
INFORMATICA
2/2017

STUDIA
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

No. 2/2017
July - December

EDITORIAL BOARD

EDITOR-IN-CHIEF:

Prof. Horia F. Pop, Babeş-Bolyai University, Cluj-Napoca, Romania

EXECUTIVE EDITOR:

Prof. Gabriela Czibula, Babeș-Bolyai University, Cluj-Napoca, Romania

EDITORIAL BOARD:

Prof. Osei Adjei, University of Luton, Great Britain
Prof. Anca Andreica, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Florian M. Boian, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Sergiu Cataranciuc, State University of Moldova, Chisinau, Moldova
Prof. Wei Ngan Chin, School of Computing, National University of Singapore
Prof. Laura Dioșan, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Farshad Fotouhi, Wayne State University, Detroit, United States
Prof. Zoltán Horváth, Eötvös Loránd University, Budapest, Hungary
Assoc. Prof. Simona Motogna, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Roberto Paiano, University of Lecce, Italy
Prof. Bazil Pârv, Babeş-Bolyai University, Cl Cluj-Napoca uj, Romania
Prof. Abdel-Badeeh M. Salem, Ain Shams University, Cairo, Egypt
Assoc. Prof. Vasile Marian Scuturici, INSA de Lyon, France
Prof. Leon Ţâmbulea, Babeş-Bolyai University, Cluj-Napoca, Romania

YEAR

MONTH

ISSUE

Volume 62 (LXII) 2017

DECEMBER

2

S T U D I A

UNIVERSITATIS BABEȘ-BOLYAI

INFORMATICA

2

EDITORIAL OFFICE: M. Kogălniceanu 1 • 400084 Cluj-Napoca • Tel: 0264.405300

SUMAR – CONTENTS – SOMMAIRE

Z. Bodo, L. Csató, A Hybrid Approach for Scholarly Information Extraction 5

R. Deak, A. Sterca, I. Bădărînză, Improving SIFT for Image Feature Extraction 17

D. Mihályi, J. Perháč, P. Bálint, Logical Time and Space of the Network Intrusion 32

A. Briciu, M. Lupea, RoEmoLex - A Romanian Emotion Lexicon 45

I. Bădărînză, Analysing the Effect of User’s Browsing History on Query Suggestions 57

R.F. Vida, Improving Program Comprehension through Dynamic Code Analysis 69

C.V. Rusu, T. Ban, H.A. Greblă, Robby: a Neurorobotics Control Framework Using

Spiking Neural Networks ... 83

E.N. Todoran, Metric Denotational Semantics for Remote Process Destruction and

Cloning ... 93

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 2, 2017
DOI: 10.24193/subbi.2017.2.01

A HYBRID APPROACH FOR SCHOLARLY INFORMATION

EXTRACTION

ZALÁN BODÓ AND LEHEL CSATÓ

Abstract. Metadata extraction from documents forms an essential part
of web or desktop search systems. Similarly, digital libraries that index
scholarly literature require to find and extract the title, the list of authors
and other publication-related information from an article. We present
a hybrid approach for metadata extraction, combining classification and
clustering to extract the desired information without the need of a con-
ventional labeled dataset for training. An important asset of the proposed
method is that the resulting clustering parameters can be used in other
problems, e.g. document layout analysis.

1. Introduction

Since its inception in the 1970s, information retrieval is heavily used in
several domains of science, not to mention its indispensable everyday use as
back-ends for search engines. Search engines collect the available documents
and process the various formats to (a) extract information like title, abstract,
and authors of a publication and (b) to rank these documents according to the
query posed by the user. In this article we focus on document processing and
authorship, respectively title extraction; we call this information metadata.
The metadata for a scientific publication is of great importance for digital li-
braries, the ranking algorithms perform best when complete and unambiguous
information is provided.

We present a generic hybrid method that considers the specifics of the meta-
data to be extracted, and optimizes a clustering procedure that concatenates
text chunks from within a document. A beneficial by-product of this method is
that the resulting clustering is amenable for other domains, such as document
layout analysis [3]. We also mention that our system does not need labeled

Received by the editors: June 19, 2017.
2010 Mathematics Subject Classification. 62H30, 68P20.
1998 CR Categories and Descriptors. I.2.6 [Computing Methodologies]: ARTI-

FICIAL INTELLIGENCE – Learning ; I.5.3 [Computing Methodologies]: PATTERN
RECOGNITION – Clustering .

Key words and phrases. information extraction, metadata, machine learning.

5

6 ZALÁN BODÓ AND LEHEL CSATÓ

data as input, but only a set of PDF documents along with a metadata data-
base, the labeling procedure is embedded into the training phase.

The paper is structured as follows: Section 2 introduces the problem of
metadata extraction and enumerates popular PDF extraction tools, and Sec-
tion 3 describes the proposed algorithm for metadata extraction. In Section 4
the features used for representing the text segments are described, and Sec-
tion 5 concludes the paper by presenting the experiments and discussing the
results.

2. Metadata extraction from scholarly articles

Metadata extraction is generally viewed as a classification problem, where
specific text segments are needed to be identified and extracted from a docu-
ment. That is, if we consider the text chunks extracted from a PDF document,
these have to be labeled as being part of the title, of the author list, of the other
category, etc. Hence, the problem can be viewed as a supervised learning task:
given a set of labeled examples, learn the mapping from the data to labels.
This can be done either by a classifier (e.g. support vector machine [7]) or by
a structured learning method (e.g. conditional random field [14]). In either
case labeled examples or sequences are needed in order to train the learning
model chosen. However, the problem can also be approached by unsupervised
learning: without using any labeled data, find the cohesive text segments of
the page, then label these using for example some kind of rule set [8]. The
works [6, 10] give an excellent overview of the available methods and tools.

In this paper we consider the problem as a supervised learning task, but we
also make use of clustering methods to find the cohesive text segments, that
will be used for learning.

Although scholarly articles can be found in a wide variety of file formats
on the Internet, the Portable Document Format is without doubt the most
popular one. Therefore, it is sufficient to consider this format for metadata
extraction.

The most popular tools used for obtaining the text fragments from PDF
documents—for Java, C# and Python—are PDFBox1, iText2 and PDFMiner3

[1, 4, 16]. All of these libraries can extract text along with font and po-
sitional information from a document, however, the implementations and
functionalities—obviously—differ. Thus, some of them can recognize and sep-
arate ligatures, others cannot, they return different reading orders for the text

1http://pdfbox.apache.org/
2http://itextpdf.com/
3http://www.unixuser.org/~euske/python/pdfminer/

A HYBRID APPROACH FOR SCHOLARLY INFORMATION EXTRACTION 7

chunks, etc.4 Figure 1(a) shows the text chunks returned by PDFMiner for a
test document.

3. A hybrid approach for metadata extraction

In order to use the described method, a large training set of scholarly articles
is required with metadata information attached to them, e.g the title of the
paper, author names, journal or conference proceedings the article appeared in,
etc., depending on what kind of metadata is going to be extracted, in textual
format. This can be obtained by using a specialized crawler, which seeks for
scientific articles on specific websites, and finds the associated metadata. This
is by itself a complex task to perform, therefore the setup of such a system is
not detailed here. Another possibility is to use a digital library, from where the
documents and metadata can be obtained in a more straightforward manner.
One such digital library is CiteSeerX [5, 17], which offers an OAI collection for
metadata harvesting.5 Other approaches may include the utilization of large
research article databases such as the ACL Anthology6, PubMed Central Open
Access Subset7 or the arXiv e-Print Archive8. Online and open bibliography
websites such as DBLP9 or the Collection of Computer Science Bibliographies10

also offer a huge amount of bibliographic data. Combined with a web search
engine with high coverage, one can obtain a large collection of articles and
associated metadata from various journals and conference proceedings. In
order to generalize well, it is of central importance to train the metadata
extraction system using a large variety of article formats.

PDF extraction tools return the extracted text as separate text chunks or
segments along with positional and font information. We consider the problem
of information extraction as a two-step procedure: (a) cluster the segments
to find the cohesive parts, e.g. the title of the article, (b) use the output of
the clustering as input for a supervised learning method. We do not require

4Using 100 random articles as a test set, it resulted that the fastest is iText, PDFBox is
about twice as slow, while PDFMiner is the slowest of the three libraries, slower than iText
by a factor of 7. The tested versions were 7.0.1, 2.0.3 and 20140328, respectively.

5CiteSeerX also employs a metadata extraction system to extract these information
from the crawled files, hence it might seem odd to use the output of a metadata extraction
system as input for training another metadata extraction system. However, a similar wrapper
method, where the output is fed back as input, called self-training, is a common approach
in semi-supervised learning to strengthen the confidence of the underlying classifier [18].

6http://acl-arc.comp.nus.edu.sg/
7ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/
8https://arxiv.org/
9http://dblp.uni-trier.de/
10http://liinwww.ira.uka.de/bibliography/

8 ZALÁN BODÓ AND LEHEL CSATÓ

Algorithm 1 Finding the clustering parameters

1: Choose similarity threshold t
2: while best clustering parameters P are found do
3: P ← next parameter set
4: Perform clustering using P
5: Count matches using threshold t
6: Evaluate P : #matches/#all cases
7: end while

a conventional labeled dataset for training, but only a set of PDF documents
with a metadata database.

Our method searches for the best clustering of the extracted text chunks,
such that to maximize the number of matches between the metadata and the
obtained text segments. A match is found if the similarity between the meta-
data and the text segment does exceed a given threshold, and this happens
exactly once. No match or multiple matches are equivalently considered as
no matches. The proposed method has a number of parameters to set, in-
cluding the clustering algorithm and therefore its parameters, the similarity
measure and threshold. However, since we are working with textual data,
we recommend using the bag-of-n-grams representation with raw frequency
weighting scheme, considering the relative shortness of the text segments, and
the cosine similarity measure [15, 13]. Algorithm 1 summarizes the described
process. Searching for the optimal clustering parameters can be done using
either randomized or grid search.

As possible benefits of the proposed procedure we enumerate the following:

• Constructing a labeled dataset for metadata extraction is a costly
process. The approach presented in this paper does not need a con-
ventional labeled dataset for training, but a set of PDF files along
with a metadata database containing the metadata to be found/ex-
tracted, which can be much more less expensive to produce.
• The clustering procedure (i.e. the clustering parameters) can be used

in another system, that requires to determine cohesive text segments
in a document, for example in document layout analysis [3].
• The output text segments can be used in either a classification or a

sequence tagging algorithm, thus, the learning method can use font
and position-related features. Fewer text segments can increase the
performance of the learning method.
• Using a measure of central tendency, the font name, font size, font

style are determined for the entire segment, thus reducing the proba-
bility of misguiding the classifier—when different font styles or sizes

A HYBRID APPROACH FOR SCHOLARLY INFORMATION EXTRACTION 9

❆�✁✂✄☎t✄✆ ❍✝✞✟✠☎✁ ❢✡☛ ❙✄✂✠❡❙�☞✄☛✌✠✞✄✆

❙✍✄☎✝☛✠✡✞

❩✎✏✑✎❛ ❇✒❞✑✒ ✎❛❞ ▲✓✔✓✏ ❈✕✎✖✑✒ ✗

❇✎✘✓➳✕s❇✒✏✙✎✚ ❯❛✚✛✓✜✕✚✖✙ ✲ ❋✎✢✣✏✖✙ ✒♦ ▼✎✖✔✓✤✎✖✚✢✕ ✎❛❞ ❈✒✤✥✣✖✓✜ ✦✢✚✓❛✢✓
❑✒✧★✎✏❛✚✢✓✎❛✣ ✶✩✪ ✹✫✫✫✬✹ ❈✏✣✭✲✮✎✥✒✢✎ ✲ ❘✒✤✎❛✚✎

✯✰✱✳✴✵✷✳✩ ✸✎✕✔✚❛✧ ✤✓✖✔✒❞✕ ♦✒✜ ♦✎✕✖ ✎✥✥✜✒①✚✤✎✖✓ ❛✓✎✜✓✕✖✲❛✓✚✧✔✘✒✜
✕✓✎✜✢✔ ✎✜✓ ✧✓✖✖✚❛✧ ✤✒✜✓ ✎❛❞ ✤✒✜✓ ✎✖✖✓❛✖✚✒❛ ✇✚✖✔ ✖✔✓ ✓①✢✓✕✕✚✛✓ ✧✜✒✇✖✔ ✒♦
✖✔✓ ✎✛✎✚✏✎✘✏✓ ❞✎✖✎ ✖✒❞✎✙✩ ❊✤✘✓❞❞✚❛✧ ✖✔✓ ✥✒✚❛✖✕ ✚❛✖✒ ✖✔✓ ✸✎✤✤✚❛✧ ✕✥✎✢✓
✚✕ ✎❛ ✚✤✥✒✜✖✎❛✖ q✣✓✕✖✚✒❛ ✒♦ ✖✔✓ ✔✎✕✔✚❛✧ ✥✜✒✢✓✕✕✩ ✺❛✎✏✒✧✒✣✕✏✙ ✖✒ ✤✎✢✔✚❛✓
✏✓✎✜❛✚❛✧ ✖✔✓✜✓ ✓①✚✕✖ ✣❛✕✣✥✓✜✛✚✕✓❞✪ ✕✣✥✓✜✛✚✕✓❞ ✎❛❞ ✕✓✤✚✲✕✣✥✓✜✛✚✕✓❞ ✔✎✕✔✲
✚❛✧ ✤✓✖✔✒❞✕✩ ■❛ ✖✔✚✕ ✥✎✥✓✜ ✇✓ ✥✜✒✥✒✕✓ ✎ ✧✓❛✓✜✚✢ ✥✜✒✢✓❞✣✜✓ ✖✒ ✓①✖✓❛❞
✣❛✕✣✥✓✜✛✚✕✓❞ ✢✒❞✓✇✒✜❞ ✧✓❛✓✜✎✖✒✜✕ ✣✕✚❛✧ ✓✜✜✒✜ ✢✒✜✜✓✢✖✚❛✧ ✢✒❞✓✕ ✎❛❞ ✕✓✤✚✲
✕✣✥✓✜✛✚✕✓❞ ✢✏✎✕✕✚❝✓✜✕✩ ❚✒ ✕✔✒✇ ✖✔✓ ✓✻✓✢✖✚✛✓❛✓✕✕ ✒♦ ✖✔✓ ✤✓✖✔✒❞ ✇✓ ✢✒✤✘✚❛✓
✏✚❛✓✎✜ ✕✥✓✢✖✜✎✏ ✔✎✕✔✚❛✧ ✎❛❞ ✖✇✒ ✕✓✤✚✲✕✣✥✓✜✛✚✕✓❞ ✎✏✧✒✜✚✖✔✤✕ ✚❛ ✖✔✓ ✓①✥✓✜✚✲
✤✓❛✖✕✩

✼ ✽♥✾✿❀❁❂❃✾❄❀♥

❅❉●❏◆❉❖ ❜P◆●❏◗ ❉❱❜❉❖❖P◆❲❳ ❨❬❏ ❧●❏❲❉ ❖●❭● ❳❉❭❳❪ ❫❤❉❏❉ ●❴❴❏❬❵P❱●❭❉ ◆❉●❏❉❳❭❣
◆❉P❲❤❜❬❏❳ ✐❥❦❦♠ ❬❨ ● ❲P♣❉◆ ❴❬P◆❭ ◆❉❉❖❉❖ ❭❬ ❜❉ ❨❬r◆❖❪ ●❏❉ ❉✉✈P❉◆❭ ❭❬❬❧❳ ❨❬❏
P◆❖❉❵P◆❲ ❭❤❉❳❉ ❳❉❭❳② ③❤❉ ❉❱❜❉❖❖P◆❲❳ ●❏❉ ❖❉❳P❲◆❉❖ ❭❬ ●❴❴❏❬❵P❱●❭❉❧◗ ❴❏❉❳❉❏♣❉ ❳P❱❣
P❧●❏P❭◗ P◆ ❭❤❉ ❉❱❜❉❖❖P◆❲ ④●❱❱P◆❲ ❳❴●✈❉② ③❤❉ ❜❉◆❉⑤✈P●❧ ❴❏❬❴❉❏❭P❉❳ ❬❨ ❭❤❉❳❉ ✈❬❖❉❣
❫❬❏❖❳ ❧❉●❖ ❭❬ ❉✉✈P❉◆❭ ④●❱❱P◆❲ ❖P❳❭●◆✈❉ ✈❬❱❴r❭●❭P❬◆❳ ❨❬❏ ⑤◆❖P◆❲ ❭❤❉ ◆❉●❏❉❳❭❣
◆❉P❲❤❜❬❏❳②

⑥❉ ❖P⑦❉❏❉◆❭P●❭❉ ❜❉❭❫❉❉◆ ❭❫❬ ❴❏❬❜❧❉❱❳ ❬❨ ❥❦❦ ❳❉●❏✈❤ ❫P❭❤ ❜P◆●❏◗ ❉❱❜❉❖❣
❖P◆❲❳⑧ ❭❤❉ ⑤❏❳❭ ❬◆❉ ✈❬◆❳P❳❭❳ ❬❨ ❲❉◆❉❏●❭P◆❲ ❭❤❉ ❜P◆●❏◗ ✈❬❖❉❳❪ ●◆❖ ❭❤❉ ❳❉✈❬◆❖ ❬◆❉
P❳ ❭❤❉ ●✈❭r●❧ ❳❉●❏✈❤P◆❲ ❴❏❬✈❉❳❳ ⑨⑩❶② ❷◆ ❭❤P❳ ❴●❴❉❏ ❫❉ ●❖❖❏❉❳❳ ❭❤❉ ⑤❏❳❭ ❴❏❬❜❧❉❱②

❸◆❉ ✈●◆ ❖P❳❭P◆❲rP❳❤ ❜❉❭❫❉❉◆ r◆❳r❴❉❏♣P❳❉❖❪ ❳r❴❉❏♣P❳❉❖ ●◆❖ ❳❉❱P❣❳r❴❉❏♣P❳❉❖
✈❬❖❉❫❬❏❖ ❲❉◆❉❏●❭P❬◆❳❪ ❜●❳❉❖ ❬◆ ❭❤❉ P◆❨❬❏❱●❭P❬◆ ❭❤❉◗ r❳❉ ❭❬ ❬❜❭●P◆ ❭❤❉ ❉❱❜❉❖❣
❖P◆❲ ⑨⑩❶② ❹◆❳r❴❉❏♣P❳❉❖ ❱❉❭❤❬❖❳ r❳❉ ❬◆❧◗ ❭❤❉ P◆❨❬❏❱●❭P❬◆ ✈●❏❏P❉❖ ❜◗ ❭❤❉ ❴❬P◆❭❳
❭❤❉❱❳❉❧♣❉❳② ❺r❴❉❏♣P❳❉❖ ❱❉❭❤❬❖❳ r❳❉ ●❖❖P❭P❬◆●❧ P◆❨❬❏❱●❭P❬◆ P◆ ❨❬❏❱ ❬❨ ❧●❜❉❧❳ ●❳
P◆ ● ❳r❴❉❏♣P❳❉❖ ❱●✈❤P◆❉ ❧❉●❏◆P◆❲ ❴❏❬❜❧❉❱❪ ●❳ ❫❉❧❧ ●❳ ◆❉P❲❤❜❬❏❤❬❬❖ ❧P❳❭❳ ❬❏ ❴●P❏❉❖
✈❬◆❳❭❏●P◆❭❳② ❻P◆●❧❧◗❪ ❳❉❱P❣❳r❴❉❏♣P❳❉❖ ❱❉❭❤❬❖❳ ✈●◆ ❜❉ ♣P❉❫❉❖ ●❳ ● ❱P❵❭r❏❉ ❬❨ ❭❤❉
●❜❬♣❉ ●❴❴❏❬●✈❤❉❳②

❷◆ ❭❤P❳ ❴●❴❉❏ ❫❉ ❴❏❬❴❬❳❉ ● ❲❉◆❉❏●❧ ❨❏●❱❉❫❬❏❼ ❨❬❏ ●r❲❱❉◆❭P◆❲ ❤●❳❤ ✈❬❖❉❣
❫❬❏❖❳ ❬❜❭●P◆❉❖ ❜◗ r◆❳r❴❉❏♣P❳❉❖ ❭❉✈❤◆P❽r❉❳② ⑥❉ ●❳❳r❱❉ ❭❤●❭ ❫❉ ●❏❉ ❲P♣❉◆ ❳❬❱❉
✈❧●❳❳ ❧●❜❉❧❳ ❨❬❏ ❭❤❉ ❭❏●P◆P◆❲ ❖●❭●❪ ❭❤r❳ ✈❏❉●❭P◆❲ ● ❳❉❱P❣❳r❴❉❏♣P❳❉❖ ❧❉●❏◆P◆❲ ❳✈❉❣
◆●❏P❬② ⑥❉ ❴❏❬❴❬❳❉ ❭❬ ❉❵❭❉◆❖ ❭❤❉ ✈❬❖❉❫❬❏❖❳ r❳P◆❲ ❉❏❏❬❏ ✈❬❏❏❉✈❭P◆❲ ❬r❭❴r❭ ✈❬❖P◆❲
✐❾❿❸❿♠ ⑨➀❶ ❫P❭❤ ❳❉❱P❣❳r❴❉❏♣P❳❉❖ ✈❧●❳❳P⑤❉❏❳②

✗➁➂➃ ➄➅➆➂➇➈➉ ➄➊➋➌➇➍➎➃➏➐➃ ➆➂➃ ➉➅➑➑➇➈➆ ➇➒ ➆➂➃ ➓➇➔➄➌→➄➌ ➣→➌→➉➆➈↔ ➇➒ ↕➏➅➊➄➆→➇➌ ➄➌➏ ➓➃➉➃➄➈➊➂
➙→➄ ➐➈➄➌➆ ➛➜➝➞➞➝➓➟➝➁↕➝➠➡➢➢➝➤➝➡➠➥➦➧

53

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence

and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.

Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

❆�✁✂✄☎t✄✆ ❍✝✞✟✠☎✁ ❢✡☛ ❙✄✂✠❡❙�☞✄☛✌✠✞✄✆

❙✍✄☎✝☛✠✡✞

❩✎✏✑✎❛ ❇✒❞✑✒ ✎❛❞ ▲✓✔✓✏ ❈✕✎✖✑✒ ✗

❇✎✘✓➳✕s❇✒✏✙✎✚ ❯❛✚✛✓✜✕✚✖✙ ✲ ❋✎✢✣✏✖✙ ✒♦ ▼✎✖✔✓✤✎✖✚✢✕ ✎❛❞ ❈✒✤✥✣✖✓✜ ✦✢✚✓❛✢✓
❑✒✧★✎✏❛✚✢✓✎❛✣ ✶✩✪ ✹✫✫✫✬✹ ❈✏✣✭✲✮✎✥✒✢✎ ✲ ❘✒✤✎❛✚✎

✯✰✱✳✴✵✷✳✩ ✸✎✕✔✚❛✧ ✤✓✖✔✒❞✕ ♦✒✜ ♦✎✕✖ ✎✥✥✜✒①✚✤✎✖✓ ❛✓✎✜✓✕✖✲❛✓✚✧✔✘✒✜
✕✓✎✜✢✔ ✎✜✓ ✧✓✖✖✚❛✧ ✤✒✜✓ ✎❛❞ ✤✒✜✓ ✎✖✖✓❛✖✚✒❛ ✇✚✖✔ ✖✔✓ ✓①✢✓✕✕✚✛✓ ✧✜✒✇✖✔ ✒♦
✖✔✓ ✎✛✎✚✏✎✘✏✓ ❞✎✖✎ ✖✒❞✎✙✩ ❊✤✘✓❞❞✚❛✧ ✖✔✓ ✥✒✚❛✖✕ ✚❛✖✒ ✖✔✓ ✸✎✤✤✚❛✧ ✕✥✎✢✓
✚✕ ✎❛ ✚✤✥✒✜✖✎❛✖ q✣✓✕✖✚✒❛ ✒♦ ✖✔✓ ✔✎✕✔✚❛✧ ✥✜✒✢✓✕✕✩ ✺❛✎✏✒✧✒✣✕✏✙ ✖✒ ✤✎✢✔✚❛✓
✏✓✎✜❛✚❛✧ ✖✔✓✜✓ ✓①✚✕✖ ✣❛✕✣✥✓✜✛✚✕✓❞✪ ✕✣✥✓✜✛✚✕✓❞ ✎❛❞ ✕✓✤✚✲✕✣✥✓✜✛✚✕✓❞ ✔✎✕✔✲
✚❛✧ ✤✓✖✔✒❞✕✩ ■❛ ✖✔✚✕ ✥✎✥✓✜ ✇✓ ✥✜✒✥✒✕✓ ✎ ✧✓❛✓✜✚✢ ✥✜✒✢✓❞✣✜✓ ✖✒ ✓①✖✓❛❞
✣❛✕✣✥✓✜✛✚✕✓❞ ✢✒❞✓✇✒✜❞ ✧✓❛✓✜✎✖✒✜✕ ✣✕✚❛✧ ✓✜✜✒✜ ✢✒✜✜✓✢✖✚❛✧ ✢✒❞✓✕ ✎❛❞ ✕✓✤✚✲
✕✣✥✓✜✛✚✕✓❞ ✢✏✎✕✕✚❝✓✜✕✩ ❚✒ ✕✔✒✇ ✖✔✓ ✓✻✓✢✖✚✛✓❛✓✕✕ ✒♦ ✖✔✓ ✤✓✖✔✒❞ ✇✓ ✢✒✤✘✚❛✓
✏✚❛✓✎✜ ✕✥✓✢✖✜✎✏ ✔✎✕✔✚❛✧ ✎❛❞ ✖✇✒ ✕✓✤✚✲✕✣✥✓✜✛✚✕✓❞ ✎✏✧✒✜✚✖✔✤✕ ✚❛ ✖✔✓ ✓①✥✓✜✚✲
✤✓❛✖✕✩

✼ ✽♥✾✿❀❁❂❃✾❄❀♥

❅❉●❏◆❉❖ ❜P◆●❏◗ ❉❱❜❉❖❖P◆❲❳ ❨❬❏ ❧●❏❲❉ ❖●❭● ❳❉❭❳❪ ❫❤❉❏❉ ●❴❴❏❬❵P❱●❭❉ ◆❉●❏❉❳❭❣
◆❉P❲❤❜❬❏❳ ✐❥❦❦♠ ❬❨ ● ❲P♣❉◆ ❴❬P◆❭ ◆❉❉❖❉❖ ❭❬ ❜❉ ❨❬r◆❖❪ ●❏❉ ❉✉✈P❉◆❭ ❭❬❬❧❳ ❨❬❏
P◆❖❉❵P◆❲ ❭❤❉❳❉ ❳❉❭❳② ③❤❉ ❉❱❜❉❖❖P◆❲❳ ●❏❉ ❖❉❳P❲◆❉❖ ❭❬ ●❴❴❏❬❵P❱●❭❉❧◗ ❴❏❉❳❉❏♣❉ ❳P❱❣
P❧●❏P❭◗ P◆ ❭❤❉ ❉❱❜❉❖❖P◆❲ ④●❱❱P◆❲ ❳❴●✈❉② ③❤❉ ❜❉◆❉⑤✈P●❧ ❴❏❬❴❉❏❭P❉❳ ❬❨ ❭❤❉❳❉ ✈❬❖❉❣
❫❬❏❖❳ ❧❉●❖ ❭❬ ❉✉✈P❉◆❭ ④●❱❱P◆❲ ❖P❳❭●◆✈❉ ✈❬❱❴r❭●❭P❬◆❳ ❨❬❏ ⑤◆❖P◆❲ ❭❤❉ ◆❉●❏❉❳❭❣
◆❉P❲❤❜❬❏❳②

