, 1C52, 1CCR, 1APQ, 1COU in the Protein Data Bank [2]),
taken from three different superfamilies (1.10.490.10, 1.10.760.10, 2.10.25.10).
The superfamilies for the proteins were determined using CATH Protein
Structure Classification database [3] which is a publicly available online
resource that provides information on the evolutionary relationships of pro-
tein domains [5]. In this database, two proteins are considered in the same
superfamily if there is a similarity between their three-dimensional structure
[11].

Table 2 illustrates the superfamilies for the seven proteins considered in
our experiment, as well as the similarity index between the proteins belonging
to the same superfamily, as provided by the FATCAT algorithm (Flexible
structure AlignmenT by Chaining Aligned fragment pairs allowing Twists)
[28].

From Table 2 we observe that the proteins from the first two families have
a similarity index about 20%, while the proteins from the third family have
the lowest similarity index of about only 5%.

In order to test our hypothesis that unsupervised learning models are able
to capture the biological relationships between proteins data, we performed
the following experiment.



116 M.I. BOCICOR, A. PANDINI, G. CZIBULA, S. ALBERT, M. TELETIN

# Superfamily Proteins Similarity index

1 1.10.490.10 {1ASH, 1DLW, 1ECA}
1ASH - 1DLW: 20.57%
1ASH - 1ECA: 25.85%
1ECA - 1DLW: 19.08%

2 1.10.760.10 {1C52, 1CCR} 1C52 - 1CCR: 27.10%
3 2.10.25.10 {1APQ, 1COU} 1APQ - 1COU: 4.92%

Table 2. Sample proteins

A B C D E F G H I J K L M N O P Q R S T U V W X Y
0 0 0 0 0 0 0.021 0 0.031 0.021 0.031 0 0 0.052 0 0.052 0.042 0.063 0.105 0 0.221 0.305 0.052 0 0

Table 3. Probabilities of occurrence of SA symbols for the
example presented in Section 3.

We are further considering the theoretical model introduced in Section 5.
For each protein, 10000 conformational transitions are known. The specific
data we use is retrieved from MoDEL, a database which includes representa-
tives from different protein families and fold arrangements [13]. Our current
experiment’s goal is to investigate whether biologically relevant correlations
could be found within the given numerical data and to mine this given data in
order to discover significant signals than can later be used by machine learn-
ing strategies to solve the problem described and defined in Sections 3 and
5. For this purpose, we use a further simplified representation of a protein:
instead of the frequency matrix, we use a frequency vector, constructed as
follows. For each of the 25 letters li (1 ≤ i ≤ 25) from the structural alpha-
bet and each protein Pr, we compute the probability pPr

li
of occurrence of

each letter li in the conformational transitions of protein Pr. Thus, a protein
Pr may be visualized as a 25-dimensional vector containing the probabilities
of occurrence of the symbols from the structural alphabet in the given pro-
tein, Pr = (pPr

l1
, pPr

l2
, . . . , pPr

l25
). For the protein example presented in Section

3 (1HP9), including the 5 presented conformations, the frequency vector is
presented in Table 3.

Considering the above modelling, each of the seven proteins considered in
our case study is represented as a multi-dimensional vector. Our focus is to
test if the conformational transitions of the proteins provide useful informa-
tion regarding their three-dimensional structure and if an unsupervised learn-
ing model is able to capture this type of biological relationships between the
proteins.



COMPUTATIONAL INTELLIGENCE FOR PROTEIN STRUCTURE ANALYSIS 117

(a) Proteins 1ASH, 1DLW, 1ECA,
1C52, 1CCR, 1APQ and 1COU.

(b) Proteins 1ASH, 1ECA and
1COU.

Figure 3. U-Matrix visualization.

We will use a self-organizing map (SOM) as an unsupervised learning model.
SOMs are known to be powerful data mining tools for visualizing high-
dimensional data. A self-organizing map [23] is a type of artificial neural net-
work that is trained using unsupervised learning to provide a low-dimensional
representation of the high-dimensional input space, called a map [6]. The
topological mapping is the main characteristic of the unsupervised mapping
provided by a SOM, more exactly the input samples which are close to each
other in the input space will be mapped into neighboring neurons on the out-
put map.

6.1. Results and discussion. We mapped the seven proteins described
above (considering their 25-dimensional representations) on a SOM having
a torus topology. For the SOM visualization, we use the U-Matrix method
[10] with the following interpretation: the lighter regions express data that are
dissimilar while darker regions contain data that are similar.

