
INFORMATICA
1/2019

STUDIA
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

No. 1/2019
January - June

EDITORIAL BOARD

EDITOR-IN-CHIEF:

Prof. Horia F. Pop, Babeş-Bolyai University, Cluj-Napoca, Romania

EXECUTIVE EDITOR:

Prof. Gabriela Czibula, Babeș-Bolyai University, Cluj-Napoca, Romania

EDITORIAL BOARD:

Prof. Osei Adjei, University of Luton, Great Britain
Prof. Anca Andreica, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Florian M. Boian, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Sergiu Cataranciuc, State University of Moldova, Chișinău, Moldova
Prof. Wei Ngan Chin, School of Computing, National University of Singapore
Prof. Laura Dioșan, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Farshad Fotouhi, Wayne State University, Detroit, United States
Prof. Zoltán Horváth, Eötvös Loránd University, Budapest, Hungary
Assoc. Prof. Simona Motogna, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Roberto Paiano, University of Lecce, Italy
Prof. Bazil Pârv, Babeş-Bolyai University, Cluj-Napoca, Romania
Prof. Abdel-Badeeh M. Salem, Ain Shams University, Cairo, Egypt
Assoc. Prof. Vasile Marian Scuturici, INSA de Lyon, France

YEAR

MONTH

ISSUE

Volume 64 (LXIV) 2019

JUNE

1

S T U D I A

UNIVERSITATIS BABEȘ-BOLYAI

INFORMATICA

1

EDITORIAL OFFICE: M. Kogălniceanu 1 • 400084 Cluj-Napoca • Tel: 0264.405300

SUMAR – CONTENTS – SOMMAIRE

L. Onac, TRIST: Tree Recognition Intelligent System .. 5

N. Bátfai, D. Papp, R. Besenczi, G. Bogacsovics, D. Veres, Benchmarking Cognitive

Abilities of the Brain with the Event of Losing the Character in Computer Games 15

C. I. Saidu, L. Csató, Medical Image Analysis with Semantic Segmentation and Active

Learning ... 26

C.-F. Andor, B. Pârv, D. M. Suciu, Using Latency Metrics in NoSQL Database

Performance Benchmarking .. 39

R. A. Rill, A. Lőrincz, Cognitive Modeling Approach for Dealing with Challenges in

Cyber-Physical Systems ... 51

A. Miclăuș, Ș. Petrescu, A. Vescan, Embedded Systems with Component-Based GPU

Support: A State of the Art ... 67

C.-F. Andor, B. Pârv, Runtime Performance Benchmarking for NoSQL Databases 77

M. B. M. Kamel, P. Ligeti, A. Nagy, An Address Propagation Model in P2P and F2P

Networks... 91

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIV, Number 1, 2019
DOI: 10.24193/subbi.2019.1.01

TRIST: TREE RECOGNITION INTELLIGENT SYSTEM

LAURA ONAC

Abstract. Plant recognition represents a challenging computer vision
problem due to the great variations of shape and texture among plant
organs, within the same species. This paper proposes a light-weight, but
reasonably deep Convolutional Neural Network architecture able to carry
out this classification task. Multiple experiments were conducted with
the proposed network architecture on the MEW2012 and Swedish leaf
datasets. The experiments showed promising results, outperforming the
current state-of-the-art systems that rely exclusively on a convolutional
network for plant classification.

1. Introduction

Plant recognition has always been a challenging computer vision problem
because of the great variations of shape and texture among plant organs,
within the same species. This paper focuses on the classification of trees based
on their leaves and describes a supervised deep learning technique, namely a
Convolutional Neural Network (CNN), able to carry out this task.

The traditional approach to image pattern recognition has been to extract
hand-crafted features from the images and then train a certain classifier with
the resulting feature vectors. So, the performance of the systems employ-
ing this approach depends heavily on the underlying predefined features. In
the plant identification literature, there are some common leaf features used
for classification, such as circularity, eccentricity, roundness, aspect ratio [4].
However, the feature engineering process is quite complex and tedious, always
needing extensive revision when changing the dataset.

But, over the past few years, Convolutional Neural Networks have become
extremely popular in the field of computer vision. They are able to auto-
matically detect important features such as shape or texture, without human

Received by the editors: April 26, 2018.
2010 Mathematics Subject Classification. 92B20.
1998 CR Categories and Descriptors. I.2.6 [Computing Methodologies]: Artificial

Intelligence – Learning .
Key words and phrases. machine learning, computer vision, convolutional neural net-

works, image classification, leaf recognition.

5

6 LAURA ONAC

assistance in the feature design process. Earlier studies showed that pure
CNN approaches [1, 6, 7] seem more powerful than other classifiers trained
with previously extracted features [2, 10, 13, 16, 18].

The CNN architecture described in this paper was tested first on the MNIST
[11] benchmark dataset, and later on the MEW2012 [13] and Swedish [14]
leaf datasets. The architecture showed promising results, which outperform
the current state-of-the-art systems that rely exclusively on a convolutional
network for plant classification.

Problem description and relevance. Plant recognition implies the use of
leaves, flowers, bark or a combination between them, in order to identify the
corresponding species. As a result, a lot of research papers were published on
this topic, such as [1, 2, 4, 6, 7, 10, 12, 13, 14, 16, 17, 18]. Plant identification is
also quite a difficult task for humans to accomplish because it requires domain-
specific expertise, as well as experience. Nonetheless, recognizing plants, but
particularly trees, holds great importance to mankind as they provide essential
resources such as oxygen, food, medicine and wood. Many professions (e.g.
environmental science, forestry, landscape architecture) involve the correct
identification of trees and would greatly benefit from an automated system
which can achieve this task.

2. Background

Convolutional neural networks [11] are a type of deep, feed-forward artificial
neural networks that have proven to be greatly effective in image recognition
tasks. They are able to recognize certain visual patterns directly from pixel
images with minimal preprocessing. In order to ensure some degree of shift,
scale and distortion invariance, convolutional networks employ a combination
of three architectural elements: local receptive fields, shared weights and sub-
sampling. They manage to incorporate knowledge about the invariances of 2D
shapes by using local connection patterns, therefore forcing the extraction of
local features.

Like any other feed-forward network, a CNN is composed of an input layer,
one or more hidden layers, and an output layer. But, as opposed to ordinary
networks which only contain fully-connected layers, CNNs incorporate some
additional types, namely convolutional and pooling layers.

Each layer transforms a volume of activations into another, through a differ-
entiable function. The last fully-connected layer is called the output layer and
in classification settings it represents the class scores. So, the entire network
transforms the input image, layer by layer, from the original pixel values to
the final class scores.

TRIST: TREE RECOGNITION INTELLIGENT SYSTEM 7

The Convolutional layer (CONV) [9] is the core building block of a Con-
volutional network, as it does most of the computational heavy lifting. It
computes the output of neurons that are connected to local regions in the
input. The output represents the dot product between the neuron’s weights
and the corresponding elements in a small region from the input. This layer’s
parameters are actually a set of learnable, small 2-dimensional filters (or ker-
nels). During the forward pass, each filter is slid (or convolved) across the
width and height of the input and the dot products between the entries of the
filter and the input at the corresponding positions is computed. The result
will be a 2-dimensional activation map that gives the responses of that filter
at every spatial position.

The size of the feature maps, which are the result of the convolution, is
controlled by using two techniques: stride and zero-padding [9]. In this work,
our goal is to preserve the size of the input image and we achieve this by
combining the zero-padding with a stride equal to 1.

Pooling layers (POOL) [9] are periodically inserted in-between successive
convolutional layers. Pooling is a form of non-linear down-sampling and these
layers progressively reduce the spatial size of the representation. Thus, pooling
layers reduce the amount of parameters and computation in the network. They
most commonly use a max or average operation in order to resize the input.
This layer does not have any trainable parameters.

Finally, after several Convolutional and Pooling layers, the high-level rea-
soning in the network relies on the Fully-connected layers (FC) [9]. The output
from the Convolutional and Pooling layers represent high-level features of the
input image. The purpose of the Fully-connected layer is to use these features
to classify the input image into various classes based on the training dataset.

Dropout layers (DROP) [15] are used in order to avoid overfitting the train-
ing dataset. On those layers, units and their connections are randomly dropped
during the training process.

Each neuron in the Convolutional and Fully-connected layers has an acti-
vation function, also known as a non-linearity, which is applied element-wise
on the neuron’s output. Leaky ReLU is such a function. It is very similar to
the ReLU (Rectified Linear Unit) [5] activation function, but it attempts to
fix the dying ReLU problem [8]. Instead of the function being zero when the
input is negative, a leaky ReLU will instead have a small negative slope. This
function is defined in Formula 1 [8]:

(1) f(x) = max(εx, x),

where x is the output of the neuron and ε is a small constant.

8 LAURA ONAC

Another activation function, often used on the last Fully-connected layer of
a network-based classifier is called Softmax [9]. The Softmax function squashes
the outputs of each unit to be between 0 and 1, and it also divides each output
such that the total sum of the outputs is equal to 1. So, the output of this
function is equivalent to a categorical probability distribution. Softmax is
defined in Formula 2 [9]:

(2) σ(Zj) =
eZj

K∑
k=1

eZk

,

where Z is the input vector, j is the index of the output unit and K is the
number of output units.

Training a neural network essentially means using the training set to adjust
the weights and biases in the network’s layers, in order to improve its per-
formance. The training process is an iterative one and it is composed of two
major steps: forward propagation and backward propagation. The forward
pass implies getting an image from the input layer, through the hidden layers
and to the output layer. The obtained result is then compared to the expected
output and, during the backward pass, the error for each unit is computed and
its parameters are updated accordingly.

Improving performance usually means minimizing the loss function, which
in this case is cross entropy [3]. Cross entropy indicates the distance between
what the model believes the output distribution should be and what the orig-
inal distribution really is. It is defined in Formula 3 [3]:

(3) H(y, p) = −
∑
i

yilog(pi),

where y is the expected vector and p is the predicted one.

3. Literature Review

Over the years, there have been several studies carried out on automatic
plant recognition. Most of them perform the classification task based on the
plants’ leaves. As opposed to flowers, leaves are available over a longer period
of time and in a much greater number. Also, leaves are more specific to a
certain tree than bark is.

What follows is a presentation of other works in the literature that focus
on plant recognition. For the purposes of this paper, the related studies will

TRIST: TREE RECOGNITION INTELLIGENT SYSTEM 9

be divided into those that use purely CNNs and those that employ different
classification methods.

The classification of plants using purely CNNs was only recently proposed
by authors such as Jassman [7] in 2015, He et al. [6] and Atabay [1], both in
2016.

Jassman [7] aims to develop a system capable of classifying images with
natural background. The five networks described in the paper are trained
using a dataset created by the author, which contains 15 species of plants
with 30 samples each. The best network obtained a top-1 accuracy of 56.66%.

He et al. [6] proposed four different CNN architectures trained with 20
species from the ICL dataset. They started with a CNN with two convolutional
layers, two average pooling layers, followed by a fully-connected single-layer
perceptron. The first variation introduced was dropout in the last layer, then
they added a single connected layer between the second and third layer, and at
last, they developed an advanced version of the single connected layer. With
the fourth version, they achieved a precision of 91.90%.

Atabay [1] developed two convolutional networks with the same architec-
ture, but different activation functions. For one, he used ReLU, and for the
other, ELU. His networks were trained with the Flavia [18] and Swedish [14]
leaf datasets, obtaining 97.24% and 99.11% mean average precision on the val-
idation sets, respectively. Those results were achieved using ELU activation.

Traditional methods for leaf recognition generally imply the extraction of
features to be used subsequently as input for a classifier. For the feature
extraction phase, a variety of techniques were employed: Novotný & Suk [13]
used Fourier descriptors, Sulc & Matas [16] developed a method using multi-
scale histograms, Çuğu et al. [2] produced some hand-crafted features, Wu et
al. [18] extracted digital morphological features, and Kumar et al. [10] used
histograms of curvature over scale. The most popular classifiers are Support
Vector Machines [16, 2] and the Nearest Neighbor algorithm [13, 10]. Çuğu et
al. [2] obtained the final result by merging the results of the SVM with those
of a CNN. Wu et al. [18] used a Probabilistic Neural Network as the classifier.

4. TRIST-Net: Methodology

The architecture of the Convolutional Neural Network is illustrated in Fig-
ure 1 and it is composed of 10 layers: INPUT → CONV 1 → POOL1 →
CONV 2→ POOL2→ CONV 3→ POOL3→ FC → DROP → OUTPUT .
This architecture was chosen due to the promising results obtained in experi-
ments conducted first on the MNIST dataset [11], and later on the MEW2012
[13] and Swedish [14] datasets.

10 LAURA ONAC

Figure 1. Proposed CNN architecture.

The INPUT layer refers to the grayscale input image. Every image has only
one channel, so it is represented as a 2-dimensional matrix of pixel values. The
matrix has a dimension of 64 × 64 and its elements are in the interval [0, 1],
where the value 0 indicates black and 1 indicates white.

The CONV1 layer has 8 filters, each being 5 × 5 square and uses Leaky
ReLU as the activation function. The result of this layer is composed of 8
feature maps, each having the dimension 64× 64.

The POOL1 layer applies Max Pooling with a 2 × 2 window and a stride
equal to 2. The output of this layer is represented by 8 feature maps, each
having the dimension 32× 32.

The CONV2 layer has 16 5 × 5 filters with Leaky ReLU activation. The
result of this layer is composed of 16 32× 32 feature maps.

The POOL2 layer applies Max Pooling with a 2 × 2 window and a stride
equal to 2. The output of this layer is represented by 16 16×16 feature maps.

The CONV3 layer has 32 5 × 5 filters with Leaky ReLU activation. The
result of this layer is composed of 32 16× 16 feature maps.

The POOL3 layer applies Max Pooling with a 2 × 2 window and a stride
equal to 2. The output of this layer is represented by 32 8× 8 feature maps.

The feature maps that resulted from the previous layer are flattened and
concatenated, so they can serve as input for the FC layer.

The FC layer consists of 128 neurons, each having 8×8×32 = 2, 048 weights
and 1 bias. Again, the Leaky ReLU activation function is used.

The DROP layer executes the dropout operation on the output of the FC
layer, with 70% probability that an element will be kept.

The OUTPUT layer is actually a fully-connected layer, but with a different
activation function: Softmax. It has one neuron for each possible class, and

TRIST: TREE RECOGNITION INTELLIGENT SYSTEM 11

they are connected to every neuron from the DROP layer, so they each have
128 weights and 1 bias.

5. Experimental Results

5.1. Data sets. Before evaluating the performance of network on the leaf
datasets, some tests were performed on the benchmark dataset MNIST [11].
MNIST is composed of images with handwritten digits and the version used
for training contains a total of 1,797 samples.

The MEW2012 (Middle European Woods 2012) [13] leaf dataset consists of
images of leaves collected from trees and shrubs native or frequently cultivated
in the Czech Republic. The 2012 version contains 153 species, each having
between 50 and 99 samples, with a total of 9,745 images. Only 20 of those
species were used for experiments. The species were randomly selected, with
a total of 1,240 images.

The Swedish [14] leaf dataset contains 15 species of trees from Sweden,
with 75 samples for each of them, giving a total of 1,125 images.

5.2. Image pre-processing. The original images from the datasets had to
be modified prior to being used by the Convolutional Neural Network. The
reason is that the architecture of the CNN requires input images to have
the same dimension and for each pixel to have only one corresponding value,
restrictions which the samples from the datasets do not uphold. So, before
the training process could begin, each leaf image was converted to grayscale
and re-dimensioned to a 64 × 64 size. Because both datasets are quite small
for the methodology employed, they were augmented. For each image, three
more were generated by flipping the image, rotating it 5 degrees to the right
and rotating it 5 degrees to the left.

5.3. Training. The CNN presented in this paper is trained using stochastic
gradient descent because there is a certain level of redundancy in the leaf
datasets used. The training set is composed of 80% of the images from the
whole set, randomly selected. The rest of the dataset is used for testing
purposes.

Throughout the training process, as well as afterwards, the performance of
the network was measured through loss, accuracy and precision. Ideally, after
each iteration, an evaluation of the network would reveal a smaller loss value,
and a greater accuracy and precision. This, of course, is not always true.
Sometimes, those values end up in some local optimum and the performance
of the network has to get a bit worse before it can get better.

12 LAURA ONAC

5.4. Experiments. The network architecture presented was trained using,
in turn, each of the datasets mentioned. In the case of the leaf datasets, the
experiments were conducted using the original datasets and also using the
augmented version of each dataset.

5.5. Results and discussion. The accuracy, precision and loss obtained on
the test data with the proposed CNN architecture are reported in Table 1.

Dataset Classes Samples Accuracy Precision Loss
MNIST 10 1,797 97.33% 97.38% 0.0861

MEW2012 20 1,240 84.89% 86.13% 0.4831
MEW2012 + aug 20 4,960 92.16% 92.30% 0.2790

Swedish 15 1,125 96.00% 96.32% 0.1824
Swedish + aug 15 4,500 94.77% 94.85% 0.1703

Table 1. Results obtained on the test data for MNIST,
MEW2012 and Swedish datasets.

With a simpler benchmark dataset such as MNIST, the network performed
very well, which is always the first sign of a good architecture. With MEW2012,
the image augmentation improved the performance dramatically, which means
that the extra samples generated helped the model to generalize better. On
the other hand, with Swedish, the best performance was obtained without
augmentation, but the difference between the model trained using the original
dataset and the one trained using the augmented dataset is not substantial.

A comparison can be made between the best results obtained with the
proposed approach and the ones from the published papers that also employ
CNNs in order to perform similar leaf recognition tasks. He et al. [6] performed
their experiments on the ICL dataset, which was not publicly available at the
time this article was being written. Jassman [7] performed the experiments on
a personal dataset, which was not made public. Consequently, the comparison
with these papers is made based on the number of classes in the datasets and
the performance measurements used.

The CNN architecture presented in this paper achieved a precision of 92.30%
on MEW2012, while He et al. [6] achieved 91.90% on ICL. Also, with the
presented approach, an accuracy of 96.00% was obtained on Swedish, while
Jassman [7] only obtained 56.66% accuracy on their private dataset. So, the
proposed CNN architecture achieves higher precision for 20 species than He
et al. [6] and higher accuracy for 15 species than Jassman [7]. This indicates
that the proposed network is better fit for this task, but the comparison is not

TRIST: TREE RECOGNITION INTELLIGENT SYSTEM 13

conclusive due to the fact that the experiments couldn’t be performed on the
same datasets.

No clear comparison could be made with Atabay [1] because it is not un-
derstandable whether the performance measurement used is accuracy or mean
average precision. Also, in their approach, the dataset is split in train (70%),
validation (10%) and test (20%). But only the results on the validation set
are presented, without providing the test results.

6. Conclusion

This paper presents a machine learning technique for leaf recognition. The
chosen method is a Convolutional Neural Network due to the robustness and
effectiveness of this kind of networks in image recognition tasks in general.

Experimental results with the MEW2012 [13] and Swedish [14] leaf datasets
show that the proposed approach outperforms the other approaches that use
CNNs for plant recognition in the literature.

During the development process, certain issues were encountered, such as
overfitting, dying ReLU and numerical instabilities. But, by overcoming them,
the designed model became much more reliable.

A more complex architecture might be able to recognize the species from
the image without the leaf having to be placed on a white background. As the
results obtained were promising, future work is under consideration in order
to improve the current convolutional network implementation.

References

[1] H.E. Atabay. A convolutional neural network with a new architecture applied on leaf
classification. IIOAB Journal, 7:326—-331, 2016.

[2] İ. Çuğu, E. Şener, Ç. Erciyes, B. Balcı, E. Akın, I. Önal, and A. O. Akyüz. Treelogy:
A novel tree classifier utilizing deep and hand-crafted representations. arXiv preprint
arXiv:1701.08291, 2017.

[3] P. Dahal. Classification and loss evaluation - softmax and cross entropy loss.
https://deepnotes.io/softmax-crossentropy.

[4] C. Y. Gwo and C. H. Wei. Plant identification through images: Using feature extraction
of key points on leaf contours. Applications in plant sciences, 1(11), 2013.

[5] R. H. R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S. Seung.
Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit.
Nature, 405(6789):947, 2000.

[6] X. He, G. Wang, X. P. Zhang, L. Shang, and Z. K. Huang. Leaf classification utilizing a
convolutional neural network with a structure of single connected layer. In International
Conference on Intelligent Computing, pages 332–340, 2016.

[7] T. J. Jassman. Mobile leaf classification application utilizing a convolutional neural
network. Master’s thesis, Appalachian State University, 2015.

[8] R. Kapur. Rohan #4: The vanishing gradient problem. https://ayearofai.com/rohan-4-
the-vanishing-gradient-problem-ec68f76ffb9b.

14 LAURA ONAC

[9] A. Karpathy. Cs231n convolutional neural networks for visual recognition. Neural net-
works, 1, 2016.

[10] N. Kumar, P. N. Belhumeur, A. Biswas, D. W. Jacobs, W. J. Kress, I. C. Lopez, and J.V.
Soares. Leafsnap: A computer vision system for automatic plant species identification.
In Computer vision–ECCV 2012, pages 502–516. Springer, 2012.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[12] M. E. Nilsback and A. Zisserman. An automatic visual flora: segmentation and classi-
fication of flower images. PhD thesis, Oxford University Oxford, 2009.

[13] P. Novotnỳ and T. Suk. Leaf recognition of woody species in central europe. biosystems
engineering, 115(4):444–452, 2013.

[14] O. Söderkvist. Computer vision classification of leaves from swedish trees. Master’s
thesis, Linkoping University, 2001.

[15] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[16] M. Sulc and J. Matas. Texture-based leaf identification. In European Conference on
Computer Vision, pages 185–200. Springer, 2014.

[17] A. Wendel, S. Sternig, and M. Godec. Automated identification of tree species from
images of the bark, leaves and needles. In 16th Computer Vision Winter Workshop,
page 67. Citeseer, 2011.

[18] S. G. Wu, F. S. Bao, E. Y. Xu, Y. X. Wang, Y. F. Chang, and Q. L. Xiang. A leaf
recognition algorithm for plant classification using probabilistic neural network. In Sig-
nal Processing and Information Technology, 2007 IEEE International Symposium on,
pages 11–16. IEEE, 2007.

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, 1 Kogălniceanu, Cluj-Napoca, 400084, Romania

Email address: olic1770@scs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIV, Number 1, 2019
DOI: 10.24193/subbi.2019.1.02

BENCHMARKING COGNITIVE ABILITIES OF THE BRAIN
WITH THE EVENT OF LOSING THE CHARACTER IN

COMPUTER GAMES

NORBERT BÁTFAI, DÁVID PAPP, RENÁTÓ BESENCZI, GERGŐ BOGACSOVICS,
DÁVID VERES

Abstract. Most computer game players have experienced the sensation
of temporarily losing their character in a given gameplay situation when
they cannot control the character, simply because they temporarily cannot
see it. The main reasons for this sensation may be due to the interplay of
the following factors: (1) the visual complexity of the game is unexpectedly
increased compared with the previous time period as more and more game
objects and effects are rendered on the display; (2) and/or the game is
lagging; (3) and finally, it is also possible that the players don’t have
sufficient experience with controlling the character. This paper focuses on
the first reason. We have developed a benchmark program which allows its
user to experience the sensation of losing character. While the user can still
control the character quite well, the benchmark program will increase the
visual complexity of the display. Conversely, if the user loses the character
then the program will decrease the complexity until the user finds the
character again, and so on. The complexity is measured based on the
number of changed pixels between two consecutive display images. Our
measurements show that the average of bit per second values of losing and
finding pairs describes the user well. The final goal of this research is to
further develop our benchmark to a standard psychological test.

Received by the editors: December 22, 2018.
2010 Mathematics Subject Classification. 91E10.
1998 CR Categories and Descriptors. H.5.2 [INFORMATION INTERFACES

AND PRESENTATION]: User Interfaces – Benchmarking ; H.1.2 [INFORMATION
INTERFACES AND PRESENTATION]: User/Machine Systems – Software psychol-
ogy .

Key words and phrases. esport, talent search, benchmark program, visual complexity,
losing character, psychology test.

This work was supported by the construction EFOP-3.6.3-VEKOP-16-2017-00002. The
project was supported by the European Union, co-financed by the European Social Fund.
The work/publication is supported by the GINOP-2.3.2-15-2016-00062 project.

