
INFORMATICA
2/2019

STUDIA
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

No. 2/2019
July - December

EDITORIAL BOARD

EDITOR-IN-CHIEF:

Prof. Horia F. Pop, Babeş-Bolyai University, Cluj-Napoca, Romania

EXECUTIVE EDITOR:

Prof. Gabriela Czibula, Babeș-Bolyai University, Cluj-Napoca, Romania

EDITORIAL BOARD:

Prof. Osei Adjei, University of Luton, Great Britain
Prof. Anca Andreica, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Florian M. Boian, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Sergiu Cataranciuc, State University of Moldova, Chișinău, Moldova
Prof. Wei Ngan Chin, School of Computing, National University of Singapore
Prof. Laura Dioșan, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Farshad Fotouhi, Wayne State University, Detroit, United States
Prof. Zoltán Horváth, Eötvös Loránd University, Budapest, Hungary
Assoc. Prof. Simona Motogna, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Roberto Paiano, University of Lecce, Italy
Prof. Bazil Pârv, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Abdel-Badeeh M. Salem, Ain Shams University, Cairo, Egypt
Assoc. Prof. Vasile Marian Scuturici, INSA de Lyon, France

YEAR

MONTH

ISSUE

Volume 64 (LXIV) 2019

DECEMBER

2

S T U D I A

UNIVERSITATIS BABEȘ-BOLYAI

INFORMATICA

2

EDITORIAL OFFICE: M. Kogălniceanu 1 • 400084 Cluj-Napoca • Tel: 0264.405300

SUMAR – CONTENTS – SOMMAIRE

D.O. Pop, Detection of Pedestrian Actions Based on Deep Learning Approach 5

G.-B. Maca, Road Condition Classification Using Convolutional Neural Networks 14

G. Ciubotariu, L.M. Crivei, Analysing the Academic Performance of Students Using

Unsupervised Data Mining .. 34

D. Dobrean, L. Dioșan, A Comparative Study of Software Architectures in Mobile

Applications ... 49

A. Budur, C. Șerban, A. Vescan, Predicting Reliability of Object-Oriented Systems

Using a Neural Network ... 65

A. Briciu, Quantitative Analysis of Style in Mihai Eminescu's Poetry 80

I. Zsigmond, Automation and Gamification of Computer Science Study 96

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIV, Number 2, 2019
DOI: 10.24193/subbi.2019.2.01

DETECTION OF PEDESTRIAN ACTIONS BASED ON DEEP

LEARNING APPROACH

DĂNUŢ OVIDIU POP(1,2,3)

Abstract. The pedestrian detection has attracted considerable attention
from research due to its vast applicability in the field of autonomous ve-
hicles. In the last decade, various investigations were made to find an
optimal solution to detect the pedestrians, but less of them were focused
on detecting and recognition the pedestrian’s action. In this paper, we
converge on both issues: pedestrian detection and pedestrian action rec-
ognize at the current detection time (T=0) based on the JAAD dataset,
employing deep learning approaches. We propose a pedestrian detection
component based on Faster R-CNN able to detect the pedestrian and also
recognize if the pedestrian is crossing the street in the detecting time. The
method is in contrast with the commonly pedestrian detection systems,
which only discriminate between pedestrians and non-pedestrians among
other road users.

1. INTRODUCTION

Pedestrian detection is a significant problem for computer vision, which
involves several applications, including robotics, surveillance, and the auto-
motive industry. It is one of the main interests of transport safety since it
implies reducing the number of traffic collisions and the protection of pedes-
trians (i.e., children and seniors), who are the most vulnerable road users.

There are almost 1.3 million persons die in road traffic collisions each year,
and nearly 20-50 million are injured or disabled due to human errors inherited
in the usual road traffic. Moreover, the clashes between cars and pedestrians
are the leading cause of death among young people, and it could be effectively
reduced if such human errors were eliminated by employing an Advanced Dri-
ver Assistance System (ADAS) for pedestrian detection.

Received by the editors: May 16, 2019.
2010 Mathematics Subject Classification. 68T40, 68T45.
1998 CR Categories and Descriptors. I.2.9 [Artificial intelligence]: Robotics – Au-

tonomous vehicles; I.2.10 [Artificial intelligence]: Vision and Scene Understanding – Video
analysis; I.5.4 [Artificial intelligence]: Applications – Signal processing .

Key words and phrases. Pedestrian Detection, Pedestrian Action Recognition, Deep
Learning.

5

6 DĂNUŢ OVIDIU POP

Over the last decade, the scientific community and the automobile industry
have contributed to the development of different types of ADAS systems in
order to improve traffic safety. The Nissan company has developed a system
which recognizes the vehicle’s environment, including pedestrians, other vehi-
cles, and the road. Lexus RX 2017 has a self-driving system which is linked
up to a pedestrian detection system. More recently, the Audi ADAS system
accumulates the data of the camera and/or radar sensor to determine the pos-
sibility of a collision by detecting pedestrians or cyclists and warns the driver
with visual, acoustic and haptic alerts if a crash is coming.

These current ADAS systems still have difficulty distinguishing between hu-
man beings and nearby objects. In recent research investigations, deep learn-
ing neural networks have frequently improved detection performance. The
impediment for those patterns is that they require a large amount of anno-
tated data.

This paper proposes a pedestrian detection system which not only discrim-
inates the pedestrians among other road users but also able to recognize the
pedestrian actions at the current detection time (T=0).

The contribution of this paper concerns detecting and classifying pedestrian
actions. To do so, we develop the following methodology relying on a deep
learning approach:

• Train, all pedestrian samples with the Faster R-CNN-Inception ver-
sion 2 for pedestrian detection, proposes [1];

• Train all pedestrian samples also using the pedestrian actions tags
(cross/not cross) with the CNN as mentioned above for detection
and action recognition based on the Joint Attention for Autonomous
Driving (JAAD) [2] dataset;

The paper is organized as follows: Section 2 outlines sever existing approaches
from the literature and supplies our main contribution. Section 3 presents an
overview of our system. Section 4 describes the experiments and the results
on the JAAD dataset. Finally, Section 5 presents our conclusions.

2. RELATED WORK

A wide variety of methodologies have been proposed with optimization in
performance, resulting in the development of detection methods using deep
learning approaches [3, 4, 5] or combination of features followed by a trainable
classifier [4, 6].

A deep, unified pattern that conjointly learns feature extraction, deforma-
tion handling, occlusion handling, and classification evaluated on the Caltech
and the ETH datasets for pedestrian detection was proposed in [7]. An investi-
gation focused on the detection of small scale pedestrians on the Caltech data

DETECTION OF PEDESTRIAN ACTIONS BASED ON DEEP LEARNING APPROACH 7

set connected with a CNN learning of features with an end-to-end approach
was presented in [8].

A combination of three CNNs to detect pedestrians at various scales was
introduced on the same monocular vision data set [9]. A cascade Aggregated
Channel Features detector is used in [10] to generate candidate pedestrian win-
dows followed by a CNN-based classifier for verification purposes on monocular
Caltech and stereo ETH data sets.

In [11] is presented a pedestrian detection based on a variation of YOLO
network model, (three layers were added to the original one) in order to join
the shallow layer pedestrian features to the deep layer pedestrian features and
connect the high, and low-resolution pedestrian features.

A mixture of CNN-based pedestrian detection, tracking, and pose estima-
tion to predict the crossing pedestrian actions based on JAAD dataset is ad-
dressed in [12]. The authors utilize the Faster R-CNN object detector based
on VGG16 CNN architecture for the classification task, use a multi-object
tracking algorithm based on Kalman filter, apply the pose estimation pat-
tern on the bonding box predicted by the tracking system and finally handle
the SVM/Random Forest to classify the pedestrian actions (Crossing /Not
Crossing).

This approaches mentioned above use standard pedestrian detection pat-
tern which only discriminates the pedestrian and non-pedestrian among other
road users. To our knowledge, there is no prior research linked to pedestrian
detection, which involves various pedestrian behavior tags.

We investigate the pedestrian detection issue in two ways, using the pedes-
trian and non-pedestrian tags, we call the Classical Pedestrian Detection
Method (CPDM), and various pedestrian tags the: pedestrian, pedestrian
crossing which we call Crossing Pedestrian Detection Method (CrPDM).

3. PEDESTRIAN DETECTION METHOD

This paper concerns solve the problem of pedestrian detection and pedes-
trian recognition actions using deep learning approach.

For developing a pedestrian detection system is mandatory to take into
account three main components: the sensors employed to capture the visual
data, the modality image processing elements, and the classification parts.
In general, all these components are synchronically developed to achieve a
high detection performance, but seldom specific item could be investigated
independently according to the target application. We concurrently exam in
the detection part by applying a generic object detector based on the public
Faster R-CNN [13]. We handle the Inception CNN architecture versions 2 for
the classification task with the TensorFlow public open-source implementation

8 DĂNUŢ OVIDIU POP

Figure 1. Pedestrian detection system architecture. La-
bel represents the pedestrian tags which could be pedestrian,
pedestrian crossing; BB cord represents the bounding box co-
ordinates.

described in [1]. All the training process is based on JAAD [2] dataset. This
dataset has different pedestrian tags. It has an annotation of pedestrians with
behavioral tags and pedestrians without behavior tags.

4. EXPERIMENTS

This section presents the set of experiments, including setups and perfor-
mance assessment of our approaches.

4.1. Data Setup. The experiments are completed on the JAAD dataset [2]
because of its data set in typical urban road traffic environments for vari-
ous locations, times of the day, road and weather conditions. This dataset
supplies pedestrian bounding boxes (BB) for pedestrian detection, tagged as
non-occluded, partially occluded and heavily occluded BBs. Moreover, it in-
cludes the pedestrian actions annotations for several of them, the pedestrian
attributes for estimating the pedestrian behavior and traffic scene elements.

The experiment employs all the pedestrian samples, including the partially
and heavily occluded pedestrians for all training and testing process.

4.2. Training, Testing and Evaluation Protocol. We used the first 70%
of samples from the whole JAAD dataset for the learning process. The training
set consists of first 190 video sequence training samples, and includes even the
partially occluded and heavily occluded BBs, in contrast with [2] where the
authors used just a part of the dataset, omitting samples with partially and
heavy occlusion. Moreover, the authors do not give a detailed explanation of
how the datasets were divided into training and testing sets; hence, it does
not allow a fair comparison.

DETECTION OF PEDESTRIAN ACTIONS BASED ON DEEP LEARNING APPROACH 9

Figure 2. Pedestrian detection using the pedestrian tag for all pedestrians.

Figure 3. Pedestrian detection using multiple tags.

The validation set represents 10% of the learning set. We used the holdout
validation method, which held back from training the model. The evaluation of
a model skill on the training dataset would result in a biased score. Therefore

10 DĂNUŢ OVIDIU POP

Table 1. Our detection performances using one or multiple
output labels. One label represents that all samples are tagged
as a pedestrian. Multiple labels represent: P=Pedestrian,
PCr=Pedestrian Crossing.

Method Train on Output mAP% ± CI
Faster R-CNN
Inception v2

All pedestrian
samples tagged as P

Pedestrian BB
Label

70.91 ± 1.61

Faster R-CNN
Inception v2

All Pedestrian with
P and PCr Tags

Pedestrian BB+
Action Label

64.31 ± 1.70

SSD Fusion
Inception [14]

RGB, Lidar,
Distance

Pedestrian BB
Label

51.88

the model is evaluated on the holdout sample to give an unbiased estimate of
model skill.

The JAAD dataset has three main pedestrian actions tags:

• pedestrian completes crossing the street;
• pedestrian does not cross the street;
• pedestrian does not have any intention of crossing.

The first pedestrian action we tag as pedestrian cross and others as pedestrian
considering his/her intention is ambiguous or does not cross the street.

We adopt two approaches for the training stage (the main architecture is
described in Fig 1):

• using the Classical Pedestrian Detection Method (CPDM) where we
consider all pedestrian samples without any specific tag (see Fig 2);

• using the Crossing Pedestrian Detection Method (CrPDM) where we
use various pedestrian tags: Pedestrian is crossing the street (PCr),
and Pedestrian (P) for all other pedestrians who do not cross the
street or their action is obscure (see Fig 3).

We perform the CNN training process on 200000 iterations, using an initial
learning rate value to 0.00063 with ADAM learning algorithm and momentum
at 0.9 [2]. We used the pre-trained weights from COCO dataset with the
default Faster RCNN loss function which is optimized for a multi-task loss
function.

The testing set used to assess the CNN model performance is independent
of the training dataset. It contains 110 video samples, the last 30% of video
samples from the whole JAAD dataset.

The evaluation process for all the CNN models is performed with Tensorflow
Deep Neural Network Framework. The performances are assessed by the mean

DETECTION OF PEDESTRIAN ACTIONS BASED ON DEEP LEARNING APPROACH11

average precision (mAP) for the detection part using the TensorFlow metrics
tool.

We calculate the Confidence Interval (CI) to evaluate whether one model is
statistically better than another one.

(1) CI = 2 ∗ 1.96

√
P (100 − P)

N
%.

In this formulation, P represents the performance system (e.g., mAP) and
N represents the number of video testing.

4.3. Results and Discussions. The detection results are presented in Ta-
ble 1. We observed that the detection performance achieved with the CPDM
method (using all samples as pedestrians) a good performs on Jaad dataset
since it has to identify the pedestrian among other road users. The CrPDM
approach (using multiple pedestrian tags), although it detects the pedestrians,
cannot be associated with the first method because it also instantly classifier
the action of the pedestrians during the detection step. Therefore its perfor-
mance is less than the first detection approach. On the other hand, pedestrian
detection using the multiple tags approach could be a start point for a deep
investigation. This approach estimates the pedestrian actions on the current
time (T=0) and could be beneficial for developing a pedestrian prediction sys-
tem. We can not compare our detection models with JAAD approaches [2] as
our results are not directly comparable since the authors made a classification
for a specific pedestrian action based on pedestrian attention information and
only used the non-occluded pedestrian samples [2]. Their approach is based
on a variation of AlexNet-imagenet CNN where the input data are cropped
beforehand.

Contrariwise we should evaluate our model using approximately the same
non-occluded pedestrian training samples as in [2] for a fair comparison, but
we did not do that in this previous work since we assume that in the all traffic
congestion even exist pedestrians who are partially and heavily occluded.

Nevertheless, we compare our detection models with another method [14]
which is close to our first one. This approach is based on a variation of SSD-
Inception CNN based on SvDPed dataset. The method merged the RGB
images, low-resolution Lidar and the distance between the camera and object
detected. Notwithstanding the [14] approach used many sensors for pedestrian
detection, our methods outperforms this approach significantly (please see
Table 1).

12 DĂNUŢ OVIDIU POP

5. CONCLUSIONS

This paper presents a classical pedestrian detection system and a pedestrian
detection system able to recognize even the pedestrian actions based on deep
learning approaches using JAAD dataset.

We evaluated the pedestrian detection approach (we called Classical Pedes-
trian Detection Method (CPDM)), where all sample are tagged as pedestrian
and not pedestrian and a pedestrian detection approach using multiple tags
(pedestrian, pedestrian cross), which we call Crossing Pedestrian Detection
Method (CrPDM). The first method achieved better performance since it has
only to distinguish the pedestrians among other road users in contrast with
the second one who has to recognize even the pedestrian actions. The sec-
ond detection approach returned a weaker performance than the classical one.
Contrariwise, we deem this approach could be a start point for a deep inves-
tigation. The experiments were carried out on the common object detector
based on the public Faster R-CNN merged with Inception version 2 architec-
ture for the classification part.

Future work will be concerned with improving and benchmarking of pedes-
trian detection using multiple pedestrian action tags and extending the method
to a pedestrian prediction system.

References

[1] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza
Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, and Kevin
Murphy. Speed/accuracy trade-offs for modern convolutional object detectors. CoRR,
abs/1611.10012, 2016.

[2] Amir Rasouli, Iuliia Kotseruba, and John K. Tsotsos. Are they going to cross? a bench-
mark dataset and baseline for pedestrian crosswalk behavior. In The IEEE International
Conference on Computer Vision (ICCV) Workshops, Oct 2017.

[3] Dănuţ Ovidiu Pop, Alexandrina Rogozan, Fawzi Nashashibi, and Abdelaziz Bensrhair.
Incremental cross-modality deep learning for pedestrian recognition. In 28th IEEE In-
telligent Vehicles Symposium (IV), pages 523–528, June 2017.

[4] Shanshan Zhang, Rodrigo Benenson, Mohamed Omran, Jan Hendrik Hosang, and Bernt
Schiele. How far are we from solving pedestrian detection? CoRR, abs/1602.01237, 2016.

[5] J. Schlosser, C. K. Chow, and Z. Kira. Fusing lidar and images for pedestrian detection
using convolutional neural networks. In 2016 IEEE International Conference on Robotics
and Automation (ICRA), pages 2198–2205, May 2016.

[6] Rodrigo Benenson, Mohamed Omran, Jan Hosang, and Bernt Schiele. Ten years of
pedestrian detection, what have we learned? In Lourdes Agapito, Michael M. Bronstein,
and Carsten Rother, editors, Computer Vision - ECCV 2014 Workshops, pages 613–627,
Cham, 2015. Springer International Publishing.

[7] W. Ouyang, H. Zhou, H. Li, Q. Li, J. Yan, and X. Wang. Jointly learning deep features,
deformable parts, occlusion and classification for pedestrian detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, PP(99):1–1, 2017.

DETECTION OF PEDESTRIAN ACTIONS BASED ON DEEP LEARNING APPROACH13

[8] R. Bunel, F. Davoine, and Philippe Xu. Detection of pedestrians at far distance. In 2016
IEEE International Conference on Robotics and Automation (ICRA), pages 2326–2331,
May 2016.

[9] M. Eisenbach, D. Seichter, T. Wengefeld, and H. M. Gross. Cooperative multi-scale con-
volutional neural networks for person detection. In 2016 International Joint Conference
on Neural Networks (IJCNN), pages 267–276, July 2016.

[10] Xiaogang Chen, Pengxu Wei, Wei Ke, Qixiang Ye, and Jianbin Jiao. Pedestrian De-
tection with Deep Convolutional Neural Network, pages 354–365. Springer International
Publishing, Cham, 2015.

[11] W. Lan, J. Dang, Y. Wang, and S. Wang. Pedestrian detection based on yolo net-
work model. In 2018 IEEE International Conference on Mechatronics and Automation
(ICMA), pages 1547–1551, Aug 2018.

[12] Z. Fang and A. M. López. Is the pedestrian going to cross? answering by 2d pose
estimation. In 2018 IEEE Intelligent Vehicles Symposium (IV), pages 1271–1276, June
2018.

[13] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards
real-time object detection with region proposal networks. CoRR, abs/1506.01497, 2015.

[14] T. Kim, M. Motro, P. Lavieri, S. S. Oza, J. Ghosh, and C. Bhat. Pedestrian detection
with simplified depth prediction. In 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), pages 2712–2717, Nov 2018.

(1) Babeş-Bolyai University, Department of Computer Science, 1 M. Kogălniceanu
Street, 400084 Cluj-Napoca, Romania

(2) INRIA Paris, RITS team, 2 Rue Simone IFF, 75012 Paris, France

(3) INSA Rouen, LITIS, 685 Avenue de l’Université, 76800 Saint-Étienne-du-
Rouvray, France

Email address: danutpop@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIV, Number 2, 2019
DOI: 10.24193/subbi.2019.2.02

ROAD CONDITION CLASSIFICATION

USING CONVOLUTIONAL NEURAL NETWORKS

GEORGE-BOGDAN MACA

Abstract. Autonomous driving is an increasingly important theme nowa-
days. One of the reasons behind this is the evolution of hardware compo-
nents in the last years, which made possible both research and implemen-
tation of much more complex deep learning techniques. An interesting
direction in the vast field of autonomous driving is the discrimination of
the condition of the road, with respect to weather. This paper presents a
supervised learning based approach to road condition classification. Specif-
ically, we take advantage of the power of Convolutional Neural Networks
(CNNs) in the context of image classification. We describe several CNN
architectures that use state of the art deep learning techniques and compare
their performance. In addition to the simple CNN-based learners, we pro-
pose a CNN-based ensemble learner able of a better predictive performance
compared to the single models.

1. Introduction

In this paper we refer to road condition as the state of the road in terms
of weather (i.e. if the road is bare, or covered by water or snow). By the
classification of road condition we refer to the task of deciding what is the
state of the road from a given image. It can be argued that this task can be
quite complex, since there might arise situations difficult to distinguish even
by the human brain. These are the cases that fall somewhere at the limit
between two classes, when it is not obvious to which of those classes does the
image belong. Additionally, since the data comes from real traffic scenes, the
images might contain noise in the form of other objects present in the scene,
that can obturate the view (e.g. cars, pedestrians, etc.).

Why do we need road condition classification? The concept of self-driving
cars has been around for some years. Nowadays it is becoming increasingly

Received by the editors: June 25, 2018.
2000 Mathematics Subject Classification. 68T05,91E45.
1998 CR Categories and Descriptors. I.2.6 [Artificial intelligence]: Learning – Con-

cept learning .
Key words and phrases. Autonomous driving, Road condition classification, Supervised

learning, Convolutional Neural Networks, Ensemble learner.

14

ROAD CONDITION CLASSIFICATION USING CNNs 15

popular and we can already see it in real world scenarios. In the context of
driver assistance, or potentially even autonomous driving, the braking system
of a vehicle can be improved. Specifically, the parameters of the ESP (elec-
tronic stability program) system can be adjusted depending on the condition
of the road. Another scenario, especially helpful for 2-wheeled vehicles, would
be sending warnings to the driver in case of dangerous road state, so that he
can reduce the speed in time. For example, the road could be wet and thus
slippery, even though it is not obvious from the condition of the weather at
that particular moment.

However, the necessity for road condition classification was first introduced
not in the context of autonomous driving, but rather in the not so “luxurious”
task of dealing with extreme weather conditions (especially during winter).
In northern states like Norway, Sweden, Canada, etc. winters can be very
harsh and usually have very bad effects on the roads and the traffic, implic-
itly. Therefore, these situations must be taken care of very responsibly and
efficiently (by “efficient” we mean both fast and, if possible, with the smallest
consumption of resources).

Currently, monitoring of winter road conditions is mainly done either us-
ing road weather information systems (RWIS) installed at fixed positions or
through visual observation and manual recording by maintenance personnel.
The former is limited in spatial coverage while the latter is limited in re-
peatability, objectivity and details [16]. Therefore, the need of automatic
classification of the state of the road in a particular place (e.g. in one of the
following classes: dry, wet, snowy, slushy, etc. - Figure 1) came up. The clas-
sification will be done automatically using machine learning techniques. More
specifically, a direct approach of the form:

input− classifier − label

will be used, rather than the classical approach based on feature extraction:

input− features− classifier − label

In this problem we approach the task of classifying real world traffic scenes.
The data consists of images obtained from video cameras mounted on cars.
During the training process, each image (frame) is labeled with one of three
classes (dry, wet, snow). The choice of output classes was conditioned by
the state of our dataset, which was constructed and labeled based on images
from these particular classes, that we were able to gather. Since the images
are labeled, a supervised learning algorithm is more suited then an unsuper-
vised one, mainly because the supervised approach would be more robust and
certain of success. We have therefore chosen to use an approach based on
Convolutional Neural Networks [12, 10].

16 GEORGE-BOGDAN MACA

(a) Dry (b) Wet

(c) Slushy (d) Snowy

Figure 1. Possible states of the road.

In this paper we present a supervised learning based approach to road con-
dition classification, specifically using Convolutional Neural Networks. To the
best of our knowledge regarding the state of the literature, we introduce a
novel approach on this task, mainly due to the fact that we propose original
architectures. There is also a very recent similar work [15] in which CNNs are
used for Road Condition Classification. However, the authors of the paper
[15] use state of the art CNN architectures [5, 21] pretrained on the ImageNet
dataset [2]. Our works also differ in terms of chosen output classes and the
conditions in which the images are recorded. The main contributions of this
paper come from the fact that we propose multiple CNN architectures, built
using various techniques. Also, we combine some of these architectures and
obtain different models, including an ensemble of three learners. The models
are evaluated experimentally and the obtained results are discussed.

