
INFORMATICA
3/2010

Anul LV 2010

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

3

 Redacţia: M. Kogălniceanu 1 • 400084 Cluj-Napoca • Tel: 0264.405300

SUMAR – CONTENTS – SOMMAIRE

M. Ghonamy, A. Badr, Abd El Fatah Hegazy, Solving Optimal Broadcasting Strategy
in Metropolitan MANETs Using MOCELL Algorithm ... 3

A. Sîrbu, L. Dioşan, A. Rogozan, J.-P. Pécuchet, Alignment of Custom Standards by
Machine Learning Algorithms... 25

D. M. Suciu, A. Cut, A Framework for Active Objects in .NET 37

A. Vescan, M. Frenţiu, Teaching Model Checking to Undergraduates 45

S. Dragoş, Current Extensions on PULSE .. 51

V. Petraşcu, D. Chiorean, Towards Improving the Static Semantics of XCore 61

S. Rausanu, C. Groşan, Social Networks for Epidemic Spreading: A Case Study 71

A. Sterca, C. Cobârzan, Introducing VAST: a Video-Audio Streaming Tester 87

D. C. Ghiţă, JavaScript Generators .. 95

B. Bologa, A. S. Dărăbant, Computer Vision Aided Measurement of Morphological
Features in Medical Optics .. 111

S. Mezei, A. S. Dărăbant, A Computer Vision Approach to Object Tracking and
Counting ... 121

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 3, 2010

SOLVING OPTIMAL BROADCASTING STRATEGY IN

METROPOLITAN MANETS USING MOCELL ALGORITHM

M. GHONAMY, A. BADR, AND ABD EL FATAH HEGAZY

Abstract. Mobile ad-hoc networks (MANETs) are a set of communi-
cating devices that are able to spontaneously interconnect without any
pre-existing infrastructure. In such a scenario, broadcasting becomes very
important to the existence and the operation of this network. The pro-
cess of optimizing the broadcast strategy of MANETs is a multi-objective
problem with three objectives: (1) reaching as many stations as possible,
(2) minimizing the network utilization and (3) reducing the broadcast-
ing duration. The main contribution of this paper is that it tackles this
problem by using multi-objective cellular genetic algorithm that is called
MOCELL. MOCELL computes a Pareto front of solutions to empower
a human designer with the ability to choose the preferred configuration
for the network. Our results are compared with those obtained from the
previous proposals used for solving the problem, a cellular multi-objective
genetic algorithm which called cMOGA (the old version of MOCELL). We
conclude that MOCELL outperforms cMOGA with respect to set coverage
metric.

1. Introduction

Mobile ad-hoc Networks (MANETs) are composed of a set of communi-
cating devices that are able to spontaneously interconnect without any pre-
existence or operation of the network. There is no such an organization re-
sponsible for this kind of networks. Bluetooth and wifi are the most popular
wireless networking technologies available. In MANET, devices communicate
in a short limit and they can move while communicating. One of the main ob-
stacles for performing efficient communication is that the topology may change
quickly and unpredictably.

Received by the editors: June 2, 2010.
2010 Mathematics Subject Classification. 78M50.
1998 CR Categories and Descriptors. G.1.6 [Mathematics of Computing]: Numerical

Analysis – Optimization.
Key words and phrases. Cellular Genetic Algorithm, Multi-Objective Optimization, Mo-

bile Ad-hoc networks, Broadcasting.

3

4 M. GHONAMY, A. BADR, AND ABD EL FATAH HEGAZY

The considered problem in this paper is broadcasting on a Metropolitan
MANETs. Metropolitan MANETs is a subclass of MANETs which have some
specific properties: Their density is heterogeneous and it is also dynamic (high
density regions don’t remain active full time). The considered broadcasting
strategy in this work is Delay Flooding with Cumulative Neighborhood pro-
tocol (DFCN) [19].The considered three real world examples of such a net-
work are mall environment, Metropolitan area, and highway environment.
We took the previous environments into account so, instead of providing a
special-purpose protocol for each environment, our suggestion lies in tuning
the broadcasting process to adapt with each environment. The optimization
of broadcasting process needs multi-goals to be satisfied at the same time by:
(1) maximizing the number of reached devices (coverage) (2) minimizing the
network usage (bandwidth) and (3) minimizing the duration of the process.
This means that we are facing multi-objective optimization [5] [16].

The intended result of multi-objective optimization is not a single solu-
tion as the single-objective optimization. Rather, the goal is a set of solutions
called Pareto optimal set (section 2). The goal is a set of solutions because
one solution can provide the best result in one objective but another solu-
tion can provide the better results in another objective i.e: in our MOP, one
solution can provide the best result in term of coverage but other solution
can provide the best result in term of duration. These solutions are called
non-dominated solution (Pareto optimal). When Pareto optimal plotted in
the objective space, it is called Pareto front. Then, the role of the decision
maker comes by choosing the most suitable solution from the Pareto front.
In this paper, we investigate solving the problem of tuning some broadcast-
ing strategy for metropolitan MANETs by using multi-objective optimization
evolutionary algorithm (MOCELL).

Many evolutionary algorithms are used to solve multi-objective optimiza-
tion problems. Although cellular genetic algorithm (cGA) has proved high
efficiency and accuracy in solving single-objective optimization problems, a
few works used genetic algorithm based on cellular population structure [20]
in solving multi-objective optimization problem. The algorithm we propose is
MOCELL which is presented in [2] as a new version of cMOGA (cellular Multi-
Objective Genetic Algorithm).Our contribution lies in modifying MOCELL to
be adapted with the nature of our problem (multiple decision variables with
different data types). To the best of our knowledge, this is the first attempt
to solve the broadcasting problem on MANETs by using MOCELL and the
second with structured multi-objective EVs.

In order to verify the obtained results of the aforementioned algorithm
MOCELL, we compared MOCELL results against CMOGA (the previous pro-
posal used for solving our problem). But we needed to re-implement CMOGA

SOLVING OPTIMAL BROADCASTING STRATEGY IN METROPOLITAN MANETS 5

in order to avoid the influence of the differences between the programming
techniques used in this and the previous study.

The rest of the paper is organized as follows: section 2 presents a brief sur-
vey on multi-objective optimization and in section 3 we describe our problem
and how the broadcasting protocol works. We present the chosen algorithm
MOCELL in detail in section 4 and in section 5, we present our experiment
in terms of the simulator configuration, parameters used with MOCELL, and
the obtained results. We present and analyze the obtained result of comparing
MOCELL results against cMOGA results in section 6.Finally; we summarize
and suggest some topics for future research.

2. Multi-objective optimization

In this section we will revise some multi-objective optimization back-
ground. The concepts of multi-objective optimization, feasible region, Pareto
optimality, Pareto dominance, Pareto optimal set, Pareto front, Pareto set
approximation and Pareto front approximation are defined in the following
subsections.

The scenario considered in this section involves an arbitrary optimization
problem with p number of constrains and m objective functions which are
(without loss of generality) to be maximized.All the objectives have equal
weight.
Multi-objective optimization problem (MOP):

MOP can be defined as finding the vector
»

X∗ = [x∗1, x
∗
2, ..., x

∗
n] which maximizes

the vector function
#»

f (#»x) = [f1(
#»x), f2(

#»x), ..., fm(#»x)] where #»x = [x1, x2, ..., xn]
is the vector of decision variables. It also must satisfy the p constrains
hi(

#»x), i = 1, 2, ..., p
Feasible region
Feasible region Ω can be defined as the set of all vectors which satisfy all the
constrains. Any point that belongs to the feasible region #»x ∈ Ω is called fea-
sible solution
Pareto dominance:
An objective vector #»a = (a1, a2, ..., an) is said to dominate

#»

b = (b1, b2, ..., bn)

(denoted by #»a ≻ #»

b) if and only if
#»

b is partially less than #»a i.e, ∀i ∈
{1, ..., n}, ai ≥ bi ∧ ∃i ∈ {1, ..., n} : ai > bi .In another word an objective

vector #»a dominate
#»

b if no component of #»a is smaller than the corresponding

component of
#»

b and at least one component is greater.
Pareto Optimality:

A point #»x
′ ∈ Ω is Pareto optimal only if ¬∃ #»x ∈ X,

#»

f (#»x
′
) ≺ #»

f (#»x), for all #»x

which belong to the decision space X, such a #»x that dominates #»x
′
does not

exist.

6 M. GHONAMY, A. BADR, AND ABD EL FATAH HEGAZY

Pareto optimal set:

The Pareto optimal set for a given MOP
#»

f (#»x) can be defined as P ∗ = { #»x ∈
Ω|¬∃ #»x

′ ∈ Ω,
#»

f (#»x
′
) ≻ #»

f (#»x)}. In another word, none of the elements of the
Pareto optimal set is dominated by others which belongs to the feasible region.
Pareto front:
The Pareto front for a given MOP

#»

f (#»x)and its Pareto optima set P ∗ can be

defined as PF ∗ = { #»

f (#»x), #»x ∈ P ∗}.
Pareto set approximation:
Most work in the area of evolutionary multi-objective optimization has focused
on the approximation of the Pareto optimal set. So we consider the outcome
of our algorithm as mutually nondominated solutions, or for short Pareto set
approximation.
Pareto front approximation:
To sum up, we can describe Pareto front approximation as the front of Pareto
set approximation.

3. The problem

The considered problem consists of finding the most adequate parameters
for DFCN broadcasting algorithm. This section is arranged as follows; in
section 3.1 we describe the considered network in our work. We describe in
section 3.2 the target broadcasting algorithm DFCN which should be tuned
and in section 3.3 we present the Multi-objective optimization problem of our
work.

3.1. Metropolitan mobile ad hoc networks (MANET). Metropolitan
mobile ad hoc network is MANET with the following properties. The first
property is the high density areas where the nodes density is higher than the
average i.e. school, airport, or supermarket. High density areas don’t remain
active all the time, they may appear or disappear from the system at any time
i.e. school working hours from 8:00am to 5:00pm and the density of this school
area outside this period is very low.

We needed a software simulator to represent such a network which allows
us to tackle our problem. The chosen software simulator is Madhoc, a metro-
politan MANET simulator [18]. Madhoc works as a tool to simulate different
scenarios and environments based on some parameters.

There are a number of topological configurations such as people moving
in a gallery place, airport place, and shopping center. The previous scenarios
have different characteristics such as the size of the area, the mobility, the
density of devices, the existence of walls (which has an effect on both the
mobility and the signal strength), and other characteristics. We used three

SOLVING OPTIMAL BROADCASTING STRATEGY IN METROPOLITAN MANETS 7

different scenarios implemented by Madhoc. The chosen scenarios are real
world scenarios that model metropolitan area, shopping mall and a highway
scenario.

• Metropolitan environment The metropolitan environment simu-
lates MANETs in a metropolitan area. In this environment, we lo-
cated a set of spots (crossroads) and connect them by streets. We
model both human and vehicles, and they are continuously moving
from one crossroad to another through streets. It is obvious that de-
vices need to reduce their speed while attempting to cross a crossroad
(like in the real world).
• Mall environment The mall environment is used to simulate MANETs
in commercial shopping center. In this environment, the shops are lo-
cated together in the corridors. The people move from one shop to
another through corridors, and sometimes they stop to watch some
shop window. These malls are very crowded (the density of devices is
high).The behavior of people in shops is different from their behavior
out of those shops (in term of mobility). There is a high density of
shops in this environment. At the end, the walls of building restrict
the mobility of devices and their signal propagation.
• Highway environment The highway environment simulates MANETs
outside cities. This environment is characterized by the large surface
with roads, and people travelling by car. Therefore, the density of this
environment is very low since all devices are located in the roads mov-
ing in a high speed (in term of mobility). The obstacles that attenuate
the signal strength and devices movement do not exist.

3.2. Delayed flooding with cumulative neighborhood (DFCN). The
broadcasting protocols can be classified according to their algorithmic nature
by the following criteria: determinism, reliability, or the information required
by their execution such that the content of the hello messages. The deter-
ministic algorithms do not use any randomness while the reliable algorithms
guarantee the full coverage of the network [12]. In another work [14] the pro-
tocols are categorized as centralized and localized. Centralized protocols [1]
need a global or semi-global knowledge of the network. So they are not scal-
able. On the other hand, the local protocols need some knowledge about one
or two hops in the network.

According to the classification presented earlier, DFCN is a deterministic
algorithm. It is a local protocol which works with 1-hop knowledge that per-
mits DFCN to achieve great scalability. In DFCN, the ”hello” messages do
not carry any additional information but the broadcasting messages embed
the list of node’s neighbors.

8 M. GHONAMY, A. BADR, AND ABD EL FATAH HEGAZY

Here is some additional information about DFCN.

• DFNC requires 1-hope neighborhood information like many other neigh-
borhood knowledge based broadcasting protocols. DFNC obtains the
required information through ”hello” packets which work on network
layer. The set of neighbors of device x is called N(x).
• The set of IDs of the 1-hop neighbors of every broadcasted message m
is embedded in the header of m.
• Each device records local information about all the received messages.
The single record of this local information consists of:

– The received message ID.
– The set of IDs of the devices that receive the message.
– The decision of whether or not the message should be forwarded.

• Random Assessment Delay (RAD) is a random delay used by DFCN
before re-forwarding a broadcast message m. It is used to prevent
the collisions. In another word, while a device x forwards a message
m, all the devices in N(x) receive it in the same time. Then all of
them will re-forward the message m simultaneously and this causes
network collisions. The goal of using RAD is delaying the process of
re-forwarding the message m for each device in N(x) with a random
value. Therefore, the risk of collisions is significantly reduced.

DFCN algorithm can be divided into three parts. The first two parts are
responsible for dealing with outcoming events. The first part is responsible
for dealing with new message reception, while the second is responsible for
detecting a new neighbor. The third part is responsible for re-forwarding the
received messages or detecting new neighbor during the follow-up of one of the
previous parts. Reactive behavior is the behavior resulting from a message
reception. Proactive behavior is the behavior resulting when a new neighbor
is discovered.

Let x1 , x2 are two neighbor devices. When x1 sends a message m to x2 ,
the list of N(x1) are embedded in the sent message m. After x2 receives the
message m, it knows the set of all the message m recipients N(x1). Therefore,
N(x2) − N(x1) are the set of devices that have not received the message m
yet. If x2 re-forwards the message m, the number of devices that receives m
for the first time is maximized through the following equation: h(x2, x1) =
|N(x2)−N(x1)|.

The received message m is re-forwarded only if the number of neighbors
who have not received the message m yet is greater than a given threshold to
reduce the usage of network bandwidth. The threshold is a function of the
neighbor devices for the receptor x2 and it is written as threshold (|N(x2)|).

SOLVING OPTIMAL BROADCASTING STRATEGY IN METROPOLITAN MANETS 9

The device x2 uses a Boolean function B(x2, x1) to decide whether to re-
forward the message m or not. The Boolean function B(x2, x1) is defined
as:

(1) B(x1, x2) =
{
true, h(x1,x2)≥threshold(|N(x2)|)
false, otherwise

The recipient devise x2 re-forwards the message m only if the threshold
is exceeded. After the random delay defined by RAD is finished, the message
m is re-forwarded. The threshold function allows DFCN to facilitate the mes-
sage re-forward when the connectivity is low. It takes the recipient device x2
neighbors number as a parameter and it is defined as:

(2) threshold(n) =
{
1, n≤safeDensity
minGain∗n, otherwise

DFCN always re-forwards while the density is below the maximum safe
density called safe Density. DFCN uses minGain parameter to compute the
minimum threshold for forwarding a message.

When the device x discovers a new neighbor, it forwards this discovery if
N(x) is lower than the given threshold called proID, otherwise this behavior
is disabled, which means that there is no action taken in case of the new
neighbor discovery.

3.3. DFCNT (DFCN Tuning) as MOP. In this subsection, we present
the Tuning of DFCN as a multi-objective optimization problem that we call
DFCNT. The following are the five parameters that must be tuned with the
role and range of each parameter in the DFCN.

• minGain is the minimum gain from the re-broadcasting process. Since
minimizing the bandwidth should be highly dependent on the network
density, minGain is the most important parameter for tuning DFCN.
It ranges from 0.0 to 1.0
• lowerBoundRAD parameter is used for defining the lower bound of
RAD value (random delay in re-broadcasting in milliseconds). This
parameter takes values in the interval [0.0, 10.0] ms.
• upperBoundRAD parameter is used for defining the upper bound of
RAD value. The parameter takes values in the interval [0.0, 10.0]ms.
• proD parameter is used for setting the maximum density to enable the
proactive behavior (reacting to new neighbor). The parameter takes
values in the interval [0, 100].
• safeDensity parameter is used for defining a maximum safe density
of the threshold. This parameter takes values in the interval [0, 100].

10 M. GHONAMY, A. BADR, AND ABD EL FATAH HEGAZY

The previous five parameters are considered as decision variables that char-
acterized the search space. The chosen intervals are wide enough to include all
the reasonable values that can be found in real scenarios. The three objective
functions are defined as follows: the first objective function is minimizing the
duration of the broadcasting process, the second is maximizing the network
coverage and the third is minimizing the number of transmission (reduce band-
width usage).Since we have three different real world Metropolitan MANETs
scenarios, three instances of DFCNT have to be solved: DFCNT, Meropolitan,
DFCNT, Mall and DFCNT, Highway.

4. The algorithm

Using EAs (Evolutionary Algorithms) in solving optimization problem has
been very intense during the last decade [22]. It is possible to find this kind
of algorithms tackling complex problems like constrained optimization task.
These algorithms work on a set (population) of solution (individuals) by ap-
plying some stochastic operator on them to search for the best solution. Most
EAs use a single population of individuals. They also apply their stochastic op-
erator on the whole population as illustrated in figure [1]. On the other hand,
there are other EVs that use structured population. In that case, the popula-
tion is somehow decentralized. Structured EVs most suited to parallel imple-
mentation. The EAs that use decentralized population provide a sampling of
the search space which improves both numerical behavior and execution time
better than those that use single population. Distributed and cellular EVs are
the most popular among many types of structured EAs as illustrated in figure
[1] [4][6][7][11].We focus in this work on Cellular Genetic Algorithms (CGAs).
CGAs use a small neighborhood concept, which mean that individual can only
interact with his neighbors [4]. The overlapped small neighborhoods of CGAs
help with exploring the space because the induced slow diffusion of solutions
through the population provides a kind of exploration while exploitation takes
place inside each neighborhood by genetic operations. Although CGAs were
initially designed to parallel processors machines, they were adapted to suit
mono-processor machines and accomplish good results. The neighborhood
definition (during the CGA execution) did not depend on the graphical neigh-
borhood definition in the problem space.

4.1. Cellular genetic algorithm. In this subsection, we present the canon-
ical CGA in detail as published on [9]. CGA pseudo-code is presented in
Algorithm 1. Since CGA is a structured EA, its population is structured as
follows: it is usually structured in a regular grid of d dimensions with the
neighborhood defined on it. The algorithm works on each individual in the
population according to its place orderly (Algorithm1 line 5). The current

SOLVING OPTIMAL BROADCASTING STRATEGY IN METROPOLITAN MANETS 11

individual can only interact with his or her neighbors (Algorithm 1line 6).
The current individual parents are chosen from the neighbors by using some
selection technique (Algorithm 1 line 7). In line 8 and 9, crossover and mu-
tation operators are applied to the current individual with probabilities Pc,
Pm respectively. After that, the algorithm computes the fitness values of the
offsprings (line 10) then, inserts them or one of them instead of the current
individual either in the current population or in a new one according to the
chosen replacement policy (line 11).

Figure 1. single (a), distributed (b), and cellular (c) EAs

After finishing the previous cycle for all individuals, we get a new popu-
lation for the next generation (line 13). The loop continues until termination
condition is met (line 4). The termination condition is met either by find-
ing the optimum solution or exceeding the maximum number of calling the
evaluation function or composed of both.

4.2. Multi-objective cellular GA: MOCELL. In this subsection, we present
MOCELL, a multi-objective optimization algorithm based on a cGA model as
presented in [2][3]. But we needed to modify it in order to tackle our problem
in terms of dealing with multiple non-heterogeneous decision variables .We ob-
served that Algorithms 1 and 2 were very similar. One of the main differences
between the two algorithms is the existence of a Pareto front (see section 2)
in the MOCELL algorithm. The Pareto front is just an additional population
(the external archive) composed of a number of the non-dominated solutions
found since it has a maximum size. In order to manage the insertion of so-
lutions in the Pareto front with the goal of obtaining a diverse set, a density
estimator based on the crowding distance proposed for NSGA-II [17] has been
used. This measure is also used to remove solutions from the archive when it
is full.

12 M. GHONAMY, A. BADR, AND ABD EL FATAH HEGAZY

MOCell starts by creating an empty Pareto front (line 2 in Algorithm 2).
Individuals are arranged in a 2-dimensional grid and the genetic operators were
successively applied on them (lines 9 and 10) until the termination condition
was met (line 5). Hence, the algorithm for each individual consists of two
parents from their neighborhood, recombining them in order to obtain an
offspring, mutating it, evaluating the resulting individual and inserting it in
both the auxiliary population (if it is not dominated by the current individual)
and the Pareto front. Finally, after each generation, the auxiliary one replaces
the old population and a feedback procedure is invoked to replace a fixed
number of randomly chosen individuals of the population by solutions from
the archive.

Algorithm 1 Pseudo-code of a canonical cGA

1:Proc Evolve(cga)

2:GenerateInitialPopulation(cga.pop);

3:Evaluation(cga.pop);

4:While ! StopCondition() do

5: for individual = 1 to cga.popSize do

6: neighbors =calculateNeighborhood(cga, position(individual));

7: parents =selection(neighbors);

8: offspring =recombination(cga.Pc, parents);

9: offspring =mutation(cga.Pm,offspring);

10: evaluation(offspring);

11: replacement(position(individual), auxiliary_pop,offspring);

12: End for

13: Cga.pop =auxiliary_pop;

14:end while

15:end proc Evolve

5. Experiments

In this section, we first describe the configuration of the network simulator
(MadHoc). Next, we present the parameterization used by MOCELL. Finally,
we present the analysis of the obtained results for DFCNT.

MOCELL has been implemented in Java and tested on a PC with a 2.8
GHz (dual-core) processor with 2GB of RAM memory and running windows
XP service back 3. The java version used is 1.7.0. Although cMOGA was
used in previous research to tackle our problem, we re-implemented it in order
to avoid the influence of the differences between the programming techniques
used in this and the previous study.

Algorithm 2 Pseudo-code of MOCELL

SOLVING OPTIMAL BROADCASTING STRATEGY IN METROPOLITAN MANETS 13

1:Proc Evolve(mocell)

2:Pareto_front = createPFront();

3:GenerateInitialPopulation(mocell.pop);

4:Evaluation(mocell.pop);

5:while ! StopCondition() do

6: for individual = 1 to mocell.popSize do

7: neighbors = getNeighborhood(mocell, position(individual));

8: parents = selection(neighbors);

9: offspring = recombination(mocell.Pc, parents);

10: offspring = mutation(mocell.Pm,offspring);

11: evaluation(offspring);

12: Insert(position(individual),offspring,mocell, auxiliary_pop);

13: InsertInParetoFront(individual,Pareto_front);

14: end for

15:mocell.pop = auxiliary_pop;

16:mocell.pop = Feedback(mocell,Pareto_Front);

17:end while

18:end proc Evolve

5.1. Madhoc Configuration. There are three different environments for
MANETs that Model three possible real-world scenarios. The main features
of these environments are explained in this chapter and they are summarized
in table [1]. In figure [2], we show an example for each environment. The
examples in figure [2] are obtained by using the graphical user interface of
Madhoc simulator by using the proposed configurations summarized in table
[1].The broadcasting process is considered to be completed when either the
coverage is 100% or it does not vary for 1.5 second. The broadcasting process
termination is truly important since improper termination condition can lead
to bad results or slow simulation.

Table 1. Main features of Madhoc environment

Metropolitan Mall Highway
Surface (m2) 160,000 40,000 1,000,000
Density of spots 50 800 3

(crossroad/km2) (store/km2) (joints/km2)
Spots radius (m) 3 - 15 1 - 10 50 - 20

Speed out of spots (m/s) 1 - 25 0.3 - 1 30 - 50
Devices Speed in spots (m/s) 0.3 - 10 0.3 - 0.8 20 - 30

Density(dev./km2) 500 2000 50
Wall obstruction (%) 90 70 0

14 M. GHONAMY, A. BADR, AND ABD EL FATAH HEGAZY

5.1.1. The Metropolitan Environment. In this section, we study the behavior
of DFCN in the Metropolitan environment. In this environment modulation,
we set the surface as 400 * 400 square meters. The density of spots (crossroads)
is 50 per square kilometer. Each spot has a circle surface of radius between 3
and 15 meters. In this scenario, the wall obstruction (penalty of signal) is up
to 90%. The density of the devices is 500 elements per square kilometer. While
setting the speed parameter, we should consider the cases when people or cars
move, so the value of movement speed in crossroads area ranges between 0.3
and 10 m/s, and between 1 and 25 m/s in other cases (streets). This kind
of environment consists of a few numbers of sub-networks that are connected
to each other by few links, one or two or even zero in case of unconnected
subnetworks. Isolated nodes are those devices that are not connected to any
subnetworks as illustrated in figure [2]. The topology of this environment can
vary in a very fast way since the devices can move through cars. All of the
previous properties show us how hard is the broadcasting process through this
network and this was what made this scenario challenging for us.

Figure 2. MANET scenario

5.1.2. The Mall Environment. In this section, we show the parameter of Mad-
hoc configuration of the mall environment. In this scenario, the number of both
shops (spots) and devices is very high (density). There are walls that have
two roles, the first is to attenuate the signals and the second is to slow down
the speed of devices that is already slow since we are modeling people walking.
The surface of this environment is defined as 200 * 200 square meters. The
number of devices per kilometer is 2000. The number of stores (spots) per
kilometer is 800. Each store (spots) has a circle of radius ranging between 1
and 10 meters. The obstruction of the wall is measured by 70% attenuation
of the signal strength. At the end, the speed of the devices range between 0.3

SOLVING OPTIMAL BROADCASTING STRATEGY IN METROPOLITAN MANETS 15

and 1 m/s inside the corridors (speed out of spots) and between 0.3 and 0.8
m/s inside stores (speed in spots).

In figure [2], we can notice that the mall environment diagram is a very
condensed graph. The graph is condensed because the mobile devices coverage
ranges between 40 and 80 meters. Therefore, the Mall environment problem
is the hardest problem because of the broadcast storm [21].

5.1.3. The Highway Environment. The highway environment consists of a
small number of devices moving in a high-speed manner. In this environ-
ment, there is no wall obstruction. The signal attenuation is set to 0%. The
surface in this environment is 1000 * 1000. The number of devices is 50 de-
vices per square kilometer. There are three spots (highway entrances or exits)
in this scenario. The speed of devices outside the spots ranges from 30 to 50
m/s. The speed of the devices inside the spots ranges from 20 and 50 m/s.
The radius of each spot ranges from 25 to 100 meter.

In figure [2], we can notice that the highway environment consists of a
number of subnetworks usually unconnected. Each subnetwork is composed
of a small number of devices. The main challenge in this scenario is how fast
the topology changes because of the speed of the devices in the highway. The
faster change the topology makes, the harder the broadcast process becomes.

5.2. Parameterization of MOCELL. In this section, we explain the pa-
rameter used by MOCELL in our experiment. The population consists of
100 individuals formed as square toroidal grid. We used C9 (compact nine)
neighborhood composed of 9 individuals; the selected one and all adjacent
individuals as illustrated in figure [3]. Per each evaluation function calling, we
call the madhoc simulator five times because of the stochastic nature of the
simulator. The objectives (time, coverage, and bandwidth) are calculated as
an average of the five returned values through the five simulator calling. Call-
ing the simulator five times per function has a great effect on our experiment
time. The previous details show us why the number of algorithm is just 30
times.

Figure 3. C9 neighborhood

16 M. GHONAMY, A. BADR, AND ABD EL FATAH HEGAZY

Table 2. MOCELL Parameters

Parameter Name Parameter value
Population size 100 individuals
Stop condition 25000 function evaluations
Neighborhood C9
Parent selection Binary Tournament + Binary Tournament
Recombination Simulated Binary probability = 1.0
Mutation Polynomial probability = 1.0/L
Replacement Rep If Better
Archive size 100
Density estimator Crowding distance
Feedback 20 individuals

Simulated Binary operator (SBX) [15] is used in the recombination phase
with probability pc = 1.0 since we deal with continuous decision variables.
SBX simulates the behavior of the single point binary crossover on double
individuals. We used polynomial operator [15] as a mutation operator with
probability pm = 1.0/L for every allele (where L is the length of individual).
We chose both parents by using Binary Tournament. The resulting offspring
replaces the current individual if it dominates the current individual. We used
adaptive grid algorithm to insert the individuals into the Pareto Front [13].
This algorithm divides the objective space into hypercubes that lead to the
balance of the density of the non-dominated solutions in these cubes. In the
case of inserting a new non-dominated solution into the Pareto Front, the
grid location of the solution is determined. If the Pareto Front is already
full and the new non-dominated solution does not belong to the most crowded
hypercube then one of the solutions that belongs to that hypercube is removed
to leave a space for the new non-dominated solution.

Using the try and error technique, we conclude that the previous MOCELL
parameters are considered the best parameters for MOCELL in solving the
aforementioned problem.

