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EXPERIMENTAL STUDY OF SOME PROPERTIES OF
KNOWLEDGE DISTILLATION

ADAM SZIJARTO, PETER LEHOTAY-KERY, AND ATTILA KISS

ABSTRACT. For more complex classification problems it is inevitable that
we use increasingly complex and cumbersome classifying models. However,
often we do not have the space or processing power to deploy these models.

Knowledge distillation is an effective way to improve the accuracy of
an otherwise smaller, simpler model using a more complex teacher network
or ensemble of networks. This way we can have a classifier with an accuracy
that is comparable to the accuracy of the teacher while small enough to
deploy.

In this paper we evaluate certain features of this distilling method,
while trying to improve its results. These experiments and examinations
and the discovered properties may also help to further develop this oper-
ation.

1. INTRODUCTION

Knowledge distillation is a method to transfer the knowledge of an already
trained neural network to another, possibly a smaller one. The benefit of
this is we can achieve a higher accuracy for the student models as opposed to
training it on their own.

This simple method can significantly boost the accuracy of a model in a
way that could not be achieved with normal training methods or hard outputs.
This distillation technique is especially useful when we have an accurate, but
cumbersome neural network (or ensemble of networks); but do not have the
resources to deploy it.

In this paper, we examine certain features of this method, such as tran-
sitivity and symmetry, by conducting experiments to prove or refute these
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properties. In addition, we evaluate how this method performs using an en-
semble of student networks and how its parameters affect the results by further
experiments.

We are going to evaluate the symmetry of knowledge distillation by distilling
the knowledge back from a trained student network to an untrained teacher
network. We are going to conclude that knowledge distillation is a symmetric
operation if the new model performs better than the student model and its
performance is close to the original model.

We are going to evaluate the transitivity of knowledge distillation by distill-
ing the knowledge from the teacher model to a less complex middle model, and
then distill it further to the original student model. We are going to conclude
that knowledge distillation is a transitive operation if there is no significant
difference between the accuracy of the middle model and the original student
model.

2. RELATED WORKS

In their 1998 paper titled ”Neural network ensembles” [1], Lars Kai and
Peter Salamon argue that building multiple classifier models and evaluating
their results to a given classifying problem can vastly outperform a single
model even if those models are significantly simpler and individually do not
perform as well as the single model. They also found that cross validation
could greatly reduce overfitting while training these models.

This idea was further elaborated in the 2000 paper ” Ensemble methods in
machine learning” [2] by T. G. Dietterich, who reviewed these methods and
explained why ensembles could often perform better than any single classifier.
Furthermore, the author reviewed some previous studies comparing ensemble
methods and presented some new experiments.

Taking this as a basis in their 2015 paper ”Distilling the knowledge in a neu-
ral network” [3] Hinton, Vinyals and Dean found that the "knowledge” from a
trained complex model or even an ensemble of models could be distilled down
into a much simpler model without compromising performance and accuracy.
They argue that the training and deployment of a classifier are two completely
different problems with different requirements. We should not use the same
model, but use a cumbersome one for the training and — as the computational
complexity is a huge factor for end users — we should use a distilled simpler
model for deployment.

This idea has been further improved in the 2017 paper titled 7 A gift from
knowledge transfer distillation: Fast optimization, network minimization and
transfer learning” [4], which proposed a new solution: the knowledge from a
pretrained deep neural network (DNN) is distilled and transferred to another
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DNN. The method uses FSP (flow of solution procedure) matrix, representing
the distilled knowledge from the teacher DNN.

In the “Distillation as a defense to adversarial perturbations against deep
neural networks” [5] paper, the authors found that this method was also ef-
fective against adversarial attacks. They found that training a model, then
distilling its knowledge to one that is structured the same way can significantly
increase its robustness.

However, since then methods have been found for adversarial attacks against
which this kind of distillation does not work. It has been elaborated in the
paper titled " Towards Evaluating the Robustness of Neural Networks” [6] in
2017, where the authors introduced three new attack algorithms that were
successful on both distilled and undistilled neural networks with 100% proba-
bility.

In addition to these, the idea of generating softened outputs with a trained
classifier in order to enhance the performance of another one goes beyond
neural networks. In their 2017 paper ”Distilling a Neural Network Into a
Soft Decision Tree” [7], Nicholas Frosst and Geoffrey Hinton argue that this
method can be applied when distilling knowledge from a neural network to a
decision tree.

"Residual Knowledge Distillation” [8] further distills the knowledge by in-
troducing an assistant which learns residual errors. The experiments of the
authors showed that their approach achieved appealing results on popular
classification datasets.

The human visual system relies on temporal dependencies among frames
from the visual input to conduct recognition. Based on this observation,
"Tkd: Temporal knowledge distillation for active perception” [9] proposes
the Temporal Knowledge Distillation framework, which distills the tempo-
ral knowledge from a neural network-based model over selected video frames
to a light model. Results of the authors showed consistent improvement in
accuracy-speed trade-offs for object detection, compared to other modern ob-
ject recognition methods.

"Explaining Knowledge Distillation by Quantifying the Knowledge” [10]
presents a method to qualify and analyze task-relevant and task-irrelevant
visual concepts that are encoded in intermediate layers of a Deep Neural Net-
work. Authors designed mathematical metrics to evaluate feature represen-
tations of the Deep Neural Network and diagnosed Deep Neural Networks as
experiments.

”Learning an Evolutionary Embedding via Massive Knowledge Distillation”
[11] proposes an Evolutionary Embedding Learning framework to learn a fast
and accurate student network for open-set problems via Massive Knowledge
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Distillation. Authors introduced a novel correlated embedding loss to match
embedding spaces between the teacher and student network. EEL achieved
better performance with other state-of-the-art methods for various large-scale
open-set problems.

"Feature-map-level Online Adversarial Knowledge Distillation” [12] pro-
poses an online knowledge distillation method that transfers the knowledge
of the feature map using the adversarial training framework. Authors trained
multiple networks simultaneously by employing discriminators to distinguish
the feature map distributions of different networks. Furthermore, they pro-
posed a novel cyclic learning scheme for training more than two networks
together.

3. BACKGROUND

3.1. Convolutional Neural Networks. For our experiments we used a CNN
(Convolutional Neural Network)[13][14], which is a class of deep neural net-
works, a regularized multilayer perceptron. They are most often applied to
analyze images, by learning filters independently from prior knowledge. CNNs
consist of an input, an output and multiple hidden layers.

In neural networks, each neuron produces the output value by applying a
function to the input values that come from the previous layer. Weights and
biases determine this function and their iterative adjustments progress the
learning.

In CNN, most of the hidden layers are convolutions, which are special linear
operations. When data are passing through a convolutional layer, it becomes
abstracted to a feature map.

CNNs may also include some pooling layers to reduce the dimensions of
data. In our experiments we used max pooling[15][16]. Pooling combines the
outputs of neurons in one layer into a single neuron in the next layer. Max
pooling uses the maximum value as combination.

In order to reduce overfitting, we used Dropout [17][18] in each layer.
Dropout means that at each training stage, nodes together with their edges
are dropped out of the net with probability 1-p, so that a reduced network
is left. Omnly this network is trained on the data at this stage. The removed
nodes and edges are reinserted at the next stage.
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3.2. Knowledge distillation. The knowledge distillation method uses a spe-
cial activation function to produce ”softened” probabilities, which are then
used to train the student network, on which we also apply the previously
mentioned activation function. This special function is a parameterized ver-
sion of the widely used softmax[19] function, which is used to convert the last
layer of the network into probabilities.
Softmax can be given in the following form|3]:
Z;

+)

5 eap(Z)

where t is a parameter called temperature, which converts z; logit value to
q; probability. For a standard softmax, ¢ is normally set to 1. The higher we
set this parameter, the softer the output probabilities are going to be, and this
way we can preserve more features of the input than the teacher net learned,
meaning that the student receives more information as opposed to using hard
outputs.

The distilled model will be the smaller network we have trained on a transfer
set, which is not the same dataset as the one we used to train the larger model.
As loss function, cross entropy is used between the output of the distilled model
and the output of the larger model.

exp(
q; =

4. EXPERIMENTS

For the experiments we used the GTSRB (German Traffic Sign Recognition
Benchmark) dataset[20]. The teacher net was a CNN (Convolutional Neural
Network) with three layers, each with 128 nodes, using rectified linear activa-
tion functions.

With this model we managed to achieve an 0.9473 accuracy on the test
set. This served as a baseline for our further experiments. As for the student,
we used a dense neural network with one hidden layer with rectified linear
activation function.

Training it normally with the hard outputs and traditional softmaz output
layer, we had an accuracy on the test set that is not higher than 0.1635. The
results of the distillation process, in relation to the temperature parameter,
can be seen in Figure 1.

Compared to the traditional training approach, we can clearly see a signif-
icant improvement in the graph. However, the temperature parameter does
not seem to show much influence on the results if it is greater than 4. In fact
the accuracy appears to be quite random between the range of 0.5 and 0.8. It
will serve as a baseline in our further experimentation.
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FIGURE 1. Results of the distillation

4.1. Symmetry. To test the symmetry of the method, we investigated if we
could reverse the distillation process by taking a student model that had been
trained with this technique, then we distilled its knowledge into the original
(untrained) teacher model. For this experiment we took the best performing
student network — which we received with temperature 17, and had an accuracy
of 0.7827 — then used it to generate the softened outputs.

They were used to train the teacher model with the modified softmax output
layer. If we presume that the distillation process is symmetric, we expect the
new model to perform better than the student model, and nearly as good as
the original one we started with. We trained 10 models going from 1 to 10.
The results can be seen in Figure 2.

We can see the accuracy is significantly better than our best student model
with an average accuracy of around 0.84. However, it is not even close to the
original accuracy of 0.9473.

It is also important to note that there is no significant deviation among the
performance of the models, meaning the temperature parameter has little to
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FI1GURE 2. Results of distilling the knowledge back to the orig-
inal model

no influence on the accuracy of the given model, and using this special pa-
rameterized softmax function provides no improvement as opposed to training
traditionally on the output of the student model. With all that said, we can
conclude that this method does not in fact keep symmetry.

4.2. Student ensembles. In this paragraph we are discussing whether we
can improve the accuracy of the network in which we distilled the knowledge
to, by creating an ensemble of networks of the same architecture, but using
different distilling temperature parameter. To generate the predictions of the
ensembles, we used a simple majority voting.

Using all 29 student networks, after evaluation, we achieved an overall ac-
curacy of 0.7712 on our test set, which is certainly worse than our best student
network (0.7827), but better than the average accuracy (0.65014). In order
to improve this, we evaluated the best N networks. The results are shown in
Figure 3.
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Here we can clearly see that after 10 networks the accuracy is slowly, but
steadily declining, and after 18 it goes below the best result of our individual
student networks. It might be due to the fact that the models in our ensemble
are structurally quite similar (the only difference is the temperature parame-
ter) and the fact that they all were trained on the same data results in models
that mostly make the same mistake during classification.

Considering that even if we find the best student models in relation to the
temperature, then find the ideal number of networks for the ensemble and
increase the complexity of the model, the boost in accuracy is not significant
enough for this kind of trade off.
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4.3. Transitivity. To test the transitivity of this technique, we first created a
new model structure, which stood between the teacher and the student model
in terms of complexity. It is a deep neural network with 2 hidden layers, with
50 nodes each. Then we distilled the knowledge with the discussed technique
to the middle model.

21 different models were trained; one in the traditional way with hard out-
puts, and 20 with distillation with the temperature parameter ranging from
1 to 20. We then took the best performing model and distilled its knowledge
further to the original student model.

Ideally, these results are comparable to the ones we received from directly
distilling the knowledge to the student model. The results of the performance
of the middle models in relation to the temperature can be seen in Figure 4
(0 being the one trained on hard outputs).

10
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FIGURE 4. Results of distilling the knowledge to the middle model
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After the experiment we saw that the best performing model was the one
with temperature 6, which we used further in this experiment. Interesting to
note that the improvement provided by the distillation method was insignifi-
cant as the performance of the non-distilled model was just slightly lower than
the average of the distilled ones with very little standard deviation.

10

vk}

06

Accuracy

04

02

== QOriginal students
Transitive students
=== Original medel
----- Middle model

0.0 T T T T T T
o 5 10 15 20 25 30
Temperature

FIGURE 5. Results of the distillation

In Figure 5 we can see the accuracy of the transitively distilled models
in relation to the originals, as well as the baseline model and our highest
performing middle model. Although the numbers are not exact, the overall
distribution of the results are actually quite similar to the ones we had from
the direct distillation.

We can claim that as long as the middle model achieves good enough accu-
racy — close to the original one — this distillation method keeps the transitive

property.
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5. CONCLUSION

In this paper we investigated multiple features and behaviours of the knowl-
edge distillation method. We experimented with symmetry by distilling the
knowledge back from our trained student network to our untrained teacher
network. We conclude that even though it outperformed the best student, it
did not come close to the model trained in the traditional way, and acted more
as a noise rather than useful additional information, proving that this method
is not symmetric.

Experiments for creating an ensemble of student networks were also con-
ducted by using student networks trained with different temperatures. We
were able to achieve very little improvement, which is due to the fact that be-
sides the temperature there were no structural differences between the models,
which resulted in similar cases of misclassification in every net. This leads us
to believe that even though the temperature can affect the performance of the
model, it has little to no effect on the behaviour.

Lastly, we investigated the transitive feature of this method by distilling
the knowledge to a slightly more complex model than our student model, then
distilled it further to our original student model. According to our experiment,
the difference was not remarkable between these students and our baseline
students, proving that this method is transitive.
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EMPLOYING LONG SHORT-TERM MEMORY NETWORKS
IN TRIGGER DETECTION FOR EMETOPHOBIA

MARIA-MADALINA MIRCEA

ABSTRACT. Research focused on mental health-related issues is vital to
the modern person’s life. Specific phobias are part of the anxiety disorder
umbrella and they are distressing afflictions. Emetophobia is the rarely
known, yet fairly common and highly disruptive specific phobia of vomit-
ing. Unlike other phobias, emetophobia is triggered not only by the object
of the specific fear, but also by verbal and written mentions of said object.
This paper proposes and compares ten neural network-based architectures
that discern between triggering and non-triggering groups of written words.
An interface is created, where the best models can be used in emetophobia-
related applications. This interface is then integrated into an application
that can be used by emetophobes to censor online content such that the
exposure to triggers is controlled, patient-centered, and patient-paced.

1. INTRODUCTION

For the longest time, mental health has been a largely overlooked aspect of
people’s lives. This fact is worrisome, especially given the fact that globally,
over 10% of the population suffers from at least one mental health disorder [9].
Ranging from mild anxiety to substance abuse and severe depression, mental
health problems affect daily activities and even become life-threatening if left
untreated.

The specific phobia, a very common affliction, is part of the most widely-
spread set of mental health conditions, namely, anxiety disorders. Emeto-
phobia, the specific phobia of vomiting and sickness, is fairly familiar to the
average person, but scarcely by name. It is, however, a life-altering, highly
disruptive phobia, with around 2% of male and 7% of female sufferers [10].
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Emetophobia is highly disruptive, mostly because the main trigger comes
from inside the body, which people cannot “escape”. The act of being physi-
cally ill is usually the main trigger for emetophobes, but it is definitely not the
only one. What is uncommon about this affliction is the fact that triggers also
include verbal or written communications, images, audio recordings or videos
that suggest, either implicitly or explicitly, the act of being ill.

The purpose of the current paper is to demonstrate the use of modern
Machine Learning (ML) techniques in written trigger identification for eme-
tophobia, going into detail about the technical aspects, from the architec-
tures we used to the plugin we developed. We propose and compare multiple
neural-network architectures, from simple artificial neural networks (ANNs)
to Bidirectional Long Short-Term Memory Networks (BiLSTMs). We then
choose the best performing ensemble of models and create an application that
is useful for the therapy of people with emetophobia.

Emetophobia is rarely studied, especially in relation to Computer Science
or Artificial Intelligence. The task we focus on is, to the best of our knowledge,
the first of its kind. Text classification, however, is not new and BiLSTM ner-
works are state-of-the-art in this regard. This motivates our chosen approach.
We developed our own models using Tensorflow and Keras, and tested 10 ar-
chitectures. We achieved outstanding results on our dataset, which were also
tested ”in the wild” within our own API and trigger-censoring application.

The rest of the paper is organized as follows. Section 2 provides more details
about the issue at hand. Section 3 introduces the methodology we propose
for emetophobia trigger identification and details the process of collecting the
dataset, constructing and comparing the models, and implementing the API
and the final application. Section 4 provides an analysis of our results. Section
5 presents what we intend to do in the future to provide more help for people
suffering from this condition.

2. BACKGROUND

This section provides details about emetophobia and people suffering from
it. Then, we describe the ML techniques we used and the reason they were
the best choice for the task. Finally, we provide an analysis of related work.

2.1. Emetophobia. Emetophobia is not usually regarded as serious or wor-
thy of extensive research. The main reason for this is that “No one likes being
sick”. It is a very common perception that emetophobia is just that: fear of
being sick. However, it is much more than that. People suffering from emeto-
phobia construct their whole lives around their avoidance and safety-seeking
behaviours. Be it founded or completely unfounded, the fear is constant and
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consistent throughout their day and the anxiety is scarcely reduced in inten-
sity.

Avoidance behaviours include, but are not limited to, staying inside, not
eating at restaurants, rarely attending events, avoiding places where people
usually drink, etc. Safety behaviours include carrying plastic bags in case they
feel sick, taking many pills, sanitizing their body and surroundings too often,
burning their food to make sure it is cooked, etc.