15

16 N. BÁTFAI, D. PAPP, R. BESENCZI, G. BOGACSOVICS, D. VERES

1. Introduction

Losing the control of the character in a given gameplay situation is a very
common sensation that is well known among gamers. In this situation, players
cannot control their character, simply because they temporarily cannot see
it due to one or more of the following reasons: the visual complexity of the
display is unexpectedly increased, and/or the game is lagging and, finally, the
player simply isn’t experience enough to control the character. In this paper,
we introduce our benchmark computer program called BrainB Test Series 6
that can abstract this sensation of losing sight of a character. In this test,
game objects are symbolized by boxes as shown in Fig. 1. All box movement
is determined by random walks. There is a distinguished box labeled by the
name Samu Entropy. It represents the character controlled by the player.
The benchmark test lasts for 10 minutes. During the test, the user must
continuously hold and drag the mouse button on the center of Samu Entropy.
If the user succeeds in this task then the benchmark program will increase the
visual complexity of the display. It will draw more and more overlapping boxes
which will move faster and faster. Otherwise, if the mouse pointer cannot follow
the center of Samu Entropy then the visual complexity will be decreased. The
test will delete more and more boxes and the remaining boxes move slower and
slower until the user finds Samu Entropy again, i.e., clicks on Samu Entropy.
The BrainB Series 1 to 4 were developed in the family setting of the first
author1. Then, in our university environment, we did a preliminary study [3]
on the next version (BrainB Series 5). Some of its measurements were streamed
live on Twitch2. The main research goal of this study is to show that players
lose the character on a higher complexity level of the display and they find it
on a relatively lower complexity level.

1.1. Psychological Background. The cognitive ability of attention is a sig-
nificant factor in everyday life. The research of vigilance is an important topic
in Psychology from 1970 to the present day. The first method used to measure
vigilance was the Mackworth Clock [9]. Another method is the Toulouse-Piéron
test [19], in which participants have to follow a given scheme to separate right
and wrong signs. The Yerkes-Dodson law [21] says that for achieving the best
performance there is an optimal arousal level, which level is higher in simpler
tasks, and lower in complex activities. We must not forget that as in some
other things, in the attentional system there are also personal differences that
should be taken into consideration while researching the subject [6]. Witkin et
al. did research on perception [20], and from this work, they created a theory

1For example, see https://www.twitch.tv/videos/139186614
2For example, see https://www.twitch.tv/videos/206478952

BRAINB TEST SERIES 6 17

Figure 1. A screenshot of BrainB Test Series 6 in action. The
greater the visual complexity of the screen, the greater the prob-
ability of losing the character.

about two different cognitive styles. Sagan wanted to calculate the information
processing speed of the brain, to do so, he based his calculation on the example
of looking at the moon, and from this example he drew the consequence, that
the brain can process about 5000 bit/sec at its peak performance [17]. In a
modern project, called Building 8, the main thought is to make the brain into
a computer [11]. Based on this project, the information processing speed of
the brain is about a terabyte/sec, which far exceeds the speed estimated by
Sagan. These type of tests and experiments are common tools in the science
of psychology [16], [15], [14]. Repeatedly performing the same experiment or
test with the same participants could affect the results. Previously, as we
specified, repeatedly using the same method could cause the lowering of its
validity, and the results could be distorted. Participants can learn and adapt
to certain methods, even if it just means a small percentage of difference. The
current test takes 10 minutes to complete, in this 10 minutes the participant’s
full attention and concentration is needed. We should keep in mind, that the
negative effects of fatigue could balance the positive effects of practice, in a
direct way through the use of repeated examinations. It is therefore proposed
to perform our benchmark test in a competitive environment trying to beat
friends, family members, colleagues or ourselves.

18 N. BÁTFAI, D. PAPP, R. BESENCZI, G. BOGACSOVICS, D. VERES

1.2. Informatics Background. Since computer games have a relatively short
history and their effects on cognitive skills have only recently started to be re-
searched, there are plenty of questions to be answered. In [8], the authors
reported an increase in executive functions in school students after playing
computer games. Moisala et al. in [10] shows that enhancements in speed
and performance accuracy of working memory tasks is related to daily gaming
activity. In [5], authors present an analysis of the impact of action video games
on cognitive skills. Using computer games to measure cognitive abilities has a
short history, but a promising future. Most research try to measure the pres-
ence or severity of a certain cognitive disease such as dementia or Alzheimer’s
disease. In [1], authors show how a long-term use of video games can reduce the
costs of multitasking in older adults. Geyer et al. in [7] show that the change
of the score of an online game is in connection with the age-related changes in
working memory. Seldom can we find applications that have been developed
for the measurement of cognitive abilities. One such application is reported in
[13] and [12]; it is a framework that has been developed to measure cognitive
abilities and its change in the elderly with computer games. This framework
is able to log and analyze scores achieved in various online computer games.
From the viewpoint of information theory and HCI (Human-Computer Inter-
action), the Hick’s law [18] could be an interesting aspect. This law states that
the response time of the brain increases with the logarithm of the size of the
input. For our purposes, it seems to present an interesting question: how can
we apply the Hick’s law (or other information theory figure) in our benchmark
software?

1.3. Losing The Character. We have experienced the sensation of losing the
character during playing several games3. Now we share our thoughts about the
phenomenon of “losing the character” and give some examples to illustrate it
from the game called League of Legends. As we head into the mid and late
game, teams start fights more often with more people, even with all of them.
This is what we call “teamfights”. These are harder to handle, because a lot
of things can appear on our screen at the same time including: the champions
who participate in the fight, optionally minions or jungle monsters, and the
visual effects of the spells, summoner spells, and the active or passive abilities
of the items. Besides those effects, we see a lot of other things and we still have
to make sure that we fulfill our ingame role properly: position well, attack the

3For example League of Legends, https://na.leagueoflegends.com, Clash of Clans,
http://supercell.com/en/games/clashofclans/, Clash Royale, http://supercell.com/
en/games/clashroyale/, Heroes of the Storm, https://heroesofthestorm.com, Dota 2,
https://www.dota2.com, World of Warcraft, https://worldofwarcraft.com or Cabal,
http://cabal.playthisgame.com.

BRAINB TEST SERIES 6 19

proper target, or defend our teammates. We have to handle a lot of information
at a blink of an eye, so it is completely natural, that sometimes we do not know
where to look or what to do. Consequently, we can lose our own character,
which can end with our death, or: we can lose the target character, and it
can survive; or we can lose the character that we wanted to protect, thus an
important member of the team can die. An example ingame footage can be
viewed at https://youtu.be/wdy3KUm1454, starting at 2:12.

2. Brain Benchmarking Series 6

BrainB is a Qt C++ desktop application that uses the OpenCV library. It is
developed as an open source project that is available on GitHub [2]. Its source
can be built easily on GNU/Linux systems. But the latest (6.0.3) Windows
binary release can also be downloaded as a ZIP file from http://smartcity.
inf.unideb.hu/~norbi/BrainBSeries6/. The code snippet shown in Listing
1 is the heart of our benchmark program. It is a simplified version of the
original source code that can be found in the GitHub repository4. This code
is executed at every 100 milliseconds that is ten times per second. First, as
shown in Line 1, it computes the distance between the mouse pointer and the
center of the box of Samu Entropy and the result is stored in the variable called
dist that holds the square of the Euclidean distance. If the distance is larger
than 121 pixels (11 is the square root of 121) and if it reoccurs 12 consecutive
times or more in a row (that means at least a time interval of 1.2 seconds)
and it is also true that the player was controlling the character well in the
previous time slices (that is in Line 6 the state is equal to found) then we say
that the user has lost the character Samu Entropy and the visual complexity
of the display will be saved in Line 7. The sequence of these losing values
and the symmetrical finding values saved in Line 16 are shown in Fig. 2. The
complexity is computed in bits per second (bps) units that is based on the
number of changed pixels between two consecutive rectangular environments
of the character with a given width and height.

Finally, it should be noticed that the magic-numbers such as 121 or 12 in
the code snippet Listing 1 are based on systematic tryouts. Using these values
allows players to experience the sensation of losing the character during the
10 minutes of the test. The code snippets Listing 1 and 2 do not include ad-
vanced C++ language specific elements so it can be considered as pseudocode.
However using the original source code gives the possibility to investigate the
algorithm of BrainB as precise as possible.

4https://github.com/nbatfai/esport-talent-search/blob/master/BrainBWin.
cpp#L65

20 N. BÁTFAI, D. PAPP, R. BESENCZI, G. BOGACSOVICS, D. VERES

Listing 1. The algorithm for administration of losing and find-
ing the character.

1 int dist = (this ->mouse_x - x) * (this ->mouse_x - x)
2 + (this ->mouse_y - y) * (this ->mouse_y - y);
3 if (dist > 121) {
4 ++ nofLost; nofFound = 0;
5 if (nofLost > 12) {
6 if (state == found && firstLost) {
7 found2lost.push_back(brainBThread ->get_bps ());
8 }
9 firstLost = true;

10 state = lost; nofLost = 0; brainBThread ->decComp ();
11 }
12 } else {
13 ++ nofFound; nofLost = 0;
14 if (nofFound > 12) {
15 if (state == lost && firstLost) {
16 lost2found.push_back(brainBThread ->get_bps ());
17 }
18 state = found;
19 nofFound = 0; brainBThread ->incComp ();
20 }
21 }

The final result printed by the benchmark after it ends in the form “U R
about 5.92902 Kilobytes” is the mean of upper bounds for the bps values of
the display measured when the variable state changes from found to lost (in
Listing 1 from Line 6 to 9) and vice versa, when the variable state changes
from lost to found (in Listing 1 from Lines 15 to 18). The simple calculation
of this final result is shown in Listing 2.

Listing 2. The calculation of the final result of the benchmark.
1 int m1 = mean (lost2found), m2 = mean (found2lost);
2 double res = ((((double) m1
3 + (double) m2) /2.0) /8.0) /1024.0;
4 textStream << "U␣R␣about␣" << res << "␣Kilobytes\n";

2.1. First Measurements. As concluded in our former preliminary study [3],
one of the further developments of Series 5 is changing to full screen from fixed-
size window. This modification affects the basic operation of the benchmark,
so the first objective was to verify that whether the sensation of losing the
character still appears correctly or not. On Windows systems there were no
problems. One of the first experiments using default settings on Windows 10
can be seen in Fig. 2 and Fig. 1.

BRAINB TEST SERIES 6 21

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50 60

20
00

0
40

00
0

60
00

0
80

00
0

Index

bp
s

F
L

F

L

F

L

F

L

F

L

F

L
F

L
F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F
L

F

L

F

L

F

L

F

L

F
L

F

L

F

L

F

L

F

L

F

L

F

Figure 2. The bps values associated to events of losing and
finding. The first element of this sequence is the first element
of the lost2found (shown in Listing 1 Line 6) sequence. The
second element is the first element of the found2lost, and so
on. It should be noticed that the losing (labeled by L) and
finding (F) events are mixed, see, for example the 13th event
on the x axis where the complexity of finding is greater than
the complexity of losing in this individual measurement.

2.2. Systematic Measurements with Series 6. The BrainB Series 6 was
measured in two groups: UDPROG and DEAC-Hackers. The first one is
a Facebook community of the BSc course of “High Level Programming Lan-
guages” at the University of Debrecen. The second one is an esport department
of the University of Debrecen’s Athletic Club. Participation in the BrainB Se-
ries 6 survey was voluntary in both groups. In the UDPROG community 33
members send back their results including the PNG screenshot and the pro-
duced text file within 2 days from the date of announcement (20 August 2018).

22 N. BÁTFAI, D. PAPP, R. BESENCZI, G. BOGACSOVICS, D. VERES

The averaged losing and finding curve for all members is shown in Fig. 3. It
should be noticed that x-axis is not the time when the losing or finding events
were occurred but only the order of events. The index denotes the temporal
order of events that occurred. This simple averaged curve has shown that the
consecutive losing and finding events has been precisely separated. We believe
this means that our notion of losing and finding is strong enough to capture
the investigated phenomenon “losing the character”. In addition, the easily
understandable averaged curve allows us to avoid application of mathematical
statistics hypothesis testing in this case.

All anonymized raw data measured in this experiment can be found at http:
//smartcity.inf.unideb.hu/~norbi/BrainBSeries6/measurements (in the
DEAC-Hackers community 12 esport players send back their results).

3. Conclusion

Our research hypothesis was that the mean of the complexity of changing
lost to found is less than the mean of the changing found to lost. Fig. 3
shows the fulfillment of this hypothesis. It seems very clear in these figures
that the averaged losing and finding curve has precisely separated the losing
and finding events. Intuitively, this result shows that we lose the character
on a higher complexity level then we find it on a relatively lower level again.
This simple hypothesis has been proved by the results of this study. In order
to further strengthen the completion of our benchmark test in a competitive
way in the following versions we are going to offer to test subjects a little more
liberty of fine-tuning the settings, for example with regard to the fine-tuning
of mouse settings and to using custom colors. The next research objective will
be to verify the satisfaction of Hick’s law. To achieve this goal it is simple
enough to compare the complexity of the finding and losing events with the
time differences for each. Unfortunately, the actual version of the BrainB
benchmark does not record these timestamps. The BrainB Series 7 will contain
this feature. Our long-term research goal is to further develop our benchmark
to a standard psychological test that can be used for talent search in esport.

4. Acknowledgment

Thanks to the students of the BSc course titled “High Level Programming
Languages” at the University of Debrecen, to the members of the NEMESPOR
mailing lists https://groups.google.com/forum/#!members/nemespor, to the
members of the UDPROG Facebook community https://www.facebook.com/
groups/udprog and to the members of the DEAC-Hackers esport department
http://deac.hu/szakosztalyok/esport for their interest and for performing

BRAINB TEST SERIES 6 23

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50 60 70

20
00

0
40

00
0

60
00

0
80

00
0

Index

bp
s

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

L

F

Figure 3. Measurements in the community UDPROG. The
arithmetic mean of the final results of UDPROG participants
is 4.95345. This figure shows the averaged losing and finding
curve for all UDPROG participants where the losing (L) and
finding (F) events are also indicated. The anonymized data
can be found at http://smartcity.inf.unideb.hu/~norbi/
BrainBSeries6/measurements/UDPROG/.

the BrainB Test Series 6. Special thanks to Roland Paszerbovics, Gergő Ha-
jzer and Péter Rozsos for their interest and support and to Nándor Benjámin
Bátfai for performing the BrainB Test Series 6 on several occasions. Finally,
our thanks go to Dr. Péter Jeszenszky and Mr. Louis Mattia for reading the
manuscript and suggesting improvements. A broader version of this paper can
be found as Arxiv preprint [4]. Author contributions were the following: N. B.
conceived the idea, developed the benchmark program, collected the data from
the UDPROG community and analyzed the measurements. R. B. collected the
data from the DEAC-Hackers. All authors wrote the manuscript.

24 N. BÁTFAI, D. PAPP, R. BESENCZI, G. BOGACSOVICS, D. VERES

References

[1] J. A. Anguera, J. Boccanfuso, J. L. Rintoul, O. Al-Hashimi, F. Faraji, J. Janowich,
E. Kong, Y. Larraburo, C. Rolle, E. Johnston, and A. Gazzaley. Video game training
enhances cognitive control in older adults. Nature, 501(7465):97–101, 2013.

[2] N. Bátfai. esport-talent-search. GitHub repository, 2017. https://github.com/
nbatfai/esport-talent-search (visited: 2018-09-09).

[3] N. Bátfai, G. Bogacsovics, R. Paszerbovics, A. Antal, I. Czevár, V. Kelemen, and
R. Besenczi. E-sportolók mérése (Measuring esport athletes). Információs Társadalom,
18(1):146–155, 2018. Original document in Hungarian: http://real.mtak.hu/79216/
1/it_2018_1_10_batfai_et_al.pdf (visited: 2018-09-09).

[4] N. Bátfai, D. Papp, R. Besenczi, G. Bogacsovics, and D. Veres. Benchmarking Cognitive
Abilities of the Brain with Computer Games. ArXiv e-prints, 2018. https://arxiv.org/
abs/1809.00172 (visited: 2018-09-09).

[5] B. Bediou, D. M. Adams, R. E. Mayer, E. Tipton, C. S. Green, and D. Bavelier. Meta-
analysis of action video game impact on perceptual, attentional, and cognitive skills.
Psychological bulletin, 144(1):77–110, 2018.

[6] V. Csépe, M. Győri, and A. Ragó. Általános pszichológia 1. - Észlelés és figyelem. Osiris
Kiadó, 2007.

[7] J. Geyer, P. Insel, F. Farzin, D. Sternberg, J. L. Hardy, M. Scanlon, D. Mungas,
J. Kramer, R. S. Mackin, and M. W. Weiner. Evidence for age-associated cognitive
decline from internet game scores. Alzheimer’s & Dementia: Diagnosis, Assessment &
Disease Monitoring, 1(2):260–267, 2015.

[8] B. D. Homer, J. L. Plass, C. Raffaele, T. M. Ober, and A. Ali. Improving high school stu-
dents’ executive functions through digital game play. Computers & Education, 117:50–
58, 2018.

[9] N. H. Mackworth. The breakdown of vigilance during prolonged visual search. Quarterly
Journal of Experimental Psychology, 1(1):6–21, 1948.

[10] M. Moisala, V. Salmela, L. Hietajärvi, S. Carlson, V. Vuontela, K. Lonka,
K. Hakkarainen, K. Salmela-Aro, and K. Alho. Gaming is related to enhanced working
memory performance and task-related cortical activity. Brain Research, 1655:204–215,
2017.

[11] R. Nieva. Facebook’s moonshots: making brains type and skin hear, 2017.
https://www.cnet.com/news/facebook-f8-building-8-moonshot-projects-
zuckerberg-regina-dugan/ (visited: 2018-09-09).

[12] B. Pataki, P. Hanák, and G. Csukly. Computer games for older adults beyond enter-
tainment and training: possible tools for early warnings-concept and proof of concept.
In ICT4AgeingWell, pages 285–294, 2015.

[13] B. Pataki, P. Hanák, and G. Csukly. Surpassing entertainment with computer games:
online tools for early warnings of mild cognitive impairment. In M. Helfert, A. Holzinger,
M. Ziefle, A. Fred, J. O’Donoghue, and C. Röcker, editors, Information and Communi-
cation Technologies for Ageing Well and e-Health, pages 217–237. Springer International
Publishing, 2015.

[14] D. E. Powers. Test preparation for the GRE analytical ability measure: differential
effects for subgroups of GRE test takers. ETS Research Report Series, 86(2):1–19, 1986.

[15] D. E. Powers and S. S. Swinton. Effects of self-study for coachable test item types.
Journal of Educational Psychology, 76(2):266–278, 1984.

BRAINB TEST SERIES 6 25

[16] S. Rózsa, N. O. Nagybányai, and A. Oláh. A pszichológiai mérés alapjai: elmélet, mód-
szer és gyakorlati alkalmazás. Bölcsész Konzorcium, 2006.

[17] C. Sagan. Dragons of Eden: speculations on the evolution of human intelligence. Ran-
dom House Publishing Group, 2012.

[18] S. C. Seow. Information theoretic models of HCI: a comparison of the Hick-Hyman law
and Fitts’ law. Human-Computer Interaction, 20(3):315–352, 2005.

[19] E. Toulouse and H. Piéron. Toulouse-Piéron-Revisado Prueba perceptiva y de aten-
ción. TEA, 8 edition, 2013. http://www.web.teaediciones.com/Ejemplos/Extracto_
libro_TP-R.pdf (visited: 2018-09-09).

[20] H. A. Witkin, H. B. Lewis, M. Hertzman, K. Machover, P. Meissner, and S. Bret-
nall Wapner. Personality through perception: an experimental and clinical study. Harper,
Oxford, England, 1954.

[21] R. M. Yerkes and J. D. Dodson. The relation of strength of stimulus to rapidity of
habit-formation. Journal of Comparative Neurology and Psychology, 18:459–482, 1908.

All authors are with the University of Debrecen, P.O. Box 400, H-4002,
Debrecen, Hungary.

Email address: {batfai.norbert, besenczi.renato}@inf.unideb.hu

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIV, Number 1, 2019
DOI: 10.24193/subbi.2019.1.03

MEDICAL IMAGE ANALYSIS WITH SEMANTIC

SEGMENTATION AND ACTIVE LEARNING

CHARLES ISAH SAIDU1,∗ AND LEHEL CSATÓ2

Abstract. We address object detection using semantic segmentation and
apply it for prostate detection in an MRI data-set. Our detection pipeline
uses first a segmentation step followed by a classifier with a convolutional
neural network (CNN). Since the segmentation provides a set of unbalanced
data-sets – where a high accuracy is difficult to obtain – we leverage the
prospect of improving detection accuracy using a Bayesian treatment of
deep networks and the possibility of better exploiting the data using active
learning. The resulting algorithm is both adaptive and data-efficient: by
assuming that from a large pool of data only a few are segmented, the
active learning module of the algorithm finds the image that improves
most detection accuracy. We test our algorithm on a prostate medical
image data-set and show that the active learning-based algorithm performs
well in the prostate detection class. The resulting system is invariant to
translations within the image and the results show improvements when
using the pipeline that includes active learning and CNNs.

1. Introduction

Semantic segmentation is the task of annotating an image: which region
in an image belongs to a defined class [14, 31]. Since images are pixels, in
practice we have to classify every pixel – a difficult task since class informa-
tion is not local to single pixels; consequently semantic refers to the global
character of the segmentation task. In this work we focus on a mixed seg-
mentation approach that involves both “traditional” image processing [28] as
well as adaptive neural-network-based classification modules [3]. The image
processing modules are used to segment the images into superpixels [2] that
are subsequently fed into a neural network-based classifier that classifies the
superpixel as belonging to the region of interest or not. Superpixels, the result

Received by the editors: September 25, 2018.
2010 Mathematics Subject Classification. 68T10, 68U10.
1998 CR Categories and Descriptors. H.3.3 [Information Storage and Retrieval]:

Information Search and Retrieval – Clustering ; I.4.6 [Image Processing and Computer
Vision]: Segmentation – Edge and feature detection;

Key words and phrases. semantic segmentation, active learning, deep networks.

26

SEMANTIC SEGMENTATION WITH ACTIVE LEARNING 27

Figure 1. Axial scan of prostate gland region. The high-
lighted areas are similar to the prostate gland – in the centre
– and difficult to discriminate, leading to classification errors.

of the semantic segmentation, are the classification atoms in this work, this
simplifies the classification task and helps to better segment the image.

1.1. Problem statement. We aim for a good classifier that is able to “select”
– or label – the regions of interest (ROI) in an image – an example is provided
in Fig. 1. The learning is classification-based and we use a set of labelled
images for training. We do not aim for a pixel-level classification and consider
the existence of a pre-processing step that identifies the superpixels.

We aim to build a superpixel classification procedure that leads to an effi-
cient labelling of the entire image. Our goal is to have a classifier that is:

• adaptive – it is able to learn from labelled data;
• efficient – it is able to learn from a small set;
• generic – the recognition is location-invariant – exploiting thus the

higher-order invariants within the ROI, as illustrated in Fig. 1.
We focus on automated medical image segmentation: identification of the

region of interest (ROI) within an image [see for example 19]. We use the
prostate data-set from the I2CVB initiative,1 one image is in Fig 1. This is a
natural data-set and is considered as difficult to handle due to low contrast,
speckle, micro-calcification in MRI images, as well as the presence of imaging
artefacts [10].

1.2. The suggested solution. We focus on the classifier in the processing
pipeline in Fig. 2 and use a deep convolutional neural network [3, 13] for
classification and we optimise the learning procedure by using active learning.
Active learning – also called “query learning” – is important since it allows us

1The database is available at http://i2cvb.github.io/

28 SAIDU C.I. AND CSATÓ L.

P
ro

st
a
te

im
a
g
e

S
m

o
o
th

in
g

S
o
b

el
fi
lt

er
in

g
[2

8
]

W
a
te

rs
h
ed

[1
7
]

R
es

ca
li
n
g

S
u
p
e
rp

ix
e
l

se
t

D
e
e
p

C
N
N

cl
a
ss

ifi
er

L
a
b

el
ed

S
u
p
e
rp

ix
e
l

S
et

S
e
g
m
e
n
te

d
p
ro

st
a
te

im
a
g
e

Figure 2. The processing pipeline starts with classical image
processing, is followed by an adaptive classifier, a convolutional
network. The annotated image is built from the labelled units.

to train the system using less data [7, 25]. Active learning is also important
since the resulting superpixel classification problem is unbalanced [3]: out of
≈ 60 superpixels only a few are positive. Class imbalance leads to problems for
the classifier: classifying all superpixels negative is a strong local optimum, and
the learning might stop at this state. We use active learning and re-sampling
techniques [4] to counter the class imbalance.