The rest of the paper is structured as follows. In Section 2 we present an-
other approaches to the same problem, found in literature. Section 3 offers a
detailed explanation of our supervised learning approach, as well as a presen-
tation of the architectures used. In Section 4 we present the performance of
each of the proposed models. The results shown are then discussed in Section
5. Section 6 ends the paper with conclusions and potential improvements.

ROAD CONDITION CLASSIFICATION USING CNNs 17

2. Related work

In this section we present a few approaches that are related to our work in
different aspects. Such aspects are: the Machine Learning algorithms used,
the information used as input (obtained from sensors or images), the type of
input information (raw or processed). We focus on scientific works dedicated
to road condition classification in scenarios similar to the ones available in our
dataset.

2.1. Friction measurement. A solution rather related to physics, based on
continuous friction measurement (CFM), was proposed in [3]. Friction is a
measure of the resistive force to movement between the tires of a vehicle and
the road surface and thus it represents an accurate approximation of the qual-
ity of driving on that road. In the study, they used the idea that the value of
friction is inversely proportional with the quantity of snow on the road.

Friction measurements on a section of Highway 417 in eastern Ontario were
obtained using a special equipment called Traction Watcher One (TWO). In
addition to the sole friction measurement, the authors used some new param-
eters obtained from probability density pattern (e.g. variance and skewness)
and from spectral density pattern of CFM. For this problem, 6 different classes
were used: bare dry (Type 0), bare wet (Type 1), thin snow cover (Type 2),
slushy snow cover (Type 3), partially snow covered (Type 4) and mostly snow
covered (Type 5). After observing that some pairs of their chosen classes were
very difficult to distinguish, the authors of the article decided to use a multi-
layer nested structure as their model. This architecture comprised five binary
logistic regression models.

Split number Validation accuracy
1 0.9383
2 0.9405
3 0.7957
4 0.8876
5 0.58063

Table 1. Results of the CFM approach. [3]

The results obtained in this paper, on the validation data set, are summa-
rized in Table 1. It shows the performance of the five logistic regression models
in turn. For each one of them, the authors decided what features to use and
how to combine them, from the following list: F - friction, Std - standard de-
viation, Skew - skewness, HighFreq - high frequency power of CFM, LowFreq
- low frequency power of CFM.

18 GEORGE-BOGDAN MACA

2.2. Neural Networks approach. Another approach to road condition clas-
sification is described in [11]. It is an image based approach that uses Neural
Networks which receive as input feature vectors, carefully chosen from images.
The purpose is to classify images in one of the following 5 classes: dry, wet,
snowy, icy and snowy with tracks. Their motivation is to supplement already
existing measurements (such as wind speed and temperature) with new infor-
mation obtained solely from images. Also, the stage is set for this approach,
in the sense that some measurement stations are already equipped with video
cameras. The knowledge of the road state is used in order for the authorities
to decide what kind of maintenance to perform and in what places.

After a careful analysis of what kind of information from an image is needed
for this particular problem, the authors of the article end up with 6 features
(e.g. mean gray level, standard deviation of the gray level, ratio of the standard
deviation of the red image to the standard deviation of the blue image, etc.).

One of the downside of the proposed solution is the dimensionality of the
architecture. More specifically, the neural network used had no more than 9
neurons (3 or 4 on the input layer; 3, 4 or 5 on the single hidden layer and one
on the output layer – depending on the architecture and feature combination
chosen). This is understandable, due to the fact that the dataset was very
small – 69 RGB images in total . Thus, if the neural network had been bigger,
it would have been very prone to overfitting. Mainly because of the two
unfavorable aspects discussed above, the results obtained also make room for
improvement: their best model and combination of features produces about
50% accuracy. However, as the authors of the article noted, there are several
possibilities of improvement in this direction.

In addition to the work presented above, the authors of [15] introduce an-
other approach based on Neural Networks, specifically CNNs. However, they
use ResNet [5] and Inception [21] CNNs pretrained on the ImageNet dataset
[2]. Also the output classes addressed in their problem are different from the
ones used for our images.

2.3. SVM-based approach. In order to address the limitations of the cur-
rently existing methods of monitoring road surface condition (either using
RWIS, or maintenance personnel) discussed in the first section, a new solu-
tion was proposed in [16]. It is based on using general purpose vehicles (like
police cars or public transport) equipped with GPS systems and video cam-
eras. Each image is GPS – tagged upon being taken and whenever there is
an available internet connection, the tagged data is sent to a central server,
where the actual computing takes place. This particular idea is very efficient
in terms of time and space coverage.

ROAD CONDITION CLASSIFICATION USING CNNs 19

As for the image classification task, a support vector machine (SVM) was
used. The classes chosen for this problem are winter oriented: bare (dry),
snow covered and track bare (with the center covered). Since the classification
problem has more than two classes, the authors used a one vs. all multiclass
technique. The data consisted of more than 500 RGB images (207 bare, 109
covered and 200 track bare). Each image was resized to 500x150 pixels before
the feature extraction process. The dataset was split in the following way:
70% training images and 30% for testing purposes.

Results obtained with this approach are reasonably good, offering an average
accuracy of 85% for the correct mapping of each of the three classes. These
achievements are limited by various factors, like: the quality of the images,
the amount of data and the illumination conditions, which tend to have a big
influence in the color composition of an image.

There are several other approaches worth presenting, but many of them use
methods based on features extracted from images (e.g. the one described in
[17]). However, we want to direct our attention towards an approach that
performs straightforward processing of data.

3. Proposed approach

3.1. Theoretical background. In this paper we present an approach to road
condition classification based on Convolutional Neural Networks (CNNs) [12].
CNNs are the current state of the art in image classification tasks [20] and in
the last decade have been used intensely for this kind of problems [10, 18, 21, 5].
Therefore, they represent an obvious direction to follow in the context of road
condition classification. In addition, this technique has been also used in the
context of autonomous driving, providing some good results (e.g. the approach
described in [1], where the authors present an end-to-end learning method that
maps an input image to a steering angle for the car).

CNNs are very similar to classical neural networks, in the sense that their
ultimate purpose is to approximate a function, by training a set of weights.
The main difference between them is that CNNs were created for the specific
case, where the input to the network is an image. However, other types of
inputs can also be fed to the network (e.g. audio, or even text) as long as they
respect the translational invariance property (i.e. when it is not important
exactly where something is located in an image). By making this assumption,
convolutional networks can benefit from certain useful optimizations, which
drastically reduce the otherwise huge number of parameters. The main ad-
vantage of a convolutional network over an ordinary neural network (when

20 GEORGE-BOGDAN MACA

working with images) is that they can obtain almost similar results with a
much lower computational cost.

3.2. Proposed architectures.

3.2.1. Overall architecture. Before getting to the architectural details of the
models used in this paper, we will first describe shortly each type of layer
present in a convolutional neural network.

Convolutional layers are the core constructs of a CNN. Their behaviour can
be understood as applying a filter operation on an image (i.e. each neuron on
a convolutional layer computes a weighted sum of a group of pixels located at
a particular position in the input volume). The parameters of a convolutional
layer are the links between the neurons and the pixels they sum up.

Figure 2. An example of max pooling [7].

Pooling layers are very similar to convolutional layers, the main difference
being that pooling layers do not have learnable parameters. Their only purpose
is to reduce the size of the input by performing max or average operations (no
more weighted sums), as can be seen in Figure 2. Dense layers are nothing
more than the Fully connected layers from the ordinary feed-forward neural
networks. The neurons in this kind of layers are connected to all the neurons
in the previous layer. It is a popular practice to use Dense layer towards the
end of a CNN, just before the output layer.

A Softmax layer is used as the output layer of a CNN. It has the same
number of neurons as the number of classes in the classification problem. The
value in each of the neuron is interpreted as the normalized probability of the
class corresponding to that neuron. The so called softmax function [8], which
is able to compute those probabilities from the neurons on the previous layer,
has the following form:

ROAD CONDITION CLASSIFICATION USING CNNs 21

(1) fj(z) =
ezj∑
k

ezk

where: j is the current output neuron; the sum over k iterates over all the
output neurons; zk is the value inside the kth output neuron after computing
the weighted sum of its inputs.

3.2.2. Proposed models. In the following lines we will present the architectures
used and discuss about the choices made. The first model we tried - let’s call it
M1 - was inspired from the architectures used in [10] or [22]. More specifically,
we started with bigger filters in the early layers (e.g. 7 x 7 in the first layer)
and gradually reduced their dimension. This reduction happened after pooling
layers or convolutional layers with strides of 2 x 2, so when the dimensions of
the output volumes was reduced. In other words, this means that bigger filters
would look at bigger ”images” and this is intuitive since they can assimilate
more information at a time, which seems to be desirable in the case of higher
resolution images. Because the size of the filters decreases with the size of the
image, we can say that their dimensions are directly proportional. However,
it has been argued in the literature that this approach isn’t actually practical
(or at least, there exist better techniques) [18], but this will be discussed in
more detail later, when we present another architecture we tried.

The second model used - call it M2 - is a small adjustment to M1 in terms
of size. However, the overall architecture structure is similar. The two main
differences between the models are the number of features maps at each layer
(which is higher in the second model) and the number of parameters (which
was also higher in M2). Although it wasn’t highlighted in the description of
M1, it is worth mentioning that both models contain a Dense layer at the end
of the architecture, preceding the Softmax layer. The number of parameters
in M2 was drastically increased by using more neurons in that Dense layer.

In the third model used - call it M3 - we incorporate and combine some
more interesting concepts described in scientific papers. The authors of sev-
eral papers in the literature [18, 21, 5] argue that the depth of a CNN is of
central importance, especially for more complex tasks. This insight is actu-
ally intuitive, since the level of abstraction of the features extracted from a
given input increases with the number of consecutive (stacked) layers in the
network. Having in mind these assumptions, we decided to implement also
a deeper architecture for the road condition classification problem. However,
deep models come with several difficulties in the training process and we had

22 GEORGE-BOGDAN MACA

to make use of the ideas presented in the scientific papers in order to address
these issues.

Firstly, we took advantage of the concept of residual blocks (see Figure 3),
inspired from [5]. The intuition behind residual connections (or skip connec-
tions) is that they help the network to preserve information from the input,
while going deeper through convolutional layers. Mathematically, the output
of a residual block is of the form:

(2) y = F (x) + x

where x is the input of the block, y is the output and F (x) is the so called
residual mapping (which is actually what an ordinary CNN would compute,
given an input x). The ” + ” operator mentioned above is just an element-
wise addition between the two operands involved, which means that their sizes
must be equal along all the three dimensions (width, height and depth). This
technique addresses the problem of degradation (i.e. the incapacity of very
deep neural networks to converge even on the training set), as described in [5].

Figure 3. A building block of residual learning [5].

Secondly, we made extensive use of the of the inception modules introduced
in [21], which can be visualized in Figure 4. The usage of this concept has at
least two beneficial implications. The first advantage of inception modules is
related to computational efficiency, since they introduce a parallelized manner
of applying convolutions and pooling. The second insight is not as obvious as
the first one and refers to the way information is extracted by the network.
Specifically, at a particular layer in the network (i.e. given a fixed configuration
of the input volume), information is extracted in more ways: by doing 1 x 1, 3
x 3 and 5 x 5 convolutions (the blue ones in Figure 4) and also a max-pooling
(the red rectangle in the same image). This is not the case for ordinary CNNs,
where only a single type of operation (e.g. 3 x 3 convolution, or max pooling,

ROAD CONDITION CLASSIFICATION USING CNNs 23

etc) can be performed on exactly the same input (i.e. exactly the same
values).

Figure 4. Inception module with dimension reductions [21].

The 1 x 1 convolutions from the yellow rectangles in Figure 4 are used for
dimension reduction, as the authors of [21] argue. They say that perform-
ing convolutions with big filter sizes (e.g. 5 x 5, 7 x 7) is computationally
expensive, so it would be better if they are performed on a small amount of
feature maps in the input volume. Since the number of feature maps is given
by the output of the previous layer and cannot be chosen arbitrarily, it was
necessary to find a way to control that number. This is done by applying 1
x 1 convolutions on the input feature maps and choosing the desired number
of output feature maps. In the case of 1 x 1 yellow convolution following the
max pooling, its purpose is to control the number of feature maps that are
concatenated with the convolutions; that number would otherwise be the same
as the number of input feature maps, which would get higher and higher while
going deeper through the network. It is also worth mentioning that in order
to concatenate two or more volumes of feature maps, their spatial dimensions
(width and height) must have the same size. So, these 1 x 1 convolutions in
the yellow rectangles are used only for the reduction of the depth dimension,
the other two dimensions remaining intact.

Last but not least, another interesting insight was gathered from [18]. As
we mentioned earlier, we will describe another approach to choose the size of
the kernels at each layer, rather than having big kernels in the first layers of
the network and smaller ones towards the end. The authors of [18] mention
the fact that two consecutive 3 x 3 convolutional layers perceive the same
amount of information as a single 5 x 5 convolutional layer (a 7 x 7 layer is
equivalent with three stacked 3 x 3 layers and so on). This implies that it is
sufficient to use only filters of size (at most) 3 x 3 and this would have the

24 GEORGE-BOGDAN MACA

following advantages: reduce the computational cost induced by larger kernels
and obtain CNN architectures that are deeper (which is desirable, as discussed
earlier).

By combining the three ideas mentioned above (residual blocks [5], inception
modules [21] and 3 x 3 kernels [18]) we end up with a network architecture
made of building blocks looking like the one shown in Figure 5. There, one
can observe the following aspects:

1 Only convolutions with filter sizes of at most 3 x 3 are used.
2 The parallelized block has also the role of the residual mapping F (x)

presented in Figure 3.
3 In the parallelized block, the following convolutions are performed,

from left to right, on exactly the same input: a 1 x 1 convolution, a
3 x 3 convolution and two stacked 3 x 3 convolutions (equivalent to
a single
5 x 5 convolution).

4 After the concatenation of the three branches, a 1 x 1 convolution is
used in order to obtain a volume with the same number of feature
maps as in the input, so that the element-wise addition between the
input x and the residual F (x) should make sense.

Figure 5. Example of Inception-ResNet building block [20].

An approach that combined these ideas is also presented in [20]. There,
the authors also introduce the concept of scaling with respect to the addition

ROAD CONDITION CLASSIFICATION USING CNNs 25

between the input and the residual mapping. They observed that computing
a weighted sum that favours the input more would provide better results (at
least in terms of convergence speed, if not actual accuracy). Thus, the ” + ”
operator visible in Figure 5 would reduce to the following formula:

(3) y = x+ γ ∗ F (x)

where γ is the scale parameter that weighs the value of the residual and it
should take values between 0.1 and 0.3, as the authors of [20] argue. We have
also conducted some attempts to test the M3 model with different values and
combinations for the scale parameter.

A highlight of the main aspects which are different in the three models
proposed is illustrated in Table 2. The last column in the table refers to the
number of neurons on the Dense layer that precedes the Softmax layer (M3
doesn’t have such a layer). It can be seen that, even though M3 is a much
deeper architecture than M2, their number of parameters is comparable (M3
has even fewer parameters). The reason behind this is the lack of Dense layers,
which is affordable for M3, but not also for M2.

Model Total
number

of
layers

Number
of conv.
layers

Number
of

params.

Neurons
on

dense
layer

M1 16 3 608,659 64
M2 21 5 840,986 256
M3 86 28 812,298 -

Table 2. Comparison between the architectures used.

Another approach we tried was to create a separate network for each one of
the classes involved in the problem and make only binary predictions. Thus,
each network would solve a classification problem having only two classes:
positive and negative (e.g. the ”dry-CNN” would answer to the following
question: ”Is the road dry?” with either ”yes” or ”no”). The idea behind this
approach was to obtain a specialized network for each of the possible road
condition categories, rather than a more general network. In the end, this
ensemble of networks would provide its answer in the following way: given
an input image, feed it through each of the specialized networks and obtain
the scores s1, s2, . . . , sN (N being the number of classes), which are vectors
with two elements representing the probabilities of the negative and positive
classes respectively (these values sum to 1, according to Softmax); then take

26 GEORGE-BOGDAN MACA

maximum of the values of the positive classes from these vectors: max
1≤k≤N

(sk[p])

(where p represents the position where the probability for the positive class is
stored in the score vectors); finally, conclude that the image introduced is of
the type of the network that produced the maximum positive probability.

3.2.3. Learning methodology - details. For the learning process we use a gra-
dient descent algorithm, specifically Adam [9]. Also, relu [13] activation func-
tions are used after every convolutional layer, in every model.

In order to prevent overfitting we use the simple and effective concept of
a Dropout layer, introduced in [19]. The intuition behind this idea is that
some random neurons are ignored (eliminated, dropped out) during training so
that they are not able to influence the process and especially their neighbour
neurons. In this way, the neighbours that would normally depend on this
neurons (which are now dropped out) are obliged to deal with the situation on
their own and thus learn a more general context. This approach reduces the
”co-adaptation” between neurons, as mentioned by the authors of the paper.

In order to address the famous problem vanishing and exploding gradients
[4], a technique called Batch Normalization [6] is used. However, the idea was
initially introduced in order to deal with covariate shift (i.e. the distribution
of the inputs changes from layer to layer). Batch Normalization is applied at a
particular layer and performs a standard deviation (stdev) normalization, thus
disallowing the values of the parameters to reach undesirably high values. The
term ”Batch” from the name of the method refers to the fact that normal-
ization is applied to a group of input data at a time and not to each training
example separately. The authors of [6] argue that this has two advantages:
the gradient of the cost function over a batch of inputs estimates better the
gradient over the entire data set; and normalizing one batch at a time is more
computationally efficient due to the possibility of parallelization.

3.3. Evaluation metrics. As far as the evaluation process is concerned, two
possible metrics are useful in the context of image classification (or mapping
an input to a label in general): the loss and the accuracy. The loss value
is more relevant from the machine learning perspective, while the accuracy
is more intuitive and easier to visualize for users. Our architectures use the
log-likelihood cost [8, 14], since it comes together with the Softmax classifiers.
The value of the loss is computed with the following formula:

(4) L = − log(
esy∑
k

esk
)

ROAD CONDITION CLASSIFICATION USING CNNs 27

where sk is the kth element of the vector of scores (class probabilities), y is the
index of the correct label for the given input in the vector of scores s and sy
is the probability value of the correct class, outputted by the network. This
result follows from the more general formula of the cross-entropy between two
probabilistic distributions:

(5) H(p, q) =
∑
x

p(x) log(q(x))

where p is the ”true” distribution, where the probability is concentrated on the
correct class and q is the distribution of the estimated class probabilities (com-
puted by the softmax function) [8]. The intuition behind the cross-entropy loss
is that it quantifies exactly how far an estimated distribution outputted by the
network is from the ideal case when the probability for the correct class is 1
and all the others are 0 (so, the farther the distributions are from each other,
the greater the loss). In contrast, the accuracy measurement is much less re-
alistic, since it just verifies if the maximum probability obtained corresponds
with the actual correct class. So, for example, in a configuration with three
classes, where the correct class for a particular example is class #3, an output
with the following values: [0.33, 0.33, 0.34] would be classified as correct; this
is far from ideal. However, the cross-entropy loss would heavily penalize this
output, since it is not close at all to the correct output of: [0, 0, 1].

4. Numerical results

4.1. The Dataset. The classification problem we approached consists of three
classes: dry, wet and snow. Our data set is split into three parts: training set,
validation set and test set. Each of them is balanced in the sense that their
images are equally spread between the three classes. The training set contains
about 75000 images (with ~25000 from each class) and the test and validation
sets both contain approximately 15000 images (with ~5000 from each class).
The images are grayscale and have a 640 x 245 resolution.

The images from the dataset are obtained from video sequences filmed in
real world traffic with a camera mounted on a car, which means that con-
secutive frames dumped from a sequence are very similar. Therefore, one
additional aspect becomes relevant to the diversity of the input images: from
how many different video sequences a particular bunch of images was obtained.
This comparison would make sense only in a ”per-class” context; a visual rep-
resentation is shown in Table 3. The labeling was done per-sequence, which
means that all the frames in a particular sequence have the same label. This
aspect has some negative implications which will be discussed in Section 5.

28 GEORGE-BOGDAN MACA

Dataset Dry sequences Wet sequences Snowy sequences
Training 82 52 12
Validation 11 5 2

Test 9 5 4

Table 3. Number of different sequences that lead to their
per-class corresponding image sets (for example, the 25000 im-
ages labeled as ”dry” from the training set were obtained from
82 different sequences, while the 5000 images labeled with
”snow” from the validation set were obtain from only 2 se-
quences).

In order to train the specialized binary classifier models, we created three
more datasets from the original one. The labels of these new datasets were
adjusted in the following way: for each of the three networks, the correspond-
ing class would have a positive label (e.g. value 1) and the other two classes
would have a negative label (value 0). After this change in the labels, the
negative class images became two times more than the positive ones. Thus,
the dataset had to be modified such that the number the two numbers became
equal. This was done by sampling half of the images with a negative label.

4.2. Results. For evaluation purposes, let’s call by M4 the model obtained
from the ensemble of three specialized models (one for each class), each doing
a binary classification. All the three models have the same architecture as
M3, the only difference being that their softmax layers contain two neurons
instead of three. Table 4 summarizes the results obtained by each of the four
models discussed on both the validation and test sets. The accuracy metric
is used in this illustration for simplicity and visibility. However, the model
parameters have been chosen in terms of loss actually, even though there could
have been configurations with higher accuracy (but also higher loss - which is
not desirable).

In addition to the accuracy comparison of the four models, Table 5 illus-
trates the results provided by the three specialized binary classifiers in turn.
We are going to provide next some technical data regarding our models. The
training time ranges between 40 minutes for M2 to 70 minutes for M3, while
the validation and testing times range between 2 minutes and 5 minutes re-
spectively, for the same two models. In addition, a prediction with M2 yields
approximately 7 frames per second (fps), while a prediction done using M4 is
much slower, providing only ~2 fps.

ROAD CONDITION CLASSIFICATION USING CNNs 29

Model Validation accuracy Test accuracy
M1 81.16% 76.61 ± 0.653%
M2 92.41% 84.76 ± 0.555%
M3 86.68% 82.55 ± 0.586%
M4 95.88% 87.70 ± 0.507%

Table 4. Accuracy comparison of the four discussed models
in the 3-way classification problem. For the test accuracy met-
ric we expressed the values using a Confidence Interval (CI) of
95%

Model Validation accuracy Test accuracy
dry-CNN 90.25% 87.81%
wet-CNN 96.37% 89.94%
snow-CNN 99.00% 90.01%

Table 5. Performance of the three specialized models in the
2-way classification problem.

5. Discussions and challenges

The M1 model isn’t particularly efficient, mainly due to its reduced size.
Nonetheless, exactly this issue provided us with an interesting insight con-
cerning the size of a CNN. Specifically, the M1 model was able to converge
on the training set, but it performs poorly on the validation and test sets.
Our first intuition led us to believe it was an overfitting scenario caused by a
high number of parameters. However, we went on to realize it was actually
the reduced size of the network that was causing problems. An explanation of
this situation could be that the small network made its best effort to fit the
training data but, due to its reduced size, it was restricted to finding only a
local minimum, being unable to generalize. We managed to prove this insight
in practice with our second model, M2, which only had more layers and more
neurons on the Dense layer compared to M1, the overall architecture style
being the same.

The second model, M2, achieved surprisingly good results despite being
only a regular sequential model (i.e. it doesn’t contain parallelized building
blocks or skip connections). It even outperforms the much deeper M3 ar-
chitecture, as can be seen in table 4. The reason behind this is still under
study, but we are inclined to believe that either the model wasn’t trained for
an enough amount of epochs, or the lack of the Dense layer is affecting the

30 GEORGE-BOGDAN MACA

performance (although this doesn’t happen in the case of the 2-class models,
which after all are also of type M3).

One can observe in Table 4 that the ensemble of learners (M4) provides the
best results in terms of accuracy. The result is strengthened by the fact that
the confidence interval for the accuracy of this model does not overlap with
the CI of any other model. This situation would also be predictable by looking
at the good results obtained by each of the three specialized models, available
in Table 5. However after analyzing the test accuracy of the 2-class models,
we would expect a test accuracy of around 89% for the ensemble of models
(M4), by taking the average value. This is not the case, since the actual test
accuracy is 87.70 ± 0.507%, as can be seen in Table 4. This happens because
the max operation used to combine the outputs of the three models is not
ideal.