The exact situation emetophobes fear varies. A 2011 Dutch study [10]
arrived to the conclusion that a large majority of people fear vomiting them-
selves, but another large percentage fear vomiting around others or seeing
others vomit. Around one-fifth of the participants fear all 3 of these events
[10]. Another interesting characteristic of many people suffering from this
phobia is that they, ironically, experience nausea when they are anxious or
scared, which makes for a gruesome vicious cycle.

Avoidance and safety-seeking behaviours seem to be the primary factor
that makes one’s fear stagnate or increase with time [10]. Since censoring
triggers can be considered avoidance, we feel it is necessary to explain the
primary purpose of our work. The application we developed should be used
in order for emetophobes to be exposed to triggers gradually, in a controlled
environment, without fear that their free time spent online will trigger their
phobia and disrupt their regular day. This application is not meant to replace
therapy or encourage avoidance of any kind. On top of that, the API has
additional uses, which we will discuss in Section 5.

2.2. Machine Learning Techniques. Artificial Neural Networks (ANNs)
started to be hypothesized and, later on, implemented, in the 1940s. They are
considered by many to be the basis of Artificial Intelligence (AI). ANNs loosely
take after anatomical neurons and synapses, in an attempt to eventually reach
human-level perception and understanding. Even though Al is still far from
this goal, ANNs are useful in many Computer Science tasks and applications,
from stock market predictions to image recognition and cybersecurity.

As an improvement to simple ANNs, Recurrent Neural Networks (RNNs)
were introduced to allow the algorithm to analyse sequences of information of
arbitrary length. RNNs, however, come with a high risk of exploding or van-
ishing gradient, which is where Long Short-Term Memory Networks (LSTMs)
step in. LSTMs choose when to remember and when to forget information
they parsed. They, however, only analyse information from the past. Bidi-
rectional LSTMs are an enhancement of LSTMs, where information is parsed
forwards, as well as backwards, in order to provide a better understanding of
the input.
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Machine Learning techniques have been growing in efficiency, as well as
complexity, since their very beginning. At this moment in time, BiLSTMs
are considered to be state-of-the-art in sequence analysis tasks, such as text
classification.

2.3. Related work. Since emetophobia is scarcely studied in relation to
Computer Science and Machine Learning, the next best comparison would
be hate speech detection, followed closely by sentiment analysis. With the
freedom of speech offered by the internet and, more specifically, social media,
the issue of hate speech has become more and more prevalent and worrisome.
Automated detection of hate speech is a need humanity could not have pre-
dicted a number of years ago. This task has been tackled by many researchers
lately, with relevant work starting to emerge in 2015 or even earlier.

Davidson et al. [3] used 3 output classes (Clean, Offensive, and Hate)
instead of the previously-popular 2 (Clean vs Hate) to differentiate between
hate speech and offensive language. This is because many offensive terms are
used online daily in a non-pejorative manner and the distinction is crucial.
The dataset was made up of 25 thousand examples of tweets. The tweets
were labeled by hand, by at least 3 workers, the final label being decided in a
“most votes” fashion. The ML models compared in this article were Logistic
Regression, Naive Bayes, Support Vector Machines, etc. [3].

Badjatiya et al. [1] compared different combinations of neural networks and
embeddings to find the most appropriate one for tweet classification. The 3
classes used for the task are sexist, racist, and neither sexist nor racist. The
dataset contained 16k instances of annotated tweets. Training was performed
using 10-fold cross-validation. One of the best combinations proved to be
LSTM with Random Embeddings, improved with Gradient Boosted Decision
Trees. CNNs and LSTMs also performed admirably when combined with
GloVe embeddings, and even better when also using GBDT [1].

Recently, Do et al. [5] employed a Bidirectional LSTM network to identify
hate speech in Vietnamese social media text. The dataset used contained
over 25 thousand Twitter comments, about 20,000 being used for training and
5,000 for testing. Each item was assigned a label from 1 to 3, 1 meaning
CLEAN, 2 meaning OFFENSIVE, and 3 meaning HATE [5]. The model
was compared with Support Vector Machines, Logistic Regression, and Gated
Recurrent Units, this comparison clearly showcasing that the BiLSTM was
the best choice for the task.

Other recent articles used SVMs [11], Bag-of-words [4], and other similar
techniques, which are not necessarily comparable to our proposed approach.
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3. METHODOLOGY

This section introduces the methodology we propose for emetophobia trigger
identification. As with any similar endeavour, the first step was to extract a
specific dataset of words and phrases, then to develop ML models capable
of discerning between triggering and non-triggering phrases, followed by a
thorough evaluation of the models. The final steps consisted of developing an
API and a useful application where this API is integrated.

3.1. Data set. The dataset was chosen manually by searching the internet,
specifically social media websites like Facebook and Instagram, and extracting
words and phrases. Social Media was chosen as source for the data because
nowadays, most people have a habit of spending a long time on the internet,
hence this is where the probability of an encounter with a trigger rises drasti-
cally. The main reason for manually creating a new dataset is that research in
emetophobia in relation to Computer Science is scarce, so there is no dataset
that we were able to find that can be used in the task at hand.

We first selected 600 sentences, which were split into 300 triggers and 300
non-triggers. Triggers included sentences like “I feel sick” or “my child just
threw up”. Non-triggers included everything from “Happy birthday” to “I am
traveling to Europe”. The first version of the dataset contained phrases of up
to 17 words. This version could have worked well with other approaches to
the same task, but not to the one we chose. For example, if the models were
directly trained to take as input longer texts of varying lengths and highlight
the triggering parts of each text, then this dataset would have been useful.
However, this is not the approach we chose.

Our models were trained to determine if a short piece of text is triggering
or not, using an output value from 0 (meaning not triggering) to 1 (meaning
triggering). The model has no information about the text as a whole. It does
not receive a whole webpage, whole paragraphs or even whole sentences. The
model only receives a small segment of the text and determines if that segment
is triggering, then it receives the next segment of the text, and so on. The
segment of the text the model receives is controlled from the outside by the
algorithm in the API, which uses a sliding window approach, as detailed in
Section 4.1.

Since the model receives short segments of the text and determines if they
are triggering or not triggering, we found it fitting to modify the dataset so
that the training is performed on appropriate sentences. If the model received
a sentence of 17 words which was marked as triggering, it would be impossible
for it to determine exactly which part of the sentence makes it triggering. It
is unlikely that all of the 17 words are, in themselves, triggering. However,
for shorter sentences, say, up to 5 words, the model can assume that all of
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the words form a triggering phrase and, thus, it can label the sentence as a
whole as triggering. This is why we decided to manually parse our dataset
and extract the precise 5-word segment of each entry that determines if it is
triggering. For example, the sentence "I traveled to Europe last month and
the turbulence made me sick, but I felt fine later” became ”the turbulence
made me sick”. The final dataset contains 600 sentences of up to 5 words.

The pre-processing of the dataset consisted of making all letters into low-
ercase, removing punctuation, numbers, emojis, special characters, repeating
white space, etc. The next step parsed the dataset and replaced each word
with its lemma using the morphy function [6] provided by Princeton’s Word-
Net. The tokenization was performed using the TwitterTokenizer provided
by NLTK [2]. Finally, the triggering phrases were marked with a value of 1,
while the non-triggering phrases were marked with 0. Two fragments from
the dataset can be seen in Figures 1 and 2. The dataset was made publicly
available on Github [7].

travel to europe and
people who understand us
to make new friends

it is a beautiful country
north east of england

as i can remember

ocd and anxiety too

o O O o0 o o oo

i love to help others

FiGure 1. Non-triggering phrases in the dataset

the actual vomit itself
sick when i am drunk

it does make me gag
threw up from being sick
a bug and threw up

i did not throw up

puke after every feed
throw up after meals
threw up twice

R R e N = =

never a stomach bug
FIGURE 2. Triggering phrases in the dataset
3.2. Proposed ML models. Since trigger identification requires analysis of

word sequences, LSTMs are the most suitable ML technique for the task. Most
of the model architectures used regression. However, to achieve as complete a
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picture as possible, we also considered simple ANN and BiLLSTM architectures,
as well as classification models for each of these approaches. Some models use
the NLTK stopwords dictionary during the tokenization process, while others
do not. Other differences between models consisted of different dropout values,
a different number of epochs, different learning rates, etc. Something that all
of the models had in common was the first layer (excluding the input layer),
which was an Embedding layer. In all instances, this layer used Stanford’s
GloVe Twitter pre-trained word vectors [8] with 100 dimensions.

The first architecture we trained and tested was a LSTM model with one
layer of 100 units and a dropout value of 25%. This layer was then flattened
and connected to a fully connected layer of 100 units, a fully connected layer
of 25 units, and, finally, the output layer with 1 unit. This model used the
stopwords dictionary, 100 training epochs and the default TensorFlow value
for the learning rate. The architecture is illustrated in Figure 3. This model
is henceforth denoted LSTM_1. For the second model, denoted LSTM_2, the
first architecture was modified by adding one more LSTM layer with 100 units
and a dropout value of 25%.

output (1)

dense (25)

LSTM (100) dense (100)
FIGURE 3. The architecture of the LSTM_1 model

The following 3 proposed models are all BILSTM models. They use the
stopwords dictionary modified by removing the word “up”. This modification
was performed because phrases like “throw up” were deemed important for this
study. The first BILSTM model (denoted BiLSTM_1) consisted of the input
layer, the embedding layer, one BiLSTM layer with 200 units, which was then
flattened and fed into a fully connected layer with 100 neurons, and then into
the output layer. This model was trained for 100 epochs with the default
learning rate value. The second BiLSTM model (denoted BiLSTM_2) had
different fully connected layers, (one with 100 neurons, one dropout layer with
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a value of 25%, one fully connected layer with 25 neurons). The architecture,
as given by the summary() method provided by Keras, is displayed in Figure
4. This model was trained for 200 epochs with a learning rate of 0.0001.

Layer (type) Output Shape Param #
input_1 (InputLayer) [(None, 5)] 0
embedding (Embedding) (None, 5, 108) 85600
bidirectional (Bidirectional (None, 5, 2080) 160800
time_distributed (TimeDistri (None, 5, 18@) 20160
flatten (Flatten) (None, 500) 0]
dense_1 (Dense) (None, 100) 50100
dropout (Dropout) (None, 160) 0
dense_2 (Dense) (None, 25) 2525
dense_3 (Dense) (None, 1) 26

Total params: 319,151
Trainable params: 233,551
Non-trainable params: 85,600

FIGURE 4. The Keras architecture of the BiLSTM_2 model

The final BiILSTM regression model (denoted BiLSTM_3) was also the
largest and most computationally expensive one. The number of BiLSTM
layers was doubled, and one more dropout layer was added between the last
fully connected layer and the output neuron. This model was trained with
the modified stop words dictionary, for 200 epochs, with a learning rate of
0.00005. Finally, two simple ANN models were constructed. The first model
is illustrated in Figure 5. It was trained with the modified stop words dictio-
nary, for 100 epochs. The second ANN model had the same structure, with
additional dropout layers.

The classifications models we tested were variations of the architectures we
already described. The main difference was at the output layer level, where
two neurons were used instead of one. The output, which had so far been
Boolean in nature, was one-hot-encoded to fit the new output layer structure.

After the best architecture was chosen, an ensemble of models was created.
Each of the models in the ensemble was given a weight based on the metrics
obtained in the testing phase and the final output was decided by computing
a weighted average of all of the output values.
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FIGURE 5. The architecture of the ANN_1 model

3.3. Evaluation. For the classification models, we used Binary Crossentropy
as the loss function and accuracy for metrics. For the regression models, the
main loss function used was Mean Squared Error (MSE). We implemented an
accuracy measure for the regression models as well. The principle we used
for this accuracy measure is illustrated in Figure 6. The same principle was
applied in the final API.

We used 10-fold cross-validation, so that the result obtained was as objective
as possible, with a lower probability of it becoming overfitted or biased towards
parts of the dataset. One instance of each model was randomly given one fold
for testing, and the other 9 folds for training. Thus, resulted were 10 different
instances per architecture. When computing the best architecture, all of these
models were taken into account. The 10 models were ordered ascendingly by
loss. Then, the first 3 models (with the lowest loss) were assigned a weight of
0.1, the following 4, a weight of 0.2, and the final 3 were assigned a weight of
0.3. The weights given to the instances within an ensemble are displayed in
Figure 7.

_ Expected value = 0 Expected value = 1
Output < 0.5 Correct Incorrect
Output >= 0.5 Incorrect Correct

FIGURE 6. Accuracy measure for the regression models

4. RESULTS AND DISCUSSION

A comparison of the results obtained for all of the architectures can be
seen in Figure 8. This table shows the model name, the model accuracy, and
the model loss for all of the architectures. For the three BiLSTM regression
architectures, more measures are displayed: Mean-Squared Error (denoted
MSE), Precision (P), Recall (R), and F1 (the F1 score). These measures were
obtained for the ensembles on the 600 entries in the whole dataset. All of
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[ary
]

0.1 0.004117
0.1 0.013662
0.1 0.014248
0.2 0.020728
0.2 0.022361
0.2 0.025557
0.2 0.028322
0.3 0.029072
0.3 0.031339
0.3 0.055445

[+ IR SRR T I N R e I = |

Total 0.028681

FIGURE 7. Final loss of an ensemble - The first column rep-
resents the order number of the instance; the second col-
umn represents the weight assigned to the instance; the third
column represents the loss of the instance; The last line in
the table, labeled ”Total”, shows the final loss of the ensem-
ble, computed using a weighted sum of the model losses (i.e.
12(% loss(m)xweight(m)
Total = ==t

5 , where m=model)

the models performed admirably, but the best performance was measured for
the BiLSTM network with one layer (denoted BiLSTM_1). Even though the
accuracy was comparable for most of the models, the loss for this architecture
was lower than the other regression models and significantly lower than the
classification models. After selecting this model as the winner, we constructed
the ensemble, assigning weights to the instances following the rules described
above.

Figure 9 illustrates a graph of the loss with respect to the training epoch
for the 10 instances of the chosen architecture (namely, BILSTM_1). Similar
to the other architectures, this model learned quickly within the first 10 to 20
epochs, then slowed down until the final epoch. All of the 10 instances seem to
have learned at the same rate, achieving a similar loss by the end of the training
phase. We tried to slow down the learning process in hopes of achieving an
even better result by decreasing the learning rate and increasing the number
of epochs, but the performance did not exceed the best performance achieved
previously.

4.1. API and Application. We developed a server written in Flask (Python)
that implements the approach described in the previous sections. The main
endpoint of the API receives a POST request with the text to analyse. The
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Accuracy Loss MSE P R F1
ANN_1 0.938333327 0.07811134
ANN_2 0.939999989 0.063035519
BiLSTM_1 0.976666662 0.028680518 0.006194 0.996667 0.99335 0.995008
BiLSTM_2 0.965833321 0.040919585 0.01008 0.996667 0.996667 0.996667
BiLSTM_3 0.962499994 0.040133117 0.009327 0.993333 0.996656 0.994992
LSTM_1 0.964999998 0.038441581
LSTM_2 0.963333318 0.036721471
BiLSTM_C_1 0.979999992 0.294667984
BiLSTM_C_2 0.972499999 0.374570083
LSTM_C_1 0.970000002 0.378273888

FiGURE 8. Comparison of the metrics for the 10 architectures

FIGURE 9. Loss graph for the winning model

response contains a text of the same length, with the triggering phrases cen-
sored using the asterisk character. The text is parsed using a “sliding-window”
approach, detailed in what follows. The first 5 words are analysed. If they
are triggering, they are replaced with asterisks and the algorithm goes on to
the next 5 words, i.e. words 5-10 of the text. If they are non-triggering, the
algorithm moves 3 words to the right, thus keeping the last two words from
the previous input to ensure that these words were not part of a triggering
phrase.

As an example, the text ”I traveled to Europe last month and the turbulence
made me sick, but I felt fine later” will be parsed as follows. First, the words
”T traveled to Europe last” will be analysed and they are labeled as negative.
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The algorithm appends the words "I traveled to” to the response and moves
on to analyse the phrase "Europe last month and the”. It is not triggering,
so the response becomes "I traveled to Europe last month” and the algorithm
goes on to analyse the phrase "and the turbulence made me”. The input is
not triggering, so the response becomes "I traveled to Europe last month and
the turbulence”. The algorithm now analyses the phrase "made me sick, but
I”, which is labeled as positive. The response thus becomes "1 traveled to
Europe last month and the turbulence *##* ¥ Hofokek otk 57— The algorithm
now analyses the phrase "felt fine later”, which is labeled as negative. The
response "I traveled to Europe last month and the turbulence *#¥* ok sk
*ix K felt fine later” is returned by the endpoint.

The API was utilized in a Chrome extension that censors written triggers
encountered online. Figure 10 depicts a webpage with and without the exten-
sion. The algorithm is very strict with variations of the word “eat”. For our
purposes, this could be considered extreme. The same applies for mentions of
the word “anxiety”. As mentioned above, the word "up” causes problems for
the algorithm. These issues are all mild since they cause excessive censorship,
which is better than no censorship at all.

False positives are to be preferred in such a scenario, where the sufferer
would rather see less of the non-triggering text of a webpage, rather than more
of the triggering text. Furthermore, there are extreme cases where even the
words "eat” or "anxiety” cause an increase in the stress levels of an individual,
so such censorship, even when not expected or purposeful, could end up adding
to the positive characteristics of the application. False negatives, on the other
hand, would be a much graver issue. The problem of false negatives is one that,
if present, should be brought to a minimum right away. The false negatives we
encountered were only labeled as negative because of improper representation
in the dataset.