5.3. Results for DFCNT. In this section, we analyze the result of DFCNT
in the three different environments. The DFCNT problem is composed of five
decision variables and three objective functions. The experiment consists of 30
independent runs for each problem environment. The experiment execution
time is almost 2 months.

We show the mean and standard deviation of both time (in hours) and
number of Pareto optima obtained by MOCELL for the three different in-
stances of the DFCNT problem (metropolitan, mall, and highway) in table

SOLVING OPTIMAL BROADCASTING STRATEGY IN METROPOLITAN MANETS 17

[3]. As we can see, the single execution run is 23 hours for Metropolitan and
16 hours for mall and 10 hours for highway. The complexity of the evalua-
tion function, since we call the simulator five times, is the only reason for the
long time of our experiment. The average of the number of Pareto optima
obtained is 98.9 for Metropolitan, 99.6 for Mall, and 97.4 for highway where
the maximum is 100 solutions per run. This result is very satisfying for the
three instances of the problem since we provide the decision makers with a
wide range of solutions.

In Figure [4], we show the diversity of MOCELL result for each of the three
instances of the DFCNT problem. Best solutions are those that satisfy the
following objective functions (maximize the coverage, minimize bandwidth and
minimize the duration of the broadcasting process). From the obtained results,
the solutions that cover over 95% in the broadcasting process need in average
720.8 ms and 69.91 messages (bandwidth usage) for the Metropolitan scenario.
In addition, they need 163 ms and 22.45 messages for the mall scenario and
827.1 ms and 71.61 messages for the highway scenario. In fact, only 11%
from the Pareto optima solutions reach 95% coverage for the metropolitan
environment while 39% and 6% for mall and highway in consecutive. The
previous results reflect the importance of the coverage and how hard it is to
satisfy this objective function.

By looking to figure [4], we can note that in the case of the mall scenario,
the duration is less than 250 ms, bandwidth usage is less than 30 messages
and the coverage is always more than 0.4. Therefore, it is so obvious that the
broadcasting process in the mall scenario is better than the other scenarios. In
figure [4], the Duration axis (time in milliseconds) shows that the broadcasting
process in both metropolitan and highway scenarios takes longer time than
mall scenario. The bandwidth axis (number of sent messages) shows us that
the broadcasting process in both metropolitan and highway scenarios take
longer time than the mall scenario. The coverage axis (percentage of all devices
in the network) shows us that there are some solutions with coverage less than
10% in both metropolitan and highway scenarios.

Table 3. experiment’s time, and number of Pareto optimal
for each problem

Environment Time (h) Number of Pareto optima
DFCNT.Metropolitan 23.09±0.998 98.9±1.45

DFCNT.Mall 15.87±0.368 99.6±0.966

DFCNT.Highway 9.852±0.181 97.4±5.235

The previous coverage results are expected because they depend on the dif-
ference between the scenarios. The probability of having isolated sub-networks

18 M. GHONAMY, A. BADR, AND ABD EL FATAH HEGAZY

(consists of one or two devices) increases with the decrease in devices density
(increase simulation area and decrease devices number). Since the mall sce-
nario has the highest connectivity (highest devices density), it has the best
coverage results. However, the high density has its drawback because it in-
creases the risk of broadcast storm which makes solving DFCNT.mall very
hard. Based on these results, we note that MOCELL succeeded in dealing
with this problem.

The Pareto fronts illustrated in figure 4 achieves the designs objectives of
the DFCN protocol, since most of the plots are distributed on a wide range
that provides a decision maker with a wide variety of solutions. Our results
also have a set of solutions that allow DFCN to achieve a coverage rate close
to 100%, while keeping the network throughput very low.

6. Comparing MOCELL against CMOGA

In this section, we compare our study with those that used CMOGA on
DFCNT problem. The three instances of DFCNT problem (metropolitan,
mall, and highway) are solved with CMOGA to make this case study. Although
the DFCNT problem has previously been solved by CMOGA algorithm in [8],
we re-implemented CMOGA algorithm in order to insure high accuracy in our
comparative study by avoiding implementing differences effect.

6.1. Parameterization of CMOGA. In this section, we show the CMOGA
algorithm parameters. The algorithm population size is 100 individuals. It
stops when 25000 evaluation functions have been made. We chose C9 as a
neighborhood operator described in section 2 and illustrated in figure [3]. Both
the parents are chosen by Binary tournament operator. In the Recombination
step, we used simulated binary crossover [15] with probability = 1. In the
Mutation step, we used polynomial [15] with probability pm = 1.0/L for every
allele (where L is the length of individual). The offspring replaces the current
individual only if the former dominates the latter. The maximum archive size
is 100 individuals. We used adaptive grid algorithm to insert the individuals
into the Pareto Front [13]. As you notice, we used almost the same parameters
of MOCELL for CMOGA algorithm to insure the accuracy in our comparative
study. For evaluating each individual, we had to call the simulator five times as
in the case of MOCELL. Therefore, in each single run of CMOGA algorithm,
we had called the simulator 125,000 times.

We used the same parameters previously used with MOCELL in order to
insure the precision of our comparative study.

6.2. Evaluation of the Results. As Cellular Genetic Algorithms belong to
meta-heuristic algorithms, it is considered as a non- deterministic technique

SOLVING OPTIMAL BROADCASTING STRATEGY IN METROPOLITAN MANETS 19

Figure 4. Pareto Fronts For the three environment

20 M. GHONAMY, A. BADR, AND ABD EL FATAH HEGAZY

Table 4. CMOGA Parameters

Parameter Name Parameter value
Population size 100 individuals
Stop condition 25000 function evaluations
Neighborhood C9
Parent selection Binary Tournament + Binary Tournament
Recombination Simulated Binary probability = 1.0
Mutation Polynomial probability = 1.0/L
Replacement Rep If Better
Archive size 100
Density estimator Crowding distance

and this means that different solutions can be reached by using the same
algorithm twice on the same problem. The previous detail makes a serious
problem for the researchers in evaluating their results and in comparing their
algorithms results to existing algorithms.

The studied algorithms are applied to 3 scenarios of real-world problems
to insure that the proposed algorithms are capable of tackling such problems.

In our case of multiobjective optimization algorithms, we have to use met-
rics to compare the quality of the obtained solutions. However, until now
there is no single metric that proves its superiority to the other metrics. So,
we need to use more than one metric to insure the accuracy in our comparative
study. The chosen metrics are a number of Pareto Optima, hypervolume, and
set coverage [10]. Once we apply any of the previous metrics on our obtained
pareto front, we get a single value.

Table 5. MOCELL vs. CMOGA Number of Pareto optima

Algorithm X Max Min Test

DFCNT.Metropolitan
MOCELL 98.9±1.45 100 96

-
CMOGA 99.7±0.675 100 98

DFCNT.Mall
MOCELL 99.6±0.966 100 97

-
CMOGA 99.9±0.316 100 99

DFCNT.Highway
MOCELL 97.4±5.23 100 84

-
CMOGA 94.7±8.68 100 72

Since the proposed algorithms are non-deterministic, the comparison of a
single execution is inconsistent. So, the comparison must be applied on a large
set of results obtained after a high number of independent executions (in our
case 30 independent runs) for the algorithms on a given problem. We used

SOLVING OPTIMAL BROADCASTING STRATEGY IN METROPOLITAN MANETS 21

a statistics function in order to make the comparisons between the obtained
results. Our statistics reflect the significance of the obtained results and the
comparisons as shown in the Test column.

We applied Kruskal-Wallis test on our results. Kruskal-Wallis function
allows us to determine whether the effects observed in our results are significant
or it appeared because of error in the collected samples. We chose this statistics
function since we have non-normal data distribution. We used Kolmogorov-
Smirnov test to check if our data distribution is gaussian or not. We considered
a confidence level of 95% in our comparison study and this means that we can
guarantee that the differences of the compared algorithms are significant or
not with a probability of 95% or with the p-value less than 0.05.

Table 6. MOCELL vs. CMOGA for Hyper volume metric

Algorithm X Max Min Test

DFCNT.Metropolitan
MOCELL 0.9998±5.32E−04 1 0.998

-
CMOGA 0.9996±1.22E−03 1 0.996

DFCNT.Mall
MOCELL 0.9965±3.77E−03 1 0.989

-
CMOGA 0.9964±3.91E−03 1 0.99

DFCNT.Highway
MOCELL 0.9998±6.71E−04 1 0.998

-
CMOGA 0.9999±1.46E−04 1 0.999

6.3. Discussion. In this section, we made the comparison between MOCELL
and CMOGA algorithms. As previously mentioned, the results are obtained
after making 30 independent runs of every experiment for each algorithm and
the used metrics are number of non-dominated solutions found in the Pareto
Front, Hypervolum, and Set Coverage.

The obtained results are shown in tables [5], [6], and [7]. The previous
tables include x (the mean) and the standard-deviation of our results. They
also include the maximum and minimum obtained values for each metric.

In table [5], although the obtained results are not statistically significant,
we can notice that both algorithms MOCELL and CMOGA reached a high
number of Pareto Optima since the maximum number of Pareto Optima is
100 solutions. In table [6], MOCELL improves CMOGA in metropolitan, and
mall scenarios in terms of the hypervolume metric but the difference is not
statistically significant. But CMOGA improves MOCELL in the mall scenario
in terms of the hypervolume metric without statistical significance. We can
notice that both of algorithms have reached high level of Hypervolume metric
since the maximum value is 1. The result of the set coverage metric is shown in
table [7]. The MOCELL outperforms CMOGA in two of the studied problems
(metropolitan, and highway scenarios) with statistical significance in terms

22 M. GHONAMY, A. BADR, AND ABD EL FATAH HEGAZY

of the set coverage metric. In contrast to the previous scenarios, CMOGA
outperforms MOCELL in the mall scenario with statistical significant in terms
of the set coverage metric.

To sum up, there is no algorithms better than the others. But MOCELL
seems to be better than CMOGA in terms of hypervolume and set coverage.
On the other hand, CMOGA outperforms MOCELL in the case of number of
pareto optima. The differences between the two algorithms are statistically
significant for the set coverage metric. On the other hand, we did not find any
important differences in the other two metrics (number of pareto optima, and
hypervolume).

Table 7. MOCELL vs. CMOGA for Set Coverage metric

C(A,B)
A B X Max Min Test

DFCNT. MOCELL CMOGA 0.3501±9.42E−02 0.6 0.122449
+

Metropolitan CMOGA MOCELL 0.3209±8.14E−02 0.51 0.15625
DFCNT. MOCELL CMOGA 0.2841±6.91E−02 0.4848 0.16

+
Mall CMOGA MOCELL 0.3322±7.56E−02 0.51 0.175258
DFCNT. MOCELL CMOGA 0.3704±9.60E−02 0.6 0.180556

+
Highway CMOGA MOCELL 0.3577±9.88E−02 0.6071 0.113402

7. Conclusions and future works

In this paper we present the problem of optimally tuning DFCN (broad-
casting protocol) which works on MANET (Mobile Ad-hoc wireless Network),
by using MOCELL (Multi-objective optimization algorithm). DFCNT is de-
fined as a three objectives MOP, with the goals of minimizing the network
usage, maximizing network coverage and minimizing the duration of broad-
casting.

We used three different realistic scenarios. Three different instances of
MOP have been solved. They are city’s streets (DFCNT.Metropolitan), mall
center (DFCNT.mall) and Highway streets (DFCNT.Highway). we can con-
clude that solving DFCNT by MOCELL provides a Pareto front set that
consists of more than 95 points in the case of the highway scenario and more
than 99 points in the case of the other two scenarios.

In the second part of this paper, we compared our chosen algorithm MO-
CELL versus cMOGA (cellular Multi-Objective Genetic Algorithm) for the
three proposed problems. Three different metrics were used in order to com-
pare the algorithms: The number of Pareto optima, the hypervolume, and
the set coverage metrics. We observed that MOCELL seemed to be better

SOLVING OPTIMAL BROADCASTING STRATEGY IN METROPOLITAN MANETS 23

than CMOGA in terms of hypervolume and set coverage. On the other hand,
CMOGA outperformed MOCELL in the case of number of pareto optima. Al-
though the differences between the two algorithms in hypervolume and number
of pareto optima metrics are not statically significant, both of them reach a
high pareto optima result (since the maximum Pareto front is 100) and a high
hypervolume results (since the maximum value is 1.0). Regardless the hyper-
volume and the number of Pareto optima metrics, MOCELL won. From these
results, a clear conclusion can be drawn: MOCELL is a promising approach
for solving DFCNT with advantage over the existing one.

Future research is needed to tackle the MOPs with MOCELL. In addi-
tion, research that parallels MOCELL to reduce the execution time is needed
because reducing time will enable us to study other real-world scenarios that
are larger and have bigger number of devices.

References

[1] A. Pelc, Handbook of Wireless Networks and Mobile Computing, Wiley, 2002, Ch.
Broadcasting In Wireless Networks, pp. 509-528.

[2] A.J. Nebro, J.J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. A cellular genetic
algorithm for multiobjective optimization. In D.A. Pelta and N. Krasnogor, editors,
Proceedings of the NICSO, pages 25-36, Granada, Spain, 2006.

[3] A.J. Nebro, J.J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. MOCell: A cellular
genetic algorithm for multiobjective optimization. International Journal of Intelligent
Systems, 2007.

[4] B. Manderick and P. Spiessens. Fine-grained parallel genetic algorithm. In J.D. Schaf-
fer, editor, Proc. of the Third International Conference on Genetic Algorithms (ICGA),
pages 428-433. Morgan Kaufmann, 1989.

[5] C.A. Coello, D.A. Van Veldhuizen, G.B. Lamont, Evolutionary Algorithms for Solving
Multi-Objective Problems, Kluwer Academic Publishers, 2002.

[6] D. Whitley. Cellular genetic algorithms. In S. Forrest, editor, Proc. of the Fifth Inter-
national Conference on Genetic Algorithms (ICGA), page 658, California, CA, USA,
1993. Morgan Kaufmann.

[7] E. Alba and M. Tomassini. Parallelism and evolutionary algorithms. IEEE Transactions
on Evolutionary Computation, 6(5):443-462, October 2002.

[8] E. Alba, B. Dorronsoro, F. Luna, A.J. Nebro, P. Bouvry, and L. Hogie. A cellular
multi-objective genetic algorithm for optimal broadcasting strategy in metropolitan
MANETs. Computer Communications, 30(4):685-697, 2007.

[9] E. Alba, B.Dorronsoro, Handbook of Cellular Genetic Algorithms, 2008, Ch. Introduc-
tion to Cellular Genetic Algorithms, pp. 3-20.

[10] E. Alba, B.Dorronsoro, Handbook of Cellular Genetic Algorithms, 2008, Ch. Algorith-
mic and Experimental Design, pp. 73-82.

[11] E. Cantu-Paz. Efficient and Accurate Parallel Genetic Algorithms, volume 1 of Book
Series on Genetic Algorithms and Evolutionary Computation. Kluwer Academic Pub-
lishers, 2nd edition, 2000.

[12] I. Stojmenovic, J. Wu, Broadcasting and activity scheduling in ad hoc networks, in:
Mobile Ad Hoc Networking, IEEE/Wiley, 2004, pp. 205-229.

24 M. GHONAMY, A. BADR, AND ABD EL FATAH HEGAZY

[13] J. Knowles and D. Corne. Approximating the nondominated front using the Pareto
archived evolution strategy. Evolutionary Computation, 8(2):149-172, 2001.

[14] J. Wu,W. Lou, Forward-node-set-based broadcast in clustered mobile ad hoc networks,
Wirel. Commun. Mobile Comput. 3 (2) (2003) 155.

[15] K. Deb and R.B. Agrawal. Simulated binary crossover for continuous search space.
Complex Systems, 9:115-148, 1995.

[16] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,John Wiley &
Sons, London, 2001.

[17] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A Fast and Elist
Multi- objective Genetic Algorithm: NSGA-II. IEEE TEC, 6(2):182197, 2002.

[18] L. Hogie, F. Guinand, P. Bouvry, The Madhoc Metropolitan AdhocNetwork Simulator,
Universite du Luxembourg and Universite du Havre, France, available at http://www-
lih.univ-lehavre.fr/∼hogie/madhoc/.

[19] L. Hogie, M. Seredynski, F. Guinand, P. Bouvry, A bandwidthefficient broadcasting
protocol for mobile multi-hop ad hoc networks, in: ICN’06, 5th International Confer-
ence on Networking (to appear), IEEE, 2006.

[20] M. Laumanns, G. Rudolph, H.P. Schwefel, A spatial predator-prey approach to multi-
objective optimization: a preliminary study, in:PPSN V, 1998, pp. 241-249.

[21] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu. The broadcast storm problem in a
mobile ad hoc network. In Proc. of the Annual ACM/IEEE International Conference
on Mobile Computing and Networking, pages 151-162, 1999.

[22] T. Back, D.B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary Compu-
tation. Oxford University Press, 1997.

Misr University for Science and Technology, Faculty of Information Tech-
nology, Al-Motamayez District, 6th of October City, Egypt

E-mail address: MS Ghonamy@hotmail.com

Cairo University, Faculty of Computers and Information, 5 Dr. Ahmed Ze-
wail Street, Giza city, Egypt

E-mail address: a.badr@fci-cu.edu.eg

Arab Academy for Science and Technology, College of Computing & infor-
mation Technology, El Moshir Ismail Street, Misr El Gedida, Cairo, Egypt

E-mail address: abdheg@yahoo.com

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 3, 2010

ALIGNMENT OF CUSTOM STANDARDS

BY MACHINE LEARNING ALGORITHMS

ADELA SÎRBU1,2, LAURA DIOŞAN1,2,

ALEXANDRINA ROGOZAN1, AND JEAN-PIERRE PÉCUCHET1

Abstract. Building an efficient model for automatic alignment of termi-
nologies would bring a significant improvement to the information retrieval
process. We have developed and compared two machine learning based
algorithms whose aim is to align 2 custom standards built on a 3 level
taxonomy, using kNN and SVM classifiers that work on a vector represen-
tation consisting of several similarity measures. The weights utilized by
the kNN were optimized with an evolutionary algorithm, while the SVM
classifier’s hyper-parameters were optimized with a grid search algorithm.
The database used for train was semi automatically obtained by using the
Coma++ tool. The performance of our aligners is shown by the results
obtained on the test set.

1. Introduction

The need for terminology integration has been widely recognized in differ-
ent areas (economical, custom etc) leading to a number of efforts for defining
standardized and complete terminologies. It is acknowledged by literature
that the creation of a single universal terminology for a particular domain is
neither possible nor beneficial because different tasks and viewpoints require
different, often incompatible conceptual choices. Considering these aspects, an
important research direction is searching for an automatic recognition of con-
cepts with the same meaning, even though they have not the same syntactic
representation.

The main aim of our work is to design an algorithm in order to perform
alignments between two terminologies. The goal of the alignments is to put in
correspondence concepts that refer to the same thing, but which appear under
different forms. In other words, alignment problem consists in finding the

Received by the editors: July 26, 2010.
2000 Mathematics Subject Classification. 68T05, 91E45.
1998 CR Categories and Descriptors. I.2.6 [Artificial Intelligence]: Learning – Concept

learning .
Key words and phrases. Concept alignment, Machine Learning, Binary Classification,

Support Vector Machine.

25

26 A. SÎRBU, L. DIOŞAN, A. ROGOZAN, J.-P. PÉCUCHET

correspondences between the definitions of different dictionaries (standards)
that refer to the same concept. This alignment of definitions, which is one
of the goals of ASICOM project1 as well, has certainly to improve the fusion
between the business models of different companies.

In our case, the concepts we are trying to align are belonging to the cus-
tom area and they are defined in two standards: CCL08A (Centre for Trade
Facilitation and Electronic Business standard or shorter CCL) and Customs
WCO (World Customs Organization or shorter WCO). In order to automat-
ically perform this alignment, several definitions are considered from the two
dictionaries. Pairs of two definitions (that can define the same concept - and
in this case we deal with two aligned definitions - or different concepts - un-
aligned definitions in this case) are formed. Thus, the alignment problem could
be considered as a binary classification problem: the inputs of the classifier
are the pairs (of two definitions) and the outputs are the labels “aligned” or
“unaligned” corresponding to each pair.

As we have mentioned, aligning two definitions means actually to solve
a binary classification problem. Several couples of definitions, which could
be aligned or unaligned, are required, so that the classifier could learn to
discriminate correctly such relationships. In order to perform this alignment as
a classification approach, all the possible couples of definitions are considered
from the mentioned dictionaries (CCL and WCO). In this way, if a dictionary
contains n1 definitions and the other dictionary contains n2 definitions, then
we will be obtained n1 ∗ n2 couples of definitions (some of them are aligned
couples, while others are unaligned couples). Taking into account that we deal
with a classification problem, a Machine Learning algorithm could be used.

For our task of solving the terminology alignment problem two Machine
Learning based algorithms were chosen: a k Nearest Neighbour (kNN) al-
gorithm [2] and a Support Vector Machine (SVM) [22] that work by using
a particular representation based on the similarities between two definitions.
Even if the kNN is a simple and fast algorithm, it requires to establish a thresh-
old value and to specify the alignment cardinality. Therefore, we decided to
try an SVM-based approach also, since it can learn the optimal value of the
threshold and is able to produce any alignment type. Several performance
measures, borrowed from the information retrieval domain, are used in order
to evaluate the quality of the automatic produced alignments: the accuracy,
the precision, the recall and the F-measure of alignments.

The remaining of the paper is structured as follows: Section 2 gives a short
review of different alignment models, Sections 3 and 4 presents our solution to

1ASICOM – Architecture de Système d’information Interopérable pour les industries du
Commerce

ALIGNMENT OF CUSTOM STANDARDS BY ML ALGORITHMS 27

the alignment problem and several numerical results, while Section 5 concludes
the results.

2. Related work

To our knowledge, the alignment problem has been intensively studied
in order to achieve an automatic translation of terminologies, providing us
several alignment models. The alignment problem has to be considered from
two important points of view:

• the structures that must be aligned and
• the manner in which this alignment is actually performed (the match-
ing algoritm).

2.1. The structures that must be aligned. Regarding the structure of
the alignment, two important levels of a dictionary could be identified: the
sentence level and the ontology level.

2.1.1. The sentence level. The sentence level refers to the bag of words of
that dictionary, but it is actually a special bag of words where not only the
frequency of a word is important, but also other linguistic information about
these words. The richness of human language allows people to express the same
idea in many different ways; they may use different words of the same language
to refer to the same entity or employ different phrases to describe the same
concept. Furthermore, the same idea could be expressed in different languages.
Sentence-aligned bilingual corpora are a crucial resource for training statistical
machine translation systems. In this context, we discuss about multilingual
alignment. Therefore, the problem of sentence alignment for monolingual
corpora is a phenomenon distinct from alignment in parallel, but multilingual
corpora.

Monolingual alignment – Sentence-aligned bilingual corpora are a crucial
resource for training statistical machine translation systems. Several authors
have suggested that large-scale aligned monolingual corpora could by simi-
larly used to improve the performance of monolingual text-to-text rewriting
systems, for tasks including summarization [15, 16] and paraphrasing [1, 20].
Most of the work in monolingual corpus alignment is in the context of sum-
marization. In a single document summarization alignment between full doc-
uments and summaries written by human is used to learn rules from text
compression. Marcu [16] computes sentence similarity using a cosine-based
metric. Jing [15] identifies phrases that were cut and pasted together using
a Hidden Markov Model with features incorporated word identity and posi-
tioning within sentences, by providing an alignment of a document and its
summary. In the context of multi document summarization, SimFinder [13]

28 A. SÎRBU, L. DIOŞAN, A. ROGOZAN, J.-P. PÉCUCHET

identifies sentences that convey similar information across input documents to
select the summary content.

Multilingual alignment – To our knowledge, the problem of aligning sen-
tences from parallel corpora has been intensively studied for automated trans-
lation. While much of the research has focused on the unsupervised models
[3, 5, 11], a number of supervised discriminatory approaches have been re-
cently proposed for automatic alignment [4, 18, 21]. Related to the use of
linguistic information more recent work [19] shows the benefit of combining
multilevel linguistic representations (enriching query terms with their morpho-
logical variants). By coupling Natural Language Processing and Information
Retrieval (IR) the language is enriched by combining several levels of lin-
guistic information through morphological (lemma, stem), syntactic (bigrams,
trigrams) and semantic (terms and their morphological and/or semantic vari-
ants) analyses. Moreover, data fusion has been exhaustively investigated in
the literature, especially in the framework of IR [8, 19]. The difficulty is to
find a way to combine results of multiple searches conducted in parallel on
a common data set for a given query in order to obtain higher performances
than each individual search.

2.1.2. The ontology level. The ontology level is actually a generalisation of
the first level that take into account for a given dictionary not only the words
and their order in a sentence (when the words are in fact considered isolated
elements), but also the relationships (syntactic, semantic or other relationship
types) establish among the words/concepts. In other words, at this level a
concept (or its definition) could be represented as a bag of concepts (by concept
being understood the corresponding word and its relationships with other
words/concepts).

At present, there exists a line of semi-automated schema matching and
ontology integration systems, see for instance [12, 17]. Most of them imple-
ment syntactic matching. The idea of generic (syntactic) matching was first
proposed by Phil Bernstein and implemented in the Cupid system [17], but
COMA [12] is a generic schema-matching tool, which seems to be a more flexi-
ble architecture. COMA provides an extensible library of matching algorithms;
a framework for combining obtained results, and a platform for evaluating of
the effectiveness of different matchers.

2.2. Matching algorithms. We distinguish between matching algorithms at
element-level and structure-level.

The element-level matching techniques focus on the entities of a dictio-
nary (words or concepts).They compute matching elements by analyzing en-
tities in isolation, ignoring their relations with other entities: string-based
techniques (normalization techniques, substring or subsequence techniques,

ALIGNMENT OF CUSTOM STANDARDS BY ML ALGORITHMS 29

path comparison), language-based techniques (based on NLP techniques us-
ing morphological properties of the input words) – these methods may be
either intrinsic (using the internal linguistic properties of the instances, such
as morphological and syntactic properties: tokenization, elimination or filtra-
tion, lemmatization, stemming, weighting) or extrinsic (requiring the use of
external resources, e.g. lexicon-based and multilingual methods: synonymy or
semantic similarity).

The structure-level techniques focus on the structure of the ontology. It
computes mapping elements by analyzing how entities appear together in the
structure corresponding to a dictionary: graph-based techniques (graph al-
gorithms which consider the input as labelled graphs) and taxonomy-based
techniques (are also graph algorithms which consider only the specialization
relation; the intuition behind taxonomic techniques is that is-a links connect
terms that are already similar, therefore their neighbours may be also somehow
similar).

3. Alignment methods

In order to obtain an automatic alignment two methods were utilized: the
k Nearest Neighbour algorithm [2] and the Support Vector Machine [22].

3.1. k Nearest Neighbour. kNN is a method of classifying objects based on
closest training examples in a feature space. kNN is a type of instance based
learning, or lazy learning where the function is only approximated locally
and all the computation is deferred until classification. The kNN algorithm
is amongst the simplest of all machine learning algorithms and is also very
fast, two important reasons to utilize it for the alignment task. An object is
classified by a majority vote of its neighbours, with the object being assigned
to its class most common amongst its k nearest neighbours; k is a positive
integer, typical small. If k = 1, then the object is simply assigned to its
closest neighbour. In binary classification problems it’s helpful to choose k to
be an odd number as this avoids tied votes.

In our case an object corresponds to a definition (or to its representation as
bag of ”special” words at different syntactic levels). The distance between two
objects (definitions) is computed by using a similarity measure. The smallest
distance (or the largest similarity measure) between two definitions (from all
the possible combinations) will indicate that the two definitions are aligned.
The main idea of the kNN classifier in this case is to search amongst the couples
of two definitions those with similarity greater than a given threshold and to
select from the found couples the first k couples with the largest similarity.
Such algorithm is able to produce two types of alignments:

• one-to-one alignments when k = 1 or

30 A. SÎRBU, L. DIOŞAN, A. ROGOZAN, J.-P. PÉCUCHET

• one-to-many alignments when k > 1.

Even if kNN’s methodology seems to be very simple, the usage of this
algorithm in order to reach our purpose has determined several important
questions:

• Which is the optimal value for k?
• Which is the optimal value of similarity threshold?

In order to solve these problems an SVM algorithm instead of the kNN
classifier was used, since SVM can learn the optimal value for the threshold
and is able to produce any alignment type:

• one-to-one – a concept of a dictionary corresponds to one concept of
the other dictionary (equivalence relation);
• one-to-many – a concept of a dictionary corresponds to many concepts
of the other dictionary (type of relation);
• many-to-many – more concepts of a dictionary corresponds to many
concepts of the other dictionary.

3.2. Support Vector Machine. SVMs are a set of related supervised learn-
ing methods used for classification and regression. Generally, classification
is defined for the situation when there are more objects, each one belonging
to one of several classes, and a classification task would be to assign the be-
longing class to a new given object. In the case of binary classification using
SVM, being given a set of training examples, each marked as belonging to one
of two categories, an SVM training algorithm builds a model that predicts
whether a new example falls into one category or the other. An SVM model
is a representation of the examples as points in space, mapped by a kernel so
that the examples of the separate categories are divided by a clear gap that is
as wide as possible. New examples are then mapped into that same space and
predicted to belong to a category based on which side of the gap they fall on.
In our case it is a binary classification problem, if the SVM is given a pair of
definitions it will decide if they are aligned or not aligned.

