
Anul LIV 2009

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

2

 RedacŃia: M. Kogălniceanu 1 • 400084 Cluj-Napoca • Tel: 0264.405300

SUMAR – CONTENTS – SOMMAIRE

F. M. Boian, M. FrenŃiu, Professor Leon łâmbulea at his Sixties 3

L. łâmbulea, A. Sabău, Relational Databases and Resource Description
Framework ... 11

B. Genge, Towards Automated Execution of Security Protocols for Web Services 23

A. Dărăbant, A. Gog, Hierarchical Clustering in Large Object Datasets - A Study
on Complexity, Quality and Scalability ... 37

S. Dragoş, M. Collier, Macro-Routing. Performance Evaluation 47

C. Săcărea, V. Varga, Conceptual Knowledge Processing for Databases. An
Overview ... 59

M. Lupea, Default Reasoning by Ant Colony Optimization ... 71

C. Costa, Generalized Formal Definition of Conflict Detection and Resolution 83

V. Petraşcu, D. Chiorean, D. Petraşcu, Proposal of a Set of OCL WFRs for the
Ecore Meta-metamodel .. 89

C. Pătcaş, On the Debts' Clearing Problem .. 109

Zs. Darvay, A Predictor-Corrector Algorithm for Linearly Constrained Convex
Optimization ... 121

Z. Kása, A Note on a Problem of łâmbulea ... 139

* * *, In Memoriam: Professor Emil Munteanu ... 142

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIV, Number 2, 2009

PROFESSOR LEON TAMBULEA AT HIS SIXTIES

FLORIAN M. BOIAN AND MILITON FRENŢIU

Professor Leon Tambulea graduated the Faculty of Mathematics-Mechanics,
section of Computer Science 37 years ago, on June 1972. Due to his remark-
able results as a student he has been offered a position of Assistant Professor
at our faculty. Since then we have been colleagues, and Leon has actively par-
ticipated in the development of this new scientific field of Computer Science
for all these years.

During these years he stepped through all the didactic positions: Assis-
tant Professor since 1972, Lecturer since 1990, Associate Professor since 1992
and, since 1995, full Professor in Informatics Systems. He obtained his Ph.D.
degree in 1985, under the supervision of Prof.Dr. D.D.Stancu, with the thesis
Mathematical Models For Information Structures. Since 2001 he has been a
Ph.D. supervisor himself.

As a professor, he is known for a high level of scientific knowledge at his
courses. Also, he proved to be a distinguished pedagogue, very appreciated by
his students. He introduced and taught many courses for the first time in our
university, in a period without the Internet, and scarce bibliography resources.
He was and continues to be an active participant at the huge evolution of
Computer Science in our faculty during the last 37 years.

Professor Tambulea has important contributions in many fields of Com-
puter Science, and in the education of many generations of computer scientists.
Briefly we mention the following:

∙ Didactic activities in 21 disciplines (lectures, seminaries, laboratories);
∙ 16 published books, university manuals;
∙ 66 published scientific papers;
∙ Many conference participations in Computer science.

He has participated at all activities of our faculty and university:

∙ Director or member of many research grants, or industrial contracts;
∙ Director of endowment grants, having as main beneficiaries our stu-

dents;
∙ Participation in many committees and juries of the students competi-

tions in Computer Science;
∙ Participation in many committees of school children in olympiads;

3

4 FLORIAN M. BOIAN AND MILITON FRENŢIU

∙ Executive Editor of the journal ”Studia Universitatis Babes-Bolyai”,
series Mathematica-Informatica until 1996;

∙ Member in the Editorial Board of the journal ”Studia Universitatis
Babes-Bolyai”, series Informatica since 1996;

∙ Director of a master program in Databases;
∙ Member and organizer of many examination teams: license, disserta-

tions, PhD;
∙ Promoter of the organization of our computers network;
∙ Created many computer programs for managing the various informa-

tion about the students of our faculty.

The main research interest of Professor Tambulea is databases. He has
been, as well, interested in computer graphics and web programming, as we
may notice from the list of published papers.

Due to his qualities of good colleague and organizer, Professor L. Tambulea
was elected dean of the faculty for three different terms. Moreover, Professor
L. Tambulea fulfilled many administrative managerial activities:

∙ Director of the Babes-Bolyai University Computer Center (1992-1993);
∙ Vice-Dean of the Faculty of Mathematics and Computer Science (1992-

1996);
∙ Head of Chair of Information Systems (1996-2000, 2000-2004, 2004-

2007);
∙ Dean of Faculty of Mathematics and Computer Science (1996-2000,

2000-2004, since 2008);
∙ Member of many working groups of the Ministry of National Edu-

cation: CNCSIS (2004-2005), ONBSS (2006-2008), CNATDU (2000-
2003, since 2006).

We, and all his colleagues do appreciate his hard work and effort to teach
our students and to develop our didactic and scientific activity in Computer
Science.

We wish Professor Tambulea a happy and healthy long life, full of achieve-
ments, for the benefit of all faculty members and for his family.

Scientific Activity

Journal and Conference Papers.

(1) Tambulea L., and A. Sabau, From Databases to Semantic Web, STU-
DIA UNIVERSITATIS BABES-BOLYAI, Special Issue for Interna-
tional Conference KEPT 2009, Knowledge Engineering Principles and
Techniques, Cluj-Napoca, July 2-4, 2009, pp.85-88.

PROFESSOR LEON TAMBULEA AT HIS SIXTIES 5

(2) Tambulea L., and M. Horvat, Redistributing fragments into a dis-
tributed database, Int. J. of Computers, Communications and Con-
trol, Vol. 3 (2008), Proceedings of ICCCC 2008, pp. 11-16.

(3) Tambulea L., and M. Horvat, Dynamic Distribution Model in Dis-
tributed Database, Int. J. of Computers, Communications Control,
ISSN 1841-9836, E-ISSN 1841-9844, Vol. III (2008), Suppl. issue:
Proceedings of ICCCC 2008, pp. 512-515.

(4) Tambulea L., and I. Gansca, Generalized Cylinders Surfaces, Studia
Univ. Babes-Bolyai, Informatica, Volume LII, Number 2, 2007, 69-78.

(5) Tambulea L., and M. Frentiu, Professor Florian Mircea BOIAN at his
sixties, Studia Univ. Babes-Bolyai, Informatica, Volume LII, Number
2, 2007, 3-12.

(6) Tambulea L., and H. F. Pop, Management of Web Pages Using XM,
Documents, KEPT 2007 - Knowledge Engineering: Principles and
Technologies, International Conference, Babes-Bolyai University, Cluj-
Napoca, June 6-8, 2007, 236-243.

(7) Tambulea L., and H. F. Pop, Cooperative Model For Web Sites Author-
ing, International Workshop in Collaborative Systems, Cluj-Napoca
2006, Annals of the Tiberiu Popoviciu Seminar, Cluj-Napoca, 28 29
octombrie 2006, 329-336.

(8) Dumitrescu Dan, Sas Laura, Serban Gabriela, Campan Alina, Dara-
bant Sergiu, Pop Horia, Tambulea Leon, Cooperative Learning for Dis-
tributed Data Mining, International Workshop ”Collaborative Support
Systems in Business and Education”, 27-29 octombrie 2005, 432 440.

(9) I. Gansca, Willhem F. Bronsvoort, G. Coman, Tambulea L., Self-
intersection avoidance and integral properties of generalized cylinders,
Computer Aided Geometric Design 19 (2002), pp. 695707.

(10) I.Gansca, Tambulea L., Curves of Bezier type with shape parameters,
Numerical analysis and approximation theory, 2002, 187-198.

(11) Gh.Coman, I.A.Rus, Tambulea L., Professor Dimitrie D. Stancu, at
his 75th birthday anniversary. Studia Babes-Bolyai, Mathematica,
XLVII,4,2002, 3-12 .

(12) I.Gansca, Tambulea L., Parabolic Blanding Surfaces. Automation
Computers Applied Mathematics, vol.10, no.1-2, 2001, 56-61.

(13) M.Frentiu, D.Dumitrescu, B.Parrv, H.F.Pop, Tambulea L., Algoritmi
utili existenti in reteaua Universitatii. Research Seminars, Seminar of
Computer Science, Preprint no.2, 1999, 111-122.

(14) Tambulea L., The Fields of Computer Science, ”Babes-Bolyai” Univer-
sity of Cluj-Napoca, Research Seminars, Seminar of Computer Science,
Preprint no.2, 1997, 19-22.