The main challenges encountered in our approach are related to the dataset.
Firstly, some of the sequences contain images that lie at the limit between two
classes. Such images are sometimes difficult to classify even by a human, not
to mention an artificial neural network. Secondly, as discussed in Section 4.1,
all the images obtained from a sequence share the same label. Obviously, some
portions of the road in a sequence may not agree with the overall chosen label
for that sequence and thus an inconsistency is introduced.

Other challenges we met are linked to the difficulty of understanding the
behavior of a convolutional neural network. As also mentioned in Section
1, CNN is a direct approach that doesn’t need manual feature extraction
performed by the programmer. We can say that a CNN is able to decide by
itself what features are needed in the learning process. In order to get a look
inside the black-box of a CNN, we plotted the values of the neurons at different
layers in the networks (see Figure 6). The white pixels in the subfigures 6b
and 6c represent points of interest for the network. In this way one can get
in insight regarding to where does a CNN ”look” when it is fed with an input
image.

We encountered difficulties in finding a relevant comparison between our
results and the results obtained in the other approaches to road condition
classification, presented in Section 2. There are multiple reasons behind this
and we are going to briefly describe them. First of all, the datasets used
for evaluation in other approaches from the literature are not published, so
we couldn’t evaluate our model on the same data. Even if the data was
available, the problems approached are not identical, since the classes used for
classification differ slightly in each paper. In addition, as far as we know there
isn’t any public benchmark containing data for the road condition classification
problem. Moreover, the implementation details present in the papers from

ROAD CONDITION CLASSIFICATION USING CNNs 31

(a) Input image.

(b) The plotted values of neurons of a feature map situated after the second
convolutional layer (and its activation) of the M2 model

(c) The plot of another feature map, situated after
the third convolutional layer and its activation, in
the same model

Figure 6. Looking inside a CNN

Section 2 are insufficient, so we were not able to reproduce the models and
evaluate them on our data. Of course that we can analyze the accuracy values
and compare them directly, but this is far from ideal and irrelevant.

6. Conclusions and future work

In this work, we presented a CNN-based road condition classification. We
performed an in-depth analysis of several flavours of CNN-based single classi-
fiers and we developed a CNN-based ensemble classifier that involves a bagging
strategy with a max voting operator. We obtained a significant increase in
the quality of classification (in terms of accuracy) by the developed ensemble

32 GEORGE-BOGDAN MACA

learning method. Our approach, albeit it is still in research phase, could poten-
tially be used as a building block of an autonomous driving system, especially
in terms of prediction efficiency.

After observing the initial success of our approach, we are convinced that
future work should follow. Up to this point, the main improvement that we
have in mind is related to the main challenge to our approach: the dataset (as
we discussed in Section 5). The existence of images with uncertain labels isn’t
necessarily a strong estimate of the quality of the network, since some system
might need to know only certain states of dry, wet or snow. Therefore we are
planning to split the dataset into two, difficulty oriented sets: an easy one
and a more difficult one. In this way we will be able to asses the performance
of our architecture in a more realistic environment and also prove that the
network performs bad mostly in uncertain conditions.

In addition to this, we also aim at improving the architectures, by trying
more combinations of layers and hyperparameters with the purpose of increas-
ing the classification quality even more. In order to obtain better results in
terms of time and memory usage, we will try to adapt our CNN implementa-
tion to the specific properties of the board computers. Last but not least, we
would like to consider a different method for splitting the dataset into train,
validation and test sets. Currently the images are randomly split into the
three datasets and we could use for example an algorithm like K-Fold.

Acknowledgment

The technical support of Lucian Cristea, my mentor during internship, is
highly appreciated.

References

[1] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, et al. End to end learning for self-driving cars. arXiv
preprint arXiv:1604.07316, 2016.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[3] F. Feng, L. Fu, and M. S. Perchanok. Comparison of alternative models for road surface
condition classification. In TRB Annual Meeting, 2010.

[4] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256, 2010.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[6] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

ROAD CONDITION CLASSIFICATION USING CNNs 33

[7] A. Karpathy. Convolutional neural networks: Architectures, convolution and pooling
layers. 2016. last access (july, 2018).

[8] A. Karpathy. Softmax classifier. 2016. last access (july, 2018).
[9] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.
[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convo-

lutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[11] A. Kuehnle and W. Burghout. Winter road condition recognition using video image
classification. Transportation Research Record: Journal of the Transportation Research
Board, (1627):29–33, 1998.

[12] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel. Backpropagation applied to handwritten zip code recognition. Neural computa-
tion, 1(4):541–551, 1989.

[13] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-10),
pages 807–814, 2010.

[14] M. A. Nielsen. Neural networks and deep learning. 2015. last access (july, 2018).
[15] M. Nolte, N. Kister, and M. Maurer. Assessment of deep convolutional neural networks

for road surface classification. arXiv preprint arXiv:1804.08872, 2018.
[16] R. Omer and L. Fu. An automatic image recognition system for winter road surface con-

dition classification. In Intelligent transportation systems (itsc), 2010 13th international
ieee conference on, pages 1375–1379. IEEE, 2010.

[17] Y. Qian, E. J. Almazan, and J. H. Elder. Evaluating features and classifiers for road
weather condition analysis. In Image Processing (ICIP), 2016 IEEE International Con-
ference on, pages 4403–4407. IEEE, 2016.

[18] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[19] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[20] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4, inception-resnet and
the impact of residual connections on learning. In AAAI, volume 4, page 12, 2017.

[21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
A. Rabinovich, et al. Going deeper with convolutions. Cvpr, 2015.

[22] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pages 818–833. Springer, 2014.

Babeş-Bolyai University, Department of Computer Science, 1 M. Kogălniceanu
Street, 400084 Cluj-Napoca, Romania

Email address: mgic1759@scs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIV, Number 2, 2019
DOI: 10.24193/subbi.2019.2.03

ANALYSING THE ACADEMIC PERFORMANCE OF

STUDENTS USING UNSUPERVISED DATA MINING

GEORGE CIUBOTARIU AND LIANA MARIA CRIVEI

Abstract. Educational Data Mining is an attractive interdisciplinary do-
main in which the main goal is to apply data mining techniques in educa-
tional environments in order to offer better insights into the educational
related tasks. This paper analyses the relevance of two unsupervised learn-
ing models, self-organizing maps and relational association rule mining in
the context of students’ performance prediction. The experimental results
obtained by applying the aforementioned unsupervised learning models on
a real data set collected from Babeş-Bolyai University emphasize their ef-
fectiveness in mining relevant relationships and rules from educational data
which may be useful for predicting the academic performance of students.

1. Introduction

Extracting relevant patterns from the educational processes is the main
topic in the Educational data mining (EDM) field, as it could provide effec-
tive methods for understanding students and their learning process and, sub-
sequently, improving the learning outcomes. EDM has lately been under great
consideration from the research community since extracting hidden valuable
knowledge from educational data is of major interest for the academic institu-
tions and also effective for reviewing and improving their teaching techniques
and learning procedures [13].

There is a continuous interest in applying machine learning (ML) techniques
in the educational field [3]. Within the ML domain, unsupervised learning
(UL) techniques are broadly applied nowadays in numerous domains includ-
ing software engineering, medicine, bioinformatics, the financial domain, in
order to extract relevant hidden knowledge from the data in the form of rules

Received by the editors: October 28, 2019.
2010 Mathematics Subject Classification. 68T05, 68P15.
1998 CR Categories and Descriptors. H.2.8[Database management]: Database Ap-

plications – Data Mining ; I.2.6[Computing Methodologies]: Artificial Intelligence –
Learning ;

Key words and phrases. Educational data mining, Unsupervised learning, Self-
organizing map, Relational association rule.

34

ANALYSING THE ACADEMIC PERFORMANCE USING UNSUPERVISED LEARNING 35

or patterns. Diverse applications using data mining and machine learning algo-
rithms have been implemented, so far, in the EDM domain. Machine learning
methods are applied, both from a supervised and unsupervised perspective, as
data mining techniques for developing systems for course planning, predicting
the students’ progress and academic performance, detecting students’ learn-
ing type, grouping students in similar classes, supporting instructors in the
educational process [8].

The study performed in this paper is aimed to highlight the potential of
applying two UL techniques (self-organizing maps (SOMs) and relational as-
sociation rule mining) (RARs) in analysing students’ academic performance.
The main research question we are investigating in this paper is regarding the
ability of unsupervised learning models (SOMs and RARs) to detect hidden
relationships between the grades received by the students during the semester
and their final examination grade category at a certain academic discipline.
In addition, we aim to analyse if the unsupervised learning models may reveal
some information regarding the quality of the educational processes.

A study on the EDM literature reveals various approaches using unsuper-
vised learning for mining student data in educational environments. Various
clustering algorithms, including partitional and hierarchical clustering were
applied by Ayers et al. [2] for determining groups of students who have sim-
lar skills. Dutt et al. [6] present a survey on applying unsupervised learning
techniques for various tasks from the educational setting. K-means cluster-
ing is applied by Parack et al. [14] for grouping students according to their
learning patterns. The identified groups are then used for determining the
cognitive styles for each cluster. SOMs were used by Kurdthongmee [11] to
group students in clusters according to their academic results. Khadir et
al. [10] performed a study based on clustering and SOMs for students’ aca-
demic performance prediction. Saxena et al. [15] have also applied SOMs for
classifying students in categories according to their academic performance. To
the best of our knowledge, a study similar to ours has not been performed in
the literature.

The rest of the paper is organized as follows. Section 2 presents the self-
organizing maps and relational association rule mining models used in our
study. Section 3 introduces our experimental methodology, while Section 4
discusses about the experimental results. The conclusions of our study to-
gether with several directions for future research are summarized in Section
5.

36 GEORGE CIUBOTARIU AND LIANA MARIA CRIVEI

2. Unsupervised machine learning models used

Unsupervised learning models are known in the ML literature as descriptive
models, due to their ability to detect how data are organized. Unsupervised
learning algorithms receive only unlabeled examples and learn to detect hidden
patterns from the input data based on their features. UL methods are useful
for discovering the underlying structure of the data.

2.1. Relational association rule mining. Relational association rules (RARs)
[4, 16] were introduced in the data mining literature as an extension of the
classical association rules with the goal of uncovering various types of rela-
tionships, both ordinal and non-ordinal, between data attributes.

The concept of RARs will be further presented. We considerO = {o1, o2, . . . ,
on} a set of instances (objects) and A = (at1, . . . , atm) a sequence of relevant
attributes characterizing the instances from O. Each attribute ati takes val-
ues from a non-empty domain Di. The value of attribute ati for instance oj
is denoted by η(oj , ati) and by T is denoted the set of all possible relations
which can be defined between the domains Di and Dj .

Definition 1. A relational association rule [16] is an expression (ati1 , ati2 , ati3 ,
. . . , atih) ⇒ (ati1τ1 ati2τ2 ati3 . . . τh−1 atih), where {ati1 , ati2 , ati3 , . . . , atih} ⊆
A, atik 6= atip, k, p = 1, . . . , h, k 6= p and τk ∈ T is a relation over Dik×Dik+1

,
Dik representing the domain of the attribute atik .

a) If ati1 , ati2 , . . . , atih are non-missing in l instances from O then we

call s = l
n the support of the rule.

b) If we denote by O′ ⊆ O the set of instances where ati1 , ati2 , ati3 , . . . , atih
are non-missing and all the relations η(oj , ati1) τ1 η(oj , ati2), η(oj , ati2)
τ2 η(oj , ati3), . . . , η(oj , atih−1

) τh−1 η(oj , atih) hold for each instance

oj ∈ O′ then we call c = |O′|
n the confidence of the rule.

The notion of interestingness was introduced in [16] as the property of
RARs to have their support and confidence greater than or equal to certain
thresholds. The algorithm DRAR (Discovery of Relational Association Rules)
for uncovering interesting RARs was introduced in [5]. DRAR is an Apriori-
like algorithm consisting of a RAR generation process that starts from the
2-length rules which are filtered such that to preserve only the interesting
rules. The iterative process continues with 3-length rules, then with 4-length
rules and so on. At a certain iteration, the RARs of length n are generated by
joining [16] interesting RARs of length n-1. The obtained set is then filtered
for preserving only the interesting n-length rules. When no new interesting
RARs are identified at a certain iteration, the generation process stops.

ANALYSING THE ACADEMIC PERFORMANCE USING UNSUPERVISED LEARNING 37

2.2. Self-organizing maps. Self-organizing maps (SOMs), also known in the
literature as Kohonen maps, were introduced by Teuvo Kohonen and are unsu-
pervised learning models widely used as tools for visualizing high-dimensional
data. SOMs are connected to the artificial neural networks (ANNs) in litera-
ture and to competitive learning. In competitive learning, the output neurons
compete themselves to be activated. A self-organizing map [17] is trained us-
ing an unsupervised learning algorithm (Kohonen’s algorithm) to map, using a
non-linear mapping, the continuous input space of high-dimensional instances
into a discrete (usually two-dimensional) output space called a map [7]. The
topology preserving mapping is the main characteristic of the mapping pro-
vided by a SOM. This means that the input samples which are close to each
other in the input space will be also close to each other on the map (output
space). Thus, a SOM is able to provide clusters of similar data instances [12].

3. Methodology

As previously stated, our study aims at investigating the relevance of un-
supervised SOM and RAR models in analysing the academic performance of
students.

We are introducing the following theoretical model. We denote by Stud =
{stud1, stud2, . . . , studn} a data set in which the instances studi describe the
performance of students during an academic semester, at a given academic
discipline D. Each instance studi is characterized by a set of grades received
during the semester G = {g1, g2, . . . , gm} representing attributes for measuring
the performance of the student for the given discipline. Thus, each studi is
represented as an m-dimensional vector studi = (studi1, studi2, . . . , studim),
studij representing the value of attribute gj for student studi.

The goal of the current study is to investigate if two unsupervised data min-
ing models, self-organizing maps and relational association rule mining, are
able to discover some rules and relationships which would be useful for pre-
dicting the final performance for the students, based on their grades obtained
during the academic semester. Since predicting the exact final examination
grade for a student is a difficult task, considering the uncertainty in the learn-
ing and evaluation processes, we are considering in this paper four categories
of final grades: (1) excellent (denoted by E and representing the final grades
9 and 10); (2) good (denoted by G and representing the final grades 7 and 8);
(3) satisfactory (denoted by S and representing the final grades 5 and 6); and
(4) fail (denoted by F and representing the final grade 4). Let us denote by
C = {E,G, S, F}.

We note that our unsupervised analysis does not include the grades of the
students’ at the written exam (obtained in the examination session), which

38 GEORGE CIUBOTARIU AND LIANA MARIA CRIVEI

are also part of their final examination grade. Thus, we aim to analyse if
only the grades received by the students during the semester are enough to
discriminate their written exam grade and, accordingly, the students’ final
examination grade category.

The problem investigated in this paper, from an unsupervised learning per-
spective, is that of assigning to each student (characterized by its grades re-
ceived during an academic semester) the category corresponding to its final
grade. This assignment may be formalized by a mapping f : Rm → C.

3.1. Data set. In our experiment we are considering a real data set [1], de-
noted by D, containing the grades obtained by students at a Computer Science
undergraduate course offered at Babeş-Bolyai University collected during six
academic years (2011-2017) at the regular and retake examination sessions.
The data set consists of 905 students characterized by 4 attributes, denoted
by a1, a2, a3, a4. Attributes a1, a2, a3, a4 represent scores obtained by the stu-
dents at several evaluations during the academic semester: seminar score (a1),
project score (a2), project status score (a3) and written test score (a4). For
each student s ∈ D, its final examination grade (f(s)), received at the end
of the academic semester after the final examination is known. In our experi-
ments, the final examination grade of a student is transformed into a category
(E, G, S, F), as previously shown. However, in our unsupervised learning
based experiments, the students’ final grade will be used only for evaluating
the learning performance, without using it for building the SOM and RAR
models. Figure 1 depicts a histogram of grades (4-10) built on the data set D.

Figure 1. Histogram of grades from the data set D.

ANALYSING THE ACADEMIC PERFORMANCE USING UNSUPERVISED LEARNING 39

The histogram from Figure 1 reveals a distribution of passing grades (grades
without 4) close to the normal one. For analysing how correlated are the
attributes a1, a2, a3, a4 with the target output (category corresponding to the
final examination grade), the Pearson correlation coefficients are computed.
The correlation values are shown in Table 1.

a1 a2 a3 a4

0.631 0.676 0.461 0.607

Table 1. The Pearson correlation coefficient between at-
tributes a1, a2, a3, a4 and the target output.

From Table 1 we observe that there is a good enough correlation between the
attributes a1, a2, a4 and the category corresponding to the final examination
grade. The project score (attribute a2) shows the maximum correlation with
the final category. The smallest correlation is observed for attribute a3.

3.2. Experiments. The experiments described in this section are aimed to
test the ability of SOMs and RARs, as unsupervised learning models, to detect
relevant relationships in the students’ grades (received during the semester)
which are well correlated with their final grade category. For a certain grade
category (class) c ∈ {E,G, S, F} we denote by Dc ⊂ D the subset of students

from D whose final grade category is c. We note that
⋃
c∈C

Dc = D.

The first experiment is conducted for obtaining, using a SOM, a two dimen-
sional representation of the data set. Two SOM visualizations will be provided:
one for the entire data set (characterized by all attributes a1, a2, a3, a4) and
the second for the data set without attribute a3 (i.e the data set characterized
only by the attributes a1, a2, a4). After the SOM was unsupervisedly built,
the U-Matrix method [9] will be used for visualization. For the SOM, a torus
topology is used, with the following parameters: 200000 training epochs and
a learning rate of 0.1. The Euclidian distance is used as a distance metric
between the input instances.

The goal of our second experiment is to uncover in each subset Dc, using
the DRAR algorithm, a set RARc of interesting RARs. We aim to verify the
hypothesis that the sets RARc are able to discriminate between the classes of
students having different final grades.

For the RAR mining experiment, five additional attributes were added to
the data sets Dc (ai = i,∀i, 5 ≤ i ≤ 9) and we used the following parameters
for the mining process: 1 for the minimum support threshold, 0.6 for the
minimum confidence threshold and two possible binary relations between the

40 GEORGE CIUBOTARIU AND LIANA MARIA CRIVEI

attributes (< and ≥). Attributes a5, a6, a7, a8, a9 represent some thresholds
for the grades (i.e. 5, 6, 7, 8, 9) and were added with the goal of enlarging the
set of uncovered RARs, allowing the discovery of binary RARs such as ai ≤ 5.

For evaluating how well the set RARc characterizes the set of students from
the set Dc we use the average confidence of all the subrules from the rules from

RARc, denoted by Precc =

∑
r∈RARc

∑
sr∈Sr

conf(sr)

|RARc| . By conf(r) we denote the

confidence of the rule r in the data set Dc and Sr represents the set of subrules
of r (including itself). We note that Precc ranges from 0 to 1, higher values
for Precc indicating that the set RARc better characterizes the data set Dc.

4. Results and discussion

This section presents the experimental results obtained following the ex-
perimental methodology introduced in Section 3.2 and discusses about the
patterns unsupervisedly discovered using the SOM and RAR models.

4.1. Experiments using SOMs. The left hand side image from Figure 2
illustrates the SOM obtained on the data set from Section 3.1 using attributes
a1, a2, a3, a4, while the right hand side image from Figure 2 depicts the SOM
trained on the instances characterized only by attributes a1, a2, a4. On both
images, the students with the same final class (final grade category which is
depicted on the map) are marked with the same colour: red for the E labels,
yellow for G, green for S and blue for F. As expected, Figure 2a depicts a good
enough mapping, but still there is no clear separation between the grades. It
seems that a slightly better mapping and separation between the grades is
provided by the map from Figure 2b when attribute a3 (the project status
score) has not been considered.

The SOMs from Figure 2 reveal the difficulty of the task for predicting the
final examination grade category for the students, based on the grades they
received during the semester. However, the unsupervisedly built SOMs are
able to uncover some patterns regarding the students’ final grade category.
We observe two main areas on both maps, a cluster of students with the final
categories F and S, which is well enough delimited and one containing the
categories G and E. Inside the first cluster, we observe a well distinguishable
subclass containing students with the final category F.

For evaluating the quality of the SOMs built, the average quantization error
(AQE) is computed during the unsupervised training process. The AQE [18]
is computed by averaging the mean Euclidean distance between the input
samples and their best-matching units. Figure 3 comparatively illustrates how
AQE decreases during the training of the maps built for the entire data set

ANALYSING THE ACADEMIC PERFORMANCE USING UNSUPERVISED LEARNING 41

(a) SOM visualization considering
attributes a1, a2, a3, a4.

(b) SOM visualization considering at-
tributes a1, a2, a4.

Figure 2. U-Matrix visualization of the SOM built on the
data set D using attributes a1, a2, a3, a4 (left) and a1, a2, a4
(right).

(left side image) and for the data set without attribute a3 (right side image).
We note that the AQE reached after the training was completed is 0.997 for
the SOM from Figure 3a and 0.559 for the SOM from Figure 3b. The final
AQEs which are close to 0 confirm the accuracy of the trained SOMs. In
addition, the SOM built on the data set without attribute a3 has the smallest
AQE, indicating a better mapping.

(a) AQE visualization for the SOM built
using attributes a1, a2, a3, a4.

(b) AQE visualization for the SOM built
using attributes a1, a2, a4.

Figure 3. Evolution of AQE values during training the SOMs
built on the data set D using attributes a1, a2, a3, a4 (left) and
a1, a2, a4 (right).

42 GEORGE CIUBOTARIU AND LIANA MARIA CRIVEI

Figure 4 illustrates a detailed visualisation of the SOMs from Figure 2,
considering the torus topology used for building the SOMs. The left side im-
age from Figure 4 corresponds to the SOM from Figure 2a, while Figure 4a
corresponds to the visualization from Figure 2b. On both SOMs, the distin-
guishable classes of students are highlighted and coloured according to their
class label (E - red, G - yellow, S - green, F - blue).

(a) Detailed visualisation of the
SOM from Figure 2a.

(b) Detailed visualisation of the SOM
from Figure 2b.

Figure 4. Detailed visualisation of the SOMs from Figure 2.

A comparative analysis of the two images from Figure 4 and the highlighted
areas reveal the following. In Figure 4a we observe that the F labeled cluster
is well disgtinguishable. However, there are a few outliers that go beyond the
cluster’s border, entering in the S class zone. Moreover, the E labeled cluster
also interferes with the outer regions and creates noisy zones on the map. The
flaw with the image from Figure 4a is that, even though the centres of the E
and F labeled groups are compact and solid, the margins of each one tend to be
more fuzzy, exchanging different grades with neighbouring regions. As we can
see, there are overlapping grades, especially regarding the F labels, that incline
towards a defiance of the boundaries, which suggests that the unsupervised
classification model is not capable of clearly discriminating all the students
and, consequently, misinterprets some of the patterns of their performance.
Regardless these misclassifications that may be due to the small number of
attributes characterizing the instances and the presence of outliers, the SOM
model is confident enough to make correct prediction most of the time. In
Figure 4b there are two contrasting, well separated, areas of high/low grades
with a sharp gap between them. The regions corresponding to the average
grades surround tightly these two clusters. Few exceptions still occur when
separating the grades.

ANALYSING THE ACADEMIC PERFORMANCE USING UNSUPERVISED LEARNING 43

On the other hand, the SOM from Figure 4b seems to provide a better
classification of the data. The two opposed areas (of students with high/low
grades) now are more compact and clearly separated. Their margins tend to
be smoother, especially for those labeled F that are now more compact than in
Figure 4a, with less perturbations from the other grades, as a virtual median
barrier keeps them apart. However, the class of average grades is still difficult
to be separated, and, there has been a trade-off between size and accuracy,
since the higher grades are now more compact, but less separated from each
other.Nonetheless, if we would combine the two previous interpretations, we
may analyse and classify the data better by using both of their strengths, as
in each model the data is more or less scattered across the map, which would
be of use in cases when we desire a greater confidence on a particular class of
grades. While the model from Figure 4a may offer us a better understand-
ing of the students with passing grades (as they belong to a rather compact
group), the SOM from Figure 4b may show us an antithetical approach of the
highest grades and the lowest ones. Moreover, the SOM model built without
using attribute a3 is particularly good at classifying lower grades with greater
accuracy, and, even if there still is noise in the data categorised as E or G, the
model can confidently predict the performance of a good student. What makes
it so difficult to classify all the students is the fact that there is a discrepancy
mainly among the F labeled class, as there is an inconsistent progress for each
one, that would result in a more scattered pattern that interferes with better
classified data.