An SVM algorithm has two phases: a training phase and a test phase. In
the training phase the SVM model is learned starting from labelled examples
(in our case, couples of definitions) and the hyper parameters are optimized
and in the test phase the unseen definitions couples are labelled as aligned or
unaligned.

Therefore, each data set has been divided in two: a part for training and
a part for testing. The training part has been dived again in a learning sub-
set, used by the SVM algorithm in order to find the hyper plane that makes
the class separation and a validation set, used in order to optimize the values

ALIGNMENT OF CUSTOM STANDARDS BY ML ALGORITHMS 31

of the hyper parameters. The SVM model, which is learned in this manner,
classifies (labels) the definitions couples from the test set.

4. Numerical experiments

4.1. Data representation. Our input data is represented by definitions stored
in the two dictionaries (WCO Dictionary and CCL Dictionary). These dic-
tionaries are provided by the team of ASICOM project in a form of 3 levels
taxonomies: a concept is represented by the text of the definition, the path
in the hierarchy of concepts and the father of the concept. In order to use
a Machine Learning algorithm, the natural language of definitions has to be
processed. First, each sentence was turned into a bag of words and then
followed these steps: normalisation, filtering of the stop words and lemma-
tization. Furthermore, each couple of definitions is represented by a set of
similarity measures.

4.1.1. First set of similarities. In order to perform automatic alignments us-
ing the kNN algorithm several similarities computed at different levels of the
ontology were used :

• Name: Synonyms and TriGrams similarity applied on concept;
• NameType: Name and Data Type similarity, applied on the concept;
• Path: Name similarity, applied on path of the concept in the given
ontology;
• Leaves: Name Type applied on leaves of the concept in the given
ontology;
• Children: Name Type applied on children of the concept in the given
ontology;
• Comment: TriGrams similarity, applied on comment (definition) to-
kens.

These six distances were computed using the Coma++ tool [10]. The
similarity is represented by a weighted sum of these six distances whose weights
are optimized on the training set using an evolutionary algorithm.

4.1.2. Second set of similarities. An important step in using the SVM is build-
ing the input vector. For each couple of definitions there is built a vector that
contains five similarity measures:

• the Match coefficient [7] that counts the common element for two def-
initions,
• the Dice coefficient [9] that is defined as twice the number of common
words, divided by the total number of words from two definitions,
• the Jaccard [14] coefficient, which is defined as the number of common
words, divided by the total number of words from two definitions,

32 A. SÎRBU, L. DIOŞAN, A. ROGOZAN, J.-P. PÉCUCHET

• the Overlap [6] coefficient, which is defined as the number of common
words, divided by the minimum of the number of words from two
definitions,
• the Cosine measure that is defined as cosine similarity of the prod-
uct between term frequency of a term in a definition and the inverse
definition frequency:

cosine(defi, defj) =
defi ∗ defj

||defi|| ∗ ||defj ||
.

In addition, this vector contains also the lengths of the definitions and the
label (aligned or not-aligned).

Since Match, Dice, Jaccard, Overlap similarities are based on reunion (the
total number of words from two definitions) and intersection (the common
words of two definitions) a special way of computing this reunion and inter-
section is actually used in the numerical experiments. This special computa-
tion is adapted to the bag representation (instead of set-based representation).
Considering the following definitions and the corresponding bag of words:

• defi = (a, b, b, c, c, d),
• defj = (a, a, b, b, b, c, e).

In this case:

• defi ∪ defj = (a, b, b, b, c, c, d, e),
• defi ∩ defj = (a, b, b, c)

As shown in the example, a word may appear several times in a definition
and from this reason when we calculate the cardinal of intersection of two
definitions we take the minimum occurrence of a word in the two definitions
and while on calculating reunion, the maximum occurrence.

4.2. Construction of the database. Taking into account that both Ma-
chine Learning’s algorithms require a training set and a test set, in the absence
of a human expert, a database of 180 aligned couples of definitions was semi
automatic created using the Coma++ tool [10]. Regarding the unaligned cou-
ples were selected 395 couples. The selection procedure was based on a normal
distribution of the average distance over the unaligned couples. The training
set contains 290 couples of definitions (90 aligned and 200 unaligned) and the
test set contains 285 couples of definitions (90 aligned and 195 unaligned).
This database was created by the ASICOM’s team.

4.2.1. k Nearest Neighbour. kNN receives as input the similarities between two
definitions by using the weighted sum of six similarity measures and outputs
the performed alignments. In order to select the aligned couples we identify:

• those with similarity > threshold (many-to-many alignments) and

ALIGNMENT OF CUSTOM STANDARDS BY ML ALGORITHMS 33

• the best alignment from those with similarity > threshold (one-to-
many alignments).

The threshold was fixed 0.2 (default value from Coma++). The similarity
value is represented by the weighted sum of the 6 distances presented in the
first set of similarities. The weights are optimized on the training set, then
validated on the test set by applying kNN with k=1.

4.2.2. Support Vector Machine. SVM receives as input the similarities between
two definitions and outputs the label 1 if they are aligned and 0 if they are not
aligned. The training set is built without mixing the couples of definitions, so
first in the training set are taken the couples of aligned definitions and then
the couples of unaligned definitions.

4.3. Weights and parameters’ optimization. As we have previously men-
tioned, in the first experiment using kNN algorithm, the similarity is computed
as a weighted sum of 6 distances. The weights are optimized using an evo-
lutionary approach based on F-measure of aligned couples in the following
manner: we consider a chromosome which codes the weights associated to the
six distances. Its fitness is computed basing on the training set. Each defini-
tion from the first dictionary was compared with all the definitions from the
second dictionary and was chosen the first couple with the greatest similar-
ity value. If this similarity is greater than the threshold value, the couple is
labelled as aligned, otherwise unaligned. In this manner 290 labelled couples
are obtained. The fitness of the chromosome is represented by the F-measure
of the aligned couples. The aligned couples are the ones that were considered
aligned from the comparison with the threshold value and were initially la-
belled as aligned by Coma++, too. The best weights are the ones indicated
by the chromosome with the greatest fitness value (F-measure). The best
weights are learned on the training set and tested on the test set.

In the second experiment the SVM algorithm with an RBF kernel was
used:

(1) K(x, y) = exp(−σ|x− y|2).
Cross Validation was made on the training set with different combinations

of C and σ, C in range [10−2, 103] and σ in range [2−5, 22] by using a grid
search algorithm and then the values from the combination (C and σ) with
the best performances were chosen.

4.4. Performance measures. In order to measure the quality of the align-
ments the following performance measures were used: accuracy, recall, pre-
cision and F-measure, which are calculated for the aligned class (1) and the
accuracy for both classes (1 and 0).

34 A. SÎRBU, L. DIOŞAN, A. ROGOZAN, J.-P. PÉCUCHET

• the accuracy of alignments represents the percent of correct alignments
from the total number of alignments;
• the precision of alignments represents the percent of relevant align-
ments among the proposed alignments;
• the recall of alignments represents the percent of relevant alignments
that are effectively retrieved;
• F-measure represents the weighted harmonic mean of precision and re-
call. Greater F-measure (the maximal value being 1) signifies a correct
and complete alignment.

4.5. Numerical results. In Table 1 the performances of the kNN and SVM
based aligners are presented. The SVM classifier was applied at 3 different
taxonomy levels while the kNN one utilizes a combination of them.

Table 1. The performance of the kNN and SVM-based align-
ers, using different similarity measures.

Accuracy Precision Recall F-measure

kNN 95% 87% 97% 92%
SVM on Explanation 32% 32% 100% 48%
SVM on Explanation & Path 90% 87% 81% 84%
SVM on Explanation & Path & Father 91% 87% 84% 86%

As we can notice from the results, by using the path and father of a con-
cept it is possible to improve the performance of the classification process.
The correct alignments were well recognized, but there are several not aligned
definitions labelled as aligned by the SVM leading to a low precision, caused
by: the couple type problems from our database like definitions with strong
syntactic similarity and with different meaning (e.g. Code specifying the type
of package of an item and A code specifying a type of transport means), the
general-particular problem (e.g. Means and mode of transport used for the
carriage of the goods at departure, coded and A code specifying a type of trans-
port means) or words that appear in many definitions, but having different
meaning.

The results using the kNN classifier on the definitions from this corpus are
better than the ones using SVM, but, on the other hand, the utilization of
the SVM classifier instead of the kNN one is more appropriate for solving the
definition alignment problem taking into account that it can learn the optimal
value of the threshold and it is able to produce any alignment type.

ALIGNMENT OF CUSTOM STANDARDS BY ML ALGORITHMS 35

5. Conclusions

In this paper we presented our models for the automatic alignment of two
terminologies (in fact, two real custom standards). These terminologies were
reduced to several definitions taken from two dictionaries (CCL and WCO).
The alignment issue was considered as a classification problem and solved by
using two Machine Learning algorithms: kNN and SVM.

Even if the numerical results indicate that the SVM algorithm reaches
weaker performances than the kNN method (from the F-measure performance
point of view), the SVM is more helpful in order to align the given termi-
nologies because it does not require fixing the values of the parameters. Fur-
thermore, the SVM-based approach allows providing any type of alignments
(one-to-one, one-to-many, many-to-many), which are very useful in the real
world.

Future work will be focused on experiments considering a multi class prob-
lem. In this case we will deal with more types of definition couples: couples
aligned and couples unaligned (straight unaligned, medium unaligned and
weak unaligned).

References

[1] Barzilay, R., and Elhadad, N. Sentence alignment for monolingual comparable cor-
pora. In Proceedings of the 2003 Conference on Empirical Methods in Natural Language
Processing (2003).

[2] Bremner, D., Demaine, E., Erickson, J., Iacono, J., Langerman, S., Morin,
P., and Toussaint, G. Output-sensitive algorithms for computing nearest-neighbor
decision boundaries. Discrete and Computational Geometry 4, 33 (2005), 593–604.

[3] Brown, P. F., Pietra, S. D., Pietra, V. J. D., and Mercer, R. L. The mathematic
of statistical machine translation: Parameter estimation. Computational Linguistics 19,
2 (1994), 263–311.

[4] Ceausu, A., Stefanescu, D., and Tufis, D. Acquis communautaire sentence align-
ment using Support Vector Machines. In Proceedings of the 5th LREC Conference
(2006), pp. 2134–2137.

[5] Chen, S. F. Aligning sentences in bilingual corpora using lexical information. InMeeting
of the Association for Computational Linguistics (1993), ACL, pp. 9–16.

[6] Clemons, T. E., and Bradley, E. L. A nonparametric measure of the overlapping
coefficient. Comput. Stat. Data Anal. 34 (2000), 51–61.

[7] Cormen, T., Leiserson, C., and Rivest, R. Introduction to Algorithms. MIT Press,
1990.

[8] Croft, W. B. Combining approaches to information retrieval. Springer, 2000, ch. 1,
pp. 1–36.

[9] Dice, L. Measures of the amount of ecologic association between species. Ecology 26, 3
(1945), 297–302.

[10] Do, H.-H., and Rahm, E. Coma++ (combination of schema matching approaches),
2010.

36 A. SÎRBU, L. DIOŞAN, A. ROGOZAN, J.-P. PÉCUCHET

[11] Gale, W. A., and Church, K. W. A program for aligning sentences in bilingual
corpora. In ACL (1991), MIT Press, pp. 177–184.

[12] Hai-Do, H., and Rahm, E. COMA - A system for flexible combination of schema
matching approaches. In VLDB (2002), P. A. Bernstein, Ed., Morgan Kaufmann,
pp. 610–621.

[13] Hatzivassiloglou, V., Klavans, J., and Eskin, E. Detecting text similarity over
short passages: Exploring linguistic feature combination via machine learning. In Pro-
ceedings of the joint SIGDAT Conference on EMNLP/VLC-1999 (1999).

[14] Jaccard, P. The distribution of the flora of the alpine zone. New Phytologist 11 (1912),
37–50.

[15] Jing, H. Using hidden markov modeling to decompose human-written summaries. Com-
putational Linguistics 28, 4 (2002), 527–543.

[16] Knight, K., and Marcu, D. Statistics-based summarization - step one: Sentence
compression. In AAAI/IAAI (2000), AAAI Press / The MIT Press, pp. 703–710.

[17] Madhavan, J., Bernstein, P. A., and Rahm, E. Generic schema matching with
cupid. In Proceedings of the 27th International Conference on Very Large Data
Bases(VLDB ’01) (2001), P. M. G. Apers et al., Ed., Morgan Kaufmann, pp. 49–58.

[18] Moore, R. Fast and accurate sentence alignment of bilingual corpora. In AMTA ’02
(2002), S. D. Richardson, Ed., Springer, pp. 135–144.

[19] Moreau, F., Claveau, V., and Sébillot, P. Automatic morphological query
expansion using analogy-based machine learning. In ECIR 2007 (2007), G.Amati,
C. Carpineto, and G. Romano, Eds., vol. 4425 of LNCS, Springer, pp. 222–233.

[20] Quirk, C., and Menezes, A. Dependency treelet translation: the convergence of
statistical and example-based machine-translation? Machine Translation 20, 1 (2006),
43–65.

[21] Taskar, B., Lacoste, S., and Klein, D. A discriminative matching approach to word
alignment. In HLT ’05 (2005), Association for Computational Linguistics, pp. 73–80.

[22] Vapnik, V. The Nature of Statistical Learning Theory. Springer, 1995.

1LITIS, EA - 4108, INSA, Rouen, France,

2Computer Science Department, Babeş Bolyai University, Cluj Napoca, Ro-
mania

E-mail address: adela sarbu25@yahoo.com, lauras@cs.ubbcluj.ro

E-mail address: arogozan@insa-rouen.fr, pecuchet@insa-rouen.fr

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 3, 2010

A FRAMEWORK FOR ACTIVE OBJECTS IN .NET

DAN MIRCEA SUCIU AND ALINA CUT

Abstract. Nowadays, the concern of computer science is to find new
methodologies that help decomposing large programs and run them ef-
ficiently onto new parallel machines. Thus, the popularity of concurrent
object-oriented programming has increased proportionally with the market
requirements of concurrent and distributed systems that meet simplicity,
modularity and code reusability. The purpose of this paper is to define a
class library based on Active Object pattern introduced in [3], which has a
high level of extensibility. Class library’s main objective is to help in build-
ing concurrent object-oriented applications with a minimum effort and us-
ing a significant amount of already existing code. This approach addresses
the problem of integrating concurrency with object-oriented programming
and respects the principles imposed by them. In order to present the main
features of our model a sample application is presented.

1. Introduction

An important motivation behind concurrent object-oriented programming
(COOP) is to exploit the software reuse potential of object-oriented features
in the development of concurrent systems [4]. Object-oriented programming
(OOP) and concurrent programming (CP) unification seems natural if we
think that real-world objects are indeed concurrent. On one hand, OOP has
been developed having as a model our environment (seen as a set of objects
among which several relationships exist and which communicate between them
by message transmission). On the other hand, the concurrency between ob-
jects led to the normal trend of transposing this into programming. However,
the integration of concurrency into OOP languages is not an easy task. The
concurrent features of a language may interfere with its object-oriented fea-
tures making them hard to integrate in a single language or cause many of

Received by the editors: August 6, 2010.
2000 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.3 [Software]: Software Engineering – Coding,

Tools and Techniques; D.2.7 [Software]: Software Engineering – Distribution, Maintenance
and Enhancements .

Key words and phrases. object-oriented concurrent programming, active objects.

37

38 DAN MIRCEA SUCIU AND ALINA CUT

their benefits to be lost [4]. For this reason, we should carefully choose a
proper mechanism for synchronization of concurrent objects.

Active object pattern is a high-level abstraction that simplifies CP and
works on the object level. This paradigm proposes a new style of program-
ming by decoupling method execution from method invocation in order to
simplify synchronized access to an object that resides in its own thread of
control [3]. Taking advantages of this pattern, we propose a general active
object model which combines the reusability with the elegancy of integrating
concurrency into OOP. Reusability of code is an important advantage of OOP
that simplifies the development process by reducing the design and the coding.
Later, in this paper, we present a sample that uses this specific active objects
model for generating code from scalable statecharts [6].

2. Active Object model

Active object pattern comes to simplify the synchronization access to an
object that is running in its own thread. The major difference imposed by
this pattern is that it works on the object level not on an object hierarchy like
most design patterns. This implies modeling classes as active classes with the
implication that their operations are processed asynchronously and inherently
thread-safe with respect to each other by processing at most one operation at
any given time [2].

An active object has two important particularities: it runs in its own
thread of control and the invoked methods don’t block the caller but are
executed asynchronously. Figure 1 illustrates the components of an active
object as they are presented in [3].

Figure 1. The components of the Active Object pattern [3]

A FRAMEWORK FOR ACTIVE OBJECTS IN .NET 39

We can see that an active object has two important parts according to
the visibility property. The first part, which is visible to the client, contains a
proxy which represents the public interface of an active object. It is responsible
for accepting method calls or requests from clients (other objects that use an
active object) and convert them into messages (method requests) that will be
added into a message queue. The second part will contain the components
that are hidden from the client. A scheduler is a special object which runs
in the context of the active object thread. It maintains an activation queue
with incoming messages. The scheduler, based on some criteria (the order in
which the methods are inserted into the activation queue, some guards), will
decide which message to dequeue in order to process it. After it processes
the message, the scheduler will invoke the actual methods of the servant.
The servant represents the private implementation of the active object. It
encapsulates the data and defines the behavior and the state of the active
object ([2]). In this manner, method invocation and method execution are
decoupled and concurrency between objects is introduced.

Our proposed abstraction meets the properties of active object pattern:
message-based property, asynchronous execution property and thread-safe prop-
erty. The major concern was to develop a more general active object that
allows us reuse as much code as possible and simplifies the development pro-
cess. Figure 2 presents the components of our active object model and the
relationships between them.

Figure 2. Extensible active object model

In order to obtain a model with a high extensibility we have decided to
modify the structure of active object pattern. The first step in achieving our

40 DAN MIRCEA SUCIU AND ALINA CUT

goal was to unify the proxy and the servant. In this case the servant, besides its
regular activity, will also serve as a public interface for the client. It contains
public methods that can be accessed by the clients, but these methods will
only be used to forward a request to the scheduler. In this manner, the servant
covers the behavior of a proxy presented in [3]. But, our servant also has
some private methods (corresponding to the public methods) that represent
the actual implementation of the services offered by this active object.

The second step to obtain a high extesibility was to define standard classes
for the other components proposed in active object pattern (scheduler, request,
activation queue and future) that offer us the possibility of reusing the code
as many times as we need without any modification inside those classes. Our
scheduler, as presented in figure 2, contains only four methods (three of them
are private and one is protected) plus a public constructor. Although we have
modified the structure of the scheduler to achieve our aim, it still meets all
the functionalities of a scheduler presented in [3]. The protected method Call
is the one that the servant calls each time a client makes a method call. This
call is possible because the servant is a subclass of scheduler. Otherwise, the
servant wouldn’t be able to access a protected method of scheduler. The task
of Call is to accept method calls, transform them into requests and add them,
using Enqueue, into an activation queue. It will return an object IFuture that
represents the place from where the client can read the result of his call. We
already know that a scheduler runs in the context of the active object thread.
The private method Start creates and starts the thread of the scheduler, a
thread that will always try to handle the requests from the activation queue.
HandleRequest is in fact the private method that will manage the requests.
But how can it call the actual methods of the servant and still respect the
standard that we want to obtain? Well, it uses reflection in order to call the
proper methods of the servant when it knows the names of the methods (as
strings) and the list of formal parameters.

Our proposed abstraction model takes into consideration the scenario when
a client calls a method and waits a response from that method. We have
modeled this by using future objects. A future object is a place where the
active methods put their possible results. It can be considered a rendezvous
for the caller and the active object ([2]). Once the result of a method is
computed it will be stored in a future object and the caller can access the
result from there. In the case that the caller tries to access the result before
the method has computed it, the caller automatically blocks until the result
is stored in the related future.

A FRAMEWORK FOR ACTIVE OBJECTS IN .NET 41

3. Sample - Robots Application

In order to prove the efficiency of our active object model, we developed
a sample application implementing the behavior of a robot object, which is
searching the exit of a maze using the left-hand rule. All objects (the robots
and the maze components) used in the sample application are active objects:
they have their own thread awaiting to receive and process method calls.

The robots are placed in the same table (representing the maze) and are
sharing the same tracks. An important remark is that some tracks are blocked,
meaning that there is a wall and the robot cannot access that tracks. When a
robot meets a blocked track it should bypass it taking into consideration the
left hand side rule. This rule assures that a robot tries to make left each time
it meets an obstacle (maze margins or blocked tracks).

The directions of the robot are the ones corresponding to the four cardinal
directions: south will be codified as direction 1, east will be direction 2, north
will be codified with direction 3 and west will represent direction 4. So, each
robot moves in the maze taking into consideration only these four directions.

Figure 3. Robots application class diagram

Figure 3 contains the class diagram describing the structure of classes Ro-
bot, Track and Table. All these classes are derived from Scheduler, so they
implement three distinct types of active objects. An important aspect is that
no method implemented at Scheduler class level needs to be rewritten in its
descendants. In other words, Track, Table and Robot objects are active ob-
jects (have their own execution thread, method queue and synchronization

42 DAN MIRCEA SUCIU AND ALINA CUT

protocol) without implementing any element specific to concurrent program-
ming, everything being inherited from Scheduler class. The only additions are
referring to the implementation of their particular behavior.

Figure 4. Robot class behaviour description using scalable statecharts

A robot keeps a direction and its coordinates on the table. It always
makes a move to the right when the track is trying to conquer is blocked. In
the case that a track is free then when a robot reaches it the track will become
occupied.

For situations when two robots try to reach the same track we have consid-
ered that each time a robot occupies a cell, that track will also become blocked.
From the robot point of view there is no difference between a blocked cell and
an occupied cell. Of course that an occupied track will become free as soon as
the robot leaves that track while a blocked track will remain blocked forever.
When a robot tries to walk into an occupied track its move fails. In this situ-
ation the robot will make a move to the right from its position similar to the
case in which that track is blocked.

Figure 4 shows the behavior model of robot objects defined with scalable
statecharts created using ActiveCASE tool ([5]). Moreover, ActiveCASE tool
was modified accordingly to support the proposed active object model and to
generate source code based on it.

Figure 5 shows a screen shot of the Robots application.

A FRAMEWORK FOR ACTIVE OBJECTS IN .NET 43

Figure 5. Robots application screen shot

4. Conclusions

The popularity of COOP is increasing as the concurrency is becoming a
required component of ever more types of systems. Active object pattern offers
us an elegant way of decoupling method invocation from method execution.
Based on this pattern we have obtained a more general model by trying to
reorganize the structure of a regular active object and keep the functionalities
of its components. This type of active object is characterized by a higher
extensibility and a larger amount of reusable code while meeting the base
properties of the active object pattern proposed in .

Starting from the original model of an active object presented in [3] we
have focused on developing an abstract C# library for active objects. Our aim
was to reduce the number of classes that should be implemented for an active
object, in order to simplify the work with this type of objects. For achieving
this goal we have made some modifications in the structure of active object
pattern.

Some important features of our library are:

• the concurrent programming aspects are handled exclusively at frame-
work level. All future descendant classes will take care only about logic
implementation of their behavior, without taking into account parallel
execution or synchronization of methods,
• the higher extensibility offered by the abstraction of the classes,

44 DAN MIRCEA SUCIU AND ALINA CUT

• the reusability of code possible because of the inheritance relation in-
troduced between the servant and the scheduler
• the flexibility provided by the easy adaption to the external changes
in the implementation of the services.

The features mentioned above help to reduce the effects of inheritance
anomalies that characterize COOPL, as described in [1]. We have also intro-
duced the possibility of working with guards when trying to execute a method.
A guard is a constraint that should be satisfied before its associated method
can be executed.

We have decided to demonstrate the applicability and the efficiency of our
framework by developing a sample application based on our model. The sam-
ple aplication presents the moves of some robots in a labyrinth with obstacles.

Future improvements of our library may introduce priorities at the level of
the services offered by an active object. Taking into consideration this idea, a
scheduler will execute the methods according to their priorities. This implies
an improvement at the level of the activation queue. In this manner, instead
of a simple queue a priority queue may be used.

References

[1] Jean-Pierre Briot , Akinori Yonezawa, “Inheritance and Synchronization in Concurrent
OOP”, European Conference on Object-Oriented Programming (ECOOP87), LNCS
276, pp. 3240, 1987.

[2] Tobias Gurok, “Active Objects and Futures: A Concurrency Abstraction Implemented
for C# and .NET”, Fakultat fur Elektrotechnik, Informatik und Mathematik, Univer-
sitat Paderborn, Bachelor Thesis, 2007.

[3] R. Greg Lavender, Douglas C. Schmidt, “Active Object: an object behavioral pattern
for concurrent programming”, Pattern languages of program design, Addison-Wesley
Longman Publishing Co, Boston, USA, pp. 483-499, 1996

[4] Michael Papathomas, “Concurrency Issues in Object-Oriented Programming Lan-
guages”, in Object Oriented Development, ed. D. Tsichritzis, Centre Universitaire dIn-
formatique, University of Geneva, pp. 207-245, 1989

[5] Dan Mircea Suciu, “ActiveCASE Tool for Design and Simulation of Concurrent Object-
Oriented Applications”, Studia Universitatis Babes Bolyai, Informatica, Vol. XLVI, No.
2, 2001, pp. 73-80

[6] Dan Mircea Suciu, “Reverse Engineering and Simulation of Active Objects Behav-
ior”, Knowledge Engineering, Principles and Techniques - KEPT-2009 Selected Papers,
Babes-Bolyai University of Cluj-Napoca, July 2-4 2009, pp. 283-290

Department of Computer Science, “Babeş-Bolyai” University, 1 M. Kogălniceanu
St., RO-400084 Cluj-Napoca, Romania

E-mail address: tzutzu@cs.ubbcluj.ro, alina cut@yahoo.com

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 3, 2010

TEACHING MODEL CHECKING TO UNDERGRADUATES

A.VESCAN AND M. FRENŢIU

Abstract. The way program verification is taught in our faculty is firstly
described. One of the verification methods is model checking, shortly pre-
sented to the students in one lecture. One laboratory project consists in
using the SPIN tool. The difficulties encountered by students with this
project are presented in this paper.

1. Introduction

The need for more reliable software [1, 9, 16, 6], and the role of Formal
Methods [9, 3, 14, 19, 7] are well known. During the last two decades, re-
search in formal methods has led to the development of some very promising
techniques that facilitate the early detection of defects. These techniques are
accompanied by powerful software tools that can be used to automate various
verification steps. Investigations have shown that formal verification proce-
dures would have revealed the exposed defect in, e. g., the Ariane-5 missile,
Mars Pathfinder, Intel’s Pentium II processor, or the Therac-25 therapy radi-
ation machine [4].

Today, the computers are used in all fields of human activities. More and
more programs are needed, and software critical systems require error-free
programming [1].

If we want to build software of good quality, to increase its reliability, we
have to contribute to better education of human resources. It is considered
that the main barrier against the usage of Formal Methods is the lack of good
professionals, able to use such methods.

Each university must educate better software engineers capable to use the
newest methods, which increase the quality of software products and improves
the software processes. In this direction, one of the important subject that
must be taught to undergraduates is Verification and Validation.

Received by the editors: July 18,2010.
2010 Mathematics Subject Classification. 68Q60, 68N30.
1998 CR Categories and Descriptors. D.2.4 [Software]: Software engineering – Soft-

ware/Program Verification; D.2.5 [Software]: Software engineering – Testing and Debug-
ging .

Key words and phrases. verification and validation, model checking, tools, education.

45

46 A.VESCAN AND M. FRENŢIU

2. The role of Verification and Validation (V&V)

One means to Software Quality Assurance is V&V. The course V&V is one
of the important courses that contributes to obtain well-educated practition-
ers. We teach such a course to the third year undergraduates. The theoretical
basis for building reliable software products is given here. The course consists
of three main parts:

• the theory of program correctness;
• the methods of verification and validation;
• the consequences on software engineering practice.

The entire curricula of this course, and also, the undergraduate study
program may be seen at [20].

One cannot understand V&V if he does not know the concept of program
correctness. The first part of the course presents this concept and gives meth-
ods to prove correctness. More important, the accent is put on the methods
to achieve this correctness.

The methods discussed in the second part are: proving correctness, testing,
inspection, symbolic execution, and model checking. It is underlined that all
of them must be practiced during the software process [8]. Their usage may
be informal, or more formal, complete or only some of them, depending on
the type of the system which is built. For safety-critical systems all of the
above mentioned methods must be used. We consider that all future software
engineers should be aware of all verification methods.

The third part of the course presents the Cleanroom methodology [17],
the role of V&V for Software Quality Assurance and Software Process Im-
provement, and the consequences of correctness theory on software engineering
practice [5, 6, 8].

At the undergraduate level we cannot afford to teach the mathematical
basis of model checking, the theory that lies at the basis of model checking
theory. Instead, the main theoretical aspects are presented in a two hours
lecture, and the existence of tools and examples of such tools are shortly
presented.