⑥❉ ❖P⑦❉❏❉◆❭P●❭❉ ❜❉❭❫❉❉◆ ❭❫❬ ❴❏❬❜❧❉❱❳ ❬❨ ❥❦❦ ❳❉●❏✈❤ ❫P❭❤ ❜P◆●❏◗ ❉❱❜❉❖❣
❖P◆❲❳⑧ ❭❤❉ ⑤❏❳❭ ❬◆❉ ✈❬◆❳P❳❭❳ ❬❨ ❲❉◆❉❏●❭P◆❲ ❭❤❉ ❜P◆●❏◗ ✈❬❖❉❳❪ ●◆❖ ❭❤❉ ❳❉✈❬◆❖ ❬◆❉
P❳ ❭❤❉ ●✈❭r●❧ ❳❉●❏✈❤P◆❲ ❴❏❬✈❉❳❳ ⑨⑩❶② ❷◆ ❭❤P❳ ❴●❴❉❏ ❫❉ ●❖❖❏❉❳❳ ❭❤❉ ⑤❏❳❭ ❴❏❬❜❧❉❱②

❸◆❉ ✈●◆ ❖P❳❭P◆❲rP❳❤ ❜❉❭❫❉❉◆ r◆❳r❴❉❏♣P❳❉❖❪ ❳r❴❉❏♣P❳❉❖ ●◆❖ ❳❉❱P❣❳r❴❉❏♣P❳❉❖
✈❬❖❉❫❬❏❖ ❲❉◆❉❏●❭P❬◆❳❪ ❜●❳❉❖ ❬◆ ❭❤❉ P◆❨❬❏❱●❭P❬◆ ❭❤❉◗ r❳❉ ❭❬ ❬❜❭●P◆ ❭❤❉ ❉❱❜❉❖❣
❖P◆❲ ⑨⑩❶② ❹◆❳r❴❉❏♣P❳❉❖ ❱❉❭❤❬❖❳ r❳❉ ❬◆❧◗ ❭❤❉ P◆❨❬❏❱●❭P❬◆ ✈●❏❏P❉❖ ❜◗ ❭❤❉ ❴❬P◆❭❳
❭❤❉❱❳❉❧♣❉❳② ❺r❴❉❏♣P❳❉❖ ❱❉❭❤❬❖❳ r❳❉ ●❖❖P❭P❬◆●❧ P◆❨❬❏❱●❭P❬◆ P◆ ❨❬❏❱ ❬❨ ❧●❜❉❧❳ ●❳
P◆ ● ❳r❴❉❏♣P❳❉❖ ❱●✈❤P◆❉ ❧❉●❏◆P◆❲ ❴❏❬❜❧❉❱❪ ●❳ ❫❉❧❧ ●❳ ◆❉P❲❤❜❬❏❤❬❬❖ ❧P❳❭❳ ❬❏ ❴●P❏❉❖
✈❬◆❳❭❏●P◆❭❳② ❻P◆●❧❧◗❪ ❳❉❱P❣❳r❴❉❏♣P❳❉❖ ❱❉❭❤❬❖❳ ✈●◆ ❜❉ ♣P❉❫❉❖ ●❳ ● ❱P❵❭r❏❉ ❬❨ ❭❤❉
●❜❬♣❉ ●❴❴❏❬●✈❤❉❳②

❷◆ ❭❤P❳ ❴●❴❉❏ ❫❉ ❴❏❬❴❬❳❉ ● ❲❉◆❉❏●❧ ❨❏●❱❉❫❬❏❼ ❨❬❏ ●r❲❱❉◆❭P◆❲ ❤●❳❤ ✈❬❖❉❣
❫❬❏❖❳ ❬❜❭●P◆❉❖ ❜◗ r◆❳r❴❉❏♣P❳❉❖ ❭❉✈❤◆P❽r❉❳② ⑥❉ ●❳❳r❱❉ ❭❤●❭ ❫❉ ●❏❉ ❲P♣❉◆ ❳❬❱❉
✈❧●❳❳ ❧●❜❉❧❳ ❨❬❏ ❭❤❉ ❭❏●P◆P◆❲ ❖●❭●❪ ❭❤r❳ ✈❏❉●❭P◆❲ ● ❳❉❱P❣❳r❴❉❏♣P❳❉❖ ❧❉●❏◆P◆❲ ❳✈❉❣
◆●❏P❬② ⑥❉ ❴❏❬❴❬❳❉ ❭❬ ❉❵❭❉◆❖ ❭❤❉ ✈❬❖❉❫❬❏❖❳ r❳P◆❲ ❉❏❏❬❏ ✈❬❏❏❉✈❭P◆❲ ❬r❭❴r❭ ✈❬❖P◆❲
✐❾❿❸❿♠ ⑨➀❶ ❫P❭❤ ❳❉❱P❣❳r❴❉❏♣P❳❉❖ ✈❧●❳❳P⑤❉❏❳②

✗➁➂➃ ➄➅➆➂➇➈➉ ➄➊➋➌➇➍➎➃➏➐➃ ➆➂➃ ➉➅➑➑➇➈➆ ➇➒ ➆➂➃ ➓➇➔➄➌→➄➌ ➣→➌→➉➆➈↔ ➇➒ ↕➏➅➊➄➆→➇➌ ➄➌➏ ➓➃➉➃➄➈➊➂
➙→➄ ➐➈➄➌➆ ➛➜➝➞➞➝➓➟➝➁↕➝➠➡➢➢➝➤➝➡➠➥➦➧

53

ESANN 2014 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence

and Machine Learning. Bruges (Belgium), 23-25 April 2014, i6doc.com publ., ISBN 978-287419095-7.

Available from http://www.i6doc.com/fr/livre/?GCOI=28001100432440.

(a) (b)

Figure 1. Results of text chunk extraction using PDFMiner
(a) before and (b) after clustering.

are assigned for consecutive text chunks actually belonging to the
same segment.11

Figure 1(b) shows the result obtained by clustering the text chunks ex-
tracted from a PDF document using PDFMiner. The parameters of the clus-
tering method were determined using the proposed algorithm.

4. Clustering and building the feature vectors

Since PDFMiner returns concatenated text chunks from the same line (see
Figure 1), the clustering is performed in vertical direction only. For clustering
the text chunks/segments, a distance measure between the objects is needed,

11However, we mention that the clustering method is faced with the same challenge
during the clustering process.

10 ZALÁN BODÓ AND LEHEL CSATÓ

for which the following metric was used:

d(x, z) = min(min(d1(x, z), d2(x, z)), d3(x, z) + d4(x, z))(1)

/(lineStretch ·minSize) + sizeFactor · d5(x, z)

where d1, d2, d3 and d4 return the distances between the bottom left and top
right, top right and bottom left, bottom left and bottom left, and top right
and top right y-coordinates of the bounding boxes, respectively. The param-
eter minSize gives the minimum of the most frequent font sizes of the two
text segments, while d5 is the absolute value of the font size difference. In case
the majority font styles and font names differ between the two segments, the
distance is multiplied by a styleFactor and fontFactor parameter, respec-
tively. These parameters of the distance function, along with lineStretch and
sizeFactor, were determined using cross-validation.

For representing text chunks for the supervised learning phase we use the
following 3 feature categories:

(a) distances, sizes;
(b) regular expression-based features;
(c) dictionary-based features.

Distance and size features include the distances between the previous and trail-
ing text chunks (i.e. their bounding boxes), vertical positions of the bounding
box, index of the text chunk, text length, number of words, font sizes (cur-
rent, before and after, most frequent in the segment), font style (regular,
bold, italic). Regular expressions-based features include the ratios of upper-
case letters and terms (current, before and after), presence of email and URL
addresses, ratio of numbers and special characters (non-word characters). Ad-
ditionally, a database of first and last names12 was used for calculating the
ratio of names found in a text chunk.

5. Experiments and discussion

5.1. The dataset. The training and test data were obtained from CiteSeerX
by retrieving 5000 scholarly articles from it, using the CiteSeerX OAI collection
via the harvest URL.13. The dataset was compiled between September 5 and 7,
2016, using selective harvesting with datestamps of 01.01.2005 and 01.01.2016.
We stored the metadata of an article only if the source field was valid, and
stopped when the number of 5000 articles was reached. The downloaded
files were processed using PDFMiner omitting the erroneous (e.g. non-PDF)
documents, resulting in a total of 4217 articles. This collection was split
randomly into 3 sets: C1 with 1000 documents, C2 also with 1000 documents,

12https://github.com/SeerLabs/CiteSeerX
13http://citeseerx.ist.psu.edu/oai2

A HYBRID APPROACH FOR SCHOLARLY INFORMATION EXTRACTION 11

{ . . .
” http :// c i t e s e e r x . i s t . psu . edu/viewdoc/summary? doi =10 . 1 . 1 . 1 0 . 5389” : {

” source ” : ” http ://www. c s i e . ntu . edu . tw/˜ c j l i n / papers /svmprob/svmprob . pdf ” ,
” author ” : [

”Ting−fan Wu” ,
” Chih−Jen Lin ” ,
” Ruby C. Weng”

] ,
” t i t l e ” : ” Probab i l i t y Est imates f o r Multi−c l a s s C l a s s i f i c a t i o n by

Pai rwi se Coupling ”
}

. . . }

Figure 2. Data stored for an article in our CiteSeerX-based dataset.

Matching errors Cluster distance threshold
Similarity threshold 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.6 124 111 104 99 92 88 89 88 89
0.65 91 84 82 80 77 75 77 78 81
0.7 79 75 74 71 71 69 72 73 75
0.75 91 88 86 86 87 87 89 90 92
0.8 134 122 118 115 113 113 116 116 118

Table 1. Matching errors obtained on set C1 for titles by vary-
ing the similarity threshold from 0.6 to 0.8 by 0.05 (rows) and
the cluster distance threshold from 0.4 to 2.0 by 0.2 (columns).

and C3 with the remaining 2217 articles. C1 was used for determining the best
clustering parameters, C2 was the training set, while the system was tested on
C3.

The dataset, which by its nature contains errors and inaccuracies, can be
freely downloaded and used for further research.14 The data is availabe in
JSON format, where the key is the CiteSeerX identifier/URL of the article,
and each item is described by three fields, title, author and source, the latter
containing the URL to the downloadable file. Figure 2 shows the description
of an article in this dataset.

5.2. Experimental results. Because our entire system was implemented in
Python, despite its disadvantages, such as relative slowness and omission of
certain chunks at extraction (see Figure 1(a)), the PDFMiner package was
used.

For clustering the text chunks single linkage hierarchical clustering was used
with a parametrized distance function, taking into account the distances be-
tween the chunks, the font names, sizes and styles, as described in Section 4.

14http://www.cs.ubbcluj.ro/~zbodo/citeseerx4217.html

12 ZALÁN BODÓ AND LEHEL CSATÓ

Matching errors Cluster distance threshold
Similarity threshold 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.6 274 290 299 317 332 347 362 371 385
0.65 297 319 332 353 379 392 409 420 434
0.7 337 358 372 391 418 433 451 467 479
0.75 389 412 425 446 475 491 506 520 530
0.8 438 461 468 487 515 530 544 555 567

Table 2. Matching errors obtained on set C1 for authors, by
varying the similarity threshold from 0.6 to 0.8 by 0.05 (rows)
and the cluster distance threshold from 0.4 to 2.0 by 0.2
(columns).

0.6

0.65

0.7

0.75

0.8

0.5

1

1.5

2

0.72

0.73

0.74

0.75

0.76

0.77

0.78

Title

0.725

0.73

0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.6

0.65

0.7

0.75

0.8

0.5

1

1.5

2

0.35

0.4

0.45

0.5

Author

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

(a) (b)

Figure 3. Errors obtained on set C3 for (a) titles and (b)
authors, using the same search grid as in Tables 1–2.

From the design of the distance metric it follows that the optimal threshold
should be somewhere around 1, therefore we performed a grid search around
this value.

The applied method for metadata extraction is similar to the one presented
in [9], but for determining the text segments, we used the method described
in Section 3. Our system currently extracts only the title and the authors
of the article, without segmenting the author names. The feature vectors—
including dictionary-based features, regular expressions, positional and font
information—are constructed for each segment, and random forest classifiers

A HYBRID APPROACH FOR SCHOLARLY INFORMATION EXTRACTION 13

Accuracy Title Authors

SVMHeaderParse with PDFBox 0.6982 0.4713
SVMHeaderParse with PDFMiner 0.6414 0.4848

GROBID 0.7780 0.6337
Our method 0.7631 0.4091

Table 3. Accuracy results using C3 for testing.

[2] are trained on these data. Two sets of 100 random decision trees were
trained using the scikit-learn library15, one for each class.

The distance threshold of the hierarchical clustering and the similarity
threshold for finding the corresponding metadata influence each other, there-
fore we performed a joint search for the optimal values. In Tables 1–2 the
number of matching errors obtained on set C1 are shown, varying the clus-
tering distance and similarity threshold. For these parameter combinations
the metadata extraction system was trained on set C2 and evaluated on C3:
Figure 3 shows the errors obtained. At evaluation we used a testing similarity
threshold of 0.9 for checking whether the corresponding metada was found.
Similarity was measured using cosine similarity, representing the texts as bag-
of-words weighted by the frequencies. The author names were considered as
one object.

We selected the best parameters by standardizing the rows of the matching
error matrices, summing the two and finding the minimum of each row. Other
methods for finding the optimal joint parameters can be applied as well, for
example using an importance weighted linear combination of the matching
errors for the different categories. Thus, for example using a similarity thresh-
old 0.7 we obtained the best cluster threshold of 1.0. For these values we get
accuracies of 0.7631 and 0.4091 for titles and respectively authors, using the
above-mentioned similarity threshold of 0.9 in testing.

We compared our approach to other existing methods, as shown in Table 3.
However, we were faced with the following difficulties when testing other sys-
tems. First, unlike our approach, existing systems [10] use supervised learning
for training—either a classifier or a structured learning method—and use dis-
tinct sets of classes. Our solution, however, does not need labeled data, but
only a set of PDF files along with a metadata database (see Figure 2), the
labeling procedure is embedded into the training phase. Second, existing sys-
tems were primarily designed to use them just as they were trained, therefore
re-training is not well-documented and difficult to perform. Hence, we were

15http://scikit-learn.org/

14 ZALÁN BODÓ AND LEHEL CSATÓ

not able train these using set C2, but only tested them on C3. SVMHead-
erParse is the metadata extraction module used by CiteSeerX implementing
the method described in [7]. For text extraction it uses PDFBox, but since
this component can be easily replaced, we also tested it using PDFMiner.
GROBID16 (GeneRation Of BIbliographical Data, version 0.4.1) is a complex
metadata extraction tool for header metadata and bibliographical extractions.
GROBID uses pdftoxml17 for content and layout extraction and conditional
random fields for learning [11, 12]. As the results in Table 3 show, our method
performs well on title extraction, getting almost the same accuracies as GRO-
BID, which obtained the best overall results in the experiments of [10]. For
author extraction our system achieved the lowest accuracy results, thus a care-
ful examination of the obtained results is required to be able to improve on
the performance.

5.3. Discussion. In this paper we described a hybrid metadata extraction
system, that uses clustering to identify cohesive text segments, after which,
based on the features representing a segment, supervised learning is used to
automatically find parts containing metadata information. The method de-
scribed does not need a conventional labeled dataset for training, but only a
set of PDF documents along with a metadata database. We also compiled a
small dataset from CiteSeerX’s database and used it to train and evaluate our
method.

From the experiments it can be seen that finding titles is easier—this can
be argued by the fact that the most important information about an article is
its title, which always constitutes the most accentuated part of the title page.
The relatively low accuracy obtained for authors can be explained by the noise
in the training data, as well as by the fact that the author list is often broken
up by additional information, e.g. affiliation, which makes the recognition
process more difficult. Using less noisy training and test data our system
achieves accuracies up to 90% and 70% for titles and authors, respectively.

The obtained results show that matching errors vary differently for distinct
metadata categories, therefore a sound methodology is needed how to select the
overall optimal parameters of the clustering method and possibly the similarity
threshold too. Future investigations also include the application and testing
of structured prediction models in metadata extraction using the proposed
method.

16https://github.com/kermitt2/grobid
17https://github.com/eliask/pdf2xml

A HYBRID APPROACH FOR SCHOLARLY INFORMATION EXTRACTION 15

Acknowledgements. This work was supported by a grant of the Romanian
National Authority for Scientific Research, CNDI–UEFISCDI, project number
PN-II-PT-PCCA-2011-3.2-0895.

References

[1] J. Beel, S. Langer, M. Genzmehr, and C. Müller. Docear’s PDF inspector: title extrac-
tion from PDF files. In JCDL, pages 443–444. ACM, 2013.

[2] L. Breiman. Random forests. Machine Learning, 45(1):5, 2001.
[3] T. M. Breuel. High performance document layout analysis. In Proceedings of the Sym-

posium on Document Image Understanding Technology, pages 209–218, 2003.
[4] B. H. Butt, M. Rafi, A. Jamal, R. S. U. Rehman, S. M. Z. Alam, and M. B. Alam. Clas-

sification of research citations (CRC). In CLBib@ISSI, volume 1384 of CEUR Workshop
Proceedings, pages 18–27. CEUR-WS.org, 2015.

[5] C. Caragea, J. Wu, A. M. Ciobanu, K. Williams, J. P. F. Ramı́rez, H.-H. Chen, Z. Wu,
and C. L. Giles. CiteseerX: A scholarly big dataset. In ECIR, volume 8416 of Lecture
Notes in Computer Science, pages 311–322. Springer, 2014.

[6] M. Granitzer, M. Hristakeva, K. Jack, and R. Knight. A comparison of metadata extrac-
tion techniques for crowdsourced bibliographic metadata management. In SAC, pages
962–964. ACM, 2012.

[7] H. Han, C. L. Giles, E. Manavoglu, H. Zha, Z. Zhang, and E. A. Fox. Automatic
document metadata extraction using support vector machines. In JCDL, pages 37–48.
IEEE Computer Society, 2003.

[8] A. Ivanyukovich and M. Marchese. Unsupervised metadata extraction in scientific dig-
ital libraries using a-priori domain-specific knowledge. In SWAP, volume 201 of CEUR
Workshop Proceedings. CEUR-WS.org, 2006.

[9] R. Kern, K. Jack, M. Hristakeva, and M. Granitzer. Teambeam - meta-data extraction
from scientific literature. D-Lib Magazine, 18(7/8), 2012.

[10] M. Lipinski, K. Yao, C. Breitinger, J. Beel, and B. Gipp. Evaluation of header metadata
extraction approaches and tools for scientific PDF documents. In JCDL, pages 385–386.
ACM, 2013.

[11] P. Lopez. Grobid: Combining automatic bibliographic data recognition and term extrac-
tion for scholarship publications. In International Conference on Theory and Practice
of Digital Libraries, pages 473–474. Springer, 2009.

[12] P. Lopez and L. Romary. Humb: Automatic key term extraction from scientific articles
in grobid. In Proceedings of the 5th international workshop on semantic evaluation,
pages 248–251. Association for Computational Linguistics, 2010.

[13] C. D. Manning, H. Schütze, and P. Raghavan. Introduction to information retrieval.
Cambridge University Press, 2008.

[14] F. Peng and A. McCallum. Accurate information extraction from research papers using
conditional random fields. In HLT-NAACL, pages 329–336, 2004.

[15] G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval. In-
formation Processing and Management, 24(5):513–523, 1988.

[16] J. Wu, J. Killian, H. Yang, K. Williams, S. R. Choudhury, S. Tuarob, C. Caragea, and
C. L. Giles. PDFMEF: A multi-entity knowledge extraction framework for scholarly
documents and semantic search. In K-CAP, pages 13:1–13:8. ACM, 2015.

16 ZALÁN BODÓ AND LEHEL CSATÓ

[17] J. Wu, K. M. Williams, H.-H. Chen, M. Khabsa, C. Caragea, S. Tuarob, A. Ororbia,
D. Jordan, P. Mitra, and C. L. Giles. CiteseerX: AI in a digital library search engine.
AI Magazine, 36(3):35–48, 2015.

[18] X. Zhu. Semi-supervised learning literature survey. Technical Report TR 1530, Univer-
sity of Wisconsin, 2005.

Faculty of Mathematics and Computer Science, Babeş–Bolyai University, Cluj-
Napoca, Romania

E-mail address: {zbodo,lehel.csato}@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 2, 2017
DOI: 10.24193/subbi.2017.2.02

IMPROVING SIFT FOR IMAGE FEATURE EXTRACTION

RENATA DEAK, ADRIAN STERCA, AND IOAN BĂDĂRÎNZĂ

Abstract. This paper reviews a classical image feature extraction algo-
rithm, namely SIFT (i.e. Scale Invariant Feature Transform) and modifies
it in order to increase its repeatability score. We are using an approach
that is inspired from another computer vision algorithm, namely FAST.
The tests presented in the evaluation section show that our approach (i.e.
SIFT-FAST) obtains better repeatability scores over classical SIFT.

1. Introduction

Image matching techniques can be separated into two major categories -
feature-based or direct. Direct image matching techniques involve directly
matching one image’s pixels values to the values of the pixels of another im-
age. Therefore, this method looks at how much the pixels of two, or more,
images agree [17]. This approach can be split into two steps: finding an ap-
propriate error metric like Mean Squared Error and deciding on an efficient
search technique. Although, exhaustive search can be applied, it is not an
efficient approach, in particular when dealing with high resolution images.

On the other hand, feature-based matching techniques extract interest points
from the input images and aim to minimize the distance between these inter-
est points. This method is preferred to the direct-based method as it is more
robust, due to the fact that feature extraction algorithms output features that
are invariant to scale, rotation and translation. One of the earliest and most
notable feature extraction algorithms is SIFT - Scale Invariant Feature Trans-
form - developed by David Lowe, first published in 1999 [2]. This enabled the
development of more feature extraction methods such as SURF [8], ASIFT
[11], ORB [12], BRISK [15] and FAST [18], to name a few.

Feature extraction methods have two phases. The first one is detecting the
interest points in an image. There is no formal definition of what constitutes

Received by the editors: August 22, 2017.
2010 Mathematics Subject Classification. 68U10, 94A08.
1998 CR Categories and Descriptors. I.4.7 [Image Processing and Computer Vi-

sion]: Feature Measurement – Feature Representation; I.5.2 [Pattern Recognition]: De-
sign Methodology – Feature evaluation and selection.

Key words and phrases. image feature extraction, SIFT, FAST.

17

18 RENATA DEAK, ADRIAN STERCA, AND IOAN BĂDĂRÎNZĂ

an interest point, most papers defining it as an - interesting - part of an
image, parts that are easily recognizable in two or more different images. This
property is called repeatability, and it is used to measure the effectiveness
of feature detection algorithms. It is desirable that extracted features are
invariant to scale, rotation or translation. This is the reason why feature
detection algorithms aim to detect corners, rather than detecting edges, as
edges are invariant to translation only along their principal axis [5]. Invariance
to scale is obtained by building a scale space of the input image that simulates
different levels of zoom and blur applied on the initial image. The second one
is building descriptors for these points, which will be used to identify a point
within an image. These descriptors are later on used for matching features
between images or for object detection purposes. Matching between features
is done by minimizing the distance between their descriptors.

In this paper we start wih the classical SIFT algorithm and update it by
adding a mechanism inspired from FAST that is meant to increase the re-
peatability of SIFT.

2. Related work

One of the first detectors introduced in the literature is the Harris cor-
ner detector, which detects points based on eigenvalues of the second-moment
matrix [5]. However, this detector was not scale-invariant. It wasn’t until
Lindeberg introduced the concept of automatic scale selection [6] that the
scale invariance of features was a property that feature detector algorithms
pursued. In order to attach to each point its characteristic scale, Lindeberg
used both the Hessian matrix and the Laplacian. What followed was a re-
finement of this method by Mikloajczyk and Schmidt called Harris-Laplace
and Hessian-Laplace which issued robust, scale-invariant features. In order to
avoid computation of the Laplacian of Gaussians, the idea to approximate this
by the Difference of Gaussians was introduced by David Lowe, idea that was
later used in his implementation of SIFT [2].

In terms of feature descriptors, there has been a wide variety of methods
introduced, such as Gaussian derivatives [7], complex features [9] [10] and de-
scriptors such as SIFT [2] that capture information about the spatial intensity
patterns in the neighbourhood of the interest point. To date, this descriptor
has proved to be the most robust one. Although there have been alternatives,
to improve performance - such as PCA-SIFT, which encodes information in a
36-dimensional vector [19] - they have proven to be less distinctive [14]. GLOH
was proposed as an alternative [14], which has proved to be more distinctive,
but it is computationally expensive.

IMPROVING SIFT FOR IMAGE FEATURE EXTRACTION 19

Another alternative to the SIFT descriptor was proposed by Se et al. [13],
which is both fast and distinctive enough, however it has a drawback in the
fact that the vectors extracted are of high dimensions, making the matching
phase more difficult.

In [8] we can find another feature extraction method, named SURF (Speeded
Up Robust Features), which defines three main steps for searching for discrete
image correspondences: detection step, description step and matching step.
In the first step, they are selecting distinctive locations in the image, like
blobs, corners and T-junctions. These distinctive locations are called ’interest
points’. In the second step, a feature vector is defined for each neighbourhood
of every interest point. These vectors are used further in step three where
they are matched between different images, by computing the Mahalanobis or
Euclidean distance. Even though SURF is know for its robustness and speed.
there are other algorithms, like BRISK (Binary Robust Invariant Scalable
Keypoints) [15] that can achieve comparable quality for matching but with
much less computation time. BRISK is a method for generating keypoints
from an image in two phases: detecting scale-space keypoints using a saliency
criterion and keypoint description.

ORB (Oriented FAST and Rotated BRIEF) is another very fast binary de-
scriptor that is build on top of FAST keypoint detector and BRIEF descriptor.
Combining these two methods, you can achive very good performance and very
low cost. Our own approach combines the robustness of the SIFT descriptors
with the detection of the FAST algorithm in order to achieve finding better
candidate points from the first extraction of points, but also increasing the
repeatability of the features extracted.

3. SIFT - Scale Invariant Feature Transform

The SIFT algorithm outputs features that are invariant to scale, rotation
and translation. The first step in SIFT feature extraction is to compute a
Gaussian scale-space from the initial image. 5 octaves of images are con-
structed from the initial image where each octave contains variants of the
initial picture with a decreased samplerate. In each octave there are 5 images
with the same samplerate, but with increasing blur levels (Gaussian blur is
used). A part of this Gaussian scale-space is depicted in Fig. 1 for an image
that is later used in the evaluation section. After this, the DOG (i.e. Differ-
ence of Gaussian) space is computed by applying the differential operator to
the Gaussian scale-space and the 3D extremum points are extracted from the
DOG space. Similarly, a part of the DOG representation is displayed in Fig. 2
for the same image. The 3D extremum points are coarsely detected from the

20 RENATA DEAK, ADRIAN STERCA, AND IOAN BĂDĂRÎNZĂ

Figure 1. Gaussian scale space. The first row represents the
first 3 images in the first octave, the second row contains the
first 3 images from the second octave, and the third from the
third octave.

DoG scale-space by taking the minimum or the maximum from a neighbour-
hood of 26 pixels (see Fig. 3). This is done in order to have extremum points
that are scale invariant. Unfortunately, these extremum candidate points are
very are sensitive to noise. Several filters are applied then in order to discard
low importance extreme points like low contrast keypoints or candidate key-
points that are on the edges. Furthermore, maximum or minimum points are
not situated directly on the pixel, they usually lie in between pixels. So in or-
der to be able to address such a pixel, a position refinement is applied, as well
as a scale refinement, since points detected previously are constrained to the
sampling grid. After low-contrasted pixels are discarded, local interpolation
(using an approximation of the second order Taylor polynomial) is applied on
the remaining candidate points to refine their location and scale.

