
INFORMATICA
1/2018

STUDIA
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

No. 1/2018
January - June

EDITORIAL BOARD

EDITOR-IN-CHIEF:

Prof. Horia F. Pop, Babeş-Bolyai University, Cluj-Napoca, Romania

EXECUTIVE EDITOR:

Prof. Gabriela Czibula, Babeș-Bolyai University, Cluj-Napoca, Romania

EDITORIAL BOARD:

Prof. Osei Adjei, University of Luton, Great Britain
Prof. Anca Andreica, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Florian M. Boian, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Sergiu Cataranciuc, State University of Moldova, Chișinău, Moldova
Prof. Wei Ngan Chin, School of Computing, National University of Singapore
Prof. Laura Dioșan, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Farshad Fotouhi, Wayne State University, Detroit, United States
Prof. Zoltán Horváth, Eötvös Loránd University, Budapest, Hungary
Assoc. Prof. Simona Motogna, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Roberto Paiano, University of Lecce, Italy
Prof. Bazil Pârv, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Abdel-Badeeh M. Salem, Ain Shams University, Cairo, Egypt
Assoc. Prof. Vasile Marian Scuturici, INSA de Lyon, France

YEAR

MONTH

ISSUE

Volume 63 (LXIII) 2018

JUNE

1

S T U D I A

UNIVERSITATIS BABEȘ-BOLYAI

INFORMATICA

1

EDITORIAL OFFICE: M. Kogălniceanu 1 • 400084 Cluj-Napoca • Tel: 0264.405300

SUMAR – CONTENTS – SOMMAIRE

PAPERS FROM THE 12TH CONFERENCE MACS 2018

Cs. Szabó, E.M.M. Alzeyani, Measuring Energy Efficiency of Selected Working

Software ... 5

G. Márton, Z. Porkoláb, Compile-Time Function Call Interception for Testing in

C/C++ .. 17

D. Lukács, M. Tóth, Translating Erlang State Machines to UML Using Triple Graph

Grammars .. 33

A. Baráth, Z. Porkoláb, Detecting Binary Incompatible Software Components Using

Dynamic Loader ... 51

A.A. Mészáros, G. Nagy, I. Bozó, M. Tóth, Towards Green Computing in Erlang 64

REGULAR PAPERS

C.F. Andor, B. Pârv, NoSQL Database Performance Benchmarking - A Case Study 80

D.L. Miholca, An Adaptive Gradual Relational Association Rules Mining Approach 94

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 1, 2018
DOI: 10.24193/subbi.2018.1.01

MEASURING ENERGY EFFICIENCY OF SELECTED

WORKING SOFTWARE

CSABA SZABÓ AND EMIRA MUSTAFA MOAMER ALZEYANI

Abstract. Energy consumption is a key performance indicator of any
software run on mobile devices. Working or application software is the
main category of software where such energy (in)efficient performance be-
comes accelerated between users and other stakeholders. Measuring energy
efficiency is becoming a part of automated and manual performance test-
ing as well – both answering to the increasing usage requirements and
addressing acceptance testing optimization. In this paper, we select three
software tools – an e-mail client and two social network applications, those
energy consumption is being measured and analyzed. We decided to ap-
ply very generic profiles during our measurements, where the actions were
performed all manually. Our results show that besides the difference in
the number of features covered by the software, also their implementation
plays an important role in energy consumption. Focusing on a specific fea-
ture within the working software does not imply that all quality indicators
of it are the best among the software group’s implementations.

1. Introduction

Our research focuses on energy consumption of software, which is a relatively
new field of software engineering research.

In this paper, we present the results of the application of our measurement
setup that relies on the presence of a tester performing usage actions over the
system under test. To unify the measurements, i.e. to make them comparable,
we decided to select web-based software. In our case, this kind of software also
requires a web browser application to run. This application was the same in
all cases: Google Chrome.

Received by the editors: April 16, 2018.
2010 Mathematics Subject Classification. 68N01, 68M20.
1998 CR Categories and Descriptors. D.2.5 [SOFTWARE ENGINEERING]: Test-

ing and Debugging – Monitors; D.2.8 [SOFTWARE ENGINEERING]: Metrics – Prod-
uct metrics.

Key words and phrases. energy efficiency, green software, performance testing.
This paper was presented at the 12th Joint Conference on Mathematics and Computer

Science, Cluj-Napoca, June 14-–17, 2018.

5

6 CSABA SZABÓ AND EMIRA MUSTAFA MOAMER ALZEYANI

These three websites were selected, and on the following basis:

iNotes email client: has been chosen because it contains large of
texts and the possibility of downloading and uploading it, with the
knowledge that it is possible to contain some pictures or videos sent
to it.

Facebook: has been selected on the basis that it contains a different
set of content such as (text - pictures - videos - some links, etc.)
This is very important for our study of the possibility of monitoring
changes in energy on the laptop’s processor and more.

YouTube: was chosen on the basis of containing the whole on videos
and it is known that because of the animation and sound, this needs
high energy to run it.

Together with these assumptions, we also considered that an e-mail client
will be consuming less energy during work and (almost) no energy in idle state
than the other two applications. As the other two applications both present
videos and video comments, it was also an aim to compare if YouTube can
master video playback better than Facebook.

The structure of our paper is as follows. In the upcoming section, we present
work related to the research field. Then, we present our measurements and
results. Finally, we conclude and point out future research directions.

2. Related Work

Computer networks, communication systems [5], data centers [9, 16], huge
production of mobile phones [4, 7], and other IT infrastructures have caused
severe environmental problems by consuming significant amounts of power
[15], increasing greenhouse gas emissions, and lead to pollution during the
production and disposal.

This growing concern on energy efficiency may also be associated with the
perspective of software developers. Unfortunately, developing energy-aware
software [3] is still a difficult task. While programming languages provide
several compiler optimizations[14], memory profiler tools, benchmark[10, 12]
and time execution monitoring frameworks, there are no equivalent tools and
frameworks to optimize energy consumption [8].

Mobile software platforms are targeted by a valuable research activity[6,
11, 13], mainly because of the speed of reaction of stakeholders as device
battery drain is a much faster indicator than the energy bill integrating power
consumption over days or months. The development is therefore also focusing
on tool usage and research, which are capable to determine “energy leaks” or
evaluate energy efficiency improvements between versions of software[1].

MEASURING ENERGY EFFICIENCY OF SELECTED SOFTWARE 7

All these research results could be used in a different way as well. We show
that way in this paper. Many researchers do also social networks or other
web-based application research[2], where the application requires to run in a
browser. Their focus on usability and user experience, on requirements on
functionality or speed, but the combination of the above two research goals
is missing. We are evaluating energy consumption of a browser running the
specific applications – as these do not work without the browser, it would
be worthless to evaluate energy efficiency without that required environment.
Fuel economy of a car is the best if not used, or we have to consider the driver
and road conditions as well while driving.

3. Measurement environment setup

Our study is based on measuring energy efficiency of the Google Chrome
browser for the Microsoft Windows operating system using the following hard-
ware/software specs:

• Intel Core i5 CPU @ 2.5 GHz
• 4 GB RAM
• Microsoft Windows 7 Home Premium 64-bit operating system with

latest updates installed

The study is based on several factors:

• When using a browser for the purpose of browsing a site such as
e-mail, this is known to contain a large text.

• When using the browser for the purpose of browsing a site such as
Facebook and this site is known to contain many elements, including
texts, images and videos.

• When using the browser for the purpose of browsing a site such as
YouTube, especially on the video and contain the texts.

• In order to study, we will use an energy measurement program named
“JouleMeter” to read and store the readings of energy, compare and
analyze them. Hence, the differences will be identified when using
the browser in several ways and how it affects the performance of
the laptop and the life of the laptop battery. This tool is estimating
energy consumption based on CPU, GPU, monitor brightness etc.,
therefore it needs to be configured before the first measurement. The
setup is automatic, but requires some time as the configuration is
preforming a performance benchmark on the host device.

We will use Chrome browser to see different results:

(1) When we use Chrome to open email page as more as static page.
(2) When we use the Chrome browser to open page as Facebook .

8 CSABA SZABÓ AND EMIRA MUSTAFA MOAMER ALZEYANI

(3) When we use the Chrome browser to open page as YouTube.

For a successful measurement, we have to prepare our hardware setup from
the operating system as well as to keep in mind technical limits of the Microsoft
JouleMeter we used.

(1) We must ensure that the laptop is charged above 75%.
(2) Work on the browser for at least 45 minutes.
(3) Screen brightness was 100% in this study.
(4) Setting of battery: Here we will consider on some setting on battery

of the laptop that we worked on it in the study, from the setting of
Power Options there are option is Processor power management of
battery this is option for these This option will change the speed of
the processor clock, and this option gives us the possibility to increase
or decrease the ratio according to user requirements. If the rate is
changed to less than 100%, energy consumption and heat output will
be reduced.

Each measurement is then a simple sequence of steps1:

(1) Start the energy consumption monitoring tool
(2) Start the browser or open a new browser window
(3) Enter the application page
(4) Use the application

• open the newest e-mail, set read/unread 5 emails, click “reply”
but close without sending, write an e-mail without attachments,
write an e-mail in HTML form, write an e-mail with embed-
ded pictures, write an e-mail with attachments – picture, video,
archive file etc.

• log in to Facebook, set messages read/unread, write a status
then delete it, comment, browse statuses/wall, check groups,
browse picture galleries, write suggestions, watch posted videos,
post something and delete etc.

• search for artists/publishers on YouTube, watch their activity,
write and delete comments, create/modify/delete own watch
lists, upload videos, watch videos (turn on/off automatic play-
back) etc.

(5) Close the browser window
(6) Stop the energy consumption monitoring tool and save collected data

1Based on the Intellectual output O1 part/topic “How Green Is Your Process?” of
project No. 2017-1-SK01-KA203-035402 (for more details see Acknowledgment).

MEASURING ENERGY EFFICIENCY OF SELECTED SOFTWARE 9

4. Results

As mentioned above, energy can be estimated after a proper configuration
of the JouleMeter tool. The data are stored in a comfortable way that allows
direct analysis (Excel or csv file).

We can compare the readings but before that we explain the details on the
charts we get:

• The total power chart expresses the value of energy used as a whole.
• The CPU chart expresses the value consumed by the feeder from the

total power value as a whole.
• The chart of the program expresses the value of the energy consumed

from the CPU value.

4.1. E-mail client. The e-mail client was stressed by actions as stated earlier
in this paper. The following three figures, Fig. 1, Fig. 2 and Fig. 3 reflect charts
from measurements with sampling of 100 milliseconds.

Figure 1. iNotes total power consumption data

Especially Fig. 3 reflects that the application – Chrome, but running the
e-mail client only, consumed valuable energy only in the case of user actions.
Reading of e-mails is “hidden” as the measurement tool includes the energy
consumption of the display as part of the total power consumption chart in
Fig. 1.

To finalize our data analysis, Tab. 1 statistically concludes our measure-
ments.

10 CSABA SZABÓ AND EMIRA MUSTAFA MOAMER ALZEYANI

Figure 2. iNotes CPU power consumption data

Figure 3. iNotes browser power consumption data

Table 1. Measured data recapitulation – iNotes (all values
displayed in Watts)

Total power CPU Display Disk Base Application
avg 18.066 0.381 4.905 0.002 12.8 0.012
min 13.1 0.3 0 0 12.8 0
max 20.9 0.9 7.4 0.9 12.8 0.4

MEASURING ENERGY EFFICIENCY OF SELECTED SOFTWARE 11

4.2. Facebook. The typical Facebook user (by our definition) used to read
the web content, to interact with other users in different ways and discover the
dynamics of the web page offered, including watching or commenting videos.

These activities are influenced by the content, but all acceptance testing is.
A sample energy consumption profile is presented in Fig. 4, CPU related energy
consumption data are displayed in Fig. 5 while browser power consumption
data are in Fig. 6.

Figure 4. Facebook total power consumption data

Figure 5. Facebook CPU power consumption data

Analysis of browser power consumption can be used to identify actions
performed by the user such as starting a video playback, upload of a picture
to the gallery or scrolling down the wall or a group page.

12 CSABA SZABÓ AND EMIRA MUSTAFA MOAMER ALZEYANI

Reading of other users’ posts is “hidden” as the measurement tool includes
the energy consumption of the display as part of the total power consumption
chart in Fig. 4.

Figure 6. Facebook browser power consumption data

To finalize our data analysis, Tab. 2 statistically concludes our measure-
ments.

Table 2. Measured data recapitulation – Facebook (all values
displayed in Watts)

Total power CPU Display Disk Base Application
avg 29.307 8.05 9.352 0.002 11.9 0.994
min 19.3 0.6 6.3 0 11.9 0
max 41.4 20 9.5 0.7 11.9 12.3

4.3. YouTube. YouTube was chosen on the basis of containing the whole on
videos and it is known that because of the animation and sound, this needs
high energy to run it. At least this was our assumption, but this assumption
was accompanied by another one related to a certain level of optimization that
one can require from a specialized application.

Figure 7 shows total power consumption measured during an execution
sample, more details are picked out in Fig. 8 and Fig. 9.

To finalize our data analysis, Tab. 3 statistically concludes our measure-
ments.

MEASURING ENERGY EFFICIENCY OF SELECTED SOFTWARE 13

Figure 7. YouTube total power consumption data

Figure 8. YouTube CPU power consumption data

Table 3. Measured data recapitulation – YouTube (all values
displayed in Watts)

Total power CPU Display Disk Base Application
avg 25.313 9.084 4.302 0.0005 11.9 2.9493
min 17 0.8 4.3 0 11.9 0.1
max 40.8 24.1 4.8 0.3 11.9 14.9

14 CSABA SZABÓ AND EMIRA MUSTAFA MOAMER ALZEYANI

Figure 9. YouTube browser power consumption data

One has to note that YouTube has a different energy efficiency profile than
the other two applications analyzed – it seems to consume energy all the time
that cannot be only in the automatic playlist creation property. Something
might be not OK in the environment.

5. Conclusion and Future Work

As mentioned in the last part of the paper, we discovered an anomaly
in YouTube behavior related to energy consumption that could be partially
caused by continuous preloading of content, but it could be also indicating an
error in the solution used. It needs longer analysis to discover the reasons. We
will start with replaying the scenarios on another operating system platform,
on the top of different version of the browser and/or other browsers before
making any further conclusions.

Another difference to the assumptions was the way Facebook could deal
with the videos. Even that these are much shorter than the ones in the case
of YouTube, the playback did not ask for so much battery power.

When talking about the actions of the measurement itself, as these are
very easy, in the future we plan to automate them to provide an automated
environment for measurements of comparable setups. Our future work in
this area will focus on configuration of a portable integrated development,
testing and energy consumption estimation environment. This environment
could be used in software development or in the frame of software evolution or
initial development teaching subjects to support education on energy efficiency
measurement during software testing. It might limit students’ creativity by

MEASURING ENERGY EFFICIENCY OF SELECTED SOFTWARE 15

offering a semi-closed sandbox, as hardware plays a very important role by the
current architecture of energy consumption estimation. Some research aims
to brake this limitation – we are looking forward to those results to get them
also integrated.

Another interesting continuation of our work will be an evaluation of the
exactly same test cases using the integrated internet browser on an Android
mobile phone or tablet device. Here, the first limitation is that this platform
forces the user to use specific apps instead of the browser – E-mail client,
Facebook App and YouTube App. Therefore, the comparison results might
look different as the limitations given by the browser are partially eliminated,
which probably introduces significant differences we will have to face while
running the experiments.

Acknowledgment

This paper is part of dissemination
of results of the Erasmus+ Key Ac-
tion 2 (Strategic partnership for higher
education) project No. 2017-1-SK01-
KA203-035402: “Focusing Education
on Composability, Comprehensibility and Correctness of Working Software”.

The information and views set out in this paper are those of the author(s)
and do not necessarily reflect the official opinion of the European Union. Nei-
ther the European Union institutions and bodies nor any person acting on
their behalf may be held responsible for the use which may be made of the
information contained therein.

References

[1] C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto, The impact of source code transfor-
mations on software power and energy consumption, Journal of Circuits, Systems, and
Computers, Vol. 11, No. 5, pp. 477–502, 2002.

[2] E. Chovancová, M. Chovanec, D. Mičuta, Social network and forum hybrid, in Scientific
Conference on Informatics, 2015 IEEE 13th International, Nov 2015, Košice, TU, 2015,
pp. 124-127, ISBN 978-1-4673-9868-8.

[3] M. Couto, J. Cunha, J. P. Fernandes, R. Pereira, J. Saraiva, Greendroid: A tool for
analysing power consumption in the android ecosystem, in Scientific Conference on In-
formatics, 2015 IEEE 13th International, Košice, TU, Nov 2015, pp. 73–78.

[4] J. Flinn, M. Satyanarayanan, Powerscope: A tool for profiling the energy usage of mobile
applications, in Proc. of the Second IEEE Workshop on Mobile Computer Systems and
Applications, WMCSA’99, IEEE Computer Society, 1999.

[5] M. Hudák, Š. Korečko, B. Sobota, On architecture and performance of LIRKIS CAVE
system, in CogInfoCom 2017, Danvers, IEEE, 2017, pp. 000295-000300, ISBN 978-1-
5386-1264-4.

16 CSABA SZABÓ AND EMIRA MUSTAFA MOAMER ALZEYANI

[6] R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, P. Ammann, Ecodroid: An approach
for energy-based ranking of android apps, in Proc. of the Fourth International Workshop
on Green and Sustainable Software, GREENS’15, IEEE Press, 2015, pp. 8–14.

[7] D. Li, W. G. J. Halfond, An investigation into energy-saving programming practices for
android smartphone app development, in Proc. of the 3rd International Workshop on
Green and Sustainable Software, GREENS 2014, ACM, 2014, pp. 46–53.

[8] D. Li, Y. Jin, C. Sahin, J. Clause, W. G. J. Halfond, Integrated energy-directed test
suite optimization, in Proc. of the 2014 International Symposium on Software Testing
and Analysis, ISSTA 2014, ACM, 2014, pp. 339–350.

[9] K. Liu, G. Pinto, Y. D. Liu, Data-oriented characterization of application-level en-
ergy optimization, in Fundamental Approaches to Software Engineering, ser. LNCS, A.
Egyed, I. Schaefer, eds., Springer Berlin Heidelberg, 2015, Vol. 9033, pp. 316–331.

[10] N. Pataki, Á. Sipos, Z. Porkoláb, Measuring the Complexity of Aspect-Oriented Pro-
grams with Multiparadigm Metric, in QAOOSE 2006 Proceedings: 10th ECOOP Work-
shop on Quantitative Approaches in Object-Oriented Software Engineering, M. Lanza,
F. B. e Abreu, C. Calero, Y.-G. Guéhéneuc, H. Sahraouri, eds., Nantes, Universitá della
Svizzera italiana, 2006, pp. 1-10.

[11] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, Y.-M. Wang, Fine-grained power modeling for
smartphones using system call tracing, in Proc. of the Sixth Conference on Computer
Systems, EuroSys’11, ACM, 2011, pp. 153–168.

[12] M. Santos, J. Saraiva, Z. Porkoláb, D. Krupp, Energy Consumption Measurement of
C/C++ Programs Using Clang Tooling, in Proceedings of the SQAMIA 2017: 6th
Workshop of Software Quality, Analysis, Monitoring, Improvement, and Applications,
Z. Budimac, ed., Belgrade, Serbia, 11-13.9.2017, Paper No. 15, 8 pages, Also published
online by CEUR Workshop Proceedings No. 1938 (http://ceur-ws.org) ISSN 1613-
0073.

[13] J. Saraiva, M. Couto, Cs. Szabó, D. Novák, Towards Energy-Aware Coding Practices
for Android, Acta Electrotechnica et Informatica, Vol. 18, No. 1, 2018, pp. 19–25, DOI:
10.15546/aeei-2018-0003 .

[14] M. Suĺır, J. Porubän, Exposing Runtime Information through Source Code Annotations,
Acta Electrotechnica et Informatica, Vol. 17, No. 1, 2017, pp. 3–9, DOI: 10.15546/aeei-
2017-0001 .

[15] Cs. Szabó, J. Saraiva, Focusing software engineering education on green application
development, in Conference of Information Technology and Development of Education
– ITRO 2017, Novi Sad, Serbia, pp. 165–169, ISBN 978-86-7672-302-7.

[16] P. R. Theja, SK. K. Babu, Evolutionary computing based QoS oriented energy efficient
VM consolidation scheme for large scale cloud data centers using random work load
bench, Annales Mathematicae et Informaticae, 46 (2016) pp. 217–241 http://ami.ektf.

hu/uploads/papers/finalpdf/AMI_46_from217to241.pdf .

Department of Computers and Informatics, Faculty of Electrical Engineer-
ing and Informatics, Technical University of Košice, Letná 9, 042 00 Košice,
Slovakia

Email address: csaba.szabo@tuke.sk, emira.mustafa.moamer.alzeyani@student.tu-

ke.sk

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 1, 2018
DOI: 10.24193/subbi.2018.1.02

COMPILE-TIME FUNCTION CALL INTERCEPTION FOR

TESTING IN C/C++

GÁBOR MÁRTON AND ZOLTÁN PORKOLÁB

Abstract. In C/C++, during the test development process we often have
to modify the public interface of a class to replace existing dependencies;
e.g. supplementary setter or constructor functions or extra template pa-
rameters are added for dependency injection. These solutions may have
serious detrimental effects on the code structure and sometimes on the
run-time performance as well. We introduce a new technique that makes
dependency replacement possible without the modification of the produc-
tion code, thus it provides an alternative way to add unit tests. Our new
compile-time instrumentation technique enables us to intercept function
calls and replace them in runtime. Contrary to existing function call in-
terception (FCI) methods, we instrument the call expression instead of
the callee, thus we can avoid the modification and recompilation of the
function in order to intercept the call. This has a clear advantage in case
of system libraries and third party shared libraries, thus it provides an
alternative way to automatize tests for legacy software. We created a pro-
totype implementation based on the LLVM compiler infrastructure which
is publicly available for testing.

1. Introduction

In legacy code bases often there are few or no unit tests. Refactoring such
code in order to provide tests is almost impossible because we cannot verify
correctness without having unit tests; hence it is a vicious circle. We can
break the circle with non-intrusive tests, i.e. without actually modifying the
production code [2, 28]. Function call interception (FCI) is often the only tool

Received by the editors: March 31, 2018.
2010 Mathematics Subject Classification. 68N15.
1998 CR Categories and Descriptors. D.3.3 [Software]: PROGRAMMING LAN-

GUAGES – Languages Constructs and Features.
Key words and phrases. C++ programming language, unit testing, function call inter-

ception, compiler instrumentation.
This paper was presented at the 12th Joint Conference on Mathematics and Computer

Science, Cluj-Napoca, June 14-–17, 2018.
This work is supported by the European Union, co-financed by the European Social

Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

17

18 GÁBOR MÁRTON AND ZOLTÁN PORKOLÁB

which enables non-intrusive testing by making it possible to replace function
bodies. By replacing functions we can eliminate the unwanted dependencies
in tests. With FCI we are able to intercept function calls at runtime and we
can execute actions before and/or after the original function body or even
completely replace it [11]. The different FCI methods have different advan-
tages and disadvantages. Compared to languages like Java, the C and C++
languages offer less mature solutions for FCI. Java runtime reflection allows
us both introspection and intercession.

In this paper, we investigate a new compile-time instrumentation based FCI
approach for C/C++ programs which enables the replacement of functions and
methods. By applying the instrumentation, the generated binary code will be
different than the original binary program code, but the high-level C/C++
source code remains untouched. Contrary to other instrumentation methods,
we instrument the call expression instead of the callee, thus we can avoid
the necessity of recompilation of the function we would like to intercept. We
implemented a prototype based on the LLVM/Clang compiler infrastructure.

This paper is organized as follows. In Section 2, we show the existing
dynamic and static FCI methods. In Section 3, we present general test au-
tomation patterns and concepts for testing legacy code. We present how our
method simplifies writing unit tests for legacy systems in Section 4. We de-
scribe our new interception technique in details in Section 5 in details. In
Section 6, we describe the current limitations and possible future work. We
have an overview of the related works in Section 7. Our paper concludes in
Section 8.

2. Function Call Interception Techniques

We differentiate the FCI techniques based on the time FCI is applied [11].
Dynamic techniques perform the interception at program load-time or at run-
time. Contrary to dynamic approaches, static techniques achieve FCI by mod-
ifying the source files (e.g. with the help of the preprocessor), by changing the
linkage order, by generating object files which contains the instrumentation
or by modifying the application binary image; all these modifications happen
before runtime.

Load-time FCI. Most modern operating systems provide the possibility
to specify shared objects to be loaded before all others. This can be used to
selectively override functions in other shared objects. On Linux this behavior is
controlled by the LD_PRELOAD environment variable [17]. With this technique,
calling the original function is cumbersome. We have to use dlsym auxiliary
function with the RTLD_NEXT argument [16]. In case of C++ functions we have
to provide the mangled names. Furthermore, this mechanism is unreliable

COMPILE-TIME FUNCTION CALL INTERCEPTION FOR TESTING IN C/C++ 19

with member functions, because the member function pointer is not expected
to have the same size as a void pointer on some platforms [10].