Model checking [12] is a verification technique that explores all possible
system states in a brute-force manner. In this way, it can be shown that a
given system model truly satisfies a certain property. The property specifica-
tion prescribes what the system should do, or what it should not do, whereas
the model description addresses how the system behaves. The model checker
examines all relevant system states to check whether they satisfy the desired
property. To make a rigorous verification possible, properties should be de-
scribed in a precise and unambiguous manner. A temporal logic, which is a
form of modal logic that is appropriate to specify relevant properties, is used

TEACHING MODEL CHECKING TO UNDERGRADUATES 47

as a property specification language. In term of mathematical logic, one checks
that the system description is a model of a temporal logic formula. Temporal
logic is basically an extension of traditional propositional logic with operators
that refer to the behavior of systems over time. It allows for the specification of
a broad range of relevant system properties [12] such as functional correctness
(does the system do what it is supposed to do?), reachability (is it possible to
end up in a deadlock state?), safety (“something bad never happens”), liveness
(“something good will eventually happen”), fairness (does, under certain con-
ditions, an event occur repeatedly?), and real-time properties (is the system
acting in time?). Also, model checking may be used to check the conformance
of design with the requirements [2].

Teaching model checking to undergraduates was already proposed by oth-
ers [13, 18]. The undergraduate curricula cannot contain an entire course
about model checking, but we consider that it is an important verification
method and must be present in such a course.

3. Problems with teaching model checking

As a laboratory project one tool was presented to the students and this
tool was Spin [10].

The language Promela was presented and introduced to students during
the first part of the laboratory. Several examples [15] were presented and
explained to better understand the syntax of the language but more than
that, the semantics of the structures were also explained. The non deter-
minacy was explained by using several examples. The notion of a process
in Promela was presented and discussed. The concurrency, interference and
interleaving between processes were described. The students played with the
provided examples [15] and experienced the concurrency and interleaving. Sev-
eral ways/methods for deterministic steps/atomic executions of statements of
different processes were explained. So, one of the difficulties encountered with
teaching model checking was the unfamiliarity with concurrent systems.

The structure of the laboratory consisting in model checking may be found
here [21]. The laboratory consists in two hours and for the assignment the
students had two problems: in class assignment problem and homework as-
signment problem.

The properties to be checked were first expressed using assertions. As in
class assignment the students had to implement in Promela a process to com-
pute a given value and then to use assertions to establish the correctness of
the computation. They also had to use assertions to express preconditions and
postconditions. The majority of them were able to work alone, without any
additional help. This was a simple exercise to help student create a process

48 A.VESCAN AND M. FRENŢIU

and use assertions for correctness, and also to prepare them for the homework
assignment problem. They have already used assertions (preconditions, post-
conditions, invariants) in a previous laboratory [21] when they use ESCJAVA
and JML [11].

Another problem faced by some of the students was to make them model
a system in class, immediately after the presentation of similar examples.
Obviously, they need more time to process and understand modeling using
Promela and thinking about verification of a system/model using a model
checker.

For the second part of the class we have discussed the use of LTL formula
to express the properties that the model should have. They have run the
prepared examples [15]: about critical section in two processes, about deadlock
and starvation. They have used LTL formula to express these properties and
used the JSpin tool to verify them. During the use of JSpin tool with LTL
formula the students were very enthusiastic about the “power” of the tool,
especially about the checking process.

For homework assignment they have received the following problem: Con-
sider the frog pond shown in Figure 1. Three female frogs are on the three
stones on the left and three male frogs are on the three stones on the right.
Find a way to exchange the positions of the male and female frogs, so that
the male frogs are all on the left and the females are all on the right. The
constraints that your solution must satisfy are as follows: frogs can only jump
in the direction they are facing. They can either jump one rock forward if the
next rock is empty or they can jump over a frog if the next rock has a frog on
it and the rock after it is empty. Model the above system using a Spin model,
and show that it is possible to reach the desired end state.

Figure 1. The Frog Pond Puzzle

The students played the game and tried to find a solution using [22]. Some
of them found the solutin quickly and were able to sketch an algorithm for the
solution.

Only a few of the students were able to model the system and check for
solution, some of them used assertions and others used a LTL formula. Only a
few of them understood that the property is checked in all states of the system
model. They were very satisfied about the outcome of their finding.

TEACHING MODEL CHECKING TO UNDERGRADUATES 49

Other students didn’t understand correctly what they should do and they
modeled the solution of the problem and not the system and the rules. They
were very excited that the JSpin model checker always “gave” them the solu-
tion, and each time they run (randomly execution) the created processes they
reached the solution!

Other students found the solution of the problem in the JSpin example
directory but when asked about the model, the way that the model should
be used in JSpin, they didn’t know what to answer. They were not able to
explain (even explained during the previous laboratory) how the model is used
and how the model checker verify the LTL formula.

4. Conclusions

Verification by Model Checking had motivated the students, although they
met the above difficulties. Since the allocated time for this subject was small,
the examples were small and they could be considered as toys examples. Nev-
ertheless, they offer to the students the possibility to acquire this new method
of verification. They saw that Model Checking is a good mean to catch errors
earlier in the model, to eliminate the rework, and to improve the quality of
the product and the software process.

Nevertheless, we can improve this part of the course by choosing more
suitable examples and give them to the students as homework projects.

Also, we must insist on improving the (first) model chosen by students.
And, as well, we must insist that the students should pay attention to a broadly
verification of a system, at least in the following three directions:

• to use all verification methods;
• to carefully design the testing cases according to the chosen criteria;
• to verify the robustness of the system.

References

[1] R. W. Butler, S. C. Johnson, Formal Methods for Life-Critical Software, in Computing
in Aerospace 9 Conference, San Diego, California, 1993, pp. 319–329.

[2] M. Chechik, J. Gannon, Automating Analysis of Consistency between Requirements and
Designs, IEEE Transactions on Software Engineering, 27(2001), no.7, pp.1–21.

[3] E. M. Clarke, J.M. Wing, Formal Methods: State of the Art and Future Directions, ACM
Computing Surveys, 28 (1996), no. 4, pp. 626–643.

[4] N. Dershowitz, Software Horror Stories, www.cs.tau.ac.il/~nachumd/horror.html.
[5] M. Frentiu, On Program Correctness and Teaching Programming , Computer Science

Journal of Moldova, 5(1997), no.3, pp. 250–260.
[6] M. Frentiu, Correctness, a very important quality factor in programming , Studia Univ.

“Babe-Bolyai”, Seria Informatica, L(2005), no.1, pp. 12–21.
[7] M. Frentiu, The Need to Teach Formal Methods, Analele Universităţii Bucureşti, LV,

2006.

50 A.VESCAN AND M. FRENŢIU

[8] M. Frentiu, Verificarea si Validarea Sistemelor , Ed. Presa Universitara Clujeana, Cluj-
Napoca, 2010, pp. 232, ISBN 978-973-610-979-9.

[9] C. M. Holloway, Why Engineers Should Consider Formal Methods, in 16th AIAA/IEEE
Digital Avionics Systems Conference, Volume 1, 1997, pp. 1.3-16 – 1.3-22.

[10] G. J. Holzman, The Model Checker SPIN , IEEE Transactions on Software Engineering,
23(1997), no.5, pp. 279-295.

[11] JML, Java Modeling Language Home Page, http://www.eecs.ucf.edu/~leavens/JML/
[12] J. P. Katoen, Principles of Model Checking , MIT Press, 2008, pp. 995.
[13] H. Liu, D.P. Gluch, A proposal for introducing model checking into an undergraduate

software engineering curriculum, Journal of Computing Sciences in Colleges, 18(2002),
no. 2, pp.259–270.

[14] M. J. Lutz, Alloy, Software Engineering, and Undergraduate Education, in First Alloy
Workshop, colocated with the Fourteenth ACM SIGSOFT Symposium on Foundations
of Software Engineering, Portland, 2006, pp. 96–97.

[15] B. R. Mordechai, Principles of the Spin Model Checker , ISBN: 978-1-84628-769-5, 2008,
pp. 216.

[16] B. Meyer,Software Engineering in the Academy, IEEE Computer, 34 (2001), pp. 28–35.
[17] H. Mills, M. Dyer, R.Linger, Cleanroom Software Engineering , IEEE Software, 4(1987),

no.5, pp.19–25.
[18] H. Nishihara, K. Shinozaki, K. Hayamizu, T. Aoki, K. Taguchi, F. Kumeno, Model

Checking education for Software Engineering in Japan, ACM SIGCSE Bulletin - COL-
UMN: Special section on formal methods education and training, 41(2009), no. 2, pp.
45–50.

[19] L. Yilmaz, S. Wang, Integrating Model-Based Verification into Software Design Educa-
tion, Journal of STEM Education, vol.6 (2005), no.3–4, pp.29–34.

[20] Undergraduate study program - Babes-Bolyai University, www.cs.ubbcluj.ro
[21] A. Vescan, Software Systems Verification and Validation - course, seminar, laboratory

- http://www.cs.ubbcluj.ro/~avescan/
[22] The Frog Pond Puzzle, http://www.hellam.net/maths2000/frogs.html

Department of Computer Science, Faculty of Mathematics and Computer
Science,, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: {avescan,mfrentiu}@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 3, 2010

CURRENT EXTENSIONS ON PULSE

SANDA DRAGOS

Abstract. Using a learning management system (LMS) is a common
practise nowadays. Such instruments are used in educational institutions
to enhance and support the teaching act as well as in industry for train-
ing purposes. In a computer science department of an university such
instrument tends to be a basic requirement. That is because not only it
allows a better management of courses and a better communication be-
tween students and professors, but can also serve as a perfect instrument
for presenting teaching related materials for computer science subjects.

During the years I have created and used several such instruments: a
System with Interactive ackNowledgement and Evaluation of students
work during laboratory sessions (SINE) [8, 9], a Php Utility used in
Laboratories for Student Evaluation (PULSE) [6], and PULSE Extended [7].
The aim of this paper is to present the current enhancements of PULSE.

1. Introduction

Most learning management systems [1, 2, 5, 10, 11, 13] come as a substi-
tute of a human tutor being very well suited for individual study and on-line
auto-evaluation based on test-quizzes. Within laboratory sessions, however,
the work is more consistent and aims a complex comprehension of new con-
cepts. The evaluation aims to quantify the level of understanding gained by
a student as a result of solving the assigned problem. Thus, the evaluation
cannot be done on-line but as a discussion with each student, during which
the misunderstood or unacknowledged concepts can still be clarified. Thus
our systems comes as a complementary tool to the tutor’s work.

There is a large number (both open source and commercial) of learn-
ing management systems (LMSs). A comprehensive list of them is presented
in [10].

Received by the editors: August 6, 2010.
2010 Mathematics Subject Classification. 68N99, 68P30.
1998 CR Categories and Descriptors. K.3.1 [Computing Milieux]: Computer and Edu-

cation – Computer Uses in Education; H.3.5 [Information Systems]: Information Storage
and Retrieval – On-line Information Services.

Key words and phrases. Learning Management Systems, Web Programming.

51

52 SANDA DRAGOS

Most open source LMSs are web-based, multi-language, cross-platform
applications which support learning content management and tools for col-
laboration, communication, evaluation and assessment. Amongst them are
OLAT (Online Learning And Training) [13] which is a Java-based component
oriented application developed by the University of Zurich; Dokeos [5] which
is based on per group management; and ILIAS [12] which is a complex LMS
with multiple features: personal desktop, course management, cooperation
(group management, file sharing), communication (internal messages, chat,
forum, podcasting), test/assessment (quizzes), evaluation (survey, reporting
and analysis) and administration.

Examples of commercial LMSs are Apex Learning [1], which offers courses
in mathematics, science, English studies, social studies, foreign languages (e.g.
French, Spanish), and Advanced Placement; Blackboard [2], which is mainly
focused on academic e-learning; and CLIX [11], which offers different packages
for enterprizes, universities and schools.

All these LMSs are complex applications which contain many features,
some of which (e.g. work sharing) do not serve our purpose.

Similar applications to the one described in this paper and to its pre-
decessors1 have been developed and are used in our department. One such
application is called Assignment Management System (AMS) [3, 4].

2. Background

SINE (a System with Interactive ackNowledgement and Evaluation of stu-
dents work during laboratory sessions) [8, 9] was my previous instrument cre-
ated for acknowledging and evaluating student work during laboratory ses-
sions. It was a Linux-based instrument that recorded all e-mails sent by stu-
dents (using procmail) and sending back automatic notification e-mails and
changing correspondingly a web interface. Private information such as marks,
observations and access to assignment sources were restricted by one password
(the tutor’s password).

This instrument was used, between 2005 and 2006, for four academic
semesters during Operating Systems2 and Computer Architecture3 laborato-
ries, at the Faculty of Mathematics and Computer Science of “Babes-Bolyai”
University, Cluj-Napoca, Romania.

PULSE (a Php Utility used in Laboratories for Student Evaluation) [6]
was the next instrument that replaced SINE. Its main feature consist in per

1The predecessors of the application described in this paper are presented in Section 2.
2The number of students that used SINE between 2005 and 2006 during Operating Systems

laboratories were around 220.
3Around 80 students used SINE between 2005 and 2006 during Computer Architecture

laboratories.

CURRENT EXTENSIONS ON PULSE 53

user authentication. The student interface was the main focus of this first
version of PULSE, offering details such as: marks, attendances, assignments,
theoretical support for new concepts and applicability examples. Tutors in-
terface was the list of students with their marks, attendances and final marks.
These lists could be sorted alphabetically, by the average of laboratory marks,
by marks of practical exam or by final mark. The tutor’s web interface still
lacked the administrative part of marking attendances and assignments, which
were done by Linux shell scripts.

PULSE was successfully used, between 2007 and 2008, for three academic
semesters during Operating Systems4, Collective Programming5 and Computer
Architecture6 laboratories and seminars, at the Faculty of Mathematics and
Computer Science of “Babes-Bolyai” University, Cluj-Napoca, Romania.

PULSE extended [7] came as an “extension” to the first version of PULSE,
focusing on the administrative part of it. Thus, the admin interface contains
now a form that allows marking assignment solutions, and another form for
marking student attendances to a laboratory session. It also allows creating
custom average mark calculation and the input of final exam marks. All these
are used in the automatic computation of the final mark. The admin can also
post announcements/news in a RSS format in English and/or in Romanian.

Some improvements were done in the student interface as well. Bread-
crumbs were added for better navigation. More details are presented in as-
signment and laboratory session. News are managed as RSS 2.0 feeds which
can be accessed by all PULSE actors by viewing them within the PULSE
environment, or subscribing to them by using any convenient reader.

This new version of PULSE was used between 2008 and 2009 during Web
Programming7 and Operating Systems8 laboratories, seminars and lectures, at
the Faculty of Mathematics and Computer Science of “Babes-Bolyai” Univer-
sity, Cluj-Napoca, Romania.

This paper presents the new improvements to this instrument (that we
continue to call PULSE) which were made in the course of the last academic
year (i.e., 2009-2010).

4The number of students that used PULSE between 2007 and 2008 during Operating
Systems laboratories were around 60.

5A subgroup (i.e., around 15 students) used PULSE between 2007 and 2008 during Col-
lective Programming laboratories.

6Around 60 students used PULSE between 2007 and 2008 during Computer Architecture
laboratories and seminars.

7The number of students that used PULSE extended between 2008 and 2009 during Web
Programming laboratories were around 80.

8Both sections of Mathematics and Computer Science and Applied Mathematics (i.e.,
around 60 students) used PULSE extended between 2008 and 2009 for Operating Systems
laboratories, seminars and lectures.

54 SANDA DRAGOS

3. New improvements on PULSE

Along with the new layout and the new graphical design, PULSE got
improved on all three interfaces corresponding to the tree types of actors. As
in the previous versions, there are three types of actors using PULSE:

Students to attend the lab: They are the students that are assigned
to attend the specific lecture, seminar and/or laboratory.

Tutors: Persons that are related to that specific lecture, seminar and/or
laboratory but they are not students or the lecturer and/or the lab
instructor

The admin: Is the lecturer and/or the lab instructor, or the person
conducting the lecture, seminar and/or laboratory.

3.1. The student interface of PULSE. As depicted in Figure 1, the new
layout of PULSE is more compact in design than the previous versions being
better viewed on any web browser and any devices from a desktop computer
to a mobile device such as a smartphone or tablet PC.

This new layout also contains a 2-layer menu. The first entry on the
menu is a shortcut to the student information (e.g., marks, assignments, at-
tendances). The second entry groups the additional information regarding the
current subject. The current subject can be changed by using the next entry
of the main menu. The forth entry contains specific information regarding
that student. The last two entries are a link to the parent page and the logout
button.

The new additions in the student interface, highlighted in Figure 1, are:

• Lectures. The second entry on the first submenu leads to a page that
contains information and theoretical support for all lectures (held or
to be held).

• Subject change. The third entry in the main menu contains a sub-
menu automatically generated by the system which contains all sub-
jects that the current student attended. After selecting one of the
academic years, this submenu expands with the actual subjects stud-
ied by him/her that year. Selecting one of those subjects results in
accessing the information related only to that specific year/subject.

• Lecture papers. The last entry in the last submenu leads to a page con-
taining information about the test papers given during lecture sessions.

Part of the “Lecture” page is presented in Figure 2 and contains in this
case the theoretical support for that lecture:

(1) the slides that can be viewed as a .pdf file;
(2) the slides that can be viewed as a webpage;

CURRENT EXTENSIONS ON PULSE 55

Figure 1. The student interface of PULSE

(3) another link that leads to a webpage containing lecture paper require-
ments and solutions if any such test was given during that lecture.

The “Lecture paper” page is a webpage containing information about lec-
ture papers results/marks for the current student. First, there are presented
general information regarding all given lecture papers, such as:

• the number of lecture papers that were given up to this moment,
• the number of lecture papers that were taken by the current student,
• the average mark obtained by the student,

56 SANDA DRAGOS

Figure 2. The page containing information about lectures

• how this can help him to the final mark.

Next, for each lecture paper, the student is presented with more informa-
tion:

• the date in which the lecture paper was given;
• a link to the webpage containing lecture paper requirements and solu-

tions;
• his/her mark, or the message “You did not take this lecture paper!” if

no mark exists;
• a graphical distribution9 of marks obtained by students which took the

lecture paper.

The graphical distribution of marks helps the student to observe were
he/she stands in the case in which he/she took the lecture paper. Otherwise,
he/she can see how the other students were able to solve the issues that they
were presented with.

3.2. The tutor interface of PULSE. Figure 3 presents the menu in the
tutor interface of PULSE. The main additions here are somehow similar to the
ones in the student interface: the lecture button, the capability of changing
the subject tutored by the logged-in person, and a “list” of lecture papers.

Figure 3. The menu in the tutor interface of PULSE

9This graphical distribution is similar with the one presented at the bottom of Figure 4.

CURRENT EXTENSIONS ON PULSE 57

The most important improvement here is the page containing the list of
lecture papers as presented in Figure 4.

Figure 4. Sections from the webpage containing details about
the lecture papers

The first element on this webpage is a table containing all the students that
took at least one lecture paper. The information in the columns of this table
are: the group, the name of the student, the mark for each10 lecture paper
given by that student, the number of lecture papers taken by the student, the
average mark, and the points for final mark. The last two lines on this table
contain:

• the number of students that took at least one lecture paper and the
number of all students registered for the current subject,

• the number of students and the average mark for each lecture paper,
• the average number of lecture papers taken per student,
• the average of students average marks,
• and the average of the points obtained.

Then, for each lecture paper, there is presented the same graphical distribution
of marks obtained by students which took the lecture paper as in the student
case, and the list of students that took that lecture paper along with their
marks.

10There is a column for each lecture paper. Each cell of those columns contains the
corresponding mark.

58 SANDA DRAGOS

3.3. The admin interface of PULSE. The admin interface of PULSE con-
tains all the information in the tutor interface. In addition it also contains
the administrative capabilities. As shown in Figure 5, the main difference
from the two previous interface is the “Add Assignments” entry from the last
submenu.

Figure 5. The menu in the admin interface of PULSE

In each laboratory session a new concept can be introduced. In order to
assimilate the new concepts, students are given assignments. Each concept
has a pool of assignments from which one (or more) are randomly chosen for
each student. The pool of assignments for each new concept are stored in
distinct XML files. PULSE detects the existence of such file and creates the
page presented in Figure 6, where are listed all laboratory sessions along with
the new concepts they introduce and the number of assignments existing in
the pool for that concept.

The penultimate column of the table presented here contains the number of
students to which an assignment was already assigned. The actual assignment
is performed when there is a pool of assignments11 and not all student are as-
signed with one12. In this situation the last column contains a ‘+’ sign. If this
sign is selected the students that do not have an assignment are automatically
assigned a randomly chosen one from the pool.

The content in the previous two columns can also be selected if that num-
ber is greater than zero. The links in the “Assig” column lead to webpages that
contain corresponding assignment pools (i.e., the requirements). The links in
the penultimate column lead to webpages that present the actual assignments
of elements from the corresponding pool to each student.

11If the number in the “Assig” column is greater than zero.
12This is the case when the number in the penultimate column is less than the total number

of students registered for the current subject. The total number of students registered for
the current subject is presented in the table head of this column.

CURRENT EXTENSIONS ON PULSE 59

Figure 6. Add assignments in the admin interface

3.4. The feedback interface of PULSE. Another new element in PULSE is
its feedback interface which can be accessed before and/or after login. General
or specific information about PULSE can be inserted here.

General information refers to the level of satisfaction that PULSE offers
to its users, while specific information refers to the notification of a bug, ob-
servations regarding the content of the site, suggestions, and so on. Sending
the feedback generates an e-mail that is sent to the administrator while also
retaining that information in a database for further processing.

4. Conclusions

The current version of PULSE as well as its predecessors are created with
the aim to support any professor that uses them to provide high quality educa-
tion for a large number of students13 in a field of rapid changes and practical
aspects. Therefore these instruments were successfully used but constantly
monitored and adapted to the needs of their users.

13“Babes-Bolyai” University (BBU) is offering more that hundred majors and has a stu-
dent population of over 50 000.

60 SANDA DRAGOS

The future work on PULSE consists in extending its capabilities by im-
plementing an editor for new concepts and editing and running test-quizzes.
Moreover, due to the fact that we used in parallel more such applications (e.g.,
PULSE and AMS) in our department, a new such instrument is developed.
It is built by students and professors and intends to have all advantages of
existing tools.

acknowledgement

This material is partially supported by the Romanian National University
Research Council under award PN-II IDEI 2412/2009.

References

[1] Apex Learning . http://www.apexlearning.com/, 2007.
[2] Blackboard. http://www.blackboard.com/, 2007.
[3] Florian Mircea Boian, Rares Boian, and Alexandru Vancea. AMS: An Assignment Man-

agement System for Professors and Students. In The Symposium ”Colocviul Academic
Clujean de Informatică”, pages 137–142, Cluj, Romania, 2006.

[4] Florian Mircea Boian, Rares Boian, Alexandru Vancea, and Horia F. Pop. Distance
Learning and Supporting Tools at Babes-Bolyai University. In International Confer-
ence on Informatics Education Europe II (IEEII), pages 332–340, Thesaloniki, Greece,
November 2007.

[5] Dokeos. Dokeos Open Source e-Learning . http://www.dokeos.com/, May 2007.
[6] Sanda Dragos. PULSE - a PHP Utility used in Laboratories for Student Evaluation. In

International Conference on Informatics Education Europe II (IEEII), pages 306–314,
Thessaloniki, Greece, November 2007.

[7] Sanda Dragos. PULSE Extended. In The Fourth International Conference on Internet
and Web Applications and Services, pages 510–515, Venice/Mestre, Italy, May 2009.
IEEE Computer Society.

[8] Sanda Dragos and Radu Dragos. SINE - Sistem Informatic de Notare si Evaluare a
Activitatii de Laborator. In Conferinta Nationala Didactica Matematicii, pages 11–21,
Oradea, Romania, May 2006.

[9] Sanda Dragos and Radu Dragos. SINE - a System with Interactive ackNowledgement
and Evaluation of students work during laboratory sessions. Didactica Mathematica,
25(1):31–39, 2007.

[10] Elearning India. Learning Management Systems - LMS. http://elearning-
india.com/content/blogcategory/19/38/, 2006.

[11] IMC AG. eLearning Suite CLIX. http://www.im-c.de/Products/eLearning-Suite/,
2007.

[12] University of Cologne. ILIAS Learning Management. http://www.ilias.de/, August
2007.

[13] University of Zurich in association with the community. OLAT - Open Source LMS.
http://www.olat.org/website/en/html/index.html, May 2007.

Babeş-Bolyai University, Department of Computer Science, 1, M. Kogălniceanu
Street, Cluj-Napoca, Romania

E-mail address: sanda@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 3, 2010

TOWARDS IMPROVING THE STATIC SEMANTICS OF

XCORE

VLADIELA PETRAŞCU AND DAN CHIOREAN

Abstract. Throughout this paper, we analyse the state of facts concern-
ing the static semantics of the XCore meta-metamodel and we propose
improvements in formalizing it.

1. Introduction

Nowadays, the model-driven techniques in their various flavors (Model
Driven Architecture (MDA) [8], Model Driven Engineering (MDE) [11], Lan-
guage Driven Development (LDD) [5]) promise to revolutionize software devel-
opment, by automating a major part of the process. Metamodeling languages
stand at the core of this novel paradigm. Therefore, a complete and formal
definition of these languages (including their abstract syntax, concrete syntax,
and semantics) is vital to the success of the model-driven approach.

However, a study that we have carried out on three of the best known
meta-metamodels, namely MOF (Meta Object Facility) [7], Ecore [12], and
XCore [5], has revealed that the problem of formalizing the static semantics of
these languages is far from being a solved issue. Within this paper, we focus
on the state of facts regarding the XCore meta-metamodel and we propose
improvements in defining its static semantics.

The rest of the paper is organized as follows. Section 2 provides some
background on (meta)modeling and identifies the key requirements in defin-
ing the static semantics of a (meta)modeling language. A brief overview of

Received by the editors: August 5, 2010.
2000 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.4 [SOFTWARE ENGINEERING]: Soft-

ware/Program Verification – Programming by contract, Class invariants, Validation; D.2.11
[SOFTWARE ENGINEERING]: Software Architectures – Languages (e.g., description,
interconnection, definition) .

Key words and phrases. metamodeling, XCore, static semantics, Well Formedness Rules
(WFRs).

61

62 VLADIELA PETRAŞCU AND DAN CHIOREAN

XCore, the current approach in describing its static semantics, as well as de-
tails regarding our contribution are given in Section 3. The paper ends with
conclusions in Section 4.

2. Backgound on (meta)modeling

Similar to any other language, a modeling language can be defined as a
3-tuple of the form (abstract syntax, concrete syntax, semantics) [5]. The
abstract syntax defines the vocabulary of concepts employed by the language,
together with their structural inter-relationships. It has been traditionally
given in terms of a class model - called the metamodel1, which can be visualized
by means of class diagrams. Defining a metamodel is an analogous process to
defining the BNF (Backus-Naur Form) grammar of a programming language.
Moreover, similar to an ordinary context free grammar which is unable to
capture static semantics’ rules concerning typing or scoping, the graphical
class diagram notation lacks the expressive power needed to lay down complex
constraints that rule out illegal combinations of concepts in the language.
Such constraints, known as Well Formedness Rules (WFRs) define the static
semantics of a modeling language. They are usually formalized as invariants
on the metamodel, using OCL [9] or an OCL dialect.

As they complement the class diagram descriptions, the major value of
WFRs resides in the fact that they ensure a better understanding of the mod-
eling concepts’ semantics. The existence of an informal (natural language)
equivalent of each WFR is mandatory in this respect. Regarding the for-
mal specification, its role is twofold. On the one side, it increases rigor and
helps preventing potential ambiguities. On the other side, it lays the basis of
automatic model validation. Assuming that the language is tool-supported,
the formalized WFRs allow checking whether models are correct/compilable
or not with respect to their representation language. No model transforma-
tion task, such as code generation or XMI serialization, should be allowed on
non-compilable models.

The arguments above are even stronger when the language is a metamodel-
ing language. Metamodeling languages are the “languages used to define other
languages”. They stand at the top of the metamodeling architectures proposed
by all model-driven approaches. In case of a metamodeling language, its ab-
stract syntax is represented by means of a meta-metamodel (a model which is
its own metamodel). Having its static semantics appropriately specified (by
means of explicit and formal WFRs associated to the meta-metamodel) is thus

1Here, we use the term metamodel in its general acceptance, as denoting the abstract
syntax model. According to the LDD vision however, a metamodel should capture the
entire model of a language, covering also its concrete syntax and semantics.

TOWARDS IMPROVING THE STATIC SEMANTICS OF XCORE 63

highly important, since it enables checking the compilability of all metamodels
instantiating it.

The research carried on the three previously metioned meta-metamodels
has allowed us to identify the following general requirements in defining the
static semantics of a metamodeling language:

• All WFRs should be stated in both an informal (human-understandable)
and formal (machine-readable) style. The informal specification should
come prior to the formal one and be as detailed and precise as possible.
• Each informal definition of a WFR should be accompanied by mean-
ingful model test cases, promoting a test-driven WFR specification
style.
• The formal specifications should be stated in a manner that allows
getting the maximum amount of useful debugging hints in case of as-
sertion failures (specifications should be testing-oriented). The use of
OCL specification patterns, as proposed in [4], is highly recommended.
• The OCL specification style should ensure identical WFRs’ evaluation
results after translation in a programming language.

3. XCore static semantics

XCore is the bootstraping kernel of XMF (eXecutable Metamodeling Facil-
ity) [1, 5], a MOF-like metamodeling facility focused on capturing all aspects
of a language definition - abstract syntax, concrete syntax and semantics.
Unlike MOF though, XMF is completely self-defined and provides platform-
independent executability support by means of an executable OCL dialect
named XOCL.