6 FLORIAN M. BOIAN AND MILITON FRENŢIU

(15) Gh.Coman, Tambulea L., I.Gansca, Multivariate Approximation. Ap-
plications. Seminar on Numerical and Statistical Calculus, Preprint
nr. 1, 1996, 29-60.

(16) Gh.Coman, I.Gansca, Tambulea L., Remodelling Given Polynomial
Bezier Curves and Surfaces, Studia Babes-Bolyai, Mathematica, XLIV,
1, 1998, 29-38.

(17) I.Gansca, Gh.Coman, Tambulea L., Rational Bezier Curves and Sur-
faces with Independent Coordinate Weights, Studia Babes-Bolyai, Math-
ematica, XLIII, 2, 1998, 29-38.

(18) Gh.Coman, I.Gansca, Tambulea L., Remodelling given Bzier spline
curves and surfaces. Studia Babes-Bolyai, Mathematica, XLIII, 1,
1998, 29-38.

(19) I.Gansca, Gh.Coman, Tambulea L., Contributions to Rational Bezier
Curves and Surfaces. In Proceedings of the International Conference
on Approximation and Optimization, Cluj-Napoca, July 29 - Aug.1,
1996.

(20) I.Gansca, Gh.Coman, Tambulea L., Generalizations of Bezier Curves
and Surfaces. In ”Curves and Surfaces in Geometric Design”, P. J.
Laurent, A. le Mehaute, and L. L. Shumaker (eds), A K PETERS,
Wellesley MA, 1994, 169-176.

(21) Gh.Coman, I.Gansca, Tambulea L., Surfaces Generated by Blending
Interpolation. Studia Babes-Bolyai, Mathematica, XXXVIII, 3, 1993.

(22) Gh.Coman, I.Gansca, Tambulea L., Blending Approximation. In Pre-
ceedings of the 9-th Romanian Symposium on Computer Science, 12-13
November, 1993, Iasi (ed.V.Felea, G.Ciobanu), 126-139.

(23) Gh.Coman, I.Gansca, Tambulea L., New Interpolation Procedure in
Triangles. Studia Babes-Bolyai, Mathematica, XXXVII, 1, 1992, 37-
45.

(24) Gh.Coman, Tambulea L., Bivariate Birkhoff interpolation of scattered
data. Studia Babes-Bolyai, Mathematica, XXXVI, 2, 1991, 77-86.

(25) I.Gansca, Gh.Coman, Tambulea L., On a Bezier Surface (III). Bulletins
for Applied Mathematics, 765 (1991), 191-198.

(26) Gh.Coman, I.Gansca, Tambulea L., Some new roof-surfaces generated
by blending interpolation technique. Studia Babes-Bolyai, Mathemat-
ica, XXXVI, 1, 1991, 119-130.

(27) Gh.Coman, Tambulea L., On some interpolation procedures of scatered
data. Studia Babes-Bolyai, Mathematica, XXXV, 2, 1990, 90-98.

(28) Tambulea L., Binary trees, an Euler’s problem and finite sequences of
numbers. Studia Babes-Bolyai, Mathematica, XXXV, 3, 1990, 83-94

(29) I.Gansca, Gh.Coman, Tambulea L., On the Shape of Bezier Surfaces.
Studia Babes-Bolyai, Mathematica, XXXV, 3, 1990, 37-42.

PROFESSOR LEON TAMBULEA AT HIS SIXTIES 7

(30) Gh.Coman, I.Gansca, Tambulea L., Some practical application of blend-
ing interpolation. Itinerant Seminar on Functional Equations, Approx-
imation and Conexity, Cluj-Napoca 1989, Preprint no.6, 1989, 5-22.

(31) Tambulea L., Consecutive retrieval with minimum redundance. Studia
Univ.Babes-Bolyai, Mathematica, XXXIII, 3, 1988, 56-60.

(32) Gh.Coman, Tambulea L., and A Shepard-Taylor approximation for-
mula. Studia Univ.Babes-Bolyai, Mathematica, XXXIII, 3, 1988, 65-
73.

(33) Z.Kasa, Tambulea L., Binary Trees and Number of States in Buddy
Systems. Annales Universitatis Scientirum Budapestinensis de Roland
Eotvos Nominate, Sectio Computatorica, Tom.VII, 1987.

(34) Tambulea L., The Storing of Data Collections in Accordance with the
Consecutive Retrieval Property. Studia Univ. Babes-Bolyai, Mathe-
matica, XXXII, 3, 1987, 53-66.

(35) D.L. Dumitrascu, P. Groza, Tambulea L., Risk Factors in Ulcer Dis-
ease. A Case Control Computer Processed Study. Revue Romaine de
Morphologie, d’Embrionologie et de Physiologie, serie Physiologie, 24,
1, 1987, 15-21.

(36) D.L. Dumitrascu, P. Groza, D. Dumitrascu, Tambulea L., Non- Mete-
orological Factors Associated to the Periodicity of Realapses in Ulcer
Disease. Clujul Medical, 1987, vol.LX, 3. 236-240.

(37) Fl.Boian, M.Frentiu, Z.Kasa, Tambulea L., Fortran can be improved.
Studia Univ.Babes-Bolyai, Mathematica, XXXII, 3, 1987, 15-16.

(38) Tambulea L., The collection of recordings with the minimum number
of blocks. Mathematica, 26 (49), 1984, 81-84.

(39) Tambulea L., Data organization according to the property of consec-
utive retrieval. Revue d’analyse numerique et de la theorie d’approxi-
mation, 9, 2, 1980, 269-281.

(40) Tambulea L., and C.Kalic Sur la resolution de quelques problemes aux
limites par la methodes des elements finis. Itinerant Seminar on Func-
tional Equations, Approximation and Convexity, Cluj-Napoca 1983,
169-174.

(41) Tambulea L., and A system for drawing curves and surfaces. Preprint
no.5, 1992, 65-69, Research Seminars, Seminar on Computer Science.

(42) E.Radu, Tambulea L., Graphic Modelling of some Combined Effects
in High Atmospheric Density Distribution. Preprint no.4, 1991.

(43) Tambulea L., and A new method for storing binary trees. Preprint
no.9, 1989, Seminar on Computer Science, Research Seminars.

(44) Gh.Coman, Tambulea L., On the complexity of some scattered date
interpolation procedures. Preprint no.10, 1989, Research Seminars,
Seminar on Complexity of Algorithms.

8 FLORIAN M. BOIAN AND MILITON FRENŢIU

(45) Tambulea L., Interactive graphic system. Preprint no.9, 1988, 33-34,
Seminar on Computer Science, Research Seminars.

(46) Tambulea L., and Towards a new standard Fortran. Preprint no.2,
1986, Seminar on Computer Science, Cluj-Napoca, 1-20 (in colab.cu:
Fl.Boian, M.Frentiu, Z.Kasa)

(47) C.Kalic, Tambulea L., Calcul automatique des formules de cubature.
Preprint no.7, 1984, 59-69.

(48) Tambulea L., and Pop, H.F., A formal approach of web sites manage-
ment, Proceedings of the Symposium Zilele Academice Clujene, Fac-
ulty of Mathematics and Computer Science, Babes-Bolyai University,
Cluj-Napoca, June 2006, p. 66-72.

(49) I.Gansca, E.Zetea, Tambulea L., Asupra generarii suprafetelor de tip
cupola. In lucrarile celei de a VI-a editie a Conferintei Grafica 2000,
435-440, Craiova 2000.

(50) I.Gansca, E.Zetea, D.Dragan, Tambulea L., Suprafete cu plan direc-
tor generate de curbe lantisor. In lucrarile celei de a VI-a editie a
Conferintei Grafica 2000, 189-194, Craiova 2000.

(51) E.Zetea, I.Gansca, A.Tripa, Tambulea L., Suprafete deformabile cu
plan director, generate de cisoide, In lucrarile celui de al IV-lea Sim-
pozion de Geometrie descriptiva si grafica computerizata, Vol.I, 207-
212, Editura Bren, Bucuresti 1998.

(52) I.Gansca, E.Zetea, D.Dragan, Tambulea L., Suprafete cu plan director
generate de ramuri antisimetrice de parabole. In lucrarile celui de al
IV-lea Simpozion de Geometrie descriptiva si grafica computerizata,
Vol.I, 145-150, Editura Bren, Bucuresti 1998.