Analysing both maps from Figure 2 we also note that most of the stu-
dents belonging to category F (i.e. having the final grade 4) are, on both
maps, well enough delimited from the students from other categories (S, G,
E). Overall, we observe as a main pattern that neighboring students belong
to near categories (F-S, G-E). But several outliers may be observed on the
map: neighboring students having very different categories (e.g. E and F).
A possible explanation for such incorrect mappings may be that the data set
includes the examination results not only for the normal session, but also for
the retake session. Thus, it is very likely to have the same instance but with
different final labels (i.e. the categories from the normal and retake session)
which may be very different (e.g. F and S). Besides the previously mentioned
cause for outliers, another possible one is given by the intrinsic uncertainty of
the educational processes. The data set includes instances for which there is
a visible uncorrelation between the grades received during the semester and
the final examination grade. Such discordances may appear due to a bias
evaluation or some unexpected events in the students learning process. To
avoid introducing noise in the data set which will affect the performance of

44 GEORGE CIUBOTARIU AND LIANA MARIA CRIVEI

the learning, we will further investigate preprocessing techniques for detecting
such outliers.

4.2. Experiments using RARs. The results of the RAR mining experi-
ment are further presented, with the aim of highlighting the relevance of the
relational association rules mining process in distinguishing between classes
of students having different final grade category. For each category c ∈ C we
present in Figure 5 the set RARc of maximal RARs mined from Dc using the
experimental methodology from Section 3.2. In addition, we indicate the value
of Precc which evaluates the quality of the set RARc.

c Length Rule Confidence Prec

2 a1 > 8 0.898
2 a2 > 9 0.713
2 a4 > 8 0.771

E 3 a1 ≤ a2 > 8 0.707 0.716
3 a1 ≤ a3 > 8 0.650
3 a1 ≤ a4 > 7 0.643
3 a2 ≤ a3 > 9 0.618

2 a1 > 5 0.87
2 a1 ≤ 8 0.675
2 a2 > 7 0.728
2 a2 ≤ 9 0.679

G 2 a3 > 7 0.683 0.689
2 a3 ≤ 9 0.630
2 a4 > 6 0.630
2 a4 ≤ 8 0.626
3 a1 ≤ a2 > 6 0.614
3 a1 ≤ a3 > 6 0.606

c Length Rule Confidence Prec

2 a1 ≤ a3 0.686
2 a1 ≤ 6 0.737
2 a2 ≤ 6 0.661
2 a3 > 5 0.623
2 a3 ≤ 7 0.619

S 3 a1 ≤ a2 ≤ 9 0.640 0.69
3 a1 ≤ a3 > a4 0.636
3 a1 > a4 ≤ 5 0.653
3 a2 > a4 ≤ 5 0.640
3 a3 > a4 ≤ 7 0.631
4 a1 ≤ a2 > a4≤ 7 0.619

2 a1 ≤ a3 0.643
2 a1 ≤ 5 0.624
2 a2 ≤ a3 0.654

F 2 a2 ≤ 5 0.680 0.695
2 a3 ≤ 6 0.661
3 a1 > a4 ≤ 5 0.628
3 a3 > a4 ≤ 8 0.617

Figure 5. The sets of maximal interesting RARs mined for
each category of grades: E,G, S, F .

From Figure 5 we observe that the sets of RARs characterizing the classes
of students with different final grade category are disjoint, in general. For
example, the fourth RAR of length three from the left side table indicate that
for 61.8% of the students who have received a final examination grade of 9
or 10 (category E), the project score is less than or equal to project status
score, which is greater than 9. We note that this RAR does not characterize the
other categories of students, thus it is very likely to be useful for discriminating
students according to their final category.

For facilitating the interpretation of the RARs, we decided to build a SOM
for having a visual representation of the rules and highlighting how well they
characterize the classes of students. Let us denote by Rules the sequence of all
distinct mined RARs given in Figure 5, including all their subrules. If a RAR

ANALYSING THE ACADEMIC PERFORMANCE USING UNSUPERVISED LEARNING 45

of a certain length appears in more than one category, it will appear in Rules
only once (e.g. the RAR a1 ≤ a3 of length 2 appear as an interesting rule for
both categories S and F). Thus, an additional data set DRAR is created by
characterizing each student studi from the original data set D by a 48-length
binary vector Vi = (vi1, v

i
2, . . . , v

i
35), where 48 is the size of the sequence Rules,

i.e the number of distinct RARs mined. An element vij from Vi is set to 1 if
the j-th RAR from Rules is verified in studi and 0 otherwise. Figure 6 depicts
the SOMs built on the data set DRAR using all attributes a1, a2, a3, a4 (left)
and using only attributes a1, a2, a4 (right). On each SOMs, the instances are
labeled with their final grade category (E, G, S, F).

(a) SOM visualization considering at-
tributes a1, a2, a3, a4.

(b) SOM visualization considering at-
tributes a1, a2, a4.

Figure 6. U-Matrix visualization of the SOM built on the
data set DRAR using attributes a1, a2, a3, a4 (left) and a1, a2, a4
(right).

From the interesting RARs depicted in Figure 5 and visualized in Figure
6a we also observe that there is an overlapping, in general, between the set
of RARs characterizing near categories (F/S, G/E). This is expectable, as
previously shown in Section 4.1 where the SOM mapping highlighted that
there are instances, mainly from near categories, that are hard to discriminate.
For instance, the rule a1 ≤ a3 appears for both S and F categories with
highly similar confidences (0.686 for S and 0.643 for F). Another example
is the rule a2 > 7 from G and a2 > 9 from E which is also explainable
due to some instances that are on the border between the two categories.
Certainly, such overlapping rules are not useful for discriminating between
classes. A post-processing step would be useful for detecting and removing
such rules from the mining process and will be further investigated. However,
we observe interesting RARs, such as the 4-length rule from the S category,
which characterizes only this category of students. On the other hand, the

46 GEORGE CIUBOTARIU AND LIANA MARIA CRIVEI

RARs expressing the E category have the higher precision (0.716) and this
is also observable on the SOM, as this category is easily distinguishable from
other classes, sustaining the conclusions from Section 4.1.

Regarding the usefulness of attribute a3 in mining relevant RARs, the fol-
lowing were observed by analysing the RARs depicted in Figure 5 and visual-
ized in Figure 6b. On the one hand, a3 creates some misleading relationships
between the features, such as the rule a3 > a4, creating overlapping values with
other grades (i.e. it is interesting for both F and S categories). That would
cause some misclassifying when interpreting border cases, students that are in
between two classes. When removing the a3 feature, the RAR model is im-
proved, as there are less overlapping areas, even though there are not as many
relationships between the features (but the number of RARs may be increased
by reducing the minimum confidence threshold). This can also be seen in the
experiment from Section 4.1, when comparing the two SOMs (built with and
without attribute a3). On the SOM from Figure 6b built without considering
a3 feature, there is a tendency of the higher and lower grades to create distinct
clusters that have little or no noise. The class of F labeled instances is more
clearly distinguishable in Figure 6b than in Figure 6a.

The results previously presented highlight the potential of the sets RARc to
differentiate the students according to their final examination grade category,
based on their grades received during the academic semester. As previously
shown, RARs are able to express interesting patterns in academic data sets and
are useful for providing a better insight into the problem of students’ academic
performance prediction. However, we have a small number of attributes in our
case study. By increasing the number of relevant attributes, it is very likely
that more informative and meaningful RARs would be mined.

It is worth mentioning that the results obtained using both SOM and RAR
models conducted to similar conclusions, which were detailed in Section 4.1
and 4.2. For obtaining a more accurate representation of the input instances
(students) using both unsupervised learning models investigated in this paper
(SOMs and RARs), the attribute set characterizing the students must be en-
larged with other relevant characteristics. It would be useful to have multiple
attributes in the mining process and to extend the set of relations used in the
mining process in order to obtain much more informative and relevant RARs
as well as a better separation using the SOM model.

A more in depth analysis of the outlier instances provided by the SOM and
RAR models may provide valuable information regarding the improvement of
the educational processes. For instance, the results of the unsupervised learn-
ing processes may reveal the following: (1) the examination grades for some of
the evaluations received during the academic semester may be incorrect due to

ANALYSING THE ACADEMIC PERFORMANCE USING UNSUPERVISED LEARNING 47

the variations within the instructors evaluation criteria or standards, as well
as possible cheating methods used by a few students; (2) some of the partial
examinations may be redundant; (3) a change of the computation method for
the partial grades may be required; (4) it could be necessary to increase the
number of the examinations performed during the academic semester.

5. Conclusions and future work

This paper examined two unsupervised learning models, self-organizing
maps and relational association rule mining, in the context of analysing data
sets related to students’ academic performance. Experiments performed on a
real data set collected from Babeş-Bolyai University, Romania highlighted the
potential of unsupervised learning based data mining tools to detect meaning-
ful patterns regarding the academic performance of students.

We may conclude that the grades received by the students during the se-
mester may be relevant in predicting their final performance. However, sev-
eral outliers were observed in the data set. Such anomalous instances may
be due to: (1) a small number of students’ evaluations during the semester
(attributes); (2) the students’ learning process which is not continuous during
the academic semester; (3) the difference between the evaluation standards of
the instructors from the laboratory and seminar activities. As a consequence,
an increased number of evaluations during the academic semester would be
useful, for stimulating students to study during the semester and not only for
the final examination.

Future work will be performed in order to extend the experiments and
the analysis of the obtained results. For increasing the performance of the
unsupervised learning process, methods for detecting anomalies and outliers
in data will be further investigated. In addition, a post-processing phase for
filtering the set of mined RARs will be analysed for removing rules which
overlap with multiple classes.

References

[1] Academic data set, 2018. http://www.cs.ubbcluj.ro/∼liana.crivei/AcademicDataSets/
ThirdDataSet.txt.

[2] Elizabeth Ayers, Rebecca Nugent, and Nema Dean. A comparison of student skill knowl-
edge estimates. In Educational Data Mining - EDM 2009, Cordoba, Spain, July 1-3,
2009. Proceedings of the 2nd International Conference on Educational Data Mining.,
pages 1–10, 2009.

[3] Alejandro Bogaŕın, Rebeca Cerezo, and Cristóbal Romero. A survey on educational
process mining. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery, 8(1),
2018.

[4] Alina Câmpan, Gabriela Şerban, and Andrian Marcus. Relational association rules and
error detection. Studia Universitatis Babes-Bolyai Informatica, LI(1):31–36, 2006.

48 GEORGE CIUBOTARIU AND LIANA MARIA CRIVEI

[5] Gabriela Czibula, Maria-Iuliana Bocicor, and Istvan Gergely Czibula. Promoter se-
quences prediction using relational association rule mining. Evolutionary Bioinformat-
ics, 8:181–196, 04 2012.

[6] Ashish Dutt, Saeed Aghabozrgi, Maizatul Akmal Binti Ismail, and Hamidreza
Mahroeian. Clustering algorithms applied in educational data mining. Intern. J. of
Information and Electronics Engineering, 5(2):112–116, May 2015.

[7] N. Elfelly, J.-Y. Dieulot, and P. Borne. A neural approach of multimodel representation
of complex processes. International Journal of Computers, Communications & Control,
III(2):149–160, 2008.

[8] Syed Tanveer Jishan, Raisul Islam Rashu, Naheena Haque, and Rashedur M. Rahman.
Improving accuracy of students’ final grade prediction model using optimal equal width
binning and synthetic minority over-sampling technique. Decision Analytics, 2(1):1, Mar
2015.

[9] S. Kaski, and T. Kohonen. Exploratory data analysis by the self-organizing map: Struc-
tures of welfare and poverty in the world. Neural Networks in Financial Engineering.
Proceedings of the Third International Conference on Neural Networks in the Capital
Markets, pages 498–507, World Scientific, 1996.

[10] S.A. Khadir, K.M. Amanullah, and P.G. Shankar. Student’s academic performance
analysis using SOM. International Journal for Scientific Research and Development,
3(02):1037–1039, 2015.

[11] Wattanapong Kurdthongmee. Utilization of a self organizing map as a tool to study and
predict the success of engineering students at Walailak University. Walailak Journal of
Science and Technology, 5(1):111–123, 2008.

[12] J. Lampinen and E. Oja. Clustering properties of hierarchical self-organizing maps.
Journal of Mathematical Imaging and Vision, 2(3):261–272, 1992.

[13] Siti Khadijah Mohamad and Zaidatun Tasir. Educational data mining: A review. Pro-
cedia - Social and Behavioral Sciences, 97:320–324, 2013.

[14] Suhem Parack, Zain Zahid, and Fatima Merchant. Application of data mining in educa-
tional databases for predicting academic trends and patterns. 22012 IEEE International
Conference on Technology Enhanced Education (ICTEE), pages: 1–4, 2012.

[15] K. Saxena, S. Jaloree, R.S. Thakur, and S. Kamley. Self organizing map (SOM) based
modelling technique for student academic performance prediction. Intern. Journal on
Future Revolution in Computer Science and Communication Engineering, 3(9): 115–
120, 2017.

[16] Gabriela Şerban, Alina Câmpan, and Istvan Gergely Czibula. A programming interface
for finding relational association rules. International Journal of Computers, Communi-
cations & Control, I(S.):439–444, June 2006.

[17] Panu Somervuo and Teuvo Kohonen. Self-organizing maps and learning vector quanti-
zation for feature sequences. Neural Processing Letters, 10: 151–159, 1999.

[18] Yi Sun. On quantization error of self-organizing map network. Neurocomputing, 34(1-4):
169–193, 2000.

Babeş-Bolyai University, Department of Computer Science, 1 M. Kogălniceanu
Street, 400084 Cluj-Napoca, Romania

Email address: cgir2476@scs.ubbcluj.ro, liana.crivei@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIV, Number 2, 2019
DOI: 10.24193/subbi.2019.2.04

A COMPARATIVE STUDY OF SOFTWARE

ARCHITECTURES IN MOBILE APPLICATIONS

DRAGOŞ DOBREAN AND LAURA DIOŞAN

Abstract. The mobile market grows larger year by year and at the core
of those devices, we have the mobile applications that push the techno-
logical advancement forward continuously. Due to the increased hardware
performance and the popularity of those devices as well as advancements
in their operating systems, mobile applications have grown to be complex
projects with many dependencies and large teams working on them. As
the application becomes bigger and more complex, the problem of choosing
the right software architecture arises. This study focuses on an analysis
of the most commonly used architectural patterns on mobile applications
highlighting their features and flaws. Moreover, it also presents a compar-
ison between them when implementing a medium-sized application. The
usage of the appropriate architecture can simplify the work of developers
and enable the creation of sustainable applications and the improvement
of the software?s capacity to endure and evolve over time.

1. Introduction

The market of operating systems for mobile devices is shared between An-
droid (Google) and iOS (Apple), together they cover over 95% of it [23]. Since
they cover so much of the market, those operating systems have to run on
both high end devices and low end ones. Mobile applications nowadays have
short release cycles, they pack the latest technologies and trends for the high
end devices and they also maintain the support for the old or low end devices.

In order to be able to design a software system that can work well and can
be implemented efficiently under the given circumstances, there is a need for
an architectural solution that matches the scope of the desired system.

There are some architectural patterns pushed by the creators of those plat-
forms; Apple promotes MVC in their iOS framework while Google promotes

Received by the editors: October 22, 2019.
2010 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.11 [Software engineering]: Software ar-

chitectures – Domain-specific arhitectures.
Key words and phrases. mobile applications, iOS, software implementation, software

architecture, programming techniques.

49

50 DRAGOŞ DOBREAN AND LAURA DIOŞAN

MVP on Android, but they do not scale well and are not suited for all classes
of applications. Moreover, most of the time they are wrongly used resulting in
massive classes that heavily violate the single responsibility principle, have low
cohesion and high coupling. Those kinds of wrongly designed applications are
really hard to test and while their codebase increases, the development time
needed for adding new features increases drastically as well. Furthermore, the
whole development process becomes laborious as the codebase becomes hard
to understand. It usually lacks testing and it is very difficult to implement a
new feature or modifying one without breaking another part of the application.

This article will focus on analysing the most common software architectures
used on the iOS platform by taking into account criteria like reusability, flex-
ibility, testability, dependency among components, development costs. The
strong and weak features of each architecture will be discussed, while answer-
ing three important questions, which lay the foundation for this study:

• Q1: Why is the software architecture important in mobile applica-
tions?
• Q2: What does good software architecture mean in the context of

mobile applications?
• Q3: How can a mobile platform software architecture be analysed

and benchmarked?

Section 2 talks about the most commonly used mobile architectures on
iOS platform highlighting their strong and weak points; section 3 presents our
process of analysing those architectures, while section 4 showcases our findings
in regard to the questions above enunciated.

2. Details of patterns & comparative analysis

In [12], one of the first papers that described and compared two presen-
tation patterns for designing mobile application — MVC and Presentation-
Abstraction-Control (PAC), the authors have emphasised the conditions facing
mobile application and they have concluded that the selection of a particular
software pattern for the user interface architecture depends on the class of
mobile application.

Another MVC-based architecture, called balanced MVC architecture, has
been proposed in [7] for service-based mobile applications. The proposed ar-
chitecture is aimed to divide the kernel application optimally between the
client and the server. Again, the authors have remarked the specificity of the
proposed architecture for different types of applications, but no other design
patterns have been taken into account and analysed.

STUDY OF SOFTWARE ARCHITECTURES IN MOBILE APPLICATIONS 51

A unified architecture model adapted to Android development called Ex-
tended MVC has been proposed in [19]. The adaptation regards the speci-
ficity of the mobile applications. The authors have tested their approach by
considering ten devices of various physical specifications (versions of Android
system, screen resolutions, internal storage, CPU, RAM, etc.) and they have
concluded that their pattern improves the flexibility of the mobile application
(without using some metrics for evaluating it).

In [21] and [22] the authors have surveyed several widely used architectural
design patterns (MVC, PAC, HMVC 1, MVP, MVVM) involved in the de-
velopment of mobile applications. Furthermore, the authors have proposed
an MVC-based design pattern particularly adapted to the Android system
(called Android Passive MVC) and they have evaluated its quality in terms
of maintainability, extensibility and reusability with scenario-based software
architecture evaluation method. The authors have remarked (and somehow
quantified) the reduced complexity of the mobile application developed by
integrating the proposed architecture.

VIPER is another alternative architecture proposed by MutualMobile in [10]
and comes as an alternative to Clean Architecture from Android on iOS. In [16]
the authors highlight the importance of using specialised architectures rather
than the ”default” ones and analyse the re-architecting process of Coursera’s
mobile application, where they have chosen VIPER as their architectural so-
lution.

Other technical surveys about architectural patterns can be identified by
taking into account the industrial/technical blogs [24], [20].

2.1. MVC. The Model View Controller is one of the most versatile and used
software architectural patterns. It has been firstly used in Smalltalk and was
later adopted by Objective-C and other programming languages such as Java
and Ruby [15], [14], [2]. It is used for developing desktop, web and mobile
applications [17].

This pattern is the one that is promoted by Apple with its iOS platform,
encouraging the development of the applications that pursue it. Many frame-
works available from Apple for development purposes follow this pattern and,
when using them, custom objects are required to play an MVC role. However,
the simple usage of these frameworks do not guarantee that all MVC principles
are respected. Many frameworks available from Apple for development pur-
poses follow this pattern [8] and when using them custom objects are required
to play an MVC role.

Apple’s MVC is a little bit different from the classic MVC as shown in
Figure 1. In the classic MVC implementation, the model communicates with

1Hierarchical Model View Controller

52 DRAGOŞ DOBREAN AND LAURA DIOŞAN

Figure 1. Model-View-Controller architectural overview

the view, while in this flavour of MVC the controller acts as a mediator between
the model and the view, is responsible for updating the model as well as the
view and reacting to notifications from both the model and the view.

The controller has a more active role than in the classic pattern being
the bridge between the view and the model. Because this type of object is
concerned with how and when to display certain data on the screen and how
to react to user interaction it has been named ”ViewController”. In addition
to this, the data and event flow in this flavour of MVC is linear, while in the
classic architecture the flow is circular.

2.2. MVP. The Model-View-Presenter architecture has been long used in
other software development areas not only on mobile platforms. The principles
behind this pattern were not designed from scratch and it came as flavour of
MVC bringing in some advancements. This pattern can also be adapted to a
large set of applications such as client/server or multi-tier applications [13].

Figure 2. Model-View-Presenter architectural overview

The whole pattern is built with the idea that the actions in the application
should be driven by the user interaction, by the view layer rather than by the
controller. It is composed of three major types of components: the model that
handles all the data, the view that takes care of the interaction with the user,
the presenter that is responsible for connecting elements, as can be seen in
Figure 2.

STUDY OF SOFTWARE ARCHITECTURES IN MOBILE APPLICATIONS 53

MVC and MVP look very much alike and the differences are subtle, that
is why MVP comes as a flavour of MVC and not as a new concept, both of
them being presentational patterns. While they might look alike, there are
differences and advantages in using one or another.

In MVP the presenter is responsible for manipulating the views and they
communicate through interfaces, the views being decoupled from the presen-
ters and vice versa. In the world of MVC, all the communication between the
views and models is done through controllers, the elements are more tightly
coupled. The controller receives an event from the view layer, it does some
processing, it might manipulate the models and updates the views accord-
ingly. Another difference is the fact that in MVC the views are dumb objects,
they do not contain processing code as contrary to what happens in the MVP
pattern where the views have to communicate with the presenter.

2.3. MVVM. Model-View-View-Model is another architectural pattern from
the MV family, which is heavily used on mobile applications. This pattern has
gained a lot of attention and has been implemented in many applications
because it addresses the problem of massive view controllers [6] and, it also
works well with reactive programming [4].

Figure 3. Model-View-View-Model architectural overview

MVVM tries to solve some of the problems that might lead to the massive
view controllers by using a new layer between the Model and the Controller
called View Model as shown in Figure 3. The purpose of this View Model is to
take a model object and apply all the transformations and presentation logic to
its attributes such that those can be easily presented by the view, for instance,
transforming a date into a formatted string. By using this approach the con-
trollers become less bloated with UI configurations and mappings, becoming
lighter.

This architectural pattern works very well with reactive programming be-
cause the idea behind this architectural concept is that every change done
to the model should be automatically reflected in the View through the View
Model. The task of propagating this information is easily achieved with the use

54 DRAGOŞ DOBREAN AND LAURA DIOŞAN

of reactive programming or by language features such as Key-Value-Observing
[1]. MVVM is also compatible with the MVC as it just adds an extra layer
that is responsible for configuring the View by mapping various values and
applying some business logic on the Model.

2.4. VIPER. VIPER stands for View Interactor Presenter Entity Routing
and it is a software architecture used in large mobile applications. VIPER does
not come from MV family [10], [16], [5], [18]. As shown in Figure 4 it uses five
layers of abstraction for separating concerns in the application. It does that
for solving problems that come with using a classical MVC architecture where
there is no clear layer where the business logic should be placed. VIPER
respects the principles of a Clean Architecture [9] and it can be considered
a pattern for the whole application (not only a presenter pattern, like the
previously described ones).

Figure 4. VIPER architectural overview

The software systems built using this architecture resemble a game of LEGO.
A complete application is built from multiple VIPER modules, the size of those
modules depending on the granularity sought. Each component has a well de-
fined and single concern, this architecture is built on the Single Responsibility
Principle. The view is only responsible for displaying the items it receives
from the presenter.

The presenter works closely with the interactor and prepares the content it
receives from the interactor for the view so that this component can display
it. The presenter is also responsible for reacting to events from the view and
requesting new data from the interactor.

The business logic is contained in the interactor; its responsibility is to
manipulate the entity objects. All the logic should be independent on any UI
components and all its behaviour should be portable to other platforms.

The entity layer contains the items with which the business logic works and
it is related to the model in the MVC. The navigation from one view to another
is shared between the presenter and an object which handles the navigation

STUDY OF SOFTWARE ARCHITECTURES IN MOBILE APPLICATIONS 55

Table 1. Findings after analysis

stack. The presenter is responsible for deciding when to navigate to another
view while the routing object is creating the actual transition.

2.5. Findings after analysis. We have already seen that the differences
among these patterns are relatively small, but they are significant. To better
emphasize the most important characteristics of these patterns, we resume
them in Table 1.