3.1. State of facts. The official XMF reference [5] acknowledges the value
of WFRs and promotes their use in defining the abstract syntax of model-
ing languages. Still, the document does not describe (neither informally, nor
formally) any WFR for the XCore meta-metamodel. As regarding the XMF
implementation, this does only include two explicit XOCL constraints, spec-
ified in the context of the Element and Object classes, respectively. Apart
from these, there seems to be also a number of other constraints which are
only inferable from the XOCL code corresponding to the XCore modifiers.

The XMF approach, that omits the explicit definition of WFRs, trying
to preserve model consistency only by means of a suitable implementation of
modifiers, has a number of drawbacks.

• In case of an executable language such as XMF, which also provides
an interpreter console, one can never assure that model changes will
be performed exclusively by calling the corresponding modifiers in the

64 VLADIELA PETRAŞCU AND DAN CHIOREAN

prescribed order. Direct assignments or different call sequences are
also possible, leading to potentially invalid models.
• As emphasized by [6], this approach may be seen as an alternative
to the use of preconditions. As opposed to preconditions however, it
induces an increased code complexity, with a negative effect on relia-
bility.
• Complex constraints generally involve multiple classes and the neces-
sity of “adjusting” the code of several modifiers. Overlooking to check
for the rule in any of these modifiers may lead to incorrect models.
Instead, writing explicit WFRs is simpler, more clear, and less error-
prone.
• Trying to preserve model consistency at all stable times may not be
the best solution always. Underspecification, for instance, may be
desirable in particular circumstances.

Writing explicit WFRs is a prerequisite in enforcing them. Even with the
approach taken, the XMF implementation does not cover some of the elemen-
tary WFRs that are compulsory for object-oriented concepts, such as avoiding
name conflincts among features of the same class/classifier or the proper man-
agement of contained-container dependencies.

3.2. Proposed improvements. As a solution to the above mentioned prob-
lems, we have proposed a set of XOCL WFRs for the XCore meta-metamodel,
which we have tested on relevant model examples. The entire set of rules,
together with the corresponding tests, can be consulted at [2]. Below, we only
discuss three relevant examples.

3.2.1. Name conflicts among owned and inherited members. As previously
stated, one of the WFRs not covered by the XMF implementation concerns the
name conflict among an attribute owned by the current class and attributes
inherited from its ancestors. This is a fundamental object oriented modeling
constraint, being enforced by object oriented programming languages as well.
Such a conflict should arise in case of class D from Figure 2, which defines the
attributes b and r, having identical names with an inherited attribute and
reference, respectively.

The XOCL constraint that we propose for the above mentioned WFR is
given below. Figure 1 illustrates the corresponding part of the XCore mea-
metamodel.

[WFR1] There should not be any name conflicts among the at-
tributes owned and inherited by a class.

context Attribute @Constraint uniqueName

let allAtts = self.owner.allAttributes () then

TOWARDS IMPROVING THE STATIC SEMANTICS OF XCORE 65

Figure 1. An excerpt of the XCore meta-metamodel

sameNameAtts = allAtts ->excluding(self)->select(att |

att.name.asSymbol () = self.name.asSymbol ())

in sameNameAtts ->isEmpty ()

end

fail

let sameNameAtts = self.owner.allAttributes ()->excluding(self)->

select(att | att.name.asSymbol () = self.name.asSymbol ()) then

msg = "Attribute name duplication! " +

"Inherited/owned attributes of " + self.owner.toString () +

" with the same name: "

in @While not sameNameAtts ->isEmpty () do

let att = sameNameAtts ->sel

66 VLADIELA PETRAŞCU AND DAN CHIOREAN

Figure 2. A non-valid model example

in msg := msg + att.owner.toString () + "::" + att.toString () + "; ";

sameNameAtts := sameNameAtts ->excluding(att)

end

end;

msg

end

end

Apart from the constraint itself, XMF allows the specification of a fail
clause, whose body is intended to provide valuable model debugging informa-
tion in case of assertion failure. This facility is in accordance to the testing-
oriented specification style that we promote in [4].

3.2.2. Containment relationships. The proper management of containment
(composition) relationships is a fundamental issue in metamodeling. This sub-
ject has been also approached by us in [3], in the context of UML 2.3 [10]. As
shown by the metamodel excerpt in Figure 1, XCore represents containments
explicitely, by providing the Contained and Container abstract metaclasses
in this purpose. Below, we give their description, as taken from the XMF
documentation.

“A container has a slot contents that is a table2. The table
maintains the contained elements indexed by keys. By de-
fault the keys for the elements in the table are the elements
themselves, but sub-classes of container will modify this fea-
ture accordingly. Container provides operations for accessing
and managing its contents.”

“A contained element has an owner. The owner is set when the
contained element is added to a container. Removing an owned

2According to the metamodel, this rather seems to be the description for
IndexedContainer, due probably to a lack of synchronization between metamodel and
documentation.

TOWARDS IMPROVING THE STATIC SEMANTICS OF XCORE 67

element from a container and adding it to another container will
change the value of owner in the contained element.”

According to the commonly-agreed semantics of containments, we claim
that there are two fundamental rules that any model should fulfil in this re-
spect.

(1) A part should belong to a single container at a given time.
(2) A container cannot be itself contained by one of its parts.

As in case of other constraints, the enforcement of the ones above was meant
to be covered in XMF by an appropriate implementation of operations in the
descendants of Container and Contained. Moreover, in order to preserve
models’ validity, these operations are expected to be called in a particular
sequence during model editing tasks. As a consequence, the models created
using the model/diagram editors of the XMF tool (XMF-Mosaic) are correct
with respect to these rules. However, the models edited using the interpreter
console (where there is freedom with respect to the type and sequencing of the
editing operations) may reach invalid states, which are impossible to detect in
the absence of explicitly stated WFRs.

In order to exemplify this for the rule (1), let us start from a sample XCore
model containing an empty package named Test1 (which has been assigned to
a global variable t1), and the following sequence of XOCL commands executed
within the XMF interpreter console.

p1 := Package ("P1");

t1.add(p1);

p2 := Package ("P2");

t1.add(p2);

c := Class("C");

p1.add(c);

The lines above modify our initial model by creating two new packages, P1 and
P2, which are added as subpackages of Test1, and a class, C, which is added
to package P1. As a consequence, class C will have P1 as its owner, while P1

will have C as the only element witin its contents table.
Suppose C has been mistakely added to P1, when it should have been, in

fact, added to P2. Issuing the following command in the console

p2.add(c);

apparently solves the problem, since the owner of C is changed to P2, and C

is added to the contents table of P2. However, C still belongs to the contents
table of P1, from which it should have been removed prior to its addition to P2.
Therefore, in the current state, the model is invalid with respect to rule (1),
as C simultaneously belongs to two different containers (P1 and P2). A visual
proof of this is given by the model browser on the left of the XMF-Mosaic

68 VLADIELA PETRAŞCU AND DAN CHIOREAN

screenshot from Figure 3, illustrating the state of the model as reached after
the execution of the above commands.

Still, even if the model is obviously wrong, the lack of an appropriate WFR
makes the call to checkConstraints() on Test1 report this package and its
entire contents as valid. The XCore WFR that we propose below offers a
solution to this problem.

[WFR2] All Contained instances that belong to the contents table
of an IndexedContainer should have that container as owner.

context IndexedContainer

@Constraint validOwnerForContents

self.contents.values()->select(v | v.oclIsKindOf(Contained) and

v <> null)->select(v | v.owner <> self)->isEmpty ()

fail "The elements from " +

self.contents.values()->select(v | v.oclIsKindOf(Contained) and

v <> null)->select(v | v.owner <> self). toString () +

" should have " + self.toString () + " as the owner!"

end

As shown by the right-hand side of the screenshot in Figure 3, the
model checking performed after the addition of the above constraint to
IndexedContainer reports the P1 package as invalid with respect to this par-
ticular constraint. In fact, the proposed constraint captures anomalies of a
more general nature than just parts simultaneously belonging to at least two
different containers (e.g. parts belonging to the contents table of a container
and having no owner set at all).

Figure 3. XMF-Mosaic screenshot

Regarding the rule (2) above, the neccessity of introducing a correspond-
ing explicit WFR can be argued by means of the following example. Let us

TOWARDS IMPROVING THE STATIC SEMANTICS OF XCORE 69

assume the existence of an XCore model consisting of a single empty package
named Test2 (that has been assigned to a global variable t2). Furthermore,
assume that there is the neccessity of creating under Test2 a hierarchy of three
subpackages, say P1, P2, and P3, each included in the previous one. This basic
model editing task can be accomplished in XMF by means of the following
sequence of commands.

p1 := Package ("P1");

t2.add(p1);

p2 := Package ("P2");

p1.add(p2);

p3 := Package ("P3");

p2.add(p3);

However, the misuse of p1 instead of p3 as the argument of the latter call
above has the effect of creating a circular containment between packages P1

and P2, each of them becoming the owner of the other. Yet, in the absence of
an explicit WFR prohibiting this, a call to Element::checkConstraints()

on any of them reports no problem at all.
As a solution to this, we propose the XOCL WFR below, which applies to

all indexed containers, except for the Root namespace (in XMF, Root is the
global namespace in which everything is contained, itself included).

[WFR3] No IndexedContainer different from the Root namespace
can be owned by one of its parts.

context IndexedContainer

@Constraint notOwnedByPart

(self <> Root and self.oclIsKindOf(Contained)) implies

self.contents.values()->select(v | self.owner = v)->isEmpty ()

fail "This container is owned by each of its parts from " +

self.contents.values()->select(v | self.owner = v). toString ()

end

4. Conclusions

In view of the goals pursued by the model-driven approaches, formaliz-
ing the static semantics of any metamodeling language is a must. Within
this paper, we have analyzed the approach taken in case of the XCore meta-
metamodel and we have identified its shortcomings. The proposed solution
consists in the definition of a set of XOCL constraints, that have been vali-
dated on relevant model examples. Each WFR is stated both informally and
formally and is accompanied by meaningful test cases.

70 VLADIELA PETRAŞCU AND DAN CHIOREAN

Acknowledgements

This work was supported by CNCSIS-UEFISCSU, project number PNII-
IDEI 2049/2008.

References

[1] eXecutable Metamodeling Facility (XMF) homepage. http://itcentre.tvu.ac.uk/

~clark/xmf.html.
[2] Frame Based on the Extensive Use of Metamodeling for the Specification, Imple-

mentation and Validation of Languages and Applications (EMF SIVLA) homepage.
http://www.cs.ubbcluj.ro/~chiorean/CUEM_SIVLA.

[3] Dan Chiorean and Vladiela Petraşcu. Specification and Evaluation of Constraints
in MOF-based Metamodels. In ACM/IEEE 13th International Conference on Model
Driven Engineering Languages and Systems (MoDELS’10), Workshop on OCL and Tex-
tual Modeling, October 2010. (accepted).

[4] Dan Chiorean, Vladiela Petraşcu, and Ileana Ober. Testing-Oriented Improvements of
OCL Specification Patterns. In Proceedings of 2010 IEEE International Conference on
Automation, Quality and Testing, Robotics AQTR 2010, Tome II, pages 143–148. IEEE
Computer Society, 2010.

[5] Tony Clark, Paul Sammut, and James Willans. Applied Metamodeling. A Foundation
for Language Driven Development (second edition). Ceteva, 2008.

[6] Bertrand Meyer. Object-Oriented Software Construction (second edition). Prentice Hall,
1997.

[7] Object Management Group (OMG). Meta Object Facility (MOF) Core Specification,
Version 2.0. http://www.omg.org/spec/MOF/2.0/PDF.

[8] Object Management Group (OMG). Model Driven Architecture (MDA) Guide, Version
1.0.1. http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf.

[9] Object Management Group (OMG). Object Constraint Language (OCL), Version 2.2.
http://www.omg.org/spec/OCL/2.2/PDF.

[10] Object Management Group (OMG). Unified Modeling Language (UML) Infrastructure,
Version 2.3. http://www.omg.org/spec/UML/2.3/Infrastructure/PDF/.

[11] Douglas C. Schmidt. Model-Driven Engineering. Computer, 39(2):25–31, 2006.
[12] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse

Modeling Framework (second edition). Addison-Wesley Professional, December 2008.

Babeş-Bolyai University of Cluj-Napoca, Mihail Kogălniceanu nr. 1, Cluj-
Napoca, Romania

E-mail address: {vladi,chiorean}@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 3, 2010

SOCIAL NETWORKS FOR EPIDEMIC SPREADING: A

CASE STUDY

SILVIA RAUSANU AND CRINA GROSAN

Abstract. The study of social networks and the spread of disease on
networks has recently attracted considerable attention and there is a huge
amount of work dealing with this matter. The current work presents and
develops a social network model based on the multigraph idea in order to
simulate the spread of an epidemic. The paper deals with a real example
which refers to the spread and evolution of A/H1N1 virus in Romania.
The simulations obtained by applying the proposed model approximate
very well the real evolution of the virus studied over a period of 10 months.

1. Introduction

The epidemiologists have developed mathematical models to estimate the
size and other key features of an epidemic and social networks seem to be a
very good candidate in simulating the spread of such epidemics [4, 9]. There
are several approaches which simulate how a disease is transmitted among the
nodes of a network which has the proprieties of a social network [3, 11, 10].

In our paper we develop a very general model which uses more than a sim-
ple social network but a set of connected social networks in order to simulate
the spread of a well know epidemic of the past year and the begging of the
current one: the A/H1N1 virus.

The appearance of the virus A/ H1N1 was dated at the end of April 2009
in Mexico, ever since this virus has spread around the globe with an amazing
speed. Romania was reached by the virus only on the 23rd of May 2009.
As this virus can be contacted by air, the spread among the countries was
facilitated by the multiple means of transportation, but not only among the
countries, but also inside them.

The case of Romania did not make any exception: the virus was contacted
from abroad, firstly in the main cities of the country, then, following the same

Received by the editors: August 13, 2010.
2010 Mathematics Subject Classification. 91D30.
1998 CR Categories and Descriptors. code [I6.3]: Computing Methodologies – Simula-

tion and Modeling ; code [G2.2]: Mathematics of Computing – Graph Theory .
Key words and phrases. social networks, epidemics spread modeling.

71

72 SILVIA RAUSANU AND CRINA GROSAN

rule of moving masses of population, in almost each county. In addition to
these factors, the time in which the spread got a higher speed was in the
months when the likelihood of flu infection was greater and the crowding in
different areas was much more common.

These factors can form a pattern in the spread of the virus, at any level
of community: inside a county or inside a country. However, in Romania
the spread did not respect entirely the patterns, nor the expectations of the
Health Minister of Romania, as some counties , during the entire epidemic
development, did not even had a case of infection with the virus A/H1N1.

The paper is organized as follows: Section 2 presents the basic social net-
works notions used in our model, in Section 3 some of the existing work in
epidemics spreading is analyzed, in Section 4 the proposed model is presented
in detail. Section 5 presents details about the simulations followed by experi-
ments. Section 6 contains conclusions and future work ideas.

2. Social Networks

The notion of social network and the methods of social network analy-
sis have attracted considerable interest and curiosity both from the social-
behavioral community and from the computer science and mathematical com-
munity in the recent decades. Research in the social studies is mostly inter-
ested in the reason behind the network connection rather than the properties
of the network structure itself. On the other side, the research in graph-theory
has provided a wealth of quantitative tools and mechanism for describing net-
works mostly by analyzing the type of relations and the general structure.

Along with the growing interest and amount of research – in distinct do-
mains – over the use and properties of social networks, it has been established a
general set of principles for the social network analysis suitable for any domain
[9].

During the studies of real-world social networks, some research was ori-
ented towards the statistical properties of these networks. One important and
fundamental result that has emerged from these studies concerns the num-
bers of ties that actors have to other actors, their so-called “degrees.” It has
been found that in many networks, the distribution of actors’ degrees is highly
skewed, with a small number of actors having an unusually large number of
ties. Simulations and analytic work have suggested that this skewness could
have an impact on the way in which communities operate, including the way
information travels through the network and the robustness of networks to
removal of actors. Among the developed models for networks, three of them
will be recalled in what follows.

We first give some basic definitions which will be further used.

SOCIAL NETWORKS FOR EPIDEMIC SPREADING: A CASE STUDY 73

Consider a graph = G (V, E) is a plotting structure for the set of vertices
V (nodes) and the set of edges E for the connection of pairs of vertices. The
cardinality of the set V is denoted by n and is known to be the order of the
graph, while the cardinality of E, m¸ is called the size of the graph. Two
joined vertices by an edge are called end-vertices. Any two vertices connected
by an edge are adjacent or neighbors.

Definition 1 (multigraph)
A Multigraph is a directed or undirected graph in which is allowed to have

in the set of edges some edges contained more than once. If the edge e occurs
several times in E, then its copies are called parallel edges.

Definition 2 (degree of a vertex)
The number of edges having as end-vertex the node v1 in the graph is

called the degree of vertex v1.
Remark 1 :
If the graph is a multigraph, then the parallel edges are counted according

to their multiplicity.
Centrality indices exist for the quantification of an intuitive feeling that in

most networks some vertices or edges are more central, important, than others.
The computations of such indices provide new methods for the analysis of the
social network.

Definition 3 (degree centrality)
Degree centrality is a characteristic of the node with the highest degree –

the connector/hub of the network.
Definition 4 (Betweeness centrality)
Betweeness centrality characterizes a node that influences the flow of the

network but not the network itself, in graph theory being a critical point for
connectivity of the graph.

Definition 5 (closeness centrality)
Closeness centrality is the quality of a node that has the shortest path to

every other node.
Network centralization is the property of keeping the connectivity of the

graph around one or few vertices. High centralization on a node may lead to
fragmentation of the network, as there is one critical node, while low central-
ization guarantees smaller changes of such thing to happen.

Definition 6 (clustering coefficient)
The clustering coefficient [3] refers to the tendency (observed in many

natural networks) of forming cliques in the neighborhood of one given vertex.
It measures the average probability that two neighbors of vertex i are also
connected.

The clustering coefficient is computed as follows: let i be a vertex, with
degree k and e the number of edges formed among its neighbors, then the

74 SILVIA RAUSANU AND CRINA GROSAN

clustering coefficient is the ratio between the actual number of edges among
neighbors and the maximum number of possible edges between neighbors:

c =
e

k·(k+1)
2

Definition 7 (degree distribution)
Degree distribution is a statistical characterization of the graph given by

the sequence of degrees or by the relative probability distribution of degrees.

2.1. Random networks – Erdos-Renyi model. The random network model
of Erdos and Renyi (ER) is considered as the first model able to coherently
describe networks of arbitrary size [3]. The rules to create a random graph ac-
cording to Erdos and Renyi prescriptions are simple. The network is a set N
of n different vertices, and m edges (E) joining the nodes, such that between
any two vertices i, j exists a connecting edge with the independent probability
p. In these conditions, the maximum number of edges in the network is:

max(m) =
n · (n− 1)

2
· p

and the maximum vertex degree is:
max(d(i)) = n-1, ∀ i ∈ N .

The average degree is easily computed:
kavarage = (n-1) ·p
The clustering coefficient is c = p, since it is simply the probability that

two nearest neighbors of a vertex of degree k have an edge between them. The
probability that a randomly chosen node has exactly the degree k (that is that
only k of its possible edges are present and n − 1 − k are absent) is given by
the binomial distribution:

P (k) =

(
n− 1
k

)
· pk(1− p)n−1−k

However, as a model of real-world social network, it has some serious
shortcomings. Perhaps the most serious is its degree distribution, which is
quite unlike for those seen in most real-world networks. The approximation to
the real-world model is poor as the degree distribution is highly skewed. On
the other hand, the random graph has desirable properties, particularly the
fact that many features of its behavior can be calculated exactly.

Some algorithms might work in creating a more appropriate approximation
to real-world networks. Starting from knowing only the degree distribution of
the desired network, the probabilities for a random vector to have degree k,
must be normalized. Take a number of N vertices and assign to each a number
of k ends of edges, where k is a random number drawn independently from

SOCIAL NETWORKS FOR EPIDEMIC SPREADING: A CASE STUDY 75

the distribution pk for each vertex. Then we take the ends of edges randomly
in pairs and join them up to form edges between vertices. This procedure
will produce a graph with exactly the desired degree distribution, but which
is in all other respects random. To put it another way, we have generated
a graph that is drawn uniformly at random from the set of graphs with the
given degree distribution.

2.2. Scale-free model. Scale-free networks are characterized by the power
law distribution in degree distribution, which can be expressed mathematically
as P (k) ≈ k−γ . From the form of the distribution it is clearly that when γ
< 2, the average degree diverges and when γ < 3, the standard deviation of
the degree diverges [8]. It has been found that most scale-free networks have
exponents between 2 and 3, thus, they lack a characteristic degree or scale,
and therefore their name.

The clustering coefficient distribution is in a strong reverse connection with
the degree distribution, as it decreases with the increase of the degree of the
node.

The Erdos-Renyi model is less likely to produce a scale-free network as
their properties are not consistent with those of the ER model; consequently
a model for growth process is needed. The most widely generative model is
the one of Barabási and Albert’s (‘rich and get richer’) in which each new
vertex connects to another one with a probability that is not uniform, but
proportional with the in-degree of the old-vertex. Later development led to
respecting the power-law distribution by making a supposition according to
which a vertex with high in-degree will tend to attract more vertices than the
other ones.

2.3. Small world model. The small-world property refers to the fact that in
many large scale networks the average distance between vertices is very small
compared to the size of the graph. The distance between two vertices in a
graph is measured as the shortest path length l among them. The small-world
property is present when l scales logarithmically (or even slower) with the
number of vertices.

Inheriting from sociology, this model is known as well for “six degree sep-
aration”, stating that a short number of acquaintances (on average six) is
enough to create a connection between any two ‘actors’ chosen randomly.

From the mathematical point of view, the small-world effect describes
those graphs whose diameter and average path-length grow much more slowly
than the number of nodes n,typically, ln n, just as in random ER model. Yet,
a random graph has a very small local interconnectedness, captured by the
clustering index.

76 SILVIA RAUSANU AND CRINA GROSAN

Many scale-free networks are embracing the small-world model [3]: the
average path length and the clustering coefficient of the network are compared
with the same quantities calculated over random graphs with the same number
of nodes and vertices. However, the reverse is not true: small-world networks
are not scale-free networks.

3. Related work on epidemic spreading

In [1], the impact of the clustering coefficient and of the assortativity co-
efficient in a randomly generated network over epidemic behavior is analyzed.
The authors start with a generation algorithm for the social network, em-
phasizing the positions of the already infected nodes, by placing them on an
imaginary ring. For the simulation, it is used the SIR epidemic model which
is run for distinct configuration of the network: different indices or different
infected population size. The results of the experiment prove that the infec-
tion size, after a number of simulations, is negatively proportional with the
values of the clustering and assortativity indices. The greater is the clustering
index of the network, the smaller is the size of the newly infected population,
this statement being true for the assortativity index, as well.

A project closer to the theme discussed in this paper is [2] which propose
a model for the progression of pandemic influenza A (H1N1) in Vietnam. The
main difference which arises from this paper is the used structure, distinct
from social networks. It was developed an age- and spatially-structured math-
ematical model in order to estimate the potential impact of pandemic H1N1 in
Vietnam and the opportunities for reassortment with animal influenza viruses.
The model tracks human infection among domestic animal owners and non-
owners and also estimates the numbers of animals may be exposed to infected
humans.

In [6], the simulation of the pandemic influenza is performed using graph-
ical representation on the maps. Maps are built by stitching the counties that
contain cities and localities, the encoding of these elements using different
colors on the map and the generation of the neighbor relationship.

4. Model description

The case of spreading the virus A/H1N1 in Romania might be modeled
at the level of counties taking into account their connections with the other
counties in Romania, but also the connections with other countries affected
by the this epidemic. However, this approach would not have been enough as
in the high peek of spreading, most of the infection were occurring only inside
a county due to some extra crowding coefficients.

SOCIAL NETWORKS FOR EPIDEMIC SPREADING: A CASE STUDY 77

This is why the epidemics must be modeled as well at the level of a county
by tracking (or assuming) the connections between the locators of the county.

The system will be represented as a network of networks.
The main network has as nodes the counties of Romania and some other

important countries of the world with which Romania has a stronger con-
nection. The edges are the connections between the counties created on the
basis of neighborhoodness, collegial nodes, railroad nodes, important airports,
tourism attractions. The influence of these connections is underlined by some
probability of infection in one current node with the help of the number of
infection cases in the counties at the other end of the edge. The networks in-
side the counties are advisable in simulating the epidemic because are nearer
to the real situation and, furthermore, are a must in obtaining some results
closer to reality. These inner-networks are impossible to be created based to
reality, as tracking millions of connections is way out of any league, so they will
be randomly generated based on a known model of networks: Erdos-Renyi.
According to this model, in a network of n nodes, any two vertices are con-
nected with an independent probability p which means that the network has
as clustering index that initial probability p since it is simply the probability
that two nearest neighbors of a vertex of degree k have an edge between them.

In the real situation, a county of m individuals with a population density
d, is manipulated according to the Erdos-Renyi model [5] by generating a ran-
dom network with m′ nodes and clustering index d′. m′ is a scale of the size of
population m according to the maximum size of the social network permitted
by the implementation. d′ is also a scale of the density but according to the
domain values of the clustering index : [0, 1], which means that the county
with the highest population density value will have the highest clustering in-
dex; although this would imply that the maximum clustering index between
all the counties is 1, the maximum clustering index will actually be around 0.6
as any higher value will transform the network into an almost complete graph,
situation which is mostly uncommon for large real-world social network (like
a county, in this situation). In this way some connection between individuals
will be assumed in the scope of gaining the clustering index. No further prop-
erties are attached to the network during its construction as the purpose of
the network is oriented towards the direct connections between nodes (not by
paths, centrality properties, etc).

When a county has some cases of infection, it appears the issues of po-
sitioning these infected nodes in the network. In order to gain some local
results, the infected node must have an important position in the network,
one idea could be selecting the first i nodes with the highest degree. This
decision is taken on the basis that in reality the spread of the virus is done by
air, usually in crowded places, which in network-terms is translated as clusters.

78 SILVIA RAUSANU AND CRINA GROSAN

Usually in clusters there are some nodes with high degree which are important
to the network, consequently, for the current case, there should be placed the
already infected individuals. After setting the infected nodes, their position is
no longer of interest, but only their ‘identifier’ in the entire network.

The spreading simulation is performed at two levels, one at a level of coun-
ties and one at the level of individuals. The individuals are tightly connected
to the county they belong to, their individual evolution being influenced by the
same characteristics the county is, but in different proportions. One individ-
ual can be connected to one county only, in this way a much complex network
is created, although the homogeneity of the nodes’ types and relevance lacks
completely.

The factors of influence in the spreading are transmitted from the county
in general, to each individual located in it, in particular. This transmission
order classifies the network in two hierarchies, corresponding to the levels of
spreading simulations, in this way the network for spreading fits the model
of the hierarchical social networks. However, the flow of transmission is bidi-
rectional, not only a county distributes its characteristics, but also the mass
of individuals contribute to the final statistics computing for a county. Hav-
ing the interdependence described above, the two hierarchies can be isolated
and separated physically, but sharing the context of spreading, keeping the
exchange of information during the simulation.

The spreading simulation is performed at two levels, one at a level of
counties - the outer network - and one at the level of individuals - the inner
network.

4.1. The outer network. The outer network is the network composed of the
counties of Romania, some type of map of the country. Although a social net-
work has usually as nodes sole individuals, a group or an organized formation
of individuals can be at the basis of a network, in the current case, the mass
of inhabitants of a certain country. The connections between these nodes are
created on many criteria fact that change the structure of the network from
a simple graph - directed or undirected - to a directed multigraph as between
two nodes exists more than one type of links.

The outer network suits the scale-free model as it gathers its most impor-
tant features. Firstly, the existence of hubs is underlined by some counties
that tend to have lots of connections with the other nodes; these nodes have
actually a high importance not only in the network but also in the country
(collegial centers, main city, tourism nodes, etc). Secondly, the connectivity
of the network is easily assured only by one type of connection: the neigh-
borhood between counties, which makes the multigraph underlying it strongly

SOCIAL NETWORKS FOR EPIDEMIC SPREADING: A CASE STUDY 79

connected. The multigraph structure is defending the network from fragmen-
tation as the important counties do not keep in their links towards others the
key of connectivity.

The size of of the outer network is 41 (the number of counties in Romania).
The links between the vertices are formed on some pre-established condi-

tions which imply only characteristics taken from reality. The most important
reasons for putting an edge between two nodes are: geographical closeness;
collegial surroundings; nodes of means of transportation - railway, airport;
tourism attractions; poverty level.

4.2. The inner network. The ”inner network” is developed from one inter-
nal node of the outer network, inheriting some computed or native attributes
from it.

The nodes of the inner network (corresponding to each county) will rep-
resent the individuals of a county without containing any extra information.
The edges will be simple connections between individuals, generated according
to the chosen model.

The two parameters required for the construction of the network are re-
ceived from the corresponding node in the outer network and they are:

• the number of nodes in the network and
• the probability that any two nodes are connected.

Seeing clusters as crowds of individuals makes a logical connection with
the population density which is known from the very beginning.

the number of nodes in the network, in an ideal programming environ-
ment, could have been taken raw as the size of the population in the current
county. Unfortunately, the designed implementation does not permit such a
vast memory usage; thus this parameter should be scaled as well according
to the maximum size allowed and the maximum size of population among all
counties. Applying this theory, an individual will actually represent n individ-
uals which could cause problems during simulations when scaling the number
of already infected individuals, for example: there is one infected individual,
but following the scaling rule, one real individual is 0.2 of one individual in
the used network, therefore there will be 0.2 individuals infected.