Run-time FCI. In Unix like systems, runtime dynamic interception is
implemented with the help of the ptrace system call [19, 27]. If ptrace is
used with the PEEKTEXT or POKETEXT argument then it is possible to attach
to a running process and to read or write different segments of its memory.
For instance, the GNU debugger (gdb) [7] and Intel Pin [15] both use this
approach. A disadvantage of these tools is that they rely on a specific kernel
functionality; thus porting these implementations to other operating systems
may be hard. E.g. Intel Pin currently does not support function replacement
on macOS [9]. Another property of this technique is that we cannot instrument
inline functions.

Pre-compilation-time FCI. We consider some use of the C/C++ pre-
processor as pre-compilation-time interception. A typical use case is to replace
the malloc and the free functions from the standard C library to collect sta-
tistics about the heap usage. This approach can be applied conveniently in C,
but not in C++. As soon as we use namespaces, the preprocessor might gen-
erate code which cannot be compiled because of the ambiguous use of names.
Hazardous side effects of macros are also well known.

Link-time FCI. One example for the link-time static interception is the
wrap command line option of the GNU linker (ld) [8]. When this program
option is applied then the linker uses a wrapper function for the specified
symbol, any undefined reference to symbol will be resolved to __wrap_symbol

and any undefined reference to __real_symbol will be resolved to symbol.
This approach makes it possible to replace a function and call the original.
However, in case of C++ we have to specify the mangled names as symbols.
We cannot use this approach if the symbol is defined within the very same
translation unit where it is referenced.

Post-compilation-time FCI. There exist tools to modify the compiled
binary code for interception. As an example, in [1] the authors describe a
method which is a mixture of Link-time and Post-compilation-time techniques
used to avoid typical security vulnerabilities, like buffer overflow. A modified
compiler can be applied on a binary executable (or shared library) to extract
type information from the debugging data and reinsert it in the same binary
which is then available at runtime in a special data structure. At runtime a
pre-loaded shared library intercepts the possibly dangerous calls and validates
them using the data structure stored in the first step.

Compile-time FCI. Perhaps the most widely used static FCI technique
is to configure the compiler to emit instrumented code in a way that intercep-
tion is possible. The GNU/GCC and LLVM/Clang compilers both provide the

20 GÁBOR MÁRTON AND ZOLTÁN PORKOLÁB

-finstrument-function program option to instrument each and every func-
tion call in a way to execute code before and after the body of the functions
[6]. Actually, when this instrumentation is enabled then the compiler emits
two extra calls for each function body. The prototypes of these two called
functions are the following:

void __cyg_profile_func_enter(void *this_fn, void *call_site);
void __cyg_profile_func_exit(void *this_fn, void *call_site);

The arguments for these functions represent the address of the original func-
tion and the address of the instruction from where it was called. A serious
limitation of this technique is that we cannot replace an intercepted function
with another function; the original function will be called anyway.

3. Test Automation Conventions

The FCI techniques discussed above are frequently used in the process of
creating automated tests. Thus, in this section we overview the general test
automation patterns and we show the more specialized concepts about testing
legacy code.

The four-phase test pattern is driven by the observation that each test
requires some sort of setup and tear down routines. This pattern splits each
test into four phases [24]. In the first phase, we set up everything that is
required for the system under test (SUT) to exhibit the expected behavior.
In the second phase, we interact with the SUT. In the third phase, we do
whatever is necessary to determine whether the expected outcome has been
obtained. In the fourth phase, we tear down the test to put the world back
into the state in which we found it. This pattern is also known as the build-
operate-check-clear pattern [31].

The given-when-then pattern of representing tests is originated from be-
havior-driven development [26, 3]. The given part describes the pre-conditions
to the test. In these pre-conditions we present the state of the world before
we begin the behavior we specify in the test. The when section represents the
behavior we specify. The then section describes the changes we expect due to
the specified behavior. We can also look at this pattern as a reformulation of
the four-phase test pattern. Essentially these three states are equal to the first
three states of the four-phase pattern. In the context of the four-phase pattern,
Robert C. Martin states that anyone who reads the tests should be able to
work out what they do very quickly, without being misled or overwhelmed
by details [20]. Consequently, both the four-phase and the given-when-then
patterns imply that the test setup should be strictly part of the visible test
code and should not be separated from the rest of the test code. For instance,
using load-time FCI to set up a test separates the ”given” phase from the rest

COMPILE-TIME FUNCTION CALL INTERCEPTION FOR TESTING IN C/C++ 21

of the test code, thus it violates both patterns and makes the test hard to
understand.

Unwanted dependencies embody a critical problem in software development;
we often have to break existing dependencies before we can change some piece
of code [28]. Breaking existing dependencies is also an important prerequisite
to introduce unit tests for legacy code [2].

A seam is an abstract concept introduced by Feathers to identify points
where we can break dependencies [2]. The goal is to have a place where we
can alter the behavior of a program without modifying it in that place; this is
important because editing the source code is often not an option [28]. Feathers,
Rüegg and Sommerlad define four different kinds of seams for C++ [2, 28].
Link seam: Change the definition of a function via some linker specific setup.
Preprocessor seam: With the help of the preprocessor, redefine function names
to use an alternative implementation. Object seam: Based on inheritance to
inject a subclass with an alternative implementation. Compile seam: Inject
dependencies at compile-time through template parameters. The enabling
point of a seam is the place where we can make the decision to use one behavior
or another. Different seams have different enabling points.

Link and preprocessor seams can be used to write non-intrusive tests. How-
ever, object and compile seams may be used for such purpose only if the unit
under test already has the proper architecture. For example, in case of ob-
ject seams the unit must have a constructor (or setter) function to setup a
different implementation for the dependency. In case of compile seams, the
unit must be a template and it must have a template parameter via which
we can mock the dependency. Often, these architectural requirements are not
satisfied, therefore the use of object and compile seams ofttimes demand that
we intrusively change the source code of the unit.

Some seams are realized with FCI techniques. For instance, preprocessor
seams are implemented with pre-compilation-time FCI. Link seams are real-
ized with load-time and link-time FCI. The existence of compile-time, post-
compile-time and run-time FCI drives us to further extend the list of existing
seams. We define a new class of seams, the FCI seams. More specifically we
introduce three new seams for each FCI technique: compile-time FCI seam,
post-compile-time FCI seam and run-time FCI seam.

4. Compile-time FCI Seam

In Figure 1 we present a legacy graphics program that relies on a LOGO-like
API for drawing. The API is realized as a class named the Turtle. Also, there
is Painter class which is responsible for drawing lines and shapes. This class
has a hard-wired dependency on the concrete Turtle class. Still, we would

22 GÁBOR MÁRTON AND ZOLTÁN PORKOLÁB

1 // Turtle.hpp
2 class Turtle {
3 int x = 0, y = 0;
4 public:
5 void PenUp() { /* ... */ }
6 void PenDown() { /* ... */ }
7 void Forward(int distance) { /* ... */ }
8 void Turn(int degrees) { /* ... */ }
9 void GoTo(int x, int y) { /* ... */ }

10 int GetX() const { return x; }
11 int GetY() const { return y; }
12 };
13

14 class Painter {
15 Turtle turtle;
16 public:
17 void DrawLine(int x0, int y0, int x1,
18 int y1) {
19 turtle.GoTo(x0, y0);
20 turtle.PenDown();
21 turtle.GoTo(x1, y1);
22 turtle.PenUp();
23 }
24 // ...
25 };

Figure 1. A legacy graphics program

1 #include "Turtle.hpp"
2 #include <gmock/gmock.h>
3 #include <access_private.hpp>
4 #include <hook.hpp> // for SUBSTITUTE
5
6 class MockTurtle {
7 public:
8 MOCK_METHOD0(PenUp, void());
9 // PenDown, Forward, ...

10 };
11
12 MockTurtle &GetMockObject(Turtle *) {
13 static MockTurtle m;
14 return m;
15 }
16
17 namespace proxy {
18 void PenUp(Turtle *self) {
19 return GetMockObject(self).PenUp();
20 }
21 // Similarly to PenDown, Forward, ...
22 }
23
24 struct TurtleTest : ::testing::Test {
25 TurtleTest() {
26 SUBSTITUTE(Turtle::PenUp, proxy::PenUp);

27 // Similarly to PenDown, Forward, ...
28 }
29 };
30
31 ACCESS_PRIVATE_FIELD(Painter, Turtle,
32 turtle)
33
34 TEST_F(TurtleTest, TestDrawLine) {
35 using ::testing::AtLeast;
36
37 Painter painter;
38 Turtle &turtle =
39 access_private::turtle(painter);
40 MockTurtle &mockTurtle =
41 GetMockObject(&turtle);
42
43 EXPECT_CALL(mockTurtle, PenDown())
44 .Times(AtLeast(1));
45 painter.DrawLine(0, 0, 10, 10);
46 }
47
48 int main(int argc, char **argv) {
49 ::testing::InitGoogleTest(&argc, argv);
50 return RUN_ALL_TESTS();
51 }

Figure 2. Testing the legacy program with compile-time FCI

like to write a test which checks the DrawLine() function. In this example
let us suppose that the turtle functions are quite expensive to use. Generally
speaking, a dependency may represent a database, or a network connection,
whose usage can be hard, or very expensive. Therefore, in our test we want
to mock the Turtle class (or at least its member functions).

Our new instrumentation technique makes it possible to write non-intrusive
tests easily. Figure 2 lists the test which uses our new instrumentation method.
We define our mock class (MockTurtle) with the help of the gmock macros
(lines 6-10). Our test-case is defined from line 34 to 46. In the test-case we
create an instance of the Painter class, then we get a reference to its private
turtle member (lines 38-39). Note that there are several different techniques

COMPILE-TIME FUNCTION CALL INTERCEPTION FOR TESTING IN C/C++ 23

to access a private member, we use a method which relies on explicit template
instantiations [21]. Then we get a reference to an instance of the MockTurtle

class which acts as a test double for the Turtle instance (lines 40-41). We state
our expectations on the mock object (lines 43-44). In line 45 we exercise our
unit under test by calling the DrawLine() method. With the help of our tool
we setup replacement functions for each member function of the Turtle class
(lines 26-28). These replacement functions behave as a proxy; they forward
each function call on a given Turtle instance to a corresponding test double
(lines 17-22). The way we get the reference for a relevant test double is pretty
simple in this test: we return a reference to a static instance of the MockTurtle
class (lines 12-15). We can use this simplification because we know that there
is only one Turtle object over the lifetime of our test-case. If there were
several Turtle objects then we should solve the mapping differently, perhaps
with the help of a static hash map. Lines 48-50 contains the definition for
the main() function which uses the functions and macros from googletest to
initialize and run the test.

The most important property of this test is that the test setup is included in
the test application itself. During the compilation of our test binary we have
to include a header file from our auxiliary runtime library which provides the
SUBSTITUTE macro, and we have to enable the mentioned instrumentation with
a compiler switch. Also, during linking we have to link with our given run-
time library. Our method has clear advantages compared to the LD_PRELOAD

approach where we can substitute functions only if they are defined in shared
libraries. With our technique it is possible to write non-intrusive tests and re-
place even inline functions. However, this new method requires rebuilding the
application (or unit) we want to test with the specific compiler option which
will disable inlining. Our technique has the following advantages: (1) The test
setup is part of the test application and clearly visible together with the rest
of the test code, thus it does not violate the given-when-then test automation
pattern. (2) It does not introduce a new tool into the existing build chain.
The functionality is embedded into the compiler. (3) On platforms where the
compiler is supported, the new instrumentation could be supported as well.
(4) There is no need to use mangled names. (5) We can use the ordinary unit
test building tools and we can group unit tests into the same test application.

5. FCI with Call Expression Instrumentation

Our new interception technique and the prototype consists of two parts: a
compiler instrumentation module and a runtime library. The instrumentation
module modifies the code to check whether a function has to be replaced or
not. The runtime library provides functions to setup the replacements.

24 GÁBOR MÁRTON AND ZOLTÁN PORKOLÁB

char* funptr = __fake_hook(&foo);
if (funptr)

funptr(args...);
else

foo(args...);

(a)

char* funptr = __fake_hook(&foo);
using ReturnType = decltype(foo(args...));
ReturnType ret;
if (funptr) ret = funptr(args...);
else ret = foo(args...);
return ret;

(b)

Figure 3. Call expression substitution

5.1. Instrumentation. During the code generation we modify each and ev-
ery function call expression to call an auxiliary function. Let us consider the
following function call expression: foo(args...);. When our instrumenta-
tion is in action, the emitted code is equal to the pseudo code in Figure 3a.
The call to __fake_hook resolves at runtime if we should replace the callee
with another function or not. We replace a function if the returned value of
__fake_hook is not zero, in this case the returned value is a pointer to the
function we call as a substitution. If the return type of the callee function is
not void then we create an additional storage for the return value as presented
in Figure 3b. Our prototype is based on LLVM/Clang [12]. The implementa-
tion modifies the emitted LLVM Intermediate Representation (IR) [14] code.
For instance, let us consider the definition of the bar C++ function in Figure
4a. The LLVM IR of bar after optimization is presented in Figure 4b. The
generated code is very straightforward: there is only one basic block (entry)
which stores the return value from the call of foo and then it returns with it.
Note that the function names are mangled thus we see the _Z3 prefix for the
function names. When we enable our instrumentation and optimization, then
the IR has the form presented in Figure 4c. Now we have four different basic
blocks. The first block (entry) evaluates the return value of the __fake_hook

function, compares it to zero and emits a branch based on the comparison.
The then block is executed if the callee shall be replaced. We call the sub-
stituting function pointer, then we jump to the last basic block(cont). The
else block is executed if the callee shall not be substituted; we just simply
call the original function then jump to the cont block. At last, in the cont

block, we store the result of either the callee or the replaced function, and we
return with that.

Clang’s internal architecture is built in such a way that the code generation
for all kind of call expressions are eventually handled in one common routine.
For example, in the case of virtual function calls the adjustment of the this

pointer happens before calling that routine. We placed the emission of our
instrumentation code inside that routine. As a result, special cases such as
the this adjustment are automatically handled; we do not have to manually
adjust the this pointer when we substitute a virtual function.

COMPILE-TIME FUNCTION CALL INTERCEPTION FOR TESTING IN C/C++ 25

int foo(int);
int bar(int p) {

return foo(p);
}

(a) C++

define i32 @_Z3bari(i32 %p) #0 {
entry:

%call = tail call i32 @_Z3fooi(i32 %p)
ret i32 %call

}

(b) Original LLVM IR
define i32 @_Z3bari(i32 %p) #0 {
entry:

%fake_hook_result = tail call i8* @__fake_hook(i8* bitcast (i32 (i32)* @_Z3fooi to i8*))
%0 = icmp eq i8* %fake_hook_result, null
br i1 %0, label %else, label %then

then: ; preds = %entry
%1 = bitcast i8* %fake_hook_result to i32 (i32)*
%subst_fun_result = tail call i32 %1(i32 %p)
br label %cont

else: ; preds = %entry
%call = tail call i32 @_Z3fooi(i32 %p)
br label %cont

cont: ; preds = %else, %then
%call_res.0 = phi i32 [%subst_fun_result, %then], [%call, %else]
ret i32 %call_res.0 }

(c) Modified LLVM IR

Figure 4. LLVM IR modification for function replacement

Contradictory to -finstrument-functions, by instrumenting the call ex-
pressions (and not the function body) we have the convenience that we do
not have to recompile dependant libraries if the call expression is in a code
outside of the library. This has a clear advantage in case of system libraries,
third party shared libraries and security critical applications where we have
to evade library interposing. We have evaluated the prototype using various
benchmarks. We measured the runtime overhead is similar to the overhead
caused by the other compile-time instrumentation, -finstrument-functions.
Detailed measurement results are available online at [23].

5.2. Runtime Library. The main purpose of the runtime library is to im-
plement the __fake_hook function which is referenced from the instrumented
code. The realization of this hook function has to find the related function
pointer in case of an active substitution. Essentially, it is a simple pointer
to pointer mapping which may be implemented with a simple hash function.
However, in order to make the lookup as fast as possible, we chose to imple-
ment the mapping with a simple offsetting into the virtual memory (shadow
memory). During program startup – more precisely, when our shared object
is loaded – we initialize the shadow memory with the help of the mmap [18]
system call. We assume that a size of a function definition is at least 1 byte,
since it has to contain at least a return instruction. Let N denote the size of
a pointer in bytes of a specific architecture. Since we have to store a function
pointer for every function, we have to reserve a shadow memory which is N
times bigger than the normal virtual address space which holds the function

26 GÁBOR MÁRTON AND ZOLTÁN PORKOLÁB

definitions. If the mmap system call is called with the MAP_ANONYMOUS argu-
ment then it guarantees that the reserved memory is initialized to zero. Note
that in practice the OS does not zero out the mapped region during the map-
ping, only at the moment when a virtual addressed is being accessed the first
time. We divide the user-space virtual memory into two different regions. Low
memory and high memory. We handle the memory mapping differently for
each region. For instance, on macOS the memory is partitioned as follows:

[0x7f0000000000, 0x7fffffffffff] || HighMem
[0x120000000000, 0x19ffffffffff] || HighShadow
[0x020000000000, 0x11ffffffffff] || LowShadow
[0x000000000000, 0x01ffffffffff] || LowMem

Let addr denote the original address ,shadowAddr the address of the corre-
sponding shadow and shadowOffset the offset for a region. With this formula
shadowAddr = addr ∗N +shadowOffset(region(addr)) we can calculate the
shadow address. By using the shadow memory instead of a simple hash map
we trade execution time for space. The program occupies terabytes in virtual
memory, however the resident (physical) memory usage is equal to the number
of used substitutions multiplied with N . More specifically, operating systems
do not reserve the specific physical pages to the process until there is no write
to that memory area. Consequently, those memory pages which contain the
shadow values of substituted functions will be resident physical pages regis-
tered in the process page table. In practice, this means only a few kilobytes of
additional physical memory usage (given a page has 4kb size and not taking
into account the Linux specific huge pages). During program startup we must
make sure that our shared object gets initialized before the first function call.
Our prototype achieves this by setting the constructor attribute [4] on the
initializer function of the shared object. If there are other shared libraries
linked to the final executable with such initializer functions, then it is the
user’s responsibility to ensure that our library is initialized first.

Another purpose of the runtime library is to provide the user interface to
setup the function substitutions. Replacing a function in C is pretty simple,
the shared object defines a function for that:

_substitute_function((const char*)&foo, (const char*)&fake_foo);

We may use the SUBSTITUTE macro in case of C++ to replace functions; this
construct is more generic because it also supports member functions. Note
that we have to include the header file attached to the runtime library, also we
have to link with it. Our implementation is thread safe if there are multiple
threads calling the very same function. Although, there is a race condition if
one thread is calling the specified function while another thread is setting up
the substitution; in such cases, the user code must ensure thread safety.

COMPILE-TIME FUNCTION CALL INTERCEPTION FOR TESTING IN C/C++ 27

1 template <typename Class, typename MemPtr>
2 const char *address_of_virtual_fun(const Class *aClass, MemPtr memptr) {
3 const char **vtable = *(const char ***)aClass;
4 struct pointerToMember {
5 size_t pointerOrOffset;
6 ptrdiff_t thisAdjustment;
7 };
8 pointerToMember p;
9 memcpy(&p, &memptr, sizeof(p));

10 static const size_t pfnAdjustment = 1;
11 size_t offset = (p.pointerOrOffset - pfnAdjustment) / sizeof(char *);
12 return vtable[offset];
13 }

Figure 5. Get the address of a virtual function

5.3. Virtual Functions. A pointer-to-member function may have a different
layout in case of virtual functions than in case of regular member functions.
Therefore, we cannot just simply cast a virtual function pointer to a void

pointer.

5.3.1. The naive approach. Without compiler support, we can get the address
of a virtual function in an architecture dependent way. On Figure 5 we present
how we can get the address in case of the Itanium C++ ABI [10]. First, we
receive the vtable from an object by dereferencing its vpointer (line 3). The
vpointer is the first element in the object. We interpret the bits of the pointer
to member (memptr) as an instance of the aggregate class pointerToMember

(lines 4-9). Next, we setup the architecture dependent function pointer adjust-
ment (line 10). Then, we get the offset and return with the appropriate element
in the vtable (lines 11-12). We could replace virtual functions by exploiting
this technique. Let us suppose we have a macro named SUBSTITUTE_VIRTUAL

which use this technique and the following class hierarchy:

struct B { virtual void foo(); }; struct D : B { void foo() override; };

If we wanted to replace the foo() function when the dynamic type was D then
we would have to get a pointer to such an instance:

B* dummy = new D; SUBSTITUTE_VIRTUAL(&D::foo, dummy, &D_fake_foo);

However, to replace the function in the base class as well, we would have to
get a pointer to an instance whose dynamic type was B:

B* dummy = new B; SUBSTITUTE_VIRTUAL(&B::foo, dummy, &B_fake_foo);

5.3.2. New compiler intrinsic. The previous naive approach is ABI dependent
and it also requires a reference to an existing object. Thus, we tried to find
a better alternative without these restrictions. Generally speaking, in order
to replace functions we just need an identifier for each function – virtual or
not – which is unique in the program. Actually, each function has such a

28 GÁBOR MÁRTON AND ZOLTÁN PORKOLÁB

unique identifier, and it is its own address in the program’s virtual memory.
Unfortunately, there is no valid C++ language construct to get this unique
identifier. Nevertheless, GCC has implemented this feature [5], but sadly
Clang did not. Clang developers claim that this feature is fundamentally
broken, because when we use it then the proper adjustment of the this pointer
may be elided [13]. Still, our technique could use this feature since our compiler
instrumentation intervenes after the this adjustment thunk is emitted. Thus,
we implemented this functionality in the Clang compiler, so we are able to use
it within our implementation, hidden from the users and enabled only in test
code. With this approach, the replacement of the foo() function when the
dynamic type is D has the following form:

SUBSTITUTE(D::foo, D_fake_foo);

This is the very same form which we can use to replace free functions or
non-virtual member functions.

Internally, the SUBSTITUTE macro expands to a call to
_substitute_function and the arguments of that function are generated by
our new compiler intrinsic:

#define SUBSTITUTE(src, dst) \
do { _substitute_function((const char *)__function_id src, \

(const char *)__function_id dst); } while (0)

We modified the compiler to parse a new kind of unary expression when the
__function_id literal is given and the test specific instrumentation is enabled.
In case of free functions and static member functions this unary expression
has the very same type which we would get in case of the ”address of” unary
expression:

void foo();
void bar() {
auto p = & foo; // void (*)()
auto q = __function_id foo; // void (*)()

}

However in case of non-static member functions the two expressions yield
different types:

struct X { void foo(); virtual void bar(); };
void bar() {
auto p = & X::foo; // void (X::*)()
auto q = __function_id X::foo; // void (*)()
auto r = __function_id X::bar; // void (*)()

}

At runtime the value of these expressions are evaluated to hold the address of
the specific raw function which can be identified by the corresponding mangled
name in the compiled binary’s text section.

COMPILE-TIME FUNCTION CALL INTERCEPTION FOR TESTING IN C/C++ 29

5.4. Overload Resolution. We may have several functions with the same
name but with different parameters. Let us consider the below code:

struct X { int foo(int); int foo(double); };
int X_fake_foo_i(X*, int);

Normally, if we would like to get the address of X::foo(int) we have to
explicitly cast a function pointer to the appropriate type:

int(X::*mfp)(int) = & X::foo;

Here, we define a pointer variable with the name mfp which has the type
int(X::*)(int) and it holds the address of X::foo. With the __function_id
intrinsic we have to do the same, but the type will be different:

int(*mfid)(int) = __function_id X::foo;

For safety reasons, the __function _id is hidden from the users of our in-
strumentation, but they can use the three parameter form of the provided
SUBSTITUTE macro to replace an overloaded function. For example, to replace
X::foo with the X_fake_foo_i free function one have to write:
SUBSTITUTE(int(int), X::foo, X_fake_foo_i);

6. Limitations And Future Work

Our prototype is implemented in the code generation part of the Clang
compiler, however it would be architecturally better if we realized that as a
transforming optimizer pass. This pass should run before all other optimizer
passes. By having an optimizer pass, all the logic related to this instrumen-
tation would be well separated and self contained. Also, it would make it
possible to use our tool with other language frontends, thus this is our most
important future work. Currently we do not have any check to enforce that
the original function and its replacement have the same signature. In the fu-
ture we plan to create a checking function template for the substitutions. The
prototype works only on 64 bit x86 systems.

Replace the operator() of a lambda is not supported unless we can take
the address of the lambda. Similarly, member functions of structs/classes
which are defined inside a function cannot be replaced, because there is no
valid expression to get their address. Our technique relies on that we should
be able to get the address of the function we want to substitute. In case of
constructors and destructors we cannot get their address with any standard
C++ expression. Still, replacing constructors or destructors would be a valu-
able contribution in the domain of testing, thus this is an important area for
further research.

30 GÁBOR MÁRTON AND ZOLTÁN PORKOLÁB

7. Related Work

The different function call interception techniques are explained in details
by Kang [11]. The author also discusses aspect-oriented programming imple-
mentation techniques for intercepting method calls.

The four-phase test automation pattern is introduced by Meszaros [24] and
the given-when-then pattern is described by North [26]. Feathers describes
different techniques about testing legacy code in his book [2]. He introduces
the concept of seams via we can alter behavior without changing the original
unit. Rüegg and Sommerlad elaborate this concept in C++ [28].