3. Analysis and benchmark

After the retrospective of the most used software architectures on the iOS
platform, we have implemented them in a medium sized iOS application. The
application has eight different screens all of which have custom UI components
such as lists, buttons, animations, views as shown in Figure 5.

The purpose of the application is to highlight the codebase complexity and
the potential problems which might arise from the usage of those architectures
in a mobile application. The application is a simple game and one of its most
important functional requirements is the ability to send a messages between
players, while maintaining a stopwatch which should be synchronised with the

56 DRAGOŞ DOBREAN AND LAURA DIOŞAN

Figure 5. Implemented iOS application

one from the peer player. The actual functionality of the application is less
important, its choice being made in order to better exemplify the analysed
concepts.

After analysing the top 50 free applications from the iOS App Store on
various categories, this type of application was chosen as representative for
the following reasons:

• it heavily relies on network operations;
• it has a user interface which needs to be adapted constantly and

dynamically based on the events its receives from the peer;
• it uses open source libraries which have different architectures and,

sometimes, even a different programming language than the ones
used in the development of the application.

After implementing the application with all the software architectures de-
scribed in section 2 we have observed that the MVC is one of the most common
architectures as it is easy to follow the pattern imposed by the iOS framework
and develop the applications based on the blueprint they provide, as shown in
Table 2 (column 2).

However, this can lead to the problem of massive view controllers, as usually
developers are not using multiple view controllers for the same user interface
page (screen). The main cause of this misusage is that there are not many
resources in the literature in which this idea is promoted and most of the
beginner developers are unaware of this feature.

In the implemented application we have respected the MVC pattern as de-
scribed and while we did not produce any massive view controller classes, it
was clear for us why the problem might occur. The requirements for the im-
plemented application were clear from the beginning and we have not started

STUDY OF SOFTWARE ARCHITECTURES IN MOBILE APPLICATIONS 57

to implement extra features on an old codebase. The introduction of new
features and changing the development team can lead to the above stated
problem, because it is easier to add a something on top of an fully working
system than to refactor it and do things properly, in concordance with its
architecture. This is especially true for small features such as adding an extra
button or a new label.

The MVP offers another flavour of MVC and, while the problem of massive
view controllers is somehow resolved, it is easy to create massive presenters
classes just like in the case of MVC. While MVP-based approach is a little
better than creating massive view controllers, because those presenters are
plain objects and usually do not inherit from a superclass or receive callbacks
regarding the user interaction actions as view controllers do, this makes them
more testable. However, without proper separation and design, we could eas-
ily end up with massive presenters, which take the responsibility of a massive
view controller, where we also require extra code for passing the user interac-
tion events from the view to the presenter, which is another task that could
introduce bugs and increase the development time.

MVVM comes and adds another layer of abstraction to the classic MVC
architecture. It binds the models to the views and vice-versa by using another
layer of abstraction, the view-model. This approach takes some of the com-
plexity away from the view controllers. We found out that it felt like we are
over-engineering when using this approach for small view components, which
have only a label or some minimal information. This approach surely makes
sense for components that are complex and they need to display easily large
amounts of information or for the views with multiple states; however, for
light components the amount of work necessary for implementing it does not
always justify its advantage.

Another important aspect of MVVM regards the usage of a third party
library (Table 2, column 3), which is usually required for implementing the
Observer pattern in complex applications. In the case of iOS, when developing
an application in Objective-C, this mechanism was already built in the lan-
guage, however on Swift we can no longer use this approach without heavily
relaying on the Objective-C runtime. That is why most of the applications
which use this pattern relay on a third party library for implementing the syn-
chronised behaviour and, thus, adding extra complexity to the overall project.

In addition to this, we can see that the MVVM pattern is the only one that
implements the synchronicity between the Model and the View layer (Table
2, column 5) which means that when a change occurs to the Model layer it
will be automatically forwarded to the View layer and that usually results in
an alternated UI as well.

58 DRAGOŞ DOBREAN AND LAURA DIOŞAN

Table 2. iOS Software architectures comparision (↑ - maxi-
mum criterion, ↓ - minimum criterion)

The pattern with the most granularity the ones we have analysed is VIPER.
The separation of concerns done in this approach tries to ensure that the
architecture of the application will erode at a slower pace (see column 8 of
Table 2). It provides the greatest flexibility of all the presented architectures
and it also the easier and most testable one. Nonetheless, the flexibility and
granularity come at the cost of more code written, more layers and the most
complex concepts. We also found out that for applications that have a short
lifecycle this approach can be costly from a development perspective, being
the most time consuming and the implementation which required the most
skilful developers.

In regards to development costs Table 2 (column 7) shows that more com-
monly used architectures such as MVC or MVP have a smaller development
cost than the ones which are more complex such as VIPER or MVVM. While
ranking the architectures, we have looked at the following aspects: the ar-
chitectural skills required by the developers to work on a codebase that im-
plements a certain architecture, the ease of implementing new features (how
many layers and components would have to be adapted or created), the cog-
nitive complexity in respects to the layers and the flows of the application and
the time needed to develop new features.

The implementation also revealed the complexity of each pattern in the
number of lines written for each architecture (see column 6 of Table 2). We
took MVC as a baseline, and we have observed that each architecture increases
the number of lines of code. MVP showed an increase of 7.8%, MVVM 6.5%,
VIPER 18.5%. While those numbers apply to our benchmark application,
those could vary depending on the way the model and services layers are
written, depending on the number of views and the overall complexity and
features of the applications.

Increasing the granularity of the architecture automatically increases the
number of layers and dependencies between components (see column 4 of Table

STUDY OF SOFTWARE ARCHITECTURES IN MOBILE APPLICATIONS 59

2). This not only introduces more code in order to link those but it also
requires a higher level of skills from those who develop the application in
order to be able to respect the overall architecture. The cost of granularity is
more code written, more interfaces and more classes that are responsible for
linking the layers.

The MVP architecture has shown an increase in the number of classes and
interfaces from the base application (implemented with MVC). Based on the
complexity of the UI elements for every initial View Controller we had at least
one extra class and one extra interface, but this number can greatly vary based
on the complexity of the application.

MVVM is very similar from this benchmark point of view with MVP; there
was an increase of at least one class and one interface from baseline, but as
in the case of MVP, this number considerable varies based on the complexity
of the application and its architectural granularity. It is not uncommon in
large enterprise projects to have more than 5 view-model classes for a View
Controller.

In the case of VIPER, we have noticed that for every View Controller from
the base application (implemented with MVC) the architecture required at
least another 2 classes and 3 interfaces (protocols in Swift).

The number of dependencies increases with the complexity of the applica-
tion and it is heavily influenced by the chosen architectural pattern. In the
application we have benchmarked there were not so many complex views which
could be implemented with the MVVM, however in applications with multi-
ple view states and complex UI elements the percentage of code written and
the number of dependencies would increase drastically from an MVC baseline
point of view.

After the experiment, we have also calculated the Weighted Methods per
Class (WMC) and the Coupling Between Objects (CBO) classes for the initial
View Controllers of the MVC implemented application in order to reveal the
complexity, reusability and the coupling of each architectural pattern. WMC
counts the number of methods associated with a class, a high value indicates
increased complexity and low reusability [3]. CBO it is a values which in-
dicates the dependencies between classes, counting the relationships between
classes without taking inheritance into account. A high CBO value indicates
an increased dependency among classes and restricted reusability [3].

The codebases with the lowest WMC and CBO scores represented the ones
which allowed a higher flexibility and testability, however they usually have a
higher number of layers and components – which means higher development
costs. It is important to mention that in the case of large and complex code-
bases those values are much more important than in the case of small and

60 DRAGOŞ DOBREAN AND LAURA DIOŞAN

medium codebases as they accurately indicate the degree of flexibility, exten-
sibility and testability. In smaller codebases, usually those metrics are not so
important since the logic of the applications is less complex and the cognitive
complexity of the flows is more easily to comprehend.

In the case of MVC, for one of the most complex View Controller of the
application, the WMC was 28 and the CBO value was 2. MVP has shown a
drastically decreased value of 14 for WMC and 1 for CBO for the same class,
MVVM had its WMC value of 26 and the CBO 2. VIPER has as well shown
a decrease in complexity with a WMC of 19 and a CBO value of 1.

The most testable architecture of them is VIPER as it provides great gran-
ularity and, with its concept of router classes, the navigation between views
can also be unit tested. In the case of the other architectures the navigation
between views is harder to test based on the way this is implemented (segues
or programmatically modifying the navigation stack). MVVM provides in-
creased testability for the user interaction components over MVC, while the
MVP is as well more testable than MVC as presenters are usually plain ob-
jects and the interactions with those elements can be manually mocked and
the events are not controlled by the iOS SDK.

4. Conclusions

We have analysed some of the most common software architectures used
in mobile applications software development on a medium sized application
on the iOS platform. The focus was on showcasing the strong and weak
features of the evaluated architectural patterns on a real case example. We
have considered the architectures from the MV family as these are the ones
advocated for by the creators of the mobile operating systems, as well as
different flavours of those. We have also included in our research VIPER, which
is a relatively new architectural pattern that has gained a lot of popularity on
the iOS mobile applications development scene.

The basis for our study was the implementation of the same iOS application
with every one of the evaluated software architectures (MVC, MVP, MVVM,
VIPER). After the implementation, we have examined each code base from
the following points of view: flexibility, testability, dependencies between com-
ponents and development costs.

After the experiment, we reinforced the assumption formed in years of com-
mercially developing those kinds of applications regarding the importance of
the software architectures. Software architecture has a critical role in the
lifecycle of a mobile application and can strongly impact the cost of an appli-
cation.

STUDY OF SOFTWARE ARCHITECTURES IN MOBILE APPLICATIONS 61

4.1. Q1 - Why is the software architecture important in mobile ap-
plications? For most companies that develop mobile applications, the cost
is one of the most important factors in developing it. Having that in mind,
choosing the right architecture for the application based on the functional re-
quirements and the roadmap of the application can have a strong impact on
the overall cost of the project.

For instance, it would not make sense for a proof of concept application
(whose lifecycle is only a few months or a year) to be over-engineered. Spend-
ing time on implementing an architecture, which will provide flexibility for the
future development of the application, has no sense from an economic point
of view. By choosing a sophisticated architecture such as MVVM, the code
base would increase dramatically and, based on the exact requirements of the
application, the number of classes and line of codes could potentially double.
In order to achieve those, the team which develops the application would have
to be more skilled and the time for development and the cost will be directly
proportional to the size of the codebase.

However not all mobile applications have the cost as one of the most im-
portant factors in their development. If we think about companies such as
Snapchat, Tinder and Uber, all those companies are built around a mobile
application and while they provide Web or Desktop applications as well, most
of their revenue and user base comes from the mobile platforms. Those com-
panies are not that concerned with the cost of the development and are more
concerned with the extensibility of the application, its flexibility to adapt to
new technologies, the range of devices on which the application can run, the
ability to monitor the way their users interact with the application and to
implement A/B testing for new features. They are also more concerned with
the security and scalability of their application as well as the ability to provide
new and interactive user interfaces and experiences and the ability to easily
change these.

For mobile product companies, it makes a lot of sense and it is absolutely
mandatory to have a software architecture which helps them achieve all their
requirements. Failure to do so at the beginning of the project results in a
technical debt which, most of the times, can only be leveraged by rewriting
the application, or adding more resources and spending more time and money
on the development.

Choosing the right software architecture for the product you are building
while it is a hard task and, usually, involves people from all the layers of the
company; product team, developers, business analysts etc., it is one of the most
important task which you have to achieve and which will pay dividends in the
long term. The importance of the task and the results of implementing it is
closely related to the purpose of the application and its lifecycle. Nevertheless,

62 DRAGOŞ DOBREAN AND LAURA DIOŞAN

it is important that at the beginning of the development of a product, after a
thorough analysis, to make this decision.

4.2. Q2: What does good software architecture mean in the context
of mobile applications? The purpose of the architecture is to provide a
blueprint that is easy to follow and hard to break. It has to constrain the
developer so that even the most inexperienced ones have to respect its principle
and to avoid architectural erosion [11].

Good mobile software architecture should also be more flexible to change
than other software architectures used in other types of software products such
as web applications or embedded systems software. The reasons for this are
the fact that mobile platforms are in continuous expansion and the field of
the mobile application is reshaped every year with new kind of devices which
have newer and more powerful hardware or they introduce completely new
hardware which allows the developers to add unpredicted functionalities to
their applications.

The most important aspect which heavily affects the architecture of an
application is the development cost. The cost is influenced by the time of
development, the skill of hired developers and the technology stack used. All
these elements put their fingerprint on the final architecture of the product,
that is why when starting a new project and choosing an architecture, it is
really important to see if it is feasible from an economic point of view. Deciding
for the wrong kind of architecture and not being able to correctly implement
it while also delivering the required functionalities could cripple the project or
badly erode the architecture in a way that might make it impossible to deliver
new features or keep expanding it without massive refactoring.

4.3. Q3: How can a mobile platform software architecture be anal-
ysed and benchmarked? Mobile software architectures can be analysed as
any other software architecture, from a complexity and granularity point of
view, as well as for its flexibility and testability. What we have noticed is the
fact that the mobile application architectures erode pretty fast as there are
technological advancements in this field every year.

In order to benchmark an architecture, one has to first define the scope of
the application, its lifecycle, release cycle and feature set. While there are
many architectures that can be used for a certain application, its scope and
budget usually dictate what architecture will be chosen. Given the budget
and the scope of the application, we can filter the architectures and find out
which one best fulfil the purpose.

Taking into consideration the scope of the application, the budget and the
lifecycle, we can benchmark the architectures by their degree of flexibility,
resistance to erosion, testability and ease of implementing.

STUDY OF SOFTWARE ARCHITECTURES IN MOBILE APPLICATIONS 63

Another important aspect in choosing the architecture is the number of its
layers. While a greater granularity makes the whole architecture more flexible
and testable and allows more developers to work on the same flow without
creating conflicts, it also creates the need to write more code in order to link
those components. Choosing the degree of granularity is as well as other
features of an architecture strongly bounded to the purpose of the application
heavily influences the lifecycle as well as the development costs.

The synchronicity between the model and what the user sees on the screen
is another aspect that should be taken into consideration when choosing an
architecture for a mobile application. There are architectures in which the
view is automatically synchronised with the model the latter changes. Usually,
the purpose of the application steers this kind of feature and synchronicity.
For instance, a stock trading application would require that the model should
always be in-sync with the view in order for users to see accurate prices. A
photo browser application would not require this kind of synchronicity as it
would not make sense from a network consumption and a user interaction
point of view to refresh the feed of all the users when a new photo is added.

Nonetheless, choosing the right architecture is only the first step in building
an application. The task of implementing an architecture is as important as
choosing the right one and the skills of the development team usually affect
the final product more than the chosen architecture.

4.4. Future work. As the next steps, based on this work, we plan to ap-
proach an auto-adaptation of an architectural pattern to the application; this
approach should fit both medium sized applications and large, enterprise ones.

References

[1] Apple. Key value observing. https://developer.apple.com/library/archive/ documenta-
tion/Cocoa/Conceptual/KeyValueObserving/KeyValueObserving.html, 2018. Accessed
date: 2018-06-30.

[2] S. Burbeck. Applications programming in smalltalk-80 (tm): How to use model-view-
controller (MVC). Smalltalk-80 v2, 5:1–11, 1992.

[3] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. IEEE
Transactions on software engineering, 20(6):476–493, 1994.

[4] R. Garofalo. Building enterprise applications with Windows Presentation Foundation
and the Model View View Model Pattern. Microsoft Press, 2011.

[5] J. Gilbert and C. Stoll. Architecting iOS apps with VIPER.
https://www.objc.io/issues/13-architecture/viper/, 2014. Accessed date: 2018-04-
02.

[6] S. Khanlou. Massive View Controller. http://khanlou.com/2015/12/massive-view-
controller/, 2015. Accessed date: 2018-06-30.

[7] H. J. La and S. D. Kim. Balanced MVC architecture for developing service-based mo-
bile applications. In e-Business Engineering (ICEBE), 2010 IEEE 7th International
Conference on, pages 292–299. IEEE, 2010.

64 DRAGOŞ DOBREAN AND LAURA DIOŞAN

[8] D. Mark, J. LaMarche, and J. Nutting. More iPhone 3 Development. Springer, 2010.
[9] R. C. Martin. Clean architecture: a craftsman’s guide to software structure and design.

Prentice Hall Press, 2017.
[10] MutualMobile. Meet VIPER: Mutual mobile’s application of clean architecture

for iOS apps. https://mutualmobile.com/posts/meet-viper-fast-agile-non-lethal-ios-
architecture-framework, 2014. Accessed date: 2018-04-02.

[11] D. E. Perry and A. L. Wolf. Foundations for the study of software architecture. ACM
SIGSOFT Software engineering notes, 17(4):40–52, 1992.

[12] D. Plakalovic and D. Simic. Applying MVC and PAC patterns in mobile applications.
arXiv preprint arXiv:1001.3489, 2010.

[13] M. Potel. MVP: Model-view-presenter the taligent programming model for C++ and
Java. Taligent Inc, page 20, 1996.

[14] T. Reenskaug. The model-view-controller (MVC): its past and present. University of
Oslo Draft, 2003.

[15] T. M. H. Reenskaug. The original MVC reports. Technical report, Xerox Palo Alto
Research Laboratory, PARC, 1979.

[16] F. J. A. Salazar and M. Brambilla. Tailoring software architecture concepts and process
for mobile application development. In Proceedings of the 3rd International Workshop
on Software Development Lifecycle for Mobile, pages 21–24. ACM, 2015.

[17] P. Sauter, G. Vögler, G. Specht, and T. Flor. A MVC extension for pervasive multi-client
user interfaces. Personal and Ubiquitous Computing, 9(2):100–107, 2005.

[18] M. A. Sayed. VIPER design pattern for iOS application development.
https://medium.com/@smalam119/viper-design-pattern-for-ios-application-
development-7a9703902af6, 2017. Accessed date: 2018-04-02.

[19] F. E. Shahbudin and F.-F. Chua. Design patterns for developing high efficiency mobile
application. Journal of Information Technology & Software Engineering, 3(3):1, 2013.

[20] A. Sinhal. MVC, MVP and MVVM design pattern.
https://medium.com/@ankit.sinhal/mvc-mvp-and-mvvm-design-pattern-
6e169567bbad, 2017. Accessed date: 2018-04-02.

[21] K. Sokolova, M. Lemercier, and L. Garcia. Android passive MVC: a novel architecture
model for android application development. In International Conference on Pervasive
Patterns and Applications, pages 7–12, 2013.

[22] K. Sokolova, M. Lemercier, and L. Garcia. Towards high quality mobile applications:
Android passive MVC architecture. International Journal On Advances in Software,
7(2):123–138, 2014.

[23] Statcounter. Mobile operating system market share worldwide.
http://gs.statcounter.com/os-market-share/mobile/worldwide/monthly-201705-
201805, 2018. Accessed date: 2018-06-30.

[24] C. Trevino. Flux and presentation architectures. https://blog.atsid.com/flux-and-
presentation-architectures-91283f7ef94b, 2016. Accessed date: 2018-04-02.

Babeş-Bolyai University, Department of Computer Science, 1 M. Kogălniceanu
Street, 400084 Cluj-Napoca, Romania

Email address: dobrean@cs.ubbcluj.ro, lauras@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIV, Number 2, 2019
DOI: 10.24193/subbi.2019.2.05

PREDICTING RELIABILITY OF OBJECT-ORIENTED

SYSTEMS USING A NEURAL NETWORK

ALISA BUDUR, CAMELIA ŞERBAN, AND ANDREEA VESCAN

Abstract. One of the most important quality attributes of computer
systems is reliability, which addresses the ability of the software to perform
its required function under stated conditions for a stated period of time.

The paper aim is twofold. Firstly, the proposed approach explores
how to define a metric to qualify the sub-aspects comprised in ISO 25010
regarding reliability as maturity and availability. Secondly, we investigate
to what extent the internal structure of the system quantified by the Chi-
damber and Kemerer (CK) metrics may be used to predict reliability.

The approach for prediction is a feed-forward neural network with
back-propagation learning.

The results indicate that CK metrics are promising in predicting re-
liability using a neural network method.

1. Introduction

Quality of a system can be described by different attributes such as relia-
bility, maintainability, usability, etc. Among these attributes, reliability has
an important role because it reveals how stable a system is or, in other words,
how often it fails.

The definition of reliability is based exclusively on the software external
behaviour, although it is well known that the internal structure has an impor-
tant impact on a quality attribute such as reliability. For example, a reliable
system has a complexity minimized as much as possible. Also, coupling in
a reliable system is reduced at maximum because it facilitates testing. Con-
sidering this, we can say that the better we assess the internal structure of
the system, the more accurate will be the prediction of its external behavior.
Several studies [4], [2], [12], [11] reveal that Chidamber and Kemerer (CK) [5]

Received by the editors: October 24, 2019.
2010 Mathematics Subject Classification. 68T05,68M15.
1998 CR Categories and Descriptors. I.2.6 [Computing methodologies]: Artificial

Intelligence – Learning ; D.2.8 [Software engineering]: Metrics – Complexity measures.
Key words and phrases. Reliability, prediction, neural network.

65

66 ALISA BUDUR, CAMELIA ŞERBAN, AND ANDREEA VESCAN

metrics have a strong impact on software reliability. These metrics are briefly
presented in what follows [5].

Definition 1. Depth of Inheritance Tree (DIT) [5] is defined as the length of
the longest path of inheritance from a given class to the root of the tree.

Definition 2. Weighted Methods per Class (WMC) [5]metric defined as the
sum of the complexity of all methods of a given class. The complexity of a
method is the cyclomatic complexity.

Definition 3. Coupling Between Objects (CBO) [5] for a class c is the num-
ber of other classes that are coupled to the class c, namely that Two classes are
coupled when methods declared in one class use methods or instance variables
defined by the other class.

Definition 4. Response for a Class (RFC) [5] metric is defined as the total
number of methods that can be invoked from that class.

Definition 5. Lack of Cohesion in Methods (LCOM) [5] is defined by the dif-
ference between the number of method pairs using common instance variables
and the number of method pairs that do not use any common variables.

Definition 6. Number of children of a class (NOC) [5] is defined as the
number of all direct sub-classes of a given class.

Considering the reliability definition and the fact that the internal struc-
ture is very important for a reliable system, the goal of this paper is twofold.
Firstly, to compute the reliability attribute based on the software external
behavior, i.e number of faults occurred during the testing phase, as well as
the number of faults discovered during the usage of the software - for this
step, the Quality Model, ISO25010 [10] was considered because it addresses
two of the four sub-characteristics related to reliability: Availability, Maturity,
Fault Tolerance and Recoverability. Secondly, to investigate whether the neu-
ral networks can predict reliability attribute based on the previously defined
attribute and having as predictors object-oriented design metrics.

The second step is very useful because it allows us to know the reliability
quality attribute as early as possible in the development life cycle. This helps
because it can suggest what classes are more likely to have bugs and the
testing team can focus on testing features that use those classes. In this way,
we identify bugs earlier and the cost of fixing them is lower.

The structure of the paper is the following: Section 2 presents the software
reliability, Goal Question Metric (GQM) approach and how it is used to de-
termine reliability, neural networks and a short related work section. Section
3 presents in more details how to achieve the two objectives of this paper:

PREDICTING RELIABILITY OF OBJECT-ORIENTED SYSTEMS 67

how to compute reliability attribute and then how to predict it using a neural
network. Section 4 describes the data sets used for validation, the conducted
experiments and obtained results. Finally, the conclusions and future direc-
tions are emphasized in Section 5.

2. Setting the context

This section presents the theoretical aspects used in this research investiga-
tion, i.e. reliability, the GQM approach to quantify reliability, neural networks
and a short related work.

2.1. Reliability as an important aspect of safety-critical systems. The
official definitions of reliability are: “The ability of the software to perform its
required function under stated conditions for a stated period of time” (IEEE
Standard Glossary of Software Engineering Terminology [17]) and “The prob-
ability of failure-free operation of a computer program for a specified period
of time in a specified environment” (ANSI [14]).

A safety-critical system is a system whose failure might lead to life loss,
financial loss, and/or environmental damage. Many everyday systems can be
dangerous for us and therefore, the software architects and developers should
design and create systems that are very safe. An important question that
raises here is “How can we test that the system is safe?”.