1.3. Structure of the paper. First, in Sec. 2 we list the related literature,
then we discuss our proposed solution in Sec. 3. We test the proposed algo-
rithm in Sec. 4, discuss our findings and further research directions in Sec. 5.

2. Related work

In this section we present two categories of research for medical image seg-
mentation: graph-based segmentation and pixel-level classification based on
deep networks.

2.1. Graph-based semantic segmentation. These methods build graphs
where the nodes are superpixels and the weighted connections are computed
using similarity measures between superpixels [7, 30, 31]. It is worth noting
that the main motivation is to minimize annotation efforts by labelling groups
of pixels – known as superpixels – instead of single pixels.

Vezhnevets et al. [31] used pairwise – label- and “connectedness” – con-
ditional random fields (CRFs) over superpixels. The goal was to learn the
parameters of this joint model using an energy function that captures both
the ability to classify superpixels (unary potential) and the connectedness of
superpixels to its neighbouring superpixels. Vezhnevets et al. [31] also ap-
plied active learning by designing a query scoring function that attempts to
maximize the expected model change on the appearance model parameters.

SEMANTIC SEGMENTATION WITH ACTIVE LEARNING 29

Fathi et al. [7] focused on semantic video segmentation by building a graph
of superpixels connected via a similarity metric. Here an incremental self-
training approach was proposed that iteratively first labels the least uncertain
frame, followed by the update of similarity metrics based on the extended set
of labels.

2.2. Semantic segmentation with deep networks. Several techniques
that are based on neural networks have been proposed for semantic segmen-
tation and object detection. By far not exhaustive, we mention the work of
Ciresan et al. [5] using deep networks, the fully convolutional network by Shel-
hamer et al. [27], U-NET semantic segmentation by Ronneberger et al. [22],
R-CNN and “Fast R-CNN” for object detection [11, 12], “Faster R-CNN” by
Ren et al. [21] and Masked R-CNN by He et al. [15].

Ciresan et al. [5]2 used sliding windows approach. Each sliding window/image
patch was labelled and subsequently used as input to a deep neural network.
The method was difficult to train: there were a lot of overlapping patches for
each image; making it computationally expensive. The patch size induced a
trade-off between localization accuracy and patch size: larger patches require
more layers and their size reduces localization [see e.g. 22].

Shelhamer et al. [27] extracted individual patterns from the image and clas-
sified patches independently. They use multiply connected convolution layers
and no fully connected layers. Each convolution layer preserves the size of the
input image – the output size is the same size as the input size. Each pixel in
the output is annotated and the training was done using uses the cross-entropy
likelihood.

Ronneberger et al. [22] proposed U-Net, an extension in architecture of Shel-
hamer et al. [27]. In their work, only a few training samples are required and
the labelled data were in turn augmented. They used up-sampling operators
in the decoding part of the network and applied the algorithm successfully to
biomedical image segmentation.3

Girshick et al. [12] developed the “R-CNN” model for object detection. In
contrast to the sliding window approach of [5], they used a selective search
for sub-regions, and the ROI was determined using these regions only. The
R-CNN model was later extended by the same team under the name “Faster
R-CNN” [11]. We also mention “Mask R-CNN” [15] that is an extension of
the original R-CNN [12] for object instance segmentation. This latter model
uses a “simple model” for image class detection and one for segmentation.

2The work has won the electron-microscopy image segmentation challenge in 2012.
3The work has won the ISBI cell tracking challenge in 2015, emb.citengine.com/event/

isbi-2015/details, result presented at the ISBI conference (accessed 02.10.2018).

30 SAIDU C.I. AND CSATÓ L.

3. Active Learning using Deep Networks

In what follows, we concentrate on the classification task – the Deep Net
classifier – DNN – from Fig. 2. The inputs to the DNN are the superpixels
and we know – see Sec. 1.2 – that the set of labels is extremely unbalanced:
often we have 60 negative examples and a single positive one. To counter the
negative effect of unbalanced data, a guided data selection – the active learning
framework [25] – is used, in combination with gradient descent for neural
networks and the probabilistic output – necessary for the scoring functions
– is provided by the dropout mechanism [8]. We present first the neural
network architecture, then the active learning framework, followed by a general
overview of the algorithm.

In what follows Xu = {x1, x2, . . . , xn} denotes the set of re-scaled superpix-
els. Since labelling is assumed to be difficult, we only have a small labelled
data-set D` = {(x1, y1), (x2, y2), . . . , (xl, yl)}, with l � n and Xu = X \X` is
the pool of unlabelled superpixels.

3.1. Deep networks with dropout and probabilistic outputs. For each
image, we pre-segment the image using watershed algorithm, hence generating
patches of images which we call superpixels - this is opposed to using the
sliding-windows approach. These superpixels formed input to the deep neural
network. Since each image produces many superpixels set and the task is
to identify a region as prostate and not prostate, labelling all superpixels
within an image would be laborious.So we endowed the deep neural network
with a Bayesian treatment and the started by training only a small sample.
The resulting sub-optimal classifier is then used together with active learning
technique as a probe for searching the remaining unlabelled superpixels for
ONLY informative superpixels that will improve accuracy and generalization.
Hence, we use a “deep neural network” with both a convolution part and a fully
connected part. We use 4× 4 convolution matrices, yielding 32 filters – since
we aimed to capture pattern diversity. Each of the two convolution layer is
followed by a relu non-linearity layer. After the last convolution level we have
a dropout layer with dropout mean probability of 0.5. The fully connected
part contains 3 dense layers each followed by a relu and a dropout 0.5 layers.
The last layer is a softmax layer; the network error function is cross-entropy,
and the training was done using the gradient descent with ADAM learning
[18]. For network – i.e. classifier – optimisation we use gradient descent with
the tensorflow package [1] and the optimisation uses only the dataset D`.

Dropout – originally introduced to prevent model over-fitting [29] – uses a
“blocking mechanism”: if a binary gate is open, the neuron output is calculated
normally, if the gate is closed, the output of the respective neuron is zero.

SEMANTIC SEGMENTATION WITH ACTIVE LEARNING 31

Aside from its stabilising role, dropout can also be used to calculate predictive
uncertainties [8, 9]: we sample the dropout gates and this leads to different
weight vectors ωt – with some of the weights set to zero, providing in turn a
predictive distribution given as:

(1) P (y|x) ≈ 1

T

∑
T
t=1 P (y|x, ωt)

with ωt = ω⊗ gt where gt is a configuration of the dropout gates. We mention
that the above scheme is valid only if training was made using dropout. We be-
lieve that dropout is important: Gal et al. [9] has shown that dropout is equiv-
alent to performing an approximate Bayesian inference, therefore the samples
are approximations of the “true posterior” distribution. The a-posteriori dis-
tribution is used to decide which superpixel will be included into the training
set: it is based on scoring the super-pixels, the different query scores are de-
fined in Sec. 3.2.

3.2. Querying Technique. The querying technique or acquisition function
[26] defines a score for superpixels. Based on this score the unlabelled super-
pixels will be selected and labelled. The scoring is done such that it brings
the most “information” conditioned on the already labelled data. We explored
the following scoring functions:

(1) Maximum entropy chooses the superpixels that maximize the predic-
tive entropy [20]:

x∗ = arg max
x∈Du

H[y|x,Du]

(2) BALD (Bayesian Active Learning By Disagreement) looks for the su-
perpixel x that maximizes the decrease in conditional entropy caused
by the posterior [9, 16]:

x∗ = arg max
x∈Du

H[y|x,Du]− Ep(ω|Du)H[y|x,Du]

(3) Random acquisition: randomly chooses a subset of unlabelled super-
pixels from the pool.

We compare the acquisition functions in the Results Section 4.3.

3.3. Oversampling the data. We found that – in spite of the results of
Ertekin et al. [6] showing that active learning provides a natural way to handle
imbalanced data – using active learning alone does not eliminate label imbal-
ance. Instead, when running the full pipeline, we found that over-sampling of
positive data and under-sampling negative data is useful.

Oversampling is a technique used to adjust class distribution of a dataset:
the synthetic minority oversampling technique, or SMOTE, replicates samples
based on the k-nearest neighbours of the under-sampled items [4]. Aside from

32 SAIDU C.I. AND CSATÓ L.

-0.5

Prostate data with random sampling

-0.6

-0.4

Kernel PCA #2

0

-0.2

0.6

0

Ke
rn

el
 P

C
A

#3

0.4

0.2

0.4

0.2

Kernel PCA #1

0.6

0
-0.2 0.5-0.4

-0.6

Negative data

Positive data

-0.5

Prostate data after SMOTE sampling

-0.6

-0.4

Kernel PCA #2

0

-0.2

0.6

0

Ke
rn

el
 P

C
A

#3

0.4

0.2

0.4

0.2

Kernel PCA #1

0.6

0
-0.2 0.5-0.4

-0.6

Negative data

Positive data

(a) (b)
Figure 3. Superpixel visualisation – using kernel PCA – with
(a) uninformed sampling and (b) informed SMOTE oversam-
pling – image best viewed in colour.

the improved performance, the oversampling method was motivated from a
visualization of the superpixel dataset from Fig. 3. In the visualisation we
looked at the “topology” in the superpixel space: we wanted to assess the
separability of the superpixels as defined by the classification problem. We
used the kernel PCA method [24] – a non-linear projection methods that
takes into account the distribution of the superpixels – and coloured the ROI
superpixels as red, the negative data as black. We see that the oversampling
makes the two classes more separable in the latent space.4

3.4. The full algorithm. We detail the adaptive “Deep CNN classifier” –
shown in Algorithm 1 – the part of the image segmentation pipeline from Fig. 2.
The input to the algorithm is the collection of resized and cropped superpixels.

To mimic real situation, we consider that superpixel labelling is done on-
demand: when required, one can ask an expert to label an image, leading to
a labelling of a superpixel set.

The training starts by labelling a small randomly selected set of superpixels
– this was set to 50 to mimic the acquisition of superpixels from a single image.

After the initial labelling the algorithm proceeds by using the active learning
technique described in sec. 3.2: we select from a pool of unlabelled superpixels
Du to add to the training set D`, then we re-train the model.

The iteration follows as long as a stop-condition is not met or all data has
been labelled, i.e. Xu = ∅. In our experiments we use a fixed number of
iterations as stop-condition, this number resulted from testing the algorithm
and finding that going over 30 iterations makes no difference in performance.

4Since the classification is not performed by a kernel machine [23], the plots provide
only hints about the difficulty of the classification task.

SEMANTIC SEGMENTATION WITH ACTIVE LEARNING 33

Algorithm 1 The Active Segmentation Algorithm

1: procedure Training(Xu)
2: Select Xinit; Xu = Xu \Xinit . superpixels from a single image
3: D` ← oracle(Xinit) . labelling
4: trainedModel← deepConvNet(D`) . initial training
5: repeat
6: Xsub ⊂ Du

7: Ssub ← scoreSuperpixel(trainedModel, Xsub)
8: k ← arg max{si | si ∈ Ssub} . index of the “best” s.pixel
9: yk ← oracle(xk) . labelling the selected superpixel

10: . if oversampling, then
11: Xk ← {(xk, yk)} . Xk ← oversample ((xk, yk))
12: D` = D` ∪Xk

13: Xu = Xu \ {xk}
14: trainedModel ← deepConvNet(D`) . re-training
15: until stopCondition ∨Xu = ∅
16: return trainedModel

4. Experiments and results

The experiments used the pipeline from Fig. 2: we first perform a Gaussian
smoothing, followed by a Sobel filtering [28], before using watershed to gener-
ate the superpixels. These patches – after labelling – will be combined into a
segmented image as a result of the processing pipeline.

We use MRI axial scans from a total of 30 patients. Each patient’s data-
base consists on average of 20 axial slices of the prostate region at different
levels. For each image slice, we perform over-segmentation of the regions
within the image and generate an average of 60 superpixels per slice, making
an approximate total of 36, 000 superpixels that can potentially be used for
training.

4.1. No-oversampling Experiment. To handle location-invariance, we crop
out each superpixel/patch and resize to a standard size of 40×40 pixels before
feeding into the convolutional network. This process further constrains and
makes ROI detection a bit more difficult for this data-set. In particular – as in
Fig. 1 – it is obvious that there are huge similarities in feature space between
highlighted regions thus making it a lot more difficult for the classifier to learn
which of these regions is prostate and which is not. In addition, our approach
creates a hugely imbalanced data-set shown in Fig. 3.b, where we show a
kernel PCA projection of the data-set. Consequently, we observed that active

34 SAIDU C.I. AND CSATÓ L.

0 5 10 15 20 25 30
Number of Acquisitions

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AU
C

AUC graph for Prostate Dataset

BALD
Max Entropy
Random

0 5 10 15 20 25 30
Number of acquisitions

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
U
C

AUC graph for Prostate OVERSAMPLED Dataset

BALD
Max Entropy
Random

(a) (b)
Figure 4. Area Under the ROC Curve (AUC) for (a) non-
oversampled and (b) oversampled data-set.

learning alone did not deal implicitly with the issue of class imbalance as re-
ported by [6] - A case that needs further investigation. However, after actively
overssampling during each training step, considerable performance gains were
observed as depicted in 4.3.

4.2. Oversampling Experiment. In order to evaluate the effect of feature
space similarities in superpixels and class imbalance in the task of detection
and agglomeration of the prostate region, we set up the experiment with a
slight modification to the algorithm. This is prompted by the kernel PCA
visualization of the data as a result of oversampling as shown in Fig. 3. In
the modification, we oversampled only after each batch acquisition from the
data-set. Algorithm 1 captures the idea if the oversampling flag set to True.

4.3. Results. Fig. 4 shows the results of successive Area Under the Receiver
Operating Characteristic curve (AUC-ROC). From the figure, it would be
misleading to think that performance improves as more superpixels are added
to the training set. However, to the contrary, we obtained zero precision and
zero recall when increasing the data-set size. Recall from Sec. 1.1 and the
illustration in Fig. 1 that there is really very marginal distinction between
regions of the prostate and non-regions of the prostate especially when the
images are cropped, coupled with the fact that the imbalance ratio between
negative and positive class is 60 to 1.

Consequently, we decided to over-sample the most informative superpixels
after acquisition so as to give the algorithm more representation of what the
actual prostate superpixels look like. This led to Fig. 4.b and Fig. 5 in which
Fig. 5 shows improvement in precision of the prostate region after the 15-th
acquisition.

SEMANTIC SEGMENTATION WITH ACTIVE LEARNING 35

0 5 10 15 20 25 30
Number of Acquisitions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

o
n

Precision graph for Prostate OVERSAMPLED Dataset

BALD
Max Entropy
Random

0 5 10 15 20 25 30
Number of Acquisitions

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

R
e
ca
ll

Recall graph for Prostate OVERSAMPLED Dataset

BALD
Max Entropy
Random

Figure 5. Precision (left) and recall (right) for oversampled data.

5. Conclusions and Future Research

We presented a semantic segmentation pipeline using active learning, pro-
viding a non-pixel-based adaptive segmentation; applied to medical images.
Within the active learning, to achieve better segmentation results, we had to
over-sample the positive class of superpixels, improving considerably the ac-
curacy of the system, measured through the AUC curve. We also obtained a
higher precision and recall compared to randomly selecting superpixels to be
used for training the neural network. Overall, we observed that active learn-
ing technique could be complemented with oversampling techniques for better
results.

In what follows, we plan to explore means of integrating active learning in
the U-NET-style of semantic segmentation. Researchers measured the capa-
bility of the detection pipelines [22] using a pixel-wise matching of the desired
and the true ROI. Applying the intersection over union (IoU) metric [22] means
that the whole processing pipeline is evaluated, therefore one might want to
optimise all other parameters also. An interesting prospect would be the use
of 3D kernels for segmentation: given that there are several data-sets where
the successive nature of the images can be exploited and the exploitation of
this extra information is a promising research direction.5

5.1. Acknowledgements. C.I. Saidu wants to thank the African Develop-
ment Bank for support via its home university. L. Csató acknowledges finan-
cial support of the European Regional Development Fund and the Romanian
Government through the Competitiveness Operational Programme 2014-2020,
project P/37/679, contract no. 157/16.12.2016.

5An example is the project “Lung cancer detection using 3D CNN’s” (link).

36 SAIDU C.I. AND CSATÓ L.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015.

[2] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk. Slic superpixels
compared to state-of-the-art superpixel methods. IEEE transactions on pattern analysis
and machine intelligence, 34(11):2274–2282, 2012.

[3] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, Inc.,
New York, NY, USA, 1995. ISBN 0198538642.

[4] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321–
357, 2002.

[5] D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. Deep neural networks
segment neuronal membranes in electron microscopy images. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 2843–2851. Curran Associates, Inc., 2012.

[6] S. Ertekin, J. Huang, L. Bottou, and L. Giles. Learning on the border: active learning
in imbalanced data classification. In Proceedings of the sixteenth ACM conference on
Conference on information and knowledge management, CIKM ’07, pages 127–136, New
York, NY, USA, 2007. ACM. ISBN 978-1-59593-803-9. doi: 10.1145/1321440.1321461.

[7] A. Fathi, M. F. Balcan, X. Ren, and J. M. Rehg. Combining self training and active
learning for video segmentation. In Proceedings of the British Machine Vision Confer-
ence, pages 78.1–78.11. BMVA Press, 2011. ISBN 1-901725-43-X.

[8] Y. Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.
[9] Y. Gal, R. Islam, and Z. Ghahramani. Deep Bayesian active learning with image data. In

D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 1183–
1192, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[10] S. Ghose, A. Oliver, R. Mart́ı, X. Lladó, J. C. Vilanova, J. Freixenet, J. Mitra, D. Sidibé,
and F. Meriaudeau. A survey of prostate segmentation methodologies in ultrasound ,
magnetic resonance and computed tomography images. Comput. Methods Programs
Biomed., 108(1):262–287, 2012. ISSN 0169-2607. doi: 10.1016/j.cmpb.2012.04.006.

[11] R. Girshick. Fast r-cnn. In The IEEE International Conference on Computer Vision
(ICCV), December 2015.

[12] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2014.

[13] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
[14] S. Gould, R. Fulton, and D. Koller. Decomposing a scene into geometric and semanti-

cally consistent regions. In Computer Vision, 2009 IEEE 12th International Conference
on, pages 1–8. IEEE, 2009.

[15] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask R-CNN. CoRR,
abs/1703.06870, 2017.

SEMANTIC SEGMENTATION WITH ACTIVE LEARNING 37

[16] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel. Bayesian active learning for
classification and preference learning. ArXiv e-prints, 2011.

[17] Z. Hu, Q. Zou, and Q. Li. Watershed superpixel. 2015 IEEE International Conference
on Image Processing (ICIP), pages 349–353, 2015. doi: 10.1109/ICIP.2015.7350818.

[18] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

[19] G. Litjens, R. Toth, W. van de Ven, C. Hoeks, S. Kerkstra, B. van Ginneken, G. Vincent,
G. Guillard, N. Birbeck, J. Zhang, R. Strand, F. Malmberg, Y. Ou, C. Davatzikos,
M. Kirschner, F. Jung, J. Yuan, W. Qiu, Q. Gao, P. Edwards, B. Maan, F. van der
Heijden, S. Ghose, J. Mitra, J. Dowling, D. Barratt, H. Huisman, and A. Madabhushi.
Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge.
Medical Image Analysis, 18(2):359–373, 2 2014. ISSN 1361-8415.

[20] D. J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cambridge
University Press, New York, NY, USA, 2002. ISBN 0521642981.

[21] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object
detection with region proposal networks. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems 28, pages 91–99. Curran Associates, Inc., 2015.

[22] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical
image segmentation. CoRR, abs/1505.04597, 2015.

[23] B. Scholkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA, 2001. ISBN
0262194759.

[24] B. Schölkopf, A. Smola, and K.-R. Müller. Kernel principal component analysis. In
B. Schölkopf, C. J. Burges, and A. Smola, editors, Advances in Kernel Methods - Support
Vector Learning, pages 327–352. MIT Press, 1999.

[25] B. Settles. Active Learning Literature Survey. Mach. Learn., 15(2):201–221, 2010. ISSN
00483931. doi: 10.1.1.167.4245.

[26] B. Settles, M. Craven, and S. Ray. Multiple-instance active learning. In Advances
in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference,
volume 20, pages 1289–1296, 2008. ISBN 160560352X.

[27] E. Shelhamer, J. Long, and T. Darrell. Fully convolutional networks for semantic
segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 39(4):640–651, Apr. 2014.
ISSN 0162-8828. doi: 10.1109/TPAMI.2016.2572683.

[28] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Machine Vision.
Thomson-Engineering, 2007. ISBN 049508252X.

[29] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1):
1929–1958, Jan. 2014. ISSN 1532-4435.

[30] A. Vezhnevets, V. Ferrari, and J. Buhmann. Weakly Supervised Semantic Segmentation
with Multi Image Model. Proc. Int’l Conf. Comput. Vis., 2011.

[31] A. Vezhnevets, J. M. Buhmann, and V. Ferrari. Active learning for semantic segmen-
tation with expected change. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., pages 3162–3169, 2012. ISSN 10636919.

1 Computer Science Department, African University of Science and Technol-
ogy, Airport Road, 10 km, Abuja, Nigeria

38 SAIDU C.I. AND CSATÓ L.

2 Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 1
Kogălniceanu, RO-400084 Cluj-Napoca, Romania

∗ Work partially done while at internship at Babeş-Bolyai University
Email address: isaidu@aust.edu.ng and lehel.csato@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIV, Number 1, 2019
DOI: 10.24193/subbi.2019.1.04

USING LATENCY METRICS IN NOSQL DATABASE

PERFORMANCE BENCHMARKING

CAMELIA-FLORINA ANDOR, BAZIL PÂRV, AND DAN MIRCEA SUCIU

Abstract. This paper presents an experimental study evaluating the per-
formance of NoSQL database management systems. The study compares
two NoSQL database management systems (Cassandra and MongoDB)
and considers the following parameters/factors: workload and degree of
parallelism. Two different workloads (update heavy and mostly read) were
used, and different numbers of threads. The measured results are related
to average latency: update latency and read latency. Our study shows
that with the only exception of 1000 operations, both latency indicators
have a quasi-parabolic behavior, where the minimum (i.e. the best perfor-
mance) depends mainly on the number of threads and slightly varies with
the increase in the number of operations. In the case of 1000 operations,
there is also a maximum point (i.e. worst performance) case, after which
the latency decreases.

1. Introduction

NoSQL data models appeared from practical reasons, some industrial solu-
tions becoming de facto standard solutions in the cases where the relational
data model failed to provide acceptable performance in terms of horizontal
scalability and high availability. A lot of different data models (key-value,
document, column-family, graph, etc.) are collectively known today as NoSQL
data models. Different providers offer today a large selection of highly con-
figurable and flexible NoSQL database management systems. They differ in
terms of the data models and distribution models they implement, as well as
the real problems appropriate for their use. Consequently, it is very difficult
to compare them. For the designer of an application using such a NoSQL

Received by the editors: January 8, 2019.
2010 Mathematics Subject Classification. 68P15, 68P99.
1998 CR Categories and Descriptors. H.2.1 [Database Management]: Logical design

– Data models; H.2.4 [Database Management]: Systems – Distributed databases, Parallel
databases.

Key words and phrases. NoSQL database, performance benchmarking, MongoDB,
Cassandra.

39

40 CAMELIA-FLORINA ANDOR, BAZIL PÂRV, AND DAN MIRCEA SUCIU

database management system it is not enough to read the technical documen-
tation in order to make the best design decisions. Instead, the usual approach
is to use some performance benchmarks, which helps to see the actual be-
havior of the database and to choose the appropriate hardware configuration.
This paper is the second describing a series of experimental studies, evalu-
ating different performance indicators of two NoSQL database management
systems: Cassandra and MongoDB. The current paper refers to two aver-
age latency measures, update latency and read latency, while the first one,
[1], discussed the throughput averages. Latency indicators characterize the
time needeed to perform a single operation/request (amount of time the re-
quest takes to complete), and throughput is related to the computational
performance, measured in number of operations/requests performed per sec-
ond. Both performance indicators have an equal importance: latency for
describing the response time, and throughput for the server performance. The
benchmarking tests for experimental studies were performed using the Yahoo!

Cloud Serving Benchmark client, using varied pairs of number of operations,
number of threads and workload on every database server.