(53) P.Alexa, A.Ioani, Tambulea L., Programarea matematica in calculul
placilor plane. In lucrarile simpozionului national ”Aplicatii ale infor-
maticii in cercetarea si proiectarea de constructii”, Sibiu 1979.

(54) Tambulea L., Model de organizare a colectiilor de date. In culegerea
de lucrari ”Informatica pentru conducere. Progrese in informatica ro-
maneasca”, 1980

(55) V.Ille, A.Ioani, P.Alexa, H.Criveanu, I.Magyarosi, A.Giurgiu, Tam-
bulea L., Procedeu de masurare si inregistrare continua a deplasarilor
experimentale. In lucrarile celui de al II-lea simpozion national de
tensometrie, Cluj-Napoca 1980, 118-128.

(56) Tambulea L., Determinarea numarului de RC-multimi maxime. In lu-
crarile celui de al IV-lea Colocviu de Informatica, Iasi, 27-29 octombrie
1983, 129-137.

(57) Fl.Boian, Z.Kasa, D.Oprean, Tambulea L., Automatizarea procesului
de luare a deciziilor. Revista economica, supliment 50/1984, 4-6.

PROFESSOR LEON TAMBULEA AT HIS SIXTIES 9

(58) Tambulea L., Proprietatea de regasire consecutiva pentru multimi de
intrebari maximale si conexe. In lucrarile celui de al V-lea Colocviu
de Informatica, Iasi 18-19 octombrie 1985, 270-279.

(59) Fl.Boian, M.Frentiu, Z.Kasa, L.Erdo, A.Szen, Tambulea L., Simularea
automatelor programabile. In lucrarile simpozionului ”Informatica si
aplicatiile sale”, Cluj-Napoca 1985, 44-51.

(60) Tambulea L., Model optim de organizare a colectiilor de date. In
lucrarile simpozionului ”Informatica si aplicatiile sale”, Cluj-Napoca
1985. 85-88.

(61) R.Ciupa, S.Ciupa, Tambulea L., Computer utilisation at biological
wareform analysis with applications at blood flow in arteries. In lucrar-
ile simpozionului de ”Matematici si aplicatii”, Timisoara, 12 noiembrie
1985, 170-173.

(62) Fl.Boian, Z.Kasa, Tambulea L., Pachetul de programe Admitere. Pro-
duse informatice nr.1, Litografiat Cluj-Napoca 1986, 43 pagini.

(63) Fl.Boian, M.Frentiu, Z.Kasa, Tambulea L., STAF - Sistem de pro-
grame pentru elaborarea statelor de functii. Cluj-Napoca 1987.

(64) R.Ciupa, S.Sfrinjeu, Tambulea L., Model matematic de studiu a circu-
latiei sanguine arteriale. In lucrarile sesiunii de comunicari ”Realizari
in domeniul electronicii profesionale”, Snagov-Parc, 3-5 septembrie
1987, pag.IV.48-51.

(65) Fl.Boian, M.Frentiu, Z.Kasa, Tambulea L., Sistem de programe pentru
elaborarea statelor de functii. In lucrarile sesiunii stiintifice a Centrului
de calcul al Universitatii din Bucuresti, 20-21 februarie 1987, 438-443.

(66) Tambulea L., Program pentru rezolvarea grafica a problemelor de pro-
gramare liniara. In Lucrarile seminarului de ”Didactica Matematicii”,
Vol.6 (1990), 343-348.

Books.

(1) Fl.Boian, M.Frentiu, I.Lazar, Tambulea L., Informatica de baza. Presa
Universitara Clujeana, Cluj-Napoca, 2005, 225 pagini .

(2) Tambulea L., FoxPro pentru programatori, Editura Promedia Plus
Cluj-Napoca. Editia I-a in 1995. Editia a II-a in 1996.

(3) Tambulea L., Access pentru programatori, Editura Promedia Plus
Cluj-Napoca 1996.

(4) P. Blaga, Z. Kasa, Tambulea L., Culegere de algoritmi, Litografiat
Cluj-Napoca 1977.

(5) Gr. Moldovan, F.Landa, D. Oprean, Tambulea L., Scheme logice si
programe Cobol, Litografiat Cluj-Napoca 1979.

(6) Z. Kasa, C.Tartia, Tambulea L., Culegere de probleme de teoria grafelor,
Litografiat Cluj-Napoca 1979.

10 FLORIAN M. BOIAN AND MILITON FRENŢIU

(7) S. Groze, Fl. Boian, M. Frentiu, Tambulea L., Bazele informaticii.
Culegere de probleme pentru lucrarile de laborator, Litografiat Cluj-
Napoca 1982.

(8) Fl. Boian, Gh. Coman, M.Frentiu, Tambulea L., Elemente de infor-
matica. Curs litografiat Cluj-Napoca 1989.

(9) Tambulea L., Structuri de date si banci de date, curs litografiat in
1992.

(10) Tambulea L., Baze de date, Univ. ”Babes-Bolyai” Cluj-Napoca, Editia
I: 1998, Editia II: 1999, Editia IIII: 2000, Editia IV: 2001, Editia V:
2002, Editia VI: 2003.

(11) Fl. Boian, Gh.Coman, M. Frentiu, Tambulea L., Informatica pentru
elevi. Editura Microinformatica, Cluj-Napoca 1992, Editia a II-a in
1992, Editia a III-a in 1993.

(12) F.Boian, Gh. Coman, S. Groze, M. Frentiu, Z. Kasa, T. Toadere,
Tambulea L., Manualul incepatorului in programare Pascal. Editura
Albastra, Cluj-Napoca 1995.

(13) P. Blaga, Z. Kasa, N. Lupsa, Tambulea L., Memento FELIX C-256,
Litografiat Cluj-Napoca 1995.

(14) M. Frentiu, Z. Kasa, C. Tartia, Tambulea L., Utilizarea calculatorului
personal PRAE-M, Litografiat Cluj-Napoca 1986.

(15) Tambulea L., MATH-I. Operating and User’s Guide. Scientific Pro-
gram Library for Romanian Personal Computers. ITCI 1987.

Babes-Bolyai University, Department of Computer Science, Str. Mihail Ko-
galniceanu Nr 1, RO-400084 Cluj-Napoca

E-mail address: florin@cs.ubbcluj.ro

E-mail address: mfrentiu@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIV, Number 2, 2009

RELATIONAL DATABASES AND RESOURCE

DESCRIPTION FRAMEWORK

LEON ŢÂMBULEA AND ANDREEA SABĂU

Abstract. A large number of Web pages are generated from relational
databases. Many papers appeared lately, that mention the advantages
offered by Semantic Web in a possible global query of the informational
sources over the Internet. It seems that one of the current challenges is to
use databases (great amount of data, but with local usage) by specialized
programs in the context of future development of the Internet (in Seman-
tic Web). This paper contains a formalization of types of triplets that can
appear in Resource Description Framework (RDF) documents. An auto-
matic conversion method of information from a relational database into
RDF documents in described based on the presented model.

1. Introduction

The Web is one of the most popular and richest sources of information.
According to [17], in November 2009 were received about 240 million answers
from world’s Web sites. Some Netcraft statistics mention the fact that on
every site there are on average 273 Web pages, and on the Internet there are
about 65 billion Web pages, which contain a very large amount of information.

The source of data for a Web page is generally a relational database. These
Web pages (static pages or dynamic pages) are built at certain moments of
time or as an answer to some events that appear in dynamic pages forms. In
addition, there are also many Web sites that offer a lot of documentation to
be consulted (tutorials, articles, research reports, books), which represents a
great quantity of static information.

The Web pages which are generated from different data sources or built by
users are written in different languages and are organized in different formats.
Most of them are html or xml documents. The documents that can be found

Received by the editors: December 7, 2009.
2010 Mathematics Subject Classification. 68P05, 68P20, 68T30.
1998 CR Categories and Descriptors. E.1. [Data]: Data Structures; H.2.1.

[Information Systems]: Database Management – Logical Design H.3.5. [Information
Systems]: Information Storage And Retrieval – Online Information Services.

Key words and phrases. Semantic Web, RDF, Knowledge.

11

12 LEON ŢÂMBULEA AND ANDREEA SABĂU

on the Internet do not have the contained information structured according
to a certain pattern; therefore obtaining some data from different document
is not an easy task. The search engines are able to perform search operations
within the Web using key words, but they are not able to perform reasoning
or to interpret the results of the search (the obtained documents) [1, 2, 11].
Today, such reasoning over a page or document can be performed only by
a human user. The Web documents should meet certain requirements, have
certain structure, or contain also some metadata with a unique format, in
order to allow a program (software agent) to perform reasoning.