4.2. Comparison to related work. Emetophobia is rarely focused on in re-
search, especially with respect to Computer Science and Artificial Intelligence.
This is the reason why we were unable to find papers on this topic that we
could compare our results to. Our solution to this issue was to compare with
similar works in slightly different domains. Hate speech detection is also an
up and coming topic in research, since the time spent online by individuals is
increasing and this leads to more and more exposure to hateful and rude com-
ments. We deemed this task similar enough to emetophobia trigger detection
to address comparable works in this section.

The pre-processing phase we employed in our approach is similar to the
approaches we analysed. GloVe embeddings are also frequent in research that
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Symptoms

EMetophobics are ik i ik - most of them anywhere, anytime. Others ¥+
ik Sekiekik ik front of SOMeONe else, * ik dekkiokk kick, Symptoms range from
mild disturbance to acute panic attacks (rapid heartbeat, rush of adrenalin, difficulty
breathing, *+++++* ST | kb ST . fear of dying, numbness,
sweating, trembling). The derealization can be akin to a PTSD-flashback with the client

completely dissociating.

Most emetophobics report quite sincerely that they would i ik ik ikick_seik Jeiks ,

ikkiickk % death anxiety are inextricably ¥k, ek ek seiokick, emetophobics will
show symptoms of OCD and agoraphobia. (They will wash their hands until raw for fear of
Stk ik ek *kRR R (A Wil FRER R SRR  (hey May $FRR SRERRR ERRRRS SRR OF
catching germs so much that they will not leave the house.) Many emetophobics have other
Symptoms of OCD, such as a variety of rituals o *#i# sk Fikii sk {0 reassure oneself
that ## #k wick sk (., obsessive temperature-taking), or superstitions about numbers
and dates (especially the date ¥k kik ki) ki following are characteristics of most

emetophobics:

Symptoms

Emetophobics are terrified of vomiting - most of them anywhere, anytime. Others only fear
vomiting in front of someone else, or seeing someone vomit. Symptoms range from mild
disturbance to acute panic attacks (rapid heartbeat, rush of adrenalin, difficulty breathing,
choking sensations, derealization, dizziness, fear of dying, numbness, sweating, trembling)
The derealization can be akin to a PTSD-flashback with the client completely dissociating

Most emetophobics report quite sincerely that they would rather die than vomit. For many,
vomiting and death anxiety are inextricably linked. In severe cases, emetophobics will show
symptoms of OCD and agoraphobia. (They will wash their hands until raw for fear of germs
from an illness that will make them vomit - they may fear seeing someone vomit or catching
germs s0 much that they will not leave the house.) Many emetophobics have other
symptoms of OCD, such as a variety of rituals to keep from vomiting or to reassure oneself
that one is not sick (i.e., obsessive temperature-taking), or superstitions about numbers and
dates (especially the date they last vomited). The following are characteristics of most
emetophobics:

* excessive cleanliness

29

« excessive cleanliness « fear of eating outside of one's home, or eating food one has not prepared (in case it may

o ik Kk Rk kikkik Of One's kK, Kk ki k% one has not prepared (in case it lead to food poisoning which would cause vomiting)

may Sk kR kR R kR

« nausea, stomach cramps, diarrhea a great deal of the time. (While these symptoms
o ki kkkkiik kikiek kkkkik 3 great deal of the time. (While these symptoms should be checked out, they are usually due to anxiety.)

should be checked out, they are usually i +# #iiirik ) « fear of taking any prescription medication that may have nausea or vomiting as a listed

 fear of taking any prescription medication *¥## &k stk ddkkkk sk kdkhdokrs &% % Jisted side-effect.

F1GURE 10. Comparison of a webpage with (left) and without
(right) the extension enabled

utilizes social media text since these embeddings are trained on billions of
tweets and have learned colloquial language well.

Perhaps the most obvious difference between the proposed approach and
other comparable works is the dataset. Most similar articles had access to
thousands of instances, while we only used 600. Some had workers manually
label their data according to strict rules, thus ensuring accurate and consistent
labels, while we relied on our own perception when extracting relevant phrases.
Our dataset can and will be improved upon. Another important distinction
is that most similar articles use classification models, while our proposed ap-
proach highlights regression models as better-performing for this specific task.
Classification models were similar in accuracy, but with a significantly higher
loss than regression models.

5. CONCLUSIONS AND FUTURE WORK

This paper presented our approach to the issue of censoring online con-
tent that can be triggering for people with emetophobia (the extreme fear of
vomiting). We collected a dataset, constructed different neural network archi-
tectures, and compared their performance on our dataset. The architecture
with the best performance was turned into an ensemble. This ensemble was
utilized in an API, which was then incorporated into a Chrome extension that
censors triggering content on the internet.

Future improvements to the existing API will commence with expanding
the dataset to include a larger number of instances. Tweaks need to be made
to make sure that the model can discern between triggering and non-triggering
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uses of the word “up”, “anxiety”, “throw”, etc. Additional endpoints of the
API can be used in an upcoming project, a Virtual Reality therapy application
currently in development. The amount of triggering phrases utilized by the
user will decide if they are ready to pass to the next level or not.

Modern ML techniques have many uses in everyday life. While some uses
are purely for entertainment or comfort, others can drastically improve the
life of people suffering with certain afflictions. Since mental health is such
an important aspect of one’s life, applications that aid therapy or improve a
patient’s quality of life will remain a crucial part of Computer Science research
for years to come.
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A VIEW ON DEEP REINFORCEMENT LEARNING IN
IMPERFECT INFORMATION GAMES

TIDOR-VLAD PRICOPE

ABSTRACT. Many real-world applications can be described as large-scale
games of imperfect information. This kind of games is particularly harder
than the deterministic one as the search space is even more sizeable. In
this paper, I want to explore the power of reinforcement learning in such an
environment; that is why I take a look at one of the most popular game of
such type, no limit Texas Hold’em Poker, yet unsolved, developing multi-
ple agents with different learning paradigms and techniques and then com-
paring their respective performances. When applied to no-limit Hold’em
Poker, deep reinforcement learning agents clearly outperform agents with
a more traditional approach. Moreover, if these last agents rival a human
beginner level of play, the ones based on reinforcement learning compare
to an amateur human player. The main algorithm uses Fictitious Play in
combination with ANNs and some handcrafted metrics. We also applied
the main algorithm to another game of imperfect information, less com-
plex than Poker, in order to show the scalability of this solution and the
increase in performance when put neck in neck with established classical
approaches from the reinforcement learning literature.

1. INTRODUCTION

The idea that we learn by interacting with our environment is probably the
first to occur to us when we think about the nature of learning [15]. We are
thinking about games as simulations of our real world with special, particular
features and rules, that is why, lately, this field represented the perfect play-
ground for machine learning research. Solving particular game environments
can lead to solutions that scale to more complex, real-word challenges such
as airport and network security, financial trading, traffic control, routing ([8],
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[10], [17]). We witnessed the rapid development of computer AI with the mas-
sive success in perfect-information games like Chess and Go (AlphaGo Zero,
2014 [13]; LeelaChessZero 2016 [14],), but researchers have yet to reach the
same progress in imperfect-information games (AlphaStar, Deepmind, [1]).

Before the 2000s, poker solving approaches could have been categorized
(from an architecture point of view) in 3 main classes: expert system, game-
theoretic optimal play and simulations based on enumerations [2]. One of
the most successful poker bots at the time was Loki [2] (the same group later
developed DeepStack [9]), which used the above methods combined with para-
metric models for opponent modelling. Although this approach is very far from
a Nash-equilibrium, it finds locally optimal solutions to certain situations and
its performance can be used as a threshold when comparing our modern ways
of solving imperfect information games. Therefore, I will develop my own
version of Loki Poker bot, as our first agent, in order to use for testing.

Fictitious play [4] is a popular method for achieving Nash Equilibria in
normal-form (single-step) games. For our deep reinforcement agent, we try to
add on a variant of Fictitious play, normally used in self-play scenarios (Neural
Fictitious Self-Play [7]) and show how this approach can be also re-modelled
and applied to a one-player environment. It was proven that NFSP provides
poor performance in games with large-scale search space and search depth
[21], because of the complexity of opponents’ strategy and the fact that a
DQN (Deep Q Network [11]) learns in offline mode and it uses only raw, crude
data as input. Moreover, NFSP wasn’t tested on the more complex variant
no-limit. I try to address these issues by considering some high-level hand-
crafted heuristics to go alongside raw data from a state of play. My approach
uses, in addition, hard coded rankings of card combinations and Monte-Carlo
heuristics for assessing an approximate strength of the opponent hand. This
will represent the main idea behind the second agent I am going to build.

I empirically evaluate each agent in two-player (heads up) zero-sum com-
puter poker games and explain how each one can work even in a multiple-player
scheme with limited performance loss.

2. BACKGROUND

In this section I provide an overview of reinforcement learning and fictitious
play in extensive-form games. I am going to mark some important mathemat-
ical elements here as they will be used for reference in the next sections.

2.1. Reinforcement Learning.

Reinforcement learning [15] agents typically learn to maximize their ex-
pected future rewards from interaction with an environment. The environ-
ment is usually modelled as a Markov decision process (MDP). Reinforcement
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learning algorithms can learn in many ways, but we are interested in the ones
that learn from sequential experience in the form of transition tuples from one
state (s) to another taking into account the action (a) necessary to reach the
new state and the respective reward of that operation (7): (s¢, at, Te41, St+1)-
The goal of the agents is to maximize their rewards, this is typically done by
learning the action-value function @), defined as the expected gain of taking ac-
tion a in state s and following the policy 7m: @ (s,a) = E7 [G¢|S: = s, Ar = a.
T
Here, G; = >  R;;1is a random variable of the agent’s cumulative future re-
i=t
wards starting from time ¢ [15]. From this, it easily follows that we may want
to take the action of the highest estimated value @, that’s why Q-learning [20]
was invented as a way to learn about the greedy policy storing and replaying
past experience. To approximate the action-value function, a neural network
can be used and this approach is one of the most popular when dealing with
more complex games and the system is called a DQN [18].

2.2. Fictitious Play.

Fictitious play (FP) [4] is a game-theoretic model of learning from self-play.
Fictitious play is commonly defined in normal form (single-step games), which
is exponentially less efficient for extensive-form games (multi-step games). To
provide more context, fictitious players choose their best response against the
other players’ (opponents’) average behaviour; in normal-form, this defines
a player’s behavioural strategy 7 as a probability distribution over all the
possible actions. Heinrich et al. (2015) [6] introduced Full-Width Extensive-
Form Fictitious Play (XFP) that enables fictitious players to update their
strategies in behavioral, extensive form, resulting in linear time and space
complexity. In extensive-form fictitious play, we have a convex combination
of normal-form strategies & = A1 + A2@9, that was proven it can achieve a
realization-equivalent behavioral strategy o, by setting it to be proportional
to the respective convex combination of realization-probabilities: o (s,a)
M, (8) 1 (8,a) + Aoy, (8) T2 (8,a) Vs, a [6] [7], where Aizq, (8) + A2Zr, (S)
is the normalizing constant for the strategy at information state s. This is
important as it provides strong theoretical background for approximating the
behavioural normal-form strategies in order for a convex combination to work
in extensive-form games.

In order to define a family of probability distributions, let A (n) a standard
simplex in R", v; € A (n) being the i-th vertex and let H : Int (A (n)) — R the
entropy function H (p) = —p” log (p). In a two-player game, where there is the
concept of an opponent, each player chooses its strategy p; € A (m;), m; € N*
and collects the associate reward given by the value-function: V; (p;,p—;) =
pil Mip_;i+7-H (p;), where —i, i € {1,2,...,n} refers to the complementary set
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{1,2,...,i—1,i+1,..n} [12]. M; is the game-specific reward matrix of shape
(mj,m_;) that holds entries with the numerical compensation for player 1
having the strategy p; and the opponent having the strategy po. Note that we
shall use reinforcement learning to approximate this value-function through
sampling and observing the reward at each state. If follows that we can define
player i ’s best response as a function 5; : A (m—;) — A(my), Bi(p—i) =
argmax V (p;,p—;) and player i’s average response until step k in the game
as empirical frequencies 7; (k) : N — A (m;) of player P; [12].

Depending of the game type, there are multiple Fictitious Play (FP) ab-
stractions: in discrete time, continuous and dynamic continuous. For discrete
time FP, we can define the strategy at step k as the best response to the
empirical frequencies of opponent actions:

pi (k) = Bi (m—i (k)) (1)
In continuous time FP, the following equations are used:

S = Bi(n (1)~ (),i=T2 (2)

The difference that comes with the third type of abstraction, in which Poker
falls in (as a multi-step, multi-player game in which our strategy and our op-
ponent’s are continuously and dynamically changing at each step), is that each
player has access to the derivative of his empirical frequency %m, therefore
the strategy at moment ¢ can be defined as:

pi(t) = B; (71'_7; (t) + n%w_i (t)), with 7 positive parameter (3)

We interpret this formula as a player choosing his best response based on
current opponent’s average strategy profile combined with a possible change
of it that may appear in the future.

The authors of this study, anticipatory dynamics of continuous-time dy-
namic fictitious play [12] show that, depending on the game, for a good choice
of n, the stability in Nash equilibrium points can be improved. The challenge
that comes with it though is the fact that the derivative cannot be directly
measured and needs to be approximated or reconstructed by empirical fre-
quencies measurements.

Formula (3) will stay at the basis of our Reinforcement Learning agent,
in the following sections, we will explain how we tackle the aforementioned
problem and how we define the best and average response through supervised
and reinforcement learning.

3. DEVELOPING THE AGENTS

In this section, I am going to address the technical details and the main
process of building my 2 agents mentioned in the introduction. Therefore, my
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first agent should be a reinforcement learning free one, that’s why I am going to
build it as my own mini remake version of Loki [2] featuring betting decisions
with card heuristics and opponent-modelling. The second agent will learn
Poker training with the first agent trying to consistently beat him, treating
the opponent as part of the environment.

3.1. Agent 1.

We construct this agent mainly as an expert system at its core with heuris-
tics for betting decisions and opponent-modelling for exploitations. Agent 1
defines his policy 7 depending on the street of the game, on the hand strength
metrics and whether an opponent model was found or not. We got a look-up
table for the preflop stage containing the rankings of all 2-card pairs. Starting
with the flop, we maliciously evaluate the win rate in a particular situation by
enumerating all possible 5-card combinations with the current board and us-
ing another look-up table that contains the rankings of all 7462 such distinct
combinations of card, with 1 being a royal flush and 7462 being 7-5-4-3-2 with
at least 2 different suits.

This is not really enough as we need
to take into account possible future hand Hand quaey metrc data dstribution
strength increase or decrease. That’s why
we also compute positive hand potential by
Monte-Carlo simulation of states that can
derive from the current one and assessing
those with the look-up table mentioned ear-
lier. In order to be completely sure when
to place a bet/raise, we need to analyze the
limit break points in such a hand strength
metric distribution. For that, I simulated

1000 games of Poker and assessed the hand EIC;URE 1'h

strength of the best 5-card combination that and strengt

includes the two hole cards. The results can distribution  over
1000 games

be observed in the figure 1. As expected,
most of the hands are really weak, but we
can expect great results of our hand strength metric indicates at least 0.8/1.

Opponent modelling

The goal of this part is to find a good approximation of opponent average
strategy 7% with a good accuracy of predicting the fold moves. I do that by
training two separate supervised classification models which are active during
the games, collecting data about the opponent.

I use a nalve Bayes classifier (to replicate the Bayesian analysis presented in
the Loki paper), after a certain number of actions taken, minstepsbayes, the
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model will train and try to guess opponent’s next move. The input for this
classifier consists of a 1D array containing an expected average hand strength
of the opponent (obtained from Monte-Carlo simulations), raise demand, the
opponent stack, the number of consecutive and same-suits cards on the board
and the street number.

I also use a deep neural network as our second classifier. I decided to use
a CNN architecture, the input being represented as an image of the current
board state alongside some of the scalar features mentioned at the other clas-
sifier. This will also have a minsteps CNN parameter set at the beginning,
usually at least two times higher than minstepsbayes, after which, the model
will be ready to start predicting.

The main reason that I use this configuration is that the Bayes model shines
when less data is available, taking into consideration class probabilities but
then is really outperformed by a neural network when much more data units
are available, so in the long run, we shall keep the neural model active as we
deactivate the first one.

Hand
Evaluation

Betting
Strategy

Hand Value

Actions

2ouspluU0) ‘UoiDIpald

Opponent
Modeling

Bayes
Modelling

FIGURE 2. Agent 1 architecture (our mini version of Loki.)
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Algorithm 1 | Agent 1, expert system with neural opponent-modelling and
Bayes classifier method

Initialize Bayes memory Mp,, s
Initialize CNN memory Mgy n
Initialize acc < 0
for 1 : nogames do

Initialize new game G and execute agent via RUNAGENT for each player in the game
function RUNAGENT(G)

wr < getwinrate (currentposition)

if a # a then

nomistakes <— nomistakes + 1
Set policy o { acc — gT?edy (exploiting — expert — systenll (wr) .policy) , vili.th probability acc
simple — expert — system (wr) policy, with probability 1 — acc

Observe initial information state s and opponent action a
Store behaviour tuple (s,a) in supervized learning memory MBayes and Moy N
if MBayes-size % minstepsbayes then :
acc < train Naive — Bayes — Classifier
if Mo v N -size % minstepscnn then :
acc < train Neural — Network — Classifier
if agent follows targeted response policy o=acc — greedy then
Save our prediction a
end function

The agent functions as an expert system with betting decisions based on
mentioned hand strength heuristics at first and then, after it collects enough
data to start the Bayes classifier it changes its policy (in an accuracy greedy
way) to another expert system for exploitation. This system will be deacti-
vated as we gather enough information to start the neural model and use this
one for opponent’s moves prediction. We shall choose to use the opponent
modelling part based on the number of mistakes the classifies make during a
few games.