Due to the memory limitation, each inner network will be split in m smaller
inner network which can be considered to be independent communities or
clusters of individuals inside a county. The number of communities in a county
will be equivalent with the population density in that county.

5. Simulations

An epidemic is characterized firstly by the way the virus can be contacted;
the easier the virus is contacted, the more factors encourage the epidemics.

80 SILVIA RAUSANU AND CRINA GROSAN

In the case of the virus A/ H1N1, the spreading is done by air, a common
and successful medium for an epidemic to pass to a pandemic spreading. The
influence of the continuous movement of masses of population is sustained by
the multiple means of transportation between communities of individuals and,
moreover, by the increase of the crowding coefficient that traveling with most
of those means presumes. The considered situations were explained in the
previous chapter by describing the way they were modeled and selected from
the multitude existing.

The types of edges are the form chosen for codifying the way individuals
change their current node location to another, carrying along the virus from
one infected community to another one still healthy. Among the percentage of
individuals that move from one node to another there exists the possibility of
existing individuals that are infected, and as the virus is transmitted by air,
any short or long contact of that individual can add a new victim to the general
statistics. However, this theory is not totally real, depending actually on the
particular characteristics of the individual, e.g. the power of its immunity
system.

The state of the weather is another positive factor of influence for the
spreading. In the cold months when it is often raining, snowing of wind blow-
ing, the human immunity system fails to keep the same properties as it used
to in the warmer months, so the probability of viral infection is increased for
the majority of the population.

One factor that independently rises from the context is the apparition
of a vaccine against this virus. The factors of influence remain valid for all
the cases, but the number of susceptible individuals to the disease decreases
drastically as an enormous part of the population of Romania has taken this
vaccine. Consequently, in the final months of the epidemic, the spreading has
reached the lowers level of activity and finally became inactive.

5.1. Numerical experiments. Numerical experiments are performed in Ro-
mania, over a hierarchical network with two layers corresponding to the coun-
try level (this network has 41 nodes corresponding to the 41 counties) and the
county level (for each of the 41 counties, the network has a variable number
of nodes according to the population size of each of them).

The results are simulated over 9 months, between May 2009 (the starting
months which is not taken into consideration for simulations) and February
2010.

From the input set it is generated, for each test of the application (each
input month), another set of data, used in the following computations. Besides
the data gathered from different sources, there are other parameters which

SOCIAL NETWORKS FOR EPIDEMIC SPREADING: A CASE STUDY 81

influence the spreading simulations, parameters which are established from
the very start as constants for the entire application.

5.2. Data. The collected data includes the monthly situation of newly in-
fected population size of each county from Romania and of the countries in-
cluded in the network with which our country has stronger connections.

Tables 1 and 2 present the data concerning each node of the outer network
during the studied period of time: May 2009 – February 2010.

The data organized in these tables was connected from the Romanian
Health Minister official site, the section of press communicates [7].

Another set of data which remains constant during all the executions are
the characteristics of an internal node in the outer network. These data consist
of the population size and population density of each county.

Table 2 does not contain population information about the countries with
which Romania has connections as the size and density of population corre-
sponding to their country does not arise any interest as the simulation is not
performed on those nodes, it are only used for helping the simulation inside
Romania.

5.3. Results of the simulations. We present the results of the simulations
for two of the nine months: August and October 2009. Simulations are per-
formed in an identical manner for the other remaining 7 months.

Experiment 1 – Month August
The first experiment has as purpose to simulate the evolution of the epi-

demic over the counties of Romania during the month August 2009. The
month which will be given as input will be July. The data for input, besides
the one given by the user, is read from the local database and will be used for
the construction of the network.

The construction of the network will proceed as follows: the nodes – coun-
ties of Romania and some countries – will be taken with the attached informa-
tion: the name, population size and density (the data from the Table 2 will be
loaded). To the loaded nodes there will be added some extra information: the
situation for the month given as input: the infected population size of each
node, the corresponding column for the month July 2009 from the Tables 1
and 2; after the nodes are set in the network, the connections are loaded.

At this moment, the network is loaded into memory and it is ready for
starting the simulations over it. However, the simulation influence factors
must be taken into account: the “temporal constants”. The month August
is known to be in Romania as the month when most of the people go in a
holiday, consequently there will be slight modifications on the computations.

82 SILVIA RAUSANU AND CRINA GROSAN

Table 1. Infection size on nodes - counties

.

County
Infection population size
May
2009

June
2009

July
2009

Aug.
2009

Sept.
2009

Oct.
2009

Nov.
2009

Dec.
2009

Jan.
2010

Feb.
2010

Alba 0 0 0 0 0 0 22 44 13 0
Arad 0 0 0 0 0 0 80 50 10 0
Arges 0 0 0 1 1 0 29 54 23 1
Bacau 0 0 0 2 0 0 130 111 29 1
Bihor 0 0 0 0 0 1 10 4 2 0
Bistrita-
Nasaud

0 0 0 0 0 0 0 1 3 3

Botosani 0 0 0 0 0 0 269 133 111 0
Brasov 0 0 27 9 3 1 29 43 14 4
Braila 0 0 0 6 0 0 2 11 14 1
Buzau 0 0 0 0 0 0 25 121 5 0
Caras-
Severin

0 0 0 0 0 0 19 63 14 1

Calarasi 0 0 1 2 0 0 3 0 5 0
Cluj 0 0 0 6 1 3 58 84 45 1
Constanta 0 0 5 2 1 0 21 55 48 4
Covasna 0 0 0 0 0 0 5 22 11 4
Dambovita 0 0 0 2 0 0 94 107 52 1
Dolj 0 0 8 0 0 1 148 98 8 0
Galati 0 0 1 4 0 0 85 33 22 1
Giurgiu 0 0 0 0 0 0 20 16 8 0
Gorj 0 0 0 0 0 0 0 0 0 0
Harghita 0 0 0 0 0 0 52 39 23 0
Hunedoara 0 0 0 8 0 0 94 40 27 0
Ialomita 0 0 0 0 4 0 16 22 5 0
Iasi 0 7 8 6 8 40 171 58 39 3
Ilfov 5 15 62 63 9 12 725 612 260 15
Maramures 0 0 0 0 0 0 18 19 3 0
Mehedinti 0 0 2 1 1 0 11 12 1 0
Mures 0 0 7 7 0 1 27 66 56 3
Neamt 0 0 0 0 0 0 56 33 24 1
Olt 0 0 0 0 0 0 10 24 40 0
Prahova 0 0 1 4 0 41 51 83 72 0
Satu
Mare

0 0 0 0 0 0 0 0 3 1

Salaj 0 0 0 0 0 0 3 3 1 0
Sibiu 0 0 1 3 0 1 24 79 16 0
Suceava 0 0 0 2 0 0 10 70 30 1
Teleorman 0 0 0 3 1 0 10 10 3 0
Timis 0 5 2 8 0 0 23 62 38 3
Tulcea 0 0 0 0 0 0 6 23 5 1
Vaslui 0 0 0 0 0 0 45 27 4 0
Vâlcea 0 0 0 3 3 0 22 11 6 0
Vrancea 0 0 0 0 0 0 62 43 4 0

SOCIAL NETWORKS FOR EPIDEMIC SPREADING: A CASE STUDY 83

Table 2. Infection size on nodes - connected countries

.

Country
Infection population size
May
2009

June
2009

July
2009

Aug.
2009

Sept.
2009

Oct.
2009

Nov.
2009

Dec.
2009

Jan.
2010

Feb.
2010

Ukraine 0 1 1 0 6250 850000 11005 1230 301 22
Hungary 0 7 11 138 1250 1877 1107 203 70 3
Bulgaria 0 5 10 47 470 100000 2307 967 111 25
SUA 2254 20000 33902 6700 3200 1050 320 115 67 5
Canada 280 5438 7983 2060 986 320 98 20 0 0
UK 40 1540 7447 5957 8960 17325 6015 2000 200 0
Spain 93 430 760 838 2600 17303 1230 700 183 7
Mexico 1626 4957 10262 2350 1739 600 121 67 21 0
France 12 171 300 825 3024 7017 659 226 105 0
Turkey 0 27 40 50 180 625 303 29 15 0
Greece 0 58 109 1340 2506 2030 270 37 25 0
Germany 11 291 470 12320 1445 4445 750 217 32 12
Italy 9 86 130 1138 7213 21207 3070 375 93 31
Portugal 1 6 27 1960 1530 1248 625 123 75 1
Netherlands 3 100 134 1368 1020 2364 950 99 65 5

After the application has been executed, the values of the simulation will
be as displayed in Figure 1 (there are displayed also the real results for a more
obvious comparison).

The error expresses the number of extra or missing cases from the simu-
lated results, compared with the real results. The value of 2.07 is an acceptable
one as for the entire country there have been a mistake of this size which re-
ported to the population of the country is meaningless.

The arguments for the appearance of this error have a vast range of
foundering reasons; however the simplest one is that the evolution of a virus
on a real network is rather unpredictable. Still, one of the explications is that
during the month of August it is possible that the theory of moving is not
sustained as people can make their holidays abroad, not only in the country.

Experiment 2
The second experiment has as purpose to simulate the evolution of the

epidemic over the counties of Romania during the month October 2009. The
month which will be given as input will be September. The data for input,
besides the one given by the user, is read from the local database and will be
used for the construction of the network.

The network is constructed in a similar way to the one explained for the
previous experiment, except for the fact that the size of the infected population

84 SILVIA RAUSANU AND CRINA GROSAN

Figure 1. Results for the month August.

is taken from the column corresponding to the month September 2009 of the
Tables 1 and 2.

The month October imposes some other limitations over the computations
for the epidemic simulation. This month is known to be the month when the
collegial year begins. The map for the month of October 2009 is depicted in
Figure 2.

For this experiment there has been obtained a better results in means of
distributing the bad-placed cases: 1.21 cases/county. In comparison with the
country population, the difference is hardly noticeable.

One of the most relevant reasons for having these errors is the fact that
October is an autumn month when the temperatures decrease and the infection
likelihood increases, but slowly than in the succeeding months. In this way
one of the draw-backs of the algorithm is that the “temporal constants” range
are far too restrictive. At the moment a month has or not a property, it can
not have it in a certain proportion, as it might be case for the month October.

SOCIAL NETWORKS FOR EPIDEMIC SPREADING: A CASE STUDY 85

Figure 2. Results for the month October.

6. Conclusions

The paper proposes a new approach for analyzing epidemic spreading over
socials networks by introducing a new model tested against real-world re-
sults. The model is based on intensive research in social networks and epi-
demic spreading, viewed from different aspects: the mathematical way and the
sociologic-statistical way. The selected data for taking part in the model has
been restricted to a number of characteristics and support further extension.

The developed model is general and can be applied to any hierarchical
structure similar to the one of Romania and it is valid for the simulation of
the spreading of any other virus. The simulation algorithm can support mod-
ifications to fit any other epidemiological model. The application, although
it is presented as a case of study, can be modified to have a general charac-
ter: it can suit any country of the world, only with the change of data from
the database and of the characteristics deduced from the time of year, which
rather seem to be specific to Romania.

Acknowledgement. The second author acknowledges the support from
the CNCSIS grand IDEI 2412/2009.

86 SILVIA RAUSANU AND CRINA GROSAN

References

[1] J. Badham, R. Stocker, The impact of network clustering and assortativity on epidemic
behaviour, Theoretical Population Biology, 77 (2010), pp. 71-75.

[2] M.F. Boni, B.U. Manh, P.Q. Thai, J. Farrar, T.T Hien, N.T. Hien N. Van Kinh, P.
Horby, Modelling the progression of pandemic influenza A (H1N1) in Vietnam and the
opportunities for reassortment with other influenza viruses, BMC Medicine, 7 (2009),
pp. 43-47.

[3] G. Caldarelli, A. Vespignani, Large Scale Structure and Dynamics of Complex Networks
from Information Technology and Natural Science, World Scientific, London, 2007.

[4] A. Degenne, M. Forsé, Introducing social networks, Sage, London, 1999.
[5] M.J. Keeling, K.T.D. Eames, Networks and epidemic models, J. R. Soc Interface, 2,

(2005), pp. 295–307.
[6] V. Prejmerean, M. Frentiu, V. Cioban, and O. Ghiran, Graphical representation of

the pandemic spreading, First International Conference on Complexity and Intelligence
of the Artficial and Natural Complex Systems, Medical Applications of the Complex
Systems, Biomedical Computing, Targu Mures, Romania, 2008, pp. 197-202.

[7] Romanian Health Ministry, Press release, http://www.ms.ro/?pag=62
[8] Scale-free Networks, http://www.scholarpedia.org/article/Scale-free networks
[9] B. Wellman, Structural Analysis: From Method and Metaphor to Theory and Substance

Cambridge: Cambridge University Press, London, 1988.
[10] S. Wasserman, K. Faust, Social network analysis: methods and applications, Cambridge

University Press, 1994.
[11] D.J.Watts, S.H. Strogtz, Collective dynamics of ’small-world’ networks, Nature, 393

(1998), pp. 440-442

Department of Computer Science, Babes-Bolyai University, Kogalniceanu
1, 400084, Cluj-Napoca, Romania

E-mail address: silvia.rausanu@gmail.com, cgrosan@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 3, 2010

INTRODUCING VAST: A VIDEO-AUDIO STREAMING

TESTER

ADRIAN STERCA AND CLAUDIU COBARZAN

Abstract. We present a testing package aimed at video and audio stream-

ing across best-effort networks like the Internet. VAST is intended to be

a testing framework for protocols transporting audio-video streams across

IP networks. It offers the simplicity and predictability of deterministic

simulators like ns-2 combined with the testing power of real-world experi-

ments.

1. Introduction

The proliferation of multimedia data, especially the video and audio com-

ponents, across the Internet has been exponential in recent years. As a result,

the stress on the delivery infrastructure is increasing, as do the efforts to find

and test audio-video streaming solutions in either simulated or real test envi-

ronments. One of the most popular tools used for testing network transport

protocols is the ns-2 simulator [8]. Although, simulation packages are in gen-

eral easy to use and the obtained results are simple to assess due to their

deterministic context, they lack the ability to capture the true randomness

from real-world experiments, and thus they do not have the testing power of

real-world experiments. On the other hand, because of all the randomness

involved in real-world experiments and because of many noise sources, the re-

sults from those experiments are usually difficult to assess, as they reflect so

many interconnections within the components of the experiment.

Our aim is a testing framework which does not rely on simulations, but

borrows some of its deterministic approach and simplicity in assessing the test

Received by the editors: August 15, 2010.

2010 Mathematics Subject Classification. 90B18, 68M20.

1998 CR Categories and Descriptors. C.4 [Computer Systems Organization]: Per-

formance of Systems – Measurement techniques; I.6.3 [Computing Methodologies]: Sim-

ulation and Modeling – Applications.

Key words and phrases. video-audio streaming, testing, rate control, congestion control,

FFMPEG.
87

88 ADRIAN STERCA AND CLAUDIU COBARZAN

results and it also tries to capture true randomness of real-world experiments

by using the available networking infrastructure as test environment, not a

simulated network one. The name of this framework is VAST, which is an

acronym for Video-Audio Streaming Tester.

The paper is structured as follows. In Section 2 we present other testing

tools available on the Internet and related to VAST. Section 3 underlines

the goals of VAST while the next section introduces the architecture of the

proposed package. Section 5 deals with the pluggable structure of a VAST

experiment. Section 6 outlines VASTs strengths and weaknesses compared to

the testing tools presented in Section 2 while Section 7 presents our conclusions

and intended future work.

2. Related Work

Ns-2 [8] is a well known network simulation package which is focused on

congestion control. Although it is very powerful and has implementations

for a wide set of transport protocols, it does not capture the possible benefic

influence of real-world audio-video data on the network transport control al-

gorithms and, conversely, it does not reflect the effect of network transport

control algorithms on the audio-video stream perceived by the end user.

Another testing package for audio-video streaming is ViTooKi [10] which

is an open source tool for developing real world audio-video streaming applica-

tions. One of the disadvantages of ViTooKi is that it has very low support for

media-friendly and TCP-friendly congestion control and congestion control in

general.

VLC [11] is yet another open source streaming project similar to Vi-

TooKi which also implements limited congestion control (besides the one im-

plemented by TCP in the OS kernel).

3. Package Goals

By using the VAST package, we want to be able to test in real network con-

ditions (not in simulated environments) the performance of various congestion

control as well as stream rate control algorithms for audio-video streaming in

best-effort networks. Their performance will be measured by objective met-

rics (e.g. number of lost packets, throughput, buffer fill level etc.) but also by

pseudo-subjective metrics (artifacts on the rendered video etc.).

Another goal of VAST is testing the performance of caching strategies for

multimedia (audio-video) objects in audio-video proxy-caches [1].

INTRODUCING VAST: A VIDEO-AUDIO STREAMING TESTER 89

Finally, we want to have the possibility to test in real-world conditions,

algorithms for adapting multimedia streams at application level (e.g. temporal

adaptation, grayscale reduction, spatial reduction, transcoding etc.).

The main advantages of the proposed package over other network simula-

tors (e.g. ns-2) are the following:

• the data source is a real audio-video stream and is not random data

from memory; because of this the distribution of the audio-video data

can influence the semantics of the rate control algorithms;

• the performance of the transmission rate control and stream rate con-

trol algorithms can be visually assessed/quantified.

Because it uses real-world conditions in experiments, VAST has also some

drawbacks compared to network simulators and the most important is the

difficulty to assess the test results due to many noise sources generated by

randomness in the experiments conditions (which is a characteristic of all real-

word experiment packages). This difficulty is counteracted by the pluggable

architecture of VAST which is described in the next section.

4. The Vast Architecture

Generally speaking, there are two approaches in network testing: the de-

terministic approach – simulations and real-world experiments.

In network simulations, it is easier to measure, predict and interpret re-

sults and no costly network infrastructure is needed for deployment. The

main weakness of network simulations is the lack of the ability to capture

true randomness and transient events. The exponent of network simulators is

represented by ns-2 [8].

In real-world experiments, it is harder to measure and interpret results (i.e.

difficult to isolate causes) and an elaborate network infrastructure is required

for deployment. The advantage of real-world experiments is the possibility to

capture the randomness in the real-world and transient events. Examples of

tools useful for audio-video streaming testing are ViTooKi (The Video Toolkit)

[10] and VideoLan VLC[11].

VAST tries to combine the advantages of both approaches mentioned

above. On one hand, it lies in the real-world experiments category because it

relies on real-world network infrastructure and network conditions, thus hav-

ing a testing power larger than a simulator. On the other hand, through its

flexible pluggable architecture, VAST provides an easy way of assessing test

90 ADRIAN STERCA AND CLAUDIU COBARZAN

results, as do simulators. This is because in each experiment, many compo-

nents of VAST can be plugged-in or plugged-out from the experiment, thus

adding or removing a noise/randomness source from the experiment. By sub-

sequently eliminating a noise source from the experiment, the test results can

be better separated and more easily assessed.

The intended VAST testing architecture is shown in Figure 1. The VAST

package can be deployed on a LAN which is linked by several routers. VAST

has different data flow sources which can be monitored when competing for

network resources: TCP flow source, fixed (parametrized) transmission rate

UDP source and audio-video streaming sources/servers. Each VAST source

type has a corresponding receiver. Also an audio-video proxy/cache module

can be deployed inside the VAST network.

Figure 1. The VAST testing architecture

The VAST A/V player architecture is depicted in Figure 2 and has the fol-

lowing major components: IO System for interfacing with the network, Session

Management for controlling the streaming session using standard streaming

protocols and also our experimental streaming protocol (SMSP – Simple Mul-

timedia Streaming Protocol), a Codec Module based on FFMPEG [7] for de-

coding audio-video data and a Rendering Module based on the SDL library [9].

The IO System is the flow control component. On the client side (i.e.

A/V player) the IO System consists of feedback producers for various flow

control protocols. On the server side, the IO System contains flow control

components for computing/updating the transmission rate and enforcing the

computed transmission rate. The A/V streaming session can use several flow

control protocols: DCCP [4], TCP and newer flow control algorithms build

on top of UDP: NoCC (No Congestion Control - an algorithm for sending the

INTRODUCING VAST: A VIDEO-AUDIO STREAMING TESTER 91

Figure 2. The VAST Audio/Video Player architecture

audio-video data at constant rate), TCP-like congestion control, TFRC [3],

UTFRC [5, 6].

The Session Management component provides implementations for stan-

dardized streaming protocols (RTP, RTCP) and streaming control protocols

(RTSP, SDP) and also our experimental SMSP – Simple Multimedia Stream-

ing Protocol, whose header consists only of a sequence number and a time-

stamp.

In Figure 3 the architecture of the A/V streaming server is depicted. It

has similar components as the A/V player.

Figure 3. The VAST Audio/Video Server architecture

5. The pluggable architecture of a VAST experiment

It is important to note that almost each component of the server or client

can be disabled in a VAST experiment setup which offers flexibility in isolating

92 ADRIAN STERCA AND CLAUDIU COBARZAN

causes (noise sources). This is very useful in experiments in which the obtained

results can not be explained due to the interconnections of the experiments

components and other noise sources. In such a case each component can be

independently and subsequently disabled (actually, it is not fully disabled, but

replaced with a dummy one which does not generate too much noise because of

its simplicity – it leaves data unchanged), until each noise source is identified.

For example, if we do not want to consume CPU for the actual rendering

of the video or we want to reduce the concurrency randomness at the client,

we can disable the SDL-based Render Module and the Codec Module from

the Player and no decoding or display will happen at the Player. Another

example is that full fledged session management protocols like RTP/RTC,

RTSP and SDP can be disabled and a simple custom header (SMSP) can be

used instead, thus reducing the degree of concurrency and complexity of the

data flow. Also, the congestion control module can be disabled at the server

and replaced with a NoCC, one which transmits multimedia data at a constant

rate, thus eliminating variations (randomness) in the transmission rate. To

reduce the computing load at the server, the Codec Module can be disabled

and random data from the memory can be sent instead to the client.

In essence, the architecture of a VAST streaming server or player is a

highly configurable and a pluggable one.

6. VASTs advantages and disadvantages

Because of its pluggable and flexible architecture, the VAST package has

several advantages over existing audio-video streaming simulators or streaming

solutions:

• the ability to test new media-friendly congestion control algorithms

which are influenced by the data distribution in the audio-video stream;

this is because an audio-video source uses a real audio-video stream

instead of random data from memory;

• the performance of the congestion control and stream rate control algo-

rithms can be visually assessed (in the quality of the stream perceived

by the client);

• testing specific proxy-cache operators can be done in real-word network

setups/conditions;

• the possibility to isolate noise sources in the experiment results by

enabling/disabling various components in the streaming server or client

by taking advantage of the pluggable architecture of VAST.

INTRODUCING VAST: A VIDEO-AUDIO STREAMING TESTER 93

Due to the fact that it is still in the development state, VAST has the

disadvantage that is not as stable as a classic simulator like ns-2 which has

been used for a number of years. Also because it is a real-world experiment

tool, it does not have the deterministic properties of a network simulator, thus

the results can not be as easily assessed as in the case of a simulator. And

because real network infrastructures are used in experiments, the setup for the

experiment can take longer than in the case of simulators.

7. Conclusions and Future work

We presented in this paper VAST, a video-audio streaming tester package

based on FFMPEG. The strength of VAST comes from its highly pluggable

and configurable architecture.

The current state of the implementation is:

• functional local video player;

• simple video streaming server;

• partial congestion control implementation (TFRC/UTFRC);

• naive TCP/UDP sources/receivers implemented.

As future work, we intend to complete the implementation of VASTs mod-

ules and compare the VAST package with the previously developed vpcSim [2]

tool.

References

[1] Claudiu Cobarzan, Distributed Video Proxy-Caching in High-Bandwidth Networks,

PhD thesis, 2008

[2] Claudiu Cobarzan, Doriana Dorutiu, vpcSim: A Video Proxy-Cache Simulator, In Pro-

ceedings of the Symposium Colocviul Academic Clujean de Informatica, pp. 135-140,

2005

[3] Sally Floyd, Mark Handley, Jitendra Padhye, Joerg Widmer, TCP Friendly Rate Control,

RFC 3448, January 2003.

[4] Eddie Kohler, Mark Handley, Sally Floyd, Datagram Congestion Control Protocol

(DCCP), RFC4340, 2006

[5] Adrian Sterca, Congestion Control in Streaming Protocols, PhD thesis, 2008

[6] Adrian Sterca, UTFRC - Utility-driven TCP-Friendly Rate Control for Multimedia

Streams, in Proceedings of the 17th Euromicro International Conference on Parallel,

Distributed and Network-Based Processing, IEEE Computer Society, Germany, Febru-

ary 2009.

[7] *** FFMPEG library, http://ffmpeg.org/

[8] *** The ns-2 simulator, http://www.isi.edu/nsnam/ns/

[9] *** SDL library – Simple DirectMedia Layer, http://www.libsdl.org

94 ADRIAN STERCA AND CLAUDIU COBARZAN

[10] *** ViTooKi – The Video Tool Kit, http://vitooki.sourceforge.net/

[11] *** VLC, http://www.videolan.org/vlc/

Babes-Bolyai University, Faculty of Mathematics and Computer Science, 1

M. Kogălniceanu St., 400084-Cluj-Napoca, Romania

E-mail address: {forest,claudiu}@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 3, 2010

JAVASCRIPT GENERATORS

GHIŢĂ DANIEL-CONSTANTIN

Abstract. The JavaScript language is used for client-side programing in
web applications. JavaScript is sent as source code from the web server to
the user’s browser and executed locally. Because not all current browsers
support the latest version of JavaScript, developers are limited to use only
the features supported by the lowest common denominator. I propose
an approach to solve this problem by using an intermediary compile step
which transforms the code written by the user into code supported by all
browsers. This allows web developers to use the latest version of JavaScript
today, without having to wait until all major browsers implement all the
features.

1. Introduction

JavaScript is commonly known as the language of the web. This object-
oriented scripting language is implemented in all modern browsers and it is
the only cross-platform language available for client-side programming in web
application. It is a dialect of the ECMAScript standard [6].

JavaScript is rapidly evolving. Because some implementations are lagging
behind, developers cannot take advantage of all the features which have been
added to the language. This is further amplified by the presence in the wild
of browsers which are not up to date.

We can address this issue using static compiling. Using a compiler we can
transform code which is written to use the latest version of JavaScript into
code which uses only the basic syntactic constructs and so is (syntactically)
compatible with all implementations in the wild. Using a library which will
be loaded at run-time the program can add any missing methods to the core
objects of the language. We will show how to address each issue individually
with examples and offer an implementation of a compiler which integrates all
the pieces. The result is a translator which takes as input code written in

Received by the editors: June 10, 2010.
2010 Mathematics Subject Classification. 68N20.
1998 CR Categories and Descriptors. D.3.4 [Software]: PROGRAMMING LAN-

GUAGES – Processors.
Key words and phrases. JavaScript, ECMAScript, web applications, compiler, program

analysis.

95

96 GHIŢĂ DANIEL-CONSTANTIN

the latest version of JavaScript and outputs code which works on all current
JavaScript platforms.

This rest of the paper is structured as follows. Section 2 is structured in
two subsections: the first one offers an overview of JavaScript, while the second
section takes a look at what benefits compiling has offered other languages.
Section 2.3 presents the current status of methods applied for JavaScript
source code. Section 3 presents the goal of this paper in more details. Section
4 details each step of the path in achieving said goal, and in the end we give
some conclusion that evaluates the results which have been obtained and the
roads opened for future work.

2. Background

2.1. A Brief Overview of JavaScript.

2.1.1. Where JavaScript is today. There are many different implementations
of ECMAScript dialects and a few call themselves JavaScript. Every major
browser has its own ECMAScript implementation and there are even compilers
and interpreters for ECMAScript as a systems language. ECMAScript covers
only the core language and many extensions, including ”host objects”, are left
to the implementation:

ECMAScript as defined here is not intended to be computa-
tionally self-sufficient; indeed, there are no provisions in this
specification for input of external data or output of computed
results. Instead, it is expected that the computational envi-
ronment of an ECMAScript program will provide not only the
objects and other facilities described in this specification but
also certain environment-specific host objects, whose descrip-
tion and behavior are beyond the scope of this specification[6]

2.1.2. Basic building blocks. Often described as ”Lisp in C’s clothing”[4,5], the
JavaScript language is dynamic and weakly typed. It has first-class functions
and prototype-based object inheritance. It has closures, which means func-
tions have lexical scope and they can access the variables from the context in
which they were created. Functions can be called with any arguments (and
any number of arguments). All objects are hash tables and objects cannot
be created ex-nihilo. Objects and arrays can be written as literals and the
language has built-in support for regular expressions. The logical OR (||)
and logical AND (&&) are short-circuiting operators. The ternary operator is
similar to the one found in C.

JAVASCRIPT GENERATORS 97

2.2. Benefits of compiling. Compiling is the process of transforming code
from one computer language into another—called the target language. Usually
compilers target machine code which can be directly executed by a computer
or virtual machine. Historically, compilers have been a major factor in the
advance of programming by allowing the same code to be used on different
architectures and by performing tedious tasks on the behalf of the programmer,
such as checking type correctness, optimizations, relaxing the limitations of
the machine (e.g. aligning data at certain memory locations), supporting high-
level constructs not available on the underlying hardware, linking (distributing
a program across more than one source file) and more. In short, compiling
enables easier programming and portability.