Adding such metadata in Web pages or creating documents containing
a unique pattern for metadata will lead to a new generation of Web (Web
3.0 or Semantic Web). There are more proposed methods for organizing this
metadata. The simplest model is RDF (Resource Description Framework),
which was already declared as standard by W3C [14].

2. Relational Databases and RDF

Most data that is used in generating Web pages is extracted from databases.
The relational databases had a rapid evolution after their first formalization
[5]. The storage of data in relational databases benefits of a lot of advantages,
like:

∙ optimization of the access to stored data,
∙ control of the concurrent access to data,
∙ implementation of different security procedures.

Different objects are used in management of relational databases, objects
which are usually included in programming languages or environments. These
objects are using drivers or providers (like ODBC, JDBC, OLEDB, SQL-
NCLI, MSDAORA etc.) which make possible the management of data (stored
on different management systems) from different programming languages and
operating systems.

The metadata of a RDF document is specified as a sequence of instructions,
where such an instruction is a triplet (subject, predicate, object). This kind
of instruction is similar to a simple sentence from a natural language. For
example, having the sentence ”The paper appears in Studia Informatica”,
the subject can be considered to be ”the paper”, ”appears” can be seen as
predicate (or property), and ”Studia Informatica” is the correspondent for the
object of an instruction. The objects from a sentence can be described by an
instruction, within which the same item can be subject. For example: ”Studia
Informatica has the home-page at http://www.cs.ubbcluj.ro/∼studia-i/”.

RELATIONAL DATABASES AND RESOURCE DESCRIPTION FRAMEWORK 13

If a RDF instruction is wanted to be used in a wider context (ideally - a
global context in Web’s space), a described subject (or an object), or a predi-
cate
(property) should be uniquely identified on Web. Therefore, we can say they
are unique resources. This uniqueness over the Web can be guaranteed by an
URI (Uniform Resource Identifier).

So far, we considered very large sources of information, which are relational
databases with local usage from dedicated programs, and RDF documents,
with included metadata for Web documents and with the possibility of complex
queries integration. Having these sources, the raised problem is to convert a
relational database (or a part of data from a relational database, a part which
is considered to be useful and not confidential to be published) into a RDF
document [1, 6, 8, 9, 10, 15]. For example, [12, 13] are offering very large sized
RDF documents to be used.

3. Relational Databases

A relational database consists of a number of components that can be
defined, modified, or deleted using SQL commands. In order to retrieve data
from a relational database, only the relations (tables) and views are useful.
Let’s consider:

B = {Ti, i := 1,m} ∪ {Vj , j := 1, n}
the relations and views of a relational database. Each table Ti, i := 1,m, has
a schema defined by an SQL statement:

CREATE TABLE Ti(column definition[, column definition]...
[, table constraints])

where column definition is given by:

column name column type[(lengtℎ)][column constraints]

Each database view Vj , j := 1, n, can be defined using an SQL statement
containing one or more SELECT statements (retrieving data from one or
more sources). Also, for a view, the column list (its structure) is known.

The definitions of a relational database’s components are stored in a dic-
tionary which can be also consulted by users with proper rights.

The constraints that are defined when the tables are created have the role
of keeping the correctness of stored data. These rules are checked every time
some data is added, modified, or deleted. If only a data retrieval is performed,
there is no reason to check the integrity constraints (only, possibly, the user
rights). When some complex queries are executed, especially those who need
join operations to be performed over two or more tables, the indexes created on

14 LEON ŢÂMBULEA AND ANDREEA SABĂU

primary key columns and foreign key columns are usually used for optimizing
the retrieval of data.

4. RDF

A RDF document [3, 6, 7, 14] is given by a set of triplets (s, p, v), where
s = subject, p = predicate (property), and v = the property’s value (a literal
value or an object). If the property’s value is an object, it should be described
in the same manner as a subject; therefore these two notions (subject, object)
are identical.

Such a triplet represents information with the following meaning: ”The
object (subject) s has the property (predicate) p with value v”. Therefore,
the predicates are similar to binary operators, because they associate a subject
s with a value v: p(s, v).

In order to use the objects and their properties in a (as large as possible)
context, eventually outside the current document, a unique identification of
these is necessary. Such an identification is accomplished using an URI (for
example: http://address or ftp://address), in this manner obtaining a unique
resource. Using such identification items, some relations (links) between re-
sources from different documents may be established. Thus, one property
(defined in a RDF document) associates a value (a literal or an object, defined
in the same document or in another) to an object (also defined in the same or
another document).

When a new resource is defined, an ID attribute may be used, having
a value which will identify that resource. Therefore, the value of this ID
attribute will be used when the corresponding resource is used (for example:
in retrieving the value of one of its properties).

A set of RDF triplets can be stored in different ways:

(1) Using an oriented graph, where the vertices represent objects (sub-
jects) or literals, and the edges represent the connections between
objects and values, having the name (identification) of the property
as label; the vertices are labeled using the ID of the corresponding
resource or the value of the literal.

(2) In an XML document.
(3) Other formats: Notation 3 (N3) [18], Turtle [19], etc.

In order to specify the value of a property which can be decomposed in
more pairs (property, value), a blank node will be used (as an intermediary
resource useful only within the current document).

The value of a property may be:

(a) a value that can be specified by a string (a literal),

RELATIONAL DATABASES AND RESOURCE DESCRIPTION FRAMEWORK 15

(b) a resource (a complex object) having different properties and associ-
ated values; the blank nodes are used in this case.

These cases can be graphically represented as a graph (see figure 1). In
figure 1.c a blank node is used.

Figure 1. The graphical representation of the associations be-
tween properties and their values.

In order to formalize these concepts, the following notations will be used:

R = the set of URIs (resource identifiers)
V = the set of literals (the basic values which will not be described by
other triplets)
P = the set of properties, P ⊂ R

Let T be the set of triplets within a RDF document, T ⊂ R×P × (V ∪R).
An oriented graph corresponding to set T can be built:

GT = (N,E,L),

where:

∙ N = the set of vertices (resources or literals),
N = {r ∣ (r, p, v) ∈ T} ∪ {v ∣ (r, p, v) ∈ T}. One node n ∈ N is
labeled with the ID of the corresponding resource or with the value of
the corresponding literal. In the graph GT , all nodes corresponding to
resources are distinct.
∙ E = the set of edges, E = {(r, v) ∣ (r, p, v) ∈ T}.
∙ L = the set of labels associated to edges of GT , L : E → P , L(r, v) = p,

for (r, p, v) ∈ T .

The properties (and their values) are defined by the set of triplets from a
RDF document, for a set of resources. This association is free from restrictions.
In order to restrict the association of properties to a resource, a pattern should

16 LEON ŢÂMBULEA AND ANDREEA SABĂU

be defined for that resource. The definition of such a pattern can be done using
a class (or a class hierarchy). A set of properties can be associated to a class
once defined. Such definitions (for classes, properties, but also for sub-classes,
sub-properties) can be built using the triplets (r, p, v) that were mentioned
before.

The definition of classes and properties can be done using RDF schemas
(noted RDFS, which is an extension of RDF). As mentioned in [6], RDF and
RDFS are namespaces with the same meaning, but used with different names
because of historical reasons. Properties defined in these two namespaces
(rdf :property or
rdfs:property) are used in order to define resources.

A defined resource can be a class, a property, a sub-class, a sub-property,
or an instance or a defined class. Such an instance of a class can make use of
the properties associated to its class (thus - a model), but also can add some
new properties.

Let (r, p, v) be a triplet which defines a resource, where r represents the
resource (class, sub-class, property, sub-property). We may have the following
definitions:

∙ p = rdf :type, v = rdfs:Class, where the property is indicating that
the type of the resource is defined, and the value shows the fact that
this resource is a class;
∙ p = rdfs:subClassOf , where p is mentioning that the type of the

resource is a sub-class (therefore - is inheriting another class), v =
reference to a resource that is a class (and which is inherited);

For the triplets (r, rdf :type, rdfs:Class), (c1, rdf :type, rdfs:Class),
(r, rdf :subClassOf, c1) the graph represented in figure 2 can be built.