The first approach is to prove that there are no faults in it. This can be
accomplished using formal mathematical methods in the design and proofs of
the design correctness. The disadvantage of this approach is that it works well
only for small systems.

The second approach is to accept that mistakes can appear and to consider
error prediction methods. This is more generally adopted and can be done by
quantifying reliability quality attribute of the system.

2.2. Goal-Question-Metric approach. Software metrics are very impor-
tant in understanding, controlling and improving software quality. Fenton’s
theory of measurement [9] explains that any measurement must have a well
defined goal, but in practice, a lot of measurements are not goal oriented and
therefore, the data collected is not useful at all. Goal Question Metric ap-
proach [3] was introduced to ensure that the measurements are goal oriented.
It has three steps:

(1) Define goals with respect to various points of view: quality, time etc.
(2) Define questions to characterize how the goals defined above could

be achieved.
(3) Determine which metrics must be collected in order to answer the

above questions.

68 ALISA BUDUR, CAMELIA ŞERBAN, AND ANDREEA VESCAN

Figure 1. Structure of a feed-forward neural network.

2.3. Neural networks. A neural network is a supervised learning algorithm
[13] that is inspired by biological neural networks. It learns how to perform
tasks by taking into consideration already labeled data. For example, if we
supply a neural network with weather data from the last month, it will learn
how to predict the weather for the next days.

A neural network [13] consists of multiple nodes connected by links. A
numeric weight is associated with each link. The neural network communicates
with the environment through input and output nodes. A layered feed-forward
network is a neural network in which every node is linked only to nodes in
the next layer, for example in Figure 1 node N5 is linked to node N6 but not
back to nodes in the previous layers.

Each node performs the following computation: it takes the input values
from its input links (for example, input values for node N4 in Figure 1 are N1,
n2, N3) and computes a new value (activation value), sending it along each of
its output links. The computation consists of two parts. Firstly, it computes
the weighted sum of the input values of the node. The weighted sum of a node
is the sum of all its input values times their respective weights. Secondly, it
computes the activation value of the node by applying the activation function
to the weighted sum previously computed.

All the above steps are graphically presented in Figure 2.
Usually, learning in a feed-forward neural network is done using the back-

propagation algorithm. Back-propagation learning works in the following way:
the network is supplied with inputs and if it computes an output vector that
matches the expected output, the algorithm terminates. Otherwise, an error is
computed (the difference between the expected output and the actual output),

PREDICTING RELIABILITY OF OBJECT-ORIENTED SYSTEMS 69

Figure 2. Node computation.

1 Network NeuralNetworkLearning (t ra in ingData)
2
3 network <− a network with random ass i gned
4 weights ;
5
6 while (p r e d i c t i o n i s i n c o r r e c t or
7 te rminat ion cond i t i on not reached)
8 foreach item in t ra in ingData
9 networkOutput =

10 network . ComputeOutput (item) ;
11 expectedOutput =
12 item . GetExpectedOutput () ;
13 UpdateWeightsBasedOn (networkOutput ,
14 expectedOutput) ;
15 end foreach
16 end while
17
18 return network

Listing 1. Generic learning in a neural network

then this error is used to adjust each weight in the network such that the next
error to be smaller than the current one. The back-propagation uses gradient-
descendant for dividing the error among all weights. The generic learning in
a neural network is presented in Listing 1.

70 ALISA BUDUR, CAMELIA ŞERBAN, AND ANDREEA VESCAN

2.4. Related work. Reliability is one of the most important quality at-
tributes when we describe safety-critical systems. It is so important because
a fail in such a system could produce significant losses. This subject was of
major interest in last years and several studies investigated its impact on soft-
ware safety, as well as searched for methods through which we can predict and
accomplish a reliability value from the earliest development stages.

How reliability prediction can increase trust in reliability of safety-critical
systems was studied in paper [15]. The author determines a prediction model
for different reliability measures (remaining failure, maximum failures, total
test time required to reach a given number of remaining failures, time to next
failure), concluding that they are useful for assuring that software is safe and
for determining how long to test a piece of software.

Another approach [6] defined a classifier (with 37 software metrics) and
use it to classify the software modules as fault-none or fault-prone. They
compared their works with others and concluded that their model has the
best performance.

The work described in [8] investigates how to solve the problem of deter-
mining the error rate of the electronic parts of a track circuit system (which
is a safety critical system) by using Markov chains in order to predict the
reliability of the fault-tolerant system.

An approach for assessing and predicting reliability of an object oriented
system, taking a statistical approach by using multiple linear regression was
proposed in [16].

In relation to existing approaches, ours investigates how we can use CK
metrics to predict reliability and relates to approach [6], with the difference
that we use CK metrics instead of cyclomatic complexity, decision count, deci-
sion density, etc. and we predict a reliability value for each class in the project,
instead of classifying the modules in two categories.

3. Proposed approach for predicting reliability

This section presents our approach for reducing the time necessary to com-
pute reliability of a software system. The approach is based on GQM and has
the following structure:

• Goal: To reduce the time necessary to compute reliability of a soft-
ware system.
• Question: Can the internal structure of a software affect the relia-

bility?
• Metrics:

(1) Collect CK metrics.

PREDICTING RELIABILITY OF OBJECT-ORIENTED SYSTEMS 71

(2) Collect bugs (with severity and priority) from testing, operation
and maintenance phases for a period of time.

(3) Predict reliability using CK metrics.

The data collected in the measurement phase (i.e. CK metrics and bugs
data) are processed in two steps: Reliability Assessment and Reliability pre-
diction. These two steps are graphicaly detailed in Figure 3.

Figure 3. The two steps applied in processing the data col-
lected using the GQM approach

The first step, named Reliability Assessment, aims to find a formula for
computing the reliability quality attribute taking into account the informa-
tion collected about bugs. It is known that the bugs found the in system are
classified by severity and priority in the following way: bugs considered to
be priority, bugs being non trivial, bugs considered to be critical and bugs
that have a major importance. So, it is known the number in each category
of bugs, for each class. For this, the ISO25010 Quality Model [10] was used.
Four reliability sub-characteristics are related to this model: Maturity, Avail-
ability, Fault Tolerance and Recoverability. The main aspects for Maturity
and Availability are related to the post release faults/bugs found in the ana-
lyzed system. We claim that these sub-characteristics of reliability could be
correlated to bugs discovered during testing and maintenance phase of the
development, considering their severity and priority. number of bugs found in
the source code of a class. An important remark that should be emphasized
here, is that various aspects should be considered to assess the reliability of
a class, not only those aspects related to bugs. Finding a perfect metric is a
very difficult problem, thus the proposed metric does not claim an equality

72 ALISA BUDUR, CAMELIA ŞERBAN, AND ANDREEA VESCAN

relation between bugs and reliability. Others aspects related to reliability can
be added to improve the metric effectiveness.

Having this in mind, we establish weights for each of the above four cate-
gories of bugs having into account the priority in treating these faults/bugs.
Thus, we considered assigning a greater impact for high priority bugs #BHP,
major bugs #BM and for critical ones, #BC, with weights of 0.25. Common
bugs are the lowest priority and we consider the weights of 0.15 for non-trivial
bugs and 0.10 for common bugs. The pairs of (weight, bug category) are
the following: {(0.50,#BP), (0.20,#BM), (0.20,#BC), (0.10,#BNT)}, where
(#BP) represents the number of bugs viewed as being priority, (#BNT) is
the number of bugs considered to be non trivial, (#BM) denotes the number
of bugs with a major importance, and (#BC) is number of bugs treated as
being critical. The reliability of a class is defined as an aggregate measure by
means of Equation 1 that linearly combines the number of different categories
of bugs.

(1) Reliability = 0.5 ∗ #BP + 0.10 ∗ #BNT + 0.2 ∗ #BM + 0.2 ∗ #BC

The reliability measured in above described way can be only computed in
the latest stages of development, when we have a functional piece of software.
The goal of the GQM approach is to find a way to compute reliability as early
as possible, so in the second step of processing the data collected, named Re-
liability Prediction, we investigate the potential of system’s internal structure,
expressed by CK metrics, to predict reliability.

To predict reliability, a feed-forward neural network with back-propagation
learning is used, with the following structure (see Figure 4): six nodes on the
input layer, one node on the output layer and two hidden layers, each of them
having four nodes. Each node uses the Bipolar Sigmoid activation function,
given by the following formula:

(2) g(hi) =
1− e−hi

1 + e−hi

This investigation uses a neural network for the following reasons: it has
the ability to learn non-linear and complex relationships, after learning it can
generalize [13], which means that it shows good results even for unseen data
and the way that it works is simple and understandable.

When the algorithm training terminates, we want to know how well the
algorithm will work on an unseen dataset. In some cases, it is quite difficult
to achieve this because of insufficient data. The concept of cross-validation [7]
is used in order to help us to solve this problem.

PREDICTING RELIABILITY OF OBJECT-ORIENTED SYSTEMS 73

Figure 4. Structure of the feed-forward neural network used.

The idea of cross-validation is to put aside a part of the training data and
use it later to test the trained model. In this way, the model is validated on an
unseen dataset. This technique causes another problem: by removing a part
of the training data, we may lose some patterns. In order to solve the second
problem, the concept of k-fold cross-validation is used. K-fold cross-validation
involves that the entire dataset to be split into k subsets. We will train the
model k times and each time we will use a different subset for testing and the
rest k-1 subsets for training. The total error of the model will be the average
error of all k trials. Our investigation considered splitting the entire data set
into ten subsets: nine of them are used for training and the remaining one is
used for testing. The model is trained ten times and each time the testing
set is changed. That means that each subset is used once for testing and nine
times (k-1) for training. Figure 5 presents how cross-validation was applied
in our experiments. Black rectangles represent the testing subsets and white
rectangles represent the training subsets.

Figure 5. Cross-validation process used.

74 ALISA BUDUR, CAMELIA ŞERBAN, AND ANDREEA VESCAN

4. Experiments description

This section expose the datasets used to develop the reliability neural net-
work prediction model. In order to validate our model, we used the Root
Mean Square Error.

4.1. Datasets. The data set used is ”Bug prediction dataset” and is described
in [1]. For this research, the chosen data are collected from the last version
of five different software systems: JDT (Java development tool - release 3.4,
version 91), PDE (Plug-in Development Environment - release 3.4.1, version
97), Equinox (release 3.4, version 91), Lucene (release 2.4.0, version 99), and
Mylyn (release 3.1, version 98). Table 1 compares the characteristics of each
project: JDT includes an index-based search infrastructure used for refactor-
ing, PDE yields solutions for Eclipse plug-ins, Equinox is an implementation
of the OSGi R6 framework, Lucene implement an indexing and search tech-
nology, and Mylyn is a task management tool for developers.

Table 1. Characteristics of investigated Projects

Metrics Characteristics of projects

UI Framework
Indexing

and search
Plug-in
manag.

Task
manag.

JDT Y N Y N N
PDE Y N N Y N

Equinox Y Y N N N
Lucene Y N Y N N
Mylyn Y N N N Y

These data contain CK metrics and number of bugs categorized (with sever-
ity and priority) for each class of the system. Data are collected during the
testing, operational and maintenance phases.

More information about the number of classes in each project and number
of bugs may be visualized in Table 2 (C=number of total classes with no
bugs, CB=number of classes with bugs, #B=number of bugs, #BNT=number
of bugs Non Trivial, #BM=number of bugs Major, #BC=number of bugs
Critical, #BHP=number of bugs High Priority)

4.2. Experiments methodology. This investigation used five experiments,
using the five projects/datasets. In each experiment, a neural network-based
prediction model was trained using 9/10 data from a single dataset (each
experiment used a different dataset for training). Each prediction model was

PREDICTING RELIABILITY OF OBJECT-ORIENTED SYSTEMS 75

Table 2. Data sets information

Metrics Data sets information
#C #CB #B #BNT #BM #BC #BHP

JDT 44 997 11605 10119 1135 432 459
PDE 426 1497 5803 4191 362 100 96

Equinox 120 324 1496 1393 156 71 14
Lucene 197 691 1714 1714 0 0 0
Mylyn 701 1862 14577 6806 592 235 8004

then validated in two steps. The first step was to validate it using the cross-
validation technique, which means that we used for validation the remaining
1/10 data from the dataset that was used for training. The second step was
to validate the model using data from the other four projects/datasets. More
information about each experiment is listed in Table 3.

Table 3. Training and testing data for each experiment

Experiments Training data Validation data
Experiment 1 9/10 of JDT 1/10 of JDT,

PDE, Equinox,
Lucene, Mylyn

Experiment 2 9/10 of PDE 1/10 of PDE,
JDT, Equinox,
Lucene, Mylyn

Experiment 3 9/10 of Equinox 1/10 of Equinox,
JDT, PDE,
Lucene, Mylyn

Experiment 4 9/10 of Lucene 1/10 of Lucene,
JDT, PDE,
Equinox, Mylyn

Experiment 5 9/10 of Mylyn 1/10 of My-
lyn, JDT, PDE,
Equinox, Lucene

4.3. Results. The mean reliability values computed using the bugs-based for-
mula for each project, are listed in Table 4. The mean reliability values com-
puted using the neural network based prediction model for each project and
for each experiment are listed in Table 5. The bolded values are obtained in

76 ALISA BUDUR, CAMELIA ŞERBAN, AND ANDREEA VESCAN

the cross-validation step, while the others are obtained in the second step of
validation. A visual representation of the results is listed in Figure 6.

The experiments explored how the obtained neural network model differs
in terms of performance when using projects with different characteristics.

Table 4. Mean reliability value for each project computed
with the bugs based formula

Projects Reliability values by bugs
JDT 0.048582
PDE 0.023806

Equinox 0.062020
Lucene 0.030623
Mylyn 0.049389

Table 5. Mean reliability value for each project predicted by
neural network prediction model

Projects Reliability values
Experiment 1 2 3 4 5

JDT 0.046973 0.026686 0.029756 0.037569 0.068397
PDE 0.054409 0.020266 0.046260 0.049615 0.061642

Equinox 0.070716 0.043553 0.061428 0.073883 0.118110
Lucene 0.043030 0.0022160 0.031426 0.025880 0.066846
Mylyn 0.023523 0.018856 0.015811 0.031991 0.038243

To validate our model we use the Root Mean Squared Error (RMSE) met-
ric. It is computed as the square root of the average of squared differences
between prediction and actual observation. The metric represents the stan-
dard deviation of prediction errors (the residuals).

The RMSE formula is:

(3) RMSE =

√
(f − o)2,

Where:
f = forecasts (expected values or unknown results),
o = observed values (known results).

The model is better in its predictions when RMSE is lower, thus the pre-
dicted values are close to the observed values.

PREDICTING RELIABILITY OF OBJECT-ORIENTED SYSTEMS 77

Figure 6. Mean reliability value for each project predicted by
neural network prediction model.

The RMSE analysis for each experiment is listed in Table 6. Also, a visual
representation of the results is listed in Figure 7.

Table 6. RMSE analysis for each experiment

Projects RMSE
Experiment 1 2 3 4 5

JDT 0.047940 0.075931 0.096312 0.075865 0.090505
PDE 0.060582 0.043147 0.155933 0.063116 0.091675

Equinox 0.113011 0.110130 0.109097 0.097998 0.174369
Lucene 0.068518 0.051839 0.102805 0.043320 0.112893
Mylyn 0.069323 0.072348 0.103535 0.070011 0.063391

Our findings on predicting reliability using CK metrics considering various
projects with different characteristics as a basis for the neural network model
construction identified best RMSE for the PDE project, thus with UI and
plug in management characteristics. Worst value is obtained with Equinox
project, thus with UI and Framework characteristics. Overall these findings
are in accordance with findings reported in [16] where a statistical approach
by using multiple linear regression was used for the same set of data.

5. Conclusion

We have proposed in the current paper an approach to measure and investi-
gate reliability of an object oriented system, employing two steps: estimating

78 ALISA BUDUR, CAMELIA ŞERBAN, AND ANDREEA VESCAN

Figure 7. RMSE analysis for each experiment.

reliability using the numbers of bugs and predicting reliability using a neu-
ral network model based on CK metrics values. The present study confirmed
the findings about the relevance and impact of CK metrics to quantify the
reliability quality attribute.

The neural network model obtained to predict reliability is validated using
a date set containing over 5000 instances/classes, grouped in 5 projects. The
experiments revealed that a UI and indexing and search (JDT) project obtain
the “best” neural network reliability prediction model.

Future work will investigate the reliability prediction problem by aggregat-
ing the results obtained using regression equation and neural networks predic-
tion model. Another future direction refers to apply the equation prediction
for other quality attributes.

References

[1] M. D’Ambros, M. Lanza, R. Robbes,”An Extensive Comparison of Bug Prediction Ap-
proaches”,Proceedings of MSR, 2010, pp. 31–41.

[2] V.R. Basili, L.C. Briand, W.L. Melo, A Validation of Object-Oriented Design Metrics as
Quality Indicators. Technical Report, Univ. of Maryland, 1995. p. 1-24.

[3] V. Basili, D. Rombach. The TAME project: Towards Improvement-Oriented Software
Environments. IEEE Transactions on Softw. Engineering, 14(6), jun 1988.

[4] F. Brito e Abreu and W. Melo, Evaluating the impact of object-oriented design on software
quality, Proceedings Third Int. Software Metrics Symposium, 1996., 90–99

[5] S. R. Chidamber, C. F. Kemerer, A Metric Suite for Object- Oriented Design, IEEE
Transactions on Software Engineering. 20 (6), 476–493 (1994)

[6] S. Chitra, K. Thiagarajan, M. Rajaram: Data collection and Analysis for the Relia-
bility Prediction and Estimation of a Safety Critical System Using AIRS. International
Conference on Computing, Communication and Networking, (2008)

PREDICTING RELIABILITY OF OBJECT-ORIENTED SYSTEMS 79

[7] Cross-Validation in Machine Learning, https://towardsdatascience.com/cross-validation-
in-machine-learning-72924a69872f. Last accessed 17 Feb 2019

[8] M. Danhel, Prediction and Analysis of Mission Critical Systems Dependability, PhD
Thesis, Faculty of Information Technology, Czech Technical University (2018)

[9] N. Fenton. Software Measurement: A Necessary Scientific Base. IEEE Transactions on
Softw. Engineering, 20(3), 1994.

[10] ISO25010 description information, https://www.iso.org/standard/35733.html,
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

[11] B. Kitchenham, S. L. Pfleeger, N. E. Fenton, Towards a Framework for Software Mea-
surement Validation, IEEE Trans. on Software Engineering, 21(12), 929–944 (1995)

[12] W. Li, S. Henry, Object-oriented metrics that predict maintainability. Journal of Sys-
tems and Software, 23(2):111–122, 1993

[13] S. Russel, P. Norvig, : Artificial intelligence: a modern approach. Alan Apt, Englewood
Cliffs, New Jersey 07632 (1995)

[14] A. Quyoum, UdM. Din Dar, S.M.K. Quadr: Improving software reliability using soft-
ware engineering approach—a review. I.J. Comput. Appl. 10(5), 0975– 8887 (2010).

[15] N. Schneidewind: Reliability Modeling for Safety-Critical Software. IEEE Transactions
on Reliability 46(1), 88–98 (1997)

[16] C. Serban, A. Vescan, ”Predicting Reliability by Severity and Priority of Defects”,
Proceedings of the 2Nd ACM SIGSOFT International Workshop on Software Qualities
and Their Dependencies, 2019, pp. 27–34.

[17] Standards Coordinating Committee of the IEEE Computer Society, IEEE Standard
Glossary of Software Engineering Terminology, IEEE-STD-610.12-1990 (1991)

Babeş-Bolyai University, Department of Computer Science, 1 M. Kogălniceanu
Street, 400084 Cluj-Napoca, Romania

Email address: {camelia, avescan}@cs.ubbcluj.ro, abudur@riasolutionsgroup.com

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIV, Number 2, 2019
DOI: 10.24193/subbi.2019.2.06

QUANTITATIVE ANALYSIS OF STYLE IN MIHAI

EMINESCU’S POETRY

ANAMARIA BRICIU

Abstract. Quantitative stylistic methods aim to express certain aspects
of a text in numeric form, thus allowing the introduction of fast, powerful
and accurate computational approaches for analysis. While in the case of
literature, the validity and usefulness of such studies is highly controver-
sial, one cannot deny the opportunities brought forward by computational
methods: first, the exploration of large sets of documents in search of
patterns otherwise difficult to discover by human readers; second, the pos-
sibility of opening up new perspectives by uncovering latent features of
texts. In this study, we investigate the poetic work of one of the most
important Romanian poets, Mihai Eminescu, through a variety of quanti-
tative methods addressing lexical, morphological, semantic and emotional
aspects of text. We propose a comparison between the results of the com-
putational approach and established interpretations of Eminescu’s work
in order to assess the viability of computational methods in poetic style
studies.

1. Introduction

Computational studies of literary style have enriched the domain of literary
criticism by quickly and efficiently analyzing large text corpora, and presenting
readers with useful representations and visualizations. Poetry, in particular,
has been the subject of a number of recent articles that explore perspectives
such as poetic style, computational aesthetics or means of expressions regard-
ing certain topics. The majority of studies, however, explore English and
American literature.

In the present paper, we propose a quantitative analysis of style for one of
the most famous Romanian poets, Mihai Eminescu, with elements of novelty
in the study of the unique relationship between well-defined, unambiguous

Received by the editors: November 15, 2019.
2010 Mathematics Subject Classification. 68T10, 68T50.
1998 CR Categories and Descriptors. I.2.7 [Computing Methodologies]: Artificial

Intelligence – Natural Language Processing ; I.7.m [Document and Text Processing]:
Miscellaneous.

Key words and phrases. text processing, quantitative analysis, poetry.

80

QUANTITATIVE ANALYSIS OF STYLE IN MIHAI EMINESCU’S POETRY 81

statistics and subjective, nuanced interpretations of poems in question. Having
a large body of works available for reference with respect to Mihai Eminescu’s
writing style, we consider this analysis a worthwhile starting point for the
investigation of the utility of computational methods in analyzing complex
Romanian literature.

Word count methods, or quantitative measures of writing style are seen as
features on the surface structure of the literary text that create certain aes-
thetic effects that provoke a reaction from the reader [13]. They have been
widely contested by literary experts for being overly simplistic, artificial, un-
subtle and incapable of generating any meaningful results. While it is certainly
true that statistical methods lack in nuance, and hardly have the power of cap-
turing artistic expression in its multifaceted form, they must be interpreted
as guiding tools in informed literary endeavors rather than methods to search
for a ground truth [14]. Moreover, they can be viewed as methods to take
advantage of the large amount of digital literary texts available, thus enabling
new modes of “reading” and analysis that summarize distinguishing features of
very large corpora, something difficult to do in the case of traditional reading.
Some experts even argue that computational approaches could bring added
rigor and a degree of objectivity to the open question of interpretation and
generalization [8]. John Burrows, in a novel study that used stylometry to
analyze Jane Austen’s works, famously stated that “...it is a truth not gen-
erally acknowledged that, in most discussions of works of English fiction, we
proceed as if a third, two-fifths, a half of our material were not really there” [3,
p. 1]. Consequently, the present computational analysis of style is not aimed
at seeking absolute truths about Mihai Eminescu’s work or simple, concise
answers regarding his style - definitive solutions to the stated problem, as in
most algorithmic approaches - but to prove that statistical methods can open
up interesting, two-way debates between literary scholars and computer scien-
tists by exploring and describing a representative corpus of Romanian poetry
in an efficient and concise way.

This paper is structured as follows. Section 2 provides a brief overview
of related works in the field. Section 3 includes a short description of Mihai
Eminescu’s writing style and the characteristics of each of his creation phases,
while Section 4 details the methodology of the study, including information
about the dataset used, the resources and tools employed, as well as the chal-
lenges met. Section 5 presents and discusses the results obtained, while the
last section highlights conclusions and outlines directions for future work.

82 ANAMARIA BRICIU

2. Related work

Quantitative studies of literature have a long history: first modern methods
were pioneered in the 1850s, and, since then, the field has known periods of
intense activity and evolution, especially in the last decades, when computa-
tional approaches were introduced. This includes broad topics, from simple
information extraction from literary works to character trait identification and
affect modeling in narratives. As far as computational poetry is concerned,
there are a series of overlapping research directions: analysis of poetic style,
creation of visualization tools, and poetry generation. We will cover the ex-
isting works in the first two cases as they relate to the present work.