There are plenty of software error checking tools which are based on some
kind of instrumentation. A large number of memory error detectors are based
on binary instrumentation. For example, Valgrind (Memcheck) [25] or Dr.
Memory. The most popular compiler instrumentation based error checker
tools are the AddressSanitizer [30] and the ThreadSanitizer [29]. Our instru-
mentation technique was inspired by the AddressSanitizer, we reused many
ideas from its implementation (e.g shadow memory). Shadow memory is often
used by different error checker software. The above mentioned AddressSani-
tizer and ThreadSanitizer both use shadow memory to store metadata for a
specific piece of memory. AddressSanitizer uses a shadow space scaled down
to one eight of the normal address space and can be easily used on 32 bit sys-
tems. However, ThreadSanitizer uses 8 times larger shadow memory than the
normal address range, therefore support for 32-bit platforms is problematic
and is not planned by the maintainers.

8. Conclusion

Test seams are used to create non-intrusive tests for legacy systems, some of
these seams are often realized via an FCI technique. We introduced our new
compiler instrumentation for C and C++ programs, which makes it possible
to replace the intercepted function call. While most of the existing instrumen-
tation methods modify the function to call we instrument the caller side. We
substitute the actual call with a small code snippet in compilation time, which
decides at runtime whether the original or a replacement function is about to
call. The decision is made using shadow memory and an offset to minimize
runtime overhead. In contrast to other seams, our new instrumentation seam
keeps the test setup code close to the other phases of the test. The technique
makes it feasible to write non-intrusive tests which follow the given-when-then
test pattern. This way, our method could help to implement high-quality tests
for legacy software systems.

Compared to existing compile-time instrumentation solutions, our technique
does not require the modification or even the recompilation of the intercepted

REFERENCES 31

functions, which is a possible advantage in case of legacy code, system li-
braries, third party shared libraries or in situations when we have to avoid
library interposing. We have created a prototype implementation using the
LLVM/Clang compiler infrastructure, which is publicly available at [22].

References

[1] Kumar Avijit et al. “Binary Rewriting and Call Interception for Efficient Runtime
Protection Against Buffer Overflows: Research Articles”. In: Softw. Pract. Exper. 36.9
(July 2006), pp. 971–998. issn: 0038-0644. url: http://dx.doi.org/10.1002/spe.
v36:9.

[2] Michael Feathers. Working Effectively with Legacy Code. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2004. isbn: 0131177052.

[3] Martin Fowler. GivenWhenThen
. url: https://martinfowler.com/bliki/GivenWhenThen.html.

[4] gcc.gnu.org. Declaring Attributes of Functions. 2017. url: https://gcc.gnu.org/
onlinedocs/gcc-4.3.0/gcc/Function-Attributes.html (visited on 06/24/2017).

[5] gcc.gnu.org. Extracting the function pointer from a bound pointer to member function.
2017. url: https://gcc.gnu.org/onlinedocs/gcc-4.9.0/gcc/Bound-member-

functions.html (visited on 06/24/2017).
[6] gcc.gnu.org. Program Instrumentation Options. 2017. url: https://gcc.gnu.org/

onlinedocs/gcc/Instrumentation-Options.html (visited on 06/24/2017).
[7] gnu.org. GDB: The GNU Project Debugger. 2017. url: https : / / www . gnu . org /

software/gdb/ (visited on 06/24/2017).
[8] gnu.org. Using GNU ld. 2017. url: ftp://ftp.gnu.org/old- gnu/Manuals/ld-

2.9.1/html_node/ld_3.html (visited on 06/24/2017).
[9] Intel. Pintool API Reference - RTN: Routine Object. 2017. url: https://software.

intel.com/sites/landingpage/pintool/docs/53271/Pin/html/group__RTN_

_BASIC__API.html (visited on 06/24/2017).
[10] Intel et al. Itanium C++ ABI. 2017. url: http://refspecs.linuxbase.org/cxxabi-

1.83.html (visited on 06/24/2017).
[11] Pilsung Kang. “Function call interception techniques”. In: Software: Practice and Ex-

perience (). spe.2501, n/a–n/a. issn: 1097-024X. url: http://dx.doi.org/10.1002/
spe.2501.

[12] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis & Transformation”. In: Proceedings of the 2004 International Sympo-
sium on Code Generation and Optimization (CGO’04). Palo Alto, California, Mar.
2004.

[13] llvm.org. Clang will not accept a conversion from a bound pmf to a regular method
pointer. 2017. url: https://bugs.llvm.org/show_bug.cgi?id=22121 (visited on
06/24/2017).

[14] llvm.org. LLVM Language Reference Manual. 2017. url: http://llvm.org/docs/

LangRef.html (visited on 06/25/2017).
[15] Chi-Keung Luk et al. “Pin: Building Customized Program Analysis Tools with Dy-

namic Instrumentation”. In: Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’05. Chicago, IL, USA:
ACM, 2005, pp. 190–200. isbn: 1-59593-056-6. url: http://doi.acm.org/10.1145/
1065010.1065034.

32 REFERENCES

[16] Linux Programmer’s Manual. dlsym, dlvsym - obtain address of a symbol in a shared
object or executable. 2017. url: http://man7.org/linux/man-pages/man3/dlsym.3.
html (visited on 06/24/2017).

[17] Linux Programmer’s Manual. ld.so, ld-linux.so - dynamic linker/loader. 2017. url:
http://man7.org/linux/man-pages/man8/ld.so.8.html (visited on 06/24/2017).

[18] Linux Programmer’s Manual. mmap, munmap - map or unmap files or devices into
memory. 2017. url: http://man7.org/linux/man-pages/man2/mmap.2.html (visited
on 06/24/2017).

[19] Linux Programmer’s Manual. ptrace - process trace. 2017. url: http://man7.org/
linux/man-pages/man2/ptrace.2.html (visited on 06/24/2017).

[20] Robert C Martin. Clean code: a handbook of agile software craftsmanship. Pearson
Education, 2009.

[21] Gábor Márton. Access Private. 2017. url: https : / / goo . gl / ynaZv5 (visited on
06/25/2017).

[22] Gábor Márton. finstrument-mock - Instrumentation for Testing. 2017. url: https:

//github.com/martong/finstrument_mock (visited on 06/25/2017).
[23] Gábor Márton. Performance Measurements of finstrument-mock. 2017. url: https:

//github.com/martong/finstrument_mock/blob/master/measure/performance_

evaluation.pdf (visited on 03/28/2018).
[24] Gerard Meszaros. xUnit test patterns: Refactoring test code. Pearson Education, 2007.
[25] Nicholas Nethercote and Julian Seward. “Valgrind: A Framework for Heavyweight

Dynamic Binary Instrumentation”. In: SIGPLAN Not. 42.6 (June 2007), pp. 89–100.
issn: 0362-1340. url: http://doi.acm.org/10.1145/1273442.1250746.

[26] D North. Introducing BDD, Better Software Magazine. 2006.
[27] Pradeep Padala. “Playing with ptrace, Part I”. In: 103 (Nov. 2002). issn: 1075-3583

(print), 1938-3827 (electronic).
[28] Michael Rüegg and Peter Sommerlad. “Refactoring Towards Seams in C++”. In: Pro-

ceedings of the 7th International Workshop on Automation of Software Test. AST ’12.
Zurich, Switzerland: IEEE Press, 2012, pp. 117–123. isbn: 978-1-4673-1822-8. url:
http://dl.acm.org/citation.cfm?id=2663608.2663632.

[29] Konstantin Serebryany and Timur Iskhodzhanov. “ThreadSanitizer: Data Race De-
tection in Practice”. In: Proceedings of the Workshop on Binary Instrumentation and
Applications. WBIA ’09. New York, New York, USA: ACM, 2009, pp. 62–71. isbn:
978-1-60558-793-6. url: http://doi.acm.org/10.1145/1791194.1791203.

[30] Konstantin Serebryany et al. “AddressSanitizer: A Fast Address Sanity Checker”.
In: Proceedings of the 2012 USENIX Conference on Annual Technical Conference.
USENIX ATC’12. Boston, MA: USENIX Association, 2012, pp. 28–28. url: http:

//dl.acm.org/citation.cfm?id=2342821.2342849.
[31] Sai Venkatakrishnan. Build Operate Check Clear - Test Pattern. url: http://developer-

in-test.blogspot.hu/2009/05/build-operate-check-clear-test-pattern.html.

Department of Programming Languages and Compilers, Eötvös Loránd Uni-
versity

Email address: martong@mailbox.elte.hu, gsd@elte.hu

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 1, 2018
DOI: 10.24193/subbi.2018.1.03

TRANSLATING ERLANG STATE MACHINES TO UML
USING TRIPLE GRAPH GRAMMARS

DÁNIEL LUKÁCS AND MELINDA TÓTH

Abstract. In this paper, we present a method that transforms event-
driven Erlang state machines into high-level state machine models repre-
sented in UML. We formalized the transformation system as a triple graph
grammar, a special case of graph rewriting. We argue in this paper that
using this well-defined formal procedure opens up the way for verifying
the transformation system, synchronizing code and formal documentation,
and executing state machine models among many other possible use cases.
We also provide an example transformation system and demonstrate its
application in action on a small Erlang state machine. We also present our
evaluation of our full system implementation tested on real world Erlang
state machines.

1. Introduction

In this paper, we introduce a method to generate formal UML state machine
models from executable Erlang state machine source code (e.g. gen_fsm
applications [13]). First, this transformation makes use of the RefactorErl
static analysis framework [11, 18] to analyse the application source code, then
it will transform and synthesize the program representation resulting from the
analysis, into a UML state machine model.

Received by the editors: March 31, 2018.
2010 Mathematics Subject Classification. 68N15, 68Q42.
1998 CR Categories and Descriptors. D.2.2 [SOFTWARE ENGINEERING]: Design

Tools and Techniques – Computer-aided software engineering (CASE); D.2.1 [SOFTWARE
ENGINEERING]: Requirements/Specifications – Languages; F.4.2 [MATHEMATICAL
LOGIC AND FORMAL LANGUAGES]: Grammars and Other Rewriting Systems –
Parallel rewriting systems; F.3.22 [LOGICS AND MEANINGS OF PROGRAMS]:
Semantics of Programming Languages – Program analysis.

Key words and phrases. Erlang, triple graph grammar, UML, CASE, state machine,
model transformation.

This paper was presented at the 12th Joint Conference on Mathematics and Computer
Science, Cluj-Napoca, June 14-–17, 2018.

The project has been supported by the European Union, co-financed by the European
Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

33

34 DÁNIEL LUKÁCS AND MELINDA TÓTH

1.1. Motivation. Currently, Unified Modeling Language (UML) [4] is mostly
used in practice as a documentation tool to present a diverse set of views (we
refer to as models in this paper) on high complexity software code.

As both time and tangible costs of formation and maintenance of documenta-
tion increases with software size, automatic generation of collective knowledge
representation becomes more and more important as the software grows. Apart
from automatically generating well-defined UML models of Erlang state ma-
chines, the focus of this paper is to achieve this in a formal way, specifically by
using a model transformation approach called triple graph grammar.

Triple graph grammars [17] (TGGs) are special kind of graph rewriting
systems, and as formal methods, they may have the same properties proved for
them, such as correctness, completeness, determinism, and confluence. Proven
transformation systems automatically produce verified documentation.

One property of special interest regarding TGG transformations is informa-
tion preservation, i.e. the expectation that result models can be transformed
back to the source models. Such bidirectional transformations, and the more ef-
fective model integration (finding correspondences between models) and model
synchronization (completing partially complete models and correspondences)
allow generation of software code from documentation and vice versa, providing
a way to keep the two in sync all the time. This enables developers to work on
the software in various abstraction levels.

As some UML metamodels (such as state machines) can be used to de-
scribe program semantics, model execution by automatic generation of Erlang
gen_fsm implementations of UML state machines is also a possible future
direction of this research.

Verification of the transformation system, automatic verification and synchro-
nization of documentation, bidirectional TGGs, model execution and round-trip
editing are future goals and possible applications of this research. This current
paper only focuses on the target model generation aspects.

1.2. Background. One way to represent the execution history of a computer
program is to take snapshots of the state of the program memory. State
machines can be used to abstract away this low level representation. A state
describes a segment of the program behavior, while a state transition describes
a change in such behaviors, usually triggered by an event [16].

Among many others, UML [4] is one of the more accepted standards to
represent state machines. The UML state machine language can be used to
formally describe event-driven systems, i.e. systems that wait for certain events,
and upon the occurrence of these events, they change their behavior and wait
for a possibly different set of events. etc.

TGG BASED ERLANG STATE MACHINE TRANSFORMATION 35

Erlang [13] is a general purpose, functional, dynamically typed, open source
programming language, mostly used to develop multithreaded, real time, fault
tolerant applications, like telecommunication systems, web servers, or dis-
tributed databases. The language provides various abstractions (called be-
haviors) to support these applications provided by the built-in OTP library,
including the state machine (gen_fsm) behavior.

The requirements of the gen_fsm behavior are to implement a callback
function, named init, and any number of transition functions. The function
init will designate, at a minimum, the initial state of the state machine. The
transition functions will designate, at a minimum, the next state the state
machine will be in when it receives a specific event, while in a specific state.
All the logic necessary to handle multiple threads, messages, events, etc. will
be handled by Erlang in accordance to the gen_fsm semantics [13].

In our research, we use the RefactorErl static analysis framework [18]
to analyse Erlang source code. RefactorErl analyses the source code and
stores discovered syntactic and semantic information in a database called the
semantics program graph (SPG). The framework provides several features to
run refactorings on the source code, to perform further analyses – like data flow,
and dynamic function call analysis –, to execute various queries, to calculate
certain metrics, and many other features.

2. Transformation pipeline

In this section, we overview our approach that we refer to as transformation
pipeline. The pipeline can be considered as a simple function composition,
where the output of earlier functions will be the input of the latter functions.

As depicted in Figure 1, the main input of pipeline is an Erlang SPG as
stored by the RefactorErl framework. This is transformed into an SPG model
(a highly detailed view of the transformed software code), in order to refine it
into a high-level state machine model using model transformation methodology.
Finally, this high-level state machine model is translated into a selected state
machine model, e.g. UML.

In order to properly understand models and model transformations, we need
to introduce basic modeling terminology. The Object Management Group Meta-
Object Facility (OMG MOF) [3] highlights four cognitive layers of software
modeling: concrete implementation, model, metamodel, and meta-metamodel,
each in order a higher-level abstraction (or language) that enables expressing
the layer below.

As most of the intermediate values in the pipeline are models, we also
indicated in Figure 1 the metamodels generating these models. Models of
SPGs are formalized using the SPG metamodel (see Figure 8), state machines

36 DÁNIEL LUKÁCS AND MELINDA TÓTH

RefactorErl SPG

SPG.ecore

SPG analysis

FSM.ecore

UML.ecore

Triple graph grammar

Triple graph grammar

myProgram.spg

myProgram.fsm

myProgram.uml

Figure 1. Transformation pipeline refining Erlang state ma-
chines to high-level UML models

are represented internally using the FSM metamodel (see Figure 2), and the
output state machines are formalized in UML.

As it is conventional in model-driven engineering (e.g. in UML and EMF
Ecore), we formally represent models using typed attribute graphs [7], where
nodes and edges are mapped to types and unique key-value stores.

2.1. Internal program representation of RefactorErl. The RefactorErl
analysis framework stores all information it gathers about Erlang programs via
static analysis in a special data structure, called the semantic program graph
(SPG) [11]. In this paper, we show how the SPG can be transformed into a
state machine, which corresponds to the original state machine described by
the original Erlang source code.

The first step in the transformation pipeline is the transformation of the
RefactorErl SPG into an SPG model (a highly detailed view of the source
program), which can be then transformed into a state machine model (a more
abstract view of the source program) using standard model transformation
tools. A diagram of our SPG metamodel can be found in our earlier work [15],
and it also is depicted by Figure 8. During the transformation, we have to
perform semantics queries, dataflow analysis and dynamic function call analysis

TGG BASED ERLANG STATE MACHINE TRANSFORMATION 37

provided by RefactorErl [20, 19, 10], and encode the results in the model. This
way we avoid re-implementing RefactorErl static analysis facilities for models.

Figure 2. Metamodel for representing state machine models
so they can be easily translated to UML

2.2. A metamodel for describing abstract state machines. In this sec-
tion we will describe a simple state machine metamodel, already published
in our earlier work [15], and depicted by Figure 2, with which we represent
the target state machines of the transformation. We showed in [14] how this
metamodel (and its instances) can be mapped onto the UML state machine
metamodel (and its instances). This intermediate state machine language
explicitly highlights the elements we utilize from UML. For implementation
purposes, the intermediate state machine can be omitted altogether, by sub-
stituting the UML state machine element descriptions for the corresponding
elements in our notation.

2.3. Triple graph grammars. The pipeline also includes two model trans-
formation steps expressed using triple graph grammars (TGGs). The term
graph grammar is a synonym for graph rewriting system (GRS), where the
term grammar signifies the intent of language generation as opposed to e.g.
program evaluation with graph reduction. TGGs constitute a special class
of graph grammars, where the graph is a triple graph (TG): a side-by-side
representation of two models with correspondence nodes connecting them. We
may consider the correspondence nodes as hyperedges that connect multiple
source and target nodes.

The domains given by the metamodels of the source and target models, plus
the domain of the correspondence graph always partitions the node and edge

38 DÁNIEL LUKÁCS AND MELINDA TÓTH

:Root

m:Module

name

:module

:RootToStateMachine
:StateMachine

name = m.name

:InitState

(a)

:Module

name = "id_validator"

fn:Func

:func

:RootToStateMachine

:CbToState

tupleFound = false

Set{"init"
 ,"handle_info"
 ,"handle_event
 ,"handle_sync_event"
 ,"code_change"
 }->includes(fn.name)

:InitState

:State

name = fn.name

:ChoiceState

name = fn.name

:ch

(b)

:AtomExpr

fn:Func

name

:funref

:Conn

tupleFound=true

:CbToState

tupleFound=false

:Transition

:State

name = fn.name

:Transition

:ChoiceState

name = fn.name

:cbRet

:endpoint

:ch

(c)

tuple:TupleExpr

expr:AtomExpr

value = "stop"

:esub

:CbMultiFunClauseConn

tupleFound=false

:TupleStop

tuple.esub->indexOf(expr)=1

:Transition

:StopState

:Transition

:cbRet

:endpoint:tuple

(d)

tuple:TupleExpr

:Func

expr1:AtomExpr

value

:esub

expr2:AtomExpr

value

:esub

:Conn

tupleFound=false

:TupleConn

tupleFound=true

:parentFunc

Set{"next_state"
 ,"ok"
 ,"reply
 }->includes(expr1.value)

:Transition

:Transition

:cbRet

:parentFunc :cbRet

tuple.esub->indexOf(expr1)=1

(expr1.value = "reply"
 and
 tuple.esub->indexOf(expr2) = 3)
or
(expr1.value <> "reply"
 and
tuple.esub->indexOf(expr2)=2)

(e)

:Func

form:Form

:def

corr1:CbToState

tupleFound

cl:Clause

:funcl

p:Pattern

stringRep

:patt

expr:Expr

:body

:CbSingleFunClauseConn

tupleFound=corr1.tupleFound

:State

:ChoiceState

:Transition

trigger = p.stringRep

:Transition

guard = cl.appliedCbGuard()

:ch

:parentFunc

:cbRet

cl.pattern->indexOf(p)=1

form.funcl->size()=1
or
form.hasUniqueEvent(cl)

cl.isLastBody(expr)

(f)

Figure 3. Example TGG transformation system

set of both data and rules TGs into three disjunct partitions: the source, the
target, and the correspondence domains.

A TGG consists of two kinds of rules: axioms and production rules. TGs
are generated recursively by first acquiring an initial TG using the axiom, and
then applying the production rules first to the initial TG and then to successive
TGs to acquire the final TG. As in GRSs, the left-hand side (LHS) of TGG

TGG BASED ERLANG STATE MACHINE TRANSFORMATION 39

production rules is matched using graph matching to a TG redex and the
matched values are substituted in the right-hand side (RHS) variables. The
resulting concrete RHS is then substituted in place of the redex. We say that
an element is bound if it was already matched or replaced at least once during
the transformation, otherwise we say it is unbound.

In this paper, we use a concise notation for diagrammatically representing
TGG rules using diagrams (see Figure 3). As side-by-side representation of
LHS and RHS usually includes large number of identical nodes, we merge
the two in one diagram and use color coding to keep the two comparable.
White elements (called context elements) appear on both LHS and RHS, so
these are “read-only” elements, that are matched and left unchanged. Context
elements can be matched both to bound and unbound elements in the data TG.
The meaning of green elements depends on whether they occur in the source
domain, or not. In the source domain they denote context nodes, that can
only be matched to unbound elements (thus preventing infinite applications of
the same rule to the same contexts). In other domains they denote RHS-only
elements (called product elements): instead they are instantiated when the
LHS matches.

The application semantics of axioms are identical to those of production
rules, but axioms never contain context nodes. This guarantees that axioms
are always matched and applied before production rules.

Reusable elements denoted by the color gray (see e.g. Figure 3f) can be
matched both to bound and unbound elements in the data TG, but if such a
match does not exist, then these elements are created in the data TG.

Most TGG formalisms also allow rules to be accompanied by OCL constraints.
These are boolean expressions pertaining the attributes and values of the
matched nodes. If a rule is successfully pattern matched, then the OCL
constrains are evaluated and the match will be accepted based on whether the
expression is satisfied or not.

2.4. Transformation system. In this section, we present a small, simplified
subset of our TGG transformation system that transforms model SPGs of
gen_fsm programs to state machine models. This rule set was included only to
illustrate and to aid in the comprehension of Section 3. To develop a TGG rule
set that assumes full coverage of the Erlang language, various problems had to
be solved: propagation of state between rule applications, transforming parallel
paths in the graph, transforming nodes with arbitrary number of incoming or
outgoing edges, transforming recursively nested expressions.

As it is difficult to demonstrate all these problems in a small example,
we avoided the discussion of related details in the rules not occurring in the
example. We detail in [14] the whole set consisting of 32 rules, of which the

40 DÁNIEL LUKÁCS AND MELINDA TÓTH

largest one has 16 nodes. According to [12] practical TGGs have in average
15-20 rules, with 10-40 nodes each. The larger number of rules in our case
is explained by the number of types and syntactic categories in the Erlang
language.

As the rules in the system have disjunct LHSs and/or mutually exclusive
OCL constraints, the system is guaranteed to be deterministic.

Figure 3a depicts an axiom rule. In the source domain, it matches in the data
TG the bound SPG root node and module node implementing the gen_fsm
behavior. It then generates and binds in the TG the root node of the state
machine and a globally unique initial state, and a correspondence node between
the source and target elements. The name attribute of the module will also be
matched to a value, and the state machine will be created with its own name
attribute set to this value.

The production rule in Figure 3b matches the SPG nodes of the initial
gen_fsm callback functions and creates a state for each of them, and a transition
into this state from the initial state. The name of the new state will be set to
the name of the matched function.

The transformation traverses the SPG model starting from the initial func-
tions and identifies next states in the function return values. As transition
functions bear the name of their source state, we can now identify the transition
function to traverse next. The leaves of the search tree are stop states and
already bound states.

Figure 3c illustrates the identification of new functions, assuming we already
matched the atom in the predecessor functions return value. It is similar to
Figure 3b, but we expect the tupleFound attribute of the correspondence node
to be true: this signifies that the atom in question is part of the expression tree
headed by a tuple. Successive correspondence nodes will have their tupleFound
attribute set to false again, as from here on we will analyse the body of another
function.

Figure 3d introduces a stop state if the return value of the transition function
is a tuple whose first element is the atom stop.

If the first element is not the stop atom, Figure 3e enables the traversal
of the expression tree of the second tuple element by rules specific to Erlang
expression types. It also sets tupleFound to true to allow Figure 3c to match
when an atom is found. To keep the rules simple we omitted the case where
the first element of the tuple is an unreduced expression, but this case can be
handled similarly.

As most functional languages, Erlang also allows functions to have multiple
clauses. When gen_fsm transition functions have multiple clauses, each clause

TGG BASED ERLANG STATE MACHINE TRANSFORMATION 41

may declare transitions into different states, therefore in such cases, we intro-
duce a ChoiceState for each event handled by the function. Clause conditions
(expression patterns and guards) will be mapped to guards of the transitions
commencing from the ChoiceState. On the other hand, when a transition
function has only one clause, we do not want to introduce a ChoiceState, as
it would only have a single transition. Figure 3f introduces a rule for handling
function clauses which have a unique state machine event pattern (this includes
clauses that are entirely single).

-module(id_validator).
-behavior(gen_fsm).

init(_) ->
{ok, pos1, []}.

terminate(_, _,_) -> ok.

pos1($\n, _, _) -> {stop, normal, {[], reject}, []};
pos1(X, _, _) ->

case alpha(X) of
true -> {reply, {[X], step}, posOther, []};
false -> {stop, normal, {[X], reject}, []}

end.

posOther($\n, _, _) -> {stop, normal, {[], accept}, []};
posOther(X, _, _) ->

case (alphanumeric(X) or X == $_) of
true -> {reply, {[X], step}, posOther, []};
false -> {stop, normal, {[X], reject}, []}

end.