2.2.1. Source-to-source compilers. While most compilers output machine code
or bytecode, source-to-source compilers use a high-level language for both the
input and the output. Source-to-source compilers can be used, for instance,
for adding parallel code annotations (e.g. OpenMP) or for porting code from
an old version of the language into a new version.

2.3. Review of the State of the Art. In this section we will look at what
methods have been previously applied to JavaScript source code before.

2.3.1. Minification. Minification [5]is the process in which an input source
code is transformed into an output source which, when executed, results in
the same operations being performed on the same data. The program which
performs this transformation on the code is called a minifier. The goal is
usually to obtain a program which works identically to the input code but
which has a smaller size. In order to achieve this goal, the minifier employs
more than one technique:

• Whitespace removal. Indentation, line feeds and any other whitespace
is deleted because it does not affect the semantics of the program.
• Comments are eliminated, for the same reason as whitespace. Usually
JavaScript minifiers understand and preserve conditional comments.
Also, some minifiers preserve comments which begin with ‘!’ or which
contain ‘@license’ or ‘@preserve’. This is used in order to preserve
copyright information.
• Redundant characters with syntactic but not semantic meaning are
removed. For instance, many semicolons can be deleted without af-
fecting the instructions because JavaScript allows the programmers to
omit semicolons in some places.
• Numbers are written in the shortest form possible. For instance, 1000
could be transformed into 1e3 and 1e1 could be transformed into 10,
each modification saving one character.

98 GHIŢĂ DANIEL-CONSTANTIN

• Local variables and function arguments are renamed to use less char-
acters. This can be particularly problematic in dynamic languages
which support eval(...) such as JavaScript. Because the argument
to be evaluated is a string and is usually composed dynamically or
received from an external source (e.g. a response from the server), any
references to local variables inside the string cannot be updated by
the minifier. This means that executing print(eval("currentIndex
+ pageSize")); after minification will result in two undefined refer-
ences1.
• Transform conditionals where possible from if-statements using short-
circuiting operators. A short-circuiting boolean AND operator does
not evaluate the second argument if the first is false. Some tools take
advantage of JavaScript’s boolean operators and transform statements
such as if (a) b(); into a && b();.

Minification is usually safe, unless local variables are obfuscated and eval(...)
is used to reference local variables.

2.3.2. Packing. Packing[5] is the process in which the identifiers, keywords
and constants are separated from the code and moved into a separate list.
Duplicates are discarded and placeholders are used in the code to know where
to insert each item. Two strings are obtained: the first contains the code
without the removed parts and the second contains all the removed parts with
a separator. The final file has the two strings and a few instructions which
reassemble the original file (as a string) and feed it to eval(...). Packing is
usually used after the source has already been minified.

Tools which implement minification of JavaScript sources include Closure
Compiler, JSMin, Microsoft AJAX Minifier, Packer, ShrinkSafe and Yahoo!
UI Compressor. Packer is the only one which implements packing.

2.3.3. Function inlining. Function inlining or inline expansion is the process
in which a call to a particular function is replaced with the body of the func-
tion. While this increases the size of the code if the function is called from
more than one place, it optimizes the execution speed of the program if the
function is called often because it eliminates the overhead caused by a function
call.

2.3.4. Aliasing. Aliasing is the situation in which a data location can be ac-
cessed under different names called aliases. In JavaScript aliasing is often used
in conjunction with calling the same method on the same object repeatedly.

1Local variables and function arguments are not renamed in functions which use a with

instruction anywhere in the source because declaring variables inside a with statement creates
properties inside the object instead of local variables.

JAVASCRIPT GENERATORS 99

For instance, creating an alias for the appendChild method of the <body>

element in an HTML document:

function add (newNode) {
document . body . appendChild (newNode) ;

}

Function inlining is implemented in Closure Compiler.

2.3.5. Turning Java into JavaScript. A different approach which has been
tried is to give programmers a language with static typing (specifically Java)
and then translate that language’s syntax into JavaScript constructs. This
has the advantage of static type checking and support from the IDEs which
target the guest language2

The collection of tools which compiles Java into JavaScript is Google Web
Toolkit.

2.3.6. Asynchronous JavaScript. While JavaScript has features which enable
it to work asynchronously (setTimeout, setInterval, asynchronous connections
to the server) it is single-threaded and execution itself is synchronous: once
a function begins executing, it cannot sleep or pause execution in anyway;
it will either terminate or enter an infinite cycle (in which case it will ulti-
mately be killed by the browser). Two techniques have been used to bring
this functionality into JavaScript using libraries.

The first method involves using a loader which will scan the JavaScript
source before it is loaded into the browser and modify it before it is compiled.
This works in all browsers but is very slow.

The second method consists of using the yield instruction (which is de-
signed for generators)[7,8]. This takes advantage of a pause-and-resume sup-
port built into generator and thus it is more efficient than the first method.
The major downside is that it requires JavaScript 1.7 which is currently only
available in Mozilla implementations.

2.3.7. ECMAScript 5 strict subsets. There has been at least one attempt to
implement a strict subset of ES5 strict mode on top of ES3[2]. This has
been done in order to limit the flexibility of the language such that modules
written using the allowed subset of the language are easier to isolate. This
does not actually add anything to language, it just removes some building
blocks. Google’s Caja project implements two languages: Cajita is a strict
subset of ES5 strict mode with many features removed (e.g. eval, with, the
Function constructor, monkey patching, etc.[3]) and Valija is an extension of

2JavaScript IDEs are rather poor compared to C++, C# and Java IDEs. For instance,
Microsoft Visual Studio 2010 is still unable to understand regular expression literals in
JavaScript and tries to auto-complete the text inside and the flags, although the syntax has
been in the language since the beginning.

100 GHIŢĂ DANIEL-CONSTANTIN

Cajita which adds back some of the elements which have been removed, but
with a limited scope (e.g. eval).

3. Problem Statement

3.1. Existing browsers. JavaScript, as shown in section 1 and section 2, is
a fast-evolving language with a huge installed base. Except C and maybe
C++, it is a challenge to find one language which can be executed on so
many devices. It is more widespread than even Java—every device which can
run Java can also execute JavaScript using Rhino (a Java library) and there
are many mobile devices which come with a browser but no Java runtime.
Not only are there JavaScript shells and cross-platform FastCGI modules(also
#/bin/v8cgi[1]), but the most popular desktop operating system, Microsoft
Windows, comes with a built-in JavaScript environment capable of interacting
with the system tools (and no Java runtime unless the user explicitly installs
it).

Together with the size of the installed base also comes a disadvantage:
fragmentation. Some implementations are lagging behind and, when writing
web applications, generic libraries, or other tools, developers are forced to code
for the smallest common denominator. This considerably limits the capabili-
ties which can be used and denies the improvements which could be gained:
faster development, less error-prone code, better performance and more.

3.2. Need for compatibility. While there are many tools which process
JavaScript source code, they do not extend it with the latest constructs. The
tools either translate other languages to JavaScript constructs3. No tool has
attempted to implement the new functionality offered by newer versions on
top of the common baseline and the topic has not even been formally analyzed
before.

Additionally, none of the tools available are written in JavaScript. This
is important because JavaScript’s Function constructor and eval function
means code will be loaded from external sources, sometimes even on-demand.
Unless the tool is implemented in JavaScript, it cannot catch calls to load
extra code at runtime and handle the new code.

3.3. Target and impact. Today, usually only baseline constructs can be used
when developing JavaScript applications4. The ones most affected by this are,
of course, developers working on JavaScript frameworks. Such frameworks can

3If the code must be written in a language other than JavaScript, this usually results
in rendering the developer unable to use certain high-level features which are not available
in the original language; this may include prototype inheritance, variadic functions, duck
typing, iterators, generators, loading code on-demand, etc.

4The most notable exception consists of Firefox add-ons. Obviously, they can take ad-
vantage of the latest JavaScript implementation which is used by the browser.

JAVASCRIPT GENERATORS 101

also be used outside of the web and into the realm of gadgets, where JavaScript
is probably the most popular language5. As expected, JavaScript is also used
when writing add-ons for browsers6. JavaScript is also popular in other circles,
as a plugin language for many environments (PDF files, Nokia’s Qt framework,
OpenOffice, Google Docs, Microsoft Office and more). JavaScript is also used
as a general-purpose application programming language (Palm’s webOS which
is used for phones and other platforms, the GNOME Shell, KDE’s kjs, etc).

4. Implementing JavaScript generators in ECMAScript 3

In order to address the issues presented we have built a compiling frame-
work called Alkaline7. The framework is written in JavaScript in order to
provide support for re-entry during runtime when the Function constructor
or eval function are invoked.

4.1. Architecture overview. Alkaline is composed of a few modules and
some glue which sends data from one module to the next. Between each stage,
an Abstract Syntax Tree (AST) is used as the intermediary representation for
the program. Four modules are provided:

• A parsing module which takes JavaScript source code and builds an
AST. This module is built using the ANTLR parser generator and
includes two distinct parts, a lexer and a parser.
• Analyzer annotates the AST (for instance, this resolves variable refer-
ences).
• 5to3 transforms AST structures from the latest JavaScript specifica-
tion into structures supported by ECMAScript 3.
• Printer transforms the AST back into source code.

4.2. Generators. Generators have been introduced into the JavaScript lan-
guage from version 1.7[9] and they have been described as “a better way to
build Iterators”[10]. There are two main differences between a normal function
and a generator:

• generators persist the state of local variables after they yield each
result
• on each subsequent invocation generators continue execution from the
yield statement which generated the last item

5The following environments use JavaScript: Apple’s Dashboard Widgets, Microsoft’s
Gadgets, Yahoo! Widgets, Google Desktop Gadgets and Serence Klipfolio.

6To be more specific, this applies to all the major browsers except Internet Explorer:
Firefox, Chrome, Opera, Safari and maybe others.

7Alkaline is open source and available at https://code.google.com/p/alkaline-js/.

102 GHIŢĂ DANIEL-CONSTANTIN

4.2.1. A simple example. Listing 1 illustrates a simple generator which yields
the next odd number each time it is invoked. The generator is invoked five
times in order to return the first five odd numbers.

Listing 1. A simple generator

1 function oddNumber () {
2 var i = 0 ;
3 while (true) {
4 i f (i % 2)
5 yield i ;
6 i++;
7 }
8 }
9

10 function printOdd (count) {
11 var i t e r = oddNumber () ;
12 while (count−−)
13 pr in t (i t e r . next ()) ;
14 }
15

16 printOdd (5) ;

In a way, the generator itself works somewhat similar to a separate thread:
once created, it has its own state and even though it never ends, it does not
block the main thread.

We can take advantage of the fact that JavaScript offers first-class func-
tions and translate generators into regular functions, and use yield state-
ment. In order to demonstrate how the method described affects the code,
in Listing 2 we implement the previous simple generator using only ES3 con-
structs.

The code in Listing 2 takes advantage of the fact that in JavaScript func-
tions are used as constructors and transforms the generator-function oddNumbers
into both a class and a function which returns a new instance of the class (line
2).

In order to simulate the resume behavior, all blocks of code leading up to
the yield statement are placed behind if statements which test _continuation
such that when “resuming” execution, they are skipped. All loops and condi-
tionals which gate the execution path toward the yield instruction are injected
code such that they always take the correct branch when _continuation is
true.

JAVASCRIPT GENERATORS 103

Listing 2. A simple generator modified to use only EC-
MAScript 3 constructs

1 function oddNumber () {
2 i f (! (this i n s t an c e o f oddNumber))
3 return new oddNumber () ;
4 }
5

6 oddNumber . prototype . next = function () {
7 i f (! this . c on t i nua t i on) {
8 this . l o c a l i = 0 ;
9 }

10 while (this . c on t i nua t i on | | true) {
11 i f (this . c on t i nua t i on | | this . l o c a l i % 2) {
12 i f (! this . c on t i nua t i on) {
13 this . c on t i nua t i on = true ;
14 return this . l o c a l i ;
15 } else
16 this . c on t i nua t i on = fa l se ;
17 }
18 this . l o c a l i ++;
19 }
20 }
21

22 function printOdd (count) {
23 var i t e r = oddNumber () ;
24 while (count−−)
25 pr in t (i t e r . next ()) ;
26 }
27

28 printOdd (5) ;

4.2.2. Multiple yield statements, StopIteration. A natural extension of the
simple generator previously presented is the support for multiple yield in-
structions. This increases the flexibility of the method but also complicates
the implementation which must support it. Additionally, if after a call to
next() the generator “terminates” without yielding anything, it automati-
cally throw an error which inherits StopIteration. Listing 3 demonstrates
all these mechanisms at work. The exception StopIteration is easy to solve
here by simply adding a throw statement at the end of the generator body.

The conditions which gate execution when resuming after a yield will
need to be updated. Basically, at any point in the source, if we are resuming
to a yield which is placed after the instruction at the current position we
must skip executing the instruction we are considering. If, on the other hand,

104 GHIŢĂ DANIEL-CONSTANTIN

the yield to which we are resuming is inside one of the branches which be-
longs to the current instruction then we must guide execution toward it. This
means that if the instruction gates the third yield we must skip it completely
when this._continuation > 3 and we must enter one of the branches when
this._continuation == 3. Listing 4 applies this approach to the generator
from listing 3 mentioned previously. If the resume flag indicates a yield which
is placed before the current instruction, the code should behave as if the flag
is cleared (i.e. normal execution).

Listing 3. A generator with multiple yield statements using
only classic constructs (simplified)

1 function mult ip l eGenerator () {
2 i f (! (this i n s t an c e o f mult ip l eGenerator))
3 return new mult ip leGenerator () ;
4 this . c on t i nua t i on = 0 ;
5 }
6 mult ip l eGenerator . prototype . next = function () {
7 i f (this . c on t i nua t i on < 1) {
8 this . c on t i nua t i on = 1 ;
9 return ” f i r s t ” ;

10 }
11 i f (this . c on t i nua t i on < 2) {
12 this . c on t i nua t i on = 2 ;
13 return ” second” ;
14 }
15 i f (this . c on t i nua t i on < 3) {
16 this . c on t i nua t i on = 3 ;
17 return ” th i rd ” ;
18 }
19 throw new S top I t e r a t i on () ;
20 }
21

22 var g = mult ip leGenerator () ;
23 pr in t (g . next ()) ; // p r i n t s ” f i r s t ”
24 pr in t (g . next ()) ; // p r i n t s ” second”
25 pr in t (g . next ()) ; // p r i n t s ” th i rd ”
26 pr in t (g . next ()) ; // throws an e r r o r which i s an in s t anc e o f←↩

Stop I t e r a t i on

4.2.3. The send(...) method, generator arguments, exceptions. An impor-
tant feature of generators is the ability to interact with a generator which has
been started. The yield statement does more than just pause execution and

JAVASCRIPT GENERATORS 105

wait for it to be resumed later. It can return a value and sometimes even
throw an exception. By default, it returns undefined.

When generatorInstance.send(something) is called, the generator will
be resumed (similar to calling next()) and the previously paused yield in-
struction will return something. This makes it possible to send new informa-
tion into the generator when it is resuming. By calling
generatorInstance.throw(exception) the generator will be resumed and
the previously suspended yield will throw the given exception. Additionally,
similar to functions, generators can take arguments. Listing 4 shows a genera-
tor for the set of natural numbers. The generator receives an optional starting
value—which defaults to 0—and return a new number each time next() is
invoked. By calling send(number) a value can be fed into the generator in
order to reset its position to an arbitrary point. This listing demonstrates the
use of arguments for generators and the send(...) method.

Listing 4. A generator which counts to +Infinity

1 function counter (s t a r t) {
2 i f (! s t a r t)
3 s t a r t = 0 ;
4 while (true) {
5 var r e s t a r t = yield s t a r t++;
6 i f (! isNaN (r e s t a r t))
7 s t a r t = r e s t a r t ;
8 }
9 }

10

11 var f = counter () ;
12 pr in t (f . next ()) ; // p r i n t s 0
13 pr in t (f . next ()) ; // p r i n t s 1
14

15 f = counter (3) ;
16 pr in t (f . next ()) ; // p r i n t s 3
17 pr in t (f . send (8)) ; // p r i n t s 8
18 pr in t (f . next ()) ; // p r i n t s 9

It should be noted that both send(...) and throw(...) wake up the
generator. Of course, calling send(undefined) is the same as calling next().
Calling send(something) before the generator yields the first value will throw
a TypeError.

Adding support for generator arguments is easy: the names of the argu-
ments are added to the list of local variables and the arguments received in the
generator constructor are saved just like local variables. In order to support
the send(...)method, the generator must take the new value when resuming.

106 GHIŢĂ DANIEL-CONSTANTIN

Listing 5 translates the generator counter into basic constructs with support
for send(...), throw(...) and generator arguments.

Listing 5. A generator which counts to +Infinity using only
ES3 constructs

1 function counter (s t a r t) {
2 i f (! (this i n s t an c e o f counter))
3 return new counter (s t a r t) ;
4 this . c on t i nua t i on = 0 ;
5 // the un l i k e l y name i s used to obta in a r e f e r e n c e to ←↩

the p r im i t i v e <undef ined>
6 this . y i e l d v a l u e = this . th i sPropertyDoesNotExist ;
7 this . y i e l d e x c e p t i o n = nu l l ;
8 this . l o c a l s t a r t = s t a r t ;
9 }

10 counter . prototype . next = function () {
11 var r e s t a r t ;
12 i f (! this . l o c a l s t a r t)
13 this . l o c a l s t a r t = 0 ;
14 while (true) {
15 return this . l o c a l s t a r t ++;
16 r e s t a r t = this . y i e ldReturn () ;
17 this . l o c a l r e s t a r t = r e s t a r t ;
18 i f (! isNaN (this . l o c a l r e s t a r t))
19 this . l o c a l s t a r t = r e s t a r t ;
20 }
21 }
22 counter . prototype . next = function () {
23 var nextValue = this . next () ;
24 i f (this . c on t i nua t i on < 0)
25 throw new S top I t e r a t i on () ;
26 return nextValue ;
27 }
28 counter . prototype . y i e ldReturn = function () {
29 var except ion ;
30 i f (except ion = this . y i e l d e x c e p t i o n) {
31 this . y i e l d e x c e p t i o n = nu l l ;
32 throw except ion ;
33 } else {
34 var value = this . y i e l d v a l u e ;
35 this . y i e l d v a l u e = this . th i sPropertyDoesNotExist ;
36 return value ;
37 }
38 }
39 counter . prototype . send = function (y i e ldVa lue) {
40 i f (typeo f y i e ldVa lue != ’ undef ined ’) {
41 i f (this . c on t i nua t i on == 0)
42 throw new TypeError () ;
43 this . y i e l d v a l u e = yie ldVa lue ;
44 }
45 return this . next () ;
46 }
47

48 var f = counter () ;

JAVASCRIPT GENERATORS 107

49 pr in t (f . next ()) ; // p r i n t s 0
50 pr in t (f . next ()) ; // p r i n t s 1
51

52 f = counter (3) ;
53 pr in t (f . next ()) ; // p r i n t s 3
54 pr in t (f . send (8)) ; // p r i n t s 8
55 pr in t (f . next ()) ; // p r i n t s 9

4.2.4. The close() method and finally blocks. To quote from a previous
paragraph:

If, on the other hand, the yield to which we are resuming is
inside one of the branches which belongs to the current instruc-
tion then we must guide execution toward it.

The close method is the opposite of this: when the user invokes it, the
generator must return to the point in the source where it last left off, but
instead of starting to execute instructions it must execute all the finally
clauses and nothing else. This brings into discussion another aspect which
was neglected until now: finally clauses. Whenever a JavaScript function
returns, any finally clauses which are active are executed. This happens only
for return and not yield because the latter is a pausing mechanism and
execution is expected to resume later. By replacing yield statements with
return equivalents we are changing the behavior: the finally clauses will
be executed for each ”yield” and—depending on what code is inside them—
this may cause problems. The solution is simple, all we have to do is gate
the content of the finally clause so it is only executed when the genera-
tor is closing and when it is not paused (e.g. finally { ... } becomes
finally { if (normal execution or closing) { ... }}).

4.2.5. When the generator uses eval(...). If the body of the generator calls
the function eval then additional steps must be performed. Because the code
compiled and executed by eval may reference local variables and we have
moved all of them into properties of the generator instance, we must either up-
date the code which eval will compile so all the references are resolved, or make
sure the variables exist and are up to date before calling eval. The latter op-
tion is simpler than parsing, analyzing and changing the code which will be exe-
cuted. For instance, if a generator uses two variables, a and b, and the first one
is the name of a function, the line b = eval(a+ "()") would be changed into
var a = this._local_a, b = this._local_b; this._local_b = eval(a
+ "()") which works as expected.

4.2.6. Putting it all together. In this section we have built a solution for trans-
lating generators for JavaScript into a structure which uses only ECMAScript
version 3 constructs and is therefore supported in all ECMAScript environ-
ments. No code outside of the generator has to be changed which makes this

108 GHIŢĂ DANIEL-CONSTANTIN

a local solution. Listing 6 show the template for implementing a generator.
The steps are:

(1) If the class StopIteration does not exist, create it and make it inherit
Error.

(2) Create the class for the generator. Inside the constructor, create the
start state with the arguments. Save all the arguments in local prop-
erties of the generator instance. Move the generator-function to the
next method.

(3) Redirect all references to arguments and local variables into properties
of the generator instance.

(4) Implement continuation and transform yield statements into return
statements which also push the new state to the list of states. Update
finally clauses so they don’t do anything when the function returns.

(5) If the function eval is used, make all the variables reference the current
(saved) state before invoking eval.

(6) Add the static methods next(), yieldReturn(), send(yieldReturn),
"throw"(exception) and close(). It is also possible to place these
methods inside a single object and inherit it using the prototype chain
(which would generate less code when there is more than one genera-
tor).

Listing 6. The template used to translate a generator into
ECMAScript 3 constructs

1 i f (typeo f S t op I t e r a t i on == ’ undef ined ’) {
2 var S top I t e r a t i on = function () {} ;
3 S top I t e r a t i on . prototype = new Error () ;
4 }
5

6 function generatorName (arg1 , arg2 , . . .) {
7 i f (! (this i n s t an c e o f generatorName))
8 return new generatorName (arg1 , arg2 , . . .) ;
9 this . c on t i nua t i on = 0 ;

10 this . y i e l d v a l u e = this . th i sPropertyDoesNotExist ;
11 this . y i e l d e x c e p t i o n = nu l l ;
12 this . c l o s i n g = fa l se ;
13 this . l o c a l a r g 1 = arg1 ;
14 this . l o c a l a r g 2 = arg2 ;
15 . . .
16 }
17 generatorName . prototype . next = function () {
18 . . . a c tua l genera tor code . . .
19 }
20 generatorName . prototype . next = function () {
21 var nextValue = this . next () ;
22 i f (this . c on t i nua t i on < 0)
23 throw new S top I t e r a t i on () ;
24 return nextValue ;
25 }

JAVASCRIPT GENERATORS 109

26 generatorName . prototype . y i e ldReturn = function () {
27 var except ion ;
28 i f (except ion = this . y i e l d e x c e p t i o n) {
29 this . y i e l d e x c e p t i o n = nu l l ;
30 throw except ion ;
31 } else {
32 var value = this . y i e l d v a l u e ;
33 // the un l i k e l y name i s used to obta in a r e f e r e n c e ←↩

to the p r im i t i v e <undef ined>
34 this . y i e l d v a l u e = this . th i sPropertyDoesNotExist ;
35 return value ;
36 }
37 }
38 generatorName . prototype [’ throw ’] = function (except ion) {
39 this . y i e l d e x c e p t i o n = except ion ;
40 return this . next () ;
41 }
42 generatorName . prototype . send = function (y i e ldVa lue) {
43 i f (typeo f y i e ldVa lue != ’ undef ined ’) {
44 i f (this . c on t i nua t i on == 0)
45 throw new TypeError () ;
46 this . y i e l d v a l u e = yie ldVa lue ;
47 }
48 return this . next () ;
49 }
50 generatorName . prototype . c l o s e = function () {
51 this . c l o s i n g = {} ; // c r e a t e a new ob j e c t
52 while (this . c l o s i n g)
53 try {
54 this [’ throw ’] (this . c l o s i n g) ;
55 } catch (e) {
56 i f (e == this . c l o s i n g | | (e i n s t an c e o f ←↩

S top I t e r a t i on))
57 this . c l o s i n g = fa l se ;
58 else
59 // a d i f f e r e n t e r r o r was thrown
60 throw e ;
61 }
62 }

5. Conclusion

JavaScript generators from language 1.7 can be successfully implemented
on top of the baseline ECMAScript 3 using a source-to-source compiler.

The proposed method is complete and does not sacrifice any feature which
JavaScript brings to the table in order to bring this support to legacy envi-
ronments.

A compiler toolkit has been implemented which allows compiling new ver-
sions of JavaScript and targeting legacy platforms.

5.1. Future Research.

110 GHIŢĂ DANIEL-CONSTANTIN

(1) The idea presented here can be taken further and support can be im-
plemented for all the features added by recent versions of JavaScript.

(2) A block of code with a very small footprint can be used to decide at
runtime whether to load the original JavaScript source or the trans-
lated one. This would eliminate any small speed-bumps which the
translator may add as long as the user is using an environment which
supports the complete set of JavaScript instructions while still sup-
porting everyone with an outdated environment.

(3) Additionally, the Abstract Syntax Tree generated by the parser can be
used in order to perform optimizations.

(4) The output module can be replaced with one which generates C++
code or LLVM intructions.

References

[1] Apache configuration for v8cgi. http://code.google.com/p/v8cgi/wiki/ApacheConfiguration,
last updated May 12, 2010.

[2] Google Caja, a source-to-source translator for securing Javascript-based web content.
http://code.google.com/p/google-caja/, retrieved Jun 9, 2010.

[3] Overview of the Caja system. http://code.google.com/p/google-
caja/wiki/CajaOverview#Cajita, last updated Jul 17, 2009.

[4] Douglas Crockford. JavaScript: The world’s most misunderstood programming lan-
guage, 2001. http://www.crockford.com/javascript/javascript.html.

[5] Douglas Crockford. JavaScript: The Good Parts. O’Reilly, May 2008.
[6] Ecma International. ECMA-262, 5 edition, December 2009. http://www.ecma-

international.org/publications/files/ECMA-ST/ECMA-262.pdf
[7] Eli Grey. Pausing JavaScript with async.js. Eli Grey’s Blog, January 2010.

http://eligrey.com/blog/post/pausing-javascript-with-async-js.
[8] Neil Mix. Threading in JavaScript 1.7. Neil Mix’s blog, January 2007.

http://www.neilmix.com/2007/02/07/threading-in-javascript-17/.
[9] Mozilla Developer Center. New in JavaScript 1.7, 2006.

https://developer.mozilla.org/en/New in JavaScript 1.7 (revision 144).
[10] Mozilla Developer Center. Iterators and Generators, 2007.

https://developer.mozilla.org/en/Core JavaScript 1.5 Guide/Iterators and Generators
(revision 13).

Master student, Babeş-Bolyai University, Faculty of Mathematics and Com-
puter Science, 1 M. Kogălniceanu St., 400084 Cluj-Napoca, Romania

E-mail address: bluepx@gmail.com

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 3, 2010

COMPUTER VISION AIDED MEASUREMENT OF

MORPHOLOGICAL FEATURES IN MEDICAL OPTICS

BOGDANA BOLOGA AND ADRIAN SERGIU DARABANT

Abstract. This paper presents a computer vision aided method for non
invasive interupupillary(IPD) distance measurement. IPD is a morpho-
logical feature requirement in any oftalmological frame prescription. A
good frame prescription is highly dependent nowadays on accurate IPD
estimation in order for the lenses to be eye strain free. The idea is to
replace the ruler or the pupilometer with a more accurate method while
keeping the patient eye free from any moving or gaze restrictions. The
method proposed in this paper uses a video camera and a punctual light
source in order to determine the IPD with under millimeter error. The
results are compared against standard eye and object detection routines
from literature.

1. Introduction

Research in this domain has a powerful motivation because of its signif-
icant contribution to the real world. It has a major importance to industry,
community (helping the visually impaired) and, one of the most prominent
application fields, medical computer vision or medical image processing [1].

Object Recognition raises many problems, the most important being that
human visual recognition is not yet fully understood [1] and this makes it
difficult to provide exact mathematical and algorithmic descriptions of the
processes undertaken by the human brain. Human vision is invariant to the
rotation, size or position of the objects and its attention is guided by an
early processing of the image. These are problems that recognition systems,
including the one presented in this paper, attempt to solve.

Received by the editors: June 28, 2010.
2010 Mathematics Subject Classification. 68T45, 68U10.
1998 CR Categories and Descriptors. I.4.7 [Computing Methodologies]: IMAGE

PROCESSING AND COMPUTER VISION – Feature Measurement ; I.4.6 [Computing
Methodologies]: IMAGE PROCESSING AND COMPUTER VISION – Segmentation.

Key words and phrases. computer vision, object recognition, stereo vision, medical
applications.

This work is supported by the Romanian Ministry of Education in the frame of PN2
ID-550/2007.

111

112 BOGDANA BOLOGA AND ADRIAN SERGIU DARABANT

Object Recognition is dependent on the process that captures the visual
image as well as on the preprocessing of the input. A typical vision system
is composed of several modules before the actual Object Recognition step
[1, 2]: visual image capturing, noise reduction and enhancement of details and
dividing the image into regions of interest (segmentation). The results of all
the intermediary stages are essential to the correctness and robustness of the
recognition algorithms. Post-processing algorithms can be afterwards used to
obtain higher localization accuracy.