The final step in SIFT is constructing a 128 byte descriptor for each keypoint
found. SIFT feature descriptors are computed by extracting one or more dom-
inant orientations for each keypoints over a normalized patch. This ensures
the rotation-invariant property of the extracted keypoints. Due to the fact
that there may be more than one dominant orientation for a single keypoint,
the number of feature descriptors extracted may be higher than the number
of features detected in the previous steps. The first step in extracting the
dominant orientation is to build a patch around the keypoint which contains
pixels that lie at a distance smaller than a threshold value from the keypoint’s
position. Then, within the normalized patch, a magnitude and orientation are
computed from the gradient of the image with respect to the x-coordinate and

IMPROVING SIFT FOR IMAGE FEATURE EXTRACTION 21

Figure 2. The DoG representation. The first row represents
the first 3 images in the first octave, the second row contains
the first 3 images from the second octave, and the third from
the third octave.

the y-coordinate. A histogram of orientations will be built from the orienta-
tions extracted. The histogram is built by dividing the interval [0, 2π] into
36 bins of 10 degrees each. Then the orientation is assigned to the closest
bin. For example, if the orientation is π/4, the corresponding bin will be the
one for degrees 40-49. In order to smooth out noise and make distant pixels
have a smaller influence on the gradient assignation, the entries are weighted
by a Gaussian window function which is centered at the interest point. The
next step in extracting dominant orientations is to smooth the histogram by
applying a circular convolution six times with a three-tap box filter. From
the smoothed histogram, the orientations will be extracted from local maxima
positions that are larger 0.8 times than the global maximum. Consequently,
we may extract more than one orientation for a single interest point. Once
the orientations have been computed for each keypoint, this information is
quantized into 128 dimension vectors. In order to compute the descriptor,
the information of the local spatial distribution of the gradient orientation on
a particular neighborhood must be encoded. As a neighborhood, there have
been papers where the entire image was used [1]. However, the original SIFT
method takes a square normalized patch aligned with the orientation of the
point, to induce invariance to scale, rotation and translation [2].

1Image taken from http://www.aishack.in/tutorials/sift-scale-invariant-feature-
transform-keypoints/

22 RENATA DEAK, ADRIAN STERCA, AND IOAN BĂDĂRÎNZĂ

Figure 3. DoG 3D extremum candidate, if pixel ’x’ is either
smaller or larger than all its 26 neighbours. The point marked
with X in the middle image represents the candidate point, the
image below is the image with a lower blur level and the image
above is the image with higher blur level 1

4. Improving the repeatability of SIFT

In the classical SIFT implementation candidate points are extracted by
finding 3D extrema points, in neighborhoods of 27 pixels. This means that
each pixel of the image will be compared to its 26 neighbors - 9 from the image
with a smaller level of blur, 8 from the current image and 9 from the image
with a greater level of blur. A pixel is considered a candidate point if its value
is either smaller or larger than all of its 26 neighbors. Our new approach is to
use FAST [3] for detecting candidate keypoints of the DoG scale-space. FAST
is a corner detection algorithm and in FAST, a circle of sixteen pixels is also
known as the Bresenham circle of radius 3 [20] - around a candidate pixel p is
considered. The pixel is a corner if there is a consecutive sequence of n pixels
in the circle which are all either brighter than the candidate pixel by a certain
threshold or darker than the candidate point by the same threshold. In our
approach for increasing the repeatability of SIFT, instead of searching through
a square of 3x3 neighbors in 3 dimensions, the search for extrema is done by
searching through a circle of radius 3 of 16 pixels a sequence of n pixels that
are all either brighter than the candidate point by a certain threshold, or are
darker than the candidate point by the same threshold (see Fig. 4).

The motivation behind choosing this combination of methods is the fact that
this detection has the potential of extracting keypoints with high repeatability

IMPROVING SIFT FOR IMAGE FEATURE EXTRACTION 23

score. The repeatability is a desired property of the extracted features, as it
evaluates whether or not the feature will be detected in other images containing
the same scene. The FAST detection shows great potential towards this goal,
since it does not restrict the pixel to be brighter or darker than all its nearest
26 neighbors. Instead, a circle is considered, from which a sequence of n pixels
must be either brighter or darker than the candidate point. So the chances
that the feature might be detected in a blurrier image, for example, are higher
than with the classical SIFT detection. For the threshold t, tests have been
run in order to evaluate how it affects the repeatability score of the extracted
features, and the best value obtained was 0.018. Based on the tests from [16],
the value for n was left to 12, as it provides the best results in terms of number
of features extracted and the redundancy of the extracted features. This means
that from each of the three images a sequence of 12 consecutive circle pixels is
found, leading to 36 pixels that should be either darker or brighter than the
candidate pixel by a threshold t.

5. Evaluation

In order to evaluate our SIFT-FAST approach, we have implemented clas-
sical SIFT and SIFT-FAST and compared the two algorithms on photos from
different domains (thus having different entropy levels): a photo with an an-
imal in nature (containing a reasonable amount of color changes and large
blurred areas in the background), a human face (containing distinct areas of
color changes) and a landscape photo (containing many small areas with small
color fluctuations - i.e. the grass). The dimensions of these 3 photos are also
different: 915x497, 500x366 and respectively, 425x378 pixels. We have com-
pared the two implementations using two metrics: the computation time and
the repeatability score. The computation time metric is evaluated for both ap-
proaches in order to see how much computational overhead does SIFT-FAST
introduce and the second metric, repeatability, is used to evaluate if SIFT-
FAST is more suited than classic SIFT for object recogition in images. For
the first metric, considering that the only difference between these implemen-
tations is the extraction of the initial set of keypoints, the time required to
extract these points was measured for both approaches and the results ob-
tained are in figures 5, 6 and 7.

As it can be observed in these figures, classical SIFT detection is more
efficient from the point of view of the execution time, compared to SIFT-FAST.
This is due to the fact that for SIFT-FAST, a consecutive sequence of 12 pixels
needs to be found in three different images, whereas with SIFT the coordinates
of the pixels that are used in the comparison are known beforehand. However,
this is not a big drawback for the SIFT-FAST approach, as it is still executed

24 RENATA DEAK, ADRIAN STERCA, AND IOAN BĂDĂRÎNZĂ

Figure 4. Candidate point detection for FAST-SIFT key-
point. The three grids represent 3 consecutive scales of an
image within an octave. The black pixel is the candidate point
and the grey pixels represent the circle from which a sequence
of n consecutive pixels needs to be darker or brighter than the
black pixel by a certain threshold.

under 0.6 seconds. It just means with SIFT the check is completed faster.
Although SIFT-FAST takes more time because it extracts more reliable points
in this first step than classical SIFT.

Another important property of feature detecting algorithms is the repeata-
bility of the features. This means that having two different images of the same
scene, the features detected in the first image are detected in the second image
as well. The repeatability score for an image was computed by taking the im-
age and a blurrier version of the same image (obtained by applying a Gaussian
blur filter) and computing the percentage of keypoints that are found in both
images (i.e. percentage of common keypoints).

IMPROVING SIFT FOR IMAGE FEATURE EXTRACTION 25

Figure 5. Execution time for extracting first set of keypoints
for an image with a house. FAST18 represents running FAST
detection with threshold=0.018. (time is measured in millisec-
onds)

Figure 6. Execution time for extracting first set of keypoints
for the image with an animal. (time is measured in millisec-
onds)

The results obtained for the same set of input images are illustrated in
figures 8, 9, and 10, respectively. The notations FAST16, FAST17, FAST18
and FAST19 represent the SIFT-FAST algorithm with the value 0.016, 0.017,
0.018 and 0.019 for the threshold used for comparisons. From these tests, the
conclusion is that overall the most suitable value for the threshold is 0.018.

26 RENATA DEAK, ADRIAN STERCA, AND IOAN BĂDĂRÎNZĂ

Figure 7. Execution time for extracting first set of keypoints
for an image with a male face. (time is measured in millisec-
onds)

It is clearly visible in figures 8 - 10 that the SIFT-FAST approach yields
better repeatability results than the classical SIFT algorithm irrespective of
the threshold used, although some threshold values give better results than
others. This result is ensured by the initial extraction of the keypoints. If a
point is chosen as candidate keypoint in one image, in means that it has found
the sequence of 12 pixels that are either brighter or darker in the current
image, in an image with a smaller level of blur and an image with a higher
level of blur. Consequently, there is a high probability that if a pixel was
chosen as candidate in one image, it will be found as candidate in another
image of the same scene (with different blur level, luminosity or small translate
transformations applied).

The advantages of the SIFT-FAST approach over classical SIFT can also
be depicted visually. In Fig. 11 we show the initial set of candidate points ex-
tracted from the three images using classical SIFT. As it can be seen, in this
first phase of feature detection, the features are scattered all over the image,
and they are not reliable in this phase. Then, following the SIFT workflow,
a number of filters are applied to this initial set of candidate points: thresh-
old filter, low-contrast filter, quadratic interpolation and removal of keypoints
located on edges. The final set of keypoints is depicted in Fig. 12. Fig. 13
illustrates this first initial set of keypoints obtained by our SIFT-FAST ap-
proach in the same three images. It can be observed that unlike the initial
detection with classical SIFT, the keypoints are much better positioned. For
example in the first image, there is no point selected in the background, where

IMPROVING SIFT FOR IMAGE FEATURE EXTRACTION 27

Figure 8. Repeatability score for image with male face.

Figure 9. Repeatability score for image with house.

the image is out of focus, and even with the human eye, no object can be
uniquely distinguished, there are no keypoints detected. With classical SIFT
initial detection, the points where scattered all over the image, as it can be
observed in figure 11. Then, the workflow continues the same as for classical
SIFT algorithm and the final set of keypoints extracted with this approach
is represented in Fig. 14. Comparing the final keypoints extracted by this
approach and the classical SIFT approach it can be observed that this ap-
proach extracts fewer candidate keypoints than SIFT. However, defining what
makes an extracted keypoint important is highly dependent on the applica-
tion domain. For example, by comparing the points extracted for the first

28 RENATA DEAK, ADRIAN STERCA, AND IOAN BĂDĂRÎNZĂ

Figure 10. Repeatability score for image with animal.

Figure 11. The first set of keypoints detected in our test im-
ages using classical SIFT.

images in the three test images by SIFT and the SIFT-FAST approach, it
can be observed that the latter extracts little to no points on the man’s shirt,
which seems correct as the variations of contrast in that area of the image are
generated by shadow only.

6. Conclusions and future work

We considerred in this paper the SIFT feature extraction algorithm intro-
duced by David Lowe in 1999 [2]. A new approach was proposed by combining
the classical SIFT algorithm with a FAST-like detection of initial keypoints.

IMPROVING SIFT FOR IMAGE FEATURE EXTRACTION 29

Figure 12. The final set of keypoints detected in our test
images using classical SIFT (after low-contrast filtering, inter-
polation)

Figure 13. The first set of keypoints detected in our test im-
ages using SIFT-FAST approach.

Instead of scanning for 3D local extrema points using the 26 neighbors as the
SIFT algorithm does, the points are scanned in a FAST-like way. That is,
the candidate point is selected if on the circle of radius 3 having the point
in its center, there are 12 pixels either brighter or darker than the point by
a threshold. This check is done on the current level of blur, on the previous
sample image with a smaller level of blur and on the next sample image with
a higher level of blur.

In our tests, we compared these two methods in terms of execution time and
repeatability of features. We showed that although using the FAST detector

30 RENATA DEAK, ADRIAN STERCA, AND IOAN BĂDĂRÎNZĂ

Figure 14. The final set of keypoints detected in our test
images using SIFT-FAST approach (after low-contrast filtering,
interpolation)

for extracting the initial set of keypoints was more time-consuming, it yielded
better results in terms of repeatability of features which is important for image
object recognition tasks. The reason why execution time is higher using SIFT-
FAST algorithm is that a consecutive sequence of 12 pixels needs to be found,
on three levels of blur, whereas for the classical SIFT, there are 26 neighbors
that are checked only. However, the fact that the repeatability test had better
results of this approach, than the classical SIFT, makes this drawback have
lesser importance.

References

[1] Hassner, T., Mayzels, V., Zelnik-Manor, L., On SIFTs and their scales, IEEE Conference
on Computer Vision and Pattern Recognition, Washington DC, USA, June 16-21, 2012,
pp. 1522-1528.

[2] Lowe, D., Object recognition from local scale-invariant features, In Proceedings of the
7th International Conference on Computer Vision, Washington DC, USA, September
20-25, 1999, pp. 1150-1157.

[3] Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking, 10th
IEEE International Conference on Computer Vision, Washington DC, USA, October
17-20, 2005, pp. 1508-1515.

[4] Otero, I.R., Delbracio, M., The anatomy of the SIFT method, Image Processing On
Line, vol. 4, 2014, pp. 370-396.

[5] Harris, C., Stephens, M.: A combined corner and edge detector, Proceedings of the 4th
Alvey Vision Conference, Manchester, 31 August - 2 September, 1988, pp. 147-151.

[6] Lindeberg, T., Scale-space theory in computer vision, Kluwer Academic Publishers Nor-
well, MA, USA,1994.

IMPROVING SIFT FOR IMAGE FEATURE EXTRACTION 31

[7] Florack, L.M.J., Haar Romeny, B.M.T., Koenderink, J.J., Viergever, M.A.: General
intensity transformations and differential invariants, Journal of Mathematical Imaging
and Vision, May 1994, Volume 4, Issue 2, pp 171-187.

[8] Bay, H., Tuytelaars, T., Van Gool, L., Surf: Speeded up robust features., Proceedings
of the European Conference on Computer Vision, Graz, Austria, May 2006, pp 404-417.

[9] Baumberg, A., Reliable feature matching across widely separated views, Conference on
Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina, 15 June
2000, pp. 774-781.

[10] Schaffalitzky, F., Zisserman, A., Multi-view matching for unordered image sets, or “How
do I organize my holiday snaps’, European Conference on Computer Vision, Copen-
hagen, Denmark, May 28-31, 2002, pp. 414-431.

[11] G. Yu and J-M. Morel, ASIFT: An Algorithm for Fully Affine Invariant Comparison,
Image Processing On Line, vol. 1, 2011, pp. 438-469.

[12] Rublee, E., Rabaud, V., Konolige, K., Bradski, G., ORB: An efficient alternative to
SIFT or SURF, Proceedings of IEEE International Conference on Computer Vision,
Washington DC, USA, November 06-13, 2011, pp. 2564-2571.

[13] Se, S., Ng, H., Jasiobedzki, P., Moyung, T., Vision based modeling and localization
for planetary exploration rovers, Proceedings of the 55th International Astronautical
Congress, Vancouver, Canada, 4-8 October pp. 364-375.

[14] Mikolajczyk, K., Schmid, C., A performance evaluation of local descriptors. Pattern
Analysis and Machine Intelligence, vol. 27, issue 10, 2005, pp. 1615-1630.

[15] Leutenegger, S., Chli, M., Siegwart, R.Y., BRISK: Binary Robust Invariant Scal-
able Keypoints, Proceedings of IEEE International Conference on Computer Vision,
Barcelona, Spain, 6-13 November, 2011, pp. 2548-2555.

[16] Rosten, E., Porter, R., Drummond, T., Faster and better: A machine learning approach
to corner detection, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 32,
issue 1, pp. 105-119, 2010.

[17] Szeliski, R., Image alignment and stitching: a tutorial, Foundations and Trends in
Computer Graphics and Computer Vision, Now Publishers, pp. 1-104, 2006.

[18] Rosten E., Drummond, T., Machine learning for high-speed corner detection, European
Conference on Computer Vision, Graz, Austria, May 07-13, 2006, pp. 430-443.

[19] Ke, Y., Sukthankar, R., PCA-SIFT: A more distinctive representation for local image
descriptors, IEEE Conference on Computer Vision and Pattern Recognition, Washing-
ton DC, USA, 27 June-2 July 2004.

[20] Donald Hearn, M. Pauline Baker, Computer graphics, Prentice-Hall, USA, 1994.

Faculty of Mathematics and Computer Science, Babeş–Bolyai University, Cluj-
Napoca, Romania

E-mail address: drhp0888@scs.ubbcluj.ro

E-mail address: forest@cs.ubbcluj.ro

E-mail address: ionutb@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 2, 2017
DOI: 10.24193/subbi.2017.2.03

LOGICAL TIME AND SPACE OF THE NETWORK

INTRUSION

DANIEL MIHÁLYI, JÁN PERHÁČ, AND PATRIK BÁLINT

Abstract. Nowadays, one of the biggest threats for modern computer
networks are the cyber attacks. One of the possible ways how to increase
the level of computer networks security is a deployment of a network intru-
sion detection system. This paper deals with the behavior of the network
intrusion detection system during specific network intrusion. We formally
describe this network intrusion by the modal linear logic formula. Based
on this formula, logical space and logical time is expressed from the at-
tacker, and the network environment point of view in the usage of the
Ludics theory.

1. Introduction

Just as people communicate with each other, so do the computers. This
communication takes place within computer networks. As computer users,
people encounter the term ’computer network’ on a daily basis. Computer
security threats are relentlessly inventive. These threats constantly evolve the
possibilities how to find new ways to annoy, steal, or harm the user’s data.
Intrusion Detection System (IDS) [6] is one of the ways how to protect com-
puter network from security threats. IDS is a device or software application
that monitors a network or computer systems for malicious activities or policy
violations. Each detected activity or violation is typically reported either to
an administrator or collected centrally. A sequence of such causal activities
can be described by a resource-oriented logical system properly.

In our approach, we use Linear Logic, which is a suitable logical system for
usage in the field of computer science. This Logic [1] [2], is a substructural
logic proposed as a refinement of classical and intuitionistic logic. Linear Logic
brings new possibilities how to reason about formulæ in the resource oriented

Received by the editors: October 15, 2017.
2010 Mathematics Subject Classification. 18C10, 68M10.
1998 CR Categories and Descriptors. I.2.7 [Mathematical Logic and Formal Lan-

guages]: Formal Languages – Language models.
Key words and phrases. Linear Logic, DDoS Attack, SYN Flood, Ludics, Logical Space,

Logical Time.

32

LOGICAL TIME AND SPACE OF THE NETWORK INTRUSION 33

form. It means that a formula can be considered as a action or a resource that
is performed in control manner. For example, the linear implication is causal
which means that after performing it, the assumption is consumed.

In our previous work, we have created the network laboratory and described
IDS’s behavior during a ARP spoofing attack by linear logic formula [10].
From the coalgebraic point of view, we have described behavior of a IDS step
by step through the coalgebra for a polynomial endofunctor in [8]. Then we
have translated real network intrusion signatures based to coalgebraic one
[9]. In this paper, we present usage of the Modal Linear Logic, which is a
suitable logic to describe the behavior of state-oriented dynamic of an executed
program system. The whole process of performing network attack and catching
a network intrusion by a IDS is specified by behavioral the resource oriented
logical formula. Then, we apply a logical time and a logical space from the
Ludics theory [3], which was proposed by the J. Y. Girard [1]. In terms of this
theory, we can consider a behavioral formula as a polarized game between an
attacker and a network environment.

2. Modal linear logic

For the exact description of intrusion detection system’s behavior, we have
introduced our new logical system. We have proposed the Modal Linear Logic
for IDS, which results from generalization of the linear logic’s multiplicative
fragment and the coalgebraic logic [2] [7]. Compared to the other logical
systems, the significant feature of linear logic is resource-oriented approach
of dealing with formulæ [1], which creates a strong expressive power for de-
scribing the real processes [2], e.g. causality, pleonasm or parallelism and
many more [5]. These, together with a modal operators of the coalgebraic
modal logic, create an appropriate formalism for describing a behavior of state-
oriented program systems such as IDS.

2.1. Syntax of Modal linear logic. We formulate the syntax of Modal
linear logic in [5], by the following production rule in the Backus-Naur form:

ϕ ::= an | 1 | ⊥ | ϕ ⊗ ψ | ϕ O ψ | ϕ(ψ | ϕ⊥ | �ϕ | ♦ϕ,

where:

• an represents the elementary formulæ, where n = {1,2 ...},
• ϕ ⊗ ψ with its neutral element 1 is the multiplicative conjunction,

which describes the process of performing of both actions simultane-
ously,
• ϕ O ψ with its neutral element ⊥ is the multiplicative disjunction,

which expresses the commutativity of duality between available and

34 DANIEL MIHÁLYI, JÁN PERHÁČ, AND PATRIK BÁLINT

consumed resources by performing either the action ϕ or the action
ψ,
• ϕ(ψ is the linear implication, which expresses that the (re)action
ψ is the causal consequence of the action ϕ and after performing this
implication, the resource ϕ became consumed (ϕ⊥),
• ϕ⊥ is the linear negation, which expresses duality between action (ϕ)

and reaction (ϕ⊥), in the other words, an available and a consumed
resource, respectively,
• �ϕ is the modal operator expressing necessity of the action ϕ,
• ♦ϕ is the modal operator expressing possibility of the action ϕ.

2.2. The proof system. The proof system of Modal linear logic is defined in
the Gentzen’s double side sequent calculus. The building block of this calculus
is a sequent, which has the following form:

(1) Γ ` ∆,

where Γ, ∆ represent (finite) sets of formula(e).
The inference rules have following

(2)
assumption(s)

conclusion
(rule name),

where the assumption(s) and the conclusion are sequents. There is a spe-
cial type of rules without assumption, called axioms.

They are defined as follows:

• The identity rule:

ϕ ` ϕ
(id)

• The structural rules are a cut rule and exchange rules:

Γ ` ϕ ∆, ϕ ` ψ
Γ,∆ ` ψ

(cut)

Γ, ϕ, ψ ` ∆

Γ, ψ, ϕ ` ∆
(exl)

Γ ` ϕ,ψ,∆
Γ ` ψ,ϕ,∆

(exr)

• The logical rules deal with logical connectives:

Γ ` ∆

Γ, 1 ` ∆
(1l) ` 1

(1r) ⊥ `
(⊥l)

Γ ` ⊥,∆
(⊥r)

Γ, ϕ, ψ ` ∆

Γ, ϕ� ψ ` ∆
(�l)

Γ ` ϕ,∆ Φ ` ψ,Σ
Γ,Φ ` ϕ� ψ,∆,Σ

(�r)

LOGICAL TIME AND SPACE OF THE NETWORK INTRUSION 35

Γ ` ϕ,∆ Φ, ψ ` Σ

Γ,Φ, ϕ(ψ ` ∆,Σ
((l)

Γ, ϕ ` ψ,∆
Γ ` ϕ(ψ,∆

((r)

Γ, ϕ ` ∆ Φ, ψ ` Σ

Γ,Φ, ϕ O ψ ` ∆,Σ
(Ol)

Γ ` ϕ,ψ,∆
Γ ` ϕ O ψ,∆

(Or)

Γ ` ϕ,∆
Γ, ϕ⊥ ` ∆

(()⊥l)
Γ, ϕ ` ∆

Γ ` ϕ⊥,∆
(()⊥r)

Γ ` ϕ,∆
Γ ` �ϕ,∆

(�r)
Γ, ϕ ` ∆

Γ,�ϕ ` ∆
(�l)

Γ ` ϕ,∆
Γ ` ♦ϕ,∆

(♦r)
Γ, ϕ ` ∆

Γ,♦ϕ ` ∆
(♦l)

The proof of a formula is proof tree, constructed from the root (the bottom
of the tree) up to the leaves. The proof tree leaves have to be axioms, which
implies that Gentzen’s style proof tree is constructed correctly. When all leaves
are axioms, the formula is proven.

3. Motivation Example

In this section, we briefly introduce basic notions of the used methods re-
lated to the detection of a network intrusion by the intrusion detection system,
and an informal description of the particular attack, that we demonstrate in
the motivation example bellow.

IDS is a security system that monitors the computer system’s activities
and its network traffic, and analyzes that traffic for possible hostile attacks
originating from outside of an organization, and also for a system misuse or
attacks originating from inside of an organization. It provides the three sig-
nificant functions: monitoring, detecting, and responding [4] to unauthorized
activities by company insiders and outsider intrusions. IDS uses policies to
define certain events that if detected, will issue an alert.

Our motivation example is based on the execution of a Distributed Denial of
Service (DDOS) type of attack, which is ”extended” Denial of Service (DOS)
attack type. The point of the DOS is flooding a target (e.g. server) by
requesting attempts to overload it. In case of a DDOS, the attack is performed
from more hosts at the same target(s) at the same time. Nowadays there are
plethora of DDOS attacks. We have chosen the Syn Flood attack. This attack
exploits the Transmission Control Protocol’s (TCP) ”three way handshake”,
during a client attempt to connect with a server. The server first passively

36 DANIEL MIHÁLYI, JÁN PERHÁČ, AND PATRIK BÁLINT

listens at a port for possible connections. To establish a connection, the client
sends a SYN to the server. The SYN contains various information, but
what is important, it contains IP address of the client. The server allocate
resources for possible connection for the IP address for a some time (half-open
connection). Then the server responses by sending the SYN-ACK, to which
the client response with ACK. After that a connection is established. The
SYN Flood attack exploits the first step of this process. It sends multiple
requests (SYN) for connections to the server, but with spoofed IP addresses.
This can result into the server’s overload, which cause its malfunction.

To demonstrate the SYN Flood attack, we have created the laboratory
environment (as shown in Figure 1), where we can see the Attacker’s machine,
its Terminals, the Victim’s machine (with a localhost running) and the Router.
Attacker uses five terminals to flood the Victim’s web server services.

Figure 1. Laboratory network environment.

In our case, it is necessary to do the following steps to perform chosen
attack:

(1) examination of the Local Area Network (LAN) topology (address
space, network mask, default gateway etc.), e.g. by the tool nmap,

(2) perform a check for open ports on clients (potential victims) con-
nected to the LAN by port scan,

(3) execution of the Syn Flood attack at chosen client, from the 5 ter-
minals simultaneously.

LOGICAL TIME AND SPACE OF THE NETWORK INTRUSION 37

3.1. Formula in Modal Linear Logic. Now, we can describe the formula
(see Figure 3) of the network intrusion by Modal Linear Logic for IDS (section
2):

(3) (((N (S1)(♦UM)�(((((H1�H2)�H3)�H4)�H5)(S2))(�UN ,

where:

• N represents a vertical port scan of the victim’s host port,
• S1 is a reaction of IDS to vertical scanning of the victim’s host ports

by creating a log about a potential attack,
• ♦UM represents possible network intrusion,
• elements H1 ... H5 represent executing the SYN Flood attack from

Attacker’s five terminals to the Victim’s machine,
• S2 is a reaction to the SYN Flood attack from the Attacker’s termi-

nals,
• �UN represents the necessity of successful network attack.

The formula (3) can be interpreted as follows.

• ”Vertical port scan executed by the attacker (N)
• implies (()
• an action of the IDS by creating a log (S1),
• and that implies (
• a possible network intrusion (♦ UM),
• and (⊗)
• performing the SYN Flood attack from the attacker’s five terminals

(H1⊗, . . . ,⊗H5),
• implies (()
• an action of IDS by creating a log (S2),
• and that all implies (()
• the necessity of the network intrusion. (�UN)”

Next step is to create a proof tree in Linear Logic proof system, which is
constructed from the root to leaves, as shown in Figure 2. All leaves have
to be identities. The whole proof tree represents a process of the SYN Flood
attack from the Attacker’s point of view. The contexts in the proof tree are
defined in Figure (3). Every deduction step in the proof tree above (Figure
2) is realized by using an appropriate rule (defined in the Section 2.2) of the
linear Gentzen’s calculus.

3.2. De Morgan’s form. The original formula (3) demonstrate a process of
the attack from the attacker’s point of view. To show the same process from
the network environment, it is necessary to transform it to the orthogonal one.
It can be done by application of the De Morgan’s laws Table 1. By applying

38 DANIEL MIHÁLYI, JÁN PERHÁČ, AND PATRIK BÁLINT

Figure 2. Proof tree in Linear Logic.

Figure 3. Contexts for the proof tree (2)

them, we can obtain dual view between the two participants: in our case, the
attacker and the environment.

Table 1. De Morgan’s rules

1⊥ ≡dm1 ⊥
⊥⊥ ≡dm2 1

(ϕ⊥)⊥ ≡dm3 ϕ
(ϕ � ψ)⊥ ≡dm4 ϕ⊥ O ψ⊥

(ϕ O ψ)⊥ ≡dm5 ϕ⊥ � ψ⊥

(ϕ � ψ) ≡dm6 (ϕ⊥ O ψ⊥)⊥

ϕ (ψ ≡dm7 ϕ⊥ O ψ
ϕ O ψ ≡dm8 (ϕ⊥ � ψ⊥)⊥

(♦ ϕ)⊥ ≡dm9 ♦ (ϕ)⊥

(� ϕ)⊥ ≡dm10 � (ϕ)⊥

LOGICAL TIME AND SPACE OF THE NETWORK INTRUSION 39

To achieve this, we must use the following De Morgan rules (see Table 1
above) to the original formula (3).

Figure 4. De Morganized formula.