This agent will be important in testing by adversarial reasoning, as it offers a
measurement to opponent’s exploitability through the opponent modelling part.

3.2. Agent 2.

This deep reinforcement learning agent will continuously learn to play Poker
by training with Agent 1 from scratch. Its strategy of play combines the
greedy strategy 3 offered by the action-value function with the average strat-
egy m obtained though supervised classification.

Recall the equation (3), subtracting m; from both sides and using (1) yields:

Gm=h (Tt ngra0) -m
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In NSFP [7], the authors chose a discrete time approximation of the derivative:
B — it & %mt. Their motivation for this is the fact that a change in 7;
at step t + 1 is proportional to f+!; — m;' which is the normal-form update
direction of discrete-time FP. If substituted in (4) yields:

pi(t) = Bi(mi(@)+nBi(mi(t+1)—mi(t)) <
pi(t) =~ Bi((L—n)m_i(t)+nb;i(m—i (t+1)))

and this is how we arrive at the combined policy approach o = (1 —n) 7 + 775
which was proven to be really good in practice [7], being tested successfully on
Leduc and Limit version Hold’em Poker for self-play agents. We will use this
formula for our Agent 2, however compared to the referenced experiments,
this time, we are applying it to the no-limit version of the game with hand-
crafted inputs and we are going to treat it as a single player game considering
the opponent as part of the environment. The definition of the combined
policy approach, in theory, allows for such a change of perspective and to my
knowledge, these exact experiments haven’t been conducted in Texas Hold’em
Poker.

Therefore, Agent 2 uses 3 neural networks. First, a DDQN system [18§]
with a value network Q) (3, a |0Q) for predicting the @ values for each action
based on data from Mpgy. It trains through backpropagation using the Bellman

equation with future @) values obtained through a target network Q' (S, CL|(9Q/> .

Secondly, we use a policy network 11 (s,a ‘HH) to define our agent’s average
response based on data from Mgy;. Note that Mgy and Mgy, are two reser-
voirs of data that are updated frequently in the game, the first one storing
transitions and the second one storing state-action tuples used for supervised
classification (Algorithm 2). Mgy is implemented as a circular buffer as it
needs much more memory to operate. We choose our main policy ¢ from a
mixture of strategies: 5 = ¢ — greedy (Q) and 7 =1I: 0 = (1 —n)7 + nB,
n € (0,1].
Observe that the algorithm used has general scope and may be used in other
games, MDPs with imperfect information or to practical real-life problems.
Note that we can also set the main policy o every step ¢ in the game for a
more stochastic approach. I will actually do that in the experiments to test
this small change to the NFSP algorithm.
The neural networks for the two strategies are implemented as CNNs and will
have mainly the same architecture, the only difference appearing at the last
layer
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Algorithm 2 | Agent 2, reinforcement learning agent with fitted Q-learning

for 1 : nogames do
Initialize new game G and execute agent via RUNAGENT for each player in the game
function RUNAGENT(G)
Initialize replay memories Mg (circular buffer) and Mgy, (own behaviour dataset)
Initialize average — policy network II (s, a|9n) with random weights 9!
Initialize action — value network Q (S, a|9Q) with random weights 09
Initialize target network with weights 09" + 0@
Initialize m— /3 parameter n
for each episode do
€ — greedy (Q), with probability n
II, with probability 1 —n
Observe initial information state s1 and reward rq
for t = 1, minreplaymemorysize do
Sample action a¢ from policy o
Execute action a¢ in emulator and observe reward r¢41 and next information state s¢41
Store transition (st,at,r¢+1,St+1) in reinforcement learning memeory Mgy,
if agent follows best response policy o = 8 (= ¢ — greedy (Q)) then :
Store behaviour tuple (s¢,at) in supervised learning memory Mgy,
Update 8 with gradient descent on loss
L (') =E(s,a)~Mg), [KL Divergence II (s, a|0™) ]
Update 89 with gradient descent on loss

L (69) =E(s,a,r,8')~ Mg, {(r + max, Q (s’,a’|0Q/) - Q (s, a|9Q))2 }

Periodically update target network parameters 09" + 09
end function

Set policy o

Generate an episode in emulator
UsingADAM to train Q-network

e = {5, Q.70 54}
{er. ez ...er) {er. €2 ...er} p
MSL MRL | Q-network Q&)
Agent’s best 'ESI::'"SE dataset Experience replay memery Output action layer
n
B
_ Fully-connected r
. . |Update et
Target network '(8") Q' Q
Average policy every C steps

network 11(&")

Convolutional layers

Using Adam to train /T-network

Preprocessed data

FI1GURE 3. Overview of Agent 2 architecture.
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The input is represented as a 17z17z9 3D array containing the images of
the last two board states joined by the scalar features we mentioned at Agent
1 where we add the opponent last action. The fact that we add the last board
state and the opponent last action is due to wanting to test an attention mech-
anism similar to the one used for AlphaGo Zero [13]. The CNN is composed of
5 hidden layers: 4 layers of convolution, 2 MaxPooling and 1 fully-connected.
The loss for the value network remains the classic MSE and for the policy net-
work, we use KL divergence. Mgy, will be updated using reservoir sampling
[19] and Mg, will function as a circular buffer. Above (figure 3), we can see
the architecture of this agent.

4. EXPERIMENTS

I am mainly focused on no-limit variant of Poker for experiments, but I
am also going to test the algorithm on another imperfect information game
to solidify our claim of general scalability and applicability. I devised a less
complex game than Poker and verify the necessity of the essential components
by rigorously evaluating the respective performances. In case of Poker, we are
going to measure each agent’s performance against some generic players and
against each other.

4.1. A pilot experiment.

Introducing Blop game (figure 4), originally a per-
fect information game that consists of a quadratic
matrix/image where a pixel is colored as blue (our
player), another as green (the exit) and the third one
as red (the enemy). The player can move in all 8 di-
rections associated with the grid, or may choose to
stay still. The player receives a negative 1 reward for
moving in any direction and a positive 20 for reach-
ing the exit, but it gains negative 300 if it hits the

enemy moment when also the game ends. The ob- FIGURE
jective of this game is to reach the destination as 4. Blop
efficient as possible. Game.

Without any additional rules, this forms a deter-
ministic game that can be solved quite easily by popular search methods such
as A*. Because we want to observe the functionality of the algorithm in
the field of games with imperfect information, we will make a fundamental
change in terms of the base rules used. Thus, we will poison 5 out of the
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9 basic moves: when the player tries to stand still or move vertically or hori-
zontally, he will make a random move instead. Thus, only the 4 movements
(diagonally) would work as intended.

For this experiment, the initial configuration uses a 10x10 image and is
always the same: the player in the upper left corner, the exit in the center and
with enemy steady near the exit on the segment formed by the initial points
of the player and the exit. This way, the max reward that we are aiming for
is 20, obtained only through diagonal moves.

We use algorithm 2, all we feed the algorithm is the RGB images of states,
we therefore use convolutional neural networks with 3 hidden layers (2 con-
volutions and 1 fully-connected). The parameter 1 was set to 0.1, € to 0.12,
max size of Mgrto 2m and for Mpy to 20k. We updated the parameters of
Q@ and II networks once every 4 steps (for each one) and the target network
parameters were reset once every 5 episodes.

In order to study the performance and the speed of convergence, I compare
the results with the results obtained by a standard Double DQN [11], a very
popular system for solving games. This was implemented through setting the
parameter 1 to 1 (always selecting the greedy strategy).

Figure 5 shows a crushing victory for our implementation that uses a com-
bination of greedy and average strategies.

Result Diagram 12000 games. Result Diagram 15000 games.
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(a) Standard DDQN training process. (b) Algorithm 2 training process. Each
Each stat point represents the aggregate stat point represents the aggregate perfor-
performance in last 50 episodes mance in last 50 episodes

FiGURE 5. Comparison between algorithm 2 performance in
Blop Game and a standard method of solving games from lit-
erature.

It learns much quicker that it should not rely on anything apart from diag-
onal moves for reaching the goal - note that the very first reward is different.
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Both greedy and average strategies of Agent 2 converge to the same optimal
solution of reaching the exit in 5 moves with only diagonal moves. However,
while at episode 5000, the algorithm 2 was pretty much done, the DDQN
aggregate reward was still in the negatives 50.

I then modified the game to allow the enemy to randomly move, as the
player moves, in order to add even more imperfect information to the game.
This did not pose a challenge to our agent though, as it solved the game almost
as fast as the previous version with quicker convergence speeds than DDQN’s.

4.2. General specifications for the Poker games.

The format I am using for the games is heads-up, no-limit with 100 chips
as starting stack and 5 chips small blind. For performance evaluations I am
using two metrics: average stack over a fixed number of games and mbb/h
(milli big blinds per hand = 1/1000 of a big blind). This is normally the metric
to use for addressing performance in Poker, very many articles use this one
for their experiments ([21], [7], [5], [3]). To provide some intuition, the values
for a mbb/h metric will usually stay in the interval [-750, 750] and a human
professional player would aim for winnings of 40-50 mbb/h. An average
stack of over 100 guarantees, most of the time, a match win rate of at least
50%.

The generic players used are the following: Randomplayer (a player that
chooses call 3 times out of 5 and the other actions 2 times out of 5 with
equal probable chance), a Callplayer (a players that always calls) and Heuris-
ticMCplayer (a player that chooses its actions based only on Monte-Carlo sim-
ulations and not look-up tables). We expect the last generic artificial player
described above to be the strongest challenger as simulations are generally
very useful in Poker because it is important to know, objectively, what are
your chances to win to make a bet, excluding the physchological element and
the concept of bluffing. However, the way you use that information is also
crucial, that’s why this player is still not that great - it will always raise when
the simulations show that it’s winning.

4.3. Agent 1.

T am going to refer to the Agent 1 without opponent modelling as BaseAgent1
player. We can clearly see an improvement in the performance of Agent 1 (Ta-
ble 1), using the opponent modelling part compared to when we don’t use it.
Although I expected a higher gain in winnings, we should not forget that we
are limited by how good and exploitable the expert systems behind Agent 1
are. After 250 games against HeuristicMC, we got 85.71% test set accuracy
for predicting moves which provided a 2% increase in performance during this
length of play.
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Results after 250 games Texas Hold’em Poker per player-match, statistical error +/- 2

Player 1 Player 2 Avg. Stack (Player Result (winrate

1) P1)
HeuristicMCplayer | Randomplayer 107 52%
BaseAgentlplayer | Randomplayer 141 2%
BaseAgentlplayer | Callplayer 163 81.6%
Agent 1 Callplayer 167 84.8%
BaseAgentlplayer | HeuristicMCplayer| 111 57.6%
Agent 1 HeuristicMCplayer | 119 59.2%

Table 1 Results of some experiments with artificial players

Experiment with a human player

I’ve invited a friend, Catalin, to take on this first agent. The test subject
has an advanced beginner to low intermediate level at Poker, he knows
the rules of the game very well and can make educated decisions during most
of the situations, but lacks the experience of more advanced players. Catalin
accepted to play a total of 29 games against Agent 1 in which he adopted an
anti-computer strategy, constantly changing his style of play and testing for
bluffs.

With all of that said, Agent 1 managed to beat him both in the first 22
games where an opponent model wasn’t available and in the next 7 games at
full power. Even on such a small sample size of games, the neural network
signaled a 60% accuracy in predicting the opponent’s next move.

Player 1 Score Player 2 No games Win-rate

Base Agent 1 | +13 -9 Catalin 22 59.09%

Agent 1 +6 -1 Catalin 7 85.71%

Agent 1 total | +19 -10 Catalin 29 65.51% Total

Table 2 Agent 1 and BaseAgent! performance against a human (low intermediate) player

The majority of losses came from all-ins in the preflop stage of the game,
but as the model learnt more about Catalin’s playing style, it became more
resilient in calling bluffs and started to aim for a turn-river finish. The mbb/h
winnings were over 150 mbb /h for the artificial player. One other thing that
Catalin told us is that he became very surprised of the playing style in the
last 7 games, during which the agent tried to exploit him.

4.4. Agent 2.

We are ready to apply the algorithm in no-limit Texas Hold’em Poker, by
considering the opponent as part of the environment and trying to consistently
beat him. 7 and € were both set to 0.1, max length of Mpy to 300k and for
Mgy, to 1.2 m, the learning rate fir reinforcement learning and supervised
learning were set to 0.05, 0.005, respectively. The exploration rate € decays
to 0 proportionally to the inverse square root of the number of games in the
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training process. The agent performs 2 stochastic gradient updates of mini-
batch size 256 per network for every game. The target network-ul parameters
were reset once every 128 hands of play.

The training process was performed several times from scratch to confirm that
the results are indeed consistent. The ultimate goal of this agent is to beat
Agent 1 in at least 250 games match, for this we first trained an agent to beat
Randomplayer (to first get a small sense of how Poker works) and then, we
saved that version to next train with BaseAgentlplayer.

Finally, this version of Agent 2 will be the starting point to train against Agent
1.

Below (figure 6) we can see the performance of algorithm 2 training against
the Randomplayer, it quickly crushes him. In the testing phase afterwards, the
average strategy of this agent recorded an average stack of 173.02 (84.8%-win
rate), while the combined strategies approach recorded a close 166.23.

Result Diagram 30000 games. Result Diagram 15000 games.
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FIGURE 6. Measuring Agent 2 training performance in stack
and mbb metrics. The axis are different for each one.

The greedy strategy (Q-network strength) is a little lower at 137.82. It is
nice to see that already Agent 2 became more successful in defeating Ran-
domplayer than Agent 1 ever was. Below (figure 7), we can clearly see how
the agent won, by analyzing his play style.

It seems that in general, the agent is aggressive, always trying to increase
the pot and earn more. This is indeed the right strategy against a player who
does not rely on any relevant game information. But obviously, call or fold
decisions must be made at least occasionally, when the game hand / current
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situation of the board is unlucky for us (in order to stop the opponent from
winning through luck).
Going after Agent 1 now (figure 8),
we can see that in the first 15k games, No times taking each action (average
the performance is pretty much sim- strategy)
ilar to BaseAgentlplayer, but after -
another 15k games of training Agent
2 completely outshines him. He wins,

RAISE AVERAGE

RAISE MIN

apparently by finding a way to ex- .

ploit the expert systems that both | ‘
BaseAgentl and Agent 1 are based p m RS L
on. This effect seems more severe

when training against Agent 1 where FIGURE 7.  Play style in

the winnings cross over 600 mbb/h. 250 games vs Randomplayer

We can deduct that from this agent

playing style, using only raise average, calls and folds. On the other hand,
the version of the Agent 2 that won against BaseAgentl has a more balanced
playing style and it is more destined to do well against human players. The
strategies do not converge to the same locally optimal one, which means there
is still space for improvement by increasing the number of iterations. However,
due to the nature of the study and limited resources, the current results are
good enough to call a victory for reinforcement learning.

Result Diagram 15000 games. Result Diagram 10000 games.

120

100 655

80

60

Average Reward (mbby/h)

Average Reward

o 10 20 £l 40 50 60 0 5 10 15 20 25 0 ES 40
Iteration (game number) Iteration (game number)

(a) Training vs BaseAgentl, first 15k games (b) Training vs Agent 1 after 10k games

FiGURE 8. Training evolution against the two versions of
Agent 1. Note how the scale for (b) is so much higher.
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Results against BaseAgentl_player in 250 games (average stack)

164.28

0
Agent2 average strategy Agent2 greedy + average Agent2 greedy strategy HeuristicMC_player Random_player Call_player
strategy {Q network strength)

FI1GURE 9. Results of some previous players against
BaseAgent1player compared with Agent 2; statistical error
+/-10.

It is interesting to visualize the overall performance of all the agents against
one of the best build until now (figure 9). The version used in that chart was
the one trained for 30k games against Agent 1.

As we can see, the one agent developed through reinforcement learning
completely outperforms the other ones in head-up no-limit Texas Hold’em
Poker.

Experiment with a human player

I’ve invited another friend who has a much higher level than Catalin at
Poker. The test subject has an amateur level of play, advanced intermediate
to advanced. He is experienced, but lacks the real money high stakes expe-
rience of play that professional players possess. Expectations are not high,
because in the end, our artificial player knows the game of poker only by
training with other artificial players. Do note that I am using the version of
Agent 2 whose performance can be visualized in figure 9.

In 10 games arranged for this match, Agent 2 won 7 and lost 3, with an
estimated winnings of 120 mbb/h. First of all, analyzing the games, Agent 2
really taught himself the basic, trivial strategies of the game:
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- never fold if the opponent does not raise after preflop.

- mostly raise a good hand but also bluff from time to time if you have good
potential for the next streets.

- usually all-in when the hand is very good and the pot is significant.

- never fold in the next round after a big raise of your own, if the opponent
does not put pressure.