∙ p = rdf :type, v = rdf :Property, indicating that the defined resource
is a property;
∙ p = rdfs:subPropertyOf , where p is showing that the resource is a

sub-property, v = reference to a resource of type property;
∙ p = rdfs:domain, or p = rdfs:range, v = reference to a resource;

in this case the domain or the range of the defined resource is indi-
cated. The domain indicates the subject (the resource) to which it is
associated, and the range is the type of the value;

The following relations result from these definitions:

rdfs:Class ∈ R
rdf :type, rdfs:subClassOf , rdf :Property, rdfs:subPropertyOf ∈ P
rdfs:domain, rdfs:range ∈ P

The following two situations specify the type of values for resource r, for
the triplet (r, p, v):

RELATIONAL DATABASES AND RESOURCE DESCRIPTION FRAMEWORK 17

Figure 2. The oriented graph corresponding to triplets
(r, rdf :type, rdfs:Class), (c1, rdf :type, rdfs:Class),
(r, rdf :subClassOf, c1).

∙ p = rdf :type, v = rdfs:Literal; in this case the value of the resource
is a literal (a string);
∙ p = rdf :type, v = reference to a resource which is a class or a sub-class;

in this case the resource r is an instance of the class indicated by v.

A number of rules of deduction can be defined over a set of triplets, and
these rules ensure obtaining new triplets [16]. Some of these rules may be:

(1) Determining the instances of a class:
(x, p, y), (p, rdfs:domain, z)⇒ (x, rdf :type, z)
(x, p, y), (p, rdfs:range, z)⇒ (y, rdf :type, z)
(x, rdf :type, y), (y, rdfs:subClassOf, z)⇒ (x, rdf :type, z);

(2) Determining the transitive closure of a property by repeatedly using
the following rule:

(x, rdfs:subPropertyOf, y), (y, rdfs:subPropertyOf, z) ⇒
(x, rdfs:subpropertyOf, z);

(3) Determining the transitive closure of a class by repeatedly using the
following rule:

(r, rdfs:subClassOf, y), (y, rdfs:subClassOf, z) ⇒
(x, rdfs:subClassOf, z).

The existing definitions in a set of triplets T or the definitions that can
be deduced by rules of deduction must comply with some restrictions, among
which:

(a) There cannot be cycles, thus:
∀p, (p, rdfs:subPropertyOf, p) /∈ T ,
∀c, (c, rdfs:subClassOf, c) /∈ T .

(b) A property may have one or more domains, but only one range:

18 LEON ŢÂMBULEA AND ANDREEA SABĂU

(r, rdfs:range, x)⇒ ∄y, y ∕= x, (p, rdfs:range, y).

A set of restrictions that violates at least a restriction is called inconsistent.
Such a set may provide erroneous data to different queries.

5. Conversion of Relational Databases to RDF

There are a lot of papers that contain studies about conversion of relational
databases to RDF documents. A working group was established at W3C
(Incubator Group) in order to synthesize the papers from this domain, and
some of its results were published in 2009 in [15].

Some results from [1, 2, 4, 6, 8, 9, 10, 15] were used for the following
remarks:

1. A first proposal for converting relational databases to RDF is obtained
in a natural manner. One RDF class is built corresponding to each data source
S[A1, A2, ..., An] (table or view) contained in a relational database. Such a
class has the name of the source, and the columns of the source generate the
properties of that class. Therefore, for the source S the following triplet will
be obtained:

(S, rdf :type, rdfs:Class),

and for each column Ai, i = 1, n, the RDF document will contain the following
triplets (see figure 3):

(S.A, rdf :type, rdf :Property),
(S.A, rdfs:domain, S),
(S.A, rdfs:range, rdfs:Literal).

Each line (record) from S will generate an instance of the class generated
by S through a blank node (the type of this node is the RDF class having the
name of the source S). The ID for this node may be automatically generated
(as for a column of type auto-increment that exists in many relational database
systems).

The structure (schema) of each of the sources from a relational database
can be obtained from the database dictionary; therefore such a conversion can
be automatically obtained. Some options can be used to such a conversion,
like:

(a) Some source columns may change their name when they are trans-
formed into properties. The new names may be taken from vocabu-
laries that already exist and are specialized for certain domains. In
this case, some associations between column names and the new RDF
property names would be necessary.

(b) It is possible that not all tables and views, or not all data from these
sources to be necessary in a conversion from relational database to

RELATIONAL DATABASES AND RESOURCE DESCRIPTION FRAMEWORK 19

Figure 3. The conversion of a data source S[A1, A2, ..., An]
(from a relational database) to RDF document.

RDF. Therefore, in order to perform a conversion, a list of tables,
views, and SELECT statements can be used in order to establish the
actual sources of data.

(c) We usually define a primary key for a table from a database. This pri-
mary key may consist of one or more columns and is used to uniquely
identify a record within the corresponding table. In order to use the
primary key’s values in identifying the blank nodes from the RDF doc-
ument, some strings may be generated from these values (for example:
S.v, where S is the table’s name and v is the key’s value). If the pri-
mary key contains more than one column, then the values of all these
columns may be concatenated. If the columns use to uniquely identify
the rows within a table are not needed in the conversion to RDF, then
they may not be extracted in the RDF document.

2. In a relational database, a foreign key constraint can be defined between
two tables:

∙ table T1 with a primary key PK,
∙ table T2 with a foreign key FK, which references PK from T1.

These restrictions are usually created in the relations normalization pro-
cess.

A query engine (of a relational database system) is able to optimize the
queries that have to compute join between T1 and T2, using the indexes
defined on the primary columns and foreign key columns, respectively. On
the other side, the RDF documents that are obtained after a conversion of
these tables are not efficient in performing queries on them. If the conversion
method previously described is used in conversion, a join operation between
the obtained documents is not efficient, because there are no indexes to be
used. In order to improve the search, an auxiliary property of class T2 may

20 LEON ŢÂMBULEA AND ANDREEA SABĂU

be defined. This property would have the domain to T2 class, the range as T1
class, and the name of the foreign key constraint.

3. In order to model m : n (many-to-many) relationships between two
tables T1 and T2 in a relational database, an auxiliary table is created, T3.
The third table materializes the conceptual m : n relationship, and two 1 : n
(one-to-many) relationships are obtained in database (between T1 and T3,
and between T2 and T3).

As an example, the four tables represented in figure 4 are considered to
exist in a relational database.

Departments
id name
1 Math
2 Comp science

Courses
id title
c1 course1
c2 course2
c3 course3

Students
id name dept
s1 stud1 1
s2 stud2 2
s3 stud3 2

CS
idc ids
c1 s1
c2 s1
c1 s2
c3 s2
c2 s3
c3 s3

Figure 4. Example of four tables within a relational database.

The following foreign key constraints are created:

FK CS Courses: CS(idc) references Courses(id)
FK CS Studs: CS(ids) references Students(id)
FK Studs Dept: Students(dept) references Departments(id)

In figure 5 are represented three of the fourteen blank nodes that are
obtained corresponding to records from the four tables, using the method
previously described and having one property for a 1:n relationship.

Figure 5. Three blank nodes that are obtained after the con-
version of tables Courses, Departments, Students, and CS.

RELATIONAL DATABASES AND RESOURCE DESCRIPTION FRAMEWORK 21

The properties idc and ids can be removed, because the table CS was
created only in order to represent the m : n relationship. Their values can be
obtained by using the properties FK CS Courses and FK CS Studs. Once
the properties idc and ids are removed, one blank node is obtained, without
properties corresponding to columns of table that generated it. This is the
reason why this blank node can be also removed; therefore the two existing
properties (FK CS Courses and FK CS Studs) change their domain, as it
is represented in figure 6.

Figure 6. The two blank nodes obtained after removal of
blank node corresponding to CS table.

6. Conclusions

The RDF documents are very large data warehouses that can be used by
queries in Semantic Web. But, in order to obtain them, the conversion of data
from other sources (usually from relational databases) is necessary. This paper
analyzed the main characteristics of relational databases and RDF, important
for such a conversion, and presented three conversion techniques.

References

[1] T. Berners-Lee, Relational Databases and the Semantic Web (in Design Is-
sues), http://www.w3.org/DesignIssues/RDB-RDF.html (1998).

[2] C. Bizer, D2R MAP-A Database to RDF Mapping Language, In Proceedings of
the 12th International World Wide Web Conference, WWW2003, Budapest,
Hungary (2003).

[3] S. C. Buraga, Considerations Regarding the Use of Semantic Web Technolo-
gies in the Context of E-business Applications, Informatica Economica, 3(35)
(2005).

[4] K. Byrne, Populating the Semantic Web - Combining Text and Relational
Databases as RDF Graphs, PhD Thesis, Edinburgh (2008).