2. Background

2.1. NoSQL Data Models. Large companies like Amazon and Google in-
troduced NoSQL data models to collect and manage large quantities of data in
a distributed environment: Google Bigtable[3] and Amazon Dynamo[6]. Their
success gave a new research field - NoSQL data models. In the order of their
complexity, they are: key-value, document, column-family and graph. There
are also combinations/variations of these basic models.

In the key-value model, the key part uniquely identifies the value part,
which is not visible to the database (you cannot directly perform queries on
values). Key-value databases organize data as key-value pairs, allowing arrays
or objects to be stored as values for keys, but their structure is not exposed
at the database level. Amazon Dynamo uses this model.

The column-family and document models are based on the key-value model.
The document model allows you to query the value: a document resembles a
record that belongs to a relational table. Document DBMSs organize docu-
ments in collections. Unlike the relational model, in which all the records have
the same schema and a field can store only simple values, here the documents
can have different schemas and their fields can store complex values like arrays
or embedded documents. The most popular document formats are JSON[11],
XML[21], and YAML[22]. Document DBMSs simplify the application devel-
opment process, as the document’s structure is similar to that of an object
used at the application level.

LATENCY METRICS IN NOSQL DATABASE PERFORMANCE BENCHMARKING 41

In the column-family model, data is organized as rows that belong to column
families. A column family is like a relational table, but has a flexible schema.
Each column contains a key-value pair and a timestamp. The key is in fact
the name of the column and the value is the column itself. The value of
a column can be complex, like a collection or a tuple. Rows that contain
different columns are allowed to be part of the same column family. A good
practice in application development that involves the use of column-family
DBMSs is to know the queries in advance, in order to optimize the database
schema around those queries. Column-family DBMSs are generally optimized
for write operations. Google Bigtable was the first implementation of this data
model.

The graph model is the most complex, being appropriate for heavy intercon-
nected data. In such a property graph, both nodes and edges have properties.
If data are heavy interconnected, this affects the horizontal scalability, because
it is difficult to decide where to split the graph into several sub-graphs stored
into a distributed environment.

2.2. NoSQL tools. For our benchmarking study, two data models were con-
sidered: the document model (implemented by MongoDB[14]) and the column-
family model (implemented by Cassandra[2]). Among other DBMSs imple-
menting these models and available on the market we mention CouchDB[5],
OrientDB[16] for the document model, and Bigtable[3], HBase[10] for the
column-family model. OrientDB also supports other data models.

MongoDB is an open source distributed database developed by 10Gen,
known today as MongoDB Inc. Its main features are: horizontal scalability,
flexible schema, high availability, replication and an expressive query language.
Ad hoc queries are very well supported. A MongoDB cluster is made up of
shards, configuration servers and query routers. Shards or nodes are used to
store data, config servers store cluster metadata, while query routers route
queries to the shards.

The other open source distributed database considered is Cassandra, ini-
tially developed at Facebook[13]. Its main features are: high availability, data
replication and horizontal scalability. Unlike MongoDB, which performs bet-
ter in the case of read operations, its core query language is not so rich, and it
offers better support for write operations. Cassandra’s data model is column-
family, based on Bigtable[3] and Dynamo[6]. A Cassandra cluster is made up
of identical servers, which means each node can accept both read and write
operations. Also, there is no downtime when adding or removing a node from
the cluster.

In our case study, Apache Cassandra 3.11.0 and MongoDB 3.4.4 versions
were installed on our servers.

42 CAMELIA-FLORINA ANDOR, BAZIL PÂRV, AND DAN MIRCEA SUCIU

2.3. NoSQL benchmarking. If many options (i.e. in our case many open
source NoSQL database management systems) are available to the application
developer, it is a difficult decision to choose the right one, which gives the best
performance on a given hardware configuration and for a specific application
use case. In these situations, where it is difficult to make comparisons between
the performance of different NoSQL database servers, benchmarking is very
useful. As it is the case in other similar situations, the benchmarking process
needs its own tools, and there are not so many options in the open source
movement.

The functionality of a benchmarking tool covers two different areas: work-
load generation and performance measurement using different workload sce-
narios. A workload is the load that is put by a certain application on the
database management system, i.e. a batch of all requests a given application
is sending to the server during a working session. For benchmarking purposes,
the workload definition needs some clarifications, as we’ll see below.

In database performance benchmarking, there are three important met-
rics: throughput, measured in operations per second, latency, measured in
microseconds per operation, and total runtime, also measured in milliseconds.
Throughput measures the number of operations per time unit (second), while
latency measures the duration of a single operation (expressed in microsec-
onds). The total runtime expresses the entire duration of a test. Higher
throughput and lower latency and lower total runtime values are better from
the performance viewpoint.

There are two categories of NoSQL database benchmarking tools: database-
specific and database-independent. In the database-specific category we can
mention cassandra-stress tool[19] for Cassandra, and cbc-pillowfight[18]
for Couchbase. These tools cannot be used in our study, which aims to compare
performances of different databases on the same workload. In the database-
independent category we mention YCSB[4] and BigBench[9]. YCSB runs on
both Windows and Linux, while BigBench runs only on Linux. Moreover,
YCSB offers more flexibility than BigBench in terms of data models and work-
load configurations. The fact that BigBench resembles TPC-DS[15] makes it
less oriented on big data or NoSQL workloads, while YCSB focuses on NoSQL
systems and their specific workload types. Also, YCSB can be used to test the
performance of many NoSQL DBMSs, including MongoDB and Cassandra,
which makes it a good choice for our study.

Yahoo! Cloud Serving Benchmark[4] (or YCSB) is an open source bench-
marking framework for NoSQL and cloud systems. It was developed in Java
and includes two main components: the workload generator known as the

LATENCY METRICS IN NOSQL DATABASE PERFORMANCE BENCHMARKING 43

YCSB client, and the Core workloads that represent a set of workload scenar-
ios to be executed by the generator[23]. These components can be extended.
In the context of YCSB, a workload has two components: a data set and a
transaction set. The data set represents the set of records that are loaded into
the database before any transaction is performed on it. The transaction set
contains all read and write operations to be run on the database server. Main
parameters of the transaction set are: the number of operations in it (i.e. the
number of operations to be performed in a test run), the ratio between read
and write operations, and the number of client threads.

Besides Core workloads, YCSB allows the user to define new workloads. For
our performance benchmark, YCSB version 0.12.0 was used as benchmarking
framework. In the literature, there are other benchmarking studies that use
YCSB: [7], [8] and [12]. These studies employ a testing environment that in-
volves a cloud-based infrastructure, which greatly differs of our approach. Our
testing environment is not cloud-based, and it uses Windows operating sys-
tem on both client and server machines. Other differences refer to the use
of physical machines instead of virtual ones, DBMS versions, operating sys-
tem, workload types, the size of the data sets, and hardware configurations.
The case study presented in [12] uses a proprietary data set that belongs to a
healthcare organization and custom workloads. The data sets used in [7] and
[8] are generated by the YCSB client, but the actual size of the data sets used in
[8] is not clearly specified. The study presented in [7] specifies the size of the
data sets used, but it does not include MongoDB in the study, it only includes
Datastax’s variant of Cassandra. Also, the software versions of the DBMSs
and YCSB used in [7], [8] and [12] are older than those used in our study and,
especially in the case of MongoDB, the difference between version 2 and ver-
sion 3 is very significant. Starting with version 3, MongoDB uses a different
storage engine, called Wired Tiger, which greatly improves performance.

3. Case study

3.1. Experimental setting. Our experiment used a total of three servers
having the same hardware configuration, each of them running a different
application: YCSB client on the first server, Apache Cassandra on the second
one and MongoDB on the third. The configuration of each server is as follows:

• HDD: 500 GB
• RAM: 16 GB
• CPU: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 8 logical proces-

sors, 4 cores
• OS: Windows 7 Professional 64-bit.

44 CAMELIA-FLORINA ANDOR, BAZIL PÂRV, AND DAN MIRCEA SUCIU

All workloads used the same data set, composed of 4 million records. The
YCSB client was used to generate the data set. Each record contains 10 fields
and every field stores a 100 byte string value that was randomly generated. The
data set could fit within internal memory due to its size. The chosen workloads
belong to the YCSB Core workloads set: Workload A (the ratio between read
and write operations in the transaction set is 1 - 50% updates, 50% reads), an
update-heavy workload[20], and Workload B (the ratio between read and write
operations in the transaction set is 1

19 - 5% updates, 95% reads), a read-mostly
workload[20]. An application that has a workload similar to Workload A could
be a session store in which recent actions are recorded, while Workload B is
similar to the workload of an application that involves photo tagging, as stated
in [20]. Every workload was tested with the following values for the number
of operations (NO): 1000, 10000, 100000 and 1000000, and with 1, 2, 4, 8, 16,
32, 64, 128, 256 and 512 client threads (NT). Each test was repeated three
times.

MongoDB was installed with default settings, which implies that the storage
engine used is Wired Tiger (the default storage engine for MongoDB version
3.4.4).

Cassandra was also installed with default settings, but we followed a setting
recommendation found in [7], so that write timeouts can be avoided:

• write request timeout in ms increased to 100000
• read request timeout in ms increased to 50000
• range request timeout in ms increased to 100000
• counter write request timeout in ms increased to 100000.

The asynchronous Java driver was used for both MongoDB and Cassandra.
A batch of tests contains all tests with the same workload, number of opera-
tions, and database server, varying the number of client threads. Before the
execution of every batch of tests, the database server was restarted. Informa-
tion about database server status was captured before running a batch of tests
and after. The data set corresponding to the first workload was deleted after
all combinations of tests related to it were executed. A data set having the
same parameters but corresponding to the second workload was loaded before
executing the tests for the second workload.

3.2. Results. Every batch of tests was repeated three times, and the average
values of average update latency (AUL) and average read latency (ARL) were
computed. Figures 1 and 2 show the AUL results for Workload A and Work-
load B, respectively. Figures 3 and 4 refer to ARL. Here the x-axis represents
log2(NT).

When testing Workload A (Figure 1), the evolution of AUL with respect
to the number of threads has a quasi-parabolic shape, with the exception of

LATENCY METRICS IN NOSQL DATABASE PERFORMANCE BENCHMARKING 45

the case with 1000 operations. There is an optimal number of threads thrmin

for which AUL has a minimum value. This point is slightly shifting to the
right as the number of operations grows. This leads us to the conclusion that
for a fixed number of operations there is a threshold thrmin producing the
minimum AUL value. When the number of threads exceeds this thrmin, AUL
grows: in the case of Cassandra, the slope of the curve decreases with the
number of operations; in the case of MongoDB, the slope is increasing as the
number of threads grows. In the case with 1000 operations, the minimum AUL
value is obtained for thrmin = 22, and the growth at some maximum value
(thrmax = 27 for Cassandra, thrmax = 28 for MongoDB) after which it starts
diminishing. MongoDB and Cassandra produce almost the same AUL value
for 10000 operations when NT ≥ 25. For a number of threads less than 28,
AUL for 10000 operations is greater than AUL for 100000 operations in the
case of MongoDB. The maximum AUL value is obtained for 10000 operations
(Cassandra), respectively 1000000 operations (MongoDB).

For Workload B tests (Figure 2), the quasi-parabolic shape is preserved,
again with the only exception of 1000 operations test case. The threshold
thrmin has a slower shift to the right than in the case of Workload A. The way
AUL values grow is the same for both workloads in the case of Cassandra,
while in the case of MongoDB the AUL growth rate is slower for Workload B
than in the case of Workload A, and AUL slightly diminishes with the number
of operations. In the case with 1000 operations, the minimum AUL is obtained
for thrmin = 21 (MongoDB), respectively thrmin = 22 (Cassandra), and the
growth stops at thrmax = 28 (for both databases). In the case of MongoDB
and Workload B, almost identical AUL values were obtained when number
of operations was 100000, respectively 1000000. The maximum AUL value is
obtained for 1000 operations and 28 client threads for both databases (AUL
= 20588 for Cassandra, and AUL = 11854 for MongoDB). The worst perfor-
mance in terms of AUL for Cassandra is almost double the similar MongoDB’s
one.

Figures 3 and 4 show the variation of ARL for workloads A and B. At first
sight, the shapes are almost identical with those referring to corresponding
AUL values. For 1000 operations and Workload A, the maximum ARL value
is obtained for thrmax = 27 (Cassandra), respectively thrmax = 28 (Mon-
goDB), while in the case of Workload B thrmax = 28 for both databases.
For all cases considered when testing Workload A, maximum ARL value is
obtained for thrmax = 29 with 1000000 operations (MongoDB), respectively
10000 operations (Cassandra). For Workload B, global ARL maximum values
are obtained in the case thrmax = 28 and 1000 operations for both databases.

46 CAMELIA-FLORINA ANDOR, BAZIL PÂRV, AND DAN MIRCEA SUCIU

Figure 1. 4 Million Records Workload A - Average Update Latency

Figure 2. 4 Million Records Workload B - Average Update Latency

Table 1. Analysis of variance - update latency results

Wrk No Database No of threads DB:NT
ld ops F-value Pr(>F) Sgf F-value Pr(>F) Sgf F-value Pr(>F) Sgf
A 1000 0.1131 0.7378 20.0319 3.784e-05 *** 2.0400 0.1588
A 10000 3.8686 0.05416 . 851.0068 <2e-16 *** 0.3264 0.57005
A 100000 59.212 2.46e-10 *** 2700.088 <2.2e-16 *** 402.539 <2.2e-16 ***
A 1000000 109.56 8.514e-15 *** 2960.81 <2.2e-16 *** 633.90 <2.2e-16 ***
B 1000 8.6920 0.004654 ** 26.1476 3.984e-06 *** 0.7462 0.391370
B 10000 196.81 <2.2e-16 *** 1141.68 <2.2e-16 *** 210.28 <2.2e-16 ***
B 100000 315.01 <2.2e-16 *** 1623.29 <2.2e-16 *** 254.34 <2.2e-16 ***
B 1000000 352.39 <2.2e-16 *** 1879.47 <2.2e-16 *** 242.42 <2.2e-16 ***

LATENCY METRICS IN NOSQL DATABASE PERFORMANCE BENCHMARKING 47

Figure 3. 4 Million Records Workload A - Average Read Latency

Figure 4. 4 Million Records Workload B - Average Read Latency

Table 2. Analysis of variance - read latency results

Wrk No Database No of threads DB:NT
ld ops F-value Pr(>F) Sgf F-value Pr(>F) Sgf F-value Pr(>F) Sgf
A 1000 0.6449 0.4253 21.0577 2.558e-05 *** 1.7397 0.1925
A 10000 9.1106 0.003821 ** 727.9405 <2.2e-16 *** 0.0037 0.952034
A 100000 39.508 5.196e-08 *** 2496.036 <2.2e-16 *** 369.484 <2.2e-16 ***
A 1000000 81.258 1.71e-12 *** 2692.374 <2.2e-16 *** 578.117 <2.2e-16 ***
B 1000 6.3605 0.01454 * 25.9703 4.241e-06 *** 0.6839 0.41175
B 10000 160.54 <2.2e-16 *** 1045.30 <2.2e-16 *** 172.17 <2.2e-16 ***
B 100000 267.69 <2.2e-16 *** 1422.88 <2.2e-16 *** 211.16 <2.2e-16 ***
B 1000000 257.98 <2.2e-16 *** 1381.54 <2.2e-16 *** 170.57 <2.2e-16 ***

48 CAMELIA-FLORINA ANDOR, BAZIL PÂRV, AND DAN MIRCEA SUCIU

3.3. Statistical analysis. The two-way ANOVA (Analysis of Variance) pro-
cedure from R Statistics Package[17] was used to perform the statistical anal-
ysis of the experimental results. Table 1 (for AUL) and Table 2 (for ARL)
present a synthesis of the results. For every experiment, two factors were
taken into consideration: database and number of threads. The interactions
between database and number of threads (DB:NT) were considered as well.
The database factor (DB) has two levels: Cassandra and MongoDB. The num-
ber of threads (NT) has ten levels: 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512.
The column labeled ”Sgf” refers to the P-value and describes textually the
level of significance, 0.1%, 1%, 5%, and 10%, following the usual conventions:
0 ∗∗∗ 0.001 ∗∗ 0.01 ∗ 0.05 . 0.1 (blank space) 1. A P-value less than or equal
to 0.1% (i.e. ∗∗∗ conforming to the legend) shows that the differences between
means have a strongest statistical significance, while a P-value greater than
10% (i.e. blank space) indicates that the differences between the means of the
levels considered are within the experimental error.

With respect to the number of threads, the differences in variation of AUL
and ARL have the strongest statistical significance for both workloads. In the
same time, for 1000 operations and Workload A, the differences of means with
respect to DB levels for AUL and ARL are within the experimental error.
All interactions DB:NT lead to strongest significance between means, except
for Workload A with 1000 and 10000 operations and Workload B with 1000
operations, for which there is no statistical significance.

4. Conclusions and further work

As we stated above, the performance of Cassandra and MongoDB database
servers was measured for two different workloads: update-heavy (Workload A)
and read-mostly (Workload B) and two performance indicators were measured
and analyzed, average update latency (AUL) and average read latency (ARL).
All test cases with NO ≥ 10000 proved a quasi-parabolic behavior of AUL and
ARL with respect to NT. This means that the best performance is achieved
with a right combination of NO and NT. As NT exceeds these optimal values,
the performance in terms of latency diminishes. In the case NO = 1000, the
minimum AUL is obtained at thrmin = 22 for Workload A and both databases,
respectively at thrmin = 21 (MongoDB) and thrmin = 22 (Cassandra) for
Workload B. There is also a global maximum AUL value obtained for Workload
A at thrmax = 29 and NO = 10000 for Cassandra, respectively at thrmax = 29

and NO = 1000000 for MongoDB. For Workload B, maximum AUL values were
obtained at thrmax = 28 and NO = 1000 for both databases. These figures
are almost the same for ARL, basic trends being preserved. Global maximum

LATENCY METRICS IN NOSQL DATABASE PERFORMANCE BENCHMARKING 49

ARL values are obtained for the same combination of (DB, workload, NO,
NT).

As further work, we intend to analyze other metrics obtained from this
experiment, and to perform post-hoc ANOVA tests. Also, we plan to perform
other experimental studies using data sets that do not fit within the internal
memory on cluster and single server configurations. Another direction in the
experimental work will deal with the use of SSDs as disk storage and the
replication for database servers, in order to measure how these configurations
affect performance. Finally, another variable in our future case studies will be
the operating system, so that we can use other NoSQL DBMSs that are not
available on Windows.

Acknowledgments

Parts of this work were supported through the MADECIP project Dis-
aster Management Research Infrastructure Based on HPC. This project was
granted to Babeş-Bolyai University, its funding being provided by the Sec-
toral Operational Programme Increase of Economic Competitiveness, Priority
Axis 2, co-financed by the European Union through the European Regional
Development Fund Investments in Your Future (POSCEE COD SMIS CSNR
488061862).

References

[1] C. F. Andor and B. Pârv. NoSQL Database Performance Benchmarking - A Case Study.
Studia Informatica, LXIII(1):80–93, 2018.

[2] Apache Cassandra. http://cassandra.apache.org/. Accessed: 2017-09-25.
[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chan-

dra, A. Fikes, and R. E. Gruber. Bigtable: A Distributed Storage System for Structured
Data. OSDI ’06 Proceedings of the 7th USENIX Symposium on Operating Systems De-
sign and Implementation, 7, 2006.

[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
Cloud Serving Systems with YCSB. Proceedings of the 1st ACM Symposium on Cloud
Computing, pages 143–154, 2010.

[5] CouchDB. http://couchdb.apache.org/. Accessed: 2017-09-25.
[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly Available
Key-value Store. Proceedings of 21st ACM SIGOPS Symposium on Operating Systems
Principles, oct 2007.

[7] Fixstars. GridDB and Cassandra Performance and Scalability. A YCSB Performance
Comparison on Microsoft Azure. Technical report, Fixstars Solutions, 2016.

[8] A. Gandini, M. Gribaudo, W. J. Knottenbelt, R. Osman, and P. Piazzolla. Performance
Evaluation of NoSQL Databases. EPEW 2014: Computer Performance Engineering,
Lecture Notes in Computer Science, 8721:16–29, 2014.

50 CAMELIA-FLORINA ANDOR, BAZIL PÂRV, AND DAN MIRCEA SUCIU

[9] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A. Jacobsen. Big-
Bench: Towards an Industry Standard Benchmark for Big Data Analytics. Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data, pages
1197–1208, 2013.

[10] HBase. https://hbase.apache.org/. Accessed: 2017-09-25.
[11] JSON. https://www.json.org/. Accessed: 2018-03-16.
[12] J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham, and C. Matser. Performance

Evaluation of NoSQL Databases: A Case Study. Proceedings of the 1st Workshop on
Performance Analysis of Big Data Systems, pages 5–10, 2015.

[13] A. Lakshman and P. Malik. Cassandra: A Decentralized Structured Storage System.
ACM SIGOPS Operating Systems Review, 44:35–40, 2010.

[14] MongoDB. https://www.mongodb.com/. Accessed: 2017-09-25.
[15] R. O. Nambiar and M. Poess. The Making of TPC-DS. VLDB ’06 Proceedings of the

32nd International Conference on Very Large Data Bases, pages 1049–1058, 2006.
[16] OrientDB. http://orientdb.com/. Accessed: 2017-09-25.
[17] R Statistics Package. https://www.r-project.org/. Accessed: 2017-09-25.
[18] Stress Test for Couchbase Client and Cluster. http://docs.couchbase.com/sdk-api/

couchbase-c-client-2.4.8/md_doc_cbc-pillowfight.html. Accessed: 2019-01-03.
[19] The cassandra-stress tool. https://docs.datastax.com/en/cassandra/3.0/

cassandra/tools/toolsCStress.html. Accessed: 2019-01-03.
[20] The YCSB Core Workloads. https://github.com/brianfrankcooper/YCSB/wiki/

Core-Workloads. Accessed: 2017-09-25.
[21] XML. https://www.w3.org/TR/2008/REC-xml-20081126/. Accessed: 2018-03-16.
[22] YAML. http://yaml.org/. Accessed: 2018-03-16.
[23] YCSB Github Wiki. https://github.com/brianfrankcooper/YCSB/wiki. Accessed:

2017-09-25.

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania

Email address: {andorcamelia, bparv, tzutzu}@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIV, Number 1, 2019
DOI: 10.24193/subbi.2019.1.05

COGNITIVE MODELING APPROACH FOR DEALING WITH

CHALLENGES IN CYBER-PHYSICAL SYSTEMS

RÓBERT ADRIAN RILL(1,2) AND ANDRÁS LŐRINCZ(1)

Abstract. In this paper, inspired by our previous works, we propose an
architecture for the design and realization of cyber-physical systems (CPS)
that considers the spatio-temporal context of events, promotes anomaly de-
tection, facilitates efficient human-computer interaction and is capable of
discovering novel human and/or machine knowledge. We view deep neural
networks as smart sensors and sensory data from the environment repre-
sents the semantic and episodic input to a consistency seeking component
of the cyber-space. Starting from a knowledge base infused with a deter-
ministic world assumption, this module can detect anomalies and correct
estimation errors by combining the outputs of multiple sensors. We also ex-
ploit an episodic description of ongoing situations by integrating temporal
segmentation with kernel and low-dimensional embedding based methods.
We demonstrate parts of the architecture through illustrative examples on
our self-collected driving dataset. Our framework can be related to cog-
nitive science foundations and may facilitate reliable functioning of CPS
through integrating traditional AI and deep learning methods with deter-
ministic models and reasoning tools. We expect that such knowledge base
and cognition driven approaches of joining deep neural networks will be
adopted in complex CPS. This looks like a scalable, and beneficial match
between human knowledge and the exploding deep learning technologies.

1. Introduction

Cyber-physical systems (CPS) are complex structures of interacting physical
and computational components, where the physical processes are controlled
or monitored by computer-based algorithms. They are networks of sensors
and robotic components equipped with advanced mechanisms and managed
by intelligent software solutions, often including humans in the control loop.

Received by the editors: December 18, 2018.
2010 Mathematics Subject Classification. 68T01, 93A15.
1998 CR Categories and Descriptors. C.3 [Computer Systems Organization]:

Special-purpose and Application-based Systems; I.2.0 [Computing Methodologies]:
Artificial Intelligence – General .

Key words and phrases. cyber-physical system, human-computer interaction, anomaly
detection, episodic description, consistency seeking.