2.1. Computational analysis of poetic style. SPARSAR [5] is a com-
prehensive system for automatic analysis of poetry style that makes use of
computational linguistic methods. The developed system outputs syntactic,
semantic and structural information about a poem, as well as affect and pho-
netic models, ultimately summarizing this data in seven complex indices that
allow visual comparison between multiple works. Comparisons between lin-
guistic styles of different poets are made in [10, 11, 22]. Kao and Jurafsky,
for instance, examine elements of poetic craft such as imagery, sound devices,
emotive language, and diction features to analyze differences between con-
temporary professional and amateur Imagist poets [10]. Interesting results
have also been obtained when poems have been translated into a vector space
[11],[22]. Kaplan and Blei represent a poem through a vector of stylistic fea-
tures that include ortographic, syntactic and phonemic measures, while Zhang
and Gao use the sum of the word embedding vectors for the most frequent
terms in a poem as its representation. Such vector representations can further
be used to either attempt classification, generally with the aim of distinguish-
ing authors [12] or clustering [22].

2.2. Poetry visualization. Tools for text visualization can be extremely use-
ful, especially in literary works, where some aspects of the work may not be
immediately evident, but might emerge in carefully chosen visual representa-
tions.

The tool in [17], for example, offers a wide range of visuals like assessing
unique, informative words in each poem, places, time periods, figures of speech,
and sentiment expressed in each term and verse.

There are also works that propose similar tasks to ours, namely visualiza-
tions of author style through certain periods of time [10, 5]. In the same
sense, there are studies that focus on Mihai Eminescu’s writing, but they ei-
ther address different aspects of his style (such as specific semantic units [20])
or target other types of writing, such as journalistic articles [4].

QUANTITATIVE ANALYSIS OF STYLE IN MIHAI EMINESCU’S POETRY 83

3. Mihai Eminescu’s work: Brief Theoretical Overview

Mihai Eminescu was a Romantic poet, novelist, and journalist. He is gener-
ally regarded as the most famous and influential Romanian poet, and consid-
ered the first modern poet in Romanian literature. His work is unique through
the ways of artistic expression that do not necessarily conform to rigid norms,
but explore a vast space between the communication of social and political
messages and the intrinsic, reflexive state of individual reality transposed in
art.

These means of artistic expression are extensively analyzed by literary crit-
ics, with entire books dedicated to overviews of Eminescu’s poetic style [7]
and to his use of language [9]. In this study, we will address poetic style anal-
ysis from a computational perspective, investigating quantitative measures of
language. In particular, we will study the ability of computational methods
to synthesize important facets of the stages in Mihai Eminescu’s creation.

3.1. Linguistic style. The appeal of Mihai Eminescu’s poetic language re-
sides in its novelty and naturalness, which blends folkloric and familiar forms
with expressions of high-order, intellectualised language. His entire poetic
work is, in actuality, a vast composite model that in many ways transcends
literary genres. L. Galdi, in his analysis of Eminescu’s poetic style, argues that
“a meditation written by Eminescu means more than any other meditation of
the era; it comes so far from any epigonism [...] even a teen love poem like
“De-as, avea” has personal touches that, from an affect perspective, would be
looked for uselessly in some of Alecsandri’s works that served as model” [7].

3.2. Phases of creation. Most literary critics separate Eminescu’s work in
three phases of creation, or three poetical and ontological visions. In fact,
these phases can be interpreted as three types of realities proposed by the
author, each with its own specific themes, motifs and means for poetic ex-
pression. We will focus on the three main time periods of 1866-1870 (Phase
1), 1870-1876 (Phase 2) and 1877 and later (Phase 3) [18]. This temporal
separation, however, is not a rigid one. Some experts argue in favor of some
intermediary, transitional stages [18, p. 433], and contextualize certain poems
within a different phase that the date of its creation would recommend it for
[18, p. 451].

In this study, we will assess quantitative measures of style in conjunction
with the three main stages of Mihai Eminescu’s poetic expression, making the
membership of a poem to a specific phase group a crisp one, but take into
consideration the classification in [18], overwriting automatic assignment of
phase based on poem year where it is needed.

84 ANAMARIA BRICIU

3.2.1. Phase 1. Chronologically speaking, the first phase refers to poems writ-
ten between 1866 and 1870. In the majority of the poems written during this
phase, a strong influence of the forty-eighters poets can be observed (e.g. Vasile
Alecsandri, Ion Heliade Rădulescu, Dimitrie Bolintineanu), both in terms of
topic and poem genre. Eminescu writes odes, satires and folklore-inspired po-
ems where he makes use of both folkloric and highly intellectual poetic means,
integrating archaic terms with neologisms seamlessly. Moreover, a predilection
for comparisons and longer, ornery epithets is observed. This is meaningful in
contrast to later works in which the dominant figure of speech is the metaphor,
and epithets are simplified in favor of creating sharper, more emotional-heavy
visual images.

3.2.2. Phase 2. Literary critics approximate the second phase of creation to
range from 1870 to 1876. During this stage, the admiring poetic tone from
the previous phase is abandoned, the author negating the fabulous, transcen-
dental motifs such as the music and heart of the universe in favor of a more
disillusioned, realistic perspective. The present becomes empty of meaning
and essence, and there are only two ways in which the poet can battle this
realization: first, the return to the idyllic time of childhood, characterized by
a series of obsessively referenced nature related motifs (e.g. forest) and the
use of verbs in imperfect tense which reflect his nostalgia; and second, a rebel-
lion against the senseless universe. The vocabulary employed to outline such
themes is a somber one - there are frequent references to shadows, darkness,
blackness, the void, demonic sides, sadness, detachment and alienation, death,
and oneiric colors like deep green, navy blue or off-white.

In this phase, the author creates something called compensatory universes,
picturesque and pristine poetic worlds that alleviate the pain of living in the
real one. There are four ways in which these illusory universes can be created:
dreams, love, poetic art and history. Overall, the second phase is characterized
by more abstract, suggestive language, in contrast to the rational discourse
in the first phase. There are a number of poems in which emotional states
are expressed with higher frequency than in the first, works that seem to be
deeply personal, and invoke a series of sentiments and emotions: negativity,
anger, disgust, sadness, anticipation, love.

3.2.3. Phase 3. The last phase of Eminescu’s work is defined by a conscious
approach to creation in which he abandons the romantic vision. Verses be-
come simpler, poems lack figures of speech but involve more complex struc-
ture. At this stage, the main subject of the poems becomes the human condi-
tion. This is conveyed through the introduction of terms on both sides of the

QUANTITATIVE ANALYSIS OF STYLE IN MIHAI EMINESCU’S POETRY 85

“thought/action” semantic pair and temporal references with a similar con-
trast (“always”,“infinite” vs. “suddenly”), in the syntax of the use of verbal
tenses that suggest an undetermined time (imperfect tense) and verb times
that accentuate the pain of the present (indicative present).

4. Methodology

4.1. Data. For the data considered, we collected 339 poems from an available
online source1. Of these, only works excluded were those that could not be
definitively associated with a publication year. The number of poems pub-
lished in each year can be observed in Table 1.

Number of poems per year

Year
#

poems
Year

#
poems

Year
#

poems
Year

#
poems

1866 10 1872 14 1878 27 1884 2
1867 8 1873 25 1879 36 1885 1
1868 4 1874 16 1880 18 1886 2
1869 19 1875 5 1881 14 1887 3
1870 9 1876 62 1882 12
1871 12 1877 11 1883 29

Table 1. Number of poems per year

4.2. Tools and Resources. The tools and resources used in this study will
be described in this section.

4.2.1. RoEmoLex. RoEmoLex (Romanian Emotion Lexicon) [2, 15, 16] is a
resource developed for text-based emotion detection in Romanian language
and it contains 9177 terms annotated with eight primary emotions (Anger,
Anticipation, Disgust, Fear, Joy, Sadness, Surprise, Trust) and two polarity
tags (Positivity, Negativity). Moreover, each term has part-of-speech informa-
tion associated. Of the 9177 terms in the lexicon, we take into account only
8486, eliminating multiple word idioms from consideration due to the difficulty
of matching highly irregular poetic language to template expressions. We use
the RoEmoLex database to compute emotion features for each poem.

4.2.2. RoWordNet. RoWordNet (Romanian WordNet) [21, 6] is a semantic
network for the Romanian language that mimics Princeton WordNet, a large
English lexical database. The basic unit in WordNet is a synset, which ex-
presses a unique concept and contains a number (a “set”) of synonym words
known as literals. All synsets have additional properties such as part-of-speech,

1https://ro.wikisource.org/wiki/Autor:Mihai Eminescu

86 ANAMARIA BRICIU

definition, conceptual category and relationship information with regard to
other synsets (i.e. semantic relations like hypernymy (“is-a”), meronymy (“is-
part”), antonymy etc). We use the RoWordNet python API2 to search for a
term’s number of senses and relation to other synsets (hypernymy hierarchy).

4.2.3. NLP Cube. NLP-Cube [1] is an open source natural language processing
framework that supports tasks such as sentence segmentation, tokenization,
part-of-speech tagging, lemmatization and dependency parsing for a variety
of languages. We use the NLP-Cube python API3 with a Romanian language
model for the following tasks: sentence segmentation, tokenization and part-
of-speech tagging.

4.2.4. UAIC Romanian Noun Phrase Chunker. The UAIC Romanian Noun
Phrase Chunker [19] is a complex tool which recursively detects and annotates
noun phrase chunks for Romanian text. Noun phrase (NP) chunking is defined
as a partial parsing task that generates an output of the nominal groups in a
text, i.e. the units for which the principal word (head) is a noun. We use the
web service4 provided by the UAIC Natural Language Processing Group for
our noun phrase related features: average length of noun phrases, number of
noun phrases in a poem, types of noun phrases in a poem.

4.3. Features. We propose a number of features distributed across semantic,
lexical, syntactic and affective perspectives as follows.

(1) Number of tokens in poem. Represents the total number of to-
kens in a poem. This includes stopwords5 but excludes punctuation.

(2) Average word length. Represents the average length of a word in
character units. Approximates vocabulary complexity on the simple
assumption that longer words are more difficult ones.

(3) Type-token ratio. A metric conventionally used as proxy for vo-
cabulary richness [10], defined as the number of unique words in a
text divided by the number of all words in the text.

(4) Hapax Legomena. Some researchers argue that the type-token ra-
tio is not a sufficient metric for assessing vocabulary richness, and in-
troduce features that count hapax legomena [5]. A hapax legomenon
is a word that occurs only once within a context, either in the written
record of an entire language, in the works of an author, or in a single
text6. It speaks to the importance of rare words in a corpus, and

2https://github.com/dumitrescustefan/RoWordNet
3https://github.com/adobe/NLP-Cube
4http://nlptools.info.uaic.ro/WebNpChunkerRo/NpChunkerRoWS?wsdl
5very common words in a given language, usually connectives
6https://en.wikipedia.org/wiki/Hapax legomenon

QUANTITATIVE ANALYSIS OF STYLE IN MIHAI EMINESCU’S POETRY 87

can be used to measure vocabulary growth across different stages of
creation [5].

(5) Part-of-speech density. The frequencies of parts of speech re-
flect a poet’s mode of discourse [11]. These measures are defined as
the number of terms belonging to a certain part-of-speech category
divided by the total number of words in the poem. In this study
we considered the following categories: nouns, adjectives, verbs, ad-
verbs, and pronouns. For pronouns, we have also investigated the
ratio of first, second, and third person pronouns with respect to the
total number of terms in the pronoun category for greater specificity.
As for verbs, we look at the use of different tenses (present, past,
imperfect).

(6) Abstract and concrete ratios. Poetry is a type of text dense in
imagery and suggestion. It makes sense, then, to define features that
assess these aspects [10]. The abstract to concrete feature value is
defined as the ratio between the number of abstract concepts and the
number of terms referring to concrete terms. To compute this value,
we traverse the RoWordNet hypernym hierarchy of each word in a
poem [12]. If a hypernym with a semantic category of ’Abstract’ is
found, then the number of abstract concepts is incremented. Con-
versely, if we find a hypernym with semantic class of ’Physical’ or
’Object’, we increment the concreteness count. The ratio is com-
puted by dividing these two values.

(7) Valence and emotion ratio. For the two valences and eight emo-
tions for which tags exist in RoEmoLex, we have counted the number
of words in each emotion and valence class in each poem and divided
it by the length (in words) of the poem.

(8) Epithets: Noun phrase information. With the help of the UAIC
Romanian Noun Phrase chunker, we compute the number of noun
phrases, their average length and the count of different part-of-speech
associations that make up a noun phrase for each poem.

4.4. Archaic terms and unusual word forms. Mihai Eminescu’s poetic
language is unique in that it combines literary language with popular one seam-
lessly. In a given poem, both neologisms and archaic terms can be found - the
latter a significant challenge for natural language processing tools developed
within the context of contemporary language. The main issue concerns word
spellings determined by out of date language rules (“̂ı” instead of “â” inside a
word), which, more often than not, are not recognized while processing.

What is more, the author takes many liberties in prefixing and suffixing
nouns, adjectives and verbs to suit the desired poetic construction [9]. These

88 ANAMARIA BRICIU

unusual inflectional forms also pose a problem for the processing tools in the
sense of lemmatization and part-of-speech tagging. Lastly, we note that some
hapax legomena encountered in the text might not be true entities of this kind,
due to interchangeable spellings. There may be situations where the tool used
was unable to count the different versions of the same word - though in this
case, it could be argued that the intentionality in choosing a particular form
on the poet’s part should not be ignored.

4.5. Sentence segmentation. In analysing a corpus of poetry, one must
answer the question of the basic unit to be studied: a verse, a sentence or
a stanza, taking into consideration the way the poet intended to delineate
meaning, which is not always clearly deductible. Additionally challenging is
the fact that there may be ambiguous sentence delimitation in such artistic
constructs.

4.6. Word order. Syntactical parsing of poem content faces the challenge
of unusual word order - inversions, repetitions and different constitutive ar-
rangements for elements of a sentence from those in common language are
frequent, employed as artistic devices for building musicality of verses, main-
taining rhyme and meter, and nuancing the emotional tone of the poem. While
they certainly count for aesthetic effect, these specificities of poetic language
might lead to incorrect results in syntactic parsing.

4.7. Word Disambiguation. In working with tools like RoWordNet or RoE-
moLex, which distinguish between word senses, one would wish also identify
sense in poem terms for accurate results. However, simple to implement meth-
ods like the Lesk algorithm do not yield satisfying results, since the decision
is based on surrounding word context. In poems, it is difficult to assess the
window size for this context and to obtain any matches, for reasons previously
detailed: unusual structural expressions in poetic language and uncommon
word forms.

5. Results and Discussion

Stylistically-wise, Mihai Eminescu’s work can be separated in three phases
of creation, albeit in a slightly fuzzy manner [18]. We have covered theoretical
aspects of these stages in Section 3.2. In the following sections, we will present
results for a quantitative analysis of the corpus in relation with these three
phases of creation.

QUANTITATIVE ANALYSIS OF STYLE IN MIHAI EMINESCU’S POETRY 89

5.1. Vocabulary. We have approached the task of vocabulary examination
by taking into account only content words (nouns, adjectives, adverbs, verbs).
Table 2 presents the number of poems and the total number of content tokens
discovered in each phase.

poems # tokens
Phase 1 44 5843
Phase 2 158 40669
Phase 3 137 20919

Table 2. Number of poems and content tokens in creation phases

It can be observed that Phase 1 contains the least poems and smallest
number of tokens, while Phase 2 contains the most poems and tokens. It
is interesting to note that while the difference in number of poems between
Phase 2 and Phase 3 is relatively small, the number of tokens is almost double
in Phase 2. This is due to the higher number of long poems (over 2000 tokens)
in Phase 2 (9 poems) versus Phase 3 (2 poems).

As far as frequent words are concerned, we take the percentage represented
by the total count of a given word in a phase with regards to the total number
of tokens in that phase. We find a more frequent occurrence of the words su-
flet/soul, floare/flower,inimă/heart, dor/longing, amor/love, dulce/sweet and
alb in the first phase of creation, which references the high number of joyous
love poems written in this stage. Conversely, umbră/shadow and negru/black
have a slightly larger presence in the second phase, suggesting darker emo-
tional states and emotionally heavier subjects. For the third phase, we draw
attention to the terms trece/to pass, s, ti/to know and lung/long. In this phase,
Mihai Eminescu’s poems address the passing of time and the place of a med-
itative man within a hostile historical context, concepts built upon terms like
“to pass”, “to know”, “long”. Lastly, there are terms which we interpret as
motifs, such as lună/moon, cer/sky, val/wave, stea/star. They appear with
the same density throughout the years, under different meanings.

Equally interesting can prove to be the analysis of vocabulary richness.
Inspired by the work in [5], we choose three measures to examine this aspect:
VR1, equal to the mean type-token ratio for each phase, HA1, the percentage
of hapax legomena in a phase with respect to the total number of unique
content tokens in that phase, and HA2, the number of hapax legomena unique
to the phase in question (i.e. not present as hapax legomena in other phases)
divided by the total number of hapax legomena in the phase.

As it can be observed in Table 3, the vocabulary richness measures have
similar average scores throughout the three phases: the mean type-token ratio
is at around 75% in all stages, while the percentage of hapax legomena with

90 ANAMARIA BRICIU

VR1 HA1 HA2
Phase 1 0.74 0.67 0.70
Phase 2 0.73 0.61 0.84
Phase 3 0.75 0.63 0.75

Table 3. Vocabulary richness measures for each phase

respect to the total number of unique content tokens varies between 60% and
70%. Lowest values are recorded for Phase 2, which is explained by the length
of the poems written during these years, considerably greater than in the other
phases. However, it must be noted that the second hapax legomena measure
(HA2) - the percentage of terms that appear only once in a phase, and only
in that phase - is highest for Phase 2. This points to the exploration of the
different poetic visions at this creation stage. While in Phase 3, Eminescu’s
work shows maturity and is more a concentrated synthesis of his ideas, the
second phase feels more like a search for answers. The compensatory universes
he creates might all have the same aim, but they vary in vocabulary and tone
depending on founding idea (dreams, love, history, artistic expression).

Figure 1. Comparison of abstract to concrete ratios in differ-
ent phases of creation

As for the semantic measure of abstract to concrete concept ratio, we found
very small differences between phases, as can be seen in Figure 1. While the
median ratio is slightly higher for the third stage, it is a too small difference to
draw any definitive conclusions in support of the theoretical observation that
third-phase poems approach more abstract topics like thought versus action,
human condition or the role of the divine. Abstract terms such as dream,

QUANTITATIVE ANALYSIS OF STYLE IN MIHAI EMINESCU’S POETRY 91

longing, glory, sigh, self, future, flight are recurrent concepts throughout the
whole corpus, with the poet building a number of different meanings around
them. Alternatively, concrete references such as gold, wind, butterfly, sun,
face, hand, eye are symbols and elements of imagery that no phase lacks.

5.2. Morphology and syntax. With respect to morphology and syntax, we
look at the average part-of-speech densities per phase. For pronouns, we also
compare ratio of first, second and third person pronouns with respect to all
pronouns, while for verbs, we examine the use of different tenses.

1st per-
son

2nd per-
son

3rd per-
son

Phase 1 0.17 0.15 0.68
Phase 2 0.23 0.19 0.58
Phase 3 0.25 0.15 0.60

Table 4. Average ratios of first, second and third person pro-
nouns per phase

As far as part-of-speech density is concerned, the average ratio of nouns,
adjectives, verbs, adverbs and pronouns is almost identical in each phase.
Small differences can only be observed in the case of nouns (average of 0.28 in
Phase 1 versus 0.25 in Phase 2 and 0.24 in Phase 3), which can be interpreted
as a product of the high number of epithets that is present in earlier works. As
for pronouns, the number and frequency of third person forms far surpasses
that of first and second person uses, even though there is a high number
of love poems where the relationship between the poet and the loved one is
built on a “I”-“you” linguistic relation [9]. As it can be seen in Table 4, the
distribution of percentages differs slightly in the first phase, which can be
attributed to the more personal type of poetry of the later phases, as opposed
to an overwhelming amount of scenery descriptions in the earlier works.

For verbs, results match theoretical observations as well, but in a similarly
subtle manner. Overall, verbs in the present tense are the most frequent
(60%), followed by forms in past tense (9-15%) and imperfect (3-7%), in that
order. The highest average ratio of imperfect forms can be found in Phase
2 (7%), which suggests the idea of undetermined time, that of the idyllic,
compensatory worlds Eminescu constructs in this phase, while past tense can
be found most often in the first phase (15%), which may be explained by the
fact that this stage of creation contains a number of odes and history-themed
poems.

Therefore, in the case of morphological and syntactical features, results
are often less conclusive, and more challenging to interpret. However, some
subtleties of the author’s writing can be translated even in a quantitative

92 ANAMARIA BRICIU

analysis, as shown by the differences between first and third person pronouns
in early and later phases, and the values obtained in the case of verbs at
imperfect tense.

5.3. Emotions. Analysis of emotions in Mihai Eminescu’s work with respect
to phases yields no clear emotional profile for a creation stage, with mean
percentages of emotion almost identical throughout. However, there are some
interesting results with regards to the maximum value for percentage of emo-
tion in each phase, as it is shown in Table 5.

Anger Anticipation Fear Disgust Joy Sadness
Phase 1 0.08 0.17 0.13 0.04 0.14 0.14
Phase 2 0.17 0.18 0.17 0.09 0.16 0.22
Phase 3 0.13 0.30 0.21 0.08 0.23 0.18

Table 5. Maximum value for percentage of emotion in each phase

The poem with highest percentage of Anger is “Venin s, i farmec” (Phase
2), while “E ceasul cel de taină” (Phase 3) has both the highest percentage of
Anticipation and of Fear. As for Disgust and Sadness, the highest percentages
can be found in Phase 2, in the short poem “De ce mă-ndrept s,-acum”, and

“Îngere palid”, respectively. Finally, the maximum value for the emotion Joy
is obtained for a Christmas poem in Phase 3, named “Colinde, colinde”.

In our analysis, emotion and valence as measured by frequency of occurrence
do not seem to be distinguishing features for the three phases of creation in
Mihai Eminescu’s work. Therefore, we propose extending the investigation
into this aspect in future works by considering trajectories of emotion in poems
and other finer-grained emotional features.

5.4. Stylistic devices. As far as figures of speech like epithets are concerned,
on a simple count of their occurrence, we find that the phase with most such
stylistic devices is Phase 2. However, this result should be interpreted in the
context of poem length at this stage, given that the number of figures of speech
is proportional to the length of the poem. A more informative measure may
be the average length of noun phrases, which is highest in the first phase and
recording a decrease in later stages, from 2.3 words to under 2. This is in
line with the observed presence of long, ornery epithets in Phase 1, and a
simplification of poetic expression at stages of maturity.

Finally, we examine the five most common types of noun phrases in each
phase, shown in Table 6. They are the same in each phase, but the hierarchy
differs slightly. For instance, the most frequent composite phrase in each phase
is made up of two nouns (N+N), but a noun followed by a pronoun (N+P) is
second most common only in Phase 1.

QUANTITATIVE ANALYSIS OF STYLE IN MIHAI EMINESCU’S POETRY 93

N+N N+P N+ADJ ADJ+N N+ADP+N ART+N
Phase 1 207 159 156 60 122 97
Phase 2 1370 889 1097 391 916 673
Phase 3 691 383 472 178 480 332

Table 6. Most common types of noun phrases in each phase

What is interesting to notice is that there is a high number of nouns followed
by adjectives (N+ADJ) in all phases, and, if we also consider the reversed
order (ADJ+N), types which are closest to a formal definition of epithets,
the total surpasses any other values for Phase 1 and 2. The exception is
Phase 3, where a phrase consisting of two nouns is still more common than
one with an adjective and a noun. There is also a considerable amount of
nouns linked by adpositions (N+ADP+N), especially in later phases. While
using adjectives in proximity to nouns is a device used for characterization and
intrinsic poetic expression, the second type, which incorporates adpositions,
has a more functional role in building and structuring imagery.