[5] E. F. Codd, A Relational Model of Data for Large Shared Data Banks, Com-
munications of the ACM, 13(6) (1970), pp. 377-387.

[6] F. Frasincar, G. J. Houben, R. Vdovjak, P. Barna, RAL: An Algebra for
Querying RDF, World Wide Web, 7(1) (2004), pp. 83-109.

[7] I. Herman, Introduction to the Semantic Web, 2nd European Semantic Tech-
nology Conference, Vienna, Austria, (2008).

[8] C. Prez De Laborda, Incorporating Relational Data into the Semantic Web,
PhD Thesis (2006).

22 LEON ŢÂMBULEA AND ANDREEA SABĂU

[9] J. F. Sequeda, S. Tirmizi, D. Miranker, SQL Databases are a Moving Target,
Position Paper for W3C Workshop on RDF Access to Relational Databases,
Cambridge, USA (2007).

[10] M. Svihla, I. Jelnek, Two Layer Mapping from Database to RDF, In Proceed-
ings of Electronic Computers and Informatics (ECI), Slovakia (2004).

[11] L. Ţâmbulea, A. Sabău, From Databases to Semantic Web, Studia Univer-
sitatis Babeş-Bolyai, Seria Informatica, Special Issue, LIV (2009), for Intl.
Conf. KEPT Knowledge Engineering Principles and Techniques Cluj-Napoca
(2009), pp. 85-88.

[12] D2R Server publishing the DBLP Bibliography Database,
http://dblp.l3s.de/d2r/.

[13] DBpedia, http://dbpedia.org/About.
[14] RDF/XML Syntax Specification (Revised 2004), W3C Recommendation,

http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/.
[15] A Survey of Current Approaches for Mapping of Rela-

tional Databases to RDF, W3C RDB2RDF Incubator Group,
http://esw.w3.org/topic/Rdb2RdfXG/StateOfTheArt.

[16] RDF Semantics, http://www.w3.org/TR/rdf-mt/.
[17] November 2009 Web Server Survey,

http://news.netcraft.com/archives/web server survey.html.
[18] Notation 3, http://www.5.org/DesignIssues/Notation3.html.
[19] Turtle - Terse RDF Triple Language, http://www.dajobe.org/2004/01/turtle.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, 1
M. Kogălniceanu St., 400084 Cluj-Napoca, Romania

E-mail address: leon@cs.ubbcluj.ro

E-mail address: deiush@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIV, Number 2, 2009

TOWARDS AUTOMATED EXECUTION OF SECURITY

PROTOCOLS FOR WEB SERVICES

BÉLA GENGE

Abstract. Existing solutions for authentication and authorization in Web
services make use of technologies such as SAML or WS-Security. These
provide a static solution by using a set of predefined protocols. We pro-
pose a dynamic approach for the automated execution problem by de-
veloping a semantic security protocol model from which security protocol
specifications are generated and automatically executed by participants.
The proposed model consists of a sequential component, implemented as
a WSDL-S specification, and an ontology component, implemented as an
OWL specification. The correctness of the proposed model is ensured by
using a set of rules and algorithms for generating it based on a protocol
model given by the user. We validate our approach by generating and im-
plementing several specifications for existing protocols such as the ISO9798
or Kerberos protocol.

1. Introduction

Security protocols are widely used today to provide secure communication
in insecure environments. By examining the literature we come upon various
security protocols designed to provide solutions to specific problems [1]. With
this large amount of protocols to chose from, distributed heterogenous systems
must be prepared to handle multiple security protocols.

Existing technologies, such as the Security Assertions Markup Language
[2] (i.e. SAML) or WS-Security [3] provide a unifying solution for the au-
thentication and authorization issues through the use of predefined protocols.
By implementing these protocols, Web services authenticate users and provide
authorized access to resources. However, despite the fact that existing solu-
tions provide a way to implement security claims, these approaches are rather

Received by the editors: November 17, 2008.
2010 Mathematics Subject Classification. 68M14, 68Q55, 94A62.
1998 CR Categories and Descriptors. H.3.5 [Information Systems]: Information Stor-

age and Retrieval – Online Information Services K.6.5 [Computing Milieux]: Management
of Computing and Information Systems – Security and Protection.

Key words and phrases. Security protocols, Automated protocol execution, Web services.

23

24 BÉLA GENGE

static. This means that in case of new security protocols, services must be
reprogrammed.

The solutions developed over the years such as the one described in [4],
propose a formal description for protocol specifications. These specifications
do not make use of Web service technologies, because of which inter-operability
of systems executing the given specifications becomes a real issue. Another
approach for automated security protocol implementation is provided in [5],
where the specification is constructed as an XML document from which the
code is automatically generated. In order to provide automated execution so-
lutions, specifications must not generate code, but must provide an automated
implementation solution without any user intervention.

In this paper we propose a semantic security protocol model (SSPM) for
generating security protocol specifications that can be automatically executed
by participants. The SSPM has two components: a sequential model and
an ontology model. The first component is implemented as a WSDL-S [6]
specification while the second component is implemented as an OWL [7] spec-
ification. The role of the WSDL-S implementation is to describe the message
sequences and directions that must be executed by protocol participants. The
role of the OWL implementation is to provide semantic information such as
the construction, processing and implementation of cryptographic operations
(e.g. encryption algorithm, encryption mode, key).

The proposed SSPM is constructed from a security protocol model (SPM)
provided by the user. This model describes message sequences, protocol pre-
conditions and effects. Protocol preconditions are used to identify the knowl-
edge required for running the protocol while protocol effects identify the goal
of the protocol (e.g. authentication, key exchange).

The construction of the SSPM from a given SPM must maintain the pro-
tocol’s security properties. For this we propose several generating rules and
algorithms that provide a mapping for each component from SPM to SSPM.
The correctness of the proposed rules and algorithms results from the one-to-
one mapping of each component and from the correctness of SPM.

In order to validate the proposed solution we have generated and imple-
mented several security protocol specifications. From our results we can clearly
state that the SSPM contains sufficient information to enable participants to
execute the generated specifications.

2. Protocol Model

Protocol participants communicate by exchanging terms constructed from
elements belonging to the following basic sets: P, denoting the set of role
names; N, denoting the set of random numbers or nonces (i.e. “number once

AUTOMATED EXECUTION 25

used”); K, denoting the set of cryptographic keys; C, denoting the set of cer-
tificates and M, denoting the set of user-defined message components.

In order for the protocol model to capture the message component types
found in security protocol implementations [2, 3] we specialize the basic sets
with the following subsets:

∙ PDN ⊆ P, denoting the set of distinguished names; PUD ⊆ P, denoting
the set of user-domain names; PIP ⊆ P, denoting the set of user-ip
names; PU = {P∖{PDN ∪PUD∪PIP }}, denoting the set of names that
do not belong to the previous subsets;
∙ NT , denoting the set of timestamps; NDH , denoting the set of random

numbers specific to the Diffie-Hellman key exchange; NA = {N∖{NDH∪
NT }}, denoting the set of random numbers;
∙ KS ⊆ K, denoting the set of symmetric keys; KDH ⊆ K, denoting the

set of keys generated from a Diffie-Hellman key exchange; KPUB ⊆ K,
denoting the set of public keys; KPRV ⊆ K, denoting the set of private
keys;

To denote the encryption type used to create cryptographic terms, we
define the following function names:

FuncName ::= sk (symmetric function)

∣ pk (asymmetric function)

∣ ℎ (ℎasℎ function)

∣ ℎmac (keyed ℎasℎ function)

The above-defined basic sets and function names are used in the definition
of terms, where we also introduce constructors for pairing and encryption:

T ::= . ∣ R ∣ N ∣ K ∣ C ∣ M ∣ (T,T) ∣ {T}FuncName(T),

where the ‘.’ symbol is used to denote an empty term.
Having defined the terms exchanged by participants, we can proceed with

the definition of a node and a participant chain. To capture the sending and
receiving of terms, the definition of nodes uses signed terms. The occurrence
of a term with a positive sign denotes transmission, while the occurrence of a
term with a negative sign denotes reception.

Definition 1. A node is any transmission or reception of a term denoted as
⟨�, t⟩, with t ∈ T and � one of the symbols +,−. A node is written as −t or
+t. We use (±T) to denote a set of nodes. Let n ∈ (±T), then we define the
function sign(n) to map the sign and the function term(n) to map the term
corresponding to a given node.