(a)

1

\n 2

[A-z]

\n

[A-z0-9_]

(b)

Figure 4. Source code and schematic diagram of the Erlang
state machine that accepts the language of identifiers

3. Demonstration

The goal of this section is to demonstrate the example transformation
system on a small Erlang state machine. To keep the example system and the
demonstration section small and concise, we only transform the first part of
the model SPG of this program. We included a trace of the transformation of
the full syntax tree in [14].

Figure 4a depicts the code of an Erlang gen_fsm state machine that accepts
the language of identifiers, i.e. those words (event sequences) that start with a
letter and continue either with letters, numbers, or underscores (see Figure 4b).
Initially, the gen_fsm behavior first executes the init/1 function, and sets

42 DÁNIEL LUKÁCS AND MELINDA TÓTH

the current state to the state name (pos1) inside the tuple returned by this
function. When an event is sent to the state machine, the gen_fsm behavior
will evaluate the transition function corresponding to the current state (pos1/3)
and now in turn sets the current state to the return value of this function. The
state machine stops (and either rejects or accepts the event sequence received
beforehand) when one of the transition functions return a tuple with the (stop)
atom.

Figure 5 depicts the transformation trace, i.e. the triple graph resulting
from applying the transformation system in Section 2.4 to the model SPG
of this program. Nodes not featured in the final result were omitted for the
sake of simplicity. The left-hand side of the TG stores the original model SPG
unchanged, while the right-hand side stores the resulting state machine. In
middle, the correspondence graph tells us the history (i.e. the rule application
sequence) of the transformation.

First, the axiom rule (Figure 3a) was the only rule that could have been
matched to the root node, and thus the state machine root was created. Next,
the rule in Figure 3b is matched, as init/1 is part of the five callback functions
expected by the gen_fsm behavior specification. We handle these functions
similarly to transition functions, and therefore we create a special state for
init/1 too. On the only function clause, the rule in Figure 3f is applied. This
rule selects the last expression of the function body and assigns a transition
corresponding to this clause. The transition will be labeled by the wildcard
trigger which is the first parameter pattern of the clause. As the selected
expression may be nested, further rules must be applied to find the name of
the next state in this expression. In the current case, the expression is a tuple
and matches the rule in Figure 3e, since the first element of the tuple is the
atom reply and its third element is an atom. The tupleFound attribute of the
correspondence node is set, so that rules aimed to match only subexpressions
of the tuple may match. And indeed, the rule in Figure 3c matches: it finds
that the third element of the tuple is the atom pos1, and thus it binds the
node representing the transition function pos1/3 and creates the corresponding
state.

As pos1/3 has two clauses the rule in Figure 3f matches both. In the case,
where the event is the end-of-line character, the result is a tuple with the stop
atom as its first element, thus the rule in Figure 3d matches and creates a
stop state. The last expression of the other clause is a branching expression.
A choice state will necessarily correspond to these expressions, and then each
branch will have a corresponding transition from the choice state. For brevity,
we omitted the rules needed to perform these transformations, along with the
rest of the trace. Both can be found in [14].

TGG BASED ERLANG STATE MACHINE TRANSFORMATION 43

:Root

:Module

name = "id_validator"

:module

:RootToStateMachine

:Func

name = "init/1"

:func

:Func

name = "pos1/3"

:func

:Form

:def

:CbToState

:Clause

:funcl

:WildcardPatt

:patt

:TupleExpr

:body

:AtomExpr

value = "reply"

:esub

:AtomExpr

value = "pos1"

:esub

:CbSingleFunClauseConn

:funref

:TupleConn

:Form

:def

:CbToState

:Clause

:funcl

:Clause

:funcl

:CharPatt

stringRep ="\n"

:patt

:TupleExpr

:body

:AtomExpr

value = "stop"

:esub

:Variable

stringRep ="X"

:patt

:CaseExpr

:body

...

:exprcl

...

:exprcl

:StateMachine

name="id_validator"

:InitState

:State

name = "init/1"

:Transition

trigger = _

:State

name = "pos1/3"

:Transition

trigger = "\n"

:Transition

trigger = X

:StopState

:ChoiceState

... ...

:CbSingleFunClauseConn

:CbSingleFunClauseConn

:TupleStop

:BranchingExprToChoice

...

Figure 5. Partial trace of the transformation applied to the
SPG of the Erlang state machine in Figure 4a

The final result of the transformation (including the translation between our
abstract state machine metamodel and UML) is shown by Figure 6 visualized
by txtUML [6].

44 DÁNIEL LUKÁCS AND MELINDA TÓTH

Figure 6. The final UML state machine resulting from the
transformation of the Erlang state machine in Figure 4a

4. Evaluation

In this section, we discuss and evaluate our implementation of the approach
presented in this paper for transforming Erlang state machines to UML. As a
superset of the small example transformation system introduced earlier, our
implementation consists of 32 rules, of which the largest one has 16 nodes, and
in our experience it is capable of transforming arbitrary Erlang state machines
implementing the gen_fsm behavior. This larger system is detailed in [14].

In the implementation, we used the RefactorErl framework and its seman-
tic query, dataflow analysis, and dynamic function call analysis facilities to
construct the model SPG in EMF Ecore. We implemented the TGG trans-
formation system in the TGG Interpreter [8] tool, as it supports custom
correspondence metamodels, OCL constraints, and reusable nodes. Finally, we
used the txtUML [6] framework to visualize UML state machines.

For evaluating the implementation we select state machine modules from
large, open source Erlang projects: the Ejabberd communication server, the
Riak distributed NoSQL database, and the Erlang OTP library. The UML
state machine model resulting from the transformation of a smaller module is
depicted in Figure 7. For each module, we list the number of lines of code, the
average, variance, median, and extrema of required time (in miliseconds) for
performing the transformation based on 10 measurements, and the number of
states and transitions in the result. States include choice states and entry and
exit states, so the number of states and transitions in the model may exceed

TGG BASED ERLANG STATE MACHINE TRANSFORMATION 45

the actual number of states in the original Erlang state machine. Time values
only concern the transformation of SPG metamodel instances to abstract state
machine metamodel instances. The time needed to load the Erlang application
in RefactorErl is mostly independent of the state machine module, as in most
cases its (often much larger) dependencies also have to be loaded. In our
experience, the time needed to translate abstract state machines to UML was
negligible compared to the SPG transformation.

Module LoC #States #Transitions Avg (ms) Var (ms) Med (ms) Min (ms) Max (ms)
Ejabberd

ejabberd_c2s 3128 46 90 31614.7 9504.77 28402.0 22933 47799
ejabberd_http_bind 1236 22 23 26350.2 7598.95 23545.0 21857 47411
ejabberd_http_ws 355 14 13 4924.8 429.09 4742.5 4543 5879
ejabberd_odbc 692 7 10 3128.3 185.25 3109.5 2827 3498
ejabberd_s2s_in 712 34 48 22819.6 3478.57 22498.0 17400 29095
ejabberd_s2s_out 1367 80 104 75686.1 6822.30 73770.0 65274 86216
ejabberd_service 404 22 23 17991.3 3778.44 17035.0 13501 24403

eldap 1196 19 32 27353.0 7569.92 25156.5 21774 47353
mod_irc_connection 1581 26 25 28931.5 9540.48 24327.0 18330 40679
mod_muc_room 4501 32 73 37370.5 7095.74 36863.0 29746 52170

mod_proxy65_stream 291 29 32 14975.9 3016.94 13558.0 12955 22192
mod_sip_proxy 458 19 24 10418.7 1423.34 10162.5 8329 12292

Riak
riak_kv_2i_aae 695 15 22 11688.4 2191.49 10927.0 10183 17181
riak_kv_get_fsm 787 16 16 5521.9 1408.34 4878.0 4324 8377
riak_kv_put_fsm 1055 25 39 12630.0 1822.41 12816.0 10862 16779
riak_kv_mrc_sink 439 14 23 7795.4 1302.02 7417.0 6455, 10546

Erlang OTP
ssh_connection_handler 1721 42 65 67467.6 3578.80 66465.5 63174 73920

tls_connection 975 61 80 56788.5 3906.75 55821.5 50383 63514

Table 1. Runtime evaluation results
The time needed weakly positively correlates with the number of lines of code

(LOC). We can explain this by assuming that more complex state machines
also need more time to be processed, and complexity grows linearly in the best
case (exponentially in the worst case) with the depth of Erlang expressions (e.g.
larger call chains), which in turn may correlate with the LOC. And indeed,
based on Table 1, transformation time grows linearly with the number of states
in the state machines. Future work may consider more elaborate source code
and model metrics to provide better estimates of transformation time and
output.

Comparing the time demand of the TGG approach to our less formal, more
implementation-centered approach in [15], we can conclude – based on the
performance of the current implementation and TGG Interpreter – that the
price of the formal guarantees provided by TGGs is the decreased runtime
efficiency of the transformation. Still, we believe the advantages provided by
TGGs make this approach superior, especially as a reference implementation,
that can be used as a foundation for later optimizations.

46 DÁNIEL LUKÁCS AND MELINDA TÓTH

5. Related work

This work is the continuation of our earlier research published in [15]. There,
we present a less formal approach to automatically generate UML models from
Erlang state machines. The algorithm presented there is an extended depth
first search that selects the neighbouring nodes to discover based on predefined
rules, while it simultaneously constructs the output state machine. While this
procedure was more efficient, it lacked several features TGG promises for future
research: verification of transformation properties, model executability, and
model synchronization. We intend this current paper as a foundation to realize
these features.

One work with similar goals is Erlesy [1], a readily usable, lightweight
solution to visualize Erlang state machines in various output formats, like
Graphviz, PlantUML or D3.js. Unlike our approach, Erlesy uses loop edges to
model the handle callbacks of the gen_fsm specification: an advantage of this
approach is that it follows gen_fsm semantics more closely, a disadvantage is
that it inevitably clutters the resulting state machine graphs with loop edges.

There is also a mature methodology for discovering deterministic finite
state machines using dynamic code analysis, called state machine induction
and behavioral inference. Procedures applying this methodology execute the
analysed program based on specific use case scenarios (e.g. a sequence of
function calls), and collect information to generate a state machine model. The
Erlang language is also well suited for this task due to its statelessness and
advanced program execution tracing facilities [5].

To implement the transformation system introduced in this paper, we used
the TGG Interpreter [8] tool. A survey of various TGGs can be found in [9],
that compares MoTE, eMoflon and TGG Interpreter regarding their usability,
expressivity and provided formal guarantees. All three tools are based on the
EMF framework [2]. Other related tools are Henshin-TGG, EMorF, and OMG
QVT.

6. Conclusions and Future Work

In this work, we presented an approach to transform Erlang state machines
into high-level state machine models represented in UML using triple graph
grammars. For demonstrating this approach, we provided an example trans-
formation system, which we used to explain basic ideas about the semantics
of triple graph grammars and the core problems regarding transformation of
Erlang syntax trees to high-level state machine models. For the full system
consisting of 32 TGG rules, we referred the reader to our earlier technical
report. Our implementation of the system used the static analysis facilities of
the RefactorErl framework to construct the model SPG in EMF Ecore, and we

TGG BASED ERLANG STATE MACHINE TRANSFORMATION 47

implemented the transformation system in the TGG Interpreter tool. We also
evaluated the results and efficiency of this implementation.

One certain use case for a tool generating high-level models from code is
automatic documentation generation, but TGGs promise possibilities way
beyond that. Future research may consider the possibilities of developing a
system for reverse transformation to achieve executable UML state machines.
A bidirectional TGG system may make automatic synchronization of code and
documentation possible and open up the way for round-trip editing to enable
development on the most adequate abstraction level.

As TGGs are a special kind of graph rewriting systems, they may have the
same properties formally proved for them, such as correctness, completeness,
determinism, and confluence. To enable automatic verification of the result-
ing documentation artifacts, future research may also set out to prove the
transformation system introduced in this paper.

References

[1] Visualising Erlang development . https://github.com/haljin/erlesy.
Accessed: 2016-06-30.
[2] Eclipse Foundation. Eclipse Modeling Framework (EMF). https://
eclipse.org/modeling/emf/. Accessed: 2015.11.30.
[3] Object Management Group. OMG Meta Object Facility (MOF) Core
Specification. http://www.omg.org/spec/MOF/. Accessed: 2015.11.30.
[4] Object Management Group. OMG Unified Modeling Language Superstruc-
ture. www.omg.org/spec/UML/. Accessed: 2016-06-30.
[5] Arts, T. and Holmqvist, C. In the need of a design... reverse engineering
Erlang software. 10th International Erlang User Conference, EUC. 2004.10.
[6] Dévai, G., Kovács, G. F., and Ancsin, A. Textual, executable, translat-
able UML. Proceedings of 14th International Workshop on OCL and Textual
Modeling co-located with 17th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS 2014) Valencia, Spain, September
30, 2014., pages 3-12.
[7] Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. (2006). Fundamentals
of Algebraic Graph Transformation (Monographs in Theoretical Computer
Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus, NJ,
USA.
[8] Greenyer, J. and Rieke, J. (2012). Applying advanced tgg concepts for a
complex transformation of sequence diagram specifications to timed game
automata. In Schürr, A., Varró, D., and Varró, G., editors, Applications
of Graph Transformations with Industrial Relevance, pages 222–237, Berlin,
Heidelberg. Springer Berlin Heidelberg.

48 DÁNIEL LUKÁCS AND MELINDA TÓTH

[9] Hildebrandt, S., Lambers, L., Holger, G., Rieke, J., Greenyer, J., Schäfer,
W., Lauder, M., Anjorin, A., and Schürr, A. (2013). A Survey of Triple Graph
Grammar Tools. In Bidirectional Transformations, volume 57, pages 1–18.
EC-EASST.
[10] Horpácsi, D. and Kőszegi, J. (2013). Static analysis of function calls in
erlang. e-Informatica Software Engineering Journal, 7:65–76.
[11] Horváth, Z., Lövei, L., Kozsik, T., Kitlei, R., Víg, A. N., Nagy, T.,
Tóth, M., and Király, R. (2009). Modeling semantic knowledge in Erlang for
refactoring. In Knowledge Engineering: Principles and Techniques, Proceedings
of the International Conference on Knowledge Engineering, Principles and
Techniques, KEPT 2009, volume 54(2009) Sp. Issue of Studia Universitatis
Babeş-Bolyai, Series Informatica, pages 7–16, Cluj-Napoca, Romania.
[12] Kindler, E. and Wagner, R. (2018). Triple graph grammars: Concepts,
extensions, implementations, and application scenarios.
[13] Logan, M., Merritt, E., and Carlsson, R. (2010). Erlang and OTP in
Action. Manning Publications Co., Greenwich, CT, USA, 1st edition.
[14] Lukács, D. (2016). Erlang állapotgépek modell alapú és transzformációja
UML-re. Scientific Students’ Associations Conference, ELTE, Budapest,
Hungary.
[15] Lukács, D., Tóth, M., and Bozó, I. Transforming Erlang finite state
machines. In CEUR Workshop Proceedings 2046: pp. 197-218. (2018) Pro-
ceedings of the 11th Joint Conference on Mathematics and Computer Science
(MACS16). Eger, Hungary, 20-22 May, 2016.
[16] Samek, M. (2009). Practical UML Statecharts in C/C++: Event-Driven
Programming for Embedded Systems. Electronics & Electrical. Taylor &
Francis.
[17] Schürr, A. (1995). Specification of graph translators with triple graph
grammars, pages 151–163. Springer Berlin Heidelberg, Berlin, Heidelberg.
[18] Tóth, M. and Bozó, I. (2012). Static Analysis of Complex Software Systems
Implemented in Erlang. In Central European Functional Programming School,
volume 7241 of Lecture Notes in Computer Science, pages 440–498. Springer.
[19] Tóth, M., Bozó, I., Horváth, Z., and Tejfel, M. (2010). First order flow
analysis for Erlang. In Proceedings of the 8th Joint Conference on Mathematics
and Computer Science (MACS), ISBN:978-963-9056-38-1.
[20] Tóth, M., Bozó, I., Kőszegi, J., and Horváth, Z. Static Analysis Based
Support for Program Comprehension in Erlang. In Acta Electrotechnica
et Informatica, Volume 11, Number 03, October 2011. Publisher: Versita,
Warsaw, ISSN 1335-8243 (print), ISSN 1338-3957 (online), pages 3-10.

TGG BASED ERLANG STATE MACHINE TRANSFORMATION 49

7. Appendix

Figure 7. The final UML state machine resulting from the
transformation of the mod_proxy65_stream state machine in
Ejabberd

50 DÁNIEL LUKÁCS AND MELINDA TÓTH

Figure 8. Metamodel for representing RefactorErl semantic
program graphs as models

Eötvös Loránd University, Budapest, Hungary
Email address: {dlukacs,tothmelinda}@caesar.elte.hu

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 1, 2018
DOI: 10.24193/subbi.2018.1.04

DETECTING BINARY INCOMPATIBLE SOFTWARE

COMPONENTS USING DYNAMIC LOADER

ÁRON BARÁTH AND ZOLTÁN PORKOLÁB

Abstract. Modern programming languages support modular develop-
ment dividing the system into separate translation units and compile them
individually. A linker is used then to assemble together these units either
statically or dynamically. This process, however, introduces implicit de-
pendences between the translation units. When one or more units are
modified in inconsistent way binary incompatibility occurs and may result
in unexpected program behavior. Current mainstream programming lan-
guages neither specify what are the binary compatibility rules nor provide
tools to check them.

In this paper we discuss the details of various cases of binary incom-
patibility. We implemented a prototype solution in the Welltype program-
ming language to detect binary compatibility by dynamic loader.

1. Introduction

Most of the modern programming languages provide some way for modular
development. Program code is usually written into separate source files and
compiled individually. These are so called translation units [1] then organized
into higher abstraction packages, modules or libraries. The separation level of
the compilation of these translation units are vary in different programming
languages. The Java language [2] requires the proper setting of the CLASSPATH
environment variable to make connection between translation units. In C and
C++ languages [3, 4] usually the header files included to multiple translation
units provide the consistency.

Received by the editors: March 31, 2018.
2010 Mathematics Subject Classification. 68N15.
1998 CR Categories and Descriptors. D.3.3 [Software]: PROGRAMMING LAN-

GUAGES – Languages Constructs and Features;
Key words and phrases. programming language, linking, binary compatibility.
This paper was presented at the 12th Joint Conference on Mathematics and Computer

Science, Cluj-Napoca, June 14-–17, 2018.
This work is supported by the European Union, co-financed by the European Social

Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

51

52 ÁRON BARÁTH AND ZOLTÁN PORKOLÁB

To create an executable code, the individually compiled translation units are
assembled into an executable program. For classical programming languages
like C, C++, Fortran, etc. where the compilation step results machine specific
binary code, some kind of linker [5, 6] connects the translated units. This can
happen either statically, where the assembled units form a unified entity, or
dynamically, when the necessary code is collected only in run-time. Modern
software systems tend to use the dynamic approach [7, 8] as it results smaller
binary code and faster compile/link time.

For programming languages using some virtual execution environment, e.g.
the virtual machine in Java, the run-time environment provides the proper
connection between the units.

There are a number of advantages of this code organization: programmers
can work on individual source files with minimal interference. Libraries cre-
ated from a set of translation unit form reusable subsystems. Compilers can
better localize the possible issues when translate the source code. On incre-
mental development only the modified code should be recompiled thus the
development time is shorter.

Although the translation units are compiled individually, in many cases
there are implicit dependences between them. One unit can use variables
or functions defined in some other unit. Objects are defined in one unit as
instances of types defined in an other unit. When one or more components are
changed most programming languages require full recompilation of the system
to ensure the complete consistency between the units. In practice, however,
the full recompilation of the system is rarely the case.

This paper is organized as follows. In Section 2 we overview how the current
mainstream languages support binary compatibility. In Section 3 we describe
a typical industrial scenario to point to the importance of the binary compat-
ibility and its verifiability. In Section 4 we introduce our prototype solution
for the problem in the Welltype experimental programming language. We
evaluate this approach in Section 5. We briefly discuss our future plans in
Section 6. Our paper concludes in Section 7.

2. Related work

Binary compatibility is an issue poorly recognized by language designers,
but can cause serious headache for maintainers of large software projects.
When already compiled clients are linked against different versions of libraries,
incompatible library versions can cause the client code to crash or even worse,
to running in undefined way. This problem frequently occurs with C/C++
programs using dynamic libraries, but the issue is not limited to C++, also

DETECTING BINARY INCOMPATIBLE SOFTWARE COMPONENTS 53

happens in Java and other languages. Welltype deeply validates modules to
link and forbids incompatible usage.

A classical solution to create binary compatible versions for classes is using
the handle-body programming pattern [9]. In C++ this is frequently called
as the PIMLP pattern and implemented as a single private data member –
a smart or raw pointer – referring to an implementation class written in a
separate translation unit. As the evolution of the class is reflected in changes
only of the implementation, the object layout of the original class used by the
clients never changes. On the negative side of this solution we usually have
to allocate the implementation class on the heap which may result run-time
overhead.

In C and C++ the GNU compiler team developed a solution [10, 11, 12]
to append version number to symbols in the ELF (Executable and Linkable
Format) [13, 14] files. These informations later can be used by the static or
dynamic linker. This solution might be useful to detect some sort of binary
incompatible components.

Even the Java programmers must be aware binary compatibility, although,
the Java language is not known about program crashes due to binary incom-
patible components. The binary compatibility has an own chapter in the Java
Language Specification [15], suggesting the importance of this topic. The
chapter detailing what will produce a binary compatible output, and what
are the traps. To understand the importance of binary compatibility in Java
programs, we must take a closer look to the problems caused by library up-
grades [16]. Another example – which is related to library upgrades – is when
a refactoring is made [17].

Apart Welltype, other languages were developed to be aware of binary com-
patibility. ZL is a C++ compatible language in which high-level constructs,
such as classes are defined using macros over a C-like core language [18]. This
approach makes many parts of the language easily customizable, e.g. the pro-
grammer can have complete control over the memory layout of objects. Using
this capability, one can develop binary compatible new versions of ZL language
objects.

3. Motivation

Suppose, we have a large software system, implemented in an object-oriented
programming language, like C++. Here, many of the subcomponents of the
system, like networking, logging, database connections, etc. are implemented
as classes or a group of classes placed into libraries. Each of these subcom-
ponents have their own maintenance cycle: they evolves implementing new
features, are changed due to bug fixes or performance improvements. If the

54 ÁRON BARÁTH AND ZOLTÁN PORKOLÁB

system is large enough, it is not realistic to recompile the whole system when
one or more subsystems have changed.

In the industry a typical solution is the following. Each subsystem is imple-
mented in separate translation units and compiled into dynamically loadable
libraries (e.g. DLLs in Windows, shared objects in UNIX systems). The pub-
lic interface of the subsystems are exposed in header files. Applications are
using this common header files via the #include preprocessor directive. The
applications also using the implementation of the subsystems picking the cor-
responding dynamically loadable libraries in run-time when the application
starts.

This scenario allows a relatively good opportunity to maintain even large
systems. When any of the subsystems requires changes for maintenance pur-
poses it is enough to change and recompile the one in question. Replacing the
old .DLL or .so with the new version the changes will be enabled for the ap-
plications on their next start. However, this upgrade scenario does not allows
changes on the interface of the subsystems. Any time the public interface of
a subsystem changes, applications using it should be recompiled.

Unfortunately, not changing the public interface does not guarantee the
binary compatibility of the system components. The C++ programming lan-
guage uses value semantic, i.e. objects are mapped into bytes in memory
directly instead of being represented by some reference which points to heap
allocated memory (like Java does it). Every time we declare a variable of a
type we allocate the corresponding number of bytes. Client code using that ob-
ject is directly compiled to utilize size, and offsets corresponding the object’s
known layout. Changing the layout, e.g. adding a new (non static) member
to a class or changing existing ones brakes these assumptions. To avoid in-
consistency between the object’s actual layout and the layout known by the
already compiled clients we should apply only binary compatible changes.

What is a binary compatible change is very hard to decide. Language
specifications, like the ISO C++ standard [19], do not even mention binary
compatibility. Subtle changes, like making an existing member function virtual
or adding a new exception may brake compatibility. Experts are collecting
traps and pitfalls [20, 21, 22], but those are specific to platform, compiler or
even compiler flags to set optimization level. At the moment there are no
reliable tool or method to check whether a new library is binary compatible
with its previous version.

Nowadays, the programs are stored in well-known binary formats, and the
used format varies through operating system. For example, modern Unix and
Linux systems use the ELF [13, 14] format (Executable and Linkable For-
mat) since the nineties. Windows systems use the PE [23] format (Portable

DETECTING BINARY INCOMPATIBLE SOFTWARE COMPONENTS 55

Executable). The common in these formats that they provide symbol sharing
across dynamic libraries and other programs. The mechanism is unfortunately
is too simple to provide possibility to detect binary incompatibility. The C-
style linkage consists of basically just function names without any additional
information. The C++-style linkage, however, uses mangled names which en-
capsulates additional information about the function: encodes the type names
of the arguments, including namespaces and templates.