51

52 RÓBERT ADRIAN RILL AND ANDRÁS LŐRINCZ

Requirements of a CPS include usability, functionality, robustness, efficiency,
adaptability, safety and reliability. The design and realization of CPS call
for the integration of theoretical models and engineering techniques originat-
ing from different disciplines. Examples and areas of application include au-
tonomous driving systems, transportation, smart factories, intelligent manu-
facturing [12, 13], healthcare [25], civil infrastructure [3] (electrical power grid,
water resources, communication systems, networked building control), assisted
living (consumer appliances, intelligent homes), entertainment.

The digital revolution of the last decades has governed the long-term tech-
nological and economical trends of CPS. This approach integrates production
in an intelligent computational space, leveraging the interconnectivity of self-
adaptable machines, paving the way for the next generation manufacturing,
namely Industry 4.0 [2], with a significant economic potential [13].

As multidisciplinary systems, CPS combine computation, communication
and control technologies to conduct feedback control on widely distributed
embedded computing systems [15]. They operate with inputs and feedback
from/to the physical environment, which calls for workflow management with
real-time performance requirements. Communication is realized in the form
of sensor-actuator networks. The information represents the abstraction of
the physical world and operations are events composed of states reported by
sensors/humans and actions performed by actuators/humans. CPS realize
the autonomous networking of embedded systems at large scales, and their
interaction with environmental processes. This poses considerable challenges.

In this paper we build upon our previous works. In [16] we presented a
framework of cognition that combines deep neural networks (DNNs) with facts
and rules to correct recognition errors and obtain consistent and determinis-
tic event descriptions. In our follow-up work [17], based on motivations from
neuroscience and psychology, we introduced an architecture called declarative
description that combines DNNs and unsupervised machine learning tech-
niques to provide explanation and reasoning about ongoing situations in a
spatio-temporal context. The contribution of the present paper consists in
combining the concepts of our former efforts to propose a general architec-
ture for the design and implementation of CPS. Our framework tackles the
challenges of CPS: anomaly detection, efficient human-computer interaction
and deterministic decision making and description of events. Furthermore, we
view DNNs as smart sensors and illustrate parts of the architecture on our
self-collected driving data as a simple CPS scenario.

The paper is organized as follows. Section 2 provides a background by
reviewing challenges that CPS face. Section 3 presents the two components
that extend the traditional sensor-controller-actuator CPS network, namely

COGNITIVE MODELING APPROACH FOR CPS 53

consistency seeking and episodic description. Section 4 describes our illus-
trative examples, followed by a discussion in Section 5. Finally, Section 6
concludes the paper.

2. Background: CPS challenges

2.1. Anomalies and decision making. CPS aim for a high level of cer-
tainty in a narrow context, i.e. they are goal-oriented, designed with a well
defined purpose, and they tightly integrate physical and cyber system aspects
both at design time and during operation [3]. However, CPS are exposed
to unexpected events, i.e. anomalies, which need to be recognized and dealt
with in real time and with extreme care in order to limit false alarms and
unobserved faults.

Real-time responsiveness of CPS to the environment is also related to tim-
ing behavior, which emerges from the combination of software and hardware
platforms [11]. Predictable and reliable real-time performance is difficult to
achieve because of the lack of temporal semantics and adequate concurrency
models in computing [1]. Lee [10] summarized this thought as “the program
does not express aspects of behavior that are essential to the system”. CPS
must have unified time, trust quantification and communication mechanisms
at the system level [15].

2.2. Deterministic models: knowledge-base. In order to realize CPS,
we need smart analytical tools to transform experience-based knowledge into
evidence-based decision making for sustainable and reliable operation [25].
Components of a CPS come from multiple vendors in diverse engineering dis-
ciplines with distinct domain expertise [11, 15]. A holistic approach is required
that integrates the physical and computational infrastructures into one unified
model [14] for supporting real-time, reliable and autonomous decision making.

It is the power of deterministic models that gave scientists the ability to
design control systems [11]. In CPS simulation environments they facilitate
control algorithm development and testing, before the deployment into hard-
ware [22]. Starting from a knowledge base that includes domain expertise,
constraints, reasoning tools, facts and rules of the physical world, the realiza-
tion of predictable and understandable models is possible. Moreover, a com-
prehensive knowledge about its own dynamic structure and the infrastructure
of the whole system results in self-monitoring and self-aware CPS [2].

A knowledge-based decision making component can deal with the dynamic
behavior: (i) it can perceive and control the environment, analyze observations
due to the intelligent data management capabilities of the cyber space, and
(ii) can communicate in efficient ways with other modules through wireless
sensor networks [3] and with humans through intelligent user interfaces [13].

54 RÓBERT ADRIAN RILL AND ANDRÁS LŐRINCZ

2.3. Deep learning in CPS. Novel engineering solutions exploiting AI and
deep learning are improving at a remarkable pace. AI-based technologies are
being developed for smart machine control [12]. In a networked CPS set-
ting with interactions with the physical environment and humans, conditions
are dynamically changing. This requires greater flexibility in modeling and
optimized decision making. The advancements of the past years creates an
opportunity to add data driven intelligence to the CPS processes.

To complement the available knowledge base, one can make use of DNNs.
In CPS the measurement and monitoring of physical processes (temperature,
pressure or mechanical movements, for instance) are done by sensors which
convert physical or electrochemical properties into an electrical output sig-
nal [2]. So-called smart sensors are utilized for monitoring and control mech-
anisms of the environment. They enable reliable, accurate and automated
data collection with minimal maintenance efforts and flexible networking. In
this sense typical DNNs are sensors that monitor characteristics of CPS com-
ponents and the environment, and provide a signal as output, which serves
decision making and control. In the rest of the paper, smart sensors and DNNs
will be referred to collectively as feedforward input-output (FIO) systems.

To summarize, DNNs may extend the set of intelligent sensors for increasing
flexibility and adaptability in CPS. However, it is still required that humans
remain in the loop in order to complement autonomy technologies for maxi-
mizing performance and limiting risks [21].

2.4. Humans-in-the-loop. CPS often involve humans in decision making
and control loops. Either (i) they have supervisory roles and directly control
the system, or (ii) the system passively monitors humans, collects data to
be analyzed and takes actions if necessary. There are also different levels of
human control depending on how large the task load is for decision making
and how active the involvement is in the autonomy of making decisions [21].

In either case, several challenges need to be tackled. The modeling of human
behaviour is a difficult task due to the complex physiological, psychological
and behavioral aspect of humans [19, 20]. Furthermore, the probability of hu-
man error causing a system failure can be high due to a variety of reasons [21].
Therefore, robust CPS systems call for real-time predictive models that are
able to recognize dangerous situations, control the outcomes, maintain stabil-
ity and accuracy and adapt to changing human behavior.

Human behavior models need to be incorporated into the system architec-
ture itself and, as several researchers suggest, human interaction will have a
critical role in the foreseeable future (see, e.g., [21]).

COGNITIVE MODELING APPROACH FOR CPS 55

3. Methods: cognitive architecture for CPS

3.1. Events in deterministic environments. CPS deal with scheduled op-
erations and involve decision making in a goal-oriented context, often with
humans in the loop. Any operation in the physical system can be described as
an initial state and an action to be executed leading to a final desired state,
where the action may involve several sub-processes (see Figure 1). We call the
transition from the actual state to another one after executing the action an
event, or episode. Two remarks have to be made. Firstly, the final state may
differ from the desired state giving rise to an error term. We will turn back
to this point later in the paper. Secondly, episodes can have different proper-
ties depending on their interrelationships: they can follow each other, can be
concurrent, can be composed of other smaller episodes, can be combined into
higher-order episodes.

Physical System

Initial
Sub-process

Sub-process

Sub-process

Sub-process

State
Desired
State

Action

Figure 1. Operations in a physical system as events.

An event is independent if the state-action-state transition is not affected
by other concurrent actions. An event is non-stochastic if the desired state
is reached with 100% probability in the prescribed execution time. Deter-
ministic behavior presumes independent and non-stochastic events. However,
because of their complexity and interactions with the environment, events are
less likely to be non-stochastic. Stochastic problems arise from anomalies, un-
predictability of execution time and uncertainties from the environment, e.g.
non-modelled side-effects of the surroundings.

Problem solving in such complex systems is a combinatorial problem and
lowering of the number of variables is highly desired due to the exponential
dependence of the state space on those. Because CPS are goal oriented, the
deterministic world assumption points towards the ability of reaching goals and
desired states with 100%. If anomalous events/episodes occur, deterministic
models built upon the available knowledge base provide real-time decision
making capabilities for recognizing and resolving them. Moreover, the spatio-
temporal dependencies of the processes in a complex CPS constrain possible
state-desired state pairs limiting the number of variables to be considered.

56 RÓBERT ADRIAN RILL AND ANDRÁS LŐRINCZ

3.2. Consistency seeking component of the cyber space. In a typi-
cal CPS setting, sensors collect information from the environment, the cyber
layer stores information and carries out abstract computations to examine
the collected signals, controllers make decisions, which are transmitted to the
actuators in order to change the physical processes [3, 14].

To extend the cyber space capabilities, we propose a consistency seeking
module for decision making and control in a spatio-temporal context, making
use of the available knowledge base. The contextual environment is given
by sensory information – events taking place at a given location at a given
time – and also incorporates the knowledge of experts. The sensory input
is converted by the FIO systems into semantic and episodic input and this
enters the consistency seeking module of the cyber space (see Figure 2). The
semantic and episodic output of the consistency seeking component may be
used to overwrite the collected signal to obtain consistent representations of
the physical processes, or may be combined to produce the actual state. The
difference between the actual and desired state gives rise to an error term,
used to induce changes in the physical world.

FIO
Systems

Semantic

Input
Consistency
Seeking Output

Controller

Overwrite
Cyber Space

Human & Machine
Knowledge Base

Episodic&
Semantic
Episodic&

Physical
System

Actuator

Actual
State

Historical
Information

Desired
State

+
-

Error
Sensory Input

Figure 2. The traditional closed-loop sensor-controller-actuator CPS net-
work extended with a consistency seeking component.

The consistency seeking component can facilitate anomaly detection. We
propose to combine the outputs of multiple FIO systems to discover and re-
solve conflicts, to take into account the spatio-temporal context and the avail-
able knowledge base for improving recognition. Facts and rules, the structure
and meaning of information, semantic relations among the components of the
physical and cyber infrastructures can be injected into ontologies that also
describe the interdependencies across the cyber-physical boundary [14].

The consistency seeking component of our architecture assumes a determin-
istic world. In stochastic environments other approaches might be necessary,

COGNITIVE MODELING APPROACH FOR CPS 57

e.g. probability maximization. However, if sufficient information is available,
the deterministic world assumption holds, and prediction errors and persisting
contradictions should lead to searches for finding the missing causes.

To summarize, consistency seeking and the assumption of determinism to-
gether become powerful tools for anomaly detection and learning, if we can rec-
ognize components and have episodic knowledge about their spatio-temporal
relationships.

3.3. Episodic description of ongoing situations. Anomalies are changes
in behavior that negatively affect performance. They are outliers that cor-
respond to short time intervals within a larger episode, e.g. texting while
driving.

CPS require real-time capabilities to keep updated about the current states
of physical devices and to intervene if necessarry in applications such as ob-
servation, monitoring, control, forecasting [15]. Therefore, in a CPS setting,
sensors continuously monitor physical processes such as traffic information in
intelligent transportation, patients’ blood pressure or blood sugar level in the
healthcare domain, soil temperature and humidity in environmental detection.
In the physical world the passing of time is inevitable and concurrency of pro-
cesses is naturally present. Our framework integrates these properties in the
computing capabilities of the cyber space.

Particularly, we propose to further extend the cyber space capabilities with
an episodic description of ongoing situations illustrated on Figure 3. The sen-
sory data and semantic and episodic output of the consistency seeking module
are considered time series and temporal segmentation is applied. The result is
a series of episodes, which can be consecutive or overlapping. Segmentation is
followed by the comparison of episodes with each other, and the obtained sim-
ilarity vectors are embedded into low-dimension. The resulting clusters can be
further inspected by intelligent algorithms or humans using smart interfaces.

Episodic description could be applied for example in manufacturing, where
most production planning decisions are based on historical data [2]. If past
information of a production machine is provided in terms of time series, the
episodic description module is capable to track the changes and infer addi-
tional knowledge by searching for similarities with other machine records and
analyzing performance. This gives the possibility for the cyber space to predict
future behavior. Another example is in the healthcare domain, where semantic
knowledge needs to be integrated with manually and automatically collected
low-cost clinical patient data towards clinical decision support [20, 25]. Tem-
poral segmentation and/or clustering of episodes can be applied to historical
information of patient data to analyze behavior patterns and predict possible
future diseases or recovery status.

58 RÓBERT ADRIAN RILL AND ANDRÁS LŐRINCZ

Temporal
Segmentation

Similarity of
Segments

Low-dimensional
Embedding

Output

New
Human & Machine

Knowledge

Semantic
Episodic&

Cyber Space

Intelligent User
Interface

Historical
Information

Episodic Description

Figure 3. Extension of the cyber space with an episodic description com-
ponent to detect anomalies and to bring temporality into focus.

4. Results: description of illustrative examples

Autonomous driving represents one area of application for CPS [5, 7]. Our
choice of the CPS aims the illustration of correcting sensory observations via
consistency seeking. Our purpose was well served by means of self-collected
data. Reasons include risk considerations, the lack of data about monitored
humans, and the simplicity of illustration during driving, as a CPS scenario.
We recorded videos while driving between Budapest and Martonvásár in Hun-
gary, using a spherical camera attached to the dashboard of the car1.

To illustrate the consistency seeking module of our architecture we extracted
frontal view videos from our collected spherical videos and ran state-of-the-art
DNNs on them. Figure 4 shows how the consistency seeking module can com-
bine the outputs of two state-of-the-art DNNs to correct estimation errors and
obtain new samples for fine-tuning: (i) the OpenPose version of the Convo-
lutional Pose Machine (CPM) [24] is used to estimate body joint coordinates
and (ii) the mismatches are corrected by predicting the movement of pixels
from one frame to the next with optical flow, using the FlowNet2 version [9].

Figure 5 illustrates how the consistency seeking module can combine the
outputs of DNNs to complement each other: (i) the state-of-the-art Yolo [23]
object detector is used to recognize vehicles on videos; (ii) if the detection is
lost on one frame, FlowNet2 [9] can be applied to predict the movement of the
bounding box using the detection from the previous frame.

1Ricoh R Development Kit: https://ricohr.ricoh/en/

COGNITIVE MODELING APPROACH FOR CPS 59

Figure 4. Correction of Convolutional Pose Machine (CPM) results by
optical flow (OF). Two instances are shown in rows. The columns from
left to right are: current frame with CPM visualized, next frame with
mismatched CPM, same frame as second column with corrected CPM,
and OF from current to next frame visualized. The square represents
color coding of OF.

To demonstrate the episodic description component of our architecture we
show how it can be applied to detect anomalies. Namely, we used it to recog-
nize and cluster overtaking events, i.e. time segments when other cars pass by
ours during driving. The spherical videos were pre-processed as follows: (i)
extract side-views so that the car’s side window is in the center of the frames,
(ii) apply video stabilization to reduce the oscillation due to the movement of
the camera, (iii) extract center of frames containing only the side window of
the car, (iv) run FlowNet2 [9] on these small resolution videos and (v) compute
OF features to obtain time-series subject to temporal segmentation. The fea-
tures are 5-dimensional: for each frame we computed the two-bin histogram of
the horizontal OF and choose the two bin heights and the three bin endpoints
as features.

After the pre-processing procedure the steps of the episodic description were
applied. Similarly to our previous works [16, 17, 18], for temporal segmenta-
tion we used the Group Fused LASSO [4] method to detect change-points co-
occurring across the dimensions of multivariate signals. Then segments were
compared with the Global Alignment Kernel (GAK) technique [6], able to
compare different length segments by using time warping. Finally, the t-SNE
algorithm [26] was applied to embed the columns of the similarity matrix into
low-dimensions. Figure 6 shows an example of temporal segmentation on a

60 RÓBERT ADRIAN RILL AND ANDRÁS LŐRINCZ

Figure 5. Complementing Yolo object detection by optical flow (OF).
Three instances are shown in rows. The columns from left to right are:
current frame with detected Yolo bounding box, next frame with predicted
bounding box, OF from current to next frame visualized. The square
represents color coding of OF.

short video, where three overtaking episodes (around frames 310, 790, 960)
are clearly detected.

For the purposes of illustrating the results of the whole episodic description
pipeline, we selected a 30 minute long driving video and hand-annotated the
overtaking and the stopped segments (this latter refers to the time intervals
when our car was stopped in traffic). The results are displayed on Figure 7,
where each point corresponds to a time segment, as determined by tempo-
ral segmentation. There are a total of 44 overtaking episodes in this video.
They are clustered together and separated from the rest to a large extent (red
points).

It must be noted that long episodes can be segmented into multiple parts
by the GFLASSO algorithm. Therefore, trajectories are also visualized on
Figure 7, i.e. temporally consecutive points are connected with lines to reveal
the difference between the three categories from the small cluster. Continuous
colored lines connect consecutive segments of the same overtaking episode and
they settle in the upper small cluster, with only one exception: in the lower
right part of the figure the lightblue trajectory – this actually corresponds to
two separate very long and consecutive overtaking events. All points from
the small cluster corresponding to stopped segments (black) have their next

COGNITIVE MODELING APPROACH FOR CPS 61

0.0

0.5

1.0

OF
Fe

at
ur

es

0.0

0.5

GF
LA

SS
O

=
4.

0

0 200 400 600 800 1000
0.0

0.5

GF
LA

SS
O

Fi
ni

te
 D

iff
.

Group Fused LASSO Temporal Segmentation

Figure 6. Example of Group Fused LASSO temporal segmentation on a
1000 frame long video. From top to bottom: raw Optical Flow (OF) fea-
tures normalized, GFLASSO segmentation, finite differences of GFLASSO
corresponding to change-points.

segment as stopped, connected by dashed grey lines (only three are shown for
visual clarity). Dotted grey lines connect three other category points (blue)
from the small cluster with their next segment: one is red inside and two are
black outside the small cluster. Also three blue points from the small cluster
have their next segment not overtaking nor stopped (these trajectories are not
shown).

To sum up, assuming that stopped episodes are known and making use of
trajectories, episodic description recognized the overtaking events with high
probability as illustrated by Figure 7:

• 42 episodes out of 44 were separated from the rest in the small cluster
(some of these episodes are composed from multiple segments but the
trajectories settle in the small cluster);

• there are two false negatives (two long consecutive overtaking events
connected by the lightblue line);

• there are three false positives (in the small cluster three blue points
can not be excluded because their next segment is also blue).

Omitting the stopped segments from calculation and connecting the segments
of the same event with trajectories, the problem of recognizing overtaking
events can be treated as binary classification. Our relatively small example
analyzed in detail happens to bring high accuracy (99%), precision (93%),
recall (95%) and F1 score (94%) for classifying overtaking upon segmentation.

62 RÓBERT ADRIAN RILL AND ANDRÁS LŐRINCZ

40 30 20 10 0 10 20 30 40

20

10

0

10

20

30

40

50

GFLASSO with =8.0, GAK with log2() = 3, Perplexity=20

Overtaking
Stopped
Other

t-SNE embedding

Figure 7. t-SNE embedding results for episodic description in the case of
a 30 minute long video.

5. Discussion

Our illustrative examples show how the consistency seeking module can
combine the outputs of multiple FIO systems to correct estimation errors
and to complement each other, and how the episodic description component
can be used for event/anomaly detection. The overtaking episode represents a
dangerous situation in an autonomous driving system and should be recognized
in time in order to take appropriate actions.

The episodic description involves events that concern observations and in-
teractions between components. The events are localized in space and time
and reflect the physical reality. This enables reasoning at higher levels while
integrating with a human/machine knowledge base. Not only does episodic
description bring temporality into focus, but it has another important conse-
quence. Although large volumes of data are collected in a CPS, not all of it is
relevant, thus reducing the region of interest is essential [3].

The architecture presented in this paper tackles the problem of combina-
torial explosion by limiting the number of variables to be considered during
decision making in two ways: (i) the consistency seeking component considers

COGNITIVE MODELING APPROACH FOR CPS 63

the spatio-temporal context, which constrains the number of possible state-
desired state pairs, and (ii) the episodic description contributes to eliminating
irrelevant intervals of the state space.

To give a simple example, the spatially limited OF between a few frames is
an instance of the extremes of short episodes. It limits efficiently the space of
potential future outcomes due to Newtonian laws. In case of object tracking it
means that a bounding box may not appear at any given position in the next
frames. Thus the set of potential positions of the bounding box may be reduced
considerably due to the “OF episode”. More is expected for deterministic
processes in the long run if the potential next episodes are learned and can be
identified during progress.

High accuracy, recall and F1 score values for event recognition mean that
high probability warning signals can be provided to the driver. Furthermore,
the driver may train the system for personal use if their behavior is monitored.
See for instance the examples provided in [16], which include talking to a
person in the car or over the phone, or drinking. In this case the driver
can train the system conditioned on their behavior, by providing feedback if
the warning signal is not needed. Moreover, if the attention of the driver
is overloaded then the warning signal may be desired in the same or similar
situations. Feedback should help the step-by-step learning about the proper
level of interaction. This can be the subject of future data collection, since
the spherical camera enables the monitoring of the driver as well.

We close this section by noting that present CPS researches are still at the
beginning, and are mostly limited to specific applications. Further investiga-
tions and studies are required to realize a unified framework of computational
and physical resources [1, 15]. Since future CPS will cover aspects of social
and economic lives [3], it is crucial to establish easy to abstract models so that
the complexity of design can be reduced.

5.1. Relation to cognitive psychology. Our architecture can be related to
fundamentals of the human cognitive system, namely declarative (semantic
and episodic) and procedural memory (for details on this topic see, e.g., [8]).
Semantic memory assumes a collection of facts and concepts encoded with
specific meaning independently from the spatio-temporal context. Episodic
memory on the other hand represents experiences and events in a serial form
from which the situation can be reconstructed only if the surrounding context
is also present. The procedural memory involves slow and gradual acquisi-
tion of skills that often occurs without conscious attention to learning. The
concept of cognition is more than a single input-output mapping, it includes
information processing, acquiring knowledge and the capability of reasoning.

64 RÓBERT ADRIAN RILL AND ANDRÁS LŐRINCZ

In relation to our architecture, every event is an episode and it can be
saved in the episodic ‘memory’ for data mining, anomaly detection, model
construction, and for learning to predict and control the event. This event
may be concurrent with other events and it is probably embedded into a larger
one. The method of dealing with an ongoing event is the procedure, composed
of actions and sub-events. This procedure may evolve over time as knowledge
is collected. Reliable functioning is possible if the semantic knowledge base is
large enough. If not, than new concepts, sensors and additional control tools
can be introduced to overcome disturbances of the events provided that the
details of the event are comprehensible, time is available and the related costs
and savings justify the effort.

6. Conclusion

In this paper, inspired by our previous works, we presented an architec-
ture for CPS that can be related to fundamentals of the human cognition
system. To extend the traditional sensor-controller-actuator network, we pro-
posed two novel components to enhance the cyber space capabilities: (i) con-
sistency seeking and (ii) episodic description. The consistency seeking module
is capable of detecting anomalies and correcting estimation errors by combin-
ing the outputs of multiple smart sensors and/or deep neural networks taking
into consideration the spatio-temporal context and the available knowledge
base (facts, rules of the physical world, domain-specific ontologies etc.). The
episodic description module considers timing behavior, combines sparsity, ker-
nel and low-dimensional embedding methods for anomaly detection, facilitates
efficient human-computer interaction and is capable of discovering novel hu-
man and/or machine knowledge. By integrating deep learning and traditional
AI methods with reasoning tools and deterministic assumption, our approach
facilitates understandable and reliable decision making.

Our framework points to goal-oriented systems, an essential property of
CPS. It considers anomaly detection and their resolution, i.e. noticing discrep-
ancies in space and time and seeking for consistency based on the assumption
of determinism. We expect that such knowledge base and cognition driven
approach of joining deep neural networks will be adopted in complex CPS.

Acknowledgement

The research has been supported by the European Union, co-financed by
the European Social Fund (EFOP-3.6.2-16-2017-00013, Thematic Fundamen-
tal Research Collaborations Grounding Innovation in Informatics and Infocom-
munications). AL was partially supported by the European Union, co-financed
by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00001).

COGNITIVE MODELING APPROACH FOR CPS 65

References

[1] M. Atif, S. Latif, R. Ahmad, A. K. Kiani, J. Qadir, A. Baig, H. Ishibuchi, and
W. Abbas. Soft computing techniques for dependable cyber-physical systems. CoRR,
abs/1801.10472, 2018.