26 BÉLA GENGE

Definition 2. A participant chain is a sequence of nodes. We use (±T)∗ to
denote the set of finite sequences of nodes and ⟨±t1,±t2, . . . ,±ti⟩ to denote an
element of (±T)∗.

In order to define a participant model we also need to define the precon-
ditions that must be met such that a participant is able to execute a given
protocol. In addition, we also need to define the effects resulting from a par-
ticipant executing a protocol.

Preconditions and effects are defined using predicates applied on terms:
CON TERM : T, denoting a term that must be previously generated (pre-
conditions) or it is generated (effects); CON PARTAUTH : T, denoting a
participant that must be previously authenticated (preconditions) or a partic-
ipant that is authenticated (effects); CON CONF : T, denoting that a given
term must be confidential (preconditions) or it is kept confidential (effects);
CON INTEG : T, denoting that for a given term the integrity property must
be provided (preconditions) or that the protocol ensures the integrity prop-
erty for the given term (effects); CON NONREP : T, denoting that for a given
term the non-repudiation property must be provided (preconditions) or that
the protocol ensures the non-repudiation property for the given term (effects);
CON KEYEX : T, denoting that a key exchange protocol must be executed
before (preconditions) or that this protocol provides a key exchange resulting
the given term (effects).

The set of precondition-effect predicates is denoted by PR CC and the
set of precondition-effect predicate subsets is denoted by PR CC∗. Next, we
define predicates for each type of term exchanged by protocol participants.
These predicates are based on the basic and specialized sets provided at
the beginning of this section. We use the TYPE DN : T predicate to de-
note distinguished name terms, TYPE UD : T to denote user-domain name
terms, TY PE IP : T to denote user-ip name terms, TYPE U : T user
name terms, TYPE NT : T to denote timestamp terms, TYPE NDH : T
to denote Diffie-Hellman random number terms, TYPE NA : T to denote
other random number terms, TYPE NDH : T × T × T × P × P to denote
Diffie-Hellman symmetric key terms (term, number1, number2, participant1,
participant2), TYPE KSYM : T × P × P to denote symmetric key terms
(term, participant1, participant2), TYPE KPUB : T × P to denote public
key terms (term, participant), TYPE KPRV : T × P to denote private key
terms (term, participant), TYPE CERT : T × P do denote certificate terms
(term, participant) and TYPE MSG : T to denote user-defined terms.

The set of type predicates is denoted by PR TYPE and the set of type
predicate subsets is denoted by PR TYPE∗. Based on the defined sets and
predicates we are now ready to define the participant and protocol models.

AUTOMATED EXECUTION 27

Definition 3. A participant model is a tuple ⟨prec, eff , type, gen, part, cℎain⟩,
where prec ∈ PR CC∗ is a set of precondition predicates, eff ∈ PR CC∗ is a set
of effect predicates, type ∈ PR TYPE is a set of type predicates, gen ∈ T∗ is
a set of generated terms, part ∈ P is a participant name and cℎain ∈ (±T)∗

is a participant chain. We use the MPART symbol to denote the set of all
participant models.

Definition 4. A security protocol model is a collection of participant models
such that for each positive node n1 there is exactly one negative node n2 with
term(n1) = term(n2). We use the MPROT symbol to denote the set of all
security protocol models.

3. Semantic Security Protocol Model

In this section we described the proposed semantic security protocol model
(SSPM). The proposed model must maintain the security properties of the
protocol and must provide sufficient information for participants to be able to
execute the protocol.

Protocols are given using their SPM model described in the previous sec-
tion. Based on this model we must generate the corresponding SSPM from
which the specifications can be constructed. The SSPM has two components:
the sequential model (SEQM) and the ontology model (ONTM). The first
component is implemented as a WSDL-S specification while the second com-
ponent is implemented as an OWL specification. In the remaining of this
section we provide a description of each component and we provide a set of
rules to generate SSPM from a given SPM.

3.1. Sequential and Ontology Models. We use the symbol URI to denote
the set of Uniform Resource Identifiers, CONC to denote the set of all concepts
and CONC∗ to denote the set of subsets with elements from CONC.

Definition 5. An annotation is a pair ⟨uri, c⟩, where uri ∈ URI and c ∈
CONC. The set corresponding to a SSPM is denoted by ANNOT and the set
of subsets with elements from ANNOT is denoted by ANNOT∗. A message is
a pair ⟨d, a⟩, where d ∈ {in, out} and a ∈ ANNOT. We define MSG to denote
a set of messages and MSG∗ to denote the set of subsets with elements from
MSG.

Next, we define the sequential model as a collection of preconditions, effects
and messages, based on the previous definitions.

Definition 6. A sequential model is a triplet ⟨s prec, s eff , s msg⟩, where
s prec ∈ ANNOT∗ is a set of preconditions, s eff ∈ ANNOT∗ is a set of effects
and s msg ∈ MSG∗ is a set of messages.

28 BÉLA GENGE

The ontology model follows the description of OWL.

Definition 7. An ontology model is a triplet ⟨conc, propr, inst⟩, where conc ∈
CONC is a set of concepts, propr ∈ PROPR is a set of properties and inst ∈
INST is a set of instances. An element from propr is a pair ⟨�, �⟩, where � is
a unique id and � is a syntactic construction denoting the property name.

Let pr1 = ⟨�1, �1⟩ and pr2 = ⟨�2, �2⟩. Then pr1 = pr2 iff �1 = �2 and
�1 = �2. We define the function ()id to map the � component and the function
()nm to map the � component of a given property.

We use PROPR to denote the set of all properties and INST to denote
the set of all instances. We use PROPR∗ to denote the set of all subsets with
elements from PROPR and INST∗ to denote the set of all subsets with elements
from INST.

In order to handle the previously defined ontology model we define the
function ()d : PROPR→ CONC to map the domain concept of a given prop-
erty, ()c : PROPR→ CONC to map the category concept of a given property,
(,)ci : CONC× PROPR→ INST to map the instance corresponding to a do-
main concept and property, ()s

e : CONC→ CONC∗ to map the set of concepts
for which the given concept is parent, ()p : CONC→ PROPR∗ to map the set
of properties for which the given concept is domain.

3.2. Generating the Semantic Security Protocol Model. In order to
generate the SSPM of a given SPM, we start with a core ontology model
(OM) (figure 1) that contains concepts found in classical security protocols.
The core OM was constructed by consulting security protocols found in open
libraries such as SPORE [1] or the library published by John Clark [8].

The core ontology is constructed from 7 sub-ontologies. The sub-ontologies
that must be extended with new concepts for each SSPM are denoted in figure
1 by interrupted lines, while the permanent sub-ontologies are denoted by
continuous lines.

The SecurityProperty sub-ontology contains concepts such as Authenti-
cation, Integrity, Confidentiality, Session key exchange. The TermType sub-
ontology includes concepts related to term types used in security protocol
messages such as SymmetricKey, PublicKey or ParticipantName. Concepts
related to cryptographic specifications such as encryption algorithms or en-
cryption modes are found in the sub-ontology CryptoSpec. In order to model
modules needed to extract keys, names or certificates we use the LoadingMod-
ule sub-ontology. The ParticipantRole sub-ontology defines concepts model-
ing roles handled by protocol participants such as Initiator, Respondent and
Third Party.

AUTOMATED EXECUTION 29

The Knowledge sub-ontology contains 5 concepts: PreviousTerm, Ac-
cessedModule, InitialTerm, GeneratedTerm and DiscoveredTerm. Each con-
cept defines a class of terms specific to security protocols: terms from previous
executions, modules, initial terms, generated terms and discovered terms.

The last sub-ontology is CommunicationTerm, which defines two concepts:
SentTerm and ReceivedTerm. The ontology is extended for each SEM-S with
concepts that are sent or received. For each concept, functional properties
are defined denoting the operations performed on the terms corresponding to
concepts. The concepts used to extend the core ontology are specific to each

Figure 1. Core ontology of SSPM

protocol, however, the defined properties are applied on all constructions.
From these properties we mention: isOfType, isEncrypted, isStored, isVerified,
isExtracted, hasSymmetricAlgorithm, hasKey, hasLength.

In order to generate the SSPM from a given SPM we define a set of rules
and generating algorithms. The developed rules use the ←r operator to
denote set reunion and the ←a operator to denote a value transfer.