4. Welltype Dynamic Loader

As we seen above, binary compatibility is really an issue in long-term devel-
opment. The incompatibilities can cause the program to crash or, even worse,
miscalculations that break invariants. Thus, programmers must take actions
to avoid such incompatibilities. While in the current, mainstream program-
ming languages only conventions can get rid of binary incompatibilities, the
Welltype language explicitly and strictly specifies the binary compatibility.

The Welltype language [24, 25, 26] is an imperative programming language,
designed to be safe: strict syntax and strong type system. While the Welltype
language is safe, it is still feature rich – supports algebraic data types. Welltype
programs can be dynamically linked, performed by the dynamic loader.

The Welltype Dynamic Loader will validate whether the program to be
loaded meets the already loaded restrictions. If the loader finds a program is
binary incompatible, then it will be refused from loading.

In order for the dynamic loader to be capable to make decision like that,
programs must define their public interface: what elements they require and
what elements they publish into the environment. These elements can be
types, functions, operators, etc. Note that this is a notable difference from
the standard ELF or PE formats, where only the function symbol names are
stored, and everything else is assumed. However, this applies mainly to the
C language, because the C++ symbols contain more information, even type
names, since it is required to resolve function overloads.

The Welltype specification states that all external references must be ex-
plicitly indicated, the source code must contain what elements needs to be
imported. These references are used twice: First, during the compilation to let
the compiler know what undefined but declared elements can be used. Second,
during the dynamic linking to bind the externals to the program. After all
externals are bound, the program can be executed. Naturally, the indicated
externals will be part of the compiled program if they actually referenced –
the unreferenced externals will be ignored.

On the other hand, any program can export a set of elements into the
runtime environment. These exported elements later can be used by other

56 ÁRON BARÁTH AND ZOLTÁN PORKOLÁB

programs. The one definition rule [27] – which is a basic concept of the Well-
type language – cannot be violated when exporting functions into the runtime
environment. This rule will specify a loading order among the programs, since
no program can actually import an undefined element.

The importance of the one-definition rule can be easily understood. It
is trivial to define two functions with the same signature while their imple-
mentation is different. In order to use the same implementation by all the
loaded programs, it is mandatory to enforce this rule. Note that, however,
it is not required to load one specific implementation into the environment.
This dynamic mechanism allows to load different implementations to the same
program – while the signatures are match.

The loading procedure will process all export and import sections, in the
order specified in the program binary. The algorithm used to export elements
is the following:

procedure export_element(environ, program, elem)

if not element_is_exported(environ, elem) then

if element_is_function(elem) then

error: one definition rule violated

end if

end if

rep := build_representation(program, elem)

register(environ, rep)

end procedure

The algorithm used to import elements is a bit more complicated but straight-
forward:

procedure import_element(environ, program, elem)

rep := find_element_by_primary_attr(environ, elem)

if rep is NIL then

error: unresolved external

end if

if not element_is_compatible(elem, rep) then

error: element is incompatible

end if

write_import_info(program, elem, rep)

add_reference(program, rep)

end procedure

The mentioned primary attributes are unique to all elements described in
Section 4.1.

DETECTING BINARY INCOMPATIBLE SOFTWARE COMPONENTS 57

4.1. Elements in the binary interface. The concept of the binary interface
consists of the following elements: function signatures, operators, exceptions,
and the types.

The mentioned function signature – as expected – take part in the binary
interface. The function signature used in the binary consists of

• the name of the function, which is almost a custom zero-terminated
string with lesser exceptions;

• the number of argument;
• the exact types of all the arguments;
• the number of return values;
• the exact types of all return values;
• the pure attribute
• and (in case of export) the address of the entry point of the function.

If the signatures match, the loader assumes they functions are binary com-
patible. The current version of the Welltype language does not specify other
attributes to identify a function. This specification might looks inadequate,
but the strength of the dynamic loader (and the Welltype language itself) are
the types.

Primary attributes of the function signature are: name, number of argu-
ment, and the types of the arguments. This is similar to the C++ language,
because this is the minimal information required to resolve function overloads.

The mentioned exact types in the listing above refers to the in-depth type
matching. The binary interface must hold the specification of all types that
are involved in export or import mechanism. This applies recursively to other
types as well. This topic will be discussed later.

In addition to the already mentioned elements, operators are also take
part in the binary interface. The Welltype specification aimed the goal to load
programs that ,,speak the same interface”. Therefore, the used operators are
also matched, while it is somewhat unnecessary. The reason behind this design
decision is that two expressions are not the same if the operator precedences are
not compatible. For example, the expression a *+ b *- c can be interpreted
two ways depending on the precedences:

(1) (a *+ b) *- c

(2) a *+ (b *- c)

Moreover, the associativity of the operator is also important, because the
expression a *+ b *+ c also can be interpreted two ways:

(1) (a *+ b) *+ c

(2) a *+ (b *+ c)

58 ÁRON BARÁTH AND ZOLTÁN PORKOLÁB

Therefore, the different precedence and associativity cause the source code
to be not the same with different settings. Thus the operator specification
consists of:

• operator symbol (we distinguish two varieties: the classic operator
form which consists of one or more operator symbol character with
lesser exceptions; and the identifier form which is any identifier that
accepted by the parser) – this is the only primary attribute;

• precedence ranging from 3 to 15;
• and the associativity (left or right).

The built-in operator set is fixed in the Welltype specification. Multi-defined
operators are also ignored. It is done because if all the three attributes match,
it defines exactly the same operator, and will be turn into a simple import.

The exceptions are also part of the binary interface. A Welltype program
can raise only exceptions that are defined in the program or imported into the
program. Note that the declared but not exported exceptions will be implicitly
exported, because the program needs a global exception identifier (that globals
to the runtime environment). This mechanism will not cause any problems,
because exceptions can be exported multiple times while not violating the
one-definition rule. Technically, the duplicate exception exports are ignored,
and the program will implicitly import it. This can be done because the only
informations about an exception is its name. Furthermore, the implicit export
is used to make reference to the original program that actually exported the
exception. Using the method, all program will know which exception to be
raised, and which exception to be caught. Since the exceptions are identified
in the binary only by its name, the name of the exception is the primary
attribute.

4.2. Types in the binary interface. In this section we discuss all the types
in details that are part of the binary interface.

Types that specified in the current version of the Welltype language are:
enumeration type, function type, data type, record, private record and limited
record. The primary attribute is common to all types listed here: the name
of the type.

The enumeration type consists of:

• name of the type;
• number of enumerators;
• identifier of all the enumerators.

Exact match of the enumeration type is important because the programs will
communicate with enumerator indices, and every index must refer to the same

DETECTING BINARY INCOMPATIBLE SOFTWARE COMPONENTS 59

enumerator. Also, code might be generated on the imported side. Therefore,
the number and the identifier of the enumerators must match.

The primary attribute of the function type is only its name, because the
Welltype specification identifies all types by only their name. This is a little
bit contrary to the specification of the function signature, but the function
type is a type, not an actual function. However, the function type consists the
same attributes as the function signature:

• name of the type;
• the number of argument;
• the exact types of all the arguments;
• the number of return values;
• the exact types of all return values;
• and the pure attribute.

In order to import a function type, all attributes listed above must exactly
match.

The data type is the algebraic data type implementation in Welltype.
Therefore, the binary representation must reflect the complexity of this type.
The following attributes are stored:

• name of the type;
• number of constructors;
• index of the default constructor;
• for each constructor:

– name of the constructor;
– number of types in the constructor;
– list of the types.

The reason why the index of the default constructor is included in the binary
representation is similar to the explanation to the operators. This attribute
is somewhat unnecessary, but using different default constructor can result
totally different program from the same source code. Moreover, if the actual
data type does not have a default constructor, then an important attribute
will change. Without default constructor the type is not default constructible,
and this recursively affect other types. The dynamic loader takes actions to
avoid to alter such important attribute like the default constructible.

The record type is quite similar to the struct used in C programming lan-
guage with one major difference: the complete layout is stored in the compiled
binary, and validated by the dynamic loader. The stored layout consists of:

• the name of the type;
• the number of fields the record has;
• the list of the field types;
• and the names of all the fields.

60 ÁRON BARÁTH AND ZOLTÁN PORKOLÁB

The number of the fields and the types of all the fields are very important,
because code will be generated on the importer side, which is specific to the
actual layout. For example, the size of the whole record depends on its fields.
The records passed through different programs must use the same layout,
otherwise crash or miscalculation will occur. The field names are stored only
in order to ensure that the records are the same. Example to the importance
of the field names can be seen in Figure 1. The layout is definitely the same
(two int in both cases), but with entirely different semantics. For example,
accessing the y field will use different memory slots. Therefore, the two records
are binary incompatible, but this scenario can be detected only if the record
fields are stored.

record vec

{

int x;

int y;

}

/* or */

record vec

{

int y; // NOTE: the fields are

int x; // swapped

}

Figure 1. Example code breaking the binary compatibility.

record my_record

{

int first;

bool second;

long third;

}

Figure 2. Example record to demonstrate the serialization.

For example, the record can be seen in Figure 2 will be compiled into the
following sequence:

"my_record", 3, 2, 1, 4, "first", "second", "third"

Where the type indices are int=2, bool=1 and long=4.

DETECTING BINARY INCOMPATIBLE SOFTWARE COMPONENTS 61

The record type might not the best choice for all situations, because the
record may evolve, or the representation intended to be hidden. Since the
record type matches all fields, and the fields are free to access, this construct
is not optimal to these purposes. The private record is used instead. Only
the name of the type is stored (hence it is ,,private”), and the representa-
tion is entirely hidden. For the private record type additional functions are
required to be imported (or additional functions must be exported). Because
the fields are unknown, thus a constructor function is required to construct
them. Note that all private record are still default constructible despite of the
representation is unknown.

The non-default constructible version of the private record is the limited
record. The semantics is the same as the private record, but the construc-
tor function is not imported/exported. Apart from the default constructible
attribute, the limited record and the private record are the same construction.

5. Evaluation

Although the binary interface is quite strict, the mechanism is actually us-
able. A few large (over 20k sloc) Welltype programs are written that highly
uses the dynamic linking feature: this provides an ability to these programs
to replace the back-end implementation. With the help of the opaque types
(private record and limited record) the details can be hidden, and the
back-end can be reduced to a simple API (Application Programming Inter-
face) instead of a over-complicated and embedded implementation. Thus, this
organization makes the back-end implementation replaceable, not least easy
to understand.

Also, this supposed to be a motivating force to programmers design a com-
pact and clear API. Moreover, this approach forces not to leak implementa-
tion details, which in most of the cases is absolutely unnecessary. In C++,
the needlessly leaked implementation details are considered as bad practice, in
Welltype, however, they considered as never do that.

6. Future work

The current version of the Welltype language does not support classes. How-
ever, introducing the class construction brings issues into the strict syntax, and
the forced binary compatibility. As we seen, the Java language has problems
with binary compatibility. Thus, this language construction required to be
carefully designed to suit into the strict syntax, semantics and binary inter-
face.

62 ÁRON BARÁTH AND ZOLTÁN PORKOLÁB

7. Conclusion

Binary compatibility is a serious but often underestimated issue in modern
programming languages. Current mainstream programming languages neither
specify nor provide tools to solve the problem. In this paper we discussed the
problem in details and suggested a set of rule to check avoiding inconsisten-
cies between binary components. The Welltype experimental programming
language is defined to avoid various traps and pitfalls of the current main-
stream languages. One of the improvements of Welltype is the application of
the dynamic loader with the capability to detect the possible binary incompat-
ible modules. We implemented a prototype tool-chain of Welltype. Practical
experiments show that the rules detecting the binary incompatibility in Well-
type are strict enough to filter out critical issues, but still allow maintenance
of evolving individual subsystems as binary components.

References

[1] ISO, “ISO/IEC 9899:TC3 – committee draft of the C99 standard – section 5.1.1.1.”
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf.

[2] J. Bloch, Effective Java: A Programming Language Guide. The Java Series (2nd ed.).
Addison-Wesley, 2008.

[3] D. M. Ritchie, B. W. Kernighan, and M. E. Lesk, The C programming language. Prentice
Hall Englewood Cliffs, 1988.

[4] B. Stroustrup, The C++ programming language, 4th Edition. Addison-Wesley, 2013.
[5] S. Chamberlain and I. L. Taylor, “Using LD the GNU linker,” 2010. http://lib.hpu.

edu.vn/handle/123456789/21416.
[6] “LLD – the LLVM linker,” 2018. https://lld.llvm.org/.
[7] M. Franz, “Dynamic linking of software components,” Computer, vol. 30, no. 3, pp. 74–

81, 1997.
[8] S. Drossopoulou, G. Lagorio, and S. Eisenbach, “Flexible models for dynamic linking,”

in European Symposium on Programming, pp. 38–53, Springer, 2003.
[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 1995.

[10] “LD VERSION command.” https://sourceware.org/binutils/docs/ld/VERSION.

html.
[11] “ELF symbol versioning with glibc 2.1 and later,” 1999. https://lists.debian.org/

lsb-spec/1999/12/msg00017.html.
[12] M. Stevanovic, Dynamic Libraries Versioning, pp. 187–231. Berkeley, CA: Apress, 2014.

https://doi.org/10.1007/978-1-4302-6668-6_10.
[13] Tool Interface Standard, Executable and Linking Format (ELF) Specification, Version

1.2, May 1995. http://refspecs.linuxbase.org/elf/elf.pdf.
[14] Santa Cruz Operation, System V Application Binary Interface, March 1997. http://

www.sco.com/developers/devspecs/gabi41.pdf.
[15] Oracle, Java Language Specification, Chapter 13. Binary Compatibility, 2018. https:

//docs.oracle.com/javase/specs/jls/se7/html/jls-13.html.

DETECTING BINARY INCOMPATIBLE SOFTWARE COMPONENTS 63

[16] J. Dietrich, K. Jezek, and P. Brada, “Broken promises: An empirical study into evo-
lution problems in java programs caused by library upgrades,” in Software Mainte-
nance, Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software Evolu-
tion Week-IEEE Conference on, pp. 64–73, IEEE, 2014. https://doi.org/10.1109/

CSMR-WCRE.2014.6747226.
[17] I. Savga, M. Rudolf, and S. Goetz, “Comeback!: a refactoring-based tool for binary-

compatible framework upgrade,” in Companion of the 30th international conference on
Software engineering, pp. 941–942, ACM, 2008. https://doi.org/10.1145/1370175.
1370198.

[18] K. Atkinson, M. Flatt, and G. Lindstrom, “ABI compatibility through a customizable
language,” in Generative Programming And Component Engineering, Proceedings of
the Ninth International Conference on Generative Programming and Component En-
gineering, GPCE 2010, Eindhoven, The Netherlands, October 10-13, 2010 (E. Visser
and J. Järvi, eds.), pp. 147–156, ACM, 2010. http://doi.acm.org/10.1145/1868294.
1868316.

[19] ISO, ISO/IEC 14882:2011 Information technology — Programming languages
— C++. Geneva, Switzerland: International Organization for Standardiza-
tion, Feb. 2012. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_
detail.htm?csnumber=50372.

[20] A. Koenig, “The nightmare of binary compatibility,” in Dr.Dobb’s, 2014. http://www.
drdobbs.com/cpp/the-nightmare-of-binary-compatibility/240166914.

[21] “How to design a C++ API for binary compatible exten-
sibility,” 2010. https://stackoverflow.com/questions/1774911/

how-to-design-a-c-api-for-binary-compatible-extensibility.
[22] Microsoft, “C++ binary compatibility between Visual Studio 2015 and Vi-

sual Studio 2017,” 2017. https://docs.microsoft.com/en-us/cpp/porting/

binary-compat-2015-2017.
[23] M. Pietrek, “Peering inside the PE: a tour of the win32 (R) portable executable file

format,” Microsoft Systems Journal-US Edition, pp. 15–38, 1994.

[24] Á. Baráth and Z. Porkoláb, “Welltype: Language elements for multiparadigm program-
ming,” in Position Papers of the 2017 Federated Conference on Computer Science and
Information Systems, pp. 91–101, 2017. http://dx.doi.org/10.15439/2017F546.

[25] Á. Baráth, “Welltype legacy web page.” http://baratharon.web.elte.hu/welltype,
2014.

[26] Á. Baráth, “Welltype project web page.” http://repo.hu/projects/welltype, 2018.
[27] ISO/IEC, “ISO/IEC 14882:2003(E): Programming Languages - C++ §3.2 One defini-

tion rule [basic.def.odr],” 2003. http://eel.is/c++draft/basic.def.odr.

Department of Programming Languages and Compilers, Eötvös Loránd Uni-
versity

Email address: [baratharon,gsd]@caesar.elte.hu

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 1, 2018
DOI: 10.24193/subbi.2018.1.05

TOWARDS GREEN COMPUTING IN ERLANG

ÁRON ATTILA MÉSZÁROS, GERGELY NAGY, ISTVÁN BOZÓ,

AND MELINDA TÓTH

Abstract. Energy efficiency in computing was identified as low energy
usage of the hardware for a while. However, nowadays, we can talk about
energy efficiency in terms of software as well. Therefore, we have to in-
vestigate how the different design decisions and programming language
constructs affect the energy consumption. The green computing is a rela-
tively new research area, guidelines are required for the software developers
in terms of energy efficiency. In our research we are focusing on the func-
tional programming language Erlang. We have investigated the effect of
different language constructs (such as higher order functions), parallelism,
data structures and styles of programming on energy usage. Additionally
we present a tool to measure and visualise the consumed energy.

1. Introduction

Environment friendly tools and devices are needed in every area of manu-
facturing, thus it is crucial to have computing devices with energy usage as
low as possible. Therefore, we have to take into account the amount of energy
used by a certain devices (i.e. a PC) when running a software.

In the field of green computing we are investigating the energy usage of a
software, this means the amount of energy used by the hardware when running
the software.

Researches have been already presented on energy efficient computing (see
Section 2), however most of them are focusing on mainstream languages. The
goal of our research is to investigate the energy usage of Erlang [1] programs.

Received by the editors: March 31, 2018.
2010 Mathematics Subject Classification. 68N18.
1998 CR Categories and Descriptors. F.2.m [ANALYSIS OF ALGORITHMS

AND PROBLEM COMPLEXITY]: Miscellaneous – Energy usage; F.3.22
[SOFTWARE ENGINEERING]: Miscellaneous – Green computing .

Key words and phrases. green computing, energy efficiency, Erlang, RAPL.
This paper was presented at the 12th Joint Conference on Mathematics and Computer

Science, Cluj-Napoca, June 14-–17, 2018.
The project has been supported by the European Union, co-financed by the European

Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

64

TOWARDS GREEN COMPUTING IN ERLANG 65

Erlang is a widely used functional programming language, designed for build-
ing concurrent/distributed soft-real time applications. Since Erlang is func-
tional language and the main building blocks of the language are the functions,
we have created a tool (see in Section 3) to measure and visualise the energy
consumption of Erlang functions. The tool is based on the Intel provided
RAPL [2] tool and the Rapl-read [3] program.

In this paper we present the measurements on some key elements of the
language, such as the usage of lists, higher order functions and parallelisation
as well (in Section 4). We demonstrate our finding on different algorithms.

The ultimate goal of our research is to extend the static source code analysis
and transformation framework RefactorErl [4, 5]. We would like to define
static analyses to find those source code fragments that are presumably more
energy-intensive than other equivalent solutions. We also want to define a set
of refactorings that can be applied, either automatically or semi-automatically,
to reduce the energy used by the Erlang programs.

In this paper we are presenting our first findings on the energy usage on
Erlang programs, and the latter mentioned goal is the target of our future
work.

2. Related work

In recent years there have been lots of studies on the topic of energy-
efficiency. Many of these works studied the energy consumption of imperative
languages, for example in Java 6.2% energy savings have been obtained [6] and
thread management constructs also have been studied [7]. There also have
been studies regarding the power consumption of CMOS digital circuits [8],
power analysis of embedded software [9], how code obfuscation affects energy
usage [10] and finally the impact of commonly used refactorings have also been
studied [11].

Large amount of researches were carried out for imperative languages, but
green computing is just as important in the area of functional languages. Lima
et al. [12] analysed the energy behaviour of Haskell. They presented tools for
testing the energy footprint of a program and also showed that some con-
structs can be beneficial in some situations, while in others they may not be
a good choice. They collected energy consumption data using Running Av-
erage Power Limit (RAPL [2]) and accessing the data through model-specific
registers (MSRs).

In the case of Erlang only a few research has been done regarding green
computing. Ortiz [13] wrote her MSc thesis on the topic of green comput-
ing in Erlang and showed how some steps of refactoring and different data
structures affect energy consumption in the case of Fibonacci and Karatsuba

66 ÁRON ATTILA MÉSZÁROS, GERGELY NAGY, ISTVÁN BOZÓ, AND MELINDA TÓTH

algorithms. Varjão [14] gave a talk on the Erlang Factory SF conference in
March 2017, where he presented a tool for measuring the energy consumed
by Erlang functions. His tool is based on RAPL, but it has not been made
publicly available yet, therefore we could not use it.

3. Measuring and visualising energy usage

In this section we present the tools used to measure the energy usage of
Erlang functions. We provide an overview of the workflow of all our different
program components working together in order to make measuring energy
consumption more convenient.

3.1. RAPL. Running Average Power Limit (RAPL) is a tool created by Intel,
as part of their power-capping interface. It is available under Linux operating
system, on CPUs that have at least Sandy Bridge or newer architecture. The
onboard power meter have been introduced in the Sandy Bridge microarchi-
tecture. This provides information on power meters and power limits of the
CPU, and exports power information through a set of Model-specific Registers
(MSRs).

RAPL provides counters to get energy and power consumption informa-
tion. RAPL is not an analog power meter, but an accurate software power
model, that estimates usage by using hardware performance counters and I/O
models [2].

In RAPL, platforms are divided into domains, in order to get more detailed
information on the energy consumption. The domains are:

• PKG - The entire package
◦ PP0 - Only the cores
◦ PP1 - The uncore part of the package

• DRAM - Main memory

Among the listed domains the following inequality always holds: PP0 + PP1
≤ PKG and DRAM is independent of the other three [15].

3.2. Rapl read. There are three methods to extract power and energy con-
sumption data from RAPL.

• sysfs - Reads files from /sys/class/powercap/intel-rapl/intel-rapl:0
using the powercap interface. Requires at least Linux 3.13 with no
special permissions.
• perf event - Uses the perf event interface. Requires at least Linux

3.14, and root access or the /proc/sys/kernel/perf event paranoid
value to be less than 1.
• msr - Reads data directly from the MSRs under /dev/msr, and re-

quires root privileges.

TOWARDS GREEN COMPUTING IN ERLANG 67

It is important to note that all methods provide readings for an entire CPU
socket, there is no way to get readings for individual cores and processes this
way.

We used a program written in C called rapl-read [3], that provides an inter-
face for all three methods. We had to slightly modify it to support multiple
sockets and to send and receive signals to and from our Erlang program. We
also had to split all measuring functions to a pre and post versions, so that
we can read the data before and after running an Erlang function, and thus
obtaining the energy consumption.

3.3. Erlang server. It is important for the accuracy of measurement to get
the readings as close to the beginning and end of a function as possible. Be-
cause of this, we needed the Erlang program (energy consumption.erl) and
the rapl-read.c program to communicate. This is accomplished using ports
in Erlang and using the read() and write() functions in C. The process of
communication can be seen on Figure 1.

energy consumption.erl rapl-read.c

spawn

ready to start

gather before values

done

run function

gather after values

measured values

Figure 1. Sequence diagram of energy consumption.erll
and rapl-read.c communicating throughout one measure-
ment

When the measured values have been received by the Erlang component
from rapl-read.c, it saves it using a dets (disk-based term storage) table.

68 ÁRON ATTILA MÉSZÁROS, GERGELY NAGY, ISTVÁN BOZÓ, AND MELINDA TÓTH

The results are stored as tuples in the following format:

{{{Module, Function, InputSize},Method,Domain}, V alue}

where V alue is the measured value, Method is one of the three modes to access
RAPL, and Domain is one of the four available RAPL domains. Module and
Function are the module and name of the measured function, while InputSize
is a value provided by the user describing the size of the test arguments. If
no such value is provided we take the head of the argument list and use it as
InputSize. This is useful when the argument is a single number.

We used the following methodology to measure the energy consumption.
Each time all three methods and all available domains are measured and sent
to the Erlang program. In addition to this we also measure the run-time of
the function and store it with the energy usage values.

This process is repeated N times, where N is a parameter given by the
user. After this the Erlang program reads back all the data and for each
method-domain pair calculates the average energy consumption, disregarding
the lowest and highest values. This average is then inserted to the dets table
and also printed to a text file, thus we can easily plot the data.

To make measurement processing easier we created a function that performs
all of the above described functionalities. This function takes six arguments,
that in addition to the ones mentioned above, are the executable file compiled
from rapl-read.c, and the names of the output files:

1 measure(Program , {Module , Function , Attributes , InputSize},

2 N, ResultOutput , AvgOutput , LogFile)

3 %InputSize is optional

3.4. Visualisation. As we have mentioned earlier, the measured results were
exported to text files. These files contain one result in each line in the following
structure:

Module Function InputSize Method Domain V alue
Above the arguments the output contains the method used in measurement,

the referenced domain and the measured value.
We use the same framework for measuring the run-time of the functions.

The output in this case includes the same fields, but when measuring the
execution time, the method and domain are irrelevant, thus to preserve the
same structure, these fields are containing the measured time as well.