Figure 3a depicts the U-Matrix visualization of the SOM trained on the
seven proteins. Visualizing the U-Matrix for the resulting map, we clearly
observe three regions corresponding to the three protein families described in
Table 2.

Figure 3b illustrates the U-Matrix visualization of the SOM trained on only
three proteins: 1ASH, 1ECA and 1COU. From these, only the first two belong
to the same superfamily. This can be visualized on the U-Matrix, since there is



118 M.I. BOCICOR, A. PANDINI, G. CZIBULA, S. ALBERT, M. TELETIN

a clear separating boundary between the protein 1COU and the class formed
by the other two proteins.

The results previously described and depicted in Figures 3a and 3b indicate
the potential of unsupervised machine learning models (the self-organizing
map, in our case) to uncover patterns encoded in the conformational transi-
tions of proteins.

7. Conclusions and future work

In this paper we have investigated the problem of analyzing the confor-
mational transitions of proteins, with the more general goal of contributing
to a comprehensive understanding of the problem. We presented the current
state-of-the-art approaches and we proposed a new computational perspec-
tive on the problem, based on machine learning. Our proposal represents the
starting point of a research initiated on the topic approached in this paper,
our long-term goal being to offer additional insight into the construction and
functioning of proteins.

We also highlighted, through a data mining experiment, that the informa-
tion obtained through analyzing proteins conformational transitions capture
the relationships between related proteins, relations which are confirmed from
a biological perspective.

Starting from the computational model proposed in Section 5, future work
will be done in order to apply concrete supervised machine learning methods
(e.g. artificial neural networks, support vector machines) for predicting the
conformational transitions of proteins, as well as the matrix of probability
distributions associated to protein conformations.

References

[1] Ibrahim Al-Bluwi, Marc Vaisset, Thierry Siméon, and Juan Cortés. Modeling protein
conformational transitions by a combination of coarse-grained normal mode analysis
and robotics-inspired methods. BMC Structural Biology, 13(1):S2, 2013.

[2] H.M Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.
Shindyalov, and P.E. Bourne. The Protein Data Bank. Nucleic Acids Research, 28:235–
242.

[3] CATH: Protein Structure Classification Database at UCL. CATH - Gene3D. http:

//www.cathdb.info.
[4] J. Cortés, T. Siméon, V. Ruiz De Angulo, D. Guieysse, M. Remaud-Siméon, and

V. Tran. A path planning approach for computing large-amplitude motions of flexi-
ble molecules. Bioinformatics, 21(1):116–125, January 2005.

[5] Natalie L. Dawson, Tony E. Lewis, Sayoni Das, Jonathan G. Lees, David Lee, Paul
Ashford, Christine A. Orengo, and Ian Sillitoe. Cath: an expanded resource to predict
protein function through structure and sequence. Nucleic Acids Research, 45(D1):D289,
2017.

http://www.cathdb.info
http://www.cathdb.info


COMPUTATIONAL INTELLIGENCE FOR PROTEIN STRUCTURE ANALYSIS 119

[6] N. Elfelly, J.-Y. Dieulot, and P. Borne. A neural approach of multimodel representation
of complex processes. International Journal of Computers, Communications & Control,
III(2):149–160, 2008.

[7] Aviezri S. Fraenkel. Complexity of protein folding. Bulletin of Mathematical Biology,
55(6):1199 – 1210, 1993.

[8] Christophe Guyeux, Nathalie M.-L. Cote, Jacques M. Bahi, and Wojciech Bienia. Is
protein folding problem really a NP-complete one? First investigations. Journal of
Bioinformatics and Computational Biology, 12(01):1350017–1350041, 2014.

[9] N. Haspel, M. Moll, M. L. Baker, W. Chiu, and L. E. Kavraki. Tracing conformational
changes in proteins. In 2009 IEEE International Conference on Bioinformatics and
Biomedicine Workshop, pages 120–127, Nov 2009.

[10] S. Kaski and T. Kohonen. Exploratory data analysis by the self-organizing map: Struc-
tures of welfare and poverty in the world. In Neural Networks in Financial Engineering.
Proceedings of the Third International Conference on Neural Networks in the Capital
Markets, pages 498–507. World Scientific, 1996.

[11] Michael Knudsen and Carsten Wiuf. The CATH database. Human Genomics, 4:207–
212, 2010.

[12] I. Lotan, F. Schwarzer, and J.C. Latombe. Efficient energy computation for monte carlo
simulation of proteins. Lecture Notes in Computer Science, 2812:354–373,, 2003.