[2] C. Berger, A. Hees, S. Braunreuther, and G. Reinhart. Characterization of cyber-
physical sensor systems. Procedia CIRP, 41:638–643, 2016. Research and Innovation
in Manufacturing: Key Enabling Technologies for the Factories of the Future - Proceed-
ings of the 48th CIRP Conference on Manufacturing Systems.

[3] M. Z. A. Bhuiyan, J. Wu, G. Wang, J. Cao, W. Jiang, and M. Atiquzzaman. Towards
cyber-physical systems design for structural health monitoring: Hurdles and opportu-
nities. ACM Trans. Cyber-Phys. Syst., 1(4):19:1–19:26, 2017.

[4] K. Bleakley and J.-P. Vert. The group fused Lasso for multiple change-point detection.
working paper or preprint, 2011.

[5] A. Chattopadhyay and K.-Y. Lam. Security of autonomous vehicle as a cyber-physical
system. In 2017 7th International Symposium on Embedded Computing and System
Design (ISED), pages 1–6, 2017.

[6] M. Cuturi. Fast global alignment kernels. In Proceedings of the 28th International Con-
ference on International Conference on Machine Learning, ICML’11, pages 929–936,
USA, 2011. Omnipress.

[7] T. Dreossi, A. Donzé, and S. A. Seshia. Compositional falsification of cyber-physical
systems with machine learning components. CoRR, abs/1703.00978, 2017.

[8] M. W. Eysenck. Fundamentals of Cognition. Psychology Press, 2012.
[9] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. Flownet 2.0:

Evolution of optical flow estimation with deep networks. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1647–1655, 2017.

[10] E. A. Lee. Cyber physical systems: Design challenges. In 2008 11th IEEE Interna-
tional Symposium on Object and Component-Oriented Real-Time Distributed Comput-
ing (ISORC), pages 363–369, 2008.

[11] E. A. Lee. Cyber-physical systems: A rehash or a new intellectual challenge? Invited
Talk in the Distinguished Speaker Series, sponsored by the IEEE Council on Electronic
Design Automation (CEDA) held at the Design Automation Conference (DAC), Austin,
Texas., 2013.

[12] J. Lee, B. Bagheri, and C. Jin. Introduction to cyber manufacturing. Manufacturing
Letters, 8:11–15, 2016.

[13] J. Lee, B. Bagheri, and H.-A. Kao. A cyber-physical systems architecture for industry
4.0-based manufacturing systems. Manufacturing Letters, 3:18–23, 2015.

[14] J. Lin, S. Sedigh, and A. Miller. A Semantic Agent Framework for Cyber-Physical Sys-
tems, pages 189–213. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[15] Y. Liu, Y. Peng, B. Wang, S. Yao, and Z. Liu. Review on cyber-physical systems.
IEEE/CAA Journal of Automatica Sinica, 4(1):27–40, 2017.

[16] A. Lőrincz, M. Csákvári, Áron. Fóthi, Z. Á. Milacski, A. Sárkány, and Z. Tősér. Towards
reasoning based representations: Deep consistence seeking machine. Cognitive Systems
Research, 47:92–108, 2018.

[17] Z. Á. Milacski, K. B. Faragó, A. Fóthi, V. Varga, and A. Lőrincz. Declarative descrip-
tion: The meeting point of artificial intelligence, deep neural networks, and human in-
telligence. In IJCAI/ECAI 2018 Workshop on Explainable Artificial Intelligence (XAI),
2018.

66 RÓBERT ADRIAN RILL AND ANDRÁS LŐRINCZ

[18] Z. Á. Milacski, M. Ludersdorfer, A. Lőrincz, and P. Van Der Smagt. Robust detection
of anomalies via sparse methods. In Lecture Notes in Computer Science, volume 9491,
pages 419–426. Springer Verlag, 2015.

[19] S. Munir, J. A. Stankovic, C.-J. M. Liang, and S. Lin. Cyber physical system challenges
for human-in-the-loop control. In Presented as part of the 8th International Workshop
on Feedback Computing, San Jose, CA, 2013. USENIX.

[20] W. Nilsen, E. Ertin, E. B. Hekler, S. Kumar, I. Lee, R. Mangharam, M. Pavel, J. M.
Rehg, W. Riley, D. E. Rivera, and D. Spruijt-Metz. Modeling Opportunities in mHealth
Cyber-Physical Systems, pages 443–453. Springer International Publishing, Cham, 2017.

[21] W. D. Nothwang, M. J. McCourt, R. M. Robinson, S. A. Burden, and J. W. Curtis.
The human should be part of the control loop? In 2016 Resilience Week (RWS), pages
214–220, 2016.

[22] N. Pedersen, T. Bojsen, and J. Madsen. Co-simulation of cyber physical systems with
hmi for human in the loop investigations. In Proceedings of the Symposium on Theory
of Modeling & Simulation, TMS/DEVS ’17, pages 1:1–1:12, San Diego, CA, USA, 2017.
Society for Computer Simulation International.

[23] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 6517–6525, 2017.

[24] T. Simon, H. Joo, I. Matthews, and Y. Sheikh. Hand keypoint detection in single images
using multiview bootstrapping. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4645–4653, 2017.

[25] D. Sonntag, S. Zillner, S. Chakraborty, A. Lőrincz, E. Strommer, and L. Serafini. The
medical cyber-physical systems activity at EIT: A look under the hood. In 2014 IEEE
27th International Symposium on Computer-Based Medical Systems, pages 351–356,
2014.

[26] L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605, 2008.

(1) Faculty of Informatics, Eötvös Loránd University. H-1117 Budapest,
Pázmány P. stny 1/C, Hungary. 3in Research Group, Martonvásár, Hungary.

(2) Faculty of Mathematics and Computer Science, Babeş-Bolyai University.
1 Mihail Kogălniceanu, RO-400084 Cluj-Napoca, Romania.

Email address: rillrobert@cs.ubbcluj.ro (ORCID iD: http://orcid.org/0000-0002-

3004-7294), lorincz@inf.elte.hu (ORCID iD: https://orcid.org/0000-0002-1280-3447)

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIV, Number 1, 2019
DOI: 10.24193/subbi.2019.1.06

EMBEDDED SYSTEMS WITH COMPONENT-BASED GPU

SUPPORT: A STATE OF THE ART

ANTONIU MICLĂUŞ, ŞERBAN PETRESCU, AND ANDREEA VESCAN

Abstract. In order to deal with extremely large quantities of informa-
tion, embedded systems need high capabilities in order to process the whole
amount of data in real time. Two trends are present in the field: the
usage of boards with Graphics Processing Units (GPUs) and the usage
of component-based development (CBD). Components with GPU capa-
bilities have the great advantage to be platform-independent. However,
developing embedded systems with GPUs by using CBD was considered
until very recently a problem with restricted availability and flexibility. By
introducing specific GPU support for CBD in the form of flexible compo-
nents and by improving their communication, a solution was identified and
checked. Present paper aims to present a state-of-the-art and highlights
the newest knowledge to date, articulating encountered confronted issues
and describing existing solution approaches.

1. INTRODUCTION

Many modern embedded systems deal with huge amounts of data originat-
ing from the interaction with the environment. For example, the autonomous
car developed by Google 1 processes up to 120 MB of data per second de-
livered through its sensors [1]. The data must be processed with a certain
performance in order to handle, in real-time, the environment changes.

A solution to process these data with adequate performance is the usage of
general-purpose Graphics Processing Units (GPUs), which, thanks to their ar-
chitecture, excel for highly data-parallel applications. Today, embedded-board
platforms contain GPUs and different platforms have different architectures.
Depending on their characteristics, like size, energy consumption or computa-
tion power, different platforms are suitable in different contexts. For example,

Received by the editors: January 21, 2019.
2010 Mathematics Subject Classification. 68U01, 68M99.
1998 CR Categories and Descriptors. I.3.2 [Computer Graphics]: Graphics Systems –
GPU ; C.3 [Special-Purpose and Application-Based Systems]: Real-time and embed-
ded systems.
Key words and phrases. GPU-capability, component-based development, flexible component,
allocation optimization.

67

68 ANTONIU MICLĂUŞ, ŞERBAN PETRESCU, AND ANDREEA VESCAN

there are platforms with high-computation GPU used in high-performance
computing solutions, but also low-computation with low energy consumption
such as GPU used in smart watches [3].

An alternative approach in the development of embedded systems is the
usage of component-based development (CBD). CBD is a software engineer-
ing methodology that promotes the efficient system development through the
composition of already existing software blocks called (software) components.
CBD advertises the use and reuse of the same component in different contexts,
which increases the development efficiency.

CBD is ineffective for embedded platforms that combine Central Processing
Units (CPUs) and GPUs. This is due to the lack of specific support for
GPUs. This overall challenge has several aspects. One of them refers to the
development of components with GPU capabilities, which is complex, time-
consuming and error-prone.

Another existing issue involves the reduced flexibility of the current way
in which component-based applications with GPU capabilities are designed.
The existing hardware-specific components have a reduced reusability between
different hardware contexts.

The aim of this paper is twofold: firstly, a state of the art is provided,
classifying the existing conducted research on CBD for GPU and augmented
it with additional newest published approaches in the last year, and secondly
to highlight the existing solutions for the encountered issues relating to usage
of GPUs.

The reminder of the paper is organized as follows. A review of current
contributions in the area of embedded systems with GPU is presented in Sec-
tion II, followed by a focused overview in Section III, where only mechanisms
to ease CBD for embedded systems with GPU capabilities are treated. The
end of Section III also contains the related work. Section IV extracts the
conclusions of the reviewing work.

2. EXISTING RESEARCH ON EMBEDDED SYSTEMS WITH
COMPONENT-BASED GPU

Campeanu [4] conducted a Systematic Literature Review (SLR) and inves-
tigated existing studies related to CBD and GPU aspects. In his study 49
papers were considered and, from those, only 17 were devoted to the area of
embedded systems. It was shown that the development of CBD for GPU-
capability applications was first approached/published in 2009, and even to-
day, this field is still poorly represented in the mainstream research for indus-
try. The directions in which research on CBD for GPU was conducted were
classified by Campeanu [4] to be: a) development improvement (33 papers);

EMBEDDED SYSTEMS WITH COMPONENT-BASED GPU SUPPORT 69

b) performance improvement (10 papers); c) software-to-hardware allocation
(5 papers); d) experience sharing knowledge (1 paper).

There resulted a number of gaps/needs to be approached in the future:

• generally, no specific component models were used to build the solu-
tions; in the studies that however approached the area in such a way,
the most used were PEPPHER, UML, CCA and Rubus;

• more than 10 mechanisms were implemented to support GPU devel-
opment, from which most applied were the programming and mod-
eling mechanisms;

• the memory addressing was approached by an artifact, manual- or
layer-based solutions;

• preferred programming languages were CUDA/OpenCL and C/Cpp
(CUDA – developed specifically for NVIDIA, while OpenCL – more
general and fits to platforms like AMD, Altera, IBM, Intel, NVIDIA,
Samsung and Xilinx).

Since the Systematic Literature Review provided in [4], several other pa-
pers investigated the GPU in connection with other perspectives as: parallel
applications, multiple streams and process variations.

In what follows, we present several other contributions not presented in [4].
With the aim of stream computing for real-time sensor correction, authors

of [5] proposed a flexible and expandable on-board real-time data processing
solution. The data coming from a high-resolution optical satellite was chosen
while the proposed solution was based on multi-threading optimization and a
CUDA collaborative strategy. The simulation prototype was implemented on
an NVIDIA embedded GPU platform and it consisted in a double-module data
parallel pipeline system. Programming, occupancy and data access improve-
ments were used and checked. The on-board results were at the end compared
against the same algorithms run on a Dell PowerEdge T630 Server, proving
a feasible stream performance and low power consumption. Due to the good
flexibility and expandability of the embedded GPU platform, the idea could
be shifted to cover different applications in which optimization strategies to be
adjusted accordingly while the number of pipeline modules should be redrafted
in function of the computational requirements. To improve the on-board intel-
ligent processing capability, authors of [5] also proposed the implementation of
other algorithms, eg.: fusion, geo-rectification, region of interest (ROI) extrac-
tion, cloud-cover detection, target recognition and change detection real-time
processing.

In order to simulate parallel applications running on GPUs, the authors of
[6], proposed the adaptation of the performance Volkov model and its imple-
mentation on a MERPSYS simulator. CUDA and NVIDIA GPUs are already

70 ANTONIU MICLĂUŞ, ŞERBAN PETRESCU, AND ANDREEA VESCAN

available in the model, while extensions are expected soon, to include AMD
and the OpenCL frameworks. GPU modeling was very proficient with the
Volkov model implementation, from the extendibility and feasibility perspec-
tive. The advantages offered by using MERPSYS with this model was proved
in the directions: a) it provides possibility to assess the applications function-
ing for sizes of the data that exceed the hardware capabilities; b) hardware
setups can be evaluated prior to computations/applications running; c) costs
may be apriority predicted since it is possible to calculate the duration of the
computation; d) shortening of the simulation times than the real runs is ob-
vious. The model could be verified on different GPU hardware architectures
and could be improved further on, by using double precision units, SFUs and
shared memory. Also, an automation of the kernel analysis process is expected
for this solution.

To solve the complex problem of correct dissemination of multiple streams
coming from various sensors in a system, a recent solution based on an original
architecture was proposed: the Parallel Data Distribution Service (PDDS) [7],
published in 2018. It proposed solving the problem timely, reliable and scal-
able. PDDS centers its idea on parallelizing the model-related computation.
The state estimation of sensor streams was made by involving general-purpose
GPUs (GPGPUs) to obtain high efficiency in energy and good scalability.
Practically, an original data distribution algorithm has been implemented on
a modern embedded device using CUDA by extending the data distribution
service of the object management group. Three GPGPU kernels were involved:
prediction, compaction and update kernels. With PDDS, serial network stacks
could be bypassed and subscribers could have access to fresh sensor data by
using local sensor models and with no communication with its publishers. It
was proved that this algorithm consumes just 5% energy if compared to similar
algorithms in use.

An interesting and complementary approach was recently addressed by an-
alyzing the embedded GPU aging problem as a result of processes variations
[8], published in 2018. An aging-aware workload management technique was
used, in which the main actors were the warp scheduler and instruction dis-
patcher. The technique functions like this: before the launching of the kernel
function, the host configures the GPU, taking into account the results from a
running algorithm. This one refers to the formation of warp and to the work-
load division and generates information to reconfigure the cluster and scale the
heaviness of the embedded GPU. It was proved experimentally that by using
such a technique, GPU may excellently be reduced in (72-95) % of cases. Com-
pared to the complier-based-technique, the present aging-preventing technique
is less susceptible to soft-errors.

EMBEDDED SYSTEMS WITH COMPONENT-BASED GPU SUPPORT 71

Since CBD is ineffective for embedded platforms that combine central pro-
cessing units (CPUs) and GPUs, one solution is the development of compo-
nents with GPU capabilities/settings and GPU-specific environment informa-
tion. Encapsulating inside the components all the information results in spe-
cific hardware components destined to particular GPU architectures. There
are two possibilities: a) specialized components made to encapsulate GPU
functionality – but they cannot function without GPU hardware; b) introduc-
tion of special adapters to facilitate automatic data transfer between CPU and
GPU memory system. Practically solutions are encountered in case of Autosar,
Rubus and IEC 61131 [4]. The disadvantage is connected to the limitations
of the system developer due to the reduced reusability of hardware-specific
components in different hardware contexts.

In CBD, the components interact through interfaces: port-based and o-
peration-based. Eg.: the port-based interfaces comprise of access points for
sending/received data of different types between components. The white-
box components are readable source code changeable by the programmers.
The components’ functionality is accessed through the interface, and their
internals are visible from outside. The developer has access to their interface
and internals. A component is constructed by following the specifications of
a component model; it is well established how components interact with each
other when they are assembled into a system.

3. PROPOSED SOLUTIONS FOR GPU SPECIfiC SUPPORT: THE
PIPE-AND-fiLTER COMPONENT MODELS

This section emphasizes and presents the proposals to overcome the short-
comings identified in SLR [4].

The GPU, being the processing unit equipped with a parallel architecture,
cannot function without a CPU. CPU coordinates all the GPU-specific activ-
ities (data transfer/execution of GPU functionality). Embedded-board plat-
forms with different GPU architectures exist (2 types):

• discrete (dGPU) - has its own private memory (Condor GR23);
• integrated (iGPU) - on the same chip as the CPU, sharing the same

memory (AMD Kabini4).

Embedded-boards with iGPU architectures are the predominant platforms
in industry, low - priced, - sized and - energy usage. dGPUs have large physical
sizes, incorporate more (GPU) resources and used by systems requiring high
performance.

To develop an application, several hierarchical steps are taken: 1) a platform
is set with installed driver (contains one or several execution devices, eg. 1-
CPU and 2- GPU (iGPU and dGPU) devices); 2) the devices are selected so

72 ANTONIU MICLĂUŞ, ŞERBAN PETRESCU, AND ANDREEA VESCAN

as to execute the functionality; the commands given by the host (CPU) to
the device (iGPU)/kernel are sent using a command queue mechanism; the
functionality should be defined before setting the platform; 3) allocation of
device memory (buffers), either as input or output for the kernel function; 4)
a program to hold the defined kernel is created and compiled (kernel arguments
are assigned by using the allocated In/Out buffers) + specify the number of
threads for the kernel execution; 5) the kernel is executed and its results
are transferred back to the host; 6) the resources (memory buffers, program,
context, command queue, kernel) are released.

The pipe-and-filter component models are based on [4]: a) flexible compo-
nents; b) optimization of the groups of flexible components; c) a support for
component communication is designed.

A flexible component, being a white-box with readable and modifiable
source code, its functionality is expressed in parallel using the OpenCL syn-
tax. It can be executed either on CPU or GPU. The component does not
contain any environment-specific information (it is not binded to a particular
processing unit). During system design, the system developer decides on which
hardware (CPU or GPU) the flexible components should be allocated onto.
In order to be executed on the specified hardware, the required environment
information is generated automatically.

The accomplishment of the solution is implemented on two levels: the
component- and the system-level. Using the core functionality and the in-
formation on the number and data types of the (In and Out) data ports
provided by the flexible component, a full component was generated, ready
to be executed on the hardware. The resulting generated component con-
tains constructor + behavior function + destructor. At system level, based
on the component connections and component-to-hardware allocation, arti-
facts/adapters were generated where needed. The adapters take data from
one component and provide it to the connected component in the appropriate
memory location

The use of flexible components having functionalities that may be executed
either on CPU or GPU has the next advantages: 1) component-level mech-
anisms automatically generate environment-specific information that allows
the component to be executed on different hardware; 2) system developer has
a larger design-space to choose from; 3) the adapters automatically transfer
data between components.

3.1. Flexible Component-based Applications with GPU Capabili-
ties.

The approach presented in [9] aims at enhancing the flexibility in designing
component-based applications with GPU capabilities by introducing flexible

EMBEDDED SYSTEMS WITH COMPONENT-BASED GPU SUPPORT 73

components that owe functionalities that may be executed either on CPU or
GPU. In this way the developer may focus only on implementing the func-
tionality while having a larger design-space to choose from. Component-level
mechanisms automatically generate environment-specific information so that
the component may be executed on different hardware. The adapters au-
tomatically transfer data between components, taking in consideration the
platform specifications. The benefits of employing flexible components re-
fer to: canceling the developer’s responsibility of handling the component
environment-specific information; providing a higher system feasibility due to
a larger design-space; increasing the component communication efficiency by
the generated adapters.

Supplementary to the solution proposed in [9], the authors of [10] under-
line the fact that the flexibility offered by component-based applications com-
plicates the allocation process; it adds additional complexity (due to unde-
cided CPU or GPU execution) and constraints to be considered (CPUs and
GPUs properties). Therefore an optimization of the flexibility offered by the
component-based embedded systems is necessary. Practically in [10] it is pro-
posed a model to optimize the memory usage, the energy usage and the execu-
tion time. The novelty is provided in the formal description of the optimization
model, which supports the usage of mixed integer nonlinear programming to
compute optimal allocation schemes.

3.2. Boosting the Resource Utilization.
In order to mitigate the ever-increasing computational demands of modern

embedded systems platforms equipped with GPU processors, an alternative
solution is proposed in paper [11] by the boosting of the resource utilization
of embedded systems with GPUs. Practically the idea is that the non-critical
functions can benefit from the resources of the critical functions during the
intervals when they are not used. The method provided in [10] allows the
automatic computation of the unused resources in the critical part of the
system followed by the distribution of the computed resources to the non-
critical parts. The method makes use of a run-time monitoring engine that
monitors the critical part of the system to detect any changes in its resource
requirements. The considered run-time resources are the system memory and
GPU computation threads. By calculating the unused memory based on the
actual resource usage by the critical part of the system and by having the
information regarding the amount of available memory, the non-critical part
of the system can benefit from the available extra resource.

3.3. Practical Demonstrations of Flexible Components Versatility.

74 ANTONIU MICLĂUŞ, ŞERBAN PETRESCU, AND ANDREEA VESCAN

It was demonstrated that the pipe-and-filter style implemented by Rubus
component model is suitable for streaming of events-type of applications and
allows an easy mapping between the interaction model and the control spec-
ifications required by embedded and real-time systems [4]. The Rubus com-
ponent consisted of 3 parts: constructor (executed once, before the system
execution and allocates the component resource requirements), behavior func-
tion (functionality of the component, executed each time when the component
is triggered) and destructor (execution when the system is switched off and
releases the allocated resources).

In case of the vision system of an underwater robot [2], the hardware plat-
form was an electronic board with a GPU, connected to various sensors (two
cameras) and actuators (thrusters) [4]. The continuous flow of data produced
by the cameras is processed by the robot’s vision system using the GPU. Two
camera components were connected to the physical camera sensors. The re-
ceived data was converted into readable frames and forwarded to the Merge
and Enhance component that merged and reduced the noise of the two received
frames. The resulting frame was converted to grayscale. Due to the nature
of computations (image processing), a set of flexible components were used:
Merge And Enhance, Convert Grayscale, Edge Detection, Compress RGB and
Compress Grayscale. The frames were of m-elem type, where the maximum
size (RGB and grayscale) varied from component to component, depending on
the functionality. To evaluate the approach, 4 allocation scenarios were used:
1) all flexible components are allocated to the GPU; 2) all flexible compo-
nents are allocated to the CPU; 3) and 4) alternate in allocating the flexible
components to CPU and GPU. For each scenario, there were used 3 differ-
ent hardware platforms that contain GPUs. As an output, three produced
frames were compared (the input to Object Detection and Logger) from all 12
combinations of scenarios and platforms; all combinations generated identi-
cal output frames. For scenario 1 (all flexible components allocated on GPU),
for platforms with dGPU architecture, there were generated two CPU-to-GPU
adapters and three GPU-to-CPU adapters. When all flexible components were
allocated to CPU, there was no need for adapters. For shared virtual memory
architectures, there were generated only CPU-to-GPU adapters; there was no
need for GPU-to-CPU adapters because all components (regular and flexible)
had direct access to the same shared virtual memory system.

Even if up until very recently CBD presented a very reduced attractive-
ness and solvability in the area of embedded systems with GPU, yet notably
progress has been made in the last couple of years. For a compact overview
of novelties in the field, Table 1 synthesizes the advancement in the field.

EMBEDDED SYSTEMS WITH COMPONENT-BASED GPU SUPPORT 75

Issue / GPU mechanism New solution References
Flexible and

expandable on-board
GPU real-time data processing

Multi-threading optimization/
CUDA collaborative strategy

[5]

Prediction of application
performance on various GPUs

Theoretical models embedded in
MERPSYS

[6]

Parallel Data Distribution
Service architecture

Parallelizing the model-related computation/
general-purpose kernels of GPUs/
extending the data distribution

service of the object management group

[7]

Improving GPU
aging process

Aging-aware workload management technique/
reconfigure the cluster and scale the

heaviness of theembedded GPU
[8]

CBD: Platform
independent components

Flexible component/executed on GPU or CPU
/grouping/communication via adapters/

adapters generated automatically
[4], [9]

CBD: Rubus component
model - extended

Implemented with flexible components/
groups/adapters

[4], [10]

CBD: GPU platforms with
components application

optimization

Method providing different allocation schemes
for flexible components/

in function of optimization criteria
[4], [11]

Table 1. Development of embedded systems with GPU

4. CONCLUSIONS

Facilitation of component-based development of embedded systems with
GPUs is a need in alternative finding of solutions for high-demand processing of
huge data streams resulted from real-time environment sensor-systems. Even if
considered until very recently as a limited/abandoned track, CBD contribution
proves its high potential in specific contexts.