In the Figure (4), we have translated the formula (3) in Modal linear logic
(from the attacker point of view) to the De Morganized one (from the network
environment point of view). In every step of the formula translation, we un-
derline the appropriate part, where a particular De Morgan’s law was applied.
Later, we construct a polarized proof tree (see Figure 5), where the root of
tree is De Morganized formula and every derivation step is realized by using
an appropriate rule applied to obtain a new proof instance.

3.3. Logical space and logical time. To successfully express the logical
space and time, it is necessary to identify changes in the polarity within the

40 DANIEL MIHÁLYI, JÁN PERHÁČ, AND PATRIK BÁLINT

proof tree. Logical connectives are divided into the two groups depending on
their polarity. The positive connectives are ⊗, 1, � and the connectives O, ⊥,
♦, are the negative ones.

The polarity of formula depends on its outermost connective [11]. Change
of polarity within the proof tree instance of a linear formula characterizes an
incrementation of time. The steps of a proof with the same polarity can be
enclosed into a cluster [11]. The actions in a cluster can be performed simulta-
neously. Application of the negation rule is causing a leaping of an appropriate
formula or its subformula between left and right side of the turnstile. It occurs
when a new cluster of the same polarity passes. To achieve this, a polarized
proof tree must be created with the root of De Morganized formula as shown in
the Figure (4). At the end all the leaves of the proof tree have to be identities.

Figure 5. Polarized proof tree.

where the contexts are defined as follows:

Figure 6. Contexts for the polarized proof tree.

LOGICAL TIME AND SPACE OF THE NETWORK INTRUSION 41

In the polarized proof tree Figure (5), we observe the change of polarity.
We identify the clusters of polarities determined by the linear negation rule.
Where it is applied, a proof step expresses a time incrementation. The actions
enclosed in clusters can be performed simultaneously. The time incrementa-
tion reflects the fact, that the use of the negation rule causes tilting of the
corresponding formula between the right and left sides of the turnstile. The
following proof tree Figure (7) is constructed from its clusters. Proof trees
with clusters are not only simpler but also indicate the time incrementation.
The cluster proof tree (depicted in the Figure (7)), is derived from the polar-
ized proof tree (depicted in the Figure (5)) in such a way, that it contains only
those tree forms where the rule of linear negation was used.

Figure 7. Cluster proof tree.

Appropriate contexts are depicted in the Figure (8).

Figure 8. Cluster proof tree contexts.

In the linear logic, we consider a space in terms of locations. Every formula
has a location, i.e. its address [11]. Based on that, we remove the content of
subformulæ, and we replace it by its locations. Proof trees containing only
locations are called designs, where any logical information about the original
subformula is substituted by appropriate locative addresses, i.e. loci in the
design (Figure 9).

42 DANIEL MIHÁLYI, JÁN PERHÁČ, AND PATRIK BÁLINT

The following rules are used in the process of constructing a proof tree in
the time-spatial Ludics theory.

• Positive rule is used when the outermost formula has positive polar-
ity,

(4)
. . . , ξ ∗ i, . . . ` Λi, . . .

` Λ, ξ
(+,ξ,I),

where the ξ is the address of a formula, and for every i ∈ I, and the
Λi is set of addresses of every immediate subformulas.
• Negative rule is used when the outermost formula has negative po-

larity:

(5)
. . . ` ΛI , ξ ∗ I, . . .

ξ ` Λ
(−,ξ,N),

where the N is set of ramifications, where for the every I ∈ N holds,
that ξ ∗ I.
• The daemon rule is used otherwise, mostly in the leaves:

(6)
` Λ, ξ

(z).

A location of proved formula in the design is denoted by ξ, where ξ is
the location address. If the formula has its immediate subformula ξ1, their
locations are called biases (the bias Λ1 or the concentrated biases Λ11, Λ12

etc.). The structure of space occupied by a formula is uniquely identified by
a finite sequence of biases [11].

Figure 9. Design.

Appropriate contexts are depicted below.

∆ = ξ
∆1 = ξ1

∆11 = ξ11

∆12 = ξ12

∆111 = ξ111

∆112 = ξ112

LOGICAL TIME AND SPACE OF THE NETWORK INTRUSION 43

Finally, we obtain the design on the network attack as shown in Figure (9)
for expressing the locative structure of the network intrusion. Designs are the
significant objects of the Ludics theory. The design in the Figure (9) consists
of the three time lines of comparable loci with respect to ordering relation v.

(1) ξ v ξ1 v ξ11 v ξ111, represents the linear time line of the possibility
of the vertical portscan intrusion,

(2) ξ v ξ1 v ξ11 v ξ112, represents the linear time line of necessity of the
SYN Flood network attack,

(3) ξ v ξ1 v ξ12, represents the linear time line of neccessity of network
intrusion.

A design can have one or more branches and it expresses two relation-
ships [11]: time and space. The addresses in the same branch of design are
comparable addresses and they have time relationship. The addresses in dif-
ferent branches are incomparable, i.e. they have space relationship in order to
relation v.

We can also interpret this design as the polarized game, where the linear
negation is conductive to move alternation between the proponent (attacker)
and the opponent (network environment). From the computer science point
of view, we were able to express logical space that represents the computer
memory and also logical time, which represents the calculation of computer
processor.

4. Conclusion

In this contribution, we show how the resource-oriented logical system can
be used to describe real processes in network environment, such as network
intrusion. We have expressed IDS’s behavior during network intrusion by a
formula of Modal Linear Logic. Our method is helpful that proof of such a
formula ensures the correctness of component software system design.

The main goal of this paper is to apply the time-spatial calculus from
Girard’s Ludics theory. Finally, we were able to express logical space that
represents the computer memory and also logical time, which represents the
calculation time of operation.

In the future, we would like to extend our approach by joining the host-based
intrusion detection systems with the network-based one i.e. create a complex
security of program systems. Such a combination of the both types of IDSs
will secure computer systems even more. The next step in our work, will be
extending IDS by applying the resource oriented Belief-Desire-Intention logical
system. We plan to create a BDI architecture, that will perform automated
IDSs reactions, instead of a system administrator intervention as it is now.

44 DANIEL MIHÁLYI, JÁN PERHÁČ, AND PATRIK BÁLINT

Acknowledgment

This paper was supported by KEGA project ViLMA: Virtual Laboratory
for Malware Analysis (079TUKE-04/2017).

This work is a result of international cooperation under the CEEPUS net-
work No.CIII-HU-0019-12-1617.

References

[1] J.-Y. Girard. Linear Logic, Theoretical Computer Science 50, Elsevier Science Publishers
Ltd. Essex, UK, 1987

[2] J.-Y. Girard. Linear Logic: its syntax and semantics, Laboratoire de Mathematiques
Descretes, UPR 9016 - CRNS, 1995

[3] J.-Y. Girard. Locus Solum: From the rules of logic to the logic of rules, Mathematical
Structures in Computer Science, Vol. 11, N. 3, 2001

[4] P. Innella, O. McMillan, T. Digital Integrity, LLC. An Introduction to IDS, Symantec
Connect, 2001

[5] J. Perháč, D. Mihályi. Intrusion Detection System Behavior as Resource-Oriented For-
mula, Acta Electrotechnica et Informatica, Vol. 15, No. 3, 2015

[6] SANS Institute. Intrusion Detection Systems: Definition, Need and Challenges”, SANS
Institute Reading Room, 2011

[7] J. Perháč, D. Mihályi, V. Novitzká, Between Syntax and Semantics of Resource Oriented
Logic for IDS Behavior Description, The Publishing Office of Czestochowa University
of Technology, Journal of Applied Mathematics and Computational Mechanics, Vol. 15,
No. 2, ISSN:2353-0588, 2016

[8] J. Perháč, D. Mihályi, Coalgebraic modeling of IDS behavior, 2015 IEEE 13th Interna-
tional Scientific Conference on Informatics, November 18-20, 2015, Poprad, Slovakia,
2015

[9] J. Perháč, D. Mihályi, Coalgebraic specification of network intrusion signatures, Studia
Universitatis Babes-Bolyai, Informatica, Vol. 61, N. 2 pp. 83-94, 2016

[10] J. Perháč, D. Mihályi, Intrusion Detection System Behavior as Resource-Oriented For-
mula, Acta Electrotechnica et Informatica. Vol. 15, N. 3, 2015, pp. 9-13. ISSN 1335-8243

[11] W. Steingartner, A. Poláková, P. Prazňák, V. Novitzká, Linear Logic in Computer
Science, Journal of Applied Mathematics and Computational Mechanics, Vol. 14(1),
91-100, 2015

Department of Computers and Informatics, Faculty of Electrical Engineer-
ing and Informatics, Technical University of Košice, Letná 9, 042 00 Košice,
Slovak Republic,

E-mail address: Daniel.Mihalyi@tuke.sk

E-mail address: Jan.Perhac@tuke.sk

E-mail address: Patrik.Balint@globallogic.com

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 2, 2017
DOI: 10.24193/subbi.2017.2.04

ROEMOLEX - A ROMANIAN EMOTION LEXICON

ANAMARIA BRICIU AND MIHAIELA LUPEA

Abstract. In Natural Language Processing tasks, semantical and lexi-
cal resources are of paramount importance for efficient implementations of
solutions. However, availability of tools for any other language than Eng-
lish is fairly limited, therefore leaving the field open to improvements and
new developments. This paper presents the second version of RoEmoLex, a
lexicon containing approximately eleven thousand Romanian words tagged
with a series of emotions and two valences. We describe the steps followed
in the improvement process of the first version of the resource: the addi-
tion of new terms, and the extension of emotional concepts to finer-grained
tags.

1. Introduction

Semantical and lexical resources are widely used in natural language pro-
cessing tasks, either as supports of knowledge-based methods, or as aids for
hybrid techniques involving machine learning. Hand-crafted lexicons, exhaus-
tive thesauri or semantic tools (e.g. FrameNet) add an element of language
understanding to traditional statistical models, generally improving perfor-
mance in tasks like sentiment analysis, word sense disambiguation or document
summarization.

However, there are relatively few resources designed for languages other than
English, which makes it difficult to implement viable solutions for the anal-
ysis of non-English content. As far as the Romanian language is concerned,
the existence of RoWordNet [15], a large semantic network that encompasses
information in the form of synsets (i.e. groups of full synonyms) linked by
lexical-semantic relations, marks the central point of Romanian language pro-
cessing research due to its size, completeness, and information richness. Some

Received by the editors: November 2, 2017.
2010 Mathematics Subject Classification. 68T50, 91F20.
1998 CR Categories and Descriptors. I.2.7. [Computing Methodologies]: Artificial

Intelligence - Natural Language Processing ; H.3.1. [Information Systems]: Information
Storage and Retrieval - Content Analysis and Indexing .

Key words and phrases. natural language processing, linguistic processing, emotion
analysis, lexicon.

45

46 ANAMARIA BRICIU AND MIHAIELA LUPEA

aligned corpora for machine translation, as well as a number of small-scale
emotion lexicons have also been developed, which is encouraging, but leaves
the field open to exploration and expansion. This was our motivation for tak-
ing a translated version of the lexicon proposed by Mohammad and Turney
in [7], processing the existing data and bringing a series of modifications and
additions to it in order to create a dependable Romanian emotion lexicon.

This work discusses the continuation of the work presented in [6], where a
series of processing and structuring steps applied to the original, automati-
cally translated lexicon were described. Enhancements to this processed first
version in the form of new term additions brought the lexicon to its current
form, consisting of approximately 11000 words tagged with affect information,
specifically Plutchik’s [9] eight basic emotions (Anger, Anticipation, Surprise,
Joy, Trust, Fear, Sadness, Disgust) and polarity tags (Positivity, Negativity),
and a series of derived emotions formed through the combination of two basic
emotions.

The paper is structured as follows: in Section 2, related work is presented,
while in Section 3 we describe RoEmoLex, following the development process
from the initial revision of the English translation to this new round of en-
hancements. Section 4 is reserved for conclusions and proposals for future
work.

2. RELATED WORK

As relevant to the current article, there are two directions of research that
need to be discussed: the available lexical and semantic resources for Romanian
text, and the particularities of existent affect lexicons.

First, to address the former issue, RoWordNet [3], [15] must be introduced.
This is the Romanian version of the Princeton WordNet, and it is a lexical
database which allows the modeling of linguistic knowledge with regards to
aspects of the real world. There is sentiment information in form of three
polarity scores: positive, objective, negative, domain data (every term is as-
sociated with a conceptual type or domain - see SUMO, Section 3.4.), and a
series of relationships that structure the data in an intuitive manner (e.g. is
a, or part of relations between lexical units). Beyond RoWordNet, there are a
few other resources that offer the possibility of modular integration in a more
complex system (e.g dexonline1), but none with the applicability and richness
in information that RoWordNet offers.

Secondly, in terms of resources for affect detection and recognition in text,
for English, a widely used tool is LIWC [8], [13], a text analysis application
with a comprehensive dictionary in which terms are marked as representative

1http://pydex.lemonsoftware.eu/

ROEMOLEX - A ROMANIAN EMOTION LEXICON 47

of a series of categories and subcategories, including Affective Processes. Other
resources are DepecheMood [10] and ANEW [2]. The first, DepecheMood, is a
lexicon created in an entirely automated manner by using affective annotation
provided implicitly by readers of articles on a news site. The second resource,
ANEW, provides a set of normative emotional ratings for a series of words. It
is important to note that, in contrast to our lexicon, in the case of ANEW,
emotion is viewed as a space in three dimensions [5], pleasure, arousal and
dominance, rather than as represented by fixed atomic units in the form of
basic emotions from which other emotions are formed.

More relevant to the current work are EmoLex [7], which will be described
in detail in Section 3.1, as a starting point of our work, and the multilingual
WordNet-Affect project described in [1]. The latter represents an aligned
English-Russian-Romanian affect lexicon, considering six emotions (Anger,
Disgust, Fear, Joy, Sadness, Surprise) and the corresponding synsets present
in WordNet-Affect. It is a carefully crafted resource, with valuable emotional
information that we integrated in RoEmoLex. Details about this process can
be found in Section 3.3.

3. ROEMOLEX – ROMANIAN EMOTION LEXICON

The starting point of this research is a lexicon proposed by Mohammad and
Turney in 2010, the NRC Word-Emotion Association Lexicon or EmoLex [7],
consisting of a series of English words and their associations with Plutchik’s
eight emotions and two polarity tags. We used the automatically translated
Romanian version of this lexicon, with the proposed improvements consisting
in removing non-emotive words (i.e. words with an overall emotion and po-
larity score equal to 0), eliminating duplicate lines, and adding RoWordNet
information for each word. Finally, we added new terms to the lexicon, aiming
to build a more comprehensive resource.

3.1. Original lexicon. The NRC Word-Emotion Association Lexicon [7], or
EmoLex, was created by crowdsourcing the task through Amazon’s Mechani-
cal Turk. Hundreds of online annotators were given a series of words and asked
which of eight emotions (Anger, Anticipation, Surprise, Joy, Trust, Fear, Sad-
ness, Disgust) and two valences (Positivity, Negativity) the term expresses,
and to what extent it does (none, weak, moderate, strong). Then, based on
the annotators’ feedback, the authors considered the number of assignments
into each intensity category for a word-emotion pair. If there were more ap-
pearances of no, or weak intensity, it was considered that the word did not
evoke the emotion in question. Alternatively, if the majority of responses said
moderate or strong intensity, the word was tagged with the specified emotion.
The resulting lexicon contained 2000 words tagged with eight emotions and

48 ANAMARIA BRICIU AND MIHAIELA LUPEA

sentiment valences, but was later expanded to 14182 words and 25000 senses
for English.

Through automatic translation, EmoLex has been made available for over
twenty languages, including Romanian. English words are converted using
Google Translate, which maintains the emotional correspondence to a rela-
tively high extent [14], but, as is to be expected, also introduces noisy data,
for which a series of post-processing steps are required.

3.2. Post-processing of translated data. Initially, the Romanian version
of the lexicon consisted of 8581 lines (i.e. words). However, many of these
were null lines, i.e. terms expressing no sentiment valence or emotion. These
were non-evocative terms, which we considered to be of little use in further
emotion analysis applications. Therefore, we discarded them along with any
duplicate entries. Note that the notion of duplicate entry is defined as the
same term having two entries in the lexicon with all polarity and emotion tags
equal. A series of identical terms have remained in the lexicon, as they have
different scores, and account for polysemantic words.

After these steps, we were left with 3989 unique lines, which we aligned
with RoWordNet by means of assigning each term to the corresponding synset
(where possible). Using this synset information, we introduced part of speech,
positive, negative and objective SentiWordNet scores, and SUMO categories
for each term. More details regarding these processing steps, and about the
first version of RoEmoLex, respectively, can be found in [6].

In the current paper, we introduce a new structural addition in the form of
affective annotation for primary, secondary and tertiary emotions, as theorized
by Plutchik in the form of dyads.

In his general psychoevolutionary theory of emotion, Plutchik identified
eight basic, biologically primitive emotions: Anger, Anticipation, Disgust,
Fear, Joy, Sadness, Surprise, Trust and formulated ten postulates to char-
acterize his theory. Of these, of relevance to the current work is the sixth,
which states that beyond these eight, all other emotions are mixed or deriv-
ative states; that is, they occur as combinations, mixtures, or compounds of
the primary emotions [9]. Considering this postulate, we included tags for a
series of secondary emotions defined by the author as results of meaningful
combinations. Utilizing the Wheel Of Emotions shown in Figure 1 as an ex-
pressive visual representation of Plutchik’s theory, the following combinations
of two basic emotions can be identified:

• Primary dyads (emotions combined are one petal apart): Opti-
mism (Anticipation and Joy), Love (Joy and Trust), Submission
(Trust and Fear), Awe (Fear and Surprise), Disapproval (Surprise

ROEMOLEX - A ROMANIAN EMOTION LEXICON 49

Figure 1. Plutchik’s Wheel Of Emotions

and Sadness), Remorse (Sadness and Disgust), Contempt (Disgust
and Anger), Aggressiveness (Anger and Anticipation)

• Secondary dyads (emotions combined are two petals apart): Hope
(Anticipation and Trust), Guilt (Joy and Fear), Curiosity (Trust
and Surprise), Despair (Fear and Sadness), Disbelief (Surprise and
Disgust), Envy (Sadness and Anger), Cynicism (Disgust and Antic-
ipation), Pride (Anger and Joy)

• Tertiary diads (emotions combined are three petals apart): Anxiety
(Anticipation and Fear), Delight (Joy and Surprise), Sentimental-
ity (Trust and Sadness), Shame (Fear and Disgust), Outrage (Sur-
prise and Anger), Pessimism (Sadness and Anticipation), Morbid-
ness (Disgust and Joy), Dominance (Anger and Trust)

Therefore, for every word having both affective tags from a pair, we con-
sidered the term to express the emotion resulted from their combination, and
tagged them in our lexicon accordingly. Table 1 shows a series of representative
words for a few categories.

50 ANAMARIA BRICIU AND MIHAIELA LUPEA

Emotion Terms

Optimism
credint, ă/faith

căsătorie/marriage

Aggressiveness
ghilotină/guillotine

duel/duel

Hope
a aspira (la)/to aspire

determinat/determined
obiectiv/objective

Despair
demoralizat/demoralized

chin/anguish
cimitir/cemetery

Anxiety
anxietate/anxiety

diagnostic/diagnostic
vigilent, ă/vigilence

Pessimism
condamnare/condemnation

ı̂ngrozitor/awful
moarte/death

Table 1. Examples of words associated with derived emotions

3.3. Lexicon enrichment. A final step in the process of improving RoE-
moLex was the addition of new words. The expansion of the lexicon was done
in two steps: the addition of synonyms of existent entries from RoWordNet,
and integration of the data present in the similar resource Russian-Romanian
WordNet-Affect.

3.3.1. Lexicon enrichment through addition of RoWordNet synonyms. The
first proposed enrichment method was the addition of synonyms of existent
entries. We considered these new terms as having the same emotional and
polarity content as the original terms, and we thus assigned them the same
emotion and valence tags as the original words. This was done with the help of
RoWordNet, taking as synonyms all words in the same synset with the entry
present in RoEmoLex. After this step, we obtained an additional 6455 entries.

Despite the fact that the lexicon almost tripled in size, the part of speech
hierarchy was preserved, as can be seen in Table 2, with nouns and adjectives
still accounting for the majority, but with the percent of verbs and idioms
each rising about 4 percent. This is due to the fact that verbs represented the
terms with most synonyms per entry (e.g. a vorbi - to talk: a discuta - to
discuss, a grăi - to speak, a conversa - to converse, a dialoga; a sublinia -
to emphasize: a accentua - to accentuate, a reliefa, a puncta), and quite a

ROEMOLEX - A ROMANIAN EMOTION LEXICON 51

Part of Speech
% of lexicon

in initial lexicon

% of lexicon
after 1st round
of enrichment

% of lexicon

after 2nd round
of enrichment

3989 words 10444 words 11051
Noun 57.48% — 2293 words 53.27% — 5563 words 51.841%— 5729 words

Adjective 23.41% — 933 words 20.22% — 2112 words 20.76% — 2295 words
Verb 12.86% — 513 words 16.42% — 1715 words 16.40% — 1813 words
Idiom 3.50% — 140 words 7.02% — 734 words 7.94% — 878 words

Adverb 2.65% — 106 words 3.03% — 316 words 3.00%— 332 words
Interjection 0.1% — 4 words 0.04% — 4 words 0.03%— 4 words

Table 2. Part of Speech Distribution

few of the synonyms added were, in fact, phrases and idioms (e.g.start - start:
semnal de start - start signal) as opposed to terms with the same part of
speech as the original word.

3.3.2. Lexicon enrichment through integration of data from Romanian-Russian
WordNet-Affect. Another way to enrich the lexicon was the addition of terms
from the Russian and Romanian WordNet-Affect [1]. This resource consists
of six lists of representative synsets organized according to Ekman’s [4] six
emotions: Anger, Disgust, Fear, Joy, Sadness, Surprise. The motivation in
integrating the Russian-Romanian WordNet-Affect data in our lexicon was
the improvement of RoEmoLex through the addition of carefully annotated
data with the starting point in WordNet-Affect [12], a dependable resource for
affective computing.

of synsets # of Romanian words
Anger 117 330

Disgust 17 60
Fear 80 248
Joy 209 641

Sadness 98 364
Surprise 27 87

Table 3. Russian-Romanian WordNet-Affect Data

The development of the Russian-Romanian WordNet-Affect started from
a set of English synsets annotated for each of the six emotions and made
available for the SemEval-2007 task ”Affective Text” [11]. The authors then
proceeded with automatic translation of the synsets from English, manually
correcting any inconsistencies and checking the data, and furthermore adding
any relevant synonyms of the generated Romanian terms. Statistics concerning

52 ANAMARIA BRICIU AND MIHAIELA LUPEA

the final form of the Russian-Romanian WordNet-Affect can be viewed in
Table 3.

Emotion % of common words
Anger 46.86%

Disgust 39.53%
Fear 42.85%
Joy 53.125%

Sadness 38.01%
Surprise 60.93%

Table 4. Percent of common data between RoEmoLex and
Russian-Romanian WordNet-Affect

We compared this data with RoEmoLex content, hoping to discover sets of
new words to add to our lexicon. As it can be seen in Table 4, the percent
of common data varies little among emotions, which points to a balanced
understanding of emotion in RoEmoLex. Surprise is the emotion with the
most common words, while Sadness is the one with the fewest. It is interesting
to note that a significant portion of the terms that were not in RoEmoLex,
irrespective of emotion, were idioms and expressions (e.g. lipsit de veselie
- devoid of joy, din nefericire - unfortunately, cu părere de rău - with
regret for Sadness, lua pe neas,teptate - to catch someone off guard, pune
ı̂n ı̂ncurcătură - to discomfit for Surprise). Another reason for the relatively
high discrepancy is that the Russian-Romanian WordNet-Affect accounts for
multiple spellings of a word. For example, in the multilingual resource, a
mâhni - to dishearten can be found in both this form and a mı̂hni, a more
infrequent spelling, typically encountered in older texts, while in RoEmoLex
only the first form is present. We chose to include such terms in the lexicon,
but, where existent, the emotional and polarity content of the term with the
more common spelling are duplicated for the word with the less frequent form.

As for the degree of annotation agreement between the two resources, Table
5 shows that Disgust, Fear and Sadness are the emotions most consistently
tagged, with more than 70% of the common words having the same emotion tag
in both resources. For terms with conflicting tags, we did a manual verification
and validation of the annotation in our lexicon.

Going back to Table 2, it can be seen that this second round of additions
brought an increase in the number of adjectives and idioms in the RoEmoLex,
with noun and verb percentages decreasing slightly. This is owed to the data
structure of the Russian-Romanian WordNet-Affect, with a large amount of

ROEMOLEX - A ROMANIAN EMOTION LEXICON 53

Emotion % of words with matching tags
Anger 69.29%

Disgust 82.35%
Fear 76%
Joy 56.37%

Sadness 77.17%
Surprise 48.71%

Table 5. Matching tags in Russian-Romanian
WordNet-Affect and RoEmoLex

adjective synsets present, and the manual inclusion of translations (inimă grea
- heavy heart, ı̂ndoială de sine - self-doubt).

In total, we acquired 607 new lexicon entries, with Anger, Disgust, Fear,
Joy, Surprise and Sadness tags from the Russian-Romanian WordNet-Affect
lexicon, and Positivity, Negativity, Anticipation and Trust manually added.
This put the final number of terms in RoEmoLex at just over 11000.

3.4. Lexicon samples. In this section, we include a series of representative
RoEmoLex entries for a better understanding of the structure and data format
within the lexicon. We note that the presented table limits itself to introduc-
ing the tags for the eight basic emotions for reasons of space, and does not
introduce the derived emotions presented in Section 3.2. For examples of terms
corresponding to these derived tags, please refer to Table 1.

In Table 6, the P and N table headers refer to the Positivity and Negativity
tag, respectively. POS stands for Part of Speech information. SUMO is an
abbreviation for Suggested Upper Merged Ontology, and is a field mapped
from RoWordNet designed to offer a semantic context to the term in question.

4. CONCLUSIONS AND FURTHER WORK

In this paper, we presented the development process of a new version of
RoEmoLex, namely the enhancements we proposed in order to create a com-
prehensive emotion analysis resource for Romanian texts. We described the
original lexicon, EmoLex, from which RoEmoLex was translated, briefly pre-
senting the initial round of data processing. Finally, we outlined the mechanics
of two rounds of lexicon enrichment, presenting a series of statistics and some
sample entries to illustrate aspects of the current form of the lexicon.

We state that RoEmoLex can constitute a viable starting point for emotion
analysis in Romanian texts, but note that there is still work that can be done
in terms of improving the resource. For example, the inclusion of fuzzy logics

54 ANAMARIA BRICIU AND MIHAIELA LUPEA

W
o
r
d

P
O
S

P
N

A
n
g
e
r

A
n
ti
c
ip
a
ti
o
n

D
is
g
u
st

F
ea

r
J
o
y

S
a
d
n
e
ss

S
u
rp

ri
se

T
ru

st
S
U
M

O
a
sc

u
n
s

c
o
n
c
e
a
le
d

A
d
je

c
ti

v
e

0
1

0
1

0
1

0
0

1
0

C
o
v
e
ri

n
g

a
sc

u
n
s

h
id

d
e
n

A
d
je

c
ti

v
e

0
1

0
0

0
0

0
0

0
0

S
u
b

je
c
ti

v
e

A
ss

e
ss

m
e
n
t

A
tt

ri
b
u
te

d
e
m

o
n
ic

d
e
m

o
n
ic

A
d
je

c
ti

v
e

0
1

1
0

1
1

0
1

0
0

S
u
b

je
c
ti

v
e

A
ss

e
ss

m
e
n
t

A
tt

ri
b
u
te

v
a
c
a
n
t ,ă

h
o
li
d
a
y

N
o
u
n

1
0

0
1

0
0

1
0

0
0

V
a
c
a
ti

o
n
in

g

a
u
te

n
ti

c
it

a
te

a
u
t
h
e
n
t
ic
it
y

N
o
u
n

1
0

0
0

0
0

0
0

0
1

T
ru

e

n
e
d
re

p
ta

te
in

ju
s
t
ic
e

N
o
u
n

0
1

1
0

1
0

0
1

0
0

N
o
rm

a
ti

v
e

A
tt

ri
b
u
te

b
ă
ta

ie
d
e

jo
c

m
o
c
k
e
r
y

Id
io

m
0

1
1

0
1

0
0

0
0

0
E

x
p
re

ss
in

g

li
n
is ,

te
su

fl
e
te

a
sc

ă
h
e
a
r
t
s
-e

a
s
e

Id
io

m
1

0
0

0
0

0
1

0
0

0
E

m
o
ti

o
n
a
lS

ta
te

a
b
ia

b
a
r
e
ly

A
d
v
e
rb

0
1

0
0

0
0

0
1

0
0

S
u
b

je
c
ti

v
e

A
ss

e
ss

m
e
n
t

A
tt

ri
b
u
te

v
a
i

o
h
!