Secondly, I noticed a very aggressive tendency in preflop, which is also
present in other artificial players such as Cepheus [3], but what is even more
interesting, although the AI prefers to raise in this part of the game, in most
cases he does not accept this exact behavior from his opponent, folding to a
raise greater than 20-30 in preflop (but not all the time).

Third, it’s pretty tricky to accurately report whether the AI really does
intentionally bluff or not, but from what I’ve noticed, even when going all-in
on the flop or turn, it always has at least one pair, probably fail-safe. There
were, however, a few isolated cases, when he put a lot of pressure but had
nothing in his hand, probably estimating that the opponent, most likely, has
nothing.

This agent can actually play a multi-player Poker game, although not as
well as in heads-up, by making a small change in our inputs when we use the
predict function to get a move. The only input components that we use, rele-
vant to a multi-player game, is the average estimated opponent strength, which
can be recomputed with respect to the number of players through Monte-Carlo
simulations and the opponent’s stack which can be substituted with the aver-
age stack of all the opponents.

Note that for these experiments, I used a NVIDIA Tesla T4 Workstation
with 82GB of RAM and a NVIDIA GTX 1050ti with 16GB of RAM, but
the resulting artificial players can be run on a less impressive machine even
without a GPU, with 8GB of RAM.

5. CONCLUSION AND FURTHER RESEARCH

I have successfully showed the power and utility of deep reinforcement learn-
ing in imperfect information games, compared to other methods. When ap-
plied to no-limit hold’em Poker, deep reinforcement learning agents clearly
outperform agents with a more traditional approach.

The human experiments, although successful, were conducted on a really
small scale, where statistical error or selection bias may have played a role in
the outcome. However, in future work, we can switch our current aim (that
being to observe, intuitively, how our agents might fair against a human op-
ponent) to an extensive testing against more professional individuals and over
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a very high number of games. Experiments against state-of-the-art artificial
poker players would also represent something to be considered in the future.

Further research on this matter may consists in developing a Poker agent
trained completely through self-play. It would be interesting to see how an ar-
tificial player that learns only by playing with a decent opponent to get better
at a game stands against a player trained by playing only against itself.
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OVERVIEW OF RECENT DEEP LEARNING METHODS
APPLIED IN FRUIT COUNTING FOR YIELD ESTIMATION
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ABSTRACT. This paper is an overview of the latest advancements of image
recognition for fruit counting and yield estimation. Considering this do-
main is developing rapidly, we have considered the cutting-edge literature
in the field, for the last 5 years, focused on the task of yield estimation
by detecting and counting fruit in the tree canopy. This is a much more
complex task than the classification of fruit post-harvesting, which has
been more widely reviewed. Moreover, we identify the major challenges
and propose the next steps for advancing this research field.

1. INTRODUCTION

This paper presents state of the art models and methods based on artificial
intelligence for detecting fruits in orchards and on plantations. A system that
can accurately and automatically detect and count fruit before harvest gives
agricultural enterprises the ability to optimize and streamline their harvest
process. Through a better understanding of the variability of yield across their
farmlands, growers can make more informed and cost-effective decisions for
labor allotment, storage, packaging, and transportation. While this process is
performed manually, it involves a very high labour cost, which can be reduced
using automated fruit counting computer vision systems.

Therefore, we analysed several papers tackling this issue using deep learning
techniques. We selected papers of the latest 5 years of research in the field
of fruit counting in tree canopies for yield estimation. We have searched
for precision and digital agriculture publications using ACM digital library,

Received by the editors: 10 November 2020.

2010 Mathematics Subject Classification. 68T45.

1998 CR Categories and Descriptors. 1.4.8 [Image Processing and Computer Vi-
sion]: Scene Analysis — Object recognition; 1.2.6 [Artificial Intelligence]: Learning — Con-
nectionism and neural nets; 1.2.10 [Artificial Intelligence/: Vision and Scene Understand-
ing — Intensity, color, photometry, and thresholding.

Key words and phrases. smart-agriculture, deep learning, yield estimation, transfer
learning, intersection over union, F1-score.

50



DEEP LEARNING METHODS FOR FRUIT YIELD ESTIMATION 51

Science direct, IEEE and Google Scholar platforms, and used keywords such
as ”fruit counting”, ”deep learning”, and "yield estimation”.

FIGURE 1. Grapes, apricots and tomatoes in different lighting
conditions, backgrounds and occlusions

We have identified review papers focused on agri-tech that present a very
broad overview of applications of deep learning in various fields of agriculture
[4]. Other papers present the methods overview for the specific domain of fruit
or image classification [6]. However, most papers deal with post-harvesting
classification of fruits for packaging or similar purposes. In this review, we
aim to narrow the focus specifically on the task of pre-harvest yield estima-
tion of fruit in an orchard, which is a problem of localising and counting fruit
in the tree canopy, with different backgrounds, occlusions and lighting condi-
tions. This enables farmers to estimate their yield and plan resources required
for harvesting, storage, processing/packaging accordingly. Furthermore, with
accurate computer vision technology, the harvesting could be performed by
robots, with increased efficiency.

The main goals of the reviewed papers presented here are:

e accurately predicting the number of fruits in an image under various
illumination conditions and different levels of fruit occlusion in the
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tree canopy (this is to optimise and streamline the harvesting process
and the fruit distribution for commercialisation or processing)

e reducing the labor costs required to perform yield estimation or har-
vest (representing 50-70% of the total costs [22])

e correctly estimating the size of the fruits from images

e adapting existing classification techniques for automatic robot har-
vesting or low-power devices (mobile phone).

The paper is structured as follows: firstly, we will present the methods iden-
tified in the papers, then we will discuss the datasets particularities used for
training and testing performance. Next, we present results and the conclu-
sions, as well as the challenges that remain in this research area and possible
steps that can be taken to address them.

2. STATE OF THE ART

2.1. Methods. The main methods we have analysed can be split into three
main categories:

e Deep learning with simple pre-processing [13] - These methods
involve the use of convolutional neural networks (CNNs) for the task
of object detection (fruits in this case). They apply basic image
pre-processing, such as rotations, vertical/horizontal flips, random
zoom level, image cropping and colorspace conversion to augment
the training dataset. Typically such methods require a large number
of images to train the model.

e Deep learning with complex pre-processing [11, 2, 1, 5] - In
addition to the previous category, complex image pre-processing, in-
volving filtering features (such as background), colorspace changing
and colorband isolation, or applying other intelligent algorithms for
feature selection, is applied to enhance the training dataset before
running a CNN on it.

e Transfer learning [21, 3, 23] - This method uses existing trained
models and replaces the top layers to retrain them on a particular
dataset. As opposed to previous methods, it can yield good results
with reduced input data.

A novel approach for counting the number of tomato fruits is presented by
Rahnemoonfar [13]. The authors proposed an approach based on a convolu-
tional neural network (CNN) for object counting (different scales and occlu-
sions) rather than area calculation (average pixel coverage), incorporating a
modified Inception-ResNet-A module and a scaling module (17 x 17 to 8 x 8).
The latter involves calculating the total pixel coverage of the target fruit and
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then divide it to an average pixel coverage of a single fruit. The former typ-
ically requires a detection step, but it is not influenced by image scale and
occlusion. Furthermore, as the proposed goal was only to provide a fruit
count per image, rather than the actual location of fruits, the bounding box
proposal was skipped, decreasing the inference time. The proposed model was
a CNN which incorporated modified Inception-ResNet-A modules [18] and a
17 x 17 to 8 x 8 reduction module. The authors also use convolutional layers
with large kernels towards the top of the network, to extract large scale fea-
tures. The output of the network is given by a fully connected layer with a
single output, the number of predicted fruits.

The model presented was compared with an area-based method, in terms
of accuracy and speed. The accuracy for predicting the number of fruits in an
image was defined as follows:

1) (1 _ |predicted-count — actualcount\) < 100

actual _count

In paper Mao [11], the authors presented a novel approach for detecting
cucumbers. On top of the common difficulties of object detection, cucumbers
easily blend in with the background due to their green color, further com-
plicating the task. In order to compensate for this, the authors devised a
four-component system that aimed to improve the accuracy of the detection,
containing:

(1) Color component selection: From a total of 15 color components
from 5 color spaces (RGB, HSI, YCbCr, Lab, YIQ), this extracts the
top 3 that make it the easiest to differentiate the cucumber from the
background. For this, the - RELIEF [17] algorithm was used, which
calculates weights for given features. The most relevant color bands
selected were red and green from RGB color space and the intensity
from the HSI color-space.

(2) Background pre-processing: The green component (from the RGB
representation) was smoothed using a 3 x 3 median filter. Afterwards,
the OTSU [20] method was applied to obtain a filtered background,
and, finally, the Maximally Stable Extremal Regions [12] were used
to eliminate the leaves from the background.

(3) Deep learning-based feature extraction: The authors segmented
the original input image into small areas, applied pixel interpolation,
and used LeNet5 [9] model, which support input data size 32 x 32.
Each color component was passed through a separate instance of
LeNetb and fused, creating a multipath CNN. For this step, the au-
thors elected to segment the original input image into small areas
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and apply pixel interpolation on the image. The result of the in-
terpolation is a collection of 32 x 32 areas. As noted in the paper,
using the VGG [16] or AlexNet [7] models would require resizing
the areas with a factor of 20, which could produce image distortion.
Thus, the LeNetb [9] model was used, which has a 32 x 32 input
size, so no resizing is necessary. To fully make use of the selected
color components, each one was passed through a separate instance
of LeNet5, fusing the output of the last layers of the models, creating
a multipath convolutional neural network (MPCNN).

Cucumber region detection: The feature maps produced by the
convolutional neural networks were merged and a Principal Com-
ponent Analysis [8] algorithm was applied to reduce their dimen-
sionality. The classification was done by a Support Vector Machine
approach.

A fruit yield estimation pipeline that can map fruit counts from an input
image is created in Chen [2]. The pipeline includes:

(1)

(2)

Data labeling: makes use of a crowd-sourcing web platform for data
labeling. Images for labeling are subdivided into several windows,
each window annotated by 3 different users.

Blob extraction: trains a fully convolutional network to extract
candidate regions (blobs). Input is an image h X w x 3 and the
output a score tensor h x w X n where n is the object class (the
probability that the pixel may contain a fruit or not, using a softmax
function).

Fruit counting: uses a second CNN algorithm trained for counting
fruit in each region. For each blob, the output is a number repre-
senting the fruit count. The fine-tuning process involves running the
blob detection network on the training images to obtain segmented
images and bounding boxes, which are resized to 128 x 128. Next,
ground truth counts are associated with the count network.

Count mapping: maps a linear regression model between fruit
count estimates and final fruit count. This trains a linear regres-
sion to intermediate count estimates with human-generated labels as
ground truth, minimising the loss function between the count net-
work and the blob network.

This pipeline is evaluated using two datasets (oranges in day and apples at
night) and human-generated count and labeling for ground truth. For each
image x;, we have the actual number of fruit z; and the human ground truth
zi. If f(z;) is the algorithm generated count, the problem is to minimise the

12 error:
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n

(2) P= > (f(z:)—2)?

i=1

Paper Bargoti [1] is focused on developing an image processing framework
for fruit detection and counting using orchard image data. They use a general-
purpose image segmentation approach, including two feature learning algo-
rithms: multiscale multilayered perceptrons (MLP) and convolutional neural
networks (CNN). These networks were extended by including metadata which
correlates with appearance variations and/or class distributions. Further, the
authors utilised watershed segmentation (WS) and circular Hough transform
(CHT) algorithms to process image pixels, and then detect and count fruits.
Finally, the counts from each row in the orchard were summed up and com-
pared with the total post-harvest counts (done by a grading and counting
machine).

In paper Kang [5], authors developed a real-time apple detector based on the
LedNet architecture. The presented model uses the Feature Pyramid Network
(FPN) [10] and Atrous Spatial Pyramid Pooling (ASPP) algorithms. The
one-stage model was chosen by the authors as it offers the same, or superior
performance to two-stage detectors, but with fewer network parameters. The
FPN used in LedNet fuses feature maps at three levels of downsampling (1/8,
1/16, 1/32) to increase the model’s capability of detecting objects at various
ranges. The ASPP technique was employed to process multi-scale features.
The custom ResNet backbone was a light-weight version of a typical ResNet
architecture to reduce the inference time on an embedded system, such as an
autonomous robot.

One study, Xiang [21], presents fruit image classification using a lightweight
neural network MobileNetV2 [15] (pretrained using ImageNet dataset, for fea-
ture extraction). Here, the top layer was replaced with a conventional convo-
lution layer (conv2d) and a Softmax classifier (for feature classification into 5
classes of fruits) [21]. They also applied dropout to the new-added conv2d at
the same time to reduce overfitting. The new model was trained and fine-tuned
in two stages, using Adam optimizer of different learning rate, and batch size
of 64. TensorFlow 1.14 stable was used for performance evaluation. Compared
to others, this method can be deployed in low-power and limited-computing
devices such as mobile phones.

Another study uses machine vision to accurately identify and localise grapes
and apples, Fourie [3]. With the advantage of less time need for training and
good performance with limited training data, transfer learning was used, based
on deep convolutional neural network (DCNN). The authors pre-trained the
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InceptionV3 model [19] on the ImageNet database, as a generic image feature
extractor. Next, their classifiers were added to separate fruit and background
features. Further, a final layer was replaced with one trained on a custom
dataset of apple trees and vines, acting as a classification head, specialising
the network with custom images training separately. For the last step of
localising and counting fruit new layers were added. The output of the last
convolution and the remaining spatial correlated outputs are pooled into a
single high-dimensional feature vector, linked to the classification head. The
localizer outputs a grid of confidence scores that indicate the fruit localisation
in the image.

A more advanced study, focuses on detecting six different types of fruits:
lime, lemon, apple, mandarin, tomato and orange in orchard settings, Yu [23].
The algorithms used are color based - Faster R-CNN (Convolutional Neural
Networks, two stage region-based model) and SSD ( Single Shot Detector,
which is a region free method) applying transfer learning for fruit detection
and counting.

2.2. Datasets. The studies we present make use of public datasets with fruits,
where available (for example, ImageNet, COCO or dataset in [14]). Others
have either collected their own datasets of specific images in orchards under
various lighting conditions or used unspecific images from the web, retrieved
with a web crawler.

In Rahnemoonfar [13], the lack of available public datasets with annotated
images of tomatoes was handled using an interesting approach. They created
their own, consisting of fully synthetic images. Their images were created
as follows: firstly, they added green and brown circles for background, then
applied a Gaussian filter to blur them, and finally, added red circles to simulate
the tomato fruits. The authors also took into consideration variations in fruit
size, scale, illumination and overlap, generating 24000 images for training and
2400 for validation, and using 100 real images for testing.

For study Mao [11], 225 images were collected from a cucumber planting
base, in Shouguang, China, Shandong. The images were taken between 7
am to 10 am and from 3 pm to 6 pm to reduce the impact of illumination
conditions. The images were resized from 4032 x 3016 to 1024 x 768.

The experiments in Chen [2] used two datasets that differ from the per-
spective of lighting conditions, occlusion levels, resolution and camera type.
The first dataset contains orange images of size 1280 x 960 and was collected
during the day, using a steady camera carried by a human operator at walking
speed. The orange trees were in a nontrellis arrangement. There were 5000
images, labeled by 22 users. The second one, an apple dataset, collected at



DEEP LEARNING METHODS FOR FRUIT YIELD ESTIMATION 57

night using an external flash, with images of size 1920 x 1200, from a utility
vehicle at the speed of 1m/s, with trees in a trellis arrangement.

In Bargoti [1], the dataset was collected in a commercial orchard of Kanzi
and Pink Lady apple varieties, over a 0.5ha block of v-trellis arrangement of
17 rows, using a teleoperated vehicle, in daylight. The set contains more than
8,000 images of size 1232 x1616. For experiments, random sub-sampling was
used, dividing each image into 32 parts of size 308 x 202, manually annotated
to binary fruit and non-fruit classes.

In Kang [5], 800 apple images were collected from an orchard in Qingdao,
China, using a Kinect-v2, from a distance between 0.5 - 1.5 meters. An addi-
tional set of 300 images of apples in different scenes were collected to diversify
the dataset. Due to the distance at which the images were taken, the ap-
ples would be represented largely in the small scale features. To avoid this
imbalance, the authors applied a crop-and-resize algorithm. The labelling pro-
cess was done with the help of a clustering region-based neural network. The
model would extract multi-scale features, proposing potential regions of inter-
est (ROI). The pixels of the ROIs were segmented using pixel-connection into
independent candidate patches and bounding box coordinates were assigned
to it. With the help of this model, the labelling of training data was done in
only two days.

In Xiang [21] the ImageNet dataset was used, a large dataset of 1.4M im-
ages [14], and 1000 classes of web images having complex backgrounds: 3,670
images of 5 fruits collected from the Internet, including apples (633), bananas
(898), carambola (641), guava (699) and kiwi (799). For the experiment, these
were split into two subsets, 3,213 images for training and 457 images for vali-
dation. Images were adjusted to size 224 x 224 as required by the MobileNetV2
model.

In Fourie [3], authors used the ImageNet dataset, and collected their own
datasets from an apple orchard and a vineyard. The apple set contaied 21
images (2000 x 3000 px), with various light conditions and view angles. Images
were normalised to the same mean RGB intensity. 442 areas of interest were
extracted for training and augmented through random transformations. 20%
of the data was used for testing. The vineyard set was also split into a training
set (95 images), and a testing set (52 images). Testing images were captured
under different light conditions than those in the training set.