By starting with a review of state-of-the-art of embedded systems with
GPUs, we initially classified the papers in the field - based on categories,
mostly using the collected data presented in a doctoral thesis from 2018 [4]
which extracted information from internationally recognized databases. Then
we emphasized the newest ones, which have not been reviewed to date.

The main focus was however devoted to reviewing solutions in the area of
CBD, where, when preparing the component with GPU capability one needs
to take into account: on one hand, the component functionality, the required
environment information and GPU settings, and on the other hand the sepa-
ration between component and the system development.

By analyzing the concepts recently introduced of flexible components, then
flexible groups and then optimized groups, a feasible solution was showed to
emerge. The component communication was facilitated by using specialized

76 ANTONIU MICLĂUŞ, ŞERBAN PETRESCU, AND ANDREEA VESCAN

artifacts/adapters that automatically transfer data between CPU- and GPU-
allocated flexible components.

In view of recent solutions which were already implemented and tested, the
component-based GPU support proves its power and advantages, as compared
to other solutions analyzed above.

References

[1] K. Bimraw, Autonomous cars: Past, present and future, a review of the developments
in the last century, the present scenario and the expected future of autonomous vehicle
technology, The 12th International Conference on Informatics in Control, Automation
and Robotics (ICINCO), Colmar, France, July, 2015, pp. 191–198.

[2] C.Ahlberg, L. Asplund, G. Campeanu, F. Ciccozzi, F. Ekstrand, M.Ekstrom, J. Feljan,
A.Gustavsson, S. Sentilles, I. Svogor, and E. Segerblad, The Black Pearl: An Autonomous
Underwater Vehicle, Technical report, Mälardalen University, Sweden, 2013.

[3] G. Keramidas, Ultra Low Power GPUs for Wearables, Think Silicon,
http://lpgpu.org/wp/wp-content/uploads/2014/09/HiPEAC wearables.pdf, Jan. 2015.

[4] G. Campeanu, GPU Support for Component-based Development of Embedded Systems,
Ph. D. Thesis, School of Innovation, Design and Engineering, Mälardalen University
Doctoral Dissertation 264, Sweden, 2018.

[5] M. Wang, Z.Q. Zhang, Y. Zhu, Z. P. Dong, Y.Y. Li, Embedded GPU Implementation of
Sensor Correction for On-Board Real-Time Stream Computing of High-Resolution Optical
Satellite Imagery, Journal of Real-Time Image Processing, vol. 15, no. 3, (2018), pp. 565–
581.

[6] T. Gajger, P. Czarnul, Modelling and Simulation of GPU Processing in the Merpsys
Environment Scalable Computing-Practice and Experience, Scalable Computing-Practice
and Experience, vol. 19, no. 4, Special Issue: IS, (2018), pp.: 401–422.

[7] W. Kang, J. Kim, PDDS: Scalable Sensor Data Distribution for Cyber-Physical Systems
Using GPGPUs, IEEE Internet of Things Journal, vol. 5, no. 3, (2018), pp. 2025–2036,
2018.

[8] H. Lee, M. Shafique, M.A. Al Faruque, Aging-Aware Workload Management on Embedded
GPU Under Process Variation, IEEE Transactions on Computers, vol. 67, no. 7 (2018),
pp. 920–933.

[9] G.Campeanu, J. Carlson, and S. Sentille, Flexible Components for Development of Em-
bedded Systems with GPUs, 24th Asia-Pacific Software Engineering Conference (2017),
p. 219–228.

[10] G. Campeanu, and S. Mubeen, Scavenging Run-time Resources to Boost Utilization in
Component-based Embedded Systems with GPUs, Intl. J. Adv. Software, vol. 11, no 1 and
2 (2018), p. 159–169.

[11] G. Campeanu, J. Carlson, and S. Sentilles, Allocation Optimization for Component-based
Embedded Systems with GPUs, The 44th Euromicro Conference on Software Engineering
and Advanced Applications, Prague (2018), pp. 101–110.

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, 1 Kogălniceanu, Cluj-Napoca, 400084, Romania

Email address: {mais1577, psis1589}@scs.ubbcluj.ro, avescan@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIV, Number 1, 2019
DOI: 10.24193/subbi.2019.1.07

RUNTIME PERFORMANCE BENCHMARKING FOR NOSQL

DATABASES

CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

Abstract. An experimental study regarding the performance of NoSQL
database management systems is presented in this paper. In this study,
two NoSQL database management systems (MongoDB and Cassandra)
were compared, and the following factors were considered: degree of par-
allelism and workload. Two distinct workloads (mostly read and update
heavy) were used, and various numbers of client threads. The measured
results refer to total runtime and they confirm that MongoDB outperforms
Cassandra in almost all tests considered.

1. Introduction

The relational model was considered for a long time the default data model
to use, as it is very well known and extensively used by many database profes-
sionals and companies worldwide. As the necessities of software applications
evolve, the quantity of data to be stored grows and the diversity of data for-
mats increases, which makes it harder to store and manage all that data in
a relational system. The need for horizontal scalability and high availability
of newer software applications were the main reasons that led to the emer-
gence of NoSQL models, as the relational model was not a good fit in these
cases. The main NoSQL data models are: key-value, column-family, docu-
ment and graph. While plenty of NoSQL database management systems are
offered by different providers, it is quite difficult to make a choice. Besides
the fact that NoSQL database management systems are very different from
one another regarding data models, query languages and distribution models,
they are also highly configurable and very flexible. Therefore, a fair compar-
ison between NoSQL database management systems is not a trivial task, as

Received by the editors: February 6, 2019.
2010 Mathematics Subject Classification. 68P15, 68P99.
1998 CR Categories and Descriptors. H.2.1 [Database Management]: Logical design

– Data models; H.2.4 [Database Management]: Systems – Distributed databases, Parallel
databases.

Key words and phrases. NoSQL database, performance benchmarking, MongoDB,
Cassandra.

77

78 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

it requires in-depth knowledge about each one of them. In order to choose an
appropriate NoSQL database management system for an application, the de-
signer of the application must study thoroughly the technical documentations
of several NoSQL products. Even after reading and understanding properly
every aspect of each NoSQL database management system considered, it can
be quite hard to make a fair comparison and take the right decision. Perfor-
mance benchmarks are a good way to overcome the lack of comparison criteria
between NoSQL database management systems. These benchmarks help ap-
plication designers see the candidate database management system in action,
allowing them to choose the appropriate hardware and software configuration.
The current paper refers to total runtime metric and it is the third in a se-
ries evaluating performance metrics of two NoSQL implementations: Mon-
goDB and Cassandra. All benchmarking tests were executed using Yahoo!

Cloud Serving Benchmark with different combinations of number of opera-
tions, number of client threads and workload on every database server.

2. Background

2.1. NoSQL data models. Huge volumes of data that are generated with
a high velocity, also known as big data, cannot be handled effectively with
relational databases. As a response to this problem, companies that work
with big data have created new data storage systems which are more flexible,
non relational, distributed and highly available. Inspired by Amazon’s and
Google’s non relational database systems, more and more companies built
their own non relational implementations, specialized on their needs. These
new non relational database systems are known today as NoSQL database
systems, and the data models they are based on are known as NoSQL data
models. These data models offer a flexible schema and the ability to store
related data in a single unit with a complex structure, thus removing the need
for join operations and increasing performance. The most important NoSQL
data models are the graph model, the key-value model, the document model
and the column-family model.

The graph model is the best fit for highly interconnected data. In this model,
data are stored as nodes and relationships between nodes. Each node and
relationship has a type and multiple properties, similar to a property graph.
Graph queries can be very expressive and fast, but the highly interconnected
nature of this model limits the horizontal scalability.

The key-value model can be considered the simplest NoSQL data model,
because it stores data as key-value pairs. Key-value pairs can be grouped into
containers called buckets, as stated in [19]. The key is the unique identifier

RUNTIME PERFORMANCE BENCHMARKING FOR NOSQL DATABASES 79

of the value part that stores the actual data. The value can have a com-
plex structure, but it is invisible at database level, therefore queries based on
value are not supported. While query capabilities are quite limited, horizontal
scalability is very well supported and database operations are fast.

The document model is somehow similar to the key-value model, because
a document can be considered a key-value pair. Each document has a unique
identifier and a value with a complex structure that is visible at the database
level. Documents are organized in collections. Queries can be very expressive
and horizontal scalability is easily supported, as there are no relationships
defined between documents. In a document, objects or arrays are allowed
to be stored as values for fields. Unlike the relational model, which imposes
that all records stored in a table must have the same structure, the document
model allows documents that have different structures to be stored in the same
collection. One of the most used document formats is JSON[13], followed by
XML[23] and YAML[24]. Related data can be grouped and stored in a single
document that is similar to the object representation used at the application
level, therefore the problem known as impedance mismatch[19] is removed and
the application development process is significantly improved.

The model known as column-family organizes data as rows that belong to
column families. There are some similarities between a relational table and
a column family, but the latter allows arrays, lists or objects to be stored as
values for columns and rows with different columns can be part of the same
column family. A column is in fact a key-value pair stored together with a
timestamp, and the name of the column represents the key part of the pair.
Join operations are usually not supported by this model, and denormalization
is common. Write operations are quite fast. A disadvantage of this model
is that query capabilities are somehow limited and the most common queries
must be taken into consideration in the design phase. Otherwise, horizontal
scalability and high availability are easily supported.

2.2. NoSQL tools. The data models chosen for our benchmarking study are
column-family and document. For each data model we chose a representa-
tive implementation: Apache Cassandra[1] as the column-family implementa-
tion, and MongoDB[16] as the document implementation. The column-family
model is also implemented by HBase[11], Bigtable[3] and Hypertable[12]. For
the document model, alternative implementations are: BaseX[2], CouchDB[6]
and Couchbase[5].

Apache Cassandra is an open source column-family DBMS that was origi-
nally developed at Facebook[15]. Its data and distribution models are based
on those used by Bigtable[3] and Dynamo[7]. Cassandra was designed to
run in a distributed environment and has its own query language, called

80 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

CQL(Cassandra Query Language). The main features offered by Cassandra
are automatic sharding, high availability, tunable consistency and data repli-
cation, including data replication across multiple data centers. In a Cassandra
cluster, all nodes are equal and each one of them can accept both read and
write operations. New nodes can be added to a cluster without downtime, and
the cluster capacity for both read and write operations scales linearly. The
version used in our study was Apache Cassandra 3.11.0.

MongoDB is an open source document DBMS developed by MongoDB Inc.
MongoDB stores data as JSON-like documents and does not require a prede-
fined schema. It has a rich query language based on JavaScript and ad hoc
queries are well supported. The main features of MongoDB are automatic
sharding, high availability, data replication (including multiple data center
replication), tunable consistency and schema flexibility. MongoDB was de-
signed to run in a distributed environment. In a MongoDB cluster, there are
three types of nodes: shards, query routers and configuration servers. Shards
store the actual data, while the cluster metadata is stored on the configuration
servers. Query routers use cluster metadata stored on configuration servers to
route queries to the corresponding shards. The version used in our study was
MongoDB 3.4.4.

2.3. NoSQL benchmarking. When many NoSQL database management
systems are available on the market, it can be hard to choose the right prod-
uct that offers the best performance for a particular application use case on
a specific hardware configuration. Benchmarking is a good approach in this
case, as it measures the actual performance of a NoSQL implementation on
a given hardware configuration. But the benchmarking process also requires
software tools, and there are not so many open source options available.

A benchmarking tool has two main features: workload generation and per-
formance measurement. A batch that contains all requests sent by an appli-
cation to a database server during a working session represents the applica-
tion’s workload. The main metrics in database performance benchmarking are
throughput, total runtime and latency. The number of operations completed
in a time unit is known as throughput. The amount of time needed for a single
operation to be completed is known as latency. The amount of time needed
to complete a given number of operations is known as total runtime (RT).
Throughput is measured in operations per second, while latency is measured
in microseconds per operation. Higher throughput values are better from the
performance viewpoint. Total runtime is measured in milliseconds and it rep-
resents the duration of a benchmarking test. Regarding performance, lower
total runtime and lower latency values are better. This paper refers to total
runtime.

RUNTIME PERFORMANCE BENCHMARKING FOR NOSQL DATABASES 81

Two types of NoSQL database benchmarking tools can be used: database-
independent and database-specific. From the database-specific type we can
remark cbc-pillowfight[20] for Couchbase and cassandra-stress tool[21]
for Cassandra. Our study aims to compare two different NoSQL database
servers by applying the same workload, so database-specific tools cannot be
used. From the database-independent type we mention BigBench[10] and
YCSB[4]. While BigBench runs only on Linux, YCSB runs on Linux and Win-
dows. Our case study involves servers that have Windows operating system
installed, which implies that BigBench cannot be utilized as benchmarking
framework. Also, the resemblance between BigBench and TPC-DS[17] makes
it less flexible and more oriented on traditional workloads instead of NoSQL
workloads. On the other hand, YCSB focuses on big data and NoSQL work-
loads and offers a lot of flexibility in both workload definition and workload
configuration. The fact that YCSB can be used to test many NoSQL DBMSs,
including Cassandra and MongoDB, is another important aspect that makes
it suitable for our study.

Yahoo! Cloud Serving Benchmark[4] (YCSB) appeared as a response to
the necessity of a benchmarking tool that is suitable for cloud or NoSQL sys-
tems. It is an open source project developed initially at Yahoo! and written in
Java which has two base components that are extensible. The first component
is the workload generator known as the YCSB client. The second component,
known as the Core workloads, consists of a set of workload scenarios that have
to be executed by the YCSB client, as stated in [25]. Each workload used in
YCSB has two main parts: a data set and a transaction set. The total num-
ber of records that need to be loaded into the database before any test is
performed represents the data set. The mix of write and read operations to
be performed in a test represents the transaction set. The main parameters
of the transaction set are: the total number of operations to be applied in a
test execution, the number of client threads and the ratio between write and
read operations. If the workloads contained in the Core workloads set are not
suitable for the needs of the user, new custom workloads can be created. In
our benchmarking study, we used YCSB version 0.12.0.

YCSB is also used in other benchmarking studies that are discussed in the
literature: [14], [9] and [8]. These benchmarking studies use a cloud-based
infrastructure, while our benchmarking study uses physical machines and it is
not cloud-based. The DBMS versions used in our study are newer than those
used in [14], [8] and [9]. Also, the operating system installed on our servers
is Windows. Other significant differences refer to the data sets used and
their size, hardware configuration and workload types. Paper [14] presents a
benchmarking study that involves custom workloads and a proprietary data set

82 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

belonging to a healthcare organization. The benchmarking studies presented
in [9] and [8] use data sets generated by the YCSB client. In [9], the size of
the data sets is not clearly stated, while the study discussed in [8] does not
include MongoDB, even if it specifies the actual size of the data sets used.

3. Case study

Our benchmarking experiment involved three servers with the same hard-
ware configuration. A different application ran on each server: YCSB client
on the first server, Cassandra on the second server and MongoDB on the last
server. The server configuration is as follows:

• CPU: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 4 cores, 8 logical
processors

• HDD: 500 GB
• RAM: 16 GB
• OS: Windows 7 Professional 64-bit.

The data set utilized in our experiment was generated by the YCSB client. It
contains 4 million records and it was used with all workloads. Each record con-
tains 10 fields and every field holds a 100 byte string value generated randomly.
The data set could fit in the internal memory due to its size. Two predefined
YCSB workloads were chosen: Workload A (50% reads, 50% updates), which
is considered an update-heavy workload[22], and Workload B (95% reads, 5%
updates), that is considered a read-mostly workload[22]. An example of ap-
plication for Workload A could be a session store that records recent actions,
while photo tagging could be a corresponding example for Workload B, as
stated in [22]. Both workloads were tested with the following number of op-
erations: 1000, 10000, 100000 and 1000000. For each number of operations,
tests were executed using 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512 client threads.
Each test with a certain combination of workload, number of operations and
number of client threads was repeated three times.
We installed MongoDB with default settings. The default storage engine for
MongoDB version 3.4.4 is Wired Tiger. We also installed Apache Cassandra
with default settings, but in order to avoid timeouts, we followed the setting
recommendation mentioned in [8]:

• write request timeout in ms was set to 100000
• read request timeout in ms was set to 50000
• range request timeout in ms was set to 100000
• counter write request timeout in ms was set to 100000.

The asynchronous variant of Java driver was used for both database servers.
A batch of tests includes all tests having the same workload, number of op-
erations, and database server, but different number of client threads. We

RUNTIME PERFORMANCE BENCHMARKING FOR NOSQL DATABASES 83

Table 1. Runtime Results for
1000 Operations Workload A

NT Cassandra MongoDB
1 6085.666667 1232.666667
2 3702.333333 468
4 3088.666667 249.6666667
8 2959 182
16 2938.333333 166.6666667
32 2880.666667 156
64 2896.333333 157.6666667
128 2855 156
256 2865 174
512 2906.666667 209.3333333

Table 2. Runtime Results for
10000 Operations Workload A

NT Cassandra MongoDB
1 34757 7124
2 16884.33333 2792
4 6708 1477
8 4279.666667 811.3333333
16 3535.666667 634.3333333
32 3364.333333 623.6666667
64 3161.333333 478.6666667
128 3187.333333 519.6666667
256 3276 494
512 3229.333333 546.3333333

restarted the database server before each batch of tests was executed, and we
captured database server status information before and after each execution
of a batch of tests. When the execution of all combinations of tests for the
first workload was finished, the data set corresponding to that workload was
dropped. After that, the data set characterized by the same parameters that
corresponds to the second workload was loaded.

3.1. Results. Every test was repeated three times for each combination of
workload, database, number of operations and number of client threads. A
total runtime (RT) average was calculated for each combination of workload,
database, number of operations and number of threads (NT) in order to create
the following charts. Figures 1 to 8 show a comparison of RT performance be-
tween Cassandra and MongoDB for each combination of workload and number
of operations. It is worth to mention here that the cases NT = 1 and NT = 2
are not shown in figures because they produce by far greater RT values than
the other cases considered. The runtime results are also presented in tables 1,
2, 3, 4, 5, 6, 7 and 8, including the cases NT = 1 and NT = 2.

Figures 1, 2, 5 and 6 show that in the case of a small number of operations
(1000 and 10000, respectively), MongoDB outperforms Cassandra for both
workloads used and all NT levels considered.

Figure 3 shows that the performance of Cassandra closes to MongoDB’s in
the case of an update-heavy workload A and for NT ≥ 64, when the number
of operations is set to 100000. For the same number of operations, MongoDB
produces better results than Cassandra when we use a read-heavy workload
B, as shown in Figure 7.

When the number of operations is 1000000, the results differ: Cassandra
outperforms MongoDB (as in Figure 4) when workload is update-heavy and
NT ≥ 32, while MongoDB’s performance is better for a read-heavy workload,
as shown in Figure 8.

84 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

Figure 1. 4 Million Records 1000 Operations Workload A - Runtime

Figure 2. 4 Million Records 10000 Operations Workload A - Runtime

Table 3. Runtime Results for
100000 Operations Workload A

NT Cassandra MongoDB
1 303900 62698.66667
2 144909 25791.66667
4 50164.33333 12912
8 16301.66667 6557.333333
16 9344.333333 4950.666667
32 5954 4435.666667
64 5194.666667 4591.666667
128 4950.333333 4415
256 5033.666667 4477
512 5064.666667 4441

Table 4. Runtime Results for
1000000 Operations Workload A

NT Cassandra MongoDB
1 2995324.667 629249
2 1454355 259615.6667
4 501797 131332.6667
8 137265.3333 64933
16 67153.33333 48817.66667
32 30202 46567
64 24820 45854
128 23609 46166.33333
256 23431.66667 46108.66667
512 23197.66667 46254.66667

RUNTIME PERFORMANCE BENCHMARKING FOR NOSQL DATABASES 85

Figure 3. 4 Million Records 100000 Operations Workload A - Runtime

Figure 4. 4 Million Records 1000000 Operations Workload A - Runtime

Table 5. Runtime Results for
1000 Operations Workload B

NT Cassandra MongoDB
1 6635 1014
2 3832.333333 415.6666667
4 3104.333333 228.6666667
8 2943 171.3333333
16 2906.666667 156
32 2870.333333 151.3333333
64 2865 140.6666667
128 2875.333333 156
256 2875.666667 171.6666667
512 2922.333333 203

Table 6. Runtime Results for
10000 Operations Workload B

NT Cassandra MongoDB
1 35765.66667 6391
2 13884 2870.333333
4 6541.666667 1227.666667
8 4186.333333 546.3333333
16 3567 369.6666667
32 3317.666667 322.6666667
64 3219 317
128 3224 317.3333333
256 3224.333333 317.3333333
512 3244.666667 327.6666667

86 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

Figure 5. 4 Million Records 1000 Operations Workload B - Runtime

Figure 6. 4 Million Records 10000 Operations Workload B - Runtime

Table 7. Runtime Results for
100000 Operations Workload B

NT Cassandra MongoDB
1 309530.3333 57995.66667
2 134706.3333 26020.66667
4 52171.66667 11117.33333
8 19978.33333 3957.333333
16 9651.333333 2085
32 7051.333333 1632.666667
64 6354.333333 1528.666667
128 6188.333333 1518.333333
256 5964.333333 1523
512 5974.666667 1476.666667

Table 8. Runtime Results for
1000000 Operations Workload B

NT Cassandra MongoDB
1 3001223 614303
2 1306186 269886
4 500798.3333 105114
8 227412.3333 37201
16 68801 19208.66667
32 43238.66667 14154.33333
64 36936.33333 13645
128 36754 13645
256 32880 13509.66667
512 32579 13338.33333

RUNTIME PERFORMANCE BENCHMARKING FOR NOSQL DATABASES 87

Figure 7. 4 Million Records 100000 Operations Workload B - Runtime

Figure 8. 4 Million Records 1000000 Operations Workload B - Runtime

3.2. Statistical analysis. Experimental data given in tables 1 thru 8 were
processed using two-way ANOVA (Analysis of Variance) procedure from R Sta-
tistics Package[18]. Table 9 displays a synthesis of the results. The two factors
considered for each experiment are: database (DB, with two levels: Cassandra
and MongoDB), and the number of threads (NT, with ten levels: 1, 2, 4, 8,
16, 32, 64, 128, 256, and 512). The interactions between DB and NT were also
studied. The column named ”Sgf” (abbreviation for statistical significance)
refers to the P-value, denoting the level of significance, 0.1%, 1%, 5%, and 10%,
following the usual conventions: 0 ∗ ∗ ∗ 0.001 ∗ ∗ 0.01 ∗ 0.05 . 0.1 (blank) 1.
In other words, if a P-value is ≤ 0.1% (that is, ∗ ∗ ∗ according to the legend),
it means that the differences between means of the factors considered have the

88 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

Table 9. Analysis of variance - Runtime Results

Wrk No Database No of threads DB:NT
ld ops F-value Pr(>F) Sgf F-value Pr(>F) Sgf F-value Pr(>F) Sgf
A 1000 269.6848 <2e-16 *** 3.8486 0.05476 . 1.1328 0.29174
A 10000 14.3015 0.0003805 *** 4.7928 0.0327625 * 2.0936 0.1534923
A 100000 6.1596 0.01610 * 5.1321 0.02737 * 2.4626 0.12222
A 1000000 5.5011 0.02257 * 5.2303 0.02600 * 2.5335 0.11708
B 1000 218.2569 <2e-16 *** 3.1952 0.07927 . 1.4045 0.24098
B 10000 14.1485 0.0004059 *** 4.2981 0.0427683 * 1.8757 0.1762899
B 100000 7.1493 0.009809 ** 5.1082 0.027720 * 2.3786 0.128642
B 1000000 6.4783 0.01370 * 5.3822 0.02401 * 2.4108 0.12614

strongest statistical significance. The other end of spectrum, when a a P-value
is greater than 10% (a blank space) shows that the differences between the
means of the factors considered are within the range of experimental error.

When comparing RT averages for DB factor, Table 9 shows that there
are several degrees of statistical significance between them in all combina-
tions (workload, number of operations) considered. The same table shows less
stronger statistical significance when comparing RT averages for NT factor,
and even poorer one in the case of 1000 operations. The interactions DB:NT
have no statistical impact on the RT.

4. Conclusion

In our benchmarking study, the performance of the two NoSQL database
management systems was measured for two workloads: read-mostly (Workload
B) and update-heavy (Workload A). The performance indicator was total run-
time (RT). MongoDB outperforms Cassandra in all studies involving Workload
B. For Workload A, the situation is the same, with some exceptions: the cases
where the number of operations is equal to 1000000 and the number of client
threads is greater than or equal to 32.