In
te

rj
e
c
ti

o
n

0
1

0
0

1
1

0
1

0
0

-

a
ı̂n

d
ră

z
n
i

t
o

d
a
r
e

V
e
rb

1
0

0
0

0
0

0
0

0
1

S
u
b

je
c
ti

v
e

A
ss

e
ss

m
e
n
t

A
tt

ri
b
u
te

a
su

g
ru

m
a

t
o

s
t
r
a
n
g
le

V
e
rb

0
1

1
0

1
1

0
1

0
0

V
io

le
n
tC

o
n
te

st

T
a
b
l
e

6
.

R
oE

m
oL

ex
-

S
am

p
le

en
tr

ie
s

ROEMOLEX - A ROMANIAN EMOTION LEXICON 55

for evaluating the degree of membership of a word to all the emotion classes
would be an approach that modeled human understanding of emotion and its
expression better, and it is a track for further work that we will investigate.

The importance of continuous refinement and improvement of such a re-
source lies in the many interesting applications that can be developed provided
a dependable emotion analysis module, from the simple study of emotional
content and its evolution in a given text to integrating the module into more
complex systems (e.g. customized interaction in tutoring systems, mental
health monitoring applications).

References

[1] Victoria Bobicev, Victoria Maxim, Tatiana Prodan, Natalia Burciu, and Victoria
Angheluş. Emotions in words: Developing a multilingual wordnet-affect. In Interna-
tional Conference on Intelligent Text Processing and Computational Linguistics, pages
375–384. Springer, 2010.

[2] Margaret M. Bradley, Peter J. Lang, Margaret M. Bradley, and Peter J. Lang. Affective
norms for english words (anew): Instruction manual and affective ratings, 1999.

[3] S, tefan Daniel Dumitrescu. Rowordnetlib - the first api for the romanian wordnet. Pro-
ceedings of the Romanian Academy, Series A, 16(1):87–94, 2015.

[4] Paul Ekman. An argument for basic emotions. Cognition & emotion, 6(3-4):169–200,
1992.

[5] Daniel Jurafsky and James H. Martin. Speech and Language Processing, chapter 18.
Lexicons for Sentiment and Affect Extraction.

[6] Mihaiela Lupea and Anamaria Briciu. Formal concept analysis of a romanian emotion
lexicon. In Proceedings of the 2017 13th IEEE International Conference on Intelligent
Computer Communication and Processing (ICCP), pages 111–118, 2017.

[7] Saif M Mohammad and Peter D Turney. Emotions evoked by common words and
phrases: Using mechanical turk to create an emotion lexicon. In Proceedings of the
NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Genera-
tion of Emotion in Text, pages 26–34. Association for Computational Linguistics, 2010.

[8] James W Pennebaker, Roger J Booth, and Martha E Francis. Linguistic inquiry and
word count: Liwc [computer software]. Austin, TX: liwc. net, 2007.

[9] Robert Plutchik. A general psychoevolutionary theory of emotion. Emotion: Theory,
Research, and Experience, 1:3–33, 1980.

[10] Jacopo Staiano and Marco Guerini. Depeche mood: a lexicon for emotion analysis from
crowd annotated news. pages 427–433, 2014.

[11] Carlo Strapparava and Rada Mihalcea. Learning to identify emotions in text. In Proceed-
ings of the 2008 ACM Symposium on Applied Computing, SAC ’08, pages 1556–1560,
New York, NY, USA, 2008.

[12] Carlo Strapparava and Alessandro Valitutti. Wordnet-affect: an affective extension of
wordnet. In In Proceedings of the 4th International Conference on Language Resources
and Evaluation, pages 1083–1086, 2004.

[13] Yla R. Tausczik and James W. Pennebaker. The psychological meaning of words: Liwc
and computerized text analysis methods. Journal of Language and Social Psychology,
29(1):24–54, 2010.

56 ANAMARIA BRICIU AND MIHAIELA LUPEA

[14] Vaibhav Tripathi, Aditya Joshi, and Pushpak Bhattacharyya. Emotion analysis from
text: A survey. Center for Indian Language Technology Surveys, 2016.

[15] Dan Tufis, , Eduard Barbu, Verginica Barbu Mititelu, Radu Ion, and Luigi Bozianu.
The romanian wordnet. Romanian Journal of Information Science and Technology, 7(1-
2):107–124, 01 2004.

Faculty of Mathematics and Computer Science, Babeş–Bolyai University, Cluj-
Napoca, Romania

E-mail address: baic1326@scs.ubbcluj.ro

E-mail address: lupea@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 2, 2017
DOI: 10.24193/subbi.2017.2.05

ANALYZING THE USEFULNESS OF THE USER’S

BROWSER HISTORY FOR GENERATING QUERY

SUGGESTIONS

IOAN BĂDĂRÎNZĂ

Abstract. A very useful feature of search engines that helps users while
they browse the internet, where, they very often, try to satisfy an infor-
mation need, is query suggestion. This mechanism shows the user a list of
possible queries from where he can choose and be able to perform a search
easier and faster. In this paper we tried to assess the usefulness of a user’s
recent web browsing history for generating new query suggestions. We
performed a one month experiment in which we collected browsing history
logs of several users and searched query terms submitted by those users to
Google (using a Chrome plugin) and found that approximately 32% of the
queries submitted can be predicted from the user’s browsing history.

1. Introduction

Searching for information on the web can be very difficult sometimes. There
are a lot of users that do not know what terms to enter in a search input
of a search system to better describe their information need. In [8, 15] we
can see that most of the search queries are very short, one or two words
on average and in [9, 16] we can see that these words are ambiguous. In
order to help the user when performing a search, most search engines like
Google, Yahoo!, Bing and others, provide query auto-completion and query
suggestions. In order to better explain how search suggestions are generated,
we will first try to describe how query auto-completion works. In almost all
modern browsers, search engines and text editors we can see how, after we start
typing words, it automatically tries to predict what we actually want to type.
These are called ’predictive auto-completion systems’ where the candidates
are matched against the prefix using information retrieval techniques and also
Natural Language Processing techniques. This auto-completion is actually

Received by the editors: November 2, 2017.
2010 Mathematics Subject Classification. 68U10, 94A08.
1998 CR Categories and Descriptors. H.3.3 [Information Storage and Retrieval]:

Information Search and Retrieval.
Key words and phrases. query suggestion, browsing history, personalized suggestions.

57

58 IOAN BĂDĂRÎNZĂ

the highest ranked suggestion from a suggestions list. The query suggestions
list is a list that contains from eight to ten words (or group of words), which
are usually prefixed with the subquery that the user is typing, items that
are extracted from a huge log of queries submitted by all users. A very well
known technique of extracting suggestions from a common query log is called
Most Popular Completion, which we’ll describe more in the next section of
this paper.

The main focus of this paper is to analyse how user’s personal browsing
history and submitted query history are impacting the query suggestion list. In
order to do this, we first created a Chrome extension which collects information
about what web pages is the user visiting, what queries he submitted to Google
and what suggestions Google returned for his subquery. By subquery we refer
to the prefix of the query he started to type in the search input. Using this
history, we perform an analysis on how important is this history on ranking
future query suggestions. Moreover, we can later create user profiles that
would improve the query suggestions offered by a search engine, like Google.

2. Related work

Query auto-completion . Auto-completion is used almost in all informa-
tion retrieval engines. We have all seen how, in the search boxes of search
engines, after we start typing the first character of our query, we immedi-
ately receive a possible auto-completion which will save us keystrokes when
trying to fulfil an information need. What stands at the base of all these
auto-completions is mostly the query logs of those particular search engines
individually. We can see this kind of research in [2], [7], [5], [11], [10]. These
approaches, do return pretty good suggestion lists but they lack a very par-
ticular thing, which is ’context’. This ’context’ is composed by the immedi-
ately preceding queries that a user submitted. In [3], Bar-Yossef and Kraus
demonstrated how recent user queries can significantly improve query auto-
completion. They compare their results with the Most Popular Completion
(MPC) which is one of the popular techniques for query suggestion. In [3],
they say that the basic principle of MPC is users wisdom. This means that,
if a particular query was used by a lot of users in the past, it is more likely
that, that particular query will be the first candidate as an auto-completion.
We can take, for example, a very popular and well known at the moment this
article was written, social media website, ”facebook”. If we are trying to start
typing letter ”f” on www.google.com, the first auto-completion that we can see
is ”facebook” and that’s because a lot of people are performing this particular
query on google.com (see Fig. 1). In short terms, MPC is actually ranking
suggestions based on their popularity. Let’s say that we have a search log with

ANALYZING THE USEFULNESS OF THE USER’S BROWSER HISTORY 59

Figure 1. Typing letter ”f” in Google’s search input with all
its suggestions.

previous queries QLog, a subquery (or the prefix of the intended query) sq
and a list of query-completions QC(sq), where all the items are starting with
the desired subquery. Using MPC formula [23], we can calculate a rank for all
items in QC(sq) and order these items by their rank:

MPC(sq) = argmaxq∈QC(sq)w(q),

w(q) =
freq(q)∑

i∈QLog

freq(i)

where freq(q) is actually the number of ocurences of query q in QLog.
This formula is a Maximum Likelihood Estimator, which in [3], Bar-Yossef

and Kraus, improve this popularity based algorithm and also take into consid-
eration the previous queries of the user which are considered as ’query context’.
They named this approach NearCompletion, where they compute similarity for
this context and improve MPC and demonstrate using Mean-Reciprocal-Rank
method, that the context of a query is very important when trying to generate
suggestions. However, in their papers they only consider the query history of
the user and not the personal browsing history of the user which is what we
analyse in this paper.

Query Suggestion . Query suggestion and query auto-completion are very
similar. The main scope of both of them is to save user keystrokes when
performing a search. Query suggestion is an enhanced, proposed query that
the user might be looking for, whereas an auto-completion is the possible query
term that the user might want to type immediately after he started typing the
first letter. Usually, auto-complete happens in the same search input where the
user is writing his query and has to press either ”enter key” or ”right arrow
key” to accept it; whereas auto-suggestion, usually appears as a list in the

60 IOAN BĂDĂRÎNZĂ

form of a drop-down from where the user can either press the ”down-arrow-
key” or perform a mouse click to select it the desired suggestion. Both of these
approaches are a real boost to the usability of search engines. Basically, we can
say that auto-completion is the first item from the query suggestions list. In
[4], they proposed a context aware query suggestion approach by mining click-
through data and session data. First, they group similar queries into concepts
and represent them on a bipartite graph. After this offline step, in an online
step they will take the user query and find the concept for it in the graph and
return the queries from that concept as suggestions. Another paper where
click through data was analysed and used for ordering the suggestions is [14],
where they demonstrate that the higher a suggestion is present in a suggestions
list, tends to attract more click. In [6] Jiang et al. are reformulating the
query by analysing how users previously reformulate their queries then adding
words in the query and define a set of features which were applied using the
LambdaMart [12] learning to rank algorithm. Others [13] have tried to apply
probabilistic models, like Markov Process to predict what user’s query will be
immediately after he starts typing.

Personalized search . All the above papers do not consider the recent
browsing history of the user when offering query suggestions to the user. Our
main focus of this paper is to analyse the usefulness of the user’s recent brows-
ing history for query suggestions which will allow us to create a personal profile
for each user and use that profile when ranking query suggestions. Personalized
search, in general attracted attention of a lot of researchers, [18, 19, 20, 21, 22].
Each and every study showed that user’s personal query history is very im-
portant in search systems. Let’s take for example the very well known query
”ajax”. This query has three meanings that we are aware of: one would be
the Dutch football team ”Ajax”, another one would be the cleaning product
”Ajax” and the last one would be ”Asynchronous JavaScript and XML” used
in web development. In [1, 24, 25] we can see that these kind of queries are
used by users pretty often. If we do not know anything about user’s previ-
ous searches and interests, we could not know which result represents user’s
information need. In general, the way personalized search applies in auto-
completion and query suggestion is by saving each query that a user used at a
particular point in time, then use all this history in ranking query suggestions.
In [17], we can see how Bennett et al. demonstrated that the long term query
history is very useful when the users starts his search session and the short
term query history is more relevant when the search session evolves. Matthijs
and Radlinski, in [18] used a browser plugin to collect browsing history and
used that history to re-rank search results and demonstrated that the returned
results are more relevant to the user. Others, like Shokouhi in [23], went even

ANALYZING THE USEFULNESS OF THE USER’S BROWSER HISTORY 61

further with personalisation and divided users into categories based on their
age, gender and region and demonstrated that all these features have an im-
pact on the suggestion that a user is waiting for when trying to search. For
example, after typing letter ’i’ in a search input, the most selected sugges-
tion by male users is ’imdb’ whilst female users were choosing ’indeed.com’.
Another interesting example, from [23], is that users below 20 years mostly
selected ’full house’ after typing letter ’f’ whilst the users above 50, selected
’florida lottery’.

All the above papers either consider the global or personal query history
(measured at the search engine) or they use a form of browsing history, but for
re-ranking search results returned by the search engine [18]. In contrast, we
consider the personal browsing history of the user in order to provide better
query suggestions. In this paper, we will present an experiment that validates
the hypothesis that the user’s recent browsing history is important for new
query suggestions and a significant number of new queries can be predicted
from the user’s recent browsing history.

3. Architecture of the browser extension

In order to collect browsing history and submitted queries to Google search
we have built a Chrome extension, named User History Collector . The rea-
son for collecting only Google searches is the fact that according to comScore
in [26], in February 2016, out of the total explicit core searches performed on
web, 64% were Google searches. The other part of 36% is divided between
Bing, Yahoo, Ask Network etc. We choose to build a Chrome extension, and
not an extension for other browsers, because according to latest Browser Sta-
tistics [27] from October 2017, made by www.w3schools.com, 76.1% of users
are using a Chrome browser.

The entire extension is written in javascript which makes REST calls to
some APIs that are persisting all user information in a MySQL database for
later offline analysis. In Fig. 2 we can see the components of the extension and
how data flows from one component to another. The background script and
content script are actually components of a Chrome extension. The content
script is a way of the extension to interact with webpages that are opened in a
tab; it can be viewed as a part of the webpage, which is executed after the page
is loaded. We use this component to extract the content of webpages. The
background script is a component that holds the logic of the extension. We
use this component to parse the data and send it to a server by making REST
calls. The way our extension functions is, whenever a new page is loaded,
the content script will be executed and based on the webpage, it will do the

62 IOAN BĂDĂRÎNZĂ

_ xURL

Content Script

Background Script

Send event when
page is loaded

HTTP request to
save history data

Server

Figure 2. User History Collector components diagram

following (all webpages that are email pages, facebook pages and other pages
that may contain personal information will not be analysed, will be ignored):

(1) If the URL of the page does not start with ”www.google.”, it will
interpret it as a new webpage that was viewed and will extract the
actual text from the HTML document and, alongside with page URL
and page title, it will pass it to the background script. The background
script will split the text in terms, will eliminate stop words and will
calculate the term frequency for each unique word. After this step,
it will make an Ajax HTTP request to a server which will store all
the history data for later analysis.

(2) If the URL of the page, does match ”www.google.”, it means the user
trying to perform a Google search. In this case:
(a) For each key pressed in Google’s search input, the content script

will extract the value of the search input and the list of sugges-
tions provided by Google for the written subquery. This infor-
mation is passed to the background script which will send it to
the server.

(b) When user finishes to type the desired query and submits it
to Google, that particular query is passed to background script
which will send it to the server.

ANALYZING THE USEFULNESS OF THE USER’S BROWSER HISTORY 63

For all information that is passed to the background script, this will associate a
unique identifier (which is generated once when the user installs the extension)
before making the request to the server for persisting it.

4. Analysing collected data

Time period Total number of clients Total number of visited pages Total number of Google queries

1 Month 14 14571 1847

Figure 3. Collected data

After having the extension running and collecting data for over a month,
in table from Fig. 3 we can see that it gathered 14571 visited pages and 1847
queries that were submitted to Google from a number of 14 unique users that
had the extension installed on their Chrome browser.

Informational	
Queries
77%

Navigtional	Queries
23%

Search	Query	Types

Figure 4. Query types

It is commonly accepted that search queries can be divided into two main
types: navigational queries and informational queries. A navigational query is
a search query entered by the user with the intent of finding a very particular

64 IOAN BĂDĂRÎNZĂ

webpage. For example, a user might type ”facebook” into Google’s search
input in order to find and navigate to ”Facebook” website. Another example
would be if the user wants to go to ”Yahoo Mail”, he might search for ”yahoo
mail” on Google, instead of directly typing the full address in the address bar.
We can say that whenever a user submits a query to Google, and the URL of
the first page that he navigates to contains all the terms from the query, the
query is a navigational query. An informational query is a search query that
can cover a very large topic, for which, the search engine can return a very
large number of relevant results. When a user submits such a query to Google,
he is looking for some information and not a particular website. For example,
if the user submits the query ”einstein birthdate”, he is clearly looking for
some information without caring the website he gets this from. In Fig. 4,
which is built from the data collected by our Chrome extension, we can see
that 77% of the queries are informational queries and 23% are navigational
queries. We considered a query to be a navigational query if the URL of the
first page, that is visited by the user, contains all query terms; all other queries
that do not follow this rule are considered as information queries.

28,42% 31,46%
33,62%

71,58% 68,54% 66,38%

Latest	10	pages Latest	20	pages Latest	30	pages

Queries	that	were	found	in	pages	history

Found	in	pages	history Not	found	in	pages	history

Figure 5. Relevance of browsing history

In Fig. 5 we analysed how many of the query terms of a query, can be found
in webpages that were previously visited. If the query term appear in the URL
of the page or in the title of the page, we no longer look within the actual
content of the page because we have already found them. We made several

ANALYZING THE USEFULNESS OF THE USER’S BROWSER HISTORY 65

35,14%
42,95%

27,63%
24,05%

35,75% 35,29% 37,27%

64,86%
57,05%

72,37% 75,95%

64,25% 64,71% 62,73%

User	#1 User	#2 User	#3 User	#4 User	#5 User	#6 User	#7

Queries	that	were	found	in	pages	history	(latest	30	pages)

Found	in	pages	history Not	found	in	pages	history

Figure 6. Relevance of browsing history (latest 30 pages) for
particular users

28,30%

40,27%

21,01% 18,99%

30,92% 30,39% 32,73%

71,70%

59,73%

78,99% 81,01%

69,08% 69,61% 67,27%

User	#1 User	#2 User	#3 User	#4 User	#5 User	#6 User	#7

Queries	that	were	found	in	pages	history	(latest	10	pages)

Found	in	pages	history Not	found	in	pages	history

Figure 7. Relevance of browsing history (latest 10 pages) for
particular users

tests related to the length of the recent history. First we considered the most
recent history as latest 10 visited webpages. After this we increased this length
to 20 pages, respectively 30 pages. We can observe how the number of the

66 IOAN BĂDĂRÎNZĂ

queries, that have been found in the recent history, increases as the length of
the history increases.

In Fig. 6 and Fig. 7 we divided these results, and display how many query
terms, can be found in webpages that were previously visited for particular
randomly selected users that have installed our extension. Calculating the
75th percentile for these values, we can say that 37.27% of the queries that
a user submits to Google, are found in the recent 30 pages long history and
32.73% for a history containing only the latest 10 webpages visited.

5. Conclusions and future work

In this paper we have studied how recent browsing history of users can have
an impact on the next queries that the user will submit to Google search. In
order to do this, we created a Chrome extension, that collects data about all
pages that a user visits, the queries that he submits to Google and also each
subquery and the entire list of suggestions that Google returns for the sub-
query. After having the extension installed on users browsers and collecting
data for a month, we analysed the data and concluded that, in lots of cases,
this history can be used to extract suggestions and display them for the next
time the user will want to submit a search query. A way to extract sugges-
tions from previously visited pages would be to take the most recent and very
short browsing history (most recent 2 - 3 pages which were visited in the last
couple of minutes), calculate a weight for each word in the page and based
on these weights and the prefix that the user will type next, extract the most
representative words and offer them as personal suggestions.

References

[1] Ryen W. White and Steven M. Drucker. Investigating behavioral variability in web
search. In Proceedings of the 16th International Conference on World Wide Web, WWW
’07, pages 21-30, New York, NY, USA, 2007. ACM.

[2] Holger Bast and Ingmar Weber. Type less, find more: Fast autocompletion search with a
succinct index. In Proceedings of the 29th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’06, pages 364-371, New
York, NY, USA, 2006. ACM.

[3] Ziv Bar-Yossef and Naama Kraus. Context- sensitive query auto-completion. In Pro-
ceedings of the 20th International Conference on World Wide Web, WWW ’11, pages
107-116, New York, NY, USA, 2011. ACM..

[4] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen, and Hang Li.
Context-aware query suggestion by mining click-through and session data. In Proceed-
ings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’08, pages 875-883, New York, NY, USA, 2008. ACM.

[5] Shengyue Ji, Guoliang Li, Chen Li, and Jianhua Feng. Efficient interactive fuzzy key-
word search. In Proceedings of the 18th International Conference on World Wide Web,
WWW ’09, pages 371-380, New York, NY, USA, 2009. ACM.

ANALYZING THE USEFULNESS OF THE USER’S BROWSER HISTORY 67

[6] Jyun-Yu Jiang, Yen-Yu Ke, Pao-Yu Chien, and Pu-Jen Cheng. Learning user reformula-
tion behavior for query auto-completion. In Proceedings of the 37th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’14,
pages 445-454, New York, NY, USA, 2014. ACM.

[7] Mario Arias, Jose Manuel Cantera, Jesus Vegas, Pablo de la Fuente, Jorge Cabrero
Alonso, Guido Garcia Bernardo, Cesar Llamas, and Alvaro Zubizarreta. Context-based
personalization for mobile web search. In PersDB, pages 33-39, Auckland, New Zealand,
2008.

[8] Ji-Rong Wen, Jian-Yun Nie, and Hong-Jiang Zhang. Clustering user queries of a search
engine. In Proceedings of the 10th International Conference on World Wide Web, WWW
’01, pages 162-168, New York, NY, USA, 2001. ACM

[9] Hang Cui, Ji-Rong Wen, Jian-Yun Nie, and Wei-Ying Ma. Probabilistic query expansion
using query logs. In Proceedings of the 11th International Conference on World Wide
Web, WWW ’02, pages 325-332, New York, NY, USA, 2002. ACM

[10] Holger Bast, Debapriyo Majumdar, and Ingmar Weber. Efficient interactive query ex-
pansion with complete search. In Proceedings of the Sixteenth ACM Conference on
Conference on Information and Knowledge Management, CIKM ’07, pages 857-860,
New York, NY, USA, 2007. ACM.

[11] Ryen W White and Gary Marchionini. Examining the effectiveness of real-time query
expansion. Information Processing and Management, 43(3):685-704, 2007.

[12] Christopher J. C. Burges, Krysta M. Svore, Paul N. Bennett, Andrzej Pastusiak, and
Qiang Wu. Learning to rank using an ensemble of lambda-gradient models. In Proceed-
ings of the 2010 International Conference on Yahoo! Learning to Rank Challenge -
Volume 14, YLRC’10, pages 25-35. JMLR.org, 2010.

[13] Liangda Li, Hongbo Deng, Anlei Dong, Yi Chang, Hongyuan Zha, and Ricardo Baeza-
Yates. Analyzing user’s sequential behavior in query auto-completion via markov pro-
cesses. In Proceedings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’15, pages 123-132, New York, NY,
USA, 2015. ACM.

[14] Yanen Li, Anlei Dong, Hongning Wang, Hongbo Deng, Yi Chang, and ChengXiang Zhai.
A two-dimensional click model for query auto-completion. In Proceedings of the 37th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’14, pages 455-464, New York, NY, USA, 2014. ACM.

[15] Bernard J Jansen, Amanda Spink, and Tefko Saracevic. Real life, real users, and real
needs: a study and analysis of user queries on the web. Information processing and
management, 36(2):207-227, 2000.

[16] Mark Sanderson. Ambiguous queries: Test collections need more sense. In Proceedings
of the 31st Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’08, pages 499-506, New York, NY, USA, 2008. ACM.

[17] Paul N. Bennett, Ryen W. White, Wei Chu, Susan T. Dumais, Peter Bailey, Fedor
Borisyuk, and Xiaoyuan Cui. Modeling the impact of short and long-term behavior on
search personalization. In Proceedings of the 35th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’12, pages 185-194, New
York, NY, USA, 2012. ACM.

[18] Nicolaas Matthijs and Filip Radlinski. Personalizing web search using long term brows-
ing history. In Proceedings of the Fourth ACM International Conference on Web Search
and Data Mining, WSDM ’11, pages 25-34, New York, NY, USA, 2011. ACM.

68 IOAN BĂDĂRÎNZĂ

[19] Mariam Daoud, Lynda Tamine-Lechani, Mohand Boughanem, and Bilal Chebaro. A
session based personalized search using an ontological user profile. In Proceedings of
the 2009 ACM Symposium on Applied Computing, SAC ’09, pages 1732-1736, New
York, NY, USA, 2009. ACM.

[20] Zhicheng Dou, Ruihua Song, and Ji-Rong Wen. A large-scale evaluation and analysis of
personalized search strategies. In Proceedings of the 16th International Conference on
World Wide Web, WWW ’07, pages 581-590, New York, NY, USA, 2007. ACM.

[21] Ahu Sieg, Bamshad Mobasher, and Robin Burke. Web search personalization with on-
tological user profiles. In Proceedings of the Sixteenth ACM Conference on Conference
on Information and Knowledge Management, CIKM ’07, pages 525-534, New York, NY,
USA, 2007. ACM.

[22] Jaime Teevan, Susan T. Dumais, and Eric Horvitz. Personalizing search via automated
analysis of interests and activities. In Proceedings of the 28th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’05,
pages 449-456, New York, NY, USA, 2005. ACM.

[23] Milad Shokouhi. Learning to personalize query auto-completion. In Proceedings of the
36th International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’13, pages 103-112, New York, NY, USA, 2013. ACM.

[24] Jaime Teevan, Susan T. Dumais, and Eric Horvitz. Potential for personalization. ACM
Trans. Comput.-Hum. Interact., 17(1):4:1-4:31, New York, NY, USA, 2010.

[25] Xuehua Shen, Bin Tan, and ChengXiang Zhai. Implicit user modeling for personalized
search. In Proceedings of the 14th ACM International Conference on Information and
Knowledge Management, CIKM ’05, pages 824-831, New York, NY, USA, 2005. ACM.

[26] https://www.comscore.com/Insights/Rankings/comScore-Releases-February-2016-US-
Desktop-Search-Engine-Rankings

[27] https://www.w3schools.com/browsers/

Faculty of Mathematics and Computer Science, Babeş–Bolyai University, Cluj-
Napoca, Romania

E-mail address: ionutb@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 2, 2017
DOI: 10.24193/subbi.2017.2.06

IMPROVING PROGRAM COMPREHENSION THROUGH

DYNAMIC CODE ANALYSIS

ROBERT FRANCISC VIDA

Abstract. Most of the software that is currently being developed in the
industry tends to be very complex and it is safe to assume that a lot
of future software projects will keep escalating in their complexity. This
means that developers need to keep track of numerous aspects of their
system at all time and that new additions to the team will have difficulty
adjusting to projects. In this paper, we will propose a set of techniques
that combine already existing dynamic code analysis concepts to resolve
the aforementioned problems, which can be summarized as being program
comprehension difficulties. To do this we introduce a few novel software
analysis and visualization techniques that facilitate program comprehen-
sion. The approach proposed within this paper allows for easy identifica-
tion of semantic information, data available at execution time, which might
be difficult or even impossible to portray in an easy to understand represen-
tation using existing software visualization techniques. During this paper
we will be considering traditional object oriented programming languages,
however these ideas should be useful in the context of other programming
paradigms as well.