[13] Tim Meyer, Marco D’Abramo, Adam Hospital, Manuel Rueda, Carles Ferrer-Costa,
Alberto Prez, Oliver Carrillo, Jordi Camps, Carles Fenollosa, Dmitry Repchevsky,
Josep Lluis Gelp, and Modesto Orozco. MoDEL (molecular dynamics extended library):
A database of atomistic molecular dynamics trajectories. Structure, 18(11):1399 – 1409,
2010.

[14] Osamu Miyashita, Peter G. Wolynes, and Jos N. Onuchic. Simple energy landscape
model for the kinetics of functional transitions in proteins. The Journal of Physical
Chemistry B, 109(5):1959–1969, 2005.

[15] G. Morra, M. Meli, and G. Colombo. Molecular dynamics simulations of proteins and
peptides: from folding to drug design. Current Protein and Peptide Science, 9:2181–
2196, 2008.

[16] B. Offmann, M. Tyagi, and A.G. de Brevern. Local protein structures. Current Bioin-
formatics, 2(3):165–202, 2007.

[17] Kei-ichi Okazaki, Nobuyasu Koga, Shoji Takada, Jose N. Onuchic, and Peter G.
Wolynes. Multiple-basin energy landscapes for large-amplitude conformational motions
of proteins: Structure-based molecular dynamics simulations. Proceedings of the Na-
tional Academy of Sciences, 103(32):11844–11849, 2006.

[18] A. Pandini, A. Fornili, and J. Kleinjung. Structural alphabets derived from attractors
in conformational space. BMC Bioinformatics, 11(97):1–18, 2010.

[19] Alessandro Pandini. Structural alphabet tools for molecular simulations. http://

people.brunel.ac.uk/~csstaap2/software.html. [Online; accessed 12-May-2017].
[20] B. Raveh, A. Enosh, O. Schueler-Furman, and D. Halperin. Rapid sampling of molecular

motion with prior information constraints. PLoS Computational Biology, 5(2), February
2009.

[21] Adam D. Schuyler, Robert L. Jernigan, Pradman K. Qasba, Boopathy Ramakrishnan,
and Gregory S. Chirikjian. Iterative cluster-nma: A tool for generating conformational
transitions in proteins. Proteins: Structure, Function, and Bioinformatics, 74(3):760–
776, 2009.

http://people.brunel.ac.uk/~csstaap2/software.html
http://people.brunel.ac.uk/~csstaap2/software.html


120 M.I. BOCICOR, A. PANDINI, G. CZIBULA, S. ALBERT, M. TELETIN

[22] Lars Skjaerven, Siv M. Hollup, and Nathalie Reuter. Normal mode analysis for proteins.
Journal of Molecular Structure: {THEOCHEM}, 898(13):42 – 48, 2009.

[23] Panu Somervuo and Teuvo Kohonen. Self-organizing maps and learning vector quanti-
zation for feature sequences. Neural Processing Letters, 10:151–159, 1999.

[24] K.N. Srinivasan, V. Sivaraja, I. Huys, T. Sasaki, B. Cheng, T.K. Kumar, K. Sato,
J. Tytgat, C. Yu, B.C. San, S. Ranganathan, H.J. Bowie, R.M. Kini, and P. Gopalakr-
ishnakone. kappa-hefutoxin1, a novel toxin from the scorpion heterometrus fulvipes with
unique structure and function. importance of the functional diad in potassium channel
selectivity. J.Biol.Chem, 277:30040–30047, 2002. PDB ID: 1HP9.

[25] Nobuhiko Tokuriki and Dan S. Tawfik. Protein dynamism and evolvability. Science,
324(9524):203–207, 2009.

[26] D. Voet and J. Voet. Biochemistry. Wiley, 4 edition, 2011.
[27] Paul C. Whitford, Osamu Miyashita, Yaakov Levy, and Jos N. Onuchic. Conformational

transitions of adenylate kinase: Switching by cracking. Journal of Molecular Biology,
366(5):1661 – 1671, 2007.

[28] Yuzhen Ye and Adam Godzik. FATCAT: a web server for flexible structure comparison
and structure similarity searching. Nucleic Acids Research, 32:582–585, 2004.

1 Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: {iuliana, gabis, albert.silvana}@cs.ubbcluj.ro, tmic1334@scs.

ubbcluj.ro

2 Department of Computer Science, Brunel University, London, England
E-mail address: alessandro.pandini@brunel.ac.uk