As further work, we plan to perform other experimental studies using data
sets with different number of fields on single server and cluster configurations.
Also, we intend to test other workload configurations with data sets that
exceed the internal memory. Another direction in our experimental work will
deal with database server replication and SSDs as disk storage, in order to
measure the performance impact of these configurations. Lastly, the operating
system will be another variable in our future case studies.

Acknowledgments

Parts of this work were supported through the MADECIP project Dis-
aster Management Research Infrastructure Based on HPC. This project was
granted to Babeş-Bolyai University, its funding being provided by the Sec-
toral Operational Programme Increase of Economic Competitiveness, Priority

RUNTIME PERFORMANCE BENCHMARKING FOR NOSQL DATABASES 89

Axis 2, co-financed by the European Union through the European Regional
Development Fund Investments in Your Future (POSCEE COD SMIS CSNR
488061862).

References

[1] Apache Cassandra. http://cassandra.apache.org/. Accessed: 2017-09-25.
[2] BaseX. http://basex.org/. Accessed: 2018-11-27.
[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chan-

dra, A. Fikes, and R. E. Gruber. Bigtable: A Distributed Storage System for Structured
Data. OSDI ’06 Proceedings of the 7th USENIX Symposium on Operating Systems De-
sign and Implementation, 7, 2006.

[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
Cloud Serving Systems with YCSB. Proceedings of the 1st ACM Symposium on Cloud
Computing, pages 143–154, 2010.

[5] Couchbase. https://www.couchbase.com/. Accessed: 2019-01-22.
[6] CouchDB. http://couchdb.apache.org/. Accessed: 2017-09-25.
[7] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly Available
Key-value Store. Proceedings of 21st ACM SIGOPS Symposium on Operating Systems
Principles, oct 2007.

[8] Fixstars. GridDB and Cassandra Performance and Scalability. A YCSB Performance
Comparison on Microsoft Azure. Technical report, Fixstars Solutions, 2016.

[9] A. Gandini, M. Gribaudo, W. J. Knottenbelt, R. Osman, and P. Piazzolla. Performance
Evaluation of NoSQL Databases. EPEW 2014: Computer Performance Engineering,
Lecture Notes in Computer Science, 8721:16–29, 2014.

[10] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A. Jacobsen. Big-
Bench: Towards an Industry Standard Benchmark for Big Data Analytics. Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data, pages
1197–1208, 2013.

[11] HBase. https://hbase.apache.org/. Accessed: 2017-09-25.
[12] Hypertable. http://www.hypertable.org/. Accessed: 2018-11-27.
[13] JSON. https://www.json.org/. Accessed: 2018-03-16.
[14] J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham, and C. Matser. Performance

Evaluation of NoSQL Databases: A Case Study. Proceedings of the 1st Workshop on
Performance Analysis of Big Data Systems, pages 5–10, 2015.

[15] A. Lakshman and P. Malik. Cassandra: A Decentralized Structured Storage System.
ACM SIGOPS Operating Systems Review, 44:35–40, 2010.

[16] MongoDB. https://www.mongodb.com/. Accessed: 2017-09-25.
[17] R. O. Nambiar and M. Poess. The Making of TPC-DS. VLDB ’06 Proceedings of the

32nd International Conference on Very Large Data Bases, pages 1049–1058, 2006.
[18] R Statistics Package. https://www.r-project.org/. Accessed: 2017-09-25.
[19] P. J. Sadalage and M. Fowler. NoSQL distilled : a brief guide to the emerging world of

polyglot persistence. Addison-Wesley Professional, 2012.
[20] Stress Test for Couchbase Client and Cluster. http://docs.couchbase.com/sdk-api/

couchbase-c-client-2.4.8/md_doc_cbc-pillowfight.html. Accessed: 2019-01-03.
[21] The cassandra-stress tool. https://docs.datastax.com/en/cassandra/3.0/

cassandra/tools/toolsCStress.html. Accessed: 2019-01-03.

90 CAMELIA-FLORINA ANDOR AND BAZIL PÂRV

[22] The YCSB Core Workloads. https://github.com/brianfrankcooper/YCSB/wiki/

Core-Workloads. Accessed: 2017-09-25.
[23] XML. https://www.w3.org/TR/2008/REC-xml-20081126/. Accessed: 2018-03-16.
[24] YAML. http://yaml.org/. Accessed: 2018-03-16.
[25] YCSB Github Wiki. https://github.com/brianfrankcooper/YCSB/wiki. Accessed:

2017-09-25.

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, 1 Kogălniceanu, Cluj-Napoca, 400084, Romania

Email address: {andorcamelia, bparv}@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIV, Number 1, 2019
DOI: 10.24193/subbi.2019.1.08

AN ADDRESS PROPAGATION MODEL IN P2P AND F2F

NETWORKS

MOHAMMED B. M. KAMEL1,2, PÉTER LIGETI1, AND ÁDÁM NAGY1

Abstract. Using identifiers to address the member nodes at DHT based
peer-to-peer (p2p) networks provides structured method of addressing the
nodes. The node lookup is then used to find the equivalent communica-
tion address of a given identifier. One of the main concerns is how to find
the communication addresses efficiently, especially if a node has joined or
rejoined the network recently. In this paper an address propagation model
has been proposed which is used as a solution in friend-to-friend (f2f)
overlays at p2p networks. The model keeps the required communication
addresses up-to-date in order to reduce the need of any node to perform
the lookup process. It allows each node to maintain the addresses in a
distributed manner using bucket based broadcasting and guarantees that
it has the current up-to-date addresses of its friend nodes as a necessary in-
formation to establish a direct connection without any centralized scheme.
Despite adding some traffic overhead to the network, the proposed address
propagation process is secure and fast.

1. Introduction

Because of sophisticated components of mobile equipment, mobile devices
have become important tools to sense, communicate, and compute data. In
the last few years and due to the decentralized nature of peer-to-peer (p2p)
model, this model is widely used as an alternative to client-server model [14].
p2p network is a decentralized network in which each peer acts as both client
and server, which makes it more applicable on emerging systems that consist
mostly of mobile nodes. p2p network is also widely used in different applica-
tions such as secure chatting, distributed cash system [13], distributed data
sharing [4] and distributed secret sharing [9][18]. The open nature of p2p

Received by the editors: September 21, 2018.
2010 Mathematics Subject Classification. 68M10, 68M14.
1998 CR Categories and Descriptors. C.2.1 [Network Architecture and Design]:

Network communications – p2p networks; C.2.4 [Distributed Systems]: Distributed ap-
plications – f2f networks.

Key words and phrases. Private P2P network, F2F network, Network address discovery,
symmetric and asymmetric cryptography.

91

92 MOHAMMED B. M. KAMEL, PÉTER LIGETI, AND ÁDÁM NAGY

networks and the ability of almost everyone to join the network make some
systems such as [8] to use a private overlay at p2p networks called friend-
to-friend (f2f) network as their underlying communication scheme to ensure
secrecy and anonymity of participants beyond direct peer nodes [6]. Using f2f
networks have number of advantages: first, it allows the participants utilizing
the established public p2p network to communicate securely and reliably. Sec-
ond, along with the reliability it provides the anonymity such that each node
communicates with its trusted friend nodes without any necessary knowledge
about other trusted connections beyond its direct friend nodes.

One important issue in the f2f overlays at p2p networks is the address
discovery of nodes. Members of a f2f network could join and leave the network
frequently and later rejoins the network with a new communication address
(i.e. new logical address or port number). In distributed secret sharing systems
such as Siren [8], there should be a direct connection to a number of predefined
nodes in f2f network in order to recover the encrypted data stored in p2p
network. This means that in addition to retrieving the data from p2p network,
a set of direct connections in f2f network have to be established in order to get
the required information to decrypting the retrieved data. At the same time,
the node has to be able to discover its friends’ addresses on the public p2p
network without revealing the friendship relationship between them. Thus,
keep the up-to-date address of friend nodes is an essential requirement of such
networks. In case that a node failed to open a communication channel with a
friend node due to a possible update in a node’s logical address, a node lookup
process will be started. The node lookup process is used to find an equivalent
communication address of a given node identifier. Beside reliability, lookup
latency is one of the main concerns of p2p systems that uses Distributed Hash
Tables (DHT) [1]. In time-critical systems based on f2f overlays, such lookup
process increases the required time to retrieving and deciphering the data. In
this paper a model for address propagation has been proposed to guarantee
that each node at the f2f network always has the fresh addresses of its friend
nodes. The transmitted addresses will be kept confidential and known only
by the authorized recipients.

The rest of this paper is organized as follows. The next section introduces
the various issues and summarizes the efforts in current research field. Sec-
tion 3 describes the proposed model of address propagation. Section 4 shows
the test results and analysis of the model. Finally, Section 5 presents our
conclusions.

AN ADDRESS PROPAGATION MODEL IN P2P AND F2F NETWORKS 93

2. Literature Review

DHT based systems assign a seemingly unique key (ID) to each node that
joins the network. These keys are generated using a specific hash algorithm.
The input parameters to these hash functions varies and different methods are
used such as node IP [16], randomized generated ID [3] or using identity-based
cryptography [2]. Each peer in the DHT p2p network is then responsible for
storing the information of a number of files depending on the distance between
hash value of the file and its identifier. Metrics such as bitwise exclusive or
(XOR)[12] is used to determine the closeness. In distributed secret sharing[9],
while the data is stored in p2p network, the required keys to decode this data
is stored at f2f network. These systems can use DHT to provide a lookup
service. Because of one-way property of hash functions, regardless of used
method to generate a node ID, the generated identifier does not contain any
information about the communication address of the node.

The logical path of peers on underlying network could vary from the id
based path on DHT network between them, thus the lookup latency of the
p2p networks can be high which in this case leads to operational inefficiency in
applications running over it [11]. Reducing the lookup latency is specifically
pertinent to decreasing the number of hops the lookup needs to traverse, which
adds the scalability constraint for several lookup mechanisms [19]. On the
other hand, the frequent joining and leaving of nodes in p2p network which
is known as churn [17] will increase the lookup delay by requiring to connect
to different nodes due to leaving of previously available nodes. In case of
change in the address of one or more friend node, the connection could be lost
between them until their new communication addresses will be captured by
each other. Some proposed solutions that use DHT such as [10] in order to
solve this issue requires a central entity which does not follow the p2p principle
and removes the decentralized nature of it by adding a centralized point. The
proposed solution to prevent the lookup process for address discovery is to
keep each entry at the table of addresses of each node up-to-date. This will
includes the direct confirmation of newly updated communication address to
f2f members. Keeping the required communication addresses of the nodes up-
to-date increases the performance of decoding the retrieved data and mitigate
the execution of lookup process. The bucket based broadcast [5][15] has been
used at the address propagation model. At the following section the model
has been described in detail.

3. Model Description

3.1. Parameters. The participants of the model are represented as a finite
set of nodes N = {N1,...,Nj} in the p2p network that update their addresses

94 MOHAMMED B. M. KAMEL, PÉTER LIGETI, AND ÁDÁM NAGY

on different time periods. These periods could be overlapped with each other
randomly. This identifier differs from the one used by DHT p2p network and
should not be confused with it. Suppose that every node i ∈ N can generate
a digital signature Signi(m) of any message m. Furthermore, an existing f2f
network is supposed between some subset of participants. The set of friends
of node i is Fi ⊂ N . Every node i has a common secret key kif with each of
its friends f ∈ Fi. Let H(.) be a collision resistant one-way hash function and
Enck(m) be an encryption of the message m using the symmetric key k.

3.2. Security model. The address propagation process has to be reliable,
secure and should be as fast as possible. The model assumes that the set of
friends in f2f network for each peer are honest nodes and the majority of peers
in p2p network are semi-honest whose with some predefined probability may
drop some or all of the incoming packets instead of forwarding them. The
security requirements that the model has to satisfy are

• Completeness: If a packet generated and sent by an honest node, its
friend nodes will verify it and later update their local corresponding
communication data of the issuer based on the incoming data.
• Authentic delivery: The address that has been issued by an honest

node will be received uncorrupted and the receiving friend node in
f2f network is able to identify and authenticate the sender.
• Packet Confidentiality: The transmitted packets that contains ad-

dress data has to be kept private within members of f2f network.
In addition, no intermediate node can get any information from the
forwarded packets.
• Anonymity: The real identity of the packet’s issuer should be kept

secret to the members of the p2p network. The friendship of two
nodes should not be revealed by any other friend node.

3.3. The address propagation protocol. After an update in a node’s com-
munication address (e.g. the node has connected to a different network and a
new communication address has been assigned to it), the node will inform its
friend nodes directly of the newly updated communication data. Then, node
i has to generate an Update Requesting Packet (URP) and inform each unin-
formed member at the f2f network {Fi1,...,Fin} of the newly updated address.
The size of the URP is set at the system setup phase and it will remain fixed.
The fixed size of URP prevents other nodes from getting extra information via
the URP’s size (e.g. number of friends). After assigning a new communication
address to node i, the URP has to be generated. The method that generates
an URP for a node is shown in algorithm 1.

AN ADDRESS PROPAGATION MODEL IN P2P AND F2F NETWORKS 95

Algorithm 1: Pseudo-code for generation of the URP by node n

Input:
Psize: the predefined size of the URP
pIDn: private ID of node n
F {} : set of friend nodes
pID{}: set of private IDs of F{}
CK{}: set of common keys between node n and members of F{}
Output: URP

1 sign(hash(pIDn))→ URP

2 key ← random number generator

3 encryptkey(data)→ URP

4 for each f in F do
5 send(data)→ f

6 if no acknowledgementreceived(f) then
7 hash(pIDn ⊕ pIDf)→ URP

8 encryptCKf
(key)→ URP

9 end

10 end

11 if sizeof(URP) 6= Psize then
12 randomdatasize← difference(Psize, sizeof(URP))

13 randomdata← random number generator (randomdatasize)

14 randomdata→ URP

15 end

16 return URP

The URP contains the following sections: header, address data, friends’
data and padding. These sections are illustrated in figure 1 and a detailed
description of them are as the follows:

• Header: At the header section, the issuer node i hashes its private ID
and put the signed value of it at the header. Each intermediate node
will use the header to determine whether the incoming URP belongs
to one of its friend nodes. The hashed value prevents from revealing
the private ID of node i to the participants of the p2p network.
• Address data: The data section includes the encrypted data of the

node i (i.e. new logical address of node i, its new port and any
additional information). The node i encrypts the data using a key k
that has been chosen uniformly at random.

96 MOHAMMED B. M. KAMEL, PÉTER LIGETI, AND ÁDÁM NAGY

Figure 1. Update Requesting Packet

• Friends’ data: For each uninformed friend f ∈ Fi, the node i adds
two parts: the common private identifier and the chosen random
key. First part that is the common private identifier of nodes i and
f will be used by f to indicate which part of the URP belongs to
it. This part is computed by first xoring the private ID of i and f,
then hashing the resulted value. The second part includes the chosen
key k that will be used by f to decrypt the data. This key will be
encrypted using the common secret key kif .
• Padding: If the resulted URP’s size is less than the predefined packet

size, the node i will add some random data at the end of the packet.

After generating the URP by node i, the packet will be broadcast to the
set of peer nodes {P1,...,Pm} at the p2p network. Any intermediate node will
examine the header to check whether the incoming packet belongs to one of its
friend nodes or not. At the final state, all members of the f2f network should
receive the transmitted new communication address.

Every node has a set Ti that includes the hashed value of all friend nodes’
private identifiers. This table will improve the checking time of each incoming
packet. Any member of the p2p network as soon as receives a packet starts
examining the incoming packet to detect whether there is any section of the
packet that belongs to it. This operation will be done by first checking the
header of the packet. The header will be checked by the public keys of all
i ∈ Fi in order to find a similar value in Ti. If a value has been found, it means
that the sender is i ∈ Fi. Then, the receiver node has to extracts its part to get
the new communication data of the issuer node i. In case that the incoming
packet does not belong to any member of Fi, the node will just forward the
packet. In case that the issuer node i after a predefined period of time does
not receive acknowledgments from all members of i ∈ Fi, it will regenerate
an URP including all uninformed nodes and restart the address propagation
process again.

AN ADDRESS PROPAGATION MODEL IN P2P AND F2F NETWORKS 97

4. Model Analysis

Each node has a unique private ID that is known only by its friend nodes.
This ID differs from the node’s identifier that is used at the p2p network. The
hashed and signed version of this private ID will be part of the header. This
field is examined by each receiving node r to check whether the incoming URP
belongs to one of its friend node or not. If the incoming URP belongs to one
of r’s friend nodes, then node r will start checking the first part of each friend
section to find its own part. Because node r stores each friend’s private ID
locally, this field could be computed in advance for each friend at Tr set. After
finding a matching section, the next step is to extract the sender’s chosen key
k by decrypting it using krf . The final step is to decrypt the communication
address data using the key k. The key k should decrypt the data correctly
which indicates that the extracted key has been generated by the pretended
sender. The proposed model has to satisfy four security requirements which
can be found in table 1.

Table 1. Security Parameters to Meet the Requirements

Security
Requirements

Completeness
Authentic
Delivery

Packet
Confidentiality

Anonymity

header X X X X
random key X X - -

encrypted data X X X X
padding - - X X

During the test of the proposed model, a p2p network of 300 active nodes has
been simulated. All the connections including direct p2p connection and f2f
network have been chosen uniformly at random. For the sake of simplicity, it is
considered that the offline nodes rejoin the network quickly. During the test of
the model existence of partial selfish nodes has been taken into consideration,
thus there is a possibility that a node drops part of the incoming packets
that do not belong to it instead of forwarding them. Re-transmission rate has
been defined as a parameter that indicates the probability of forwarding the
incoming URPs at overall nodes in the system. Table 2 shows the details of
the parameters that used during the test of the model.

Figure 2 shows the number of URPs that have been transmitted on different
test parameters. The overhead increases linearly as the numbers of issued
URPs (i.e. nodes with new addresses) increase.

Figure 3 shows the number of issued URPs and the percentage of update
rate at the network using different test parameters.

98 MOHAMMED B. M. KAMEL, PÉTER LIGETI, AND ÁDÁM NAGY

Table 2. Test Parameters of the Model

Parameters Value
number of active nodes 300

Maximum direct peers in p2p network 9
Maximum nodes in f2f network 5

Re-transmission rate 0.2 to 1
Nodes with issued URP 15 to 150

Figure 2. Model Overhead

Analysis of the test results indicates that during the test of the model,
number of issued URPs (nodes with new addresses) does not affect the update
rate of the system. This means that increasing the number of nodes that
generate new URPs will not affect the final number of successfully updated
addresses. On the other hand, re-transmission rate of intermediate nodes
has been found to affect the update rate of the system. Increasing number

AN ADDRESS PROPAGATION MODEL IN P2P AND F2F NETWORKS 99

Figure 3. Model Update Ratio

of intermediate nodes that do not participate at the system and drops the
incoming packets instead of forwarding them will lead to low update rate.

5. Conclusion

In this paper an address propagation model has been proposed. This model
aims to keep the addresses of the nodes at the f2f network up-to-date. The
model assumes honest behaviour from the participants of the f2f network, and
semi-honest behaviour of the p2p nodes. Analysis of the test results of the
model indicates that re-transmission rate of intermediate nodes directly affects
the update rate of the system and, therefore there should be some incentives
to ensure that the intermediate nodes will forward the incoming packets and
prevent selfish behaviour of the peers at p2p network. The current design re-
quires a flood for each node that has got a new logical address. Beside keeping
the friendship relationship of the nodes private, it also adds a significant over-
head to the network and the communication overhead increases linearly with
the number of nodes. Note that, the extension of the proposed method [7] will

100 MOHAMMED B. M. KAMEL, PÉTER LIGETI, AND ÁDÁM NAGY

cover different aspects including improvements to the structure of the model
to reduce the overall overhead, taking into consideration different issues in-
cluding packet transmission termination, offline nodes and additional security
parameters to mitigate and prevent malicious behaviour of the participants.

Acknowledgement

This research has been partially supported by the UNKP-17-4 New Na-
tional Excellence Program of the Ministry of Human Capacities, Stipendium
Hungaricum Programme and by the European Union, co-financed by the Eu-
ropean Social Fund. (EFOP-3.6.2-16-2017-00013, Thematic Fundamental Re-
search Collaborations Grounding Innovation in Informatics and Infocommu-
nications).

References

[1] Balakrishnan, H., Kaashoek, M.F., Karger, D., Morris, R. and Stoica, I., 2003. Looking
up data in p2p systems. Communications of the ACM, 46 (2), pp. 43-48.

[2] Butler, K.R., Ryu, S., Traynor, P. and McDaniel, P.D., 2009. Leveraging identity-based
cryptography for node ID assignment in structured p2p systems. IEEE Transactions on
Parallel and Distributed Systems, 20(12), pp.1803-1815.

[3] Cai, X.S. and Devroye, L., 2015. The analysis of kademlia for random IDs. Internet
Mathematics, 11(6), pp.572-587.

[4] Cohen, B., 2008. The BitTorrent protocol specification.
[5] Czirkos, Z. and Hosszú, G., 2013. Solution for the broadcasting in the Kademlia peer-

to-peer overlay. Computer Networks, 57(8), pp.1853-1862.
[6] Isdal, T., Piatek, M., Krishnamurthy, A. and Anderson, T., 2010, August. Privacy-

preserving p2p data sharing with oneswarm. In ACM SIGCOMM Computer Commu-
nication Review, 40 (4) pp. 111-122.

[7] Kamel, M., Ligeti, P. and Nagy, A., 2018. Improved Approach of Address Propagation
for F2F Networks. IEEE 2018 2nd European Conference on Electrical Engineering and
Computer Science (EECS).

[8] Kasza, P., Ligeti, P. and Nagy, A., 2015. Siren: Secure data sharing over p2p and f2f
networks. Studia Scientiarum Mathematicarum Hungarica, 52 (2), pp. 257-264.

[9] Kasza, P., Ligeti, P. and Nagy, A., 2015. On a secure distributed data sharing system
and its implementation. In ANNALES MATHEMATICAE ET INFORMATICAE 44,
pp. 111-120.

[10] Kohnen, M., Gerbecks, J., and Rathgeb, E.P., 2011. Applying certificate-based rout-
ing to a kademlia-based distributed hash table. Proceedings of the Third international
Conference on Advances in p2p Systems IARIA, pp. 85-89.

[11] Lua, E.K., Crowcroft, J., Pias, M., Sharma, R. and Lim, S., 2005. A survey and com-
parison of peer-to-peer overlay network schemes. IEEE Communications Surveys and
Tutorials, 7 (2), pp.72-93.

[12] Maymounkov, P. and Mazieres, D., 2002. Kademlia: A peer-to-peer information system
based on the xor metric. In International Workshop on Peer-to-Peer Systems, pp. 53-65.

[13] Nakamoto, S., 2008. Bitcoin: A peer-to-peer electronic cash system.

AN ADDRESS PROPAGATION MODEL IN P2P AND F2F NETWORKS 101

[14] Parameswaran, M., Susarla, A., and Whinston, A.B., 2001. p2p networking: an infor-
mation sharing alternative. Computer IEEE, 34 (7), pp.31-38.

[15] Peris, A.D., Hernández, J.M. and Huedo, E., 2016. Evaluation of alternatives for the
broadcast operation in Kademlia under churn. Peer-to-Peer Networking and Applica-
tions, 9 (2), pp.313-327.

[16] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F. and
Balakrishnan, H., 2003. Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transactions on Networking (TON), 11 (1), pp.17-32.

[17] Trifa, Z. and Khemakhem, M., 2016. A novel replication technique to attenuate churn
effects. Peer-to-Peer Networking and Applications, 9 (2), pp.344-355.

[18] Yong-Jun, G., Li-Zheng, G., and Ming-Hui, Z. 2014. Improved Multi-secret Sharing
Scheme Based on One-Way Function. Indonesian Journal of Electrical Engineering and
Computer Science, 12 (6), pp. 4463-4467.

[19] Zghaibeh, M. and Hassan, N.U., 2018. d-SHAM: A Constant Degree-Scalable Homoge-
neous Addressing Mechanism for Structured p2p Networks. IEEE Access, 6, pp.12483-
12492.

1 Eötvös Loránd University, Budapest, Hungary, Faculty of Informatics, 3in
Research Group, Martonvásár, Hungary

Email address: mkamel@inf.elte.hu, turul@cs.elte.hu, spigy88@inf.elte.hu

2 Department of Computer Science, University of Kufa, Iraq