To visualise the measured data, it would had taken a lot of time to analyse
manually these data files (for example in a spreadsheet). We decided to process
the raw data with a Python script.

The script that processes the raw data has the following stages:

TOWARDS GREEN COMPUTING IN ERLANG 69

(1) Grouping the measured values by the functions. A function can be
uniquely identified by the name of the module and the name of the
function.

(2) Extracting the values separately by the different methods and do-
mains.

(3) Draw the figures using matplotlib [16]: the Y-axis shows the energy
consumption in Joule and the X-axis shows the different input size
values.

(4) Optionally, there is a feature for export the required values to another
data file and generate a latex file from it that contains only the
diagram.

The steps are fully customisable to help analyse the data more precisely. We
used command line arguments to give the exact specification of the diagrams.
The following flags are available:

• –files: The script can take multiple files, all the contained data is
processed. This gives flexibility to visualise different functions. For
example, we stored all the different functions in distinct files, so we
could compare them as we wanted.
• –methods: Specify which methods to display. It can take the three

methods and time, and also several methods at once. In this case all
of them will be drawn.
• –domains: Specify which domain to display.
• –output: Optional: the name of the output data file and .tex file.
• –logscale: This flag changes the Y-axis to a logarithmic scale.

Figure 2. Process from measurement to visualisation

70 ÁRON ATTILA MÉSZÁROS, GERGELY NAGY, ISTVÁN BOZÓ, AND MELINDA TÓTH

4. Energy usage in Erlang

We used two different problems and many implementations for them to
gain information on the energy consumption. We used different language
constructs and data structures in the implementations. The main aspects for
our implementations were the following:

• Using different data structures:
◦ Lists
◦ Extendible arrays
◦ Fix-sized arrays

• Using or avoiding higher order functions (HOFs)
• Parallel or sequential implementations

We also paid attention to the run-time of each implementation, in order to
gain a better understanding of the effects of language constructs on energy con-
sumption. The measurements were made on a system with Intel(R) Core(TM)
i5-6200U CPU @ 2.30GHz and 8 GB of DDR3 RAM @ 1600MHz, using
Ubuntu 16.04 LTS. All plotted data was measured using MSR method and
PKG + DRAM domains.

4.1. Goals. Our goal was to find any relation between language constructs,
different data structures and energy usage. We intended to find out if ex-
tendible arrays, fix-sized arrays or lists are more efficient. We also wanted to,
among other things, gain information on the effects of higher-order functions
on energy consumption. Another thing we wanted to find out was the effect
of parallelising on energy consumption. In the followings we are demonstrat-
ing different implementations of two well-known algorithms (placing queens
on a chessboard and sparse matrix multiplication) and the energy used when
evaluating the different implementations.

4.2. N-queens.
Problem. Place N queens on an N×N chessboard, so that no two queens attack
each other.
Solutions. For this problem we measured the following five implementations:
Lists with HOFs (queens lists): This version uses the higher-order functions
lists:flatmap/2 and lists:all/2 to get the results.

1 attacks({RowA , ColA}, {RowB , ColB}) ->

2 RowA == RowB orelse ColA == ColB

3 orelse abs(RowA - RowB) == abs(ColA - ColB).

4 legal_list(Queen , Queens) ->

5 lists:all(fun(Q) -> not (attacks(Queen , Q)) end , Queens).

6 solve_list(N, Row , Queens) when Row > N -> [Queens];

7 solve_list(N, Row , Queens) ->

TOWARDS GREEN COMPUTING IN ERLANG 71

8 lists:flatmap(

9 fun(Qs) -> solve_list(N,Row+1,Qs) end ,

10 [[{Col ,Row} | Queens] ||

11 Col <- lists:seq(1,N),legal_list({Col ,Row},Queens)]

12).

13 queens_list(N) when N > 0 -> solve_list(N,1,[]).

Lists without HOFs (queens nohof): The same as the previous one, but in-
stead of lists:flatmap/2 and lists:all/2 it uses a custom implementation
for these functionalities. These functions do not need function parameters, be-
cause we have hardcoded this information into them.

1 all_nohof(_,[]) -> true;

2 all_nohof(Queen ,[Q|Queens]) ->

3 G = attacks(Queen ,Q),

4 if G -> false;

5 true -> all_nohof(Queen ,Queens) end.

6 flatmap_nohof([],R,_,_) -> R;

7 flatmap_nohof([H|T],R,N,Row) ->

8 L = solve_nohof(N,Row+1,H),

9 P = concat_to(L,R),

10 flatmap_nohof(T,P,N,Row).

11 concat_to([],R) -> R;

12 concat_to([H|T],R) -> concat_to(T,[H|R]).

Extendible arrays (queens array): This version uses the same algorithm as
the one using lists, but instead uses arrays created with array:new(). No
HOFs are used in this implementation.
Fix-sized arrays (queens array fix): This is the same as the one with ex-
tendible arrays, but instead of array:new(), we create fix-sized arrays with
array:new(Size).
Parallel version (queens par): This version uses a parallel map (par map/2)
instead of map. The underlying data structure is a list.

1 par_map(F, Xs) ->

2 Me = self(),

3 [spawn(fun() -> Me ! F(X) end) || X<-Xs],

4 [receive Res -> Res end || _ <- Xs].

Each implementation was measured for inputs from 6 through 12.
Results. The energy consumption and run-time of these implementations can
be seen on Figure 3. We can see that in the case of the sequential versions, the
slower program consumes more energy, as expected. In the parallel case, even
though the parallel version is not always the slowest, it clearly consumes the
most energy. The reason for this may be that this parallel version just replaced
map/2 with par map/2, not paying attention to the underlying data structure,

72 ÁRON ATTILA MÉSZÁROS, GERGELY NAGY, ISTVÁN BOZÓ, AND MELINDA TÓTH

but in the case of Erlang all data sent between processes is copied [17]. Because
the items mapped are lists, lots of data is copied each time par map/2 is called,
which is slow, and thus consumes lots of energy.

Both implementations with arrays performed the same for smaller inputs,
but for larger inputs the fix-sized array version consumed more energy.

It is clear that the most efficient versions were the ones using lists. It seems
like eliminating the higher order functions from the implementation improved
energy consumption, and also made the program faster.

In conclusion, we saw that eliminating HOFs, such as map can improve
energy consumption. We also saw, that parallelising can be dangerous, we
have to pay attention to what data is sent. Arrays seem to be performing
worse than lists, but are still more efficient than our naive parallel algorithm.

6 8 10 12

10−2

10−1

100

101

102

N Values

C
o
n

su
m

p
ti

on
(J

)

nohof
par

array
list

array-fix

6 8 10 12

10−3

10−2

10−1

100

101

N Values

T
im

e
(s

)
nohof
par

array
list

array-fix

Figure 3. Energy consumption and run-time of all N-queens
implementations.

4.3. Sparse matrix multiplication.
Problem. Multiply two matrices, whose elements are mostly zeros.
Solutions. All implementations solve the problem by reducing it to a series
of matrix-vector multiplication, and then to vector-vector multiplication. For
this problem we measured the following implementations:
Lists (mxm lists): One of the matrices is represented as list of tuples, whose
first element is the row number, the second element is also a list of tuples,

TOWARDS GREEN COMPUTING IN ERLANG 73

whose first element is the column number and the second is the value of the
matrix element: [{Row, [{Col, V alue}]}]. The other matrix is represented
the same way, but with row and column values swapped, in order to make
multiplying them easy.

1 vxv_list(Row ,Col) -> vxv_acc_list(Row ,Col ,0).

2 vxv_acc_list([],_,Acc) -> Acc;

3 vxv_acc_list(_,[],Acc) -> Acc;

4 vxv_acc_list([{I,R}|Row],[{I,C}|Col],Acc) ->

5 vxv_acc_list(Row ,Col ,Acc+R*C);

6 vxv_acc_list([{I,R}|Row],[{J,C}|Col],Acc) ->

7 if I < J -> vxv_acc_list(Row ,[{J,C}|Col],Acc);

8 true -> vxv_acc_list([{I,R}|Row],Col ,Acc)

9 end.

10 mxv_list(Rows , Col) ->

11 Product = [{I,vxv_list(Row ,Col)} || {I,Row} <- Rows],

12 filter(fun({_,V}) -> V /= 0 end , Product).

13 mxm_list(Rows , Cols) ->

14 Product = [{I,mxv_list(Rows ,Col)} || {I,Col} <- Cols],

15 filter(fun({_,V}) -> V /= [] end , Product).

Lists without HOFs (mxm nohof): In this version we replaced all occurrences
of the filter function with our own implementation, that does not need a
function as its argument. For example the one in mxv list was replaced by
filter zeros:

1 filter_zeros([],R) -> lists:reverse(R);

2 filter_zeros([{_,0}|P],R) -> filter_zeros(P,R);

3 filter_zeros([H|P],R) -> filter_zeros(P,[H|R]).

Parallel (mxm par): The representation of the matrices is the same as in the
version with lists, but the matrix-vector and vector-vector multiplications are
executed in parallel, using spawn in the list comprehension. Receiving the
data sent back by the processes is done in another list comprehension, with
each process sending back its ID too, in order to find the proper place for the
result in the matrix.
Parallel with process pools: We also implemented a parallel version with a
parallel ordered map implementation, that uses process pools to limit the
number of processes spawned. First, we replaced both instances of the list
comprehensions in the parallel code, but this way if we limit the process pool
to 20 processes, then because of the recursion in our code 202 = 400 pro-
cesses were spawned. An easy way to fix this was to only parallelise the
outer matrix-vector multiplications and use the sequential program for solv-
ing vector-vector multiplications. These versions were named, respectively,
mxm ppool and mxm parseq.

74 ÁRON ATTILA MÉSZÁROS, GERGELY NAGY, ISTVÁN BOZÓ, AND MELINDA TÓTH

Array (mxm array): In this version the matrices are represented as arrays of
arrays, where for one matrix the first index determines the row and the sec-
ond the column, and for the other matrix it is the other way around. Zero
elements of the matrix are left undefined. We used array:sparse map/2 and
array:sparse foldr/3 to replace the list comprehensions and recursion on
lists, so for example the vector-vector multiplication became the following
code:

1 vxv_array(Row ,Col) ->

2 A = array:sparse_foldr(fun(_,Val ,Acc)->Acc + Val end ,

3 0, array:sparse_map(fun(Index ,Elem) ->

4 C = array:get(Index ,Col),

5 if C == undefined -> undefined;

6 true -> Elem*C

7 end

8 end ,Row)),

9 if A == 0 -> undefined;

10 true -> A

11 end.

The implementation does not depend on whether we use extendible or fix-sized
arrays, so no separate versions were made for these, but when measuring we
used both types of arrays.
Array without HOFs (mxm array nohof): The same way we eliminated higher
order functions from the list version, we also eliminated HOFs (sparse map

and sparse foldr) in the version using arrays. The sparse map of the previ-
ous vxv array function became the following non higher order function:

1 vxv_array_map(Index ,Size ,_,Row) when Index == Size -> Row;

2 vxv_array_map(Index ,Size ,Col ,Row) ->

3 ElemR = array:get(Index ,Row),

4 ElemC = array:get(Index ,Col),

5 if ElemR == undefined -> vxv_array_map(Index+1,Size ,Col ,Row);

6 ElemC == undefined -> vxv_array_map(Index+1,Size ,Col ,

7 array:set(Index , undefined , Row));

8 true -> vxv_array_map(Index+1,Size ,Col ,

9 array:set(Index , ElemC*ElemR , Row))

10 end.

Results. Even though our implementations can handle non-square matrices,
for ease of distinguishing between the sizes of test cases we only used square
matrices. Test matrices were generated randomly, in sizes from 10×10 up to
400×400. For each size we generated three test cases with different ratio of
non-zero elements. These ratios were 1%, 10% and 30%.

The array implementations were tested with both extendible and fix-sized
arrays. The measured energy consumption values and run-times are shown on

TOWARDS GREEN COMPUTING IN ERLANG 75

Figure 4. Fix-sized array versions are not shown as they were not different
from extendible array values in any meaningful way.

0 200 400

10−3

10−2

10−1

100

101

102

103

N Values

C
o
n

su
m

p
ti

on
(J

)

nohof
list
par

array-nohof
array

0 200 400

10−4

10−3

10−2

10−1

100

101

102

N Values

T
im

e
(s

)

nohof
list
par

array-nohof
array

Figure 4. Energy consumption and run-time of sparse matrix
multiplication implementations.

In all cases we see correlation between run-time and energy consumption, as
expected. We can see that the versions using lists performed almost the same.
The one without HOFs is in almost all cases slightly better than the one using
filter as can be seen in Table 1. It can also be seen that all implementations
using arrays performed worse than lists. One reason for that might be that in
the case of arrays, the matrices were stored directly in the array, not as pairs
of indices and values (as in the case of lists), thus resulting in lots of undefined
elements in the arrays and increasing the size of stored data. Contrary to the
versions using lists, in the case of arrays the one containing HOFs performed
better than the one without HOFs. The reason for this might be that we do
not know how arrays are implemented, and thus we cannot implement the non
higher order versions of sparse map and sparse foldr as efficiently.

The parallel version performed worse than the sequential ones, probably
because of the same reasons as mentioned before in the case of the N-queens
problem. The effect of using process pools can be seen on Figure 5. We can see
that spawning too many processes is really bad for power consumption. The
basic parallel version and the process pool version with the number of processes
limited to 4 and 20 processes (thus only creating 16 and 400 processes at a

76 ÁRON ATTILA MÉSZÁROS, GERGELY NAGY, ISTVÁN BOZÓ, AND MELINDA TÓTH

50 100 150 200 250 300 350 400
mxm nohof 0.043 0.287 0.909 2.277 4.278 7.599 12.374 19.120
mxm list 0.047 0.309 0.930 2.300 4.340 7.711 12.556 19.315

Table 1. Energy consumption of the given functions for dif-
ferent input sizes, measured in Joules, with 30% non-zero ele-
ments

time) perform almost the same. The reason for this might be that even though
the process pool version uses fewer processes, it also sends more messages. The
most effective parallel version was the half parallel, half sequential process pool
version, limited to 20 processes. This shows that it can be worth it to limit the
number of processes. These results require further analysis in order to find
the true connection between the number of processes, messages and energy
consumption.

0 50 100 150 200 250 300 350 400

0

100

200

N Values

C
o
n

su
m

p
ti

on
(J

) par ppool 20 parseq 20
ppool 4 ppool 2000 parseq 2000

Figure 5. Energy consumption of different parallel implemen-
tations of sparse matrix multiplication. The numbers after the
function names denote the number of processes in the process
pool (note that in the case of pool, this number has to be
squared to get the actual number of processes). These mea-
surements were made using 12 cores on a system with Intel(R)
Core(TM) i7-8700K CPU and 16 GB of DDR4 RAM, using
Ubuntu 17.04.

On all figures for this problem the inputs with 30% non-zero elements are
plotted.

5. Evaluation

In both cases we have found that naively parallelising made the algorithm
consume more energy. This is probably because we did not use any special

TOWARDS GREEN COMPUTING IN ERLANG 77

strategy to parallelise the algorithms, we simply replaced map with parallel
map and list comprehension with list comprehensions that spawn processes.
Even though spawning processes has a relatively low cost, since we spawned
so many of them, in the case of N-queens sometimes more than 500 000, it
may have increased energy consumption and run-time. Another problem may
have been, that in Erlang data sent to a process is copied [17], so our program
made a copy of large lists each time a process was spawned.

We have seen that using process pools to reduce the number of processes
can be beneficial, but we have to choose the maximum number of processes
wisely, because it greatly affected energy consumption.

We also observed, that in most cases eliminating higher-order functions
improves energy consumption. This is most visible in the case of the N-queens
problem. It can also be seen in the case of the sparse matrix multiplication
problem, but to a lesser extent. In that algorithm the HOF filter does not
take up that much part of the whole solution, so it contributes less to overall
energy consumption. While in the N-queens algorithm map is used as the base
of the algorithm, so it contributes much more to the energy consumed. An
outlier to this rule is the array version of sparse matrix multiplication, where
eliminating HOFs made the algorithm much worse. This might be because
in the version using HOFs we did not use the traditional map and foldr, but
instead the sparse version of them, which may be implemented much more
efficiently than our own implementations.

The third thing we noticed was that in both cases arrays performed worse
than lists. That may be because in the case of N-queens our algorithm was
first developed for lists and then adapted to arrays. In the case of the matrix
multiplication the reason may be that we stored data in a completely different
way in arrays than in lists. From the results it seems like the array version
is not efficient in storing sparse matrices. Even though our observation was
that arrays are not as efficient as lists, there are cases, for example calculating
Fibonacci numbers, where they may perform better [13].

6. Conclusion and future work

We wanted to measure the energy consumption of Erlang programs and
discover patterns and relations between language constructs and power con-
sumption. We used RAPL to measure energy consumption, and created an
framework to measure and store energy consumption values.

After measuring several implementations of the N-queens problem and the
sparse matrix multiplication we found that eliminating higher order functions
may make the program more efficient. In our cases we also found that using
arrays instead of lists was not a good idea. Parallelising the solutions can

78 ÁRON ATTILA MÉSZÁROS, GERGELY NAGY, ISTVÁN BOZÓ, AND MELINDA TÓTH

make energy usage worse, because it spawns lots of processes, but this could
be solved using process pools.

In the future we would like to investigate different parallelisation techniques
and we would like to further examine the effect of limiting the number of
processes and messages sent on energy consumption. We also would like to
measure the effect of the number of cores used when running the parallel
program. Additionally, we would like to confirm our current findings using
different algorithms, such as the N-body problem.

Finally, we would like to create a tool as part of RefactorErl, that automates
the process of finding patterns that could be refactored into more energy ef-
ficient version and then helps transform the code into a more energy aware
version.

References

[1] Joe Armstrong. Programming Erlang. The Pragmatic Bookshelf, 2nd
edition, October 2013. ISBN 978-1-93778-553-6.

[2] Srinivas Pandruvada. Running Average Power Limit - RAPL.
https://01.org/blogs/2014/running-average-power-limit---rapl. [Ac-
cessed: 03.10.2018.].

[3] Vincent M. Weaver. Reading RAPL energy measurements from
Linux. http://web.eece.maine.edu/˜vweaver/projects/rapl/. [Accessed:
03.10.2018.].

[4] István Bozó, Dániel Horpácsi, Zoltán Horváth, Róbert Kitlei, Judit
Kőszegi, Máté Tejfel, and Melinda Tóth. RefactorErl, Source Code Anal-
ysis and Refactoring in Erlang. In Proceeding of the 12th Symposium on
Programming Languages and Software Tools, Tallin, Estonia, 2011.

[5] Zoltán Horváth, László Lövei, Tamás Kozsik, Róbert Kitlei,
Anikó Nagyné Vı́g, Tamás Nagy, Melinda Tóth, and Roland Király. Mod-
eling Semantic Knowledge in Erlang for Refactoring. In Proceedings of
the International Conference on Knowledge Engineering, Principles and
Techniques, KEPT 2009, volume 54(2009) Sp. Issue of Studia Universi-
tatis Babeş-Bolyai, Series Informatica, pages 7–16, Cluj-Napoca, Roma-
nia, July 2009.

[6] Rui Pereira, Marco Couto, Jácome Cunha, João Paulo Fernandes, and
João Saraiva. The Influence of the Java Collection Framework on
Overall Energy Consumption. CoRR, abs/1602.00984, 2016. URL
http://arxiv.org/abs/1602.00984.

[7] Gustavo Pinto, Fernando Castor, and Yu David Liu. Understand-
ing Energy Behaviors of Thread Management Constructs. SIG-
PLAN Not., 49(10):345–360, October 2014. ISSN 0362-1340. doi:

TOWARDS GREEN COMPUTING IN ERLANG 79

10.1145/2714064.2660235.
[8] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low-power CMOS

digital design. IEEE Journal of Solid-State Circuits, 27(4):473–484, Apr
1992. ISSN 0018-9200. doi: 10.1109/4.126534.

[9] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software:
a first step towards software power minimization. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 2(4):437–445, Dec 1994.
ISSN 1063-8210. doi: 10.1109/92.335012.

[10] C. Sahin, P. Tornquist, R. Mckenna, Z. Pearson, and J. Clause. How Does
Code Obfuscation Impact Energy Usage? In 2014 IEEE International
Conference on Software Maintenance and Evolution, pages 131–140, Sept
2014. doi: 10.1109/ICSME.2014.35.

[11] Cagri Sahin, Lori Pollock, and James Clause. How Do Code Refactorings
Affect Energy Usage? In Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM
’14, pages 36:1–36:10, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2774-9. doi: 10.1145/2652524.2652538.

[12] L. G. Lima, F. Soares-Neto, P. Lieuthier, F. Castor, G. Melfe, and J. P.
Fernandes. Haskell in Green Land: Analyzing the Energy Behavior of a
Purely Functional Language. In 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), volume 1,
pages 517–528, March 2016. doi: 10.1109/SANER.2016.85.

[13] Jessica Tatiana Carrasco Ortiz. Green computing in Erlang, 2017.
[14] Filipe Varjão. Measuring Erlang energy consumption, and why this mat-

ters. http://www.erlang-factory.com/sfbay2017/filipe-varjao.html. [Ac-
cessed: 03.10.2018.].

[15] Wander Lairson Costa. Power profiling overview.
https://developer.mozilla.org/en-US/docs/Mozilla/Performance/Po-
wer profiling overview, [Accessed: 03.10.2018.].

[16] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing In
Science & Engineering, 9(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

[17] Ericsson. Erlang Efficiency Guide, Processes.
http://erlang.org/doc/efficiency guide/processes.html. [Accessed:
03.10.2018.].

ELTE, Eötvös Loránd University, Pázmány Péter sétany 1/C, Budapest, Hun-
gary, 1117

Email address: {archy, nagygeri97, bozoistvan, tothmelinda}@caesar.elte.hu

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 1, 2018
DOI: 10.24193/subbi.2018.1.06

NOSQL DATABASE PERFORMANCE BENCHMARKING - A

CASE STUDY

CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

Abstract. This paper describes an experimental study regarding NoSQL
database performance. Two NoSQL databases were considered (MongoDB
and Cassandra), two different workloads (update heavy and mostly read)
and several degrees of parallelism. The results refer to throughput perfor-
mance metric. Statistical analysis performed is referring to throughput re-
sults. Conclusions confirm that MongoDB performs better than Cassandra
in the context of a mostly read workload, while Cassandra outperformed
MongoDB in the context of an update heavy workload where the number
of operations was high.

1. Introduction

It is hard to figure out what kind of database fits best a certain application
nowadays. There are many NoSQL databases that are highly configurable and
flexible, but to determine the right choice for a given application is a tedious
task. NoSQL databases differ from one another on many levels, from data
model to distribution model and it is not easy to make a fair performance com-
parison between them. Just reading the documentation of a certain NoSQL
database is not enough to make sure you make the right decision for your
application, but performance benchmarking gives you the opportunity to see
that database in action, on your chosen hardware configuration.
In order to find out how NoSQL databases perform on a general performance
benchmark, we ran performance benchmarking tests using the YCSB client
against Cassandra and MongoDB database servers. We generated a dataset
that fits in memory using the YCSB client and then ran benchmarking tests

Received by the editors: February 9, 2018.
2010 Mathematics Subject Classification. 68P15, 68P99.
1998 CR Categories and Descriptors. H.2.1 [Database Management]: Logical design

– Data models; H.2.4 [Database Management]: Systems – Distributed databases, Parallel
databases.

Key words and phrases. NoSQL database, performance benchmarking, MongoDB,
Cassandra.

80

NOSQL DATABASE PERFORMANCE BENCHMARKING - A CASE STUDY 81

using various combinations of workload, number of operations and number of
client threads on each database server.

2. Background

2.1. NoSQL models. NoSQL models appeared as a response for the need
of big companies like Google or Amazon to store and manage huge amounts
of data. The fact that the relational model was not built to offer horizontal
scalability and the difference between in-memory data structures that are used
in application programming and the relational model, known as impedance
mismatch[16] are the key factors that contributed to the emergence of the
NoSQL databases.

There are four main NoSQL data models: key-value, document, column-
family and graph. For this paper, two data models were chosen: the document
model and the column-family model. The document model and the column-
family model are based on the key-value model. In a key-value database, data
is stored as key-value pairs, with the key part of the pair as the unique identifier
for the value that is stored in the value part of the pair. Complex values like
objects or arrays can be stored as values for keys, but their structure remains
invisible to the database.

In a document database, data is stored as documents. A document is simi-
lar to a key-value pair, but the difference is that the value part has a structure
that is visible to the database. In a key-value database, the value part is not
visible to the database. What used to be a record in a relational table becomes
a document in a collection inside a document database. Still, there are some
key differences between them. In a relational table, all the records have the
same schema and every field can store only simple values. In a document col-
lection, documents can have different schemas and complex values like arrays
or embedded documents can be stored as values for a given field. The most
popular document format is JSON[12], but there are others, like XML[21] or
YAML[22]. Document databases simplify application development process. It
is a lot easier to store objects as documents than to create the relational rep-
resentation of an object and store it in more than one table. Also, document
databases have flexible schema, so it is easier to modify it as the application
evolves.
In column-family databases, data is stored as rows in column families. A col-
umn family is similar to a relational table, but it has a flexible schema. Rows
in the same column family can have different columns. Each column is com-
posed of a timestamp and a key-value pair, with the name of the column as
key and the value for that column as value. Complex values like collections or
arrays can be stored as values for a given column. Column-family databases

82 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

are generally optimized for writes. When designing applications for column-
family databases, it is a good practice to know in advance what kind of queries
are needed in order to optimize read operations.