1. Introduction

It is safe to say that currently, all over the world, there are many software
systems being developed for different purposes. Obviously, the size and scope
of these projects may vary but all of them have a certain degree of complexity,
which, as stated in [10], is one of the leading causes of failure in the industry.
That being said, we believe that if the developers have a good understanding
of the system at all times, they will be able to minimize complexity growth

Received by the editors: November 30, 2017.
2010 Mathematics Subject Classification. 68N01, 68M20.
1998 CR Categories and Descriptors. K.6.3 [Management of computing and in-

formation systems]: Software Management – Software maintenance; D.2.5 [Software
Engineering]: Testing and Debugging – Tracing .

Key words and phrases. Dynamic code analysis, program comprehension, software
visualization.

69

70 ROBERT FRANCISC VIDA

as new features are added or maintenance is performed, this in turn reducing
the risk of project failure.

The goal of this paper is to explore new techniques that might reduce the
change of developers needlessly adding complexity to their software system.
This is done by aiding them to better understand the behavior of their system
while also helping new additions to the team gain knowledge about the system
in an easier manner. This is called program comprehension. Most of the tech-
niques that we will present rely on dynamic program analysis and have been
designed specifically for object oriented programming, however they might be
relevant for other programming paradigms as well.

The remainder of this paper is organized as follows. Explaining what pro-
gram comprehension is and why we need it in Section 2. Section 3 presents
dynamic program analysis and why it was chosen over its static counterpart,
as well as describing the importance of software visualization and how it can
be used. In Section 4 we review existing solutions for software visualization
and list a few tools which can be used in order to enhance program compre-
hension and discuss their strengths and shortcomings. We present our original
approach and provide a few detailed examples to better explain the techniques
along with their concepts in Section 5. In Section 6 we mention a prototype
that facilitates some of the techniques discussed and finally, in Section 7, we
have the conclusion of this paper along with a few ideas for potential future
work.

2. Program Comprehension

One of the most important things to consider before altering code is how
much of it is actually understood by the person performing the change. It is
imperative for the developer to fully understand, in as much detail as possible,
how the program works before attempting to modify it since the chances of
damaging the existing system are direct proportional with the size of the
system, usually very high. This is also explained in [2]. The damage can
range from the obvious bugs and inconsistencies to the more annoying and
hard to identify ones such as performance, security and reliability.

In [11], the author presents the usefulness of program comprehension by de-
scribing what activities are required during maintenance and evolution tasks.
The common activity across these tasks implies understanding the system.
This should speak volumes about the importance program comprehension at
all stages of the development cycle.

One of the most obvious methods of keeping a program easy to understand
is to keep the code clean by the means of code review and constant refactoring
sessions. The problem is that even if the code is clean, sometimes it can be

IMPROVING PROGRAM COMPREHENSION 71

very difficult to see the bigger picture, like how some components interact
with each other on a bigger scale or in stretched out scopes. In this case,
the obvious answer is to keep the system well documented. This is relatively
easy to achieve since all you waste is a bit of time and can work wonders
in a lot of cases. That being said, having too many system descriptors, be it
explicit (documentation) or implicit (clean code) and still expect high program
comprehension from the developers is a bit too much to ask, especially if they
are relatively new to the project. It is very difficult for people to understand
a system just by reading about it.

The solutions proposed to solve this problem, or at least alleviate its effects,
are based on the fact that people are more susceptible to understand something
if they are actively involved in the process of researching [9]. This is in contrast
to more passive methods like looking through code or reading documentation,
where the person researching can only think what is happening at any given
moment. That being the case, we will look over different techniques through
which, by using dynamic program analysis, one can gain a better insight over
what happens within the program.

3. Dynamic program Analysis

Dynamic program analysis is a technique through which one can analyze the
different properties of a program while it is executing. At times, static anal-
ysis has been used to analyze the dynamic behavior of programs since it was
easier and did not require the execution of the program either. This, however,
does not yield results as precise as actually doing dynamic analysis would.
Also, as programming languages have evolved to running in more dynamic
environments, the presence of features like dynamic binding, polymorphism
and threads have made static analysis quite ineffective. This is because static
analysis can only check what is present. The packages that may be loaded
dynamically when running the application might not be present until the ex-
ecution, so this shortcoming is understandable.

The two techniques mentioned earlier, dynamic program analysis and static
program analysis are complementary, each having their own strengths and
weaknesses. The static analysis examines the source code rigorously at compile-
time. Relevant techniques include data-flow analysis, which analyzes how
variables change their values through the execution flow, symbolic execution,
which determines what input values case each part of an application to execute
and dependence analysis. Dynamic analysis looks at an application while it
is running and analyzes data obtained from that. Two commonly used tech-
niques are assertions, which are simple checks inserted within the source code
itself in order to check various things and coverage analysis which analyzes

72 ROBERT FRANCISC VIDA

the flow of the execution while an application is running [4]. In this paper
we will look at dynamic program analysis and explore to some extent the two
methods mentioned earlier.

Dynamic analysis can help guide the development process towards produc-
ing a solution that behaves, within the realm of possibility, as intended, as
well as aiding the developers in enhancing and optimizing an already working
system. By analyzing the relationships between independent threads or dura-
tion of method calls as well as the context they are called from we can easily
devise solutions that might improve overall performance. This is also clearly
stated by Thomas Ball in his article [3].

3.1. Software Visualization at Runtime. Software visualization refers to
displaying information about or related to the software system in a visual-
oriented manner so that it is easier to understand and interpret [6]. The infor-
mation type that can be used can range from the architecture of the system,
how the code is structured, to its runtime behavior, algorithm behavior.

In order to extract runtime information without altering the source code,
one could use profiling, which is a type of dynamic program analysis. Through
it we can obtain information like space or time complexity, method calls and
other statistics that are generated while running the application. Using this
information it is fairly easy to construct an execution graph or calculate the
frequency and duration of subroutines. It is on this type of analysis that the
techniques presented in this paper are based on.

After the desired information has been obtained, the next important step
is deciding on how the information shall be displayed. One obvious solution
would be to display the flow of execution in the form of an UML Sequence
Diagram. This would be quite suitable since this type of diagram is very intu-
itive and exposes the information and component interactions nicely, however
there are a two fatal drawbacks. The first one is that if the execution flow com-
plexity is too great, it will become very difficult for a user to follow through,
and the second is that this type of diagram was not created with the idea of
multiple threads of execution.

In order to identify the most suitable form of visualizing software runtime
data we need to take a look at what developers usually use to gain knowl-
edge regarding the system. That being said, the built-in debugger that most
IDEs (Integrated Development Environment) have would fit the description
perfectly. Representing the execution flow in a tree-like manner, which if going
from a leaf to the root will look like the common execution stack, would be
ideal since the user will already be familiar with the format.

IMPROVING PROGRAM COMPREHENSION 73

4. Related Work

Trying to gain program comprehension by analyzing the execution flow is
not a new idea, however the approach that we took in this paper is. In [12]
we see an approach to compare different execution traces to identify changes
within execution code, order and duration. The difference between this paper
and ours, is that we try to focus on providing as much information as possible
regarding a execution trace and present it in a easy to understand manner.
Comparing two execution flows is also presented here, however it is not the
main issue we want to tackle.

In [8] we see a similar approach to ours, applying different program analysis
techniques on the software in order gain some understanding of it. Technically
speaking, it takes it a step further by using both static and dynamic code
analysis, whereas we only use the latter. The techniques that we propose in
this paper can be used not only to understand code someone else wrote but
to gain insight into ones own code as well. The other slight difference is the
manner in which data is presented, we chose to present the data in a tree-like
manner while in the aforementioned article they seem to have chosen to go
with graphs.

Along the years there have been numerous tools that have aided developers
in analyzing the software they develop, assuring them that they are on the
right track and reducing the possibility to introduce faulty or algorithmically
incompatible features into their system.

One might argue that a debugger can be considered a tool for facilitating
program comprehension by observing the execution flow, however it has a very
big flaw. Since their aim is to inspect the code by stopping the execution at
certain points called breakpoints, they often bring the application in a state
in which it couldn’t naturally be in. This is an especially serious matter in
situations where there are multiple threads or scheduling components.

VisualVM is a visual tool written in and for Java that uses lightweight pro-
filing to extract statistics regarding an application during its runtime [13]. The
application is very easy to use and can connect to running applications at any
time. The main drawback of this tool is that it only uses a flat profiler. This
means that it only gathers data regarding memory consumption, execution
duration and execution time. This is good if someone needs a quick overview
of the system during its execution or if they are looking for memory leaks,
however it lacks context. That being said, it is impossible for the developer
to reason the behavior of the system against these statistics.

Gprof specializes on call graph executions. Call graphs can be both static,
which takes into account all possible routes and does not require the appli-
cation to be running, and dynamic, which takes into account only executed

74 ROBERT FRANCISC VIDA

methods. This means that it is able to assess the cost of routines accurately
[7]. Because of this it is easy for the people running the analysis to see the
methods that were called during the execution and also their ordering, giving
us a context of them. Seeing the path the execution took, can give develop-
ers a few hints where something went wrong or where optimizations might be
possible.

Aprof is a Valgrind tool designed to help developers identify inefficiencies
in code [5]. It is input-sensitive, that means that on top of call graph, it takes
into account the input for methods and measures their performance based on
the workload received. This is very important because the analysis allows the
developers to pinpoint the exact location where the execution ran off track.

5. Proposed Concepts and Techniques

The techniques presented within this paper are very straightforward and
previous knowledge regarding dynamic program analysis is not required in
order fully understand the ideas behind them. Before we discuss the techniques
themselves we should first define a few concepts which will be used. Some of
these concepts are not new by any means, while the others can be seen as
being built on top of existing ideas. Either way, it is important to understand
them since they are the foundation for the techniques that we will discuss later
on.

Since we will be looking at techniques through which to extract and present
the execution flow of an application we will need to analyze the simplest com-
ponent that we can relate to. That being said, considering that we are target-
ing object oriented programming, this would be the class method.

5.1. The Method Structure. An application is usually composed of mul-
tiple classes. Each of these classes have methods of the format Method =
(Linput, Linstructions, Voutput), where: Linput is the list of input arguments which
can be empty, Linstructions is the list of instructions within which can also be
empty and Voutput is the optional return value from the method. It is impor-
tant to keep in mind that the instructions may contain calls to other methods.
The best format to express the method execution, considering our needs, is a
version that offers the following components: input arguments Linput with call
time t0, output value Voutput with return time tf and a set of the method in-
structions that contains only other method calls Lmethod = (i|i ∈ Linstructions

such that i is a method called during execution). The format for the method
execution will look like this:

Methodexecution = (t0, Linput, Lmethod, tf , Voutput)

IMPROVING PROGRAM COMPREHENSION 75

5.2. Concepts. Each of these concepts are independent to each other, this is
important since it means that they can be used separately or in combination
to each other. This allows us to gather more specialized information regarding
our system, information that is more relevant to our goal. The concepts that
we considered in our approach are:

Call stack or Call tree - sequence of calls presented in a stack or tree
layout. The main reason for choosing the approach of using a stack
layout is because of the familiarity developers have with stack traces
used when debugging.
Selective focus - in order to minimize the impact on the running
application it would be optimal to focus attention on only parts of
it.
Context information - sometimes, having information on what each
method call starts with and produces is for the process of understand-
ing what exactly is happening to the application while the executing.
Selective focus using context information - this is selective focus en-
hanced with the knowledge obtained from analyzing the context. Ba-
sically only recording methods when certain conditions are met.

5.2.1. Call Stack/Call Tree. The call stack or call tree is purely a visual con-
cept through which one can depict the execution flow of an application. Having
a clear and intuitive way of checking the execution steps of an application is a
crucial aspect. It is mainly though this that the users observe how the program
unfolded, thus it is crucial to the process of understanding the system.

The decision to organize and present the method calls in a tree-like manner
was made with the purpose of having the developers already be familiar with
the representation since it works similar to how a stack trace works in debug
mode, just a bit more hierarchical.

As the root node we will have the signature of the method being called.
This will include the method name and the types of parameters it accepts.
The first child will be composed out of the parameters sent when calling the
method. If no arguments were sent, then this node should not be present at all
since it would be irrelevant. The children of the node will be the elements of
Linput component mentioned earlier. The last node will represent the return
statement of the method, this node should always be shown because this means
that the method finished successfully. If the method returns a value, the value
will also be shown. This would be Voutput. In between the first and last
node will be the nodes of all methods called from within the current method,
sorted chronologically. These nodes will be method nodes themselves and
there should be one for each element of Lmethod.

76 ROBERT FRANCISC VIDA

Figure 1. Call stack code Figure 2. Call time-
line visual representa-
tion

All of the nodes will have a time associated with them, this will be rep-
resented by a number in a column on the right hand side. This will be very
useful since it offers information on the duration of the calls.

In case there are multiple threads running, there should be separate trees
for each thread. The nodes of the threads should be intertwined, with empty
nodes representing that something happened on another thread at that time.

In Figure 1 we can see a sample code of a program that has two threads and
each of them goes on to call a different function. Figure 2 depicts an execution
of this code. We can see where each function call starts for each thread. It is
clear where the function execution overlapped and where they stopped.

A stacktrace displays the order in which methods were executed and a com-
mon profiler can provide insight into the context of the execution environment.
With this format we gain both at the same time. We can see contextual in-
formation integrated within the execution order of the methods.

5.2.2. Selective Focus. Instead of capturing the execution of every function
call on every thread, it may sometimes be desired to only focus on a certain
thread, or a certain group of functions. Applying such filters on the profiler
will drastically improve performance and reduce the impact that the profiler
has on the analyzed application.

The selective focus concept provides a good solution for reducing unneces-
sary analysis on portions of code that are of no interest to the developer. This
also allows for other analysis concepts that consume more processing power to
be used without the fear that they might disturb the natural flow of execution

IMPROVING PROGRAM COMPREHENSION 77

Figure 3. Selective
call timeline code

Figure 4. Selective
call timeline visual
representation

of the software too much. It is undeniable that if the developer adds a lot of
resource consuming analysis concepts and if the application is multithreaded,
then there is a good possibility that the execution will go into a unique state
which would not be possible under normal circumstances.

This is not a new concept, there are a lot of tools that have ways to selec-
tively choose what parts of the application to analyze, however this method
differs from the way you define these parts and the manner in which the report
is generated at the end of the analysis.

In Figure 3 we have a sample code of a program that has two threads and
each of these threads will call their own functions. Figure 4 depicts a poten-
tial execution of the code previously stated. In this certain representation, the
person running the analysis decided to ignore the method ignoredParentFunc-
tion() and so it is not represented within the timeline.

To take full advantage of the capabilities of this analysis method, we strongly
suggest implementing the filtering system in a dynamic fashion, by this we
mean being able to specify target methods through a mechanism similar to
regular expressions. This is not hard to do and one would gain the ability to
mark the functions that are to be analyzed at runtime. This is imperative
if the developer wants to intercept function calls even if they were declared
through reflection.

5.2.3. Context Information. This concept is concerned with recording the data
that is used in inter-method communication. This covers both input and
output data, however the amount of how much data to record should be kept
in mind. What this means is that if for example we have a class as input data,

78 ROBERT FRANCISC VIDA

we need to specify how deep within its fields we will record. If the class has
another class as field, and so on, there should be a stopping point to reduce
the stress of the analysis.

All of the data can be stored in a context along with their reference id so we
can observe the changes made to an entity through the entire execution. This
would allow the users to easily follow data modification during the application
execution. It is important to note, that this concept is similar to dynamic
program slicing [1], which is a technique that gathers all the statements that
changed the value of a variable during an execution. On the other hand, our
technique is able to identify the changes done to the object itself. So they are
similar in aim, which is to study the evolution of the application state, but
have different approaches on how to do this.

The context information concept is one of the most resource-consuming of
all of the ones proposed within this paper, however it also is the one that gives
the most detailed insight about what happened within the code because it can
clearly display all input and output values for each function.

5.2.4. Conditional Focus. This concept builds on top of the previous men-
tioned concept, selective focus, by adding awareness regarding the context.
This means that after we filter the parts of the program we want to focus
on, we can go even further and add that only when specific input values are
passed should we inspect the section. The overhead added to the execution
might not be very appealing, however it is well worth the sacrifice in order to
have a way to add this sort of flexibility.

5.3. Techniques. Next, we will use the concepts defined earlier and combine
them so that they will aid us in our goal of understanding the program better.
All of these techniques assume that we use a call stack as a way of presenting
the information.

5.3.1. Basic Analysis Technique. The first combination will be very straight-
forward and somewhat predictable, we will use selective focus and context
information. By using selective focus, we reduce the strain put on the appli-
cation by the analyzer and by using context information we expose detailed
information about the piece of code that we are interested in. This combina-
tion is important since with this the developer can gain in-depth knowledge
over the part of the application that he desires. Illustrating a call stack/tree of
the methods that were executed and the data received, changed and produced.
This combination can also be used as an advanced form of logging.

5.3.2. History Technique. This technique is actually built on top of the previ-
ous one, however the step is in a horizontal direction. What this means is that

IMPROVING PROGRAM COMPREHENSION 79

it does not go deeper down into extracting more data or filtering the inspected
scope of the program, but simply keeps track of multiple executions and at-
tempts to compare them. This is important since this way the developers can
examine the evolution of the behavior of a program. They can also execute
the same steps over and over again, in order to check the consistency and reli-
ability of multithreaded sections. The visual representation is not difficult to
understand, this makes it is easy to present to non-technical users and explain
how it all works. It eases the communication bridge between two groups of
people that usually have difficulty explaining their point of view to the other.

5.3.3. Checking Technique. This technique would more likely be used for test-
ing purposes rather than program comprehension. It is very possible to use a
slightly altered version of the conditional focus concept to check at all stages
that different values do not pass through certain areas of the code. Using such
a method on a system would seem as though it was attempted to add formal
verification on top of an already existing system. This is a strange approach
since formal methods are performed before any code is written, however this
method is worth mentioning since there are some situations where such ap-
proaches might be needed.

5.4. Threats to validity. It is important to keep in mind that the concepts
and techniques presented have not been proven to be a definite improvement
over other similar tools nor do we claim them to be. The techniques were
devised in order to explore new ideas in the domain of program comprehension
and are still in an experimental state at this moment.

An aspect that is quite concerning to the validity of these techniques is
scalability. These concepts were only tested in environments of small sized
applications that did not make use of too many execution threads of the same.
This concern relates to both execution and visualization issues. By this we
mean that the tool might behave faulty when a larger application is analyzed,
but also that the visualization mechanism might prove to be less suited when
too many points of interest need to be shown at the same time.

Another thing to keep in mind is that different programming languages will
have different instrumentation limitations. In a few cases these techniques
might actually be impossible to implement.

6. Working Prototype

Most of the concepts and techniques presented within this paper have al-
ready been implemented into a stable prototype. Written in Java, by the use
of instrumentation it is able to observe other Java applications while they are
being executed without affecting the normal execution flow too much. The

80 ROBERT FRANCISC VIDA

Figure 5. Screenshot of the prototype

only impact on the inspected application is that the overhead added by the
analysis itself, by this we mean the mechanism through which we extract the
data, so the execution threads might slow down a bit. The prototype is able to
handle multiple execution threads and structures the flow into a hierarchical
manner.

A few of the concepts described in this paper were only partially imple-
mented or do not have the flexibility previously described, the reason behind
this is that it is only a prototype meant to show the appeal of such a tool.
A noteworthy but not necessarily critical flaw for the tool is the fact that it
is unable to inspect the core classes because they are being used in order to
extract the data from the analyzed application. The reason we say it is not
critical is because one would normally use this application to analyze their
own code. In order to gather as much data as possible, we recommend that
the instrumentation process starts as soon as possible, exactly when the target
application is started would be ideal. The reason behind this is that although

IMPROVING PROGRAM COMPREHENSION 81

the tool is able to analyze already running applications, it is limited to classes
that have not been loaded, by this we mean those that have not yet been used.

In Figure 5 we can see the execution flow of an application that has two
threads. The two tree structures depict the methods called from each thread
as they are called, each having the identifying name of the thread above them.
The root nodes represent the first methods called that respect the filtering
conditions set before the analysis began. Whenever there are parameters sent
to the methods, a child node containing a list of parameters will be present.
Next, if there are other methods called from this method, they will be indicated
through separate suggestive nodes. The last child node of a method node will
be the return statement that will also indicate the return value if there is any.
All nodes, except for parameter nodes and their children, display the time
at which they occurred, this way one could easily tell how long the method
took to execute. We believe that this way it is easy to see crucial information
regarding methods, such as access control modifiers, input parameters, entry
and exit time points as well as method calls performed within. However, when
there are many chained methods it might be difficult to keep track of the exact
location within execution tree. In order to aid the user in orienting themselves
within the execution tree, we highlighted with yellow background the entry
and exit point of the currently selected method.

7. Conclusion and Further work

From all the information presented in this paper, it is easy to understand
the importance of program comprehension and why it is imperative for it to be
as high as possible. The method through which this is done is not particularly
important, however by using dynamic program analysis you get to observe the
application in its most crucial state, at runtime. By directly observing how
the application behaves during the execution you get to see how it reacts, no
need for speculation, we can see exactly how all parts come together and work
with each other.

We have presented various techniques through which one might enhance
the experience of gaining or maintaining program comprehension regarding an
application along with a working prototype that makes use of these methods.
It is important to note that all of these techniques require the user be engaged
in the analysis task so that the process of understanding the application can
progress more naturally.

In the future we plan to further refine the concepts and techniques previ-
ously mentioned as well as extend them to provide more customizable and
relevant information to the developers or the interested users. Pursuing other
techniques is not of the table. There were a few other ideas that did not make

82 ROBERT FRANCISC VIDA

it into this paper for various reasons. For example a technique through which
one would be able to identify hidden dependencies, detect places where design
patterns should be implemented or determine if two classes belonging to dif-
ferent components are connected to each other to tightly when they shouldn’t
(high coupling).

References

[1] Hiralal Agrawal and Joseph R. Horgan. Dynamic program slicing. SIGPLAN Not.,
25(6):246–256, June 1990.

[2] Usman Akhlaq and Muhammad Usman Yousaf. Impact of software comprehension in
software maintenance and evolution. Master’s thesis, Blekinge Institute of Technology,
2010. Chapter 8.

[3] Thomas Ball. The concept of dynamic analysis. SIGSOFT Softw. Eng. Notes, 24(6):216–
234, October 1999.

[4] Mario Barrenechea. Program analysis. https://www.cs.colorado.edu/~kena/

classes/5828/s12/presentation-materials/barrenecheamario.pdf, . [Online;
accessed 5-September-2017].

[5] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. Input-sensitive profiling. SIG-
PLAN Not., 47(6):89–98, June 2012.

[6] Denis Gracanin, Kresimir Matkovic, and Mohamed Eltoweissy. Software visualization.
Innovations in Systems and Software Engineering, A NASA Journal, 1(2):221–230, Sep-
tember 2005.

[7] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A call graph
execution profiler. SIGPLAN Not., 17(6):120–126, June 1982.

[8] Wilhelm Kirchmayr, Michael Moser, Ludwig Nocke, Josef Pichler, and Rudolf Tober.
Integration of static and dynamic code analysis for understanding legacy source code.
2016 IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 543–552, 2016.

[9] Michael Prince. Does active learning work? a review of the research. Journal of Engi-
neering Education, 93(3):223–231, 2004.

[10] Roger Sessions. The it complexity crisis: Danger and opportunity. Technical report,
ObjectWatch, 2009.

[11] Priyadarshi Tripathy and Kshirasagar Naik. A Practitioner’s Approach, Software Evo-
lution and Maintenance, chapter 8. John Wiley & Sons, Inc., New York, NY, USA,
2014.

[12] Jonas Trmper, Jrgen Dllner, and Alexandru C. Telea. Multiscale visual comparison
of execution traces. In Proceedings of the 21st International Conference on Program
Comprehension, pages 53–62, 2013.

[13] Visual vm. https://visualvm.github.io/ [Online; accessed 12-December-2017].

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: robertv@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 2, 2017
DOI: 10.24193/subbi.2017.2.07

ROBBY: A NEUROROBOTICS CONTROL FRAMEWORK

USING SPIKING NEURAL NETWORKS

CĂTĂLIN V. RUSU, TIBERIU BAN, AND HOREA ADRIAN GREBLĂ

Abstract. The variety of neural models and robotic hardware has made
simulation writing time-consuming and error prone, forcing thus scientists
to spend a substantial amount of time on the implementation of their
models. We developed a framework called “Robby” that allows the quick
simulation of large-scale neural networks designed for robotic control by
spiking neural networks. It provides both mechanism for robotic communi-
cation and tools for building and simulating neural controllers. We present
the basic building blocks of “Robby” and a simple experiment to show its
practical value.

1. Introduction

As hardware becomes more diverse and affordable the need for controlling
different hardware platforms within similar contexts becomes more prominent.
The difficulty lies in the fact that each robot has a different underlying physical
layout with different programming interfaces. Thus, similar control programs
would have different implementations depending on the robotic platform. In
this context neural simulators, that are able to simulate large-scale neural
networks efficiently, and robotic frameworks, that allow them to interact with
robotic devices, are highly desirable. Such frameworks: (i) allow the facile
control of physical cognitive agents; (ii) enable scientist to spend less time on
programming details and more on detailing experiments; (iii) provide a basis to
easily explore theoretical principles in the context of real computational tasks
involving physical autonomous agents; (iv) help increase our understanding of
how large neural networks mediate cognitive functions. Popular frameworks
either provide a collection of software and algorithms focused on robot com-
munication, sensing and navigation while leaving the development of control

Received by the editors: October 20, 2017.
2010 Mathematics Subject Classification. 68T40.
1998 CR Categories and Descriptors. I.2.9 [Artificial Intelligence]: Robotics – Op-

erator interfaces.
Key words and phrases. neural simulators, robotic frameworks, cognitive robotics, spik-

ing neural networks.

83

84 CĂTĂLIN V. RUSU, TIBERIU BAN, AND HOREA ADRIAN GREBLĂ

programs (neural networks) to the user, like “Player/Stage” [1] (biased to-
wards wheeled robots) or “YARP” [2] (biased towards humanoid robotics),
or either provide limited support like “Pyro” [3] or “Orocos” [4]. Thus, it
would be of interest to have a system that provides both the abstraction layer
for robot communication and the logic to support the development of neural
controllers. We introduce “Robby”, a flexible and distributed framework for
robotic control with spiking neural networks, ideal for large-scale simulations.
It enables the control of robotic platforms occupying different physical loca-
tions by multiple types of neural networks. In the framework, controllers are
primarily neural networks, but in principle they can be any user-defined con-
troller. Additional support for joystick controllers is provided to allow direct
manipulation of devices. While this setup might seem restrictive it is sufficient
for common simulations in neurobotics while keeping the architecture of the
system simple. Since “Robby” makes easy to simulate and explore spiking
neural networks with different architectures and properties with the aim of
training autonomous robots it could be of interest to the scientific community
interested in cognitive robotics. In the following we present the basic principles
behind “Robby” and provide several future development directions together
with a simple evaluation to show its use.

2. Architecture and implementation details

Low level programming is tedious because it requires a deep understanding
of the underlying hardware platform and knowledge of complex languages
and programming interfaces. As complex behavior generally requires complex
hardware, a large amount of time is spent on writing even the most basic
simulations. Essentially, “Robby” is a fast and lightweight platform aimed at
simulating spiking neural networks and facilitating the control of various types
of robotic devices. From a software development point of view it is written
to promote reusability, extensibility and flexibility. The time spent writing
code is thus minimized and scientists are able to spent more time modeling
rather than setting up complex environments and debugging. The framework
is written in C++ and adheres to the POSIX standards. Even if C++ is
considered to be a high level language, it offers the means to interact at low
level with the hardware in an efficient and portable way.