In Yu [23] authors used a Python Web Crawler to create a 2000 dataset
of images. They augmented the set by rotations and RGB adjustments with
different brightness and saturation, obtaining 2995 images (tomato 124, man-
darin 301, orange 377, apple 680, lemon 605, lime 909).
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2.3. Results. The models are often evaluated using testing data, measuring
especially accuracy and processing time, but also loss, F1 score, Recall, True
Positives, False Positives, and other specific measures defined by the authors.

As seen in Table 1, the proposed method by Rahnemoonfar [13] is signifi-
cantly better in terms of accuracy than an area-based counting method. From
a processing time perspective, the proposed method and the area-based are
both much faster than manual counting.

Method Ave gigey AVE
accuracy time/image
CNN based 91.03% 2.5 0.006
Area based 66.16% 7.9 0.05
Manual count | - - 6.5
TABLE 1. Average accuracy and time over 100 test images of
the methods studied in Rahnemoonfar [13]

The proposed method in Mao [11] was compared with one that uses an
MPCNN with the red, green, blue channels and another that uses a single
CNN for an RGB image. The best results were obtained by the model that
was using the color bands selected by the color selection component (red,
green, intensity), presented in Table 2. The metrics depicted are:

e correct recognition rate (CRR) - ratio between the number of true
positive(TP) pixels and the total number of pixels in an image

e false recognition rate (FRR) - ratio between the number of false
positive(FP) pixels and the total number of pixels in an image

e correct tot false ratio (CFR) - ratio between the CRR and FRR

Another observation was that the multi-path convolutional neural network
performed strictly better than the regular convolutional network. This showed
that applying late fusion instead of early fusion on multiple color components
yields better results.

The results of Chen [2] in terms of reducing the [? error were obtained for
the combination of blob + count + regression, values obtained are shown in

Methods TP FP TP + FP CRR FRR CFR
RGB + CNN + softmax | 76,954 25,431 102,385 92.77% 24.84% 3.73
RGB + CNN + SVM 77,436 17,627 95,063 93.36% 18.54% 5.04

RGB + MPCNN + SVM | 78,688 15,884 94,572 94.87% 16.80% 5.65
RGI + MPCNN + SVM | 80,670 10,571 91,241 97.25% 11.59% 8.39
TABLE 2. The performance of the methods proposed in paper

Mao [11]
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Table 3. To evaluate pixel-wise accuracy, Intersection over Union and ROC
curves were used. There were in total 7200 oranges in 71 images and 1749
apples in 21 images in the testing sets.

Model 12 error  Ratio Std
Counted Dev
Orange blob 16.9 0.935 15.6
Orange blob+regression 15.9 0.999 15.9
Orange blob+count 19.2 0.851 12.7
Orange blob+count-+regression 13.8 0.968 13.5
Apple blob 46.5 1.475 24.9
Apple blob-+regression 20.4 1.025 20.3
Apple blob+count 20.9 0.767 8.4
Apple blob+count—+regression 10.5 0.913 7.7

TABLE 3. Count accuracy of the CNN proposed in Chen [2]
for orange and apple set.

The metrics used for evaluating the proposed model in paper Kang [5] were
the inference time, the number of parameters, F1l-score, precision, recall, in-
tersection over union (IoU), area under the curve - which was denoted as
AP, (where m is the threshold for IoU used to accept or reject proposed re-
gions of interest). A comparison between the crop-and-resize augmentation
process with the regular data augmentation method is presented in Table 4.
As anticipated, the model performs poorly on medium and large fruits when
augmenting images with rotates and color/brightness alteration due to the
size imbalance. It can be noted that the model trained on data augmented
with the crop-and-resize operation performed well regardless of the object size.
Several popular architectures were compared with the proposed model (Table
5). The LedNet with the light-weight backbone performed just as well as the
other much larger networks, while having the fastest inference time.

The results in the MLP network in Bargoti [1] improved after including
the metadata, which can be observed in Table 6. Extending this with CNN,
the best pixel-wise Fl-score of 0.791 was achieved, while the WS produced

Method AP50 APsma” APmed APlarge ToU
Crop and Resize 0.826  0.832 0.817  0.763 86.7%
Standard 0.797 0.818 0.778  0.652 78.3%

TABLE 4. The impact of the two augmentation methods
utilised in Kang [5] on the performance of the LedNet model.
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Method APy F1 Recall Acc ToU Time Params
LedNet(LW-Net) 0.826 0.834 0.821 0.853 86.3% 28ms 74 M
LedNet (ResNet-101) | 0.843 0.849 0.841 0.864 87.2% 46 ms 188 M
YOLOv3 0.803 0.803 0.801 0.82 84.2% 45ms 248 M
YOLOv3 (Tiny) 0.782 0.783 0.776 0.796 82.4% 30ms 354 M
Faster-RCNN (VGG) | 0.814 0.818 0.814 0.835 86.3% 145 ms 533 M

TABLE 5. Evaluation the 5 different backbones used for the
detector in Kang [5] .

the best results, with a detection F1l-score of 0.861. Comparing the count
estimates using CNN and WS with the base counting the squared correlation
coefficient obtained 2 = 0.826.

Both  ms-MLP CNN Neither
ms-MLP | 0.834  0.860 0.739 0.709
CNN 0.921 0.843 0.849 0.731
TABLE 6. Comparing ms-MLP and CNN approaches for fruit
detection with image segmentation output and WS detection
algorithm in Bargoti [1]

In Xiang [21], the classification accuracy obtained for the 5 fruits was
85.12%. To demonstrate its effectiveness on source-limited platforms, the
models were deployed also on an Android smartphone (Honor 10 by Huawei).
Through transfer learning, the new model was able to accelerate and optimise
the learning process (MobileNetV2 as the best running time, as described in
Table 7).

Apple classification accuracy was 98% (deciding if an area of interest con-
tained an apple or background) in Fourie [3]. For the vine set, the network
could correctly classify 99% of the testing areas of interest if they contain grape
bunches. Next step would be to correlate counting and yield estimation.

Training Validation Run
Loss Acc Loss  Acc (sec)
MobileNetV2 | 0.0109 0.9984 0.4719 0.8512 327
MobileNetV1 | 0.0335 0.9960 1.3527 0.7352 1618
InceptionV3 | 0.0071 0.9994 0.6322 0.8578 670
DenseNet121 | 0.0036 0.9994 0.3695 0.8906 7965
TABLE 7. Loss and Accuracy on the training and validation
sets for the proposed models in Xiang [21].

Model
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The results for Yu [23] show that the accuracy of the model trained by
Faster R-CNN was higher (at 89%) that for the model trained by SSD (at
82%). The average speed per image in seconds 8.21 (Faster-RCNN) and 6.70
(SSD) respectively (see Table 8).

Fruit Orange Mandarin Lemon Apple Tomato
SSD 0.86 0.85 0.81 0.81 0.77
Faster 0.91 0.90 0.89 0.89 0.87
R-CNN

TABLE 8. Accuracy comparison between the Faster R-CNN
and SSD models on 5 different fruit classes, as described by Yu
[23]

3. DISCUSSION

3.1. Results analysis. Figure 2 presents the accuracy values of each reviewed
model against the size of the dataset and number of classes. All but one of the
studied papers (Bargoti [1], Mao [11], Rahnemoonfar [13], Kang [5], Fourie
[3], Chen [2] and Yu [23]) implement deep learning detectors. These networks
have the advantage of providing both class prediction as well as coordinates
to locate the object in the image, making them better for fruit counting and
yield estimation. The downside is that they also must be trained using data
containing the same information, data which is scarce, they are more complex
than classifiers and thus require more training resources.

The model in Xiang [21] is a classifier, which is simpler to train and deploy,
compared to a detector, however it provides only class predictions. Despite
this, the model was outclassed by all other works. The reason behind this is
very likely to be the dataset obtained by scraping images from the Internet,
which would contain a high degree of variance and potentially too few samples
per variant.

The average accuracy across these works is 91.98%. The datasets of images
used by authors range in size (from 168 to 24000), depending on the method
used, and high accuracy has been obtained for low and high number of testing
images, in association with the proper model.

One observation is that models that were trained to classify or detect 5
or more classes of fruits have not achieved an accuracy over 90% (89% and
85.10%, respectively).

3.2. Challenges imposed by datasets. Although popular datasets (Ima-
geNet, COCO) are often used for transfer learning, they do not contain real
field image data of occluded fruits and various lighting conditions throughout
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FIGURE 2. Accuracy in relation with the Number of Classes
and Dataset Size: Chart that helps visualize the best perform-
ing models from each of the studied papers. We took into
account the accuracy, number of classes and images that the
model was trained on.

the day. As such, a big disadvantage is that every research group focused on
fruit detection needs to create their own dataset to suit their needs. Creating
such a dataset is both a difficult and time cosuming process for the following

reasons:

e The collected images must contain samples in each lighting conditions

under which the model is expected to perform (e.g. sunny, rain,
cloudy, early morning, late evening)

The images should capture as many variations of the targeted fruit
classes as possible (each fruit class contains different amounts of vari-
ations in shape, size and colour, and in some cases manifest visual
deformations or defects)

e The background of the images must be relevant to the desired appli-

cation (e.g. if the model should detect ripe fruits on trees in orchards,
the background should include tree branches and leaves)

e The dataset must be annotated with the class name for classification,

to which bounding box annotations must be added for detection, an
overall time consuming process if done manually
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A publicly available dataset with such images would be advantageous to achieve
shorter research times. Alternatively, it has been shown that synthetic images
do not degrade the performance of trained models and are much easier to cre-
ate than real images. Perhaps a combination of a synthetic image generation
algorithm together with a small dataset of real images for fine-tuning can serve
as a starting point.

Another subject of research is the impact of illumination conditions on
images due to the position on the globe. Specifically, if the images are taken
in an area close to the Ecuador during the daytime, they will be differently
lit than images taken during the daytime in areas closer to the poles. Thus,
the goal is to investigate whether a model trained on images from one of these
areas performs equally well on images from the other area.

3.3. Model optimisation. One more possible direction is increasing of the
accuracy of models with a new approach based on the collected methods al-
ready existed in literature. It was proven that convolutional neural networks
achieve better performance than the alternative methods in tasks of fruit de-
tection. However, there are tasks that are still challenging for this class of
algorithms, detecting partially occluded fruits or correctly counting grouped
fruits being among the more frequent ones.

Since the majority of reviewed papers proposed models that use images
or frames extracted from videos, the area of video analysis remains largely
unexplored. The LSTM architecture is well suited to process time series, and
videos can be seen as a series of frames. This approach could further address
the aforementioned issues as the video could cover trees/plants from multiple
angles.

4. CONCLUSIONS AND NEXT STEPS

In this paper, we presented an overview of the latest research involving
deep learning for fruit yield estimation using orchard images. Some very
good results (up to 97% accuracy) were obtained using simple or complex
pre-processing techniques and large data for CNN training Mao [11]. Some
successful attempts have used transfer learning for limited training data, prov-
ing that there is good potential even for low-resource platforms to be used
Fourie [3], Xiang [21]. Some studies focus on mapping and adjusting, based
on the manual count, the algorithm generated count Bargoti [1], Rahnemoon-
far [13], with specific applications in an orchard (results of up 96.8% accuracy
in counting Chen [2]).

We have also highlighted the limitations of these studies and possible di-
rections of research, derived from challenges posed by the need to use real
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field data with various fruits, and the need improve the models by increasing
accuracy of detection for a larger variety of fruits.

Overall, the results show a very good potential for further research and
improvement up to the use in practical settings for pre-harvest yield estimation
and designing harvesting robots.

This paper is a very useful initial step for a more elaborate project, the
role of the current paper is to set a ground from we can develop particular
approaches.
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LOG REPLICATION IN RAFT VS KAFKA

MANUELA PETRESCU AND RAZVAN PETRESCU

ABSTRACT. The implementation of a fault-tolerant system requires some
type of consensus algorithm for correct operation. From Paxos to View-
stamped Replication and Raft multiple algorithms have been developed to
handle this problem. This paper presents and compares the Raft algorithm
and Apache Kafka, a distributed messaging system which, although at a
higher level, implements many concepts present in Raft (strong leadership,
append-only log, log compaction, etc.).

This shows that mechanisms conceived to handle one class of problems
(consensus algorithms) are very useful to handle a larger category in the
context of distributed systems.

1. INTRODUCTION

Due to the increased volumes and fault tolerance requested by the real-
life applications, new methods emerged to implement replicated servicers and
coordination client interaction with server replicas. From Paxos algorithm, to
Raft and Kafka, many applications use different models in order to provide
solutions for these requirements.

This paper is analyzing differences and similarities between Raft consensus
algorithm and Kafka methods and consensus. Why Raft and why Kafka?
Raft is a consensus algorithm that was created as an alternative to Paxos
algorithm, comparable with it in terms of fault tolerance and performance,
having a different structure allowing it to be easier to understand and to
implement. For both of them (Kafka and Raft), logs play an essential role.

Kafka is a distributed software platform originally developed by Linked,
based on log replication that allows client processes to publish and consume
data. It is an alternative to the traditional queues-based messages systems
(ActiveMQ).
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Previous Work There are a lot of papers in the international scientific
databases that are related to RAFT and to KAFTA or ZooKeeper. There are
also papers that compare the algorithms, but the last ones are focusing on
a comparison between the algorithm’s implementation in Hyperledger Fabric
[14, 15], a blockchain platform. The current paper focuses on Raft and Kafka
as Apache plans to replace ZooKeeper with a RAFT based algorithm. The
plans take the form of an approved change request, currently under develop-
ment.

The paper is structured in four parts. The first part presents the Raft
algorithm: the key aspects and the most important features are detailed,
focusing on leader election and log replication algorithm. The second part
presents Kafka, the leader election and log replication processes. The third
part analyzes the differences and the similarities between Kafka and Raft, the
last part is for conclusion and future work.

2. RAFT

Raft is an algorithm for managing replicated logs as the consensus is imple-
mented by selecting a leader. The leader has the full responsibility of managing
the logs without consulting the other servers. The typical number of servers
used in a Raft cluster is five, because having five servers a system can tolerate
up to two node failures.

In real life applications appeared the need for a collection of machines
(nodes) to work in a coherent manner, to perform operations on reliable data
which is constantly updating and to provide methods in case of node failure.
One algorithm that tried to provide a solution for these requirements was
Paxos algorithm, published in 1998 by Lamport.[1] The approach, based on a
state machine replication, ensured that all cases in a distributed, fault-tolerant
implementations are handled safely. However, according to Diego Ongaro and
John Ousterhout from Stanford University [3], Paxos was neither easy to un-
derstand nor to implement. They have conducted a series of experiments with
students which concluded the Raft is much easier to understand as Raft sep-
arates the key elements of consensus (such as leader election, log replication
and contingency measures) and reduces the number of states in the system (for
example, the logs are not allowed to have holes). The Paxos implementation
in real systems such as Chubby [7], encountered many problems. Chubby im-
plementation had to modify the Paxos algorithm, and the final solution was so
different from the original algorithms that the comments from its developers
are relevant in this context: ”There are significant gaps between the descrip-
tion of the Paxos algorithm and the needs of a real-world system . . . the
final system will be based on an unproven protocol” [7].
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The key features of Raft comparing with Paxos are:[3]

e The strong leader: the form of leadership is stronger than other forms
of leadership in other consensus algorithms as Raft allows one-way
updates. The log is replicated only from leader to the nodes.

e Raft allows one-way updates. The log is replicated only from leader
to the other nodes called followers.

e Membership changes:the mechanism used for changing the set of
servers in the cluster is based on a joint consensus method.

2.1. Leader Election. A server in the cluster can be in one of the three
states (leader, follower or candidate to be a leader). By default, when the
system is started a leader is selected, and a new leader is selected in case the
current leader fails. The follower’s servers are passive, they just respond to the
requests from the leader and the candidates and apply the log changes send
by the leader. All the client’s requests are handled by the leader, and in the
event that a client sends the request to a follower, the request is redirected to
the leader.

Raft algorithm introduces in the election process the ”term” concept. Raft
splits time into terms of variable length, each term is identified by a consecutive
integer. The election is started when the followers do not receive messages from
the leader in a period of time called election timeout, they enter in candidate
state and send messages to other nodes in order to be elected. Only one
vote is allowed per server, and the vote uses the "first come, first served”
methodology. A condition for a server to be voted - check for stale servers- is
that the candidate term is greater or equal than its own (terms act as a logical
clock and are sent in in the communication between servers). If a deadlock
occurs (two candidates get the same number of votes), the election closes and
a new election is started, each candidate initiating the selection process after
a randomly timeout has passed (150-300ms)- the random timeout is used to
increase the possibility that a leader is elected in the next election process.
The following image displays the term representation in Raft[3]:
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FIGURE 1. Term representation in Raft

2.2. Log Replication. Once a new leader is elected, it starts serving client’s
requests. Fach request contains a command with data to be applied to the
state machine. The leader appends the command to its log and starts the
notification process for the other servers. After the log entry was replicated
on the majority of servers, the leader applies /executes the command (the
entry is committed), responds to the client and informs the followers. In case
of network errors, the leader retries indefinitely, and based on the timers, the
follower’s logs will contain valid data. Once the follower is informed that a log
entry was committed, it updates using the entry its own state machine. The
inconsistencies between the leader and the follower’s logs are solved by forcing
the follower’s log to update to the leader’s log version. The following image
presents the possible status of a replicated log in different nodes.

Due to the log management replication, the size of the logs is increasing in
a rapid manner, so the log replicated systems and log replicated algorithms
(including Raft) use compacting features. The compacting mechanism is based
on the snapshot solution, where the entire system state is copied to a stable
storage, and then the logs delete all the information up to that point.