2.2. NoSQL tools. For each selected NoSQL model, a NoSQL database was
chosen. In our benchmark, the document model is represented by MongoDB[14].
There are other document databases available on the market, like CouchDB[5]
or OrientDB[15]. The column-family model is represented in our benchmark
by Apache Cassandra[2]. Other column-family databases are Bigtable[3] and
HBase[10].
MongoDB is an open source distributed database that was built to offer schema
flexibility, horizontal scalability, replication and high availability. It has a rich
query language and a good support for ad hoc queries. It was developed by
10Gen, known today as MongoDB Inc. In a MongoDB cluster there are shards
or nodes that store data, config servers that store cluster metadata and query
routers that route queries to the shards.
Cassandra is an open source distributed database that offers high availabil-
ity, horizontal scalability and data replication, including multiple datacenter
replication. It was initially developed at Facebook[13] and its data model was
based on Bigtable and Dynamo[7]. In a Cassandra cluster every node is iden-
tical, which means that there is no master node and nodes can be added or
removed from the cluster with no downtime.
Cassandra 3.11.0 and MongoDB 3.4.4 were the database versions installed on
our servers.

2.3. NoSQL benchmarking. Benchmarking is very useful when evaluating
NoSQL systems because it reveals the actual performance of a database on a
given hardware configuration for a specific application use case. It is a diffi-
cult task to make a comparison between different NoSQL databases, and the
lack of benchmarking tools for this category makes this task even harder. As
a consequence of this fact, Yahoo! Cloud Serving Benchmark[4] (or YCSB

for short) emerged as an open source benchmarking framework for cloud or
NoSQL systems. YCSB was written in Java and it has two main components:
the YCSB client, which is a workload generator and the Core workloads that
represent a set of workload scenarios to be executed by the generator[23]. Both
components are extensible. New workloads can be defined, so that specific ap-
plication workloads can be run and database performance for those workloads
can be evaluated. Other benchmarking tools are cassandra-stress tool[19],
a tool for benchmarking Cassandra clusters and cbc-pillowfight[18], a tool
for benchmarking Couchbase. In [6], cbc-pillowfight was used as a tool for
workload generation, while the benchmarked database was MongoDB. Also,

NOSQL DATABASE PERFORMANCE BENCHMARKING - A CASE STUDY 83

in a more general context, we can mention BigBench[1] tool. These tools were
not used in our evaluation because (a) they cannot be used for all databases
considered, and/or (b) we cannot find straight Windows implementations for
them. There are benchmarking studies using YCSB discussed in the litera-
ture: [9], [8] and [11]. All these studies use a different testing environment,
more precisely they employ a cloud-based infrastructure. By using virtual ma-
chines, cloud solutions are easier to manage because all the resources needed
are available as Software-as-a-Service or Infrastructure-as-a-Service. Our solu-
tion, discussed in the next section, implied a big amount of work for installing
and configuring all software applications needed. For our performance bench-
mark, we chose to use YCSB version 0.12.0 as benchmarking framework, because
it is free, available, and can be used for evaluating Cassandra and MongoDB.

3. Case study

In database performance benchmarking, there are two important metrics:
the throughput, measured in operations per second and the latency, measured
in microseconds per operation. These two metrics are present in every test
output we obtained using YCSB, but from lack of space only the throughput
was analyzed in this paper.

3.1. Experimental setting. A total of three servers having the same hard-
ware configuration were used to run the experiment. The YCSB client ran on
the first server, Apache Cassandra ran on the second server and MongoDB ran
on the third server. Each server had the following hardware configuration:

• OS: Windows 7 Professional 64-bit
• CPU: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 4 cores, 8 logical

processors
• RAM: 16 GB
• HDD: 500 GB.

The data set used in our tests is composed of 4 million records and it
was generated by the YCSB client. Every record has 10 fields and each field
contains a random generated 100 byte string value. Because of its size, this
data set could fit within memory entirely. Two YCSB core workloads were
chosen: Workload A (50% update, 50% read), an update heavy workload[20]
and Workload B (5% update, 95% read), a read mostly workload[20]. The
number of operations parameter is in fact the number of operations performed
in a test run. Each workload was tested with the following values for the
number of operations: 1000, 10000, 100000 and 1000000. For every workload
and number of operations combination, tests were run on 1, 2, 4, 8, 16, 32,
64, 128, 256 and 512 client threads, with every test repeated three times for

84 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

every number of client threads.
MongoDB was installed with default settings and the default storage engine
for version 3.4.4, Wired Tiger.
Cassandra was installed with default settings, but in order to avoid write
timeouts, we followed the setting recommendation found in [8], which is:

• read request timeout in ms set to 50000
• write request timeout in ms set to 100000
• counter write request timeout in ms set to 100000
• range request timeout in ms set to 100000.

For both databases, the asynchronous Java driver was used.
A combination of workload, database and number of operations will be consid-
ered in this context a batch of tests. The database server was restarted before
each execution of a batch of tests, and database server status information was
captured before and after each run of batch of tests. When all combinations
of tests were run for a certain workload, the data set for that workload was
deleted and a data set with the same parameters corresponding to the next
workload was loaded.

3.2. Results. Each test was repeated three times for every combination of
database, workload, number of operations and number of client threads. In
order to create the following charts, a throughput average was computed for
every combination of database, workload, number of operations and number of
threads. The first eight graphics (Figures 1 to 8) show a comparison between
Cassandra and MongoDB for every combination of workload and number of
operations. The last four graphics (Figures 9 to 12) show the evolution of
throughput for every combination of workload and database considered in our
experimental study.

Figures 1, 2, 3, and 4 show that MongoDB outperforms Cassandra when
number of operations is small (1000 and 10000, respectively), for both work-
loads used.

Figure 5 shows that Cassandra’s performance is closer to MongoDB’s when
the number of operations is increased to 100000, in the case of a update-heavy
workload A. For the same number of operations, MongoDB still outperforms
Cassandra when we use a read-heavy workload B, as Figure 6 shows.

Cassandra outperforms MongoDB only when the number of operations is
1000000 and the workload is update-heavy, as in Figure 7. For read-heavy
workloads and the same number of operations, MongoDB’s performance is
better, as shown in Figure 8.

Figures 9 and 10 show the individual performance of the databases consid-
ered when using a heavy-update workload A, as function of the number of

NOSQL DATABASE PERFORMANCE BENCHMARKING - A CASE STUDY 85

Figure 1. 4 Million Records 1000 Operations Workload A

Figure 2. 4 Million Records 1000 Operations Workload B

threads used and number of operations involved. After the initial steep in-
crease (128 threads for Cassandra, 32 for MongoDB), the performance flattens
(with a very small decrease in the case of MongoDB). In the case of Cassandra,
the performance (Figure 9) depends on the number of operations in a quasi-
logarithmic fashion, while MongoDB’s (Figure 10) throughput is almost the
same when the number of operations is greater than or equal to 10000, with

86 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

Figure 3. 4 Million Records 10000 Operations Workload A

Figure 4. 4 Million Records 10000 Operations Workload B

the remark that it is slightly smaller when the number of operations increases
from 100000 to 1000000.

The same comparison was performed in the Figures 11 and 12 to show
the individual performance of the databases considered when using a heavy-
read workload B. A first remark is that the performance decreases in the case
of Cassandra (from 43000 to 30000, Figure 11) and increases in the case of
MongoDB (from 23000 to 75000, Figure 12). After the initial steep increase (64

NOSQL DATABASE PERFORMANCE BENCHMARKING - A CASE STUDY 87

Figure 5. 4 Million Records 100000 Operations Workload A

Figure 6. 4 Million Records 100000 Operations Workload B

threads for Cassandra, 32 for MongoDB), the performance flattens, following
the same patterns.

3.3. Statistical analysis. Statistical analysis of the experimental results was
performed using two-way ANOVA (Analysis of Variance) procedure from R
Statistics Package[17]. A synthesis of the results is given in Table 1. For

88 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

Figure 7. 4 Million Records 1000000 Operations Workload A

Figure 8. 4 Million Records 1000000 Operations Workload B

each experiment, two factors were considered: database (DB, with two levels:
Cassandra and MongoDB), and the number of threads (NT, with ten levels:
1, 2, 4, 8, 16, 32, 64, 128, 256, and 512). The interactions between DB and NT
were also considered. The column labeled ”Sgf” is referring to the P-value and
describes textually the level of significance, 0.1%, 1%, 5%, and 10%, according
to the following conventions: 0 ∗ ∗ ∗ 0.001 ∗ ∗ 0.01 ∗ 0.05 . 0.1 (blank) 1. In

NOSQL DATABASE PERFORMANCE BENCHMARKING - A CASE STUDY 89

Figure 9. 4 Million Records Cassandra Workload A

Figure 10. 4 Million Records MongoDB Workload A

90 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

Figure 11. 4 Million Records Cassandra Workload B

Figure 12. 4 Million Records MongoDB Workload B

other words, if P-value is ≤ 0.1% (i.e. ∗ ∗ ∗ according to the legend), it means
that the differences between means have a strongest statistical significance,
while a P-value greater than 10% (i.e. blank space) shows that the differences
between the means of the levels considered are within the experimental error.

NOSQL DATABASE PERFORMANCE BENCHMARKING - A CASE STUDY 91

Table 1. Analysis of variance - results

Wrk No Database No of threads DB:NT
ld ops F-value Pr(>F) Sgf F-value Pr(>F) Sgf F-value Pr(>F) Sgf
A 1000 162.4446 <2E-16 *** 1.1394 0.2904 0.9268 0.3398
A 10000 94.3802 1.29E-13 *** 12.521 0.0008174 *** 7.1367 0.0098707 **
A 100000 6.3535 0.01459 * 26.268 3.82E-06 *** 0.3309 0.56742
A 1000000 5.9014 0.018362 * 31.2701 6.94E-07 *** 8.7875 0.004449 **
B 1000 178.571 <2E-16 *** 0.75 0.3902 0.5777 0.4504
B 10000 96.271 9.06E-14 *** 11.05 0.001568 ** 7.963 0.006596 **
B 100000 56.322 5.07E-10 *** 22.632 1.42E-05 *** 7.61 0.007827 **
B 1000000 36.373 1.35E-07 *** 27.8642 2.19E-06 *** 3.4366 0.06904 .

4. Conclusions and further work

After the results were analyzed, it became obvious that for a read-mostly
workload (Workload B), MongoDB performed much better than Cassandra.
MongoDB outperformed Cassandra in every test combination where the work-
load parameter was set to Workload B.
For an update-heavy workload (Workload A), Cassandra outperformed Mon-
goDB when the number of operations was increased at 1000000 (Figure 7). In
this update-heavy context, MongoDB performed much better than Cassandra
in the first two test scenarios where the number of operations was set to 1000
(Figure 1), respectively 10000 (Figure 3). In the third test scenario, where the
number of operations was set to 100000 (Figure 5), Cassandra’s performance
was comparable to MongoDB’s, but not greater. After the number of op-
erations was set at 100000, MongoDB’s performance stopped growing, while
Cassandra’s one kept growing. Due to big differences in the infrastructure
(cloud-based versus on-premises) and tool and database management systems
versions used for benchmarking studies, the results of our work cannot be
compared with the results reported by other studies. However, it is important
to notice that the general trends are preserved, as they are mentioned by the
technical documentation issued by providers.
As further work, we intend to analyze the latency metric results for this exper-
iment, to perform post-hoc ANOVA tests and to run performance benchmark-
ing using data sets that don’t fit within memory on single server and cluster
configurations. We also plan to run performance benchmarking on servers
that use SSDs as disk storage and to enable replication for database servers
to see how it affects performance. Moreover, the other variable in our future
case studies will be the benchmarking tool, i.e. we’ll try to use benchmarking
tools available on Linux platforms.

92 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

Acknowledgments

Parts of this work were supported through the MADECIP project Dis-
aster Management Research Infrastructure Based on HPC. This project was
granted to Babeş-Bolyai University, its funding being provided by the Sec-
toral Operational Programme Increase of Economic Competitiveness, Priority
Axis 2, co-financed by the European Union through the European Regional
Development Fund Investments in Your Future (POSCEE COD SMIS CSNR
488061862).

References

[1] M. H. F. R. M. P. A. C. H.-A. J. Ahmad Ghazal, Tilmann Rabl. Bigbench: towards
an industry standard benchmark for big data analytics. Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, pages 1197–1208, 2013.

[2] Apache cassandra. http://cassandra.apache.org/. Accessed: 2017-09-25.
[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,

A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system for structured data.
OSDI ’06 Proceedings of the 7th USENIX Symposium on Operating Systems Design and
Implementation, 7, 2006.

[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
cloud serving systems with ycsb. Proceedings of the 1st ACM symposium on Cloud
computing, pages 143–154, 2010.

[5] Couchdb. http://couchdb.apache.org/. Accessed: 2017-09-25.
[6] Datagres. Perfaccel performance benchmark:nosql database mongodb. Technical report,

Datagres Technologies Inc., 2015.
[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available
key-value store. Proceedings of twenty-first ACM SIGOPS symposium on Operating sys-
tems principles, oct 2007.

[8] Fixstars. Griddb and cassandra performance and scalability. a ycsb performance com-
parison on microsoft azure. Technical report, Fixstars Solutions, 2016.

[9] A. Gandini, M. Gribaudo, W. J. Knottenbelt, R. Osman, and P. Piazzolla. Performance
evaluation of nosql databases. EPEW 2014: Computer Performance Engineering, Lec-
ture Notes in Computer Science, 8721:16–29, 2014.

[10] Hbase. https://hbase.apache.org/. Accessed: 2017-09-25.
[11] N. E. P. D. K. P. C. M. John Klein, Ian Gorton. Performance evaluation of nosql

databases: A case study. Proceedings of the 1st Workshop on Performance Analysis of
Big Data Systems, pages 5–10, 2015.

[12] Json. https://www.json.org/. Accessed: 2018-03-16.
[13] A. Lakshman and P. Malik. Cassandra: a decentralized structured storage system. ACM

SIGOPS Operating Systems Review, 44:35–40, 2010.
[14] Mongodb. https://www.mongodb.com/. Accessed: 2017-09-25.
[15] Orientdb. http://orientdb.com/. Accessed: 2017-09-25.
[16] M. F. Pramod J. Sadalage. NoSQL distilled : a brief guide to the emerging world of

polyglot persistence. Addison-Wesley Professional, 2012.
[17] R statistics package. https://www.r-project.org/. Accessed: 2017-09-25.

NOSQL DATABASE PERFORMANCE BENCHMARKING - A CASE STUDY 93

[18] Stress test for couchbase client and cluster. http://docs.couchbase.com/sdk-api/

couchbase-c-client-2.4.8/md_doc_cbc-pillowfight.html. Accessed: 2017-09-25.
[19] The cassandra-stress tool. https://docs.datastax.com/en/cassandra/2.1/

cassandra/tools/toolsCStress_t.html. Accessed: 2017-09-25.
[20] The ycsb core workloads. https://github.com/brianfrankcooper/YCSB/wiki/

Core-Workloads. Accessed: 2017-09-25.
[21] Xml. https://www.w3.org/TR/2008/REC-xml-20081126/. Accessed: 2018-03-16.
[22] Yaml. http://yaml.org/. Accessed: 2018-03-16.
[23] Ycsb github wiki. https://github.com/brianfrankcooper/YCSB/wiki. Accessed:

2017-09-25.

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-
Napoca, Romania

Email address: {andorcamelia, bparv}@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 1, 2018
DOI: 10.24193/subbi.2018.1.07

AN ADAPTIVE GRADUAL RELATIONAL ASSOCIATION

RULES MINING APPROACH

DIANA-LUCIA MIHOLCA

Abstract. This paper focuses on adaptive Gradual Relational Associa-
tion Rules mining. Gradual Relational Association Rules capture gradual
generic relations among data features. We propose AGRARM , an al-
gorithm for mining the interesting Gradual Relational Association Rules
characterizing a data set that has been extended with a number of new
attributes, through adapting the set of interesting rules mined before ex-
tension, so as to preserve the completeness. We aim, through AGRARM ,
to make the mining process more efficient than resuming the mining algo-
rithm on the enlarged data. We have experimentally evaluated AGRARM
versus mining from scratch on three publicly available data sets. The ob-
tained reduction in mining time highlights AGRARM ’s efficiency, thus
confirming the potential of our proposal.

1. Introduction

Data mining is widely applied in various domains, such as medicine [5],
bioinformatics [6] or software engineering [10] [9] [14], to discover relevant
patterns in large data sets.

Association Rules (ARs) mining [4] is a data mining procedure for identify-
ing frequent associations in data. Classical association rules capture frequent
co-occurrences of attribute values, while ignoring any possible frequent relation
between attribute values.

Ordinal Association Rules (OARs) [3] customize Association Rules (ARs)
[1] so as to express ordinal relations among numeric attributes that character-
ize a data set. But different informative relations, that are not ordinal, may
exist between the attribute values. OARs fail to capture them.

Received by the editors: April 2, 2018.
2010 Mathematics Subject Classification. 68P15, 68T05, 62B86.
1998 CR Categories and Descriptors. H.2.8[Database management]: Database Ap-

plications – Data Mining ; I.2.6[Computing Methodologies]: Artificial Intelligence –
Learning .

Key words and phrases. data mining, Gradual Relational Association Rules, adaptive
algorithm.

94

AN ADAPTIVE GRAR MINING APPROACH 95

Consequently, Relational Association Rules (RARs) [18] [2] generalize Or-
dinal Association Rules so as to capture relations that may not be ordinal,
between not necessary numeric attributes. Compared to the classical Asso-
ciation Rules, RARs express more powerful rules which may lead to valuable
data mining results.

Subsequently, Adaptive Relational Association Rule Mining (ARARM) [8]
has been proposed as a method for adapting the set of all interesting RARs
discovered within a data set before extending its features set, so as to obtain
all interesting RARs within the extended data set.

There are situations when the degree to which a relation between two at-
tributes is satisfied is relevant. So, RARs have been further extended to Grad-
ual Relational Association Rules (or GRARs) [7] which, through the use of
fuzzy relations instead of boolean relations, are also aware of the degree to
which the relations are satisfied.

For discovering all the interesting Gradual Relational Association Rules that
describe a data set, Gradual Relational Association Rules Miner (GRANUM)
[7] has been proposed. GRANUM mines a known set of objects that are
measured against a known set of features and discovers all interesting GRARs
characterizing the data set. But there are also situations where the data is
horizontally dynamic, in the sense that the feature set characterizing its ob-
jects evolves (i.e. new attributes are added). Clearly, for obtaining, in such a
setting, the interesting GRARs, the mining algorithm can be re-applied, from
scratch, every time the feature set changes (i.e. one or more new attributes
are added). But this could be inefficient and unworthy especially if the at-
tribute set is only very slightly expanded, for instance by adding just one new
attribute.

Consequently, we propose, in the current paper, an alternative to resuming
the GRANUM mining algorithm when the data set is enlarged with a number
of new attributes. We propose, therefore, Adaptive Gradual Relational Asso-
ciation Rules Miner (AGRARM), which is an algorithm that adapts the set
of all interesting GRARs mined before extension so as to obtain all interesting
GRARs that characterize the extended data. AGRARM is the equivalent of
ARARM [8], but for mining GRARs instead of RARs, within a dynamic data
set.

The remaining of this paper is structured as follows. We start by giving,
in Section 2, a background on Gradual Relational Association Rules. The
proposed Adaptive Gradual Relational Association Rules Miner (AGRARM)
is presented in Section 3. In Section 4, we detail the experiments performed
in order to evaluate AGRARM against GRANUM applied from scratch and
we discuss the results obtained. A comparison to related approaches is also

96 DIANA-LUCIA MIHOLCA

given in Section 4. Finally, the conclusions and directions for further work are
stated in Section 5.

2. Background on Gradual Relational Association Rules

We briefly present in the following the concept of Gradual Relational Asso-
ciation Rules [7].

Gradual Relational Association Rules (GRARs) generalize Relational As-
sociation Rules (RARs) [18] by using fuzzy relations instead of crisp relations
and thus enhancing them with gradualness. The gradual rules are able to
express additional semantically relevant characteristics of data and have been
proven to be more noise-tolerant [7].

Let E = {e1, e2, . . . , en} be a set of instances (entities, records or objects).
Each instance ei in E consists of a sequence of values for m attributes (or
features), A = (a1, . . . , am). Each attribute aj takes values from a non-empty
and non-fuzzy domain Di, which also contains a null (or empty) value. If we
denote by Φ(ei, aj) the value of the instance ei for the attribute aj , an instance
will be ei = (Φ(ei, a1),Φ(ei, a2),
Φ(ei, a3), ...Φ(ei, am)).

A fuzzy binary relation G between two attribute domains Di and Dj is
defined as follows:

G = {< (v1, v2), µR(v1, v2) >: v1 ∈ Di, v2 ∈ Dj}
µR : Di×Dj → [0, 1] is a membership function which associates to each pair

(v1, v2), v1 ∈ Di, v2 ∈ Dj the membership degree µR(v1, v2) which numerically
expresses the degree to which the relation G is satisfied.

We denote by F the set of all fuzzy binary relations which can be defined
between any two crisp attribute domains.

Definition 2.1. A Gradual Relational Association Rule, gRule, is a
sequence (ai1 G1 ai2 G2 ai3 . . .G`−1 ai`), where {ai1 , ai2 , ai3 , . . . , ai`} ⊆ A =
{a1, . . . , am}, aij 6= aik , j, k = 1..` and Gj ∈ F is a binary fuzzy relation over
Dij ×Dij+1 [7].

The membership degree of the gradual relational association rule gRule
for data instance e ∈ E is defined as µgRule(e) = min{µRj (Φ(e, aij),Φ(e, aij+1)),
j = 1, 2, . . . , `− 1} and expresses the magnitude to which the rule is satisfied.

a) If ai1 , ai2 , ai3 , . . . , ai` are non-missing in p instances from the data
set then we call p

n the support of the rule.
b) If we denote by E ′ ⊆ E the set of instances where ai1 , ai2 , ai3 , . . . , ai`

are non-missing and µgRule(e) > 0 for each instance e from E ′, then

we call |E
′|
n the confidence of the rule.

AN ADAPTIVE GRAR MINING APPROACH 97

c) Using the notation from b), we call

∑
e∈E ′

µgRule(e)

n the rule’s mem-
bership.

The number l of attributes in a rule gives the rule length.
When introducing the concept of Gradual Relational Association Rules in

the literature [7], we kept the definition of interestingness previously proposed
for non-gradual Relational Association Rules. In accordance with this, a rule
is interesting if its support and confidence are greater or equal to given thresh-
olds. In a later work [14], we suggested that we could customize interestingness
by including an additional minimum threshold condition for membership. So,
the current work is in accordance with the definition for interestingness cus-
tomized as follows:

Definition 2.2. We call a GRAR interesting if its support s, confidence c
and membership m are greater than or equal to given thresholds, i.e. s ≥ smin,
c ≥ cmin and m ≥ mmin.

Definition 2.3. The inverse of binary fuzzy relation G = {< (x, y), µG(x, y) >:
x ∈ X, y ∈ Y } will be denoted in the following by G−1 and is defined as
G−1 = {< (x, y), 1− µG(x, y) >: x ∈ X, y ∈ Y }.

GRANUM [7] has been proposed as an Apriori mining algorithm for dis-
covering all interesting GRARs within a data set. For more details about
GRANUM and GRARs in general, we refer the reader to [7].

2.1. Example. We exemplify in the following the previously presented con-
cept of Gradual Relational Association Rules. Therefore, we mine a small real
data set taken from [12] and depicted in Figure 1. The data consist of the
results obtained by testing chemical pastes as described in the following. The
chemical paste product is delivered in batches of casks. Immediately after the
arrival of a batch, the material from three randomly selected casks is analyzed,
errors arising from both the sampling and the analysis. The data instances
correspond to ten delivery batches chosen at random, while the data attributes
are given by the average of the percentage paste strengths obtained by two
analyzes of the contents of the three selected casks.

We propose to compare the paste strengths obtained by analyzing the con-
tents of the three randomly selected casks. Since there are errors in data, we
opt for GRARs [7] instead of non-gradual RARs.

Having F = {≈ (approximately equal),. (fuzzy less)and & (fuzzy greater)}
as the set of gradual relations and setting the minimum support, confidence
and membership thresholds at smin = 1, cmin = 1 and mmin = 0.9, the

98 DIANA-LUCIA MIHOLCA

Cask 1 Cask 2 Cask 3
62.70 61.20 61.95
60.70 57.20 58.95
58.10 63.50 60.80
56.75 57.75 57.25
55.10 54.45 54.78
64.15 58.70 61.43
62.55 59.85 61.20
59.30 65.60 62.45
54.80 64.00 59.40
58.80 59.20 59.00

Figure 1. Strength of chemical pastes data set

GRANUM mining algorithm will discover as interesting rules the rules given
in Table 1.