This paper proposes a non invasive method for precise measurement of
the interpupillary distance (IPD). In order to achieve this, the system uses
a camera, light reflexions in the center of the pupils and an auxiliary object
containing markers for precise eye localization and pixel to millimeters con-
version. The high accuracy of the detection as well as the low computational
cost are essential to the project.

The recognition system described in this paper is divided into three main
parts: the first handles capturing the video stream and the calibration of the
camera(s); the second deals with the preprocessing of the frames in order
to obtain the final image where the detection algorithm is applied, and the
last part computes the ophthalmological measurements. The detection stage
is divided into: precise circle center detection (for the markers) and precise
pupil center detection.

2. Prerequisites

For pupil recognition the system uses a light source directed towards the
face of the patient. This light is reflected in the center of each pupil (Figure
1) allowing precise localization.

Figure 1. Illuminated center of pupils

In order to convert between the pixel and the metric system we use an
auxiliary object with markers. The object has three white circles with a black
dot inside, as shown in Figure 2. The markers are well defined shapes with
high contrast colors in order to simplify detection.

MEASUREMENT OF MORPHOLOGICAL FEATURES IN MEDICAL OPTICS 113

Figure 2. Auxiliary object with markers

In terms of illumination, the recognition system is designed to work un-
der changeable visual illumination conditions. The problem of multiple light
sources and multiple reflections around the eye zone is addressed as presented
in Figure 3. The algorithm performs a selection of the pupil candidates. How-
ever, in some cases, these can interfere with the accuracy of the method.

Figure 3. Multiple reflections issue

Another important hardware aspect is the capturing device. Higher reso-
lutions can significantly increase the detection accuracy while smaller resolu-
tions improve the speed of the process. The algorithm is designed to work on
changeable resolution values.

3. Marker Detection (Circle Detection)

The detection of well defined shapes, such as circles and ellipses, can be
achieved by using several standard algorithms. The following approaches have
been researched in order to test for best accuracy and robustness: Hough Cir-
cle detection [1, 2, 4] and an Ellipse Fitting method [4, 8]. In both cases,
the processing time was fitted for real time processing. However, under nor-
mal testing conditions, the number of omissions and false positives was high
(around 25%-50%) and the precision of the localization was not satisfactory.

114 BOGDANA BOLOGA AND ADRIAN SERGIU DARABANT

The results of the Hough Circles Detection algorithm massively differed
with respect to the input parameters and image parameters. The Ellipse
Fitting method has proven to be relatively more stable and was incorporated
as part of the detection system. The preprocessing stage is composed of:

• Image enhancement algorithms: opening and closing - morphological
filters used for eliminating the noise;

• Canny edge detection - the contours are given as input to the Ellipse
Fitting method

• Image enhancement: closing filter - in order to create more connected
contours (Figure 4)

Figure 4. Final preprocessing step: Canny Edge Detection
and Closing

Figure 5. Ellipse Fitting results

After applying this technique we have the approximate location of some
of the circles (it is not necessary that all markers are found) and certain false
positives (Figure 5). Further analysis is needed in order to achieve better
results. First, the false positives are eliminated by several methods:

MEASUREMENT OF MORPHOLOGICAL FEATURES IN MEDICAL OPTICS 115

• The preponderant values of the R, G and B channels inside the circles
must be approximatively equal (shades of gray). An intensity threshold
is not used so as not to impose any restraints on the luminosity of the
scene.

• Color segmentation of the surrounding zone is performed in order to
obtain the real object’s dimensions. They must not highly differ from
the candidate circle dimensions (in certain cases ellipsoid patters ap-
pear after the edge detection step).

• False positives are detected by comparing the circles’ areas with the
median area value.

In case at this point we have not selected three or more valid marker zones
we apply a Fast Template Matching algorithm. The template image passed
on to the method is chosen from the previously found markers in order to
enhance localization. False positive elimination is performed after this step as
well.

A final adjustment is necessary to increase precision, as illustrated in Fig-
ure 6. We position each of the found markers inside the center of the black
dot:

• The marker image zone is binarized using and adaptive threshold
• Color segmentation is used to detect the black zone in the center of

the white circle
• The enclosing square of the black circle is computed; the center of the

circle is considered to be the center of the square; for higher precision,
the result of this step is returned as a floating point number.

Figure 6. Center detection on binarized image of circle

Knowing the distance between the left and the right circle in pixels and
dividing it to the real distance in millimeters (110mm in our case) gives us the
ratio pixel to millimeters of the image.

116 BOGDANA BOLOGA AND ADRIAN SERGIU DARABANT

4. Pupil Detection

There is much prior work on detecting and localizing facial features [1, 4],
however most of these methods approach a general solution with approxima-
tive results while we are interested in extremely precise localization.

In this paper we present a fast and robust method for precise eye local-
ization starting from the implementation of the Paul-Viola algorithm [10] for
object detection using a boosted cascade of Haar-like features [2, 4]. The
results of this method applied with an eye trained classifier are a sequence
of rectangles representing the candidate eye zones. This includes many false
positives and redundant information.

In terms of execution time, the algorithm performs well on low resolution
images but it proved not to be suitable for a real time usage, especially when
working with high resolution images. Figure 7 illustrates the results of the
standard method compared to the final results.

Our detection system makes use of the Haar-like features in an efficient way
that allows real-time processing. The source image is down sampled several
times until we reach a minimum predefined resolution. The eye detection
technique is applied starting from the smallest resolution image to the highest
resolution image until two valid eye zones are selected. At each step the
following selection methods are applied:

• Eye zones are separated into left and right eye candidates by taking
as vertical axis the mean value of the centers of all detected rectangle
zones. The vertical axis is dynamically chosen so as not to impose any
restraints on the position of the face in the image.

• False positives are eliminated by comparing the eye zone areas with
the median area value. We do not impose a predefined eye dimension.

• All eye pairs of the remaining candidates are computed and inadequate
pairs are eliminated based on angle and distance measurements. The
minimum angle and distance parameters are highly tolerant. However
it is presumed that two eye zones cannot considerably overlap or have
an angle larger than 60 degrees.

Generally the algorithm detects two valid eye zones after the first or the
second iteration. The processed image is 4 times to 8 times smaller than the
original which considerably reduces the execution time.

After choosing the left and right eye pair, further processing is needed
in order to achieve high precision. The bright reflections in the pupils are
searched inside the eye rectangles. The existence of multiple reflections in the
eyes and eye glasses frames has a negative effect on the reflection candidates.
This problem is addressed by taking into consideration all bright spots found
in the surrounding zone and choosing the best fit pair.

MEASUREMENT OF MORPHOLOGICAL FEATURES IN MEDICAL OPTICS 117

Figure 7. Left: Final post-processing results; Right: Initial
result of detection;

The detection of the bright pupil effect has been used for eye detection and
tracking [11, 12]. This effect takes place in near infrared illumination and the
result is similar to the reflections in our images. This type of approach uses
a set of two images with brightened respectively dark pupils. The difference
image is used in order to obtain the reflections. Haro et al. [12] captured the
two images for each frame using a system of two lightning sources. Zhao and
Grigat [11] captured only one image per frame containing the brightened pupils
and removed the bright spots by applying morphological opening operation [1],
yet they applied another more complex algorithm for some special cases (where
the pupils were not bright enough).

We use a similar technique for detecting the bright spots without the use
of infrared lightning. By performing opening operation on the Red channel
(where we observed that white light is less visible) we obtain the dark image.
The difference between this image and one of the other color channels (where
the white light is more visible) gives us the illuminated spots (Figure 8).
Histogram equalization [1] is previously applied on both channels and allows
us to correctly localize the reflection even when it is not clearly visible (as
shown in Figure 8 and Figure 9).

Choosing the best pupil pair is done by heuristically selecting the brightest
points closest to the center of the eye rectangle. Shape and intensity resem-
blance is also taken into consideration.

5. Experiments

In order to evaluate the presented detection system we collected two test
sets, shown in Table 1. The images in the first set come from a normal
usage and are obtained from different subjects under different conditions. The

118 BOGDANA BOLOGA AND ADRIAN SERGIU DARABANT

Figure 8. Original image with corresponding bright and dark-
ened channels

Figure 9. Left: Channels difference; Right: Final selection

Test Set Size Contents
Set 1 159 1600x1200 Images from normal usage
Set 2 30 Various Resolutions - special cases

(low illumination, multiple light sources, etc.)
Table 1. Experimental data-photos taken on patients.

images were taken using a high resolution camera. The distance and the angle
between the subjects and the camera differ slightly.

The second data set contains images specially captured in highly changing
conditions. Multiple light sources were tested as well as low contrast images.
The distance between the subjects and the cameras differ greatly as well as
the angle of the camera and the rotation of the face.

MEASUREMENT OF MORPHOLOGICAL FEATURES IN MEDICAL OPTICS 119

Test Set MARKER Hit Rate (%) Mean error (pixels)
Localization

Set 1 Ellipse Fitting 74.2% 23.25
(159 images) EyeIPD 94% 6.2
Set 2 Ellipse Fitting 61.5% 32.4
(30 images) EyeIPD 94% 3.12
Table 2. Hit rate - markers detected and pixels mean error estimation.

Test Set EYE Hit Rate (%) Mean error (pixels)
Localization

Set 1 Haar Features 85% 24.4
(159 images) EyeIPD 94% 3
Set 2 Haar Features 93% 26.5
(30 images) EyeIPD 96% 2.8
Table 3. Hit rate - eyes detected and pixels mean error estimation.

We compared the results of the ellipse fitting method, Haar detection and
the detection algorithm (EyeIPD) presented here with the manually chosen
positions. For each image the manual locations of the eyes and markers were
selected in a specially created application. These values were considered to
have an accuracy of 100% (a 0 pixel error). Table 2 and 3 show the hit factor
(percent of correctly detected markers/eyes) and the average measured error
in pixels.

Considering that the average pixel to millimeter ratio is around 9 pix-
els/mm we get an 4-8mm error in computing the IPD using Ellipse Fitting
and Haar eye detection. Using the EyeIPD method the maximum error is
around 0.73mm. This yields an improvement in accuracy of four to eight
times.

6. Conclusions

In this paper we propose a detection system that can be used for precise
measurements in Medical Optics. The algorithm is designed and optimized
in order to allow working on video capture and multiple resolution images.
The method is flexible with respect to changes in illumination and contrast,
camera angle, distance between the face and the camera and face rotations.

The recognition system developed does eye detection and localization: the
position of the center of the eye is detected with an accuracy of more than

120 BOGDANA BOLOGA AND ADRIAN SERGIU DARABANT

98% in more than 94% of the testing images. The location of the center of
the eyes is then used for computing the exact interpupillary distance of the
patient. For the support localization, the markers are circles that simplify
detection and are attached to the eye-glasses for providing more information
about the real distances. The three support circles centers were detected with
an accuracy of over 99% in more than 90% of the images.

References

References

[1] R. Gonzales, R. Woods, Digital Image Processing, New Jersey: Pearson Education, Inc.,
2008.

[2] M. Bennamoun, G. J. Mamic, Object Recognition Fundamentals and Case Studies,
Trownbridge : Springer, 2002.

[3] I. Pitas, Digital Image Processing Algorithms, New York : John Wiley & Sons, Inc.,
2000.

[4] G. Bradski, A. Kaehler, Learning OpenCV, s.1. : O’Reilly Media, 2008.
[5] A. Fitzgibbon, M. Pilu, R. B. Fisher, Direct Least Square Fitting of Ellipses, Pattern

Analysis and Machine Intelligence, 1999, Vol. 21,5.
[6] Wu Chenyu et al., Automatic Eyeglasses Removal from Face Images, Melbourne : s.n.,

2002, Vol. The 5th Asian Conference on Computer Vision.
[7] Hough Transform, Planet Math [Online],

http://planetmath.org/encyclopedia/HoughTransform.html.
[8] R. Halir, J. Flusser, Numerically Stable Direct Least Squares Fitting of Ellipses. s.1 :

Institute of Information Theory and Automation, Academy of Sciences of the Czech
Republic.

[9] X. Jiang et al., Towards Detection of Glasses in Facial Images, 1998.
[10] P. Viola, M. Jones, Rapid Object Detection Using a Boosted Cascade of Simple Features,

Mitsubishi Electric Research Labs, 2001.
[11] S. Zhao, R. Grigat, Robust Eye Detection for Cockpit Access Control Using an Appear-

ance Model and Radial Symmetry Transform Under Active Near Infrared Illumination,
Hamburg University of Technology, Germany, 2007

[12] A. Haro, M. Flickner, I. Essa, Detecting and Tracking Eyes by Using their Physiological
Properties, Dynamics and Appearance, in Proceedings of International Conference on
Computer Vision and Pattern Recognition, 2000.

Babes Bolyai University, Faculty of Mathematics and Computer Science,
Cluj Napoca, Romania

E-mail address: bbsd0068@scs.ubbcluj.ro, dadi@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 3, 2010

A COMPUTER VISION APPROACH TO OBJECT

TRACKING AND COUNTING

SERGIU MEZEI AND ADRIAN SERGIU DARABANT

Abstract. This paper, introduces a new method for counting people or
more generally objects that enter or exit a certain area/building or perime-
ter. We propose an algorithm (method) that analyzes a video sequence,
detects moving objects and their moving direction and filters them ac-
cording to some criteria (ex only humans). As result one obtains in and
out counters for objects passing the defined perimeter. Automatic object
counting is a growing size application in many industry/commerce areas.
Counting can be used in statistical analysis and optimal activity scheduling
methods. One of the main applications is the approximation of the number
of persons passing trough, or reaching a certain area: airports (customs),
shopping centers and malls and sports or cultural activities with high at-
tendance. The main purpose is to offer an accurate estimation while still
keeping the anonymity of the visitors.

1. Introduction

Researches in video processing and implicitly image processing have been
very active in the last years and the result is the abundance of new techniques
that have been successfully adopted in various branches of science, industry,
medicine and security systems. High performance computers have become
widely available at relatively low costs and this makes it possible for many
businesses to track the number of people that walk over their door step using a
simple camera and a PC. Counting people gives retailers knowledge about their
visitors. How they can be manipulated by advertisements, weather, time of day
etc. This is extremely valuable and helpful information which can be used to,
for example, plan staffing and optimum times for cleaning and maintenance,

Received by the editors: June 28, 2010.
2010 Mathematics Subject Classification. 68T45, 68U10.
1998 CR Categories and Descriptors. I.5.4 [Computing Methodologies]: PATTERN

RECOGNITION – Applications; I.4.6 [Computing Methodologies]: IMAGE PROCESS-
ING AND COMPUTER VISION – Segmentation.

Key words and phrases. computer vision, object recognition, blob tracking,counting.
This work is supported by the Romanian Ministry of Education in the frame of PN2

ID-550/2007.

121

122 SERGIU MEZEI AND ADRIAN SERGIU DARABANT

determine opening hours and preferred advertisements, and so forth. The
application itself is based on analyzing video streams from cameras in real
time or from pre-recorded video files. Earlier people counting methods are the
laser beam method which is basically a counter that increments the number
of people every time the beam is interrupted; the ultrasound method, which
sends an ultrasound beam that bounces back of the obstacles and determines
the distance from the source to them in order to determine if the people have
entered a certain area or not. These methods, although they are still used in
many department stores, are highly inexact in their calculations because of the
number of situations in which two persons enter the store next to each other
or the fact that by using the above mentioned methods you can count only
the total number of people and not the number of ins and outs. The main
advantages of the method proposed in this paper, over a regular counting
system are the following:

• Bidirectional counting
• Flexibility of the algorithm when unexpected situations occur
• Surveillance of large entrances or large spaces
• Surveillance of high traffic areas
• Easy integration with databases or online systems
• Easy installation process that does not restrict access to the store or

building

The application is structured in five main parts: the first handles the capturing
of the video (reading the video stream); the second represents the processing
of the individual frames in order to obtain the binary image that contains the
people blobs (binary large objects); the third part handles the blob detection
and tracking part; the fourth part is the actual algorithm that counts the
number of people that enter or exit and the last part, the fifth, handles the
actual output of the application and the data being written on the video
stream.

2. Object Tracking and Counting

This section presents the methods we used to reach the final results as
well as the reasons for which they are used. They are divided into three main
categories:

• Image Enhancement
• Blob Detection
• Blob Tracking

All algorithms are presented using sample images that illustrate the results.
Figure 1(b) shows an example of an original frame from a video. The frame
shows the normal placement of the camera - usually placed on ceilings and

A COMPUTER VISION APPROACH TO OBJECT TRACKING AND COUNTING 123

oriented towards the floor in order to allow object detection and to limit the
field of vision such that identification of the visitors could not be possible. The
counting approach is based in detecting moving objects in the camera field of
vision, identify only human profiles and count them.

Figure 1. Original video frame from the input video.

The first problem that has to be faced here is to correctly identify only
human profiles out of all items passing in front of the cameras using some
kind of blob detection algorithm. The second problem to be dealt with is to
correctly track the detected blobs so that we can keep trajectory information
from one frame to the next and record their direction of movement. This would
allow the identification and counting of objects entering and getting out of the
controlled area. All these should be handled in an environment where light-
ing conditions are not always ideal. As the detection/measurement/counting
process is usually continuous, the method should take care of variations in
lighting during daylight to artificial lighting. Finally, often people tend to
arrive in groups when interest area is highly crowded, thus partially covering
each other even for a bird’s eye view camera perspective. The following para-
graphs describe the operations carried on the video flow, frame by frame in
order to solve the counting problem.

2.1. Image Enhancement Algorithms. These algorithms represent the
first step in the detection process.

2.1.1. Background subtraction. In order to obtain the foreground objects (in
our case the people that enter the area) we need to do a background subtraction
which means to subtract two images [6]. Figure 1(b) shows a video frame with
people walking in the camera field of view, while 1(a) shows a frame with
only static background. This method can be used when we are certain that
we can get the first frame on the video to contain the static background and
use that frame as a base frame and compare the real video frames against
this base frame. It is however improper to assume that static background

124 SERGIU MEZEI AND ADRIAN SERGIU DARABANT

frames with the same lighting conditions as for day, night and in-between
times of the day could be obtained. Light is different according to the seasons
and artificial lighting conditions, so a more complex approach is needed. The
solution should not need to stop the flow of people who enter the measurement
area. The adopted idea is to construct an image object that will contain
an accumulation of frames over time which will represent a mean of those
accumulated images. This accumulator image is subtracted from the current
frame and thus we obtain the foreground objects. Figure 2 represents the
foreground objects obtained from the above explained method.

Figure 2. Foreground objects after subtraction.

The image still contains a lot of noise requiring thus further processing.
The subtracted resulting frame gives a pretty good approximation of the in-
formations we are looking for. Noise should be eliminated in order to avoid
its interference with the blob detection algorithm.

2.1.2. Gray-scaling. In order to convert any color to its approximate level of
gray, one must obtain the values of its red, green and blue (RGB) primaries,
in linear intensity encoding. Then, a percentage of these values are added,
resulting the desired gray value between 0 and 255 (0 is black and 255 is
white). These percentages are chosen due to the different relative sensitivity
of the normal human eye to each of the primary colors (less sensitive to blue,
more to green). More than color conversion, a gray level image only contains
a lot less data to be processed -one byte per pixel as opposed to four bytes per
pixel for true color images. One-channel color images are easier to be dealt
with in computations. They also contain all the information required to solve
the problem and any not needed data is already discarded.

2.1.3. Binary Thresholding (Binarization). The next steps for optimizing blobs
detection is to threshold the image and transform it into a binary one. A

A COMPUTER VISION APPROACH TO OBJECT TRACKING AND COUNTING 125

binary image still contains all needed information four our algorithm while
further reducing data. Binarization is performed on gray images by applying
a threshold and splitting the pixels into only black or white according to their
value compared to the threshold. A good binarization is an essential and dif-
ficult step. One alternative is to choose a default threshold value that would
work well for most videos. Statistical studies on the videos and their frames
revealed that the value of 70 would be sufficient for most images. But there
are special cases where the brightness highly differs from the average value
such that no default threshold could be used. Leaving the task of choosing the
right value to the user is not convenient in this case, as the high level of au-
tomation for the application would be damaged. Basically, after binarization
we get a frame that only has two colors: black and white. The gray disappears
because after binarization, depending on the thresholding value (in our case
70), everything that is under that value becomes black and everything over
that value becomes white. Figure 3(a) represents the frame from Figure2 after
thresholding is applied. At a closer look one can still observe some minor noise
in the image.

Figure 3. Binary image(a), Eroded image(b).

2.1.4. Erosion and Dilation. Erosion is used in order to remove the noise in
images and make the people blobs more exact. It applies a kernel to the image
that erodes the borders of the connected components in a binary image based
on the values from the neighborhood. Erosion is an iterative method, that
can be applied multiple times on an image. Figure 3(b) describes the frame
from Figure 3(a) on which erosion was applied. Erosion is applied in order
to separate lightly connected blobs that are probably part of different blobs
connected by noise or some other overlap or link situations. Dilation applies
a kernel on the image in order to correct irregular pixel-based shapes. The
dialtion is necessary because we want to fill the black regions within the blobs
and make them contiguous. Like erosion, dilation is also an iterative method,

126 SERGIU MEZEI AND ADRIAN SERGIU DARABANT

so it can be applied as many times as the user specifies. Figure 4 represents
the frame from Figure 3(b) on which dilation was applied.

Figure 4. Dilated image-blobs are well separated and compact.

2.2. Blob Detection. Blob detection (blob analysis) involves examining the
blob image and finding each individual foreground object [6, 3, 4]. This may
in some special cases become a rather difficult task, even for the human eye.
Figure 5(a) represents two blobs, which are easily distinguished from one an-
other. When the moving persons have similar colors as the background, the
blobs become rather distorted [1]. Some abnormal situations appear when
blobs contain holes as shown in figure 5(b). Dilation was not sufficient in this
case to completely compact the blob. Blobs are found by finding all adjacent
pixels and putting them together so that the pixels form the blob object [1].
Analyzing contiguous blobs is a straightforward process. Fragmented blobs,
like the one shown in figure 5(c), are harder to analyze since it is difficult to
see if the blob is in fact a blob composed from multiple people. It becomes
impossible to detect that in crowded areas. Still, large area blobs are likely to
be groups of either people or something else that is moving. People standing
in groups are hard to deal with, even for the human eye. When they stand
close together or hold hands they form one big blob, like the one shown in
Figure 6. It is hard to determine how many blobs there actually are in the
image.

Figure 5. Normal blobs(a), Blobs with holes(b), Fragmented blobs(c).

A COMPUTER VISION APPROACH TO OBJECT TRACKING AND COUNTING 127

Figure 6. Multiple people form a larger blob.

It may seem relatively straightforward to divide the larger blobs into
smaller blobs by splitting the blobs with respect to height and width. This
is not as easy, especially in an environment where not only people pass in
the front of the camera (ex: in a mall or shop). People coming from grocery
stores or other similar shops often push trolleys ahead of them. These trolleys
usually appear to be of the same size as a human being. This makes splitting
blobs by height or width a hard task, which must take movement into account.
Two blobs moving horizontally appear larger in height, while moving vertically
has larger width. In the current approach these are not dealt with yet. Blob
analysis is all about identifying the blobs, grouping together adjacent pixels
and representing them using a good data structure [5]. The size of the blob is
not the issue. Even though the blob consists of numerous people it will still be
represented as one blob. This can give rise to other problems such as with the
fragmented blobs which will make one blob appear as many [7]. If the back-
ground subtraction is configured correctly, it should be relatively rare that a
blob will be very fragmented. Therefore, all individual blobs, consisting of
more persons will be represented as one blob in an appropriate data structure.
Simple properties of a blob can be its position, width and height. A good
way to combine position with width and height is to keep information about
the coordinates of the smallest X and Y value, as well as the largest X and Y
values [8]. In this way, one can easily know the position of the blob. It can
find the width and height by subtracting the smallest X coordinate from the
largest and similarly for the Y coordinates. The limitation of this approach is
that the blob’s shape will be known only by a rectangular approximation of
the area surrounding it. This is shown in Figure 7. The point of origin for the
blob is the smallest (X,Y) coordinate.

When blobs can easily be recognized one needs some sort of a data struc-
ture to hold all of the blob instances [9]. Trying to organize them so that
one will quickly match the blobs from older frames to newer ones is a good
idea. To do this in a fast and effective way one could use some advanced
structure like a skip list to categorize them by, for example area or direction.
The overhead of this method and the varying sizes of blobs on each location

128 SERGIU MEZEI AND ADRIAN SERGIU DARABANT

Figure 7. Bounding rectangle on a detected person in the video.

make this an ineffective way to compare blobs quickly. The fastest way to
process the blobs is to simply put them into a list as they appear. This means
actually categorizing them by their X and Y coordinates since the blob image
is systematically processed starting at coordinates (0,0). We use an easy man-
ageable list so that blobs could be quickly added, merged and deleted. Since
the amount of blobs varies with time a dynamic list is required. With these
reasons in mind, we choose a linked list in order to keep track of all the blobs.

2.3. Blob Tracking and Counting. The last step in order to count persons
moving underneath the camera is to see whether a blob passes over a previously
defined boundary that is basically a one pixel wide horizontal line across the
middle of the video frame. The idea is to count a person who travels from
the top towards the bottom of the frame as IN if and only if it passes over
that line and count a person who travels from the bottom towards the top
as OUT, again, only if it passes over that line. Some blobs only move under
the camera and never enter or exit the store. These are in most cases not
counted. The application also retains the track described by a blob in order
to identify each unique blob across successive frames. A frame with blobs in
a previous frame will indicate the blobs movement [6, 4]. If we were to count
people going through a large entrance at the top of the image, knowing the
path of the blobs will show that the middle blob can be counted as entering,
the rightmost blob as exiting and the leftmost blob should not be counted.
Analyzing the path of the blobs is the goal of blob tracking [2]. Blob tracking
was performed with the help of the cvBlob library [10] which labels detected
blobs in order to help tracking them from one frame to another. Figure 8
shows the algorithm applied on a video sequence.

3. Results and Conclusions

We used two video sets in order to statistically determine some of the pa-
rameters for the detection process. Then we applied heuristics for improving
these parameters on video sequences of a few hours. This resulted in an accu-
racy of over 90% for the blob detection process. In the two initial video sets
we detected 12 out of 13 people blobs. From the 20 people blobs that appear

A COMPUTER VISION APPROACH TO OBJECT TRACKING AND COUNTING 129

Figure 8. People detected as blobs, tracked and counted as
in and out.

in the second video sample, only 1 remains undetected. On the experimen-
tal video sequences the counted blobs reached an accuracy of 92%. Out of
3000 people passing only 40 where incorrectly detected - mostly because they
passed in very compact groups in front of the camera. The results also showed
that segmentation can be the most difficult stage in blob detection because its
success depends on the quality and brightness of the image generated by the
illumination conditions.

In this paper we propose an algorithm for real-time detection of objects
and their moving direction in a camera video sequence. Out method allows for
bidirectional counting of moving objects as compared to other exiting methods.
For this current version of the application, the blob detection process is done
by scanning, in a binary image, pixel by pixel until a white pixel is found.
When the white pixel is discovered, we search the area around it in all four
directions in order to find other white connected pixels. This method can be
very resource intensive. A future version of the application will scan areas
instead of pixels. Dividing the frame in a number of areas, like a grid, and
perform the search on the grid areas should allow for an important reduction
in the CPU workload.

References

[1] Araujo, H., Mendonca, A., M., Pinho, A., J., Torres, M. I.: Pattern Recognition and
Image Analysis, Springer, Portugal, 2009

[2] Comaniciu, D., Kanatani, K., Mester R., Suter, D.: Statistical methods in video pro-
cessing, Springer, Prague, Czech Republic, 2004

[3] Huang, D., Jo, K., H., Lee, H., H., Kang, H., J., Bevilacqua, V.: Emerging Intelligent
Computing Technology and Applications, Springer, Ulsan, South Korea, 2009

[4] Lindeberg, T.: Scale-space theory in computer vision, Kluwer Academic Publishers,
Netherlands, 1994

[5] Niels, H., Niels da Vitoria L.: Visual event detection, Kluwer Academic Publishers,
USA, 2001

130 SERGIU MEZEI AND ADRIAN SERGIU DARABANT

[6] Langdon, P., Clarkson, J., Robinson, P.: Designing Inclusive Futures, Springer, London,
UK, 2008

[7] Louban, R.: Image processing of edge and surface defects, Springer, Berlin, Germany,
2009

[8] Stiefelhagen, R., Garofolo, J.: Multimodal Technologies for Perception of Humans,
Springer, Berlin, Germany, 2006

[9] Sunderam, V., S., Dick van Albada, G., Sloot, P., M., A., Dongarra, J., J.: Computa-
tional Science ICCS 2005 Part One, Springer, Atlanta, USA, 2005

[10] http://code.google.com/p/cvblob/

Babes Bolyai University, Faculty of Mathematics and Computer Science,
Cluj Napoca, Romania

E-mail address: dadi@cs.ubbcluj.ro

	0_cover1
	00Contents_1-2
	01Ghonamy_3-24
	02Sirbu_25-36
	03Suciu_37-44
	04Vescan_45-50
	05Dragos_51-60
	06Petrascu_61-70
	07Rausanu_71-86
	08Sterca_87-94
	09Ghita_95-110
	10Bologa_111-120
	11Mezei_121-130