Contingency measures in case of node failure, are different according to
the node’s role and can be structured as follows:

e if the leader node has failed, then a new election has to be performed.

e if the node’s role is candidate or follower, the communication (using
RPC) fails and the leader will send messages continuously until the
server is back on track. At this point, the log will be updated ac-
cording to the entries from the leader’s log and the commands will
be applied on the state machine.

3. KAFKA

Apache Kafka is a distributed streaming platform, based on a commit log
that started as an internal LinkedIn project designed to provide a low-latency,
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high-throughput platform for manipulating real-time data feeds. Kafka was
designed to be used for two classes of applications that require building real-
time streaming data pipelines used to get data between other systems in a
reliable manner and for applications that react or manipulate the streams of
data. Kafka is used for publishing and subscribing to streams of data, to store
the data in a fault-tolerant way and to guarantee the order of the messages.

Kafka runs as a cluster of servers (same as Raft), and although the size of
the cluster can have any size from 1 to (probably) hundreds, Kafka uses an
additional software component for metadata management. This component,
called Apache Zookeeper employs a quorum-based voting for leader election
and always requires an odd number of nodes. In order to survive a single node
failure, the minimum number of nodes is 3. To handle a two-node failure, it
requires a cluster made of 5 nodes similar to what Raft recommends - number
of 5 servers for a two-node failure). Kafka stores the stream of data in top-
ics, each topic can be split in different partitions. In order to avoid duplicate
writes from the client, the Kafka client library assigns a unique Id to each
client process and a sequential number to every record submitted for process-
ing. Thus, the Kafka leader can perform duplicate checks to avoid multiple
writes [6]. Zookeeper is a distributed coordination service that provides syn-
chronization and group services. Zookeeper uses an atomic broadcast protocol
called Zab that ensures data to be kept consistent while trying to achieve a
high performance primary-backup system. The protocol, its correctness and
its performance were analysed in papers [10, 11, 12]; however for distributed
systems, in which data accuracy is mandatory, Zookeeper might face some
issues. The high efficiency in Kafka is based on the fact that the follower
servers serve the read requests, and forward the write requests to the leader.
That implies that there is the possibility that a read request can be served by
providing stale data [13]. However, Kafka plans to switch from ZooKeeper to
a Raft based implementation. The plans take the form of a change request
currently under development, to implement a controller quorum based on Raft
for leader election [16]. Using a different algorithm, the cases when the system
will return stale values for read requests will be solved and fixed and it will
also remove the dependency from a single service.

Kafka topics are just a scalability and performance design decision, as the
order of operations are guaranteed only for data written in a single partition.
The Kafka partition is similar to Raft log. The following image presents the
structure of a topic and the method to handle write requests[1].
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FIGURE 2. The structure of a topic [1]

Published data is written to the disk and then is replicated to ensure fault-
tolerance. The producer is informed that the data was acknowledged only
after it is replicated across the other server’s partitions. The replication factor
can be controlled for each topic.

3.1. Leaders. Each partition has a leader. This flexibility increases the per-
formance, contributing to low latency and high-throughput. Kafka tries to
avoid having the same leader node for a large number of partitions, so it en-
forces a balance mechanism. The leaders for partitions are distributed among
different servers in the cluster. In Kafka, the number of replicas for each par-
tition is configurable (so, it allows to have a different number of replicas based
on a topic basis).

A node is considered to be ”alive” if it is able to maintain its session with
ZooKeeper and to replicate the leader’s write in a reasonable time frame. The
leader keeps track of all its ”alive” or ”in sync” nodes also known as the ISR
(In-Sync Replicas) list, and when a follower falls behind or dies it is removed
from the list.

When a server falls (that is not a leader for a specific partition), the leader
will continue to notify and wait for that node. However, when the leader for a
specific partition falls, a new server has to be selected from the followers as the
leader for that partition. The constraint related to the follower is that it has
to be up-to-date, as the crucial guarantee for a log replication algorithm is the
following: if the client receives the commitment acknowledgment for a message,
and the leader fails, that new selected leader must contain the message. The
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leader has to wait for a sufficient number of followers to acknowledge they
received the message before the leader declares the message is committed.

For cluster coordination tasks, Kafka uses ZooKeeper as a single control
broker. It stores information about partition’s leaders and is responsible for
selecting a new leader. In the unlikely event that all the follower’s node die,
two methods can be used:

e the system can wait for a follower /replica from the preferred replica
set to recover and to choose it as leader (hoping that the data is
valid).

e or to use the first replica that is available (even if it is not in the
preferred replica set)- this method is a trade-off between not having
any data or having some ”older” data.

3.2. Communication and logs. Kafka architecture consists of a cluster hav-
ing minimum 3 servers (needed for ZooKeeper), but is scalable to hundreds for
Kafka (as a note, Kafka can also run on a single server). On each server there
are multiple partitions that could also be split into topics. Each producer can
publish to any topic, it can publish to all the partitions of the topic in a round-
robin way or it can add an id/key to the message in order to publish to the
same partition. Consumers on the other hand are grouped in clusters, Kafka
allows multiple consumer clusters. Consumers can be separate processes or
separate machines, and each record published for topic is delivered to each
subscribing group. Only one customer instance is allowed for a subscribing
group. The only metadata used for each consumer is the position of the con-
sumer in the log. This approach offers a higher flexibility compared to queue
messaging, as it offers each client the possibility to re-read an older message(s)
or to skip others to get to the up-to-date index [4].

Kafka persists the messages for a configurable time period, and manages to
perform constantly with respect to the data log size. Storing data for a long
time only requires more space on the disks. However, Kafka offers a method
to compact the logs - the process is based on copying the file but saving only
the last value of a message.

The replication algorithm ensures that all the logs from different servers
have the same offsets for the same messages and the same order for the mes-
sages. The only exception from this rule occurs in the following situation: the
messages in the leader log that are in the process of replication and were not
saved in the follow’s files.

In order to improve performance, to reduce the number of I/O requests and
the overhead of the network round-trip, Kafka implements the ”message set”
abstraction that groups the messages, using bulk messages whenever is possi-
ble. Kafka tries to send larger packets instead of sending smaller messages one
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by one, as they were published by the producers. Another method to improve
performance is appending in the log in bulk mode. The servers append in the
log in one go in continuous memory blocks (bulk mode) and the consumer
receives a larger linear chunk every time. As a note, Kafka uses ”push” type
for producer- allowing them to send as many messages as they can produce,
but for customers, it works with a ”pull” method. The pull method implies
that the messages are not sent to the consumers (the consumers might get
overwhelmed and could not process them in a timely manner), so Kafka waits
for the consumer to request for new messages.

4. KEY SIMILARITIES BETWEEN RAFT AND KAFKA

4.1. Leaders. Both solutions use the concept of Leaders for long-term, steady
operations. This decision is in contrast with Paxos family of algorithms where
each operation is voted by a majority of nodes a method which requires more
round-trip communications between nodes. Using a master node, on the other
hand, involves a much simpler communication between the leader and its fol-
lowers. The leaders are elected using a consensus algorithm between the can-
didates or the up-to-date replicas.

4.2. Log replication. Again, both Raft and Kafka rely on a consistent, or-
dered log of operations that is replicated from the leader node to the followers.
An operation (in Raft) or a message (in Kafka) is reported to the client as
committed only after it is confirmed by the followers. Both behave in the same
manner: first they apply the operation/message in their own logs, then try
to replicate on the other nodes, and finally wait for the nodes to confirm the
writing before sending a confirmation message to the producer.

Both systems provide the same guarantees regarding the replicated log:
same positions in the replicated logs will contain the same, identical informa-
tion.

Both solutions support log compaction by using periodical snapshots to
reduce the size of the logs.

4.3. Failover and leader election. Both Raft and Kafka support automatic
failover by executing an election algorithm among the up-to-date follower
nodes that are still alive. The actual failure detection method is different,
but the high-level election method is similar. Both solutions only handle non-
Byzantine failures.

In case of a follower node failure, there is no impact in operation and the
restarted follower or candidate node will simply replay all the operations from
the leader node until it becomes up to date.
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4.4. Additional Kafka features. Topics and Partitions Even if Kafka is
based on a replicated log, it’s architecture that uses topics enables a higher
degree of parallelism and efficiency as requests are split between the servers in
the cluster.

The fundamental condition for a log replication-based system is that the
messages persist and that are sorted in the log in the same order as they were
received. In Kafka, each partition is ordered and it consists in an immutable
sequence of records. Each record in the partition is uniquely identified by
a sequential id number called offset (the consumer only has to remember the
offset of the last record he got in order to ”move” in the log and to read records
from the past). A consumer is able to deliberately go back to an old offset to
re-process the data. This ability, even if is not specific for queues, can bring a
lot of benefits to the consumers [8].

Load balancing

A no routing tier is used in Kafka, all the requests are sent directly to the
broker that is the leader of the partition, avoiding a possible bottle neck in the
routing tier. In order for a producer to know which is the leader of a specific
topic, the servers in Kafka must be able to answer which servers are alive and
where are located the leader nodes for each partition.

Moreover, the parallelism and load balancing is increased as each topic is
split into partitions, and each publisher can write on a partition based on a
round-robin method or can write to a specific partition (using the exposed
interface for semantic partitioning which allows the publisher to specify a key
to the partition) [4]

Consumer Groups

Kafka introduce the notion of consumer groups ”a consumer group” is a
cluster of consumers or processes in an application. For example, if the mes-
sages in a system must be consumed by two modules or processes of the same
application, these processes should be configured in separate groups. The
configuration is due to the fact that a message will be sent only once for each
consumer group.

Highly Configurable (number of replicas, recovery policy, batch
parameters)

Designed to be addressed to a large type of applications, Kafka is quite con-
figurable, as it offers support by parameters to configure the number of replicas
for each partition, and to modify it (for example: increasing the replication
factor of an existing partition). The batch mode parameters are also config-
urable (time of waiting or number of messages per batch), and the recovery
policy for falling nodes.

Batching
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Batching is a feature that contributes a lot to the efficiency of the system.
Batching in Kafka can be configured, to pile up and to send no more than
a specified number of messages or to wait only a specific amount of time.
This allows sending out large chunks of data through the network and fewer
I/0 operations on the server (even if they are larger) increasing performance.
As a note, in exprimental validation there was a stong correlation betweend
the packet sizes and the time (packet send interval), and the time needed for
the packages to fit a phase-type distribution. The performance metrics are
influenced by the various configuration and by the network latency [9].

5. CONCLUSION AND FUTURE WORK

Kafka and Raft were designed in parallel in relatively the same period (Kafka
was open sourced in 2011 and came out from Apache incubator in late 2012
as Raft was the subject of a lecture in march 2013 [5]) and they have a lot of
similarities. Kafka can be used as an implementation of consensus distributed
algorithms and can be a solution to develop a replicated state machine.

As a note, Kafka plans to remove the ZooKeeper dependency, in order to
manage metadata in a more robust and scalable way using a RAFT based
algorithm. Using ZooKeeper has some drawbacks because ZooKeeper is a
separate system. Unifying the systems and the configurations between Kafka
and ZooKeeper would ease Kafka usage and also would improve performance.
The plans take the form of a change request, currently under development: it
implements a controller quorum based on Raft for leader election [2].

The future work would be to develop a benchmark test to compare the per-
formance between a Raft implementation and Apache Kafka. Both solutions
provide a set of configuration parameters which can heavily influence the per-
formance of each implementation. As an example: the replication factor set in
Kafka can influence the efficiency. The hardware can also play an important
role: does the system run on physical or on virtual machines (physical ma-
chines influence network delays as virtual processing introduces other types of
delays).
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DEFECT PREDICTION-BASED TEST CASE
PRIORITIZATION

CRISTINA MARIA TIUTIN, MARC-TITUS TRIFAN, AND ANDREEA VESCAN

ABsTRACT. Changes in the software necessitate confirmation testing and
regression testing to be applied since new errors may be introduced with
the modification. Test case prioritization is one method that could be
applied to optimize which test cases should be executed first, involving
how to schedule them in a certain order that detect faults as soon as
possible.

The main aim of our paper is to propose a test case prioritization
technique by considering defect prediction as a criteria for prioritization
in addition to the standard approach which considers the number of dis-
covered faults. We have performed several experiments, considering only
faults and the defect prediction values for each class. We compare our
approach with random test case execution (for a theoretical example) and
with the fault-based approach (for the Mockito project). The results are
encouraging, for several class changes we obtained better results with our
proposed hybrid approach.

1. INTRODUCTION

In order to establish if a delivered software is reliable, appropriate verifica-
tion practices have to be performed. A valuable and proper technique in this
sense is provided by testing. In spite of its significant advantages, testing is,
most of the time, a particularly expensive and demanding activity. The growth
in software complexity is reflected in an exponential manner towards the cost
of testing. As software evolves, the number of tests needed to preserve correct
functionality increases as well, leading to a proportionate extension in the time
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taken to execute the test suite. Thus, a solution which manages to lower the
cost, while also preserving the verification quality is required.

The source code quality is a characteristic of any software project. The
constant variation of this metric should be kept within certain bounds to ensure
the proper functionality of an application, while also not neglecting its general
cost. The quality of the code involves taking into consideration many factors,
like the number of programmers writing the code or the change frequency as
the entire bug-fixing process is performed. Increased consideration must be
given to this process, as a module in which a found bug is fixed may be prone
to future failures. Considering the overall quality of the source code (which will
be later reflected in the quality of the product), a specific amount of attention
should be involved in the bug fixes. One of the methods that help with this
aspect is regression testing, through the various existing approaches.

Regression Testing (RT) [7] is “the process of validating modified software to
detect whether new errors have been introduced into previously tested code and
to provide confidence that modifications are correct”. Similar other definitions
may be found in [4] as “the retesting of the software that occurs when changes
are made to ensure that the new version of the software has retained the
capabilities of the old version and that no new defects have been introduced
due to the changes”, in [10] as “performing testing after making a functional
improvement or repair to the program”, and in [20] as “rechecking test cases
passed by previous production versions”.

Regression testing [1] is an essential part of any viable software development
process and in practice is often incorporated into a continuous integration
service. It is well known that if the regression tests do not finish in a timely
manner, the development process is disrupted.

The challenging problem regarding regression testing refers to the fact that
at a given point during the development, the test suites are so large that run-
ning all the test cases would take too much time. There are many approaches
that investigate the regression testing problem, from test suite minimization
to test case selection and test case prioritization. A review on various RT
techniques is presented in paper [3]. A more detailed view about subtypes of
RT is presented in [14].

The Test Case Prioritization (TCP) [3] technique helps to increase the rate of
fault detection. It also increases in practice the effectiveness of test suites. To
evaluate the regression-based test suite prioritization, the ordering is in general
measured using the APFD (Average Percentage Faults Detected) metric [12].
More information regarding APFD metric is provided in Section

Test Case Prioritization has been widely researched as a strategy for reduc-
ing the time needed to discover regressions in software. While many different
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approaches have been developed and evaluated, previous experiments have
focused on faults or code coverage used as prioritization techniques, and only
few approaches [L1] considered the defect prediction probability of a class. The
probability associated to a class may determine the likelihood of it to contain
software bugs. This metric could be used as a test case prioritization technique.
We propose an investigation in this direction, i.e. test case prioritisation based
on defect prediction.

The aim of this paper is to propose and investigate an algorithm that con-
siders both the faults and the defect prediction probability as criteria for pri-
oritization. We employ the use of defect prediction probability of a class as
described in [II] where the aim was to study how to configure the Schwa tool
[5] to maximize the likelihood of an accurate prediction. More information
regarding the computation of the defect prediction probability of a class is
provided in Section 2.2

The reminder of the paper is organized as follows: Section [2] presents related
work regarding the test case prioritization and also referring to defect predic-
tion, Section [3| describes our approach regarding Test Case Prioritization that
considers also the defect prediction probability. The experiments in Section
revealed that our approach finds better solutions for several class changes, and
the last section outlines the concluding remarks and future work.

2. BACKGROUND ON TEST CASE PRIORITIZATION AND DEFECT
PREDICTION

Regression testing [7] is an important process that mostly every software
systems will go through multiple time during its development and maintenance
process. Being highly time consuming, performance improvements are a must,
thus several studies are currently proposed to minimize the cost of the process
and maximize its efficiency.

2.1. Definition of Test Case Prioritization. Definition for TCP is given
by Graves [7] in what follows.

Definition 1. Test case prioritization [7|: Given a test suite, T, the set of
permutations of T, PT; a function from PT to real numbers, f.

Problem: to find T € PT such that
(1) (YT")(T" € PT)(T" # T")[f(T") = f(T")]

The function f assigns a real value to a permutation of T according to the
test adequacy of the particular permutation.

The ideal order would be the one that reveals faults soonest, the rate of
which can be expressed in APFD (Average Percentage Faults Detected) metric
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(described in the next subsection). The latest regression testing approaches
use various code coverage criteria since fault detection is not known in advance.
Several approaches are scrutinized by Rothermel et al. [15] using various cov-
erage measurements, showing that coverage prioritisation can improve the rate
of fault detection [19].

In what follows we present a short overview of various test case prioritization
techniques and also studies related to defect prediction.

2.2. Test case prioritization approaches. This section details the APFD
and defect probability metrics, alsor presenting various existing approaches for
test case prioritization.

Average Percentage Faults Detected

APFD measures the effectiveness of TCP as the rate of fault detection
achieved by the produced ordering of test cases [16]. APFD relates with earlier
fault detection abilities.