The architecture of “Robby” is modular. It consists of a control structure
(the server), a behavioral component (the client) and a commons component
(Fig. 1). The server is in strict relation with devices through an instantiation
of corresponding drivers. It forwards commands received from clients, and
awaits and reads replies from devices. Besides providing the communication
functionality it also provides an interface to plot the raw sensory data received

ROBBY: A NEUROROBOTICS CONTROL FRAMEWORK 85

Server

ClientHandler

SensorHandler

RobotCommunication

Common

NeuralSimulator

NeuralRecorder

RobotDriver

ImageProcessing

SensorInterface

Logging
Client

TCPWriterInterface

TCPReaderInterface

ControllerInterface

NeuralController

JoystickController

Threading

SimpleController

World

Simulator

Figure 1. ”Robby” architecture.

from the devices together with basic communication cycle parameters. The
client reads data from the controller and maps it into robot commands which
are later sent to the server where they are processed and forwarded. After it
sends them to the server it awaits a reply before notifying the controller that
the communication cycle is over. A controller implements the ControllerIn-
terface and runs in a separate thread. Currently the available controller types
are: a NeuralController which is a spiking neural network and a JoystickCon-
troller which is useful for direct manipulation of devices. To allow flexibility,
other user-defined controller types can be added with the restriction that they
must implement the ControllerInterface. The common component contains
the neural simulator which facilitates the creation and simulation of spiking
neural networks [5], device drivers and various image processing algorithms like
Laplacian of Gaussian and log-polar filters [6, 7] used to process device video
data. Other sensorial controllers can be added provided that they implement
the ControllerInterface.

This server/client strategy acts as proxy between the client controller and
server driver entities to increase flexibility in control and allow the controller
and robot to be in different locations with server and client communication
mediated through Ethernet. Besides this obvious geographical benefit, such
a separation allows the decoupling between the computationally inexpensive
communication process and the highly time consuming simulations performed
by the controller. What is actually transmitted through the TCP channel are

86 CĂTĂLIN V. RUSU, TIBERIU BAN, AND HOREA ADRIAN GREBLĂ

robotic commands embedded into packets. Their aim is to keep communica-
tion uniform and enable a seamless control of many types of robots. Each
package contains the command together with parameters and optional sensor
values. Thus, as long as a physical connection between the server and the
robotic device can be initiated multiple controllers and devices can co-exist.
“Robby” makes no assumption about the connection medium between the
server and the robotic devices, but, as stated previously, a driver needs to be
supplied. Efforts are made to increase the number of supported connection
types, but currently only drivers for devices with serial connections are pro-
vided. Fig. 2 depicts the communication processes inside “Robby”. The client
and server communicate by using TCP sockets. At the server side, communi-
cation between devices and the server could be achieved via bluetooth, wireless
or serial depending on the device capabilities. At the client side, communi-
cation between the client and the controller is achieved by using a common
memory buffer guarded by a critical section. This setup allows the existence of
multiple controllers at the same time. Any of the controllers can be replaced
by other controllers if they comply with the ControllerInterface.

TCP/IPRobot ControllerClientServer

Shared
Memory

Bluetooth/Serial/
Wifi

Figure 2. ”Robby” Communication. Communication be-
tween the server and client is implemented using the TCP/IP
protocol.

ROBBY: A NEUROROBOTICS CONTROL FRAMEWORK 87

While the speed of the simulation itself arguably is not important for de-
tailed modeling of complex biophysical entities and small simulations, in the
case of large-scale simulations for the purpose of robotic control it still remains
an important constraint. Such simulations of large neural systems consisting
of thousands of neurons are heavily time consuming because of the amount of
interaction in the network which needs to be evaluated. As memory becomes
an inexpensive commodity the trade-off between memory usage and simula-
tion speed needs to be carefully investigated. Recent computing optimization
techniques [8, 9] propose the usage of lookup tables to avoid the repeated com-
putation of a value. Thus the runtime computation of what might be expensive
is replaced with a simple indexing operation with constant complexity. These
approaches increase code size and memory consumption, but the speed gain
outweighs the cost. “Robby” implements lookup tables to improve the perfor-
mance when simulating large neural networks. They are used when computing
postsynaptic responses, a process that involves, for some neural models, repet-
itive evaluations of exponential functions. In addition, when simulating neural
networks some operations are independent and can be executed in parallel (for
example the update of a neuron membrane potential). These operations are
implemented using OpenMP directives [10] to allow multi-threading.

3. Robby as a framework for robot learning

As outlined in previous sections, “Robby” is designed for the simulation of
large-scale neural networks for robotic control in a computationally efficient
way with as little code as possible. It is able to simulate different types of spik-
ing neurons at different levels of detail. In the current implementation, the
available models are the integrate-and-fire [5] and Izhikevich [11]. Because of
its simplicity the integrate-and-fire neuron is commonly used in large-scale sim-
ulations [12, 13, 14] while the Izhikevich neuron can reproduce the complex be-
havior observed only at more detailed models while at the same time allowing
an efficient implementation [11]. Thus, this selection of neuron models albeit
small is sufficient, since complex models are computationally expensive and
networks composed out of them would not be feasible as robotic controllers.
Different types of static and dynamic synapses together with various plastic-
ity rules (short-term plasticity [15], spike-timing-dependent plasticity (STDP)
[16], synaptic scaling [17] or intrinsic neuronal plasticity [18]) are available in
order to facilitate learning. In the case of static synapses a fixed current is
injected into the postsynaptic neuron at the time of the presynaptic activation
while dynamic synapses feature facilitation or depression mechanisms. In ad-
dition, different supervised learning rules for spiking neural networks [19, 20]

88 CĂTĂLIN V. RUSU, TIBERIU BAN, AND HOREA ADRIAN GREBLĂ

together with reward modulated spike-timing-dependent plasticity [21] are im-
plemented in order to create a framework for reinforcement learning [22].

In the following we present a simple experiment to demonstrate some of
the features of “Robby” and their application. Consider the setup presented

Image

Image
get image

im
a

g
e

 filte
rin

g

s
p

ik
e

 c
o

d
in

g

E-puck

Figure 3. Experiment setup. A spiking neural network con-
trolled an E-puck robot located in a rectangular arena. The
network received as input the video information from a camera
mounted on top of the robot and controlled the motor activa-
tion.

in Fig. 3. An E-puck robot with an externally mounted camera navigated
through a rectangular arena which contained no obstacles. The controller of
the robot was a spiking neural network with three layers of neurons. The first
and third served as sensor and motor neurons respectively.

The input neurons conveyed video information about the environment.
More precisely, the pixels of the image received from the camera were av-
eraged to provide input for the 400 input neurons. These activation values
were normalized between 0 and 1. The input neurons fired Poisson spike
trains with rate proportional to the activation, between 10 and 50 Hz. The
400 output neurons served as motor neurons, 200 for each motor (left and

ROBBY: A NEUROROBOTICS CONTROL FRAMEWORK 89

right). Each of these neuron populations is further divided into two 100 neu-
ron pools. These two pools of neurons are assigned to one motor with its
speed proportional to their corresponding average firing rate. The spikes were
converted to effector activation by integrating them with a leaky accumulator
of time constant τ = 500 ms. The activation of two 100 motor neurons popu-
lations were averaged to yield the activation of one effector at a timestep. In
this antagonistic setup given the activation a+ and a− of the two 100 neuron
populations, the motor was given a relative command (a+ + a−). The net-
work was thus composed out of 400 input neurons and 400 motor neurons.
The network also had 1500 hidden neurons. All the neurons were modeled as
integrate-and-fire. Each non-input neuron in the network sent connections to
30% of hidden and motor neurons. Input neurons projected onto 45% of the
hidden neurons. All the connections were chosen randomly from the uniform
distribution. The connections between the first and second layer together with
the recurrences within the hidden layer were static spiking synapses while to
ones that projected onto the motor neurons were static STDP synapses. In
this simple experiment the goal of the robot was to freely explore the environ-
ment for 15 seconds. The distance traveled by the robot from the initial point
is depicted in Fig. 4. It was computed from the information received from
a camera located on top of the environment which recorded every position of
the robot. The distribution of synaptic weights of a randomly selected motor
neuron at the beginning and at the end of the simulation together with the
activation values of the motors received at each timestep are also depicted in
Fig. 4. The resulted bimodal weight distribution is consistent with experimen-
tal results [16]. The duration of a simulation step which includes the timestep
of the neural controller together with the time required to send data to and
from the robot has on average the value of 70 ms (see Fig. 4). Due to the low
data transfer rates of the robot connection the duration of the communication
cycle increases to an average of 400 ms if the video from the E-puck on-board
camera is transmitted instead from the external camera on top of the robot.
This value is dependent upon the settings of the camera like for example num-
ber of pixels or color depth. Although this experiment is simplistic it presents
some of the basic features of “Robby” and how they can easily be used in the
context of robot learning and control with spiking neural networks.

The experiment was aimed to present the flexibility of the framework that
had been developed around Robby. As previously stated, this framework has a
major advantage of being able to include elements of supervised learning rules
with respect to the goal of achieving results in reinforced learning.

The next step that is under development is to apply the neural network
framework of Robby to a new business domain in gathering information from

90 CĂTĂLIN V. RUSU, TIBERIU BAN, AND HOREA ADRIAN GREBLĂ

Figure 4. Experiment results. (a) The weight distribution of
a randomly selected motor (output) neuron at t = 0 s (dashed
line) and t = 15 s. (b) The distance traveled by the robot from
the initial point. (c) The duration of a simulation step in ms.
(d) The activation value of each motor.

patterns of mistakes found by analysing test papers, as presented as a theoret-
ical approach in [23]. Results already obtained in developing a mathematical
model [24] proved that in order to maximize the robustness of the framework,
elements of unsupervised learning (i.e. generation of frequent item sets and
determining association rules) need to be linked with elements of supervised
learning, in order to prune out coincidental occurrences that are not relevant
in terms of knowledge gathered as patterns of mistakes.

So far results from [24] as well as [23] were heavily based on rationales that
followed strongly the mathematical model of association rules. This business
domain can be extended with a new approach, incorporating elements of neural
networks in addition to the existing mathematical model. Using the framework
of Robby the goal is to include results gathered from association rules and

ROBBY: A NEUROROBOTICS CONTROL FRAMEWORK 91

frequent item set discovery in order to modify existing algorithms based on
neural networks that are currently used in credit card fraud detection, in
order to study the possibility of predicting frauds in evaluation tests, based
on patterns of mistakes.

4. Conclusion

We have introduced a flexible distributed control framework for robotic
interaction with spiking neural networks ideal for large-scale simulations. Our
aim was to create a multi-threaded, flexible, lightweight framework which
promotes code reuse. “Robby” is not intended to be a multi-purpose tool,
but it proved to be a convenient tool for quickly exploring new ideas and
write experiments with a small amount of code. At the current stage in the
development the number of supported robotic platforms and neuron models is
still limited. Future plans include support for further commonly used robotic
devices and neuron models.

References

[1] B.P. Gerkey, R.T. Vaughan, K. Stoy, A. Howard, G.S. Sukhatme, and M.J. Mataric.
Most Valuable Player: A Robot Device Server for Distributed Control. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Wailea,
Hawaii, 2001.

[2] P. Fitzpatrick, G. Metta, and L. Natale. Towards long-lived robot genes. Robotics and
Autonomous Systems, 56(1):29–45, 2008.

[3] D.S. Blank, D. Kumar, L. Meeden, and H. Yanco. Pyro: A python-based versatile
programming environment for teaching robotics. Journal of Educational Resources in
Computing, 2004.

[4] Bruyninckx H. Open robot control software: the orocos project. 2001.
[5] W. Gerstner and W. Kistler. Spiking neuron models: Single neurons, populations, plas-

ticity. Cambridge University Press, 2002.
[6] R. Haralick and L. Shapiro. Computer and Robot Vision. Addison-Wesley Publishing,

1992.
[7] G. Wolberg and S. Zokai. Robust image registration using log-polar transform. IEEE

International Conference on Image Processing, 2000.
[8] M. Hall and J. Mayfield. Improving the Performance of AI Software: Payoffs and Pitfalls

in Using Automatic Memoization. Proceedings of the Sixth International Symposium
on Artificial Intelligence, Monterrey, Mexico, 1993.

[9] M. Hall and J.P. McNamee. Improving software performance with automatic memoiza-
tion. Johns Hopkins APL Technical Digest, 18(2), 1997.

[10] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDonald. Parallel
Programming in OpenMP. Morgan Kaufmann, 2000.

[11] E. M. Izhikevich. Simple model of spiking neurons. IEEE Transactions on Neural Net-
works, 14:1569–1572, 2003.

[12] Brunel N. The evidence for neural information processing with precise spike-times: A
survey. Natural Computing, 3:195–206, 2000.

92 CĂTĂLIN V. RUSU, TIBERIU BAN, AND HOREA ADRIAN GREBLĂ

[13] Cessac B and Vieville T. On dynamics of integrate-and-fire neural networks with adap-
tive conductances. Frontiers in Computational Neuroscience, 2, 2008.

[14] Soula H. Alwan A. and Belson G. Learning at the edge of chaos: Temporal coupling of
spiking neuron controller for autonomous robotics. 2005.

[15] L.F. Abbott and W.G. Regehr. Synaptic computation. Nature, 431:796–803, 2004.
[16] S. Song, K. D. Miller, and L. F. Abbott. Competitive hebbian learning through spike-

timing-dependent synaptic plasticity. Nature Neuroscience, 3:919–926, 2000.
[17] G.G Turrigiano and S. B. Nelson. Homeostatic plasticity in the developing nervous

system. Nature Reviews Neuroscience, 5:97–107, 2004.
[18] W. Zhang and D. J. Linden. The other side of the engram: Experience-driven changes

in neuronal intrinsic excitability. Nature Reviews Neuroscience, 4:885–900, 2003.
[19] F. Ponulak. ReSuMe-new supervised learning method for Spiking Neural Networks. In-

ternational Conference on Machine Learning, ICML, 2005.
[20] R. Florian. The chronotron: a neuron that learns to fire temporally-precise spike pat-

terns. PLoS ONE, 7(8), 2012.
[21] R. Florian. Reinforcement learning through modulation of spike-timing-dependent

synaptic plasticity. Neural Computation, 19(6):1468–1502, 2007.
[22] Sutton RS and Barto AG. Reinforcement learning. 1998.
[23] Ban T. Fuzzy computing for complexity level of evaluation tests. Studia Universitatis

Babes-Bolyai, Seria Informatica, LVIII:81–93, 2013.
[24] Ban T. Generating and assessing test papers complexity using predictions in evolution-

ary algorithms. 2009.

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: rusu@cs.ubbcluj.ro

E-mail address: tiberiu@cs.ubbcluj.ro

E-mail address: horea@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXII, Number 2, 2017
DOI: 10.24193/subbi.2017.2.08

METRIC DENOTATIONAL SEMANTICS FOR REMOTE

PROCESS DESTRUCTION AND CLONING

ENEIA NICOLAE TODORAN

Abstract. We present a denotational semantics designed with continu-
ations for a concurrent language providing a mechanism for synchronous
communication, together with constructions for process creation, remote
process destruction and cloning. We accomplish the semantic investigation
in the mathematical framework of complete metric spaces.

1. Introduction

We study the semantics of a concurrent language Lpcsyn providing a mecha-
nism for synchronous communication, together with constructions for process
creation, remote process destruction and cloning. We design a denotational
semantics for Lpcsyn by using the continuation semantics for concurrency (CSC)
technique [16]. Following [4], we accomplish the semantic investigation in the
mathematical framework of complete metric spaces.

The central characteristic of the CSC technique is the modeling of continua-
tions as application-specific structures of computations, where by computation
we understand a partially evaluated denotation (meaning function). The CSC
technique was introduced and developed in a series of works [16, 7, 8]. A com-
parison between CSC and the classic direct approach to concurrency semantics
[4] is provided in [16, 7].

To illustrate how synchronous interactions can be modeled with CSC, in
Section 3 we start with a language Lsyn that is very simple but provides
a synchronization mechanism between concurrent components. In Section 3
we provide a denotational semantics designed with CSC for Lsyn. Lsyn is a
uniform language in the sense that its elementary statements are uninterpreted

Received by the editors: November 30, 2017.
2010 Mathematics Subject Classification. 68Q55, 68Q85, 68N15, 68M14.
1998 CR Categories and Descriptors. D.3.2 [Software]: Programming Languages –

Concurrent, distributed, and parallel languages; F.3.2 [Theory of Computation]: Logics
and Meanings of Programs – Denotational semantics.

Key words and phrases. metric semantics, continuation semantics for concurrency, re-
mote process destruction, remote process cloning.

93

94 ENEIA NICOLAE TODORAN

symbols taken from a given alphabet. Lpcsyn is a non-uniform language: in
general, in Lpcsyn the behavior of an elementary statement depends upon the
current state of a program. The terminology uniform vs non-uniform language
is also used, e.g., in [4, 18].

The language Lpcsyn is studied in Section 4. Lpcsyn provides CSP-like synchro-
nous communication [10]. Lpcsyn also provides constructions for process cre-
ation, process destruction and process cloning. In Lpcsyn a process can not only
commit suicide or clone itself, but it can also kill or clone any other process in
the system. Process creation is a well known control concept encountered both
at operation system level and in concurrent programming. Process destruc-
tion and process cloning are operations that can be encountered at operating
system level, in some coordination languages [11], or in distributed object ori-
ented and multi agent systems such as Obliq [5] and IBM Java Aglets [12, 19].
The former operation kills a parallel running process and is similar to the
”kill -9” system call in Unix. The latter operation creates an identical copy
of a (parallel) running process.

For the development of our ideas we have chosen the mathematical frame-
work of metric semantics [4], where the main mathematical tool is Banach’s
fixed point theorem. We need the theory developed in [2] for solving reflex-
ive domain equations as continuations in the CSC approach are elements of a
complete space which is the solution of a domain equation where the domain
variable occurs in the left-hand side of a function space construction.

1.1. Contribution. We present a denotational (mathematical) semantics for
a concurrent language Lpcsyn incorporating advanced control mechanisms for
remote process creation, destruction and cloning. The denotational semantics
is designed with metric spaces [4] and continuation semantics for concurrency
(CSC) [16], a technique providing sufficient flexibility for handling the ad-
vanced control concepts incorporated in Lpcsyn. Various semantic models for
languages with process creation are presented, e.g., in [1, 3, 4, 15]. However,
as far as we know, this is the first paper presenting a denotational (mathe-
matical) semantics for remote process destruction and cloning.

2. Preliminaries

The notation (x ∈)X introduces the set X with typical element x ranging
over X. For X a set we denote by Pπ(X) the collection of all subsets of X
which have property π. For example, Pfinite(X) is the set of all finite subsets
of X. If f : X → X and f(x) = x we call x a fixed point of f . When this fixed
point is unique (see 2.1) we write x = fix(f). The notions of partial order
and total or simple order are assumed to be known. We recall that, given a
partially ordered set (X,≤X), an element x ∈ X is said to be maximal if there

METRIC SEMANTICS FOR REMOTE PROCESS DESTRUCTION AND CLONING 95

are no elements strictly greater than x in X, that is if x ≤X y then y ≤X x in
which case x = y.

Let (x ∈)X, (y ∈)Y, (z ∈)Z, f ∈ X → Y and g ∈ X → Y → Z. The
functions (f | x 7→ y) : X → Y and (g | x, y 7→ z) : X → Y → Z are defined
as follows:

(f | x 7→ y)(x′) =

{
y if x′ = x
f(x′) if x′ 6= x

(g | x, y 7→ z) = (g | x 7→ (g(x) | y 7→ z))

(f | x 7→ y) is a variant of the function f which behaves like f almost
everywhere, except for point x where (f | x 7→ y) yields y. Instead of
((f | x1 7→ y1) · · · | xn 7→ yn) we write (f | x1 7→ y1 | · · · | xn 7→ yn).

Following [4] the study presented in this paper takes place in the mathemati-
cal framework of 1-bounded complete metric spaces. We assume known the no-
tions of metric and ultrametric space, isometry (distance preserving bijection
between metric spaces; we denote it by ’∼=’) and completeness of metric spaces.
If (X, dX), (Y, dY) are metric spaces we recall that a function f : X → Y
is a contraction if ∃c ∈ R, 0 ≤ c < 1: ∀x1, x2 ∈ X: dY (f(x1), f(x2)) ≤
c·dX(x1, x2). Also, f is called non-expansive if dY (f(x1), f(x2)) ≤ dX(x1, x2).
We denote the set of all c -contracting (nonexpansive) functions from X to Y

by X
c−→Y (X

1−→Y).

Theorem 2.1. (Banach) Let (X, dX) be a non-empty complete metric space.
Each contracting function f : X → X has a unique fixed point.

For any set (a, b ∈)A the so-called discrete metric dA is defined as follows:
dA(a, b) = if a = b then 0 else 1. (A, dA) is a complete ultrametric space.

Definition 2.1. Let (X, dX), (Y, dY) be (ultra) metric spaces. On (x ∈)X,
(f ∈)X → Y (the function space), ((x, y) ∈)X × Y (the cartesian product),
(u, v ∈)X tY (the disjoint union) and on (U, V ∈)P(X) (the power set of X)
we can define the following metrics:

(a) d 1
2
·X : X ×X → [0, 1], d 1

2
·X(x1, x2) = 1

2 · dX(x1, x2)

(b) dX→Y : (X→Y)× (X→Y)→[0, 1]
dX→Y (f1, f2) = supx∈XdY (f1(x), f2(x))

(c) dX×Y : (X × Y)× (X × Y)→[0, 1]
dX×Y ((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)}

(d) dXtY : (X t Y)× (X t Y)→[0, 1]:
dXtY (u, v) =

if u, v ∈ X then dX(u, v) else if u, v ∈ Y then dY (u, v) else 1
(e) dH : P(X)× P(X)→[0, 1] is the Hausdorff distance defined by:

96 ENEIA NICOLAE TODORAN

dH(U, V) = max{supu∈Ud(u, V), supv∈V d(v, U)}
where d(u,W) = infw∈Wd(u,w) (by convention sup∅ = 0, inf∅ = 1).

Given a metric space (X, dX) a subset A of X is called compact whenever
each sequence in A has a convergent subsequence with limit in A. We will use
the abbreviations Pco(·) (Pnco(·)) to denote the power set of compact (non-
empty and compact) subsets of ’·’.
Remark 2.1. Let (X, dX), (Y, dY), d 1

2
·X , dX→Y , dX×Y , dXtY and dH be as in

definition 2.1. In case dX , dY are ultrametrics, so are d 1
2
·X , dX→Y , dX×Y ,

dXtY and dH . If in addition (X, dX), (Y, dY) are complete then (X, d 1
2
·X),

(X → Y, dX→Y), (X
1−→Y, dX→Y), (X×Y, dX×Y), (XtY, dXtY), (Pco(X), dH)

and (Pnco(X), dH) are also complete metric spaces. In the sequel we will often
suppress the metrics part in domain definitions. In particular we will write
1
2 ·X instead of (X, d 1

2
·X).

2.1. Structure of Continuations. In the CSC approach a continuation is an
application-specific structure of computations. Intuitively, a CSC-based model
is a semantic formalization of a process scheduler which repeatedly selects and
activates computations contained in a continuation [16]. Let (x ∈)X be a
complete metric space. Following [16, 7, 8] we define the domain of CSC
with the aid of a set (α ∈)Id of (process) identifiers and we use the following
notation:

{|X|} not.= Pfinite(Id)× (Id→ X)

We let π range over Pfinite(Id). Let (π, φ) ∈ {|X|}, where φ ranges over
Id→ X. We define id : {|X|} → Pfinite(Id), id(π, φ) = π. We use the follow-

ing abbreviations: (π, φ)(α)
not.
= φ(α), (π, φ) \ π′ not.= (π \ π′, φ), ((π, φ) | α 7→ x)

not.
= (π ∪ {α}, (φ | α 7→ x)). The operations id, (·)(α), (·) \ π and (· | α 7→ x)

are further explained in [7, 8].
We treat (π, φ) as a ’function’ with finite graph {(α, φ(α)) | α ∈ π}, thus

ignoring the behaviour of φ for any α /∈ π (π is the ’domain’ of the ’function’).
Essentially, a structure (π, φ) is a finite partially ordered bag (or multiset)1 of
computations.

We also use the following notation:

[X]
not.
= N× (N+ → X)

We let ι range over (ι ∈)N and ϕ range over (ϕ ∈)N → X. N is the set of
natural numbers, and N+ = N \ {0} (the set of positive natural numbers).

1A partially ordered multiset is a more refined structure; see, e.g., chapter 16 of [4].

METRIC SEMANTICS FOR REMOTE PROCESS DESTRUCTION AND CLONING 97

We use a structure (ι, ϕ) ∈ [X] to model a stack of elements of the type
X. We define [](·) : [X], empty(·) : [X] → Bool, (· : ·) : X × [X] → [X],
hd(·) : [X]→ (X ∪ {↑}) and tl(·) : [X]→ ([X] ∪ {↑}) as follows

[]x = (0, λι.x)

empty(ι, ϕ) = (ι = 0)

x : (ι, ϕ) = (ι+ 1, (ϕ | ι+ 1 7→ x))

hd(ι, ϕ) =

{
↑ if ι = 0
ϕ(ι) if ι > 0

tl(ι, ϕ) =

{
↑ if ι = 0
(ι− 1, ϕ) if ι > 0

Remarks 2.1.
(a) If we endow Id, Pfinite(Id) and N with discrete ultrametrics, then
{|X|} and [X] are also a complete ultrametric space. {|X|} and [X]
are composed spaces built up using the composite metrics of definition
2.1.

(b) We use the set (α ∈)Id (of process identifiers) together with a func-
tion ν : Pfinite(Id)→Id, defined such that ν(A) /∈ A, for every
A ∈ Pfinite(Id). A possible example of such a set Id and function ν
is Id = N and ν(A) = max(A) + 1, with ν(∅) = 0.

(c) Throughout this paper the symbol ↑ denotes an undefined value.
(d) []x is an empty stack, for any x ∈ X.

3. A simple uniform language with synchronization

In this section we apply the CSC technique in the definition of a denota-
tional semantics for a simple concurrent language Lsyn with synchronization.
Lsyn is essentially based on Milner’s CCS [14]. The language Lsyn provides
atomic actions, recursion, action prefixing (in the form a;s), nondeterministic
choice (s1+s2) and parallel composition (s1‖s2). We assume given two sets
(c ∈)Sync and (c ∈)Sync = {c | c ∈ Sync} of synchronization actions, and a
set (b ∈)IAct of internal actions. We define (a ∈)Act = IAct ∪ Sync ∪ Sync,
and let τ be a special symbol, τ /∈ Act. We also assume given a set (x ∈)PV ar
of procedure variables. Synchronization in Lsyn is achieved by the execution
of a pair c, c. First, the c-step is executed. It is followed immediately by the
corresponding c-step. There are no actions interspersed between c and c. The
order is important here: the c-step is always executed first. A c-step is an
abstract model of a send operation, while a c-step is an abstract model of a

98 ENEIA NICOLAE TODORAN

receive operation. The approach to recursion in Lsyn is based on declarations
and guarded statements [4].

Definition 3.1. (Syntax of Lsyn)

(a) (Statements) s(∈ Stat) ::= a | a;s | x | s+s | s‖s
(b) (Guarded statements) g(∈ GStat) ::= a | a;s | g+g | g‖g
(c) (Declarations) (D ∈)Decl = PV ar→GStat; following [4] we as-

sume a fixed declaration D !
(d) (Programs) (ρ ∈)Prog = Decl × Stat

The denotational semantics functionD is of the type (D ∈)SemD = Stat→D,
where D is defined by the following system of domain equation (isometry be-
tween complete metric spaces):

D ∼= (Id×Kont)
1−→Γ→ P

(γ ∈)Γ = {↑Γ} ∪ Sync

(κ ∈)Kont = {| 1
2
·D|}

(p ∈)P = Pnco((IAct ∪ {τ})∞)

The construction {| 12 · D|} was explained in Section 2.1. In the ’equations’

above, the sets Id, {↑Γ} ∪Sync and IAct∪ {τ} are endowed with the discrete
metric (which is an ultrametric). The elements γ of the set (γ ∈)({↑Γ} ∪ Sync)
contain synchronization information.