Rule Length Support Confidence Membership
Cask 1 ≈ Cask 2 2 1.0 1.0 0.935
Cask 1 ≈ Cask 3 2 1.0 1.0 0.982
Cask 2 ≈ Cask 3 2 1.0 1.0 0.983

Cask 1 ≈ Cask 2 ≈ Cask 3 3 1.0 1.0 0.935
Table 1. Interesting rules on data set from Table 1 for smin =
1, cmin = 1 and mmin = 0.9

Interpreting the obtained GRARs, we can conclude that the results of the
analyzes performed for the three selected casks are approximately equal (since
Cask 1 ≈ Cask 2 ≈ Cask 3 with a rather large membership degree of 0.935).
Furthermore, we deduce that the strengths of the material from the third
selected cask differ in almost equal extents from the strengths obtained for
the other two casks (since Cask 1 ≈ Cask 3 with membership 0.982 and Cask
2 ≈ Cask 3 with membership 0.983), while these two are not as close to each
other (since Cask 1 ≈ Cask 2 with a smaller membership of 0.935). These
conclusions are confirmed by analyzing the graphical data representation from
Figure 1.

3. Methodology

We introduce in the current section AGRARM , the Adaptive Gradual
Relational Association Rules Mining method we propose for mining all in-
teresting GRARs in a dynamic data set whose feature set is extended with
one or more new features.

AN ADAPTIVE GRAR MINING APPROACH 99

Let E = {e1, e2, . . . , en} be a data set. Each entity is initially defined by
the values for m features (attributes or characteristics), A = (a1, . . . , am),
thus being a m-dimensional sequence: ei = (e1i , . . . , e

m
i). Subsequently, A is

extended with s ≥ 1 new features, thus obtaining an extended feature set
Aext = (a1, . . . , am, am+1, . . . ,
am+s) and an afferent extended data set Eext = {eext1 , eext2 , . . . , eextn }. Each
extended data instance eexti ∈ Eext is therefore given by the values for the

m + s attributes that describe the extended data set Eext: eexti = (eext, 1
i ,

eext, 2
i , . . . , eext, m+s

i).
In this context, the problem we are approaching is to find the set GRulesext

of all interesting GRARs that occur in the extended data set Eext, starting
from the set GRules of all interesting GRARs in the non-extended data set
E . The motivation is that we expect a better time performance through com-
pleting the rules already mined on the data before extension than by applying
the mining process from scratch on the extended data.

So, we further presentAGRARM (Adaptive Gradual Relational Association
Rule Miner), a complete algorithm that, starting from GRules and consider-
ing the newly added features, adapts the rule set so as to obtain GRulesext.
Function AGRARM(E , Eext, F , GRules, cmin, smin, mmin)

Input: E - the initial non-extended set of m-dimensional entities,
Eext - the final extended set of m+s-dimensional entities,
F - the set of fuzzy binary relations used in the mining process,
GRules - the set of all interesting GRARs mined on the non-extended data

set E,
cmin, smin and mmin - the minimum thresholds for support, confidence

and membership, respectively
Output: GRulesext - the set of all interesting GRARs that characterize Eext, the

extended data set
AdaptiveRules← the binary (2− length) rules from GRules
Cand← { (ai1 G ai2) | ai1 , ai2 ∈ A, i1 = 1 . . .m+ s, i2 = m+ 1 . . .m+ s, i1 <
i2, G ∈ F }
Foreach gRule in Cand do

If IsInteresting(gRule, Eext, cmin, smin, mmin) then

AdaptiveRules ← AdaptiveRules ∪ {gRule}
EndIf

EndFor

GRulesext ← AdaptiveRules
l← 3
complete← false
While (¬complete) do

Cand← GenCandidates(AdaptiveRules)
AdaptiveRules← l − length rules from GRules

100 DIANA-LUCIA MIHOLCA

Foreach gRule in Cand do

If IsInteresting(gRule, Eext, cmin, smin, mmin) then

AdaptiveRules ← AdaptiveRules ∪ {gRule}
EndIf

EndFor

If AdaptiveRules = ∅ then

complete← true
else

l ← l + 1
GRulesext ← GRulesext ∪AdaptiveRules

EndIf

EndWhile

AGRARM ← GRulesext
EndFunction

The AGRARM algorithm discovers all interesting GRARs through an iterative
process. At each iteration, the length-level generation of rules is followed by the
verification of their interestingness. As we mentioned in Section 2 , the interestingness
of a GRARs is a property that is tested in relation to given support, confidence and
membership minimum thresholds. We give in the following the function that checks
if a candidate GRAR is or is not interesting at the level of the extended data set Eext.
Function IsInteresting(gRule, Eext, cmin, smin, mmin)

Input: Eext - the final extended set of m+s-dimensional entities,
gRule - the gradual relational association rule whose interestingness on Eext

is verified
cmin, smin and mmin - the minimum thresholds for support, confidence

and membership, respectively
Output: true - if gRule is interesting on Eext (i.e. it satisfies cmin, smin, and

mmin minimum thresholds) or
false - otherwise

n← |Eext|
requiredSuppport←

⌈
n · smin

⌉
requiredConfidence←

⌈
n · cmin

⌉
requiredMembership←

⌈
n ·mmin

⌉
support← 0
confidence← 0
membership← 0
remainingEntities← n
Foreach instance in Eext do

UpdateSuppConfM(gRule, instance, support, confidence,membership)
remainingEntities← remainingEntities− 1
If (support+ remainingEntities < requiredSupport)
or (confidence+ remainingEntities < requiredConfidence)
or (membership+ remainingEntities < requiredMembership) then

AN ADAPTIVE GRAR MINING APPROACH 101

IsInteresting ← false
EndIf

If (support ≥ requiredSupport) and (confidence ≥ requiredConfidence)
and (membership ≥ requiredMembership) then

IsInteresting ← true
EndIf

EndFor

IsInteresting ← false
EndFunction

The method that follows presents the update of support, confidence and member-
ship of a GRAR when considering a current data instance.

Subalgorithm UpdateSuppConfM(gRule, instance, supp, conf,membership)
Input: gRule - the gradual relational association rule whose support, confidence

and membership will be updated considering the instance data entity
instance - the data instance on which the rule gRule is evaluated so as to

update the supp, conf and membership values
supp, conf and membership - the current support, confidence and mem-

bership for gRule which are required to be updated through also considering
instance.

Output: supp′, conf ′ and membership′ - the support, confidence and member-
ship of gRule are updated as a result of evaluating gRule on instance
If @instance has non−missing values for all attributes in gRule then

supp ← supp+ 1
m← min(@ the memberships of the fuzzy relations in gRule on the
instance data entity)
If m > 0 then

conf ← conf + 1
EndIf

membership← membership+m
EndIf

EndSubalgorithm

So, AGRARM , the proposed method, starts by performing an initial pass over the
extended data set Eext so as to identify the interesting binary rules in addition to the
2-length rules from GRules. In every subsequent iteration, the set of interesting rules
of length k > 2 will be mined. This set will obviously include the k-length rules from
the set GRules. But there is an alternative to obtain a k-length interesting rule. The
alternative consists in generating a new candidate rule by joining two (k − 1)-length
rules from GRulesext such that at least one of the two rules contains at least one
newly added attribute. The candidate rules generation is followed by the verification
of minimum support, confidence and membership compliance. At the end of each
iteration, all the k-length interesting rules will be included in the set GRulesext. The
mining process stops when no new interesting rules have been discovered in the latest
iteration.

102 DIANA-LUCIA MIHOLCA

We present in the following the method of generating candidate rules.

Function GenCandidates(GRulesk)
Input: GRulesk - the interesting GRARs of length k
Output: GRulesk+1 - the candidate GRARs of length k + 1 which were obtained

through joining pairs of rules in GRulesk
GRulesk+1 ← ∅
n← |GRulesk|
For i← 1 to n− 1 do

For j ← i+ 1 to n do

gRulei ← the i− th rule from GRulesk
gRulej ← the j − th rule from GRulesk
If @gRulei or gRulej contain at least one newly added attribute (i.e.
in the set {am+1, am+2, ..., am+s}) then

If @gRulei matches for join with gRulej in one of the cases (1)
−(4) from Figure 2 then

resultingRule← @ the rule obtained by joining gRulei and gRulej
GRulesk+1 ← GRulesk+1 ∪ {resultingRule}

EndIf

EndIf

EndFor

EndFor

GenCandidates← GRulesk+1

EndFunction

In Figure 2, we present the four rules according to which GenCandidates proposes
new candidate rules.

4. Results and discussion

We present in the following the experiments we performed in order to comparatively
evaluate AGRARM against GRANUM applied from scratch, the comparison being
performed in the context in which the data of interest is extended with a number of
new attributes.

In these comparative experiments, we considered three different data sets, various
possibilities of extending their attribute sets and multiple values for the minimum
support, confidence and membership thresholds.

The three data sets we have considered in our experiments are publicly available
in tera− PROMISE repository [17]. They are Tomcat, Ar and JM1. The Tomcat
data set consists of the values for 20 Chidamber and Kemerer (CK) software metrics,
computed for the 858 classes in Apache Tomcat software, version 6.0. The Ar data
set is composed of 29 static code attributes (McCabe, Halstead and LOC software
measures), for 745 modules in Ar, which is an embedded software implemented in C.
The third data set, JM1, consists of 7782 instances, corresponding to modules in JM1
software, each being characterized by 21 attributes (5 different lines of code measures,
3 McCabe metrics, 4 base Halstead measures, 8 derived Halstead measures and a

AN ADAPTIVE GRAR MINING APPROACH 103

gRule1 ≡ (a1G1ai1G1ai2 . . .Gk−3aik−2
),

gRule2 ≡ (ai1G1ai2 . . .Gk−3aik−2
G2a2), (1)

⇒ resultingRule ≡ (a1G1ai1G1ai2 . . .Gk−3aik−2
G2a2),

or
gRule1 ≡ (ai1G1ai2 . . .Gk−3aik−2

G1a1),

gRule2 ≡ (a2G2ai1G1ai2 . . .Gk−3aik−2
), (2)

⇒ resultingRule ≡ (a2G2ai1G1ai2 . . .Gk−3aik−2
G1a1),

or
gRule1 ≡ (a1G1ai1G1ai2 . . .Gk−3aik−2

),

gRule2 ≡ (a2G2aik−2
G−1
k−3 . . . ai2G

−1
1 ai1), (3)

⇒ resultingRule ≡ (a1G1ai1G1ai2 . . .Gk−3aik−2
(G2)

−1
a2),

or
gRule1 ≡ (ai1G1ai2 . . .Gk−3aik−2

G1a1),

gRule2 ≡ (aik−2
G−1
k−3 . . . ai2G1

−1ai1G2a2), (4)

⇒ resultingRule ≡ (a2(G2)
−1
ai1G1ai2 . . .Gk−3aik−2

G1a1).

Figure 2. The joining rules considered by the candidate gen-
eration process in the AGRARM algorithm

branch-count). We mention that, prior to the mining phase, the data have been pre-
processed in the sense that the values have been scaled using the Min-Max scaling
method.

In each of the experiments, the interesting GRARs on the extended (m + s)-
dimensional instances have been mined in the following two ways: (1) by applying
GRANUM from scratch on the extended data and (2) by applying AGRARM so as
to adapt the rules mined before extension. Certainly, the interesting GRARs mined
were the same regardless of the mining method applied (i.e. (1) or (2)). But we will
compare the time required by the two methods in order to test our expectation that
AGRARM is faster than GRANUM applied from scratch, at least if the data set is
expanded with a relatively small number of attributes.

We considered, in the mining processes, the following set of fuzzy binary rela-
tions: F = {≈ (approximately equal), . (fuzzy less), & (fuzzy greater), ∼�
(fuzzy much
less), ∼� (fuzzy much greater)}. The ≈ relation has been defined using the
asymmetric Gaussian membership function, while the rest of the fuzzy relations have
been defined through S-shaped membership functions, which have been parameter-
ized, of course, so that the following inequalities occur: . (x, y) ≥ ∼� (x, y) and
& (x, y) ≥ ∼� (x, y).

We mention that the experiments have been carried out on a PC with an Intel
Core i7 Processor at 2.40 GHz, with 8 GB of RAM.

We depict in Table 2 the results obtained by applyingAGRARM versusGRANUM
from scratch on Tomcat data set, when considering the minimum support threshold

104 DIANA-LUCIA MIHOLCA

m s
Rules
on E

Time
GRANUM

(ms)

Time
AGRARM

(ms)

Time
reduction

2 18 0 273.67 269.66 0.014
3 17 0 275.08 275 0.0002
4 16 0 274.14 273.8 0.001
5 15 0 274.55 272.58 0.007
6 14 9 275.42 264.03 0.041
7 13 9 274.68 261.28 0.048
8 12 9 274.49 259.55 0.054
9 11 32 274.12 237.93 0.132
10 10 32 274.04 232.9 0.150
11 9 32 274.99 230.38 0.162
12 8 32 273.77 226.75 0.172
13 7 32 273.97 223.12 0.186
14 6 32 273.83 219.78 0.197
15 5 99 274.87 119.13 0.567
16 4 100 275.9 115.27 0.582
17 3 117 275.52 88.92 0.677
18 2 171 276.52 14.29 0.948
19 1 171 275.5 8.22 0.970

Table 2. Experimental results obtained on Tomcat data set
for smin = 1, cmin = 0.97 and mmin = 0.5

smin = 1, the minimum confidence threshold cmin = 0.97 and the minimum member-
ship threshold mmin = 0.5. Here, m gives the number of initial attributes, while s
gives the number of newly added attributes.

In Table 2, we give, on the first column, the number m of initial attributes, on
the second column, the number s of newly added attributes, on the third column,
the number of interesting GRARs mined before extension, on the fourth and fifth
columns the mining time for GRANUM and AGRARM , respectively, and, on the
last column, the time reduction obtained by applying AGRARM to the detriment of
GRANUM applied from scratch. The reduction in mining time has been computed
as the ratio between the gained time (i.e. the difference between the time required by
GRANUM and the time required by AGRARM) and the time consumed through
resuming the mining process (i.e. applying GRANUM from scratch).

We observe from the table that the time reduction becomes significant when the
newly added attributes count no more than one third of the number of initial at-
tributes. For instance, when s

m = 1
3 (i.e. s = 5 and m = 15), the mining time is

reduced by more than 56%. The most substantial reduction, namely 97%, is obtained
when the data set is extended with only one attribute.

AN ADAPTIVE GRAR MINING APPROACH 105

Figures 3 and 4 illustrate how the time reduction evolves, depending on the number
s of new attributes, for additional case studies on the Tomcat data set.

Figure 3. The reduction in total mining time when applying
AGRARM on Tomcat and considering smin = 1, cmin = 0 and
mmin ∈ {0.99, 9.95, 0.9}

The results illustrated in Figure 3 have been obtained by imposing, besides the
condition of a minimum support threshold smin = 1, minimum membership thresh-
olds, thus renouncing at also using a minimum confidence threshold to condition the
interestingness of a GRAR (i.e. cmin has been set as 0). We successively initialized
the minimum membership threshold with the following values: 0.99, 0.95 and 0.9.

In Figure 4 we give the reductions obtained by considering the minimum support
threshold smin = 1 and by varying both the minimum confidence and membership
thresholds. We successively considered cmin = 0.99 and mmin = 0.95, cmin = 0.95
and mmin = 0.9 and, as a third setting, cmin = 0.97 and smin = 0.5.

From both figures we can deduce that the time required by AGRARM decreases
as the number s of newly added attributes decreases. Consequently, the adaptive
algorithm we propose proves to be significantly more efficient than GRANUM applied
from scratch when s is relatively small.

In order to strengthen the finding according to which AGRARM really makes the
mining process more efficient when data is enlarged with relatively few new attributes,
we comparatively tested it on two more data sets.

We present in Figure 5 the time reductions obtained on Ar data set when consid-
ering smin = 1 and various values for cmin and mmin.

106 DIANA-LUCIA MIHOLCA

Figure 4. The reduction in total mining time when apply-
ing AGRARM on Tomcat and considering smin = 1 and
(cmin, smin) ∈ {(0.99, 0.95), (0.95, 0.9), (0.97, 0.5)}

Figure 5. The reduction in total mining time when applying
AGRARM on Ar and considering smin = 1 and (cmin, smin) ∈
{(0, 0.996), (0.996, 0), (0.99, 0.98), (1, 0.9)}

Figure 6 illustrates how the total mining time is reduced when applying, on JM1
data set, AGRARM instead of GRANUM from scratch. In the experiments per-
formed on JM1 we also set the minimum support threshold, smin, to 1, while varying
the values for the minimum confidence and membership.

AN ADAPTIVE GRAR MINING APPROACH 107

Figure 6. The reduction in total mining time when ap-
plying AGRARM on JM1 and considering smin = 1 and
(cmin, smin) ∈ {(1, 0), (0.995, 0.5), (0, 0.995), (0.999, 0.99)}

As we can see in Figures 5 and 6, the reduction in total mining time becomes
substantial when the newly added attributes are relatively few. Consequently, the
results of the experiments performed on Ar and JM1 also confirm the effectiveness
of AGRARM , the algorithm we propose for adapting the interesting GRARs mined
before extension, so as to avoid applying GRANUM from scratch on the extended
data.

4.1. Comparison to related work. AGRARM , the adaptive mining approach in-
troduced in Section 3, is new in the data mining literature. The existing approaches
consider non-relational Association Rules and their adaptability refers to other as-
pects, except for ARARM , which handles non-gradual Relational Association Rules.
AGRARM is an adaptation of ARARM [8] so as to additionally consider the de-

gree to which the rules are satisfied. This implies that the rules AGRARM discovers
as interesting are also filtered according to a given minimum membership threshold
(see Function isInteresting in Section 3) in addition to support and confidence mini-
mum thresholds.

Apart from ARARM , the perspectives of the other incremental mining approaches
are quite different. Still, we will briefly present several recent approaches that are
somehow related to our approach, since they focus on mining dynamic data. They
are incremental in the sense that the dynamics of data refers to adding new instances
and not new features to the existing instances.

Nath et al. [15] provides a survey on association rule mining, insisting on the situ-
ation in which the data set is not static. The authors have highlighted the important
issues and challenges of mining dynamic data, including: the multiple passes over the

108 DIANA-LUCIA MIHOLCA

data set, the high number of generated candidates and the incremental behaviour of
the data set.

Dhanabhakyam and Punithavalli [11] have proposed an efficient Market Basket
Analysis mining method, called Adaptive Association Rule Mining with Faster Rule
Generation Algorithm (FRG − AARM). The adaptability of the method refers to
regulating the minimum support threshold during mining so as to attain a suitable
number of rules.

Ogunde et al. [16] have introduced an Adaptive Incremental Mining Algorithm
(AIMA). AIMA has been designed to adapt the existing rules to the changes in the
distributed databases, by mining, with the help of mobile agents, only the incremental
database updates, in order to improve the response time and communication overhead.

A different incremental data mining algorithm has been proposed by Chang et al.
[4]. The proposed method is based on FP-Growth and uses the concept of heap tree
for incrementally updating the frequent itemsets.

A similar approach has been proposed by Yu-Dong et al [19]. The incremental
association rule mining algorithm is called PV SIFP − Growth. The authors have
incorporated in their proposal the Improved FP-Growth (V SIFP−Growth) and par-
allel computing based on MapReduce. PV SIFP −Growth can discover association
rules when both database increase or decrease and minimum support changes.

Li et al. [13] have proposed a three-way decision update pattern approach (TDUP)
combined with a synchronization mechanism for efficiently updating and maintaining
the frequent itemsets. It is based on using an additional support-based measure, so
as to classify all possible itemsets into positive, boundary, and negative regions.

So, the existing adaptive approaches either rely on adapting the mining parameters
[11] so as the discovered rules to be relevant, or aim the adaptation of the rules in
the case of a dynamic data set, but which is extended vertically, not horizontally (i.e.
by adding new data instances to it rather than adding new attributes to the existing
instances) [19, 4, 13].

5. Conclusions and further work

We have proposed in the current paper AGRARM , a complete approach for adap-
tively uncovering the interesting Gradual Relational Association Rules within a dy-
namic data set that is extended by adding new features to it. Multiple experiments
have been performed in order to comparatively evaluate AGRARM ’s time perfor-
mance. The evaluation results confirm that AGRARM provided the interesting
GRARs within the enlarged data more rapidly than resuming the mining algorithm
GRANUM , i.e. applying it from scratch on the updated data set.

A first direction of further work is to further improve the efficiency of the adaptive
mining process. To this effect, we aim to study possible algorithmic improvements
of AGRARM (like trying to generate a new candidate rule only from relevant pairs
of rules, i.e. when at least one rule in the pair contains at least one newly added
attribute) and also to develop a distributed version of it. We also plan to apply

AN ADAPTIVE GRAR MINING APPROACH 109

AGRARM in concrete data mining tasks including incremental software defect pre-
diction.

As an additional direction for further work, we plan to propose an adaptive-
incremental approach for discovering interesting Gradual Relational Associations Rules
within a dynamic data set to which both new features and new objects are added.

References

[1] Abdelhamid Boudane, Said Jabbour, Lakhdar Sais, and Yakoub Salhi. A SAT-based
approach for mining association rules. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI’16, pages 2472–2478. AAAI Press,
2016.

[2] Alina Câmpan, Gabriela Şerban, and Andrian Marcus. Relational association rules and
error detection. Studia Universitatis Babes-Bolyai Informatica, LI(1):31–36, 2006.

[3] Alina Campan, Gabriela Şerban, Traian Marius Truta, and Andrian Marcus. An algo-
rithm for the discovery of arbitrary length ordinal association rules. In DMIN, pages
107–113, 2006.

[4] H. Y. Chang, J. C. Lin, M. L. Cheng, and S. C. Huang. A novel incremental data
mining algorithm based on FP-growth for big data. In 2016 International Conference
on Networking and Network Applications (NaNA), pages 375–378, July 2016.

[5] Gabriela Şerban, Istvan Gergely Czibula, and Alina Câmpan. Medical diagnosis predic-
tion using relational association rules. In Proceedings of the International Conference on
Theory and Applications of Mathematics and Informatics (ICTAMI’07), pages 339–352,
2008.

[6] Gabriela Czibula, Maria-Iuliana Bocicor, and Istvan Gergely Czibula. Promoter se-
quences prediction using relational association rule mining. Evolutionary Bioinformat-
ics, 8:181–196, 04 2012.

[7] Gabriela Czibula, Istvan Gergely Czibula, and Diana-Lucia Miholca. Enhancing rela-
tional association rules with gradualness. International Journal of Innovative Comput-
ing, Communication and Control, 13(1):289–305, 2017.

[8] Gabriela Czibula, Istvan Gergely Czibula, Adela-Maria Ŝırbu, and Ioan-Gabriel Mircea.
A novel approach to adaptive relational association rule mining. Appl. Soft Comput.,
36(C):519–533, November 2015.

[9] Gabriela Czibula, Zsuzsanna Marian, and István Gergely Czibula. Software defect pre-
diction using relational association rule mining. Inf. Sci., 264:260–278, 2014.

[10] Gabriela Czibula, Zsuzsanna Marian, and Istvan Gergely Czibula. Detecting software
design defects using relational association rule mining. Knowledge and Information Sys-
tems, 42(3):545–577, Mar 2015.

[11] M. Dhanabhakyam and Punithavalli M. An efficient market basket analysis based on
adaptive association rule mining with faster rule generation algorithm. The SIJ Trans-
actions on Computer Science Engineering & its Applications (CSEA), 1(3), 2013.

[12] David J. Hand, Fergus Daly, K. McConway, D. Lunn, and E. Ostrowski. A Handbook
of Small Data Sets, volume 1. CRC Press, 1993.

[13] Yao Li, Zhi-Heng Zhang, Wen-Bin Chen, and Fan Min. TDUP: an approach to incremen-
tal mining of frequent itemsets with three-way-decision pattern updating. International
Journal of Machine Learning and Cybernetics, 8(2):441–453, Apr 2017.

110 DIANA-LUCIA MIHOLCA

[14] Diana-Lucia Miholca, Gabriela Czibula, and Istvan Gergely Czibula. A novel approach
for software defect prediction through hybridizing gradual relational association rules
with artificial neural networks. Information Sciences, 441:152 – 170, 2018.

[15] B. Nath, D. K. Bhattacharyya, and A. Ghosh. Incremental association rule mining: A
survey. Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(3):157–169,
2013.

[16] Adewale O. Ogunde, Olusegun Folorunso, and Adesina S. Sodiya. The design of an adap-
tive incremental association rule mining system. In Proceedings of the World Congress
on Engineering 2015 - Volume I, London, UK, 2015.

[17] J. Sayyad Shirabad and T.J. Menzies. The PROMISE Repository of Software Engi-
neering Databases. School of Information Technology and Engineering, University of
Ottawa, Canada, 2005.

[18] Gabriela Serban, Alina Câmpan, and Istvan Gergely Czibula. A programming interface
for finding relational association rules. IJCCC, I(S.):439–444, June 2006.

[19] Guo Yu-Dong, Li Sheng-Lin, Li Yong-Zhi, Wang Zhao-Xia, and Zeng Li. Large-scale
dataset incremental association rules mining model and optimization algorithm. Inter-
national Journal of Database Theory and Application, 9(4):195–208, 2016.

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, Kogălniceanu 1, Cluj-Napoca, 400084, Romania

Email address: diana@cs.ubbcluj.ro