6. Conclusions

In this paper, we have presented a computational analysis of a representa-
tive Romanian poetry corpus, the poetic work of Mihai Eminescu. We have
examined a series of features addressing vocabulary richness, language com-
plexity and emotional content in each phase of artistic creation. Results show
that for a series of measures, theoretical observations from the literary crit-
icism field find correspondence in quantitative analysis, indicating that this
approach, and visualization of results, in particular, could be used as support
tool for interpretation.

However, while computational analysis of literary works and especially po-
etry is a promising research direction, there are a few challenges to be con-
sidered. First, the choice of features must be informed by the domain to be
truly relevant, and so must interpretations. The latter, in particular, require
knowledge from both the literary linguistics domain, and a familiarity with
the considered author’s body of work. This is the reason we mark the task
of making visualization of results public for future work; we consider that by
inviting debate from informed readers of poetry, new, interesting interpreta-
tions could arise, or, on the contrary, features taken into account could draw
attention to aspects not considered before.

Finally, the original contribution of this paper to the field was an in-depth
quantitative analysis of the works of Mihai Eminescu and a close examina-
tion of the relationship between the phases of the author’s artistic expression

94 ANAMARIA BRICIU

and quantifiable aspects of language. In particular, the emotional and valence
features we defined are unique to this study, and while results in this regard
were not very conclusive with respect to considered task, we propose two re-
search directions to further examine this exciting aspect: first, the standalone
exploration of emotion in the corpus, and second, finer-grained measures that
capture the nuances of expression throughout a poem, such as trajectories of
emotion in a text.

References

[1] T. Boros, , S. D. Dumitrescu, and R. Burtica. NLP-cube: End-to-end raw text processing
with neural networks. In Proceedings of the CoNLL 2018 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies, pages 171–179, Brussels, Belgium,
October 2018. Association for Computational Linguistics.

[2] A. Briciu and M. Lupea. RoEmolex - a Romanian Emotion Lexicon. Studia Universitatis
Babes,-Bolyai Informatica, 62(2):45–56, 2017.

[3] J. F. Burrows. Computation into criticism: A study of Jane Austen’s novels and an
experiment in method. Clarendon Press, 1987.

[4] M. Dascalu, D. Gı̂fu, and S. Trausan-Matu. What makes your writing style unique?
Significant differences between two famous Romanian orators. In International Confer-
ence on Computational Collective Intelligence, pages 143–152. Springer International
Publishing, 2016.

[5] R. Delmonte. Computing poetry style. In Proceeding of Emotion and Sentiment in Social
and Expressive Media: Approaches and perspectives from AI (ESSEM 2013), CEUR
Workshop, pages 148–155, 2013.

[6] S. D. Dumitrescu, A. M. Avram, L. Morogan, and S.-A. Toma. RoWordNet–a Python
API for the Romanian WordNet. In 2018 10th International Conference on Electronics,
Computers and Artificial Intelligence (ECAI), pages 1–6. IEEE, 2018.

[7] L. Gáldi. Stilul poetic al lui Mihai Eminescu. Editura Academiei Republicii Populare
Române, 1964.

[8] A. Hammond, J. Brooke, and G. Hirst. A tale of two cultures: Bringing literary analysis
and computational linguistics together. In Proceedings of the Workshop on Computa-
tional Linguistics for Literature, pages 1–8, 2013.

[9] D. Irimia. Limbajul poetic eminescian. Junimea, 1979.
[10] J. T. Kao and D. Jurafsky. A computational analysis of poetic style. In LiLT (Linguistic

Issues in Language Technology), volume 12, pages 1–33, 2015.
[11] D. M. Kaplan and D. M. Blei. A computational approach to style in American poetry. In

Seventh IEEE International Conference on Data Mining (ICDM 2007), pages 553–558.
IEEE, 2007.

[12] V. Kesarwani. Automatic Poetry Classification Using Natural Language Processing. PhD
thesis, University of Ottawa, 2018.

[13] M. Kestemont and L. Herman. Can machines read (literature)? Umanistica Digitale,
3(5), 2019.

[14] M. G. Kirschenbaum. The remaking of reading: Data mining and the digital humanities.
In The National Science Foundation Symposium on Next Generation of Data Mining
and Cyber-Enabled Discovery for Innovation, Baltimore, MD, 2007.

QUANTITATIVE ANALYSIS OF STYLE IN MIHAI EMINESCU’S POETRY 95

[15] M. Lupea and A. Briciu. Formal Concept Analysis of a Romanian Emotion Lexicon.
In 13th IEEE International Conference on Intelligent Computer Communication and
Processing (ICCP), pages 111–118, 2017.

[16] M. Lupea and A. Briciu. Studying emotions in Romanian words using Formal Concept
Analysis. Computer Speech & Language, 57:128 – 145, 2019.

[17] L. Meneses and R. Furuta. Visualizing poetry: Tools for critical analysis. The Journal
of the Initiative for Digital Humanities, Media, and Culture, 3(1):1–14.

[18] I. E. Petrescu. Studii eminesciene. Casa Cărt, ii de S, tiint, ă, 2007.
[19] R. Simionescu. Romanian deep noun phrase chunking using Graphical Grammar Studio.

In Proceedings of the 8th International Conference Linguistic Resources And Tools For
Processing Of The Romanian Language, pages 135–143, 2012.

[20] D. Tatar, M. Lupea, E. Kapetanios, and G. Altmann. Hreb-like analysis of Eminescu’s
poems. Glottometrics, 28:37–56, 2014.

[21] D. Tufis, and V. Barbu Mititelu. The Lexical Ontology for Romanian, volume 48 of Text,
Speech and Language Technology, pages 491–504. Springer, 2014.

[22] L. Zhang and J. Gao. A comparative study to understanding about poetics based on
natural language processing. Open Journal of Modern Linguistics, 7:229–237, 2017.

Babeş-Bolyai University, Department of Computer Science, 1 M. Kogălniceanu
Street, 400084 Cluj-Napoca, Romania

Email address: anamaria.briciu@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIV, Number 2, 2019
DOI: 10.24193/subbi.2019.2.07

AUTOMATION AND GAMIFICATION OF COMPUTER

SCIENCE STUDY

IMRE ZSIGMOND

Abstract. A large part of the job of a university teacher in computer
science is to verify student exercises. The task of verifying correctness,
coding style, conventions, and grading is laborious and if done correctly
leaves little time for questions. Automating aspects of this work helps all
parties involved by freeing time up for questions. The solution detailed in
the paper automates a number of these tasks and provides near instant
feedback for the students, together with a platform to gamify student
learning.

1. Introduction

Computer science teachers at a university level face laborious work verifying
the correctness, coding style, conventions, and predefined technical details of
student exercises [2]. Very little time is left to answer questions, help strug-
gling students, to tackle complex coding situations, and adapt new teaching
techniques. In addition, the institution needs experienced and trained per-
sonnel to do the job. Extra care must also be taken to check for plagiarism.
All the while, the study of computer science lends itself to automation in core
areas.

In the last decade there has been increased research into the gamification of
learning, as a response to the ever-increasing challenge to motivate students
and increase their engagement [14]. The current best accepted definition of
gamification is, the use of game design elements in non-game contexts [4].
Literature reviews suggest that these techniques tend to have a positive ef-
fect most of the time [9]. Some of these elements in their turn come from

Received by the editors: November 15, 2019.
2010 Mathematics Subject Classification. 68Q60.
1998 CR Categories and Descriptors. D.2.11 [Software engineering]: Software Archi-

tectures – Domain-specific architectures; D.2.4 [Software engineering]: Software/Program
Verification – Model checking .

Key words and phrases. system architecture, education, automated verification, gami-
fication .

96

AUTOMATION AND GAMIFICATION OF COMPUTER SCIENCE STUDY 97

psychology, entertainment [18]. The goal is to maximize engagement through
capturing the interest of learners, and inspiring them to continue learning.

If parts of the work arguably should be automated and there is an increasing
need for gamification elements, the question remains how much to automate?
how many game design elements to add? and how to imbue the two?

In the solution detailed in the paper the approach to these questions was
to make an assignment validator platform with configurability and expand-
ability in mind. The various options and the easy expandability allow for fine
tuning of features for a given course material. The platform also serves as a
gamification workbench to aid experimentation.

This paper is organized as follows: related work on assignment automation
and gamification in section 2, main contribution in section 3, conclusion in
section 4, discussion in section 5 and bibliography in section 6.

2. Related work

Automated grading of computer science assignments at college level goes
back to 1965 [8]. Back then it was used for numerical analysis courses, written
in BALGOL a dialect of ALGOL, and handed in on punch cards. A decade
later physicists still use porta-punch cards but assignments are generated ran-
domly and evaluated in batch [12]. A decade after that we see automated
grading of multiple-choice tests in [17]. By the early 1990’s complex assign-
ment graders for programming and Matlab are developed and used [19]. As
late 2000’s arrive we have student websites graded with the help of Ruby
scripts, as well as requirement assignment, although it relies on exact HTML
naming on student’s side [5]. The base problem is still being researched and
different solutions are being developed [15].

JFDI Academy’s solution is approaching ours, they were able to provide
students with timely feedback. It had auto-grading, in which once a student
submitted the answer to a question, (s)he was automatically given feedback
on whether it was correct. Instructors were also able to receive feedback on
a student’s progress. Students also had the opportunity to raise questions
or concerns regarding the assignment, by posting comments which enabled
instructors to help them in a timely manner [3].

In parallel, although much recently gamification experiments are being con-
ducted on students in various settings. For example, the promotion of risk
taking in language learning [10]. Sometimes the two are combined, for exam-
ple in the case of [6] a computer engineering master’s level college course was
gamified with automatic grading. This resulted in forum engagement increase
of 511% to 845% versus the previous year.

98 IMRE ZSIGMOND

3. GamifyCS

3.1. Solution description. The question of, how much teaching assisting
tools, as well as gamification elements to add, is a non-trivial one. The answer
tends to depend on the needs of various courses and the aims of the profes-
sors teaching said courses. With the goal to provide an automating tool and
gamification workbench we identified the following priorities to implement
first: individualized exercise assignment, correctness check, semi-automated
anti-plagiarism test, near instant feedback, story elements. These features al-
lowed for large scale experimentation, and more time helping students, the
details of which will be presented in a future paper. The following features
were prototyped and remain to be used in the next semester: fully-automated
anti-plagiarism test, static code analysis checks, achievements. While the pro-
totypes worked a subset of them were prioritized to experimentally validate
them before more were added.

While the tool is both an assignment validator and a gamification work-
bench, the core validation is detailed in Figure 1, and there is a more tech-
nical view in the next section. While the processes shown are all optional,
they do represent the typical needs of a teacher. The process in general starts
with an upload on the student’s part, the archive is saved locally, extracted,
cleaned, and repackaged for MOSS. [1]. If the language warrants compilation
the sources are compiled and linked to executables. Then separate instances
are run for each predefined test. Test scenarios are evaluated, and the results
are saved to be displayed later. Meanwhile on the coding style side StyleCop
analyzer is invoked, the resulting report being saved to the database. In par-
allel the repackaged source files are uploaded to MOSS. for anti-plagiarism
checks, and the results saved to the database.

Figure 1. Validation flow

AUTOMATION AND GAMIFICATION OF COMPUTER SCIENCE STUDY 99

For this tool to be useful it had to support multiple programming languages,
so it can be applied for many courses and needs. Supporting any number of
programming languages is quite a challenge in itself. The solution was to be
language agnostic from the code’s point of view and just swap in different
modules that had the job of dealing with specific programming language fea-
tures. The module can decide to try to resolve the specifics with code, or
calling external tools. Thus, support for any new language has to be coded in
separately.

Correctness check for any given problem is its own separate branch of com-
puter science, and entirely out of scope for this paper and solution. To help
with solving this problem each assignment has a well-defined input and out-
put sequence. This sequence is run on each hand-in of a specific assignment,
thus testing it. This limits the type of assignments that can be tested though.
It is an acceptable first step since a significant number of assignments, in an
academic setting have console-based UIs. The proposed solution is useful for
full courses, and ultimately can be expanded for more specialized correctness
checks, while retaining their other benefits.

Static code analysis of programming assignments has been the focus of
computer science research, all the while the specifics of code quality is not a
universally agreed upon subject [13]. The debate becomes more varied when
different languages are concerned, and it also changes as time goes on. Even
on a principle level there are various disagreements, and few universal rules are
agreed by most people. For example, memory leaks are universally considered
bad while variable naming changes wildly even within one language. What
rules to require remains the discretion of the teacher of a specific course.

Plagiarism check is one of the basic functionalities that is also one that
cannot be completely automated [11]. An example of technical difficulty is
the project files that are generated by their IDE, that should not be checked.
The tool sometimes leads to false positives which would be detrimental to
learning if students were falsely accused. There are many special cases and
situations in practice that would lead to false positives. Our solution was to
take the reports generated by Stanford’s MOSS API and check them manually.
It should be mentioned that sometimes teachers can and do discover certain
forms of plagiarism. While software based solutions may not work better then
experienced staff, together with the increased time per student, because of the
lack of need to check for correctness, increases the change for cheaters being
caught.

3.2. Architecture. For an illustration of the architectural decisions a UML
communication diagram is used in Figure 2. The main application is a website
developed using ASP.NET MVC in C#. It runs on a windows server with an

100 IMRE ZSIGMOND

SQL Server installed locally. Structurally it can be considered a standard
MVC site, at around 14000+ lines of code. Logging was twofold, with various
activities either saved to the database or to logfiles. The hub for the more
interesting parts is the TestRunnerService. As mentioned in section 3.1 the
process of verification starts with an upload on the student’s part, the archive
of each attempt is saved locally to a unique path, then extracted, cleaned of
non-source files, and repackaged for the MOSS API’s convenience.

From this point on the verification thread, source code is compiled and
linked if compilable, or supplied to the interpreter otherwise. Separate in-
stances of the resulting executable are run for each test to ensure clean runs.
Communication with the executable on StdIO redirects had to be run on sep-
arate threads. Then test scenarios are evaluated, the instances closed, and
results are saved to be displayed later. The running executables are moni-
tored by a windows service called Monitor Service. The reason for a separate
service is that in certain scenarios the executables would not terminate from
the context of the verification thread, and remain active in the system. Such
programs if caught in an infinite loop would quickly consume large amounts of
processor resources, and had to be killed externally. The monitor service does
just that by comparing process StartTimes to local time, for running processes
of a given name.

On the coding style thread, the StyleCop analyzer is invoked asynchronously,
the resulting report being saved to the database, and displayed as part of the
test results. Meanwhile on the anti-plagiarism thread the repackaged source
files are uploaded to the MOSS API, and the results saved to the database.

3.3. Features. Compilation of the uploaded project was one of the central is-
sues of automation on the project while supporting several potential languages.
External tools were necessary because real life programming languages evolve
as do their compilers. The solution decides how to prepare the executables
based on the language in question. The switch is done through the strategy
design pattern. Supporting C# required only .NET framework calls and it
produced the required executable from code. Python being an interpreted lan-
guage required the execution of the interpreter with the “ -i + pathToSource”
supplied as parameters. The resulting execution was the target for testing.
By far the most complicated was support for C++, where minor differences
between compiler parameters between student side compilation and sever side
compilation lead to subtle but significant differences in test output. After
much experimentation the following parameters yielded the best results:

"cl /permissive- /GS- /analyze- /w /Zc:wchar_t /ZI /Gm- /Od /sdl

/Zc:inline /fp:precise /D \"WIN32\" /D \"_DEBUG\" /D \"_CONSOLE\"

/D \"_UNICODE\" /D \"UNICODE\" /D \"_CRT_SECURE_NO_WARNINGS\"

AUTOMATION AND GAMIFICATION OF COMPUTER SCIENCE STUDY 101

Figure 2. Communication diagram

/errorReport:none /WX- /Zc:forScope /RTC1 /Gd /Oy- /MDd /FC /EHsc

/nologo /diagnostics:column [listOfFullPathFilesInProject]

/Fa.\\ /Fe:.\\program.exe /Fo.\\"

When executing the compiled code, the main application redirected the
standard input and output of the assignment to the main program, which in
turn fed, then read the predefined sequences. While redirection is a just a
flag at startup, the two being streams separate threads needed to be started
to communicate with the new process. To facilitate the situations where the
program being tested stopped to respond or hang in an infinite loop, timeouts
on the threads were used. In addition to timeouts the new process’s state
was monitored both from the testing program itself and a separate windows
service. The monitor service was to query running processes with certain
names and terminate those with more than 5 s runtimes. To give more leeway
on correctness checks for the students, regular expressions were used by default
on their output that has been compared to the expected output on the I/O
test. An unexpected and welcome side effect was that students could upload
their solutions multiple times during the practical exams serving as working,
testable backups in case of software/hardware failure.

To illustrate with an example: one of the assignments had among other
requirements the need to catalogue old maps, the ”add” and ”display” console
commands were specified to take the form:

add mapCatalogueNumber, stateOfDeterioration, type, yearsOfStorage
list

102 IMRE ZSIGMOND

One test aiming to check the ”add” command with a valid input, started
with sending the application: ”add 1234, new, political, 15”, then sent: ”list”,
finally the regex that ran against the output was: ”.*(1234)*.*new.*political.*15”.

Code quality checks were prototyped with StyleCop an open source static
code analysis tool which has been used to success with .NET projects [16]. The
StyleCop.Analyzers project was used for the analysis. It may be called with a
configurable list of rules and it generates a report of violations. Example of a
rule would be: “FieldNamesMustBeginWithLowerCaseLetter” the violation of
this rule happens when the name of a field in a class begins with an upper-case
letter. The various rules can be configured per course.

User interface was specifically designed to be minimalist and responsive.
The goal was to remove distractions and appeal to current generation’s stan-
dards. It also focused the work to deliver higher quality rather than more
features. The UI consisted mainly of data manipulation screens for the ad-
ministrators. An example of test results the students saw can be found in
Figure 3.

Figure 3. Test Run Example

Among the possible gamification mechanics, two were chosen on the basis
of what experiments were scheduled. The first two were instant feedback and
narrative. Instant feedback is one of the most basic gamification mechanics.
It shortens the work-reward cycle and it is easier to do on modern computers.
In computationally intensive situations the feeling of instant feedback can be
achieved by making time for static code analysis to complete by showing the
I/O test results one by one with small, artificial delays. If the instant feedback
option was used on a group then they could upload solutions any time of the
day, otherwise they could only upload during their individual laboratory times.

AUTOMATION AND GAMIFICATION OF COMPUTER SCIENCE STUDY 103

Narrative is one of the strong suits of R.P.G.s [7], which is where some of the
gamification mechanics originate from. It aids in immersion and gives a sense
of purpose to solving exercises. The aspect of tying all exercises together in a
narrative was one of the interests while working on this system. With the aim
of finding out, if adding cross assignment narrative adds to the enjoyment of
solving programming puzzles. If a group was selected for narrative than they
saw an alternate text for their assignments that took part of an overarching
story. Regular assignments and examinations both took part of the story.
There was also support for different languages for the exercises for the same
course thought in a foreign language.

For login and authorization by role, standard ASP.NET MVC controls were
used, which are deemed safe enough. Any Id used in the various URLs are
GUIDs as to make it impossible to guess any other ids. Students had the
possibility to re-upload new exercises solutions until they were happy with the
results. All code variants were saved on the server both code and test result
for data-mining purposes but after the semester the student names and emails
were anonymized.

4. Discussion

Taking into account previous research [2] the issue of a secured environment
came up. Allowing random code to run without a sandbox would expose the
server to vulnerabilities. A sandboxed environment would be ideal but this
remains a future development. Another potential issue mentioned in the same
research that was noticed is the temporary overwhelming of the hardware
when too many students upload at the same time. Their solution is to add
waiting queues which would be a sensible choice here as well, but it has to be
prototyped and UI has to be changed to manage student expectations.

An unfortunate side effect of having the server accessible to the internet
was a persistent, distributed attempt to gain control from at least one botnet.
While unsuccessful the several tens of thousands of requests did tie down a
portion of the server’s resources.

5. Conclusions and further work

The system developed has great potential for experimentation, since it al-
lows for features to be switched off and can be freely extended. Various exper-
iments can be designed around the tool. Since we store code and usage data,
data mining methods can be used in lockstep with traditional experimental
setups.

104 IMRE ZSIGMOND

The tool was used for a semester for an object oriented programming course.
Aside from bug-fixes the tool was unchanged during this period. The gam-
ification experiments conducted is the subject of an upcoming paper. The
automated correctness check did noticeably increase the code review time per
student. In the future this will be the default tool for that course.

Assignment validator features should be expanded with full blown sand-
boxes to run the executables in, the support for running queues to balance load
and improve measurements, the support for more programming languages and
UI languages, unit test code coverage calculator, and also data mining tools
would be a useful addition. There are a number of small changes that should
be made for example messaging students directly.

Since the field of gamification is vast, and so far under researched, there
are many techniques that should be added and tried. Mechanics for pacing
might be added for example leveling, and achievements. Also, mastery might
be targeted with leaderboards.

References

[1] A. Aiken. Measure of software similarity: Plagiarism detection system. Technical report,
Computer Science Division of University of California, 2002.

[2] A. L.-W. O. B. Cheanga, A. Kurniaa. On automated grading of programming assign-
ments in an academic institution. Computers & Education 41, pages 121 —- 131, 2003.

[3] Y. L. B. Leong. Application of game mechanics to improve student engagement. In
International Conference on Teaching and Learning in Higher Education. Citeseer, 2011.

[4] S. Deterding, D. Dixon, R. Khaled, and L. Nacke. From game design elements to game-
fulness: Defining gamification. Proceedings of the 15th International Academic MindTrek
Conference: Envisioning Future Media Environments, MindTrek 2011, 11:9–15, 09 2011.

[5] X. Fu, B. Peltsverger, K. Qian, L. Tao, and J. Liu. Apogee: automated project grading
and instant feedback system for web based computing.

[6] J. J.-D. G. G. Barata, S. Gama. Engaging engineering students with gamification. 2013
5th International Conference on Games and Virtual Worlds for Serious Applications,
VS-GAMES 2013, pages 24–31, 09 2013.

[7] D. A. G Gygax. Dungeons and dragons. TACTICAL STUDY RULES, 1974.
[8] N. W. G.E. Forsythe. Automatic grading programs. Communications of the ACM, 8(5),

pages 275–529, 1965.
[9] J. Hamari, J. Koivisto, H. Sarsa, et al. Does gamification work? - A literature review

of empirical studies on gamification. In HICSS, volume 14, pages 3025–3034, 2014.
[10] S. Itamar. Using gamification and gaming in order to promote risk taking in the language

learning process. MEITAL National Conference, pages 227 –– 232, 2015.
[11] N. v. V. J. Hage, P. Rademaker. A comparison of plagiarism detection tools. Technical

Report UU-CS-2010-015, 2010.
[12] D. D. J. Taylor. Constructed-response, computer-graded homework. American Journal

of Physics, 44, pages 598–599, 1976.
[13] M. M. Striewe. A review of static analysis approaches for programming exercises. Com-

puter Assisted Assessment. Research into E-Assessment., pages 100–113, 2014.

AUTOMATION AND GAMIFICATION OF COMPUTER SCIENCE STUDY 105

[14] K. J. Majuri, Jenni and J. Hamari. Gamification of education and learning: A review
of empirical literature. In Proceedings of the 2nd International GamiFIN Conference,
GamiFIN 2018. CEUR-WS, 2018.

[15] M. Poženel, L. Fürst, and M. Viljan. Introduction of the automated assessment of
homework assignments in a university-level programming course. In 2015 38th Inter-
national Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), pages 761–766. IEEE, 2015.

[16] B. A.-H. Q. Zoubi, I. Alsmadi. Study the impact of improving source code on software
metrics. 2012 International Conference on Computer, Information and Telecommuni-
cation Systems (CITS), 2012.

[17] H. H. R. M. Rottman. Computer grading as an instructional tool. Journal of college
science teaching, 12, pages 152–165, 1983.

[18] B. F. Skinner. Two types of conditioned reflex and a pseudo type. Journal of General
Psychology 12, pages 66–77, 1935.

[19] U. von Matt. Kassandra: The automatic grading system. ACM Special Interest Group
on Computer Uses in Education Outlook, 22, 03 2001.

Faculty of Mathematics and Computer Science, Babes, -Bolyai University, 1
Mihail Kogălniceanu, RO-400084 Cluj-Napoca, Romania

Email address: imre@cs.ubbcluj.ro