The space (IAct ∪ {τ})∞ contains all finite (possibly empty) and infinite
sequences over (IAct ∪ {τ}). (IAct ∪ {τ})∞ is an instance of the following:

Definition 3.2. Let (x ∈)X be a nonempty complete space. The space X∞

is defined by the equation X∞ ∼= {ε} t (X × 1
2 · X

∞). ε models the empty
sequence. The elements of X∞ are finite or infinite sequences over X. In-
stead of (x1, (x2, . . ., (xn, ε). . .)), and (x1, (x2, . . .)) we write x1x2. . .xn, and
x1x2. . ., respectively. We use the symbol ”·” as a concatenation operator over
sequences. In particular we write x·q = (x, q), for any x ∈ X and q ∈ X∞; we
also write x · p = {x · q | q ∈ p} for any x ∈ X and p ∈ Pnco(X∞).

Definition 3.3. We let q range over Q = (IAct ∪ {τ})∞. We define +,⊕ :
P×P→ P as follows:

p1 + p2 = {q | q ∈ p1 ∪ p2, q 6= τ} ∪ {τ | τ ∈ (p1 ∩ p2)}
p1 ⊕ p2 = {q | q ∈ p1 ∪ p2, q 6= ε} ∪ {ε | ε ∈ (p1 ∩ p2)}

For any γ ∈ ({↑Γ} ∪ Sync) we also define ⊕γ : P×P→ P by:

p1 ⊕γ p2 = if γ =↑Γ then p1 + p2 else p1 ⊕ p2

METRIC SEMANTICS FOR REMOTE PROCESS DESTRUCTION AND CLONING 99

Definition 3.4. (Denotational semantics for Lsyn) Let C+ : Kont→ P and

C⊕ : Kont→ (Sync× Id)→ P be given by:

C+(κ) = if (id(κ) = ∅) then {ε} else +α∈id(κ) κ(α)(α, κ \ {α})(↑Γ)
C⊕(κ)(c, α) = if (id(κ) \ {α} = ∅) then {ε}

else ⊕α∈(id(κ)\{α}) κ(α)(α, κ \ {α}, c)
We define the denotational semantics function D : Stat→ D as follows:

D(b)(α, κ)(γ) = if γ =↑Γ then τ ·b·C+(κ) else {ε}
D(b;s)(α, κ)(γ) = if γ =↑Γ then τ ·b·C+(κ | α 7→ D(s)) else {ε}
D(c)(α, κ)(γ) = if γ =↑Γ then τ ·C⊕(κ)(c, α) else {ε}
D(c; s)(α, κ)(γ) = if γ =↑Γ then τ ·C⊕(κ | α 7→ D(s))(c, α) else {ε}
D(c)(α, κ)(γ) = if γ =↑Γ then {τ}

else if γ = c then τ ·C+(κ) else {ε}
D(c; s)(α, κ)(γ) = if γ =↑Γ then {τ}

else if γ = c then τ ·C+(κ | α 7→ D(s)) else {ε}
D(x)(α, κ)(γ) = D(D(x))(α, κ)(γ)

D(s1 + s2)(α, κ)(γ) = D(s1)(α, κ)(γ) ⊕γ D(s2)(α, κ)(γ)
D(s1 ‖ s2)(α, κ)(γ) = D(s1)(α1, (κ | α2 7→ D(s2)))(γ) ⊕γ

D(s2)(α2, (κ | α1 7→ D(s1)))(γ)

where in the last clause α1 = ν(id(κ)), α2 = ν(id(κ) ∪ {α1}).
Let b0 ∈ IAct be a distinguished internal action. Let κ0 = (∅, λα.D(b0)) and

α0 = ν(∅). We define D[[·]] : Stat→P by

D[[s]] = D(s)(α0, κ0)(↑Γ)

Following [16], we use the term process to denote a computation (partially
evaluated denotation) contained in a continuation. Synchronization is modeled
as in [16]. Some explanations may help.

• In the yield of D successful synchronization is modeled by two con-
secutive τ -steps (ττ), which correspond to some pair c, c of synchro-
nization actions. Single τ steps are used to model deadlock. They
can only be produced by unsuccessful synchronization attempts and
they are removed from the yield of D as long as there are alterna-
tive computations. This is expressed in the definition of the operator
+. The operator ⊕ describes the behavior of the system in those
states where a synchronization attempt occurred. Thus a τ -step has
been produced and its pair is expected. No other action is possible.
If some process produces a τ step then the computation continues.
The computation stops only if all processes are unable to produce
the expected τ -step. This is marked by the empty sequence ε in the
yield of D. In those states where synchronization succeeds by the

100 ENEIA NICOLAE TODORAN

contribution of some concurrent process, ⊕ removes the eventual ε’s
from the final yield of D. It is easy to check that the operators +,⊕
and ⊕γ (for any γ ∈ ({↑Γ}∪Sync)) are well-defined, nonexpansive,
associative, commutative and idempotent [4].
• Note that the execution of an internal action b ∈ IAct is also preceded

by a τ -step. In the CSC approach this is necessary only if we want
to obtain a denotational model which is correct with respect to a
corresponding operational model; further explanations are provided
in [16].
• A process can not synchronize with itself. The function C⊕ receives

as parameter the process identifier of the current process, and chooses
some other process for synchronization.

Remark 3.1. D can be formally defined as fixed point of an appropriate higher
order contraction. In Section 4 we give the details of such a proof for a more
complex language. For Lsyn, the proof can proceed by induction on the follow-
ing complexity measure: c : Stat→N, c(a) = c(a;s) = 1, c(x) = 1 + c(D(x)),
c(s1 + s2) = c(s1‖s2) = 1 +max{c(s1), c(s2)}; the mapping c is well-defined
due to our restriction to guarded recursion [4].

Examples 3.1.
• D[[c ‖ c]] = D(c ‖ c)(α0, κ0)(↑Γ)

= D(c)(α1, (κ0 | α2 7→ D(c)))(↑Γ)⊕↑Γ D(c)(α2, (κ0 | α1 7→ D(c)))(↑Γ)
= τ · C⊕(κ0 | α2 7→ D(c))(c, α1) + {τ}
= τ · D(c)(α2, κ

′
0)(c) + {τ} = τ · τ · C+(κ′0) + {τ} [id(κ′0) = ∅]

= {ττ}+ {τ} = {ττ}
where α0 ∈ Id and κ0 ∈ Kont are as in Definition 3.4, α1 =
ν(id(κ0)), α2 = ν(id(κ0) ∪ {α1}), and κ′0 = (κ0 | α2 7→ D(c)) \ {α2}.
• D[[b1 + b2]] = {τb1, τb2}
• D[[(c+ b) ‖ c]] = {ττ, τbτ}

4. Remote Process Destruction and Cloning

The CSC technique can be used to design denotational (compositional) se-
mantics for various advanced control concepts, including: synchronous and
asynchronous communication [16], multiparty interactions [17, 8], maximal
parallelism [6, 9] and systems with dynamic hierarchical structure [9]. In
this work we use CSC to design a denotational semantics for an imperative
concurrent language Lpcsyn providing synchronous CSP-like synchronous com-
munication [10] together with constructions for process creation, and remote
process destruction and cloning.

We assume given a class of variables (v ∈)V ar, a set (e ∈)Exp of expressions,
and a set (x ∈)PV ar of procedure variables. We also assume given a class

METRIC SEMANTICS FOR REMOTE PROCESS DESTRUCTION AND CLONING 101

(c ∈)Chan of communication channels. We assume that the evaluation of
an expression (e ∈ Exp) always terminates and delivers a value in some set
(α ∈)V al. The set V al of values is assumed to be countably infinite.

Remark 4.1. The constructs for process control (new, kill, clone) operate
with process identifiers, which are elements of the given countably infinite set
(α ∈)Id introduced in Section 2.1. For simplicity (and without loss of gener-
ality), in the rest of this section we assume that the class (α ∈)Id of process
identifiers coincides with the class V al of vales: Id = V al.2

Definition 4.1. We define the syntax of Lpcsyn by the following components:

(a) (Statements) s(∈ Stat) ::= a | x | s+ s | s;s
(b) (Guarded statements) g(∈ GStat) ::= a | g + g | g;s
(c) (Declarations) (D ∈)Decl = PV ar → GStat
(d) (Programs) (ρ ∈)Prog = Decl × Stat

where a(∈ AStat) is given by:

a ::= skip | v := e | c!e | c?v | v := new(s) | kill(e) | v := clone(e)

We assume an approach to recursion based on declarations and guarded state-
ments (as in the previous section). Without loss of generality [4], in the rest
of this section we assume a fixed declaration D ∈ Decl and in all contexts we
refer to this fixed D. In Lpcsyn we have assignment (v := e), recursion, sequen-
tial composition (s; s), nondeterministic choice (s+ s), CSP-like synchronous
communication (given by the statements c!e and c?v) and constructions for
process creation (v := new(s)), remote process destruction (kill(e)) and re-
mote process cloning (v:= clone(e)). The net effect of a construct v := new(s)
is to create a new process with body s that runs in parallel with all other
processes in the system. A new process identifier is automatically generated
and assigned to v. In a kill(e) or v:= clone(e) statement, the expression e is
evaluated to some value α, which is interpreted as a process identifier.3 The
execution of a statement kill(e) kills the parallel runing process with identifier
α. When a v:= clone(e) statement is executed, a new process - identical to
the one with identifier α - is created and its identifier is assigned to v. The
constructs c!e and c?v are as in Occam [13]. Synchronized execution of two
actions c!e and c?v occurring in two parallel processes, results in the transmis-
sion of the current value of e along the channel c from the process executing

2For example, we could put Id = V al = N (N is the set of natural numbers) in which
case Exp would be a class of numeric expressions. However, it is straightforward to extend
the semantic model by using different support sets for the class of values and the class of
process identifiers.

3The statements kill(e) and v:= clone(e) are inoperative if the value of the expression e
(in the current state) is not a valid process identifier.

102 ENEIA NICOLAE TODORAN

the c!e (send) statement to the process executing the c?v (receive) statement.
The latter assigns the received value to the variable v.

4.1. Denotational Semantics. In the definition of the denotational seman-
tics for Lpcsyn we use the set (α ∈)Id of process identifiers and the constructions
{| · |} and [·] introduced in Section 2.1. In Lpcsyn each process has its own lo-
cal data. Values can be communicated between processes but there is no
shared memory area. We define a class (σ ∈)State = Id → V ar → V al of
(distributed) states. The meaning of (the local) variables of a process with
identifier α is given by σ(α). The evaluation of expressions in Lpcsyn is modeled
by a given valuation V : Exp→ (V ar → V al)→ V al. We recall that we take
V al = Id.

We design a denotational semantics function D for Lpcsyn. The type of D is
D : SemD = Stat→ D, where:

(ψ ∈)D ∼= (Id×Kont)
1−→(Ω× State)→ PD

(κ ∈)Kont = {| [
1

2
·D] |}

(ω ∈)Ω = {↑Ω} ∪ (Chan× V al)

(q ∈)Q = ({τ} ∪ State)∞

(p ∈)PD = Pnco(Q)

The construction ({τ} ∪ State)∞ was introduced in Definition 3.2. We assume
that τ /∈ State. For easier readability, we denote typical elements (c, α) of
Chan× V al(⊆ Ω) by c!α.

Remark 4.2. In the definition of the domain of continuatins Kont we use
the constructions {| · |} and [·] introduced in Section 2.1. A continuation of
type Kont = {| [12 ·D] |} is essentially a bag (multiset) of stacks of computa-

tions. An element of the type [12 ·D] is a stack of computations (denotations).
In this section we use the term process when referring to an element of the
type [12 ·D]. A stack of computations of the type [12 ·D] represents a process
(an execution thread with a local state) executed in parallel with all the other
processes contained in a continuation.

The domain of computations (denotations) D is given by a recursive do-
main equation. In the domain equations given above, the sets Id, Ω, and State
(and {τ}∪State) are endowed with discrete metrics (which are ultrametrics).

METRIC SEMANTICS FOR REMOTE PROCESS DESTRUCTION AND CLONING 103

According to [2] the solutions for D and Kont are obtained as complete ul-
trametric spaces.

The denotational semantics function is defined below as the fixed point of an
appropriate higher-order mapping. In Definition 4.2 the operators presented
in Definition 3.3 are adapted to Lpcsyn.

Definition 4.2. 4.2.1 Definition +,⊕ : PD ×PD→PD are defined by:

p1 + p2 = {q | q ∈ p1 ∪ p2, q 6= τ} ∪ {τ | τ ∈ (p1 ∩ p2)}
p1 ⊕ p2 = {q | q ∈ p1 ∪ p2, q 6= ε} ∪ {ε | ε ∈ (p1 ∩ p2)}

For any ω ∈ Ω we also define ⊕ω : P×P→ P by:

p1 ⊕ω p2 = if ω =↑Ω then p1 + p2 else p1 ⊕ p2

The operators +, ⊕ and ⊕ω are well-defined, nonexpansive, associative, com-
mutative and idempotent [4].

Definition 4.3. (Denotational semantics D for Lpcsyn) We define C+ : Kont→
State→ PD and C⊕ : Kont→ (Ω× Id× State)→ PD as follows:

C+(κ)(σ) =
let κ = κ \ {α′ | empty(κ(α′))} in
if id(κ) = ∅ then {ε}
else +

α∈id(κ)
hd(κ(α)) (α, (κ | α 7→ tl(κ(α))))(↑Ω , σ)

C⊕(κ)(ω, α, σ) =
let κ = κ \ {α′ | empty(κ(α′))} in
if id(κ) \ {α} = ∅ then {ε}
else ⊕

α∈(id(κ)\{α}) hd(κ(α)) (α, (κ | α 7→ tl(κ(α))))(ω, σ)

Let u ∈ UStat be given by:

u ::= skip | v := e | c!e | v := new(s) | kill(e) | v := clone(e)

The statements of the subclass UStat ⊆ AStat can not be executed in those
states where a communication attempt occurred.

Let α∗ be some distinguished value (α∗ ∈)V al. Let ψ∗ be some distinguished
computation ψ∗ ∈ D.

104 ENEIA NICOLAE TODORAN

We define Ψ ∈ SemD → SemD for S ∈ SemD(= Stat→ D) by:

Ψ(S)(u)(α, κ)(c!α, σ) = {ε} for any u ∈ UStat
Ψ(S)(skip)(α, κ)(↑Ω , σ) = τ ·σ·C+(κ)(σ)

Ψ(S)(v := e)(α, κ)(↑Ω , σ) = τ ·σassign·C+(κ)(σassign)
Ψ(S)(c!e)(α, κ)(↑Ω , σ) = τ ·C⊕(κ)(c!V (e)(σ(α)), α, σ)

Ψ(S)(c?v)(α, κ)(ω, σ) =


{τ} if ω =↑Ω

σrcv·C+(κ)(σrcv) if ω = c!α′

{ε} if ω = c′!α′

c′ 6= c
Ψ(S)(v := new(s))(α, κ)(↑Ω , σ) = τ ·σnew·C+(κ | αν 7→ S(s) : []ψ∗)(σnew)

where αν = ν(id(κ))
Ψ(S)(kill(e))(α, κ)(↑Ω , σ) = τ ·σ·C+(κ \ {α})(σ)

where α = V (e)(σ(α))
Ψ(S)(v := clone(e))(α, κ)(↑Ω , σ) = τ ·σclone·C+(κ | αν 7→ κ(α))(σclone)

where αν = ν(id(κ))
α = V (e)(σ(α))

Ψ(S)(x)(α, κ)(ω, σ) = Ψ(S)(D(x))(α, κ)(ω, σ)
Ψ(S)(s1 + s2)(α, κ)(ω, σ) = Ψ(S)(s1)(α, κ)(ω, σ) ⊕ω

Ψ(S)(s2)(α, κ)(ω, σ)
Ψ(S)(s1; s2)(α, κ)(ω, σ) = Ψ(S)(s1)(α, (κ | α 7→ S(s2) :κ(α)))(ω, σ)

where σassign = (σ | α, v 7→ V (e)(σ(α))) in the semantic equation for v := e,
σrcv = (σ | α, v 7→ α′) in the (second) semantic equation for c?v, σnew = ((σ |
α, v 7→ αν) | αν 7→ λv′.α∗) in the semantic equation for v := new(s), and
σclone = ((σ | α, v 7→ αν) | αν 7→ σ(α)) in the equation for v := clone(e).

We recall that ψ∗ is a distinguished computation ψ∗ ∈ D. The notation []ψ∗
was introduced in Section 2.1 as a mean to construct an empty stack.

We put D = fix(Ψ). Let α0 = ν(∅) and κ0 = ({α0}, λα.[]ψ∗). We define
D[[·]] : Stat→ State→ PD by

D[[s]](σ) = D(s)(α0, κ0)(↑Ω , σ)

The technique used to model synchronous interactions was introduced in [16]
and was already illustrated in this paper in Section 3. In the semantic equation
for process creation v := new(s) a new process executing the computation
D(s) is started in parallel with all processes contained in the continuation.
Process destruction is handled in the sematic equation for kill(e) by removing
the process with identifier α = V (e)(σ(α)), where α is the identifier of the
process which executes the statement kill(e) in the current state σ. Process
cloning is handled in the sematic equation for v := clone(e) by starting a clone
of the process with identifier α = V (e)(σ(α)), where α is the identifier of the

METRIC SEMANTICS FOR REMOTE PROCESS DESTRUCTION AND CLONING 105

process which executes the statement v := clone(e) and σ is the current state
of the distributed system.

The denotational semantics D is defined as the (unique) fixed point of the
higher-order mapping Ψ. Definition 4.3 is justified by Lemma 4.1, Lemma
4.2 and Banach’s fixed point theorem 2.1. Similar lemmas are given in [16].
We omit the proof of 4.1. To illustrate a proof technique specific of met-
ric semantics we present the proof of Lemma 4.2(c) by using and inductive
argument. For inductive reasonings, in the case of the language Lpcsyn one
can use the following complexity measure cs : Stat → N cs(a) = 1, for any
a ∈ AStat, cs(x) = 1 + cs(D(x)), cs(s1; s2) = 1 + cs(s1) and cs(s1 + s2) =
1 +max{cs(s1), cs(s2)}. The mapping cs is well defined due to our restriction
to guarded recursion [4].

Lemma 4.1. The mappings C+ and C⊕ (as introduced in Definition 4.3) are
well-defined. Also, for any κ1, κ2 ∈ Kont we have:

(a) d(C+(κ1,)C+(κ2)) ≤ 2·d(κ1, κ2) and
(b) d(C⊕(κ1), C⊕(κ2)) ≤ 2·d(κ1, κ2).

Lemma 4.2. For any S∈SemD, s∈Stat, α∈Id, κ∈Kont, ω∈Ω, σ∈State:
(a) Ψ(S)(s)(α, κ)(ω, σ) ∈ PD (it is well-defined),
(b) Ψ(S)(s) is nonexpansive (in κ) and
(c) Ψ is 1

2 -contractive in S.

Proof We only prove Lemma 4.2(c). It suffices to show that

d(Ψ(S1)(s)(α, κ)(ω, σ),Ψ(S2)(s)(α, κ)(ω, σ)) ≤ 1
2 · d(S1, S2).

We proceed by induction on cs(s). Two subcases.

Case s = (v := clone(e))
d(Ψ(S1)(v := clone(e))(α, κ)(ω, σ),

Ψ(S2)(v := clone(e))(α, κ)(ω, σ))
= 0 ≤ 1

2 · d(S1, S2)
Case s = x
d(Ψ(S1)(x))(α, κ)(ω, σ),Ψ(S2)(x)(α, κ)(ω, σ))
= d(Ψ(S1)(D(x)))(α, κ)(ω, σ),

Ψ(S2)(D(x))(α, κ)(ω, σ))
[cs(D(x)) < cs(x), ind. hypothesis]

≤ 1
2 · d(S1, S2)

�

Remark 4.3. When the CSC technique is employed in the semantic design,
(groups of) computations contained in a continuations can be manipulated as
data. By expoiting this facility in this paper we offer a denotational (compo-
sitional) semantics for remote process destruction and cloning. Our attempts

106 ENEIA NICOLAE TODORAN

to model such remote control operations by using only classic compositional
techniques have failed. In the classic direct approach to concurrency [4] the
semantic designer defines the various operators for parallel composition as
functions that manipulate final semantic values belonging to some power do-
main construction. The meaning of a process appears in the final yield of a
denotational mapping interleaved with the meanings of other parallel processes.
The problem with this approach is that the remote control operations consid-
ered in this paper may be executed long after the creation of the process. It it
does not seem possible to extract somehow the meaning of a process from an
element of a power domain, in order to remove (kill) it or to clone it. On the
contrary, in the CSC approach the semantic designer operates with partially
evaluated meaning functions (contained in continuations) which can easily be
manipulated to model such remote control operations.

Example 4.1. In this example we assume that Exp is a class of numeric
expressions and put V al = N. Consider the Lpcsyn program statement s(∈ Stat)

s = vnew := new(c!1); ((vclone := clone(vnew); kill(vnew); c?v) + v := 2)

Let σ ∈ Σ, αnewν = ν(id(κ0)) = ν({α0}) and αcloneν = ν({α0, α
new
ν }), where

κ0 ∈ Kont and α0 ∈ Id are as in Definition 4.3. Let σnew = ((σ | α0, vnew 7→
αnewν) | αnewν 7→ λv′.α∗), σ

clone
= ((σnew | α0, vclone 7→ αcloneν) | αcloneν 7→

σnew(αnewν)), σ
kill

= σ
clone

, σrcv = (σ
kill
| α0, v 7→ 1), σassign = (σnew | α0, v 7→

2). It is easy to check that:

D[[s]](σ) = D(s)(α0, κ0)(↑Ω , σ) = τ · σnew · D(s1)(α0, κ1)(↑Ω , σnew)

where s1 = (vclone := clone(vnew); kill(vnew); c?v) + v := 2, and κ1 = (κ0 |
α0 7→ []ψ∗ | αnewν 7→ D(c!1) : []ψ∗). We have:

D(s1)(α0, κ1)(↑Ω , σnew)

= D(vclone := clone(vnew); kill(vnew); c?v)(α0, κ1)(↑Ω , σnew)⊕↑Ω
D(v := 2)(α0, κ1)(↑Ω , σnew)

= D(vclone := clone(vnew))(α0, κ2)(↑Ω , σnew) + {τσassignτ}
where κ2 = (κ0 | α0 7→ D(kill(vnew); c?v) : []ψ∗ | αnewν 7→ D(c!1) : []ψ∗). Note
that a deadlock is detected after the execution of the assignment statement
v := 2 because (when v := 2 is selected for execution) the computation D(c!1)
contained in the continuation has no synchronization counterpart .

The execution of the statement vclone := clone(vnew) creates an copy of the
process with identifier αnewν which will run in parallel with the other processes.

D(vclone := clone(vnew))(α0, κ2)(↑Ω , σnew) = τ ·σ
clone
·C+(κ3)(σclone)

where κ3 = (κ0 | α0 7→ D(kill(vnew); c?v) : []ψ∗ | αnewν 7→ D(c!1) : []ψ∗ |
αcloneν 7→ D(c!1) : []ψ∗).

METRIC SEMANTICS FOR REMOTE PROCESS DESTRUCTION AND CLONING 107

After the cloning operation, the execution of the statement kill(vnew) re-
moves the process with identifier αnewν from the continuation. Next, after a
synchronization step the computation terminates. In the end we obtain:

D[[s]](σ) = {τσnewτσcloneτσkillτσrcv , τσnewτσassignτ}
where s = vnew := new(c!1); ((vclone := clone(vnew); kill(vnew); c?v) + v := 2).

5. Conclusion

The CSC technique can be used to design denotational (compositional) se-
mantics for various advanced control concepts, including: synchronous and
asynchronous communication [16, 7], maximal parallelism [6, 9], and multi-
party interactions [17, 8]. In this work we present a denotational semantics
designed with metric spaces and continuations for a concurrent language pro-
viding constructions for CSP-like synchronous communication in combination
with constructions for process creation, and remote process control (remote
process destruction and cloning). Various denotational models for process
creation have been developed [1, 15, 3, 4]. However, we are not aware of
any paper reporting a denotational model for remote process destruction and
process cloning.

The use of continuation semantics for concurrency (CSC) technique [16, 7]
proved to be fruitful. In the CSC approach the semantics of remote process
destruction and cloning can easily be modeled by appropriate manipulations
of the computations contained in continuations. We think that the CSC tech-
nique could be used to model remote process control operations in combina-
tion with various interaction mechanisms, including remote procedure call and
ADA-like rendezvous. The rendezvous programming concept was studied by
using techniques from metric semantics in several papers [15, 3, 4]. In the near
future we intend to study the formal relationship between the denotational and
the operational semantics of remote process destruction and cloning also by
using techniques from metric semantics [4].

References

[1] P. America and J.W. de Bakker, Designing Equivalent Semantic Models for Process
Creation, Theoretical Computer Science, vol. 60, 1988, pp. 109–176.

[2] P. America and J.J.M.M. Rutten, Solving Reflexive Domain Equations in a Category
of Complete Metric Spaces, Journal of Computer and System Sciences, vol. 39, 1989,
pp. 343–375.

[3] J.W. de Bakker and E.P. de Vink, Rendez-vous with Metric Semantics, New Generation
Computing, vol. 12, 1993, pp. 53–90.

[4] J.W. de Bakker and E.P. de Vink, Control Flow Semantics, MIT Press, 1996.

108 ENEIA NICOLAE TODORAN

[5] L. Cardelli, A Language with Distributed Scope, Proceedings of the 22nd Annual ACM
Symposium on Principles of Programming Languages, pp. 286–297, ACM Press, 1995.

[6] G Ciobanu and EN Todoran, Relating Two Metric Semantics for Parallel Rewriting
of Multisets, Proceedings of 14th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC 2012), pp. 273–280, IEEE Computer
Press, 2012.

[7] G. Ciobanu and E.N. Todoran, Continuation Semantics for Asynchronous Concurrency,
Fundamenta Informaticae, vol. 131(3–4), 2014, pp. 373–388.

[8] G Ciobanu and EN Todoran, Continuation Semantics for Concurrency with Multiple
Channels Communication, Formal Methods and Software Engineering - Proceedings of
17th International Conference on Formal Engineering Methods (ICFEM 2015), Lecture
Notes in Computer Science, vol. 9407, 2015, pp. 400–416.

[9] G Ciobanu and EN Todoran, Continuation Semantics for Dynamic Hierarchical Sys-
tems, Proceedings of 17th International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC 2015), pp. 281–288, IEEE Computer Press,
2015.

[10] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
[11] A.A. Holzbacher, A Software Environment for Concurrent Coordinated Programming,

Proc. 1st Int. Conference on Coordination Languages and Systems, Lecture Notes in
Computer Science, vol. 1061, 1996, pp. 249–267.

[12] D.B. Lange and M. Oshima, Programming and Deploying Java Mobile Agents with
Aglets, Addison Wesley, 1998.

[13] INMOS Ltd, Occam Programming Manual, Prentice-Hall, 1984.
[14] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.
[15] J.J.M.M. Rutten, Semantic Correctnes for a Parallel Object-Oriented Language, SIAM

Journal of Computing, vol. 19, 1990, pp. 341–383.
[16] E.N. Todoran, Metric Semantics for Synchronous and Asynchronous Communication:

a Continuation-based Approach, Electronic Notes in Theoretical Computer Science,
vol. 28, 2000, pp. 101–127.

[17] E.N. Todoran and N. Papaspyrou, Experiments with Continuation Semantics for DNA
Computing, Proceedings of the IEEE 9th International Conference on Intelligent Com-
puter Communication and Processing (ICCP 2013), pp. 251–258, 2013.

[18] E.P. de Vink, Designing Stream Based Semantics for Uniform Concurrency and Logic
Programming, Ph.D thesis, Vrije Universiteit Amsterdam, 1990.

[19] Aglets portal site, 2004, http://aglets.sourceforge.net/

Computer Science Department, Technical University, Cluj-Napoca, Romania
E-mail address: eneia.todoran@cs.utcluj.ro