Definition 2. Average Percentage Faults Detected (APFD) [12] is defined as
follows:
TA+Tf2 4.+ Tfm 1

mn 2n

Where n be the no. of test cases and m be the no. of faults. (Tf1,...,Tfm )
are the position of first test T that exposes the fault.

(2) APFD =1-—

Paterson et. al [I1] proposes a test case prioritisation technique considering
defect prediction, a strategy which analyses code features in order to predict
the likelihood that a file or function inside a software system is faulty. The
paper introduces a test case prioritisation approach, namely G-clef, that uses
bug prediction data to reorder a test suite in such a way that it concentrates
first on the classes that are prone to include faults. The paper not only presents
this new test case prioritization strategy, but also compares the approach with
other nine existing approaches using an empirical study on real faults.

Defect prediction probability of a class

Schwa [B] uses a ranked-based technique, Time-Weighted Risk (TWR) to
estimate how reliable a Java class is, thus the function has its maximum value
when a component was changed recently:

1

(3) twr(t;) = [P

Schwa [B] estimates the likelihood that a Java class ¢ contains a bug using
Equation 4] in which each of the three factors (i.e., revisions, authors, and
fixes) is calculated and modified by a weight, where the sum of all weights
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must be equal to 1. For each component the score is computed as provided in
Equation [l Intuitively, a Java class with higher defect value is less reliable,
thus more likely to contain a bug, than those classes with low defect value.

score = revisions * revisioNSyeight
+ fizes x fizesyeight

+ authors * authorsyeight

(4)

Test case prioritisation approaches

Test Case Prioritisation (TCP) arranges test cases into an optimal order so
that a specific criteria is met as early as possible. The work of [I3] presents a
black-box strategy called REMAP that incorporates three fundamental compo-
nents: a rule miner, a static prioritiser, and a dynamic executor and prioritiser.
The relations between test cases are defined using fails and pass rules being
mined from the historical execution data. Multi-objective search is applied to
statically prioritise test cases considering two objectives: fault detection capa-
bility and test case reliance score. The test case order is dynamically updated
using the results of the test case execution and the fail and pass rules.

2.3. Defect prediction approaches. This section contains various existing
approaches related to defect prediction approaches.

When discussing a defect prediction solution, one approach taken into con-
sideration is a multi-objective approach [2], the two conflicting objectives being
the cost and effectiveness. The approach allows software engineers to choose
between various predictors: predictors that identify a high number of defect-
prone artifacts, predictors requiring a lower cost, and predictors achieving a
cost-effectiveness compromise.

In paper [9], the search problem was enhanced, such that the defect prone
classes are predicted using the Object-Oriented metrics design suite instead
of static code metrics. An extensive comparison of eighteen machine learning
techniques in the context of defect prediction was performed. Six releases of
widely used Android application package were used.

A qualitative and quantitative study regarding defect prediction was done
[I7] to investigate what practitioners consider and expect in contrast to re-
search findings. The study that was done through interviews and question-
naires. The results revealed that most respondents are willing to adopt defect
prediction techniques, but there is a discrepancy between practitioners’ per-
ceptions and supported research evidence regarding defect density distribution.
Also, the most preferred level of granularity of defect prediction by practition-
ers is at the feature level.
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However, as mentioned before, there exists a gap regarding test case priori-
tization and defect prediction probability of classes. The approach we propose
in this work addresses an empirical attempt of the method to consider defect
prediction probability of a class as well.

3. OURrR DEFECT PREDICTION - BASED TEST CASE PRIORITIZATION

Our approach investigates the test case prioritization problem counsidering
various criteria (faults and defect prediction probability) using a Greedy-based
approach in order to select the test case ordering. We compare our approach
that uses the defect probability with two other approaches: one approach that
only considers the faults found by the test cases and the other that is a random
execution of the test suite.

As we mentioned before, our approach is based on greedy strategy. We have
tested 3 versions of greedy algorithm in order to obtain the ordering which
is expected to retrieve the best results, as graphically depicted in Figure |1} a
random prioritization, a faults-based prioritization order, and also an approach
based on defect prediction.

Algorithm 1 Algorithm 2 Algorithm 3
Random Prioritization Fault-based Prioritization Defect Probability-based Prioritization
Random Execution Order Fault-based Execution Order Defect Prediction-based Execution Order

Ficure 1. Overview of the three investigated Test Case Pri-
oritization approaches.

We compare our approach with the basic Random Prioritization approach
that is described in Algorithm [} The approach just randomly orders the test
cases that are relevant for the changed ¢ class and afterwards adds the remain-
ing test cases from the test suite. We performed our expriments considering
that each class ¢ of the project p is changed.

The second approach in our investigation uses the number of faults discov-
ered by each test case that is relevant for the changed class ¢. The description
of this approach is provided in Algorithm
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Random Prioritization Algorithm
Data:
list of all classes in a project with their corresponding tests;
list of all tests with corresponding number of bugs discovered for each
test.
Result:
prioritized list of tests (and APFD) for each class in the project.
foreach class c in project p do

get the list of tests relevant for ¢;

randomly order the tests;

add to the resulted list all the tests that are not relevant for the

class;

compute APFD for the obtained prioritized list of tests;

end
Algorithm 1: Random Prioritization Algorithm

Faults-Based Prioritization Algorithm

Data:

list of all classes in a project with their corresponding tests;

list of all tests with corresponding number of bugs discovered for each

test.

Result:

prioritized list of tests (and APFD) for each class in the project.

foreach class ¢ in project p do

get the list of tests relevant for the class c;

sort list descending based on the number of bugs discovered by each
test;

add randomly to the resulted list all the tests that are not relevant
for the class;

compute APFD for the obtained prioritized list of tests;

end

Algorithm 2: Faults-Based Prioritization Algorithm

Our new proposed approach uses the defect prediction probability for each
class. The tests are order based on the maximum defect probability among
all test cases that are relevant to the changed class ¢. The description of this
approach is provided in Algorithm [3]
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Defect-Prediction Prioritization Algorithm
Data:
list of all classes in a project with their corresponding tests;

list of all tests with corresponding number of bugs discovered for each
test.
Result:
prioritized list of tests (and APFD) for each class in the project.
foreach class c in project p do

get the list of tests relevant for the class;
foreach test t in tests for class ¢ do

get the list of all classes tested by the test ¢;
access the maximum defect probability from all the classes;

end

sort list descending based on the maximum defect probability;

add randomly to the resulted list all the tests that are not relevant
for the class;

compute APFD for the obtained prioritized list of tests;

end

Algorithm 3: Defect-Prediction Prioritization Algorithm

We will exemplify our approach by using a theoretical example provided in
Table [[l and Table 21

A fo f3 fa S5
t1/]1 0 0 0 O
to| 0 O O 1 0
ts| 0 0 0 O O
t4, 11 0 0 0 1
ts|0 1 0 0 O
t¢| 0 0 1 0 O

‘ ‘ t1 to ty tg 15 tg ‘ defectProb ‘
ct|1 0 0 0 0 O 0.25
c |0 0 0 1 0 0 0.65
c3|1 0 0 1 0 O 0.70
cg |0 0O 0O 0O 1 O 0.55
cs |0 0 0 0 0 1 0.45
cg|1 0 0 0 0 0 0.85
c; |1 0 0 0 1 1 0.80
cgs |0 0 0 0 0 O 0
co|1 1 1 0 0 1 0.82
cio] 0 0 0 0 1 0 0.72

TaBLE 1. Class to

tests cases matrix

TABLE 2. Test cases
to bugs matrix

We consider the provided order of the test cases as
TC=[t1, ta, t3, ta, t5, te].
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As we mention earlier, test case prioritization is applied in the context of
regression testing, thus when a change is done in the source code due to the
fixing of a fault. In that follows next, we present each approach using this
theoretical case study and considering that the changed class is cs.

The random algorithm starts from an existing order of the tests (t1, ta, ...,
t,) and after generates a new random execution order of the test suite.

First, the tests corresponding for class c3 are selected. Those tests are (¢1,
ts). The algorithm randomly chooses an order for the list and then appends
the rest of the tests (that do not test the class ¢3). A possible order of the
tests may be TC3:[t1, t4, t5, tﬁ, tQ, tg].

The most used criteria regarding the test case prioritization is the one re-
garding the faults the test cases discover, thus ordering the test cases to be
executed using the discovered number of faults. For the theoretical example
this ordering is: C3=|t4, t1, t5, te, t2, t3].

The tests t; and t4 are ordered descending based on the number of bugs
discovered. Test ¢; discovers 1 bug, while ¢4 discovers 2 bugs, such that the
final order of the tests may be TC3=|ty4, t1, ts, ts, t2, t3], or any random order
between the third and the last test.

Our proposed approach considers also the defect probability defined by Pe-
terson et. all in paper [I1].

The probability is defined as the likelihood that a Java class contains a
bug. This estimation is computed based on three weights, corresponding to the
importance given to revisions, fixes and authors, applied to the Time-Weighted
Risk of a class, a metric which uses different features to estimate how reliable
a Java class is. The sum of the weights must be equal to 1. For the proposed
approach, the weights were defined as 0.25 for revisions, 0.5 for fixes and 0.25
for authors. The computation uses an upper limit for the number of commits
taken into consideration when estimating the defect probability. Two different
values were chosen as an upper limit, 50 and 1000 commits respectively.

Our defect prediction-based prioritization approach is performed in three
major steps: the first one selects first the test cases that are related to the
class that was changed and order them based on the number of discovered
faults, the second one orders the remaining test cases from this set (if there
are test cases that did not discover any faults) based on the defect probability
value, and the last step adds randomly the test cases that did not take part of
the changed class, thus completing the test suite with all the test cases.

Using the defect probability prioritization algorithm, the ordering of the
tests 1 and t4 is determined by the maximum defect probability for the classes
that are tested for each test. For test t1, the classes verified by it are ci, c3,
ce, C7 ,C9, the maximum probability being 0.85, for cg. In a similar matter,
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for test t4 the verified classes are co and c¢3, with a maximum probability of
0.70, corresponding to c3. Based on this information, the test order will be 4,
followed by t1. A possible test ordering for class c3 is TC3=[t4, t1, ts, t¢, ta,
t3] (or the last 4 tests in any order).

4. EXPERIMENTS AND RESULTS

Choosing the method for our research investigation was based on the book
of Yin [I8] that supported us in identifying the case study method and revealed
how to do the research design.

Generalization from a case study to theory is an important issue, Yin [I8]
stating that the analytic generalization should be used for case studies: multi-
ple cases resemble multiple experiments, thus the mode of generalization being
analytic. Replication [I8] may be claimed if two or more cases support the
same theory: some replications seek to duplicate the exact conditions of the
original experiment, others change some experimental conditions.

4.1. Experiments Design. The replication strategy that we used considered
various number of classes, test cases and faults, those numbers being changed
from one experiment to the others. The first experiment considers the the-
oretical example with a small number of classes, test cases and faults. The
next two experiments are based on a open source project and even if the same
number of classes, test cases and faults are used, they have different number
of classes with the defect probabilities greater than 0 as described next.

Experiment 1: 10 classes, 6 test cases, 5 faults.

Experiment 2: 365 classes, 116 test cases, 38 faults, 199 classes with defect
probabilities > 0 (considering 50 commits).

Experiment 3: 365 classes, 116 test cases, 38 faults, 336 classes with defect
probabilities >0 (considering 1000 commits).

It is worth mentioning that we performed the above experiments considering
that each class was changed, thus applying test case prioritization for each
scenario.

4.2. Case studies used. The experiments are based on a theoretical project
and on an open project, Mockito from the Defect4J database [8]. We have used
the defect probability defined by Peterson et. all in paper [11] as we mentioned
earlier in Section [3

The Defect4] database [§] contains a set of software projects that contain
reproducible bugs. The fact that the projects were originally obtained from
different version control systems allows the possibility of collecting information
regarding the faults of the program from versioning perspectives. Each project
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has associated a list of faults with the corresponding test that discover a par-
ticular fault. In addition, a list of classes that are verified during the execution
of a particular test is also kept.

Those files represented the base for the data pre-processing. Two comma
separated value files were created, representing different matrices useful for
further computations. One of the matrices represented a binary bug-to-tests
correspondence, where 1 denotes that a bug is discovered by a certain test.
The form of a row is class name and k values of 1 or 0, where k is the number
of tests. The second matrix represents the tests relevant for a particular class.
A row-structure contains the class name and k values of 1 or 0, where k is the
number of tests, where 1 represents if a particular test is relevant for the given
class.

Another tool that was used for computing the defect probability for the
classes of a certain project is Schwa [6]. The output contains a json file with
the defect probability for each class, while also mentioning a defect probability
value for each method that is part of a class. The information was processed
in a csv file, which is a mapping between the class names and the defect
probabilities obtained. Two separate files were obtained, one by taking into
account the last 50 commits of the Mockito project, obtained from the Defect4.J
library, and other file made by analyzing the last 1000 commits of the same
project.

The effectiveness of the proposed prioritization technique, thus the ordering
of the test cases is assessed using the rate of faults detected using the APFD
metric as described in the above sections.

4.3. Experiment 1. The first case study considers the theoretical example
that we provided in Section [3| The case study contains: 5 classes, 7 test cases
and 4 faults, along with the defect probabilities being provided. The class that
was modified is c3.

We consider the provided order of the test cases as

TC:[tla t27 t37 t47 t5y t6]

The test cases that are involved in the c3 class that is changed are: t1 and
t4.

The execution of the random algorithm found the following result: [t1, t4,
t3, t2, t6, t5]. The obtained APFD values is: 0.48.

The execution of the algorithm that considers only the number of discovered
faults by the test cases found the following result: [t4, t1],[t5, t6, t2, t3]. The
APFD value is: 0.62.

The execution of our proposed algorithm found the following result: [t1,
t4],[t5, t6, t2, t3]. The APFD value is: 0.58.
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For this example, the proposed algorithm does find better solution than the
random approach (APFD is greater, 0.58 > 0.48), but did not find better
solution than the faults-based approach (0.58 > 0.62).

As mentioned earlier, we have also executed the algorithm considering that
each class is changed, that performing test case prioritization for each class
modification. The results in Figure ] still do not find better solution for our
approach. We executed the algorithm such that each class in the project is
changed thus being required to apply test case prioritization in each scenario.

Theoretical Example Results

BTCP - Random

B TCP-by Faults

TCP-by Faults and
DefectProb

cl 2 3 ¢4 5 6 7 cB 9 clo
Class that is modified

FIGURE 2. Theoretical example results

4.4. Experiment 2. Our next experiment considers the Mockito project from
the Defect4J dataset [§].

The Mockito case study contains: 365 classes, 116 test cases and 38 faults,
along with the defect probabilities being provided. The defect probabilities
were computed using the last 50 available commits, which resulted in values
for 190 classes. The rest of the classes had associated a defect probability of 0.

For example, for class
“org.mockito.internal.invocation.serializablemockitomethod” the APFD values
found for each approach are: TCP-Random APFD=0.72, for TCP-byFaults
APFD=0.72, and for TCP-byFaultsAndDefectProb APFD=0.72.

Comparing our approach with the byFaults approach we obtained the results
in Figure B} for 26 classes the APFD values are higher. If we consider APFD
highest or equal then for 132 number of classes we obtained better or equal
APFD results.

4.5. Experiment 3. The last conducted experiment considered the same Mock-
ito case study with different defect probabilities computed.
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Mockito-50 Example Results
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FiGUurRE 3. Mockito-50 Results: For out of 190 classes, we
obtained better or equal APFD values for 132 classes, and ob-
tained higher APFD values for 26 classes.

The Mockito case study contains: 365 classes, 116 test cases and 38 faults,
along with the defect probabilities being provided. The defect probabilities
were computed using the last 1000 available commits, which resulted in values
for 336 classes. The rest of the classes had associated a defect probability of 0.

The results for this experiments revealed that for 114 classes we obtained
higher or equal APFD when comparing TCP-byFaults approach with the TCP-
byFaultsAndByDefectPred. Figure [d] contains these results.

Mockito-1000 Example Results
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FIGURE 4. Mockito-1000 Results: For out of 336 classes, we
obtained better or equal APFD values for 114 classes.
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4.6. Discussions. Following the replication approach to multiple experiments
[18], each individual experiment was finalized by an individual report (conclu-
sion) that will be next considered to be part of a summary report, i.e. a
cross-case conclusions.

In our case the results obtained for each experiment are reported in the
above sections and in this section conclusions about the potential used of de-
fect prediction probabilities for the test case prioritization problem are drawn:
augmenting the standard test case prioritization criterion, i.e. number of faults
discovered by the test cases, with the defect prediction probability of each class
may lead to better results regarding which test cases should be first executed
in the context of regression testing.

Our approach considered only one of the classes to be modified, thus com-
puting the regression test suite only for this one modification. Future work
will tackle these multiple changes in the classes.

5. CONCLUSIONS

Regression testing, with all existing strategies plays an important role in
identifying and fixing faults after software changes are performed. Test case
prioritization is one of the strategies that could be applied and that can provide
important information about the system under test regarding the best test
cases that may identify existing faults.

Our hybrid test case prioritization approach considers not only the number
of faults discovered by the test cases but also the defect probability of each
class.

The design of our experiments considered various combinations of number
of classes, test cases, faults and classes with defect probability not zero. Our
hybrid approach is compared with two other approaches: a random based
approach and a faults-based approach. The results are encouraging, for several
class changes we obtained better results with our proposed hybrid approach.
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