The first two rules generate the predicate concepts corresponding to pre-
conditions prec from a SPM, where the function gc : T → CONC is used to
generate the concept corresponding to a given term and the function gcc :
PR CC → CONC is used to generate the concept corresponding to a given
precondition predicate:

pr ∈ prec pr = CON TERM (t)

c←a gc(t) s prec ←r {⟨uri, c⟩} (InitialTerm)s
e ←r {c}

pr term,

pr ∈ prec pr ∕= CON TERM (t)

s prec ←r {⟨uri, gcc(pr)⟩, ⟨uri, gc(t)⟩}
pr propr.

The rules generating the effects have a similar structure because of the eff
set. Concatenated terms corresponding to each transmitted or received term
are modeled using similar rules. For each sent term the SSPM must provide
the construction operations and for each received term the SSPM must provide
processing operations.

30 BÉLA GENGE

Processing the received terms is done according to the type of each term
and to the knowledge available to the user. The modeled operations introduce
constraints on the type and location of knowledge through the following rules.

In the Knowledge sub-ontology, each concept has an isOfType property
attached based on which participants can decide on the operations to execute.
For each type, additional properties are defined such as the hasSymmAlg or
hasKey properties for symmetric encrypted terms. The rules based on which
these properties are generated are specific to each type.

The remaining generating rules are similar to the presented ones and a
complete presentation is out of the scope of this paper. We now provide a
brief description of the algorithms that apply the rules we have defined.

The first algorithm generates the preconditions, effects and message se-
quences of SSPM.

Algorithm 1 Generate preconditions, effects and message sequences

Require: ⟨prec, eff , type, gen, part, cℎain⟩ ∈ MPART
for all pr ∈ prec do

@pr term(pr), @pr propr(pr)
end for
for all ef ∈ eff do

@eff term(pr), @eff propr(pr)
end for
for all n ∈ cℎain do

if sign(n) = + then
@msg tx(n)

else
@msg rx(n)

end if
end for

Generating concepts corresponding to the Knowledge sub-ontology is done
through the use of algorithm 2 and 3. Here, the set of knowledge KNOW,
corresponding to each executing participant, grows with the construction and
reception of each new term. We used the function mpart : T→ T∗ to map the
set of concatenated terms and the keyword “Exec” to denote the execution of
sub-algorithms.

3.3. Correctness of SSPM. In the generation process of SSPM from a given
SPM, we consider a correct SPM constructed by the user. With the large
number of attacks reported in the literature [9], [10], it is vital for new protocol

AUTOMATED EXECUTION 31

Algorithm 2 Model positive nodes

Require: n ∈ (±T), sign(n) = +
for all t ∈ mpart(term(n)) do

Let c = gc(t)
Let p⇐ @con extr(c)
if t ∈ KNOW then

(p)c ←a c
else if t = {t′}f(k) then

(GeneratedTerm)s
e ←r {c}

Exec ModelEncryptedGenerated(t)
else if t ∈ gen then

(GeneratedTerm)s
e ←r {c}

Exec ModelP lainGenerated(t)
else

(DiscoveredTerm)s
e ←r {c}

Exec ModelDiscoveredLoaded(t)
end if
KNOW ←r t

end for

Algorithm 3 Model negative nodes

Require: n ∈ (±T), sign(n) = −
for all t ∈ mpart(term(n)) do

if t ∈ KNOW then
@con verif

else if t = {t′}f(k) then
if f = sk ∨ (f = pk ∧ TYPE KPUB(k, r) ∈ type, r ∈ P) then

@con decr
Exec ModelEncryptedDiscovered(t)

else
@con verif
Exec ModelEncryptedGenerated(t)

end if
else

@con stored
Exec ModelDiscovered(t)

end if
KNOW ←r t

end for

32 BÉLA GENGE

models to maintain the security properties of protocols for which security
properties have been proved to hold.

In order to prove the correctness of the generated SSPM, we consider Γ
representing the set of all information included in an SSPM. The informa-
tion generated by the proposed rules can be divided into three components:
mapped information, user-provided information and participant knowledge-
based information.

The set of mapped information is denoted by map and represents infor-
mation originating directly from SPM. The set of user-provided information
is denoted by up and represents information originating from the user (e.g.
cryptographic algorithms). The set of knowledge-based information originates
from the knowledge available when running the protocol and is denoted by
know.

By using the above sets Γ = map ∪ up ∪ know. The correctness of the
information contained in map results from the original protocol model, while
the correctness of the information contained in up results from the assumption
that the user provides correct input data.

The information contained in know is generated based on the design prin-
ciples of fail-stop [14] protocols. These principles state that the correctness
of each received term must be verified and the protocol execution must be
stopped immediately in case of invalid terms. By using these principles, the
rules we proposed generate verification properties for each received term found
in the participant’s knowledge set. Protocols that do not follow these rules
can not be modeled with our method.

The the correctness of the generated SSPM follows from the correctness
of the information generated in the Γ set, constructed from the three sets
map, up, know for which the correctness has been discussed above.

4. Experimental Results

In this section we exemplify the construction of a SSPM from a given SPM
and we provide a few experimental results from the collection of semantic
security protocol models we have implemented.

4.1. Constructing the SSPM for the “BAN” protocol. In order to pro-
vide an example for constructing an SSPM for a given SPM, we use the well-
known “BAN Concrete Secure Andrew RPC” protocol [1]. This is a two-party
protocol providing a session key exchange using symmetric cryptography. The
protocol assumes that participants are already in the possession of a long-term
key Kab.

In the remaining of this sub-section we provide only the construction of the
SSPM for participant A. The SSPM corresponding to participant B can be

AUTOMATED EXECUTION 33

similarly constructed because it defines the inverse operations of participant
A.

The precondition set precA for participant A is precA = {CON TERM (A),
CON TERM (B), CON TERM (Kab)} and the effect set eff A for the same par-
ticipant is eff A = {CON KEYEX (Kab)}. The set typeA = {TYPE UD (A),
TYPE UD(B), TYPE KSYM (A,B,Kab), TYPE KSYM (A,B,K), TYPE NA
(Na), TYPE NA(Nb)} defines the type corresponding to each term and the set
genA = {Na} defines the terms generated by participant A. The participant
name is partA = A and the participant chain is cℎainA = ⟨+(A,Na),−{Na,K,B
}sk(Kab),+{Na}sk(K),−Nb⟩.

By applying the rules and algorithms described in the previous sections
we generate the SSPM model. The sequential model is implemented as a
WSDL-S specification, while the ontology model is implemented as a OWL
specification.

Part of the resulted WSDL-S specification is given in figure 2 and part of
the graphical representation of the OWL specification is given in figure 3.

...

<xsd:element name="Msg1Request">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Term1" type="xsd:base64Binary"

wssem:modelReference=".../SecProt.owl#SentTerm1">

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Msg2Response">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="EncTerm1" type="xsd:base64Binary"

wssem:modelReference=".../SecProt.owl#RecvdEncTerm1">

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

...

<wsdl:operation name="Msg1">

<wsdl:output message="tns:Msg1Request"/>

</wsdl:operation>

<wsdl:operation name="Msg2">

<wsdl:input message="tns:Msg2Response"/>

</wsdl:operation>

<wssem:effect name="SessionKeyExchange"

wssem:modelReference=".../SecProt.owl#SessionKey"/>

...

Figure 2. Sequential model partial implementation

34 BÉLA GENGE

(a) (b)

Figure 3. Ontology model partial implementation: (a) Com-
munication terms sub-ontology (b) Discovered terms sub-
ontology

4.2. Experimental Results. In order to prove that the SSPM model con-
tains sufficient information for participants to execute the generated imple-
mentations, we generated over 38 WSDL-S and 38 OWL specifications corre-
sponding to initiator and respondent protocol roles.

In order to execute the specifications, messages were encoded and trans-
mitted according to the constructions provided by the WS-Security standard
[3]. In the experiments we conducted, participants downloaded the specifi-
cation files from a public server and they were able to execute the protocols
based only on the received descriptions. The participants hardware and soft-
ware configurations: Intel Dual Core CPU at 1.8GHz, 1GByte of RAM, MS
Windows XP.

Part of the experimental results are given in table 1, where the values cor-
respond to milliseconds. The “Spec. proc” column denotes the specification
processing time, the “Msg. constr.” column denotes the message construc-
tion time (for output messages) and the “Msg. proc.” column denotes the
message processing time (for input messages). The table contains two two-
party protocols (“BAN Concrete Andrew Secure RPC”, or more simply BAN,
and ISO9798) and one three-party protocol (Kerberos). The performance dif-
ferences between the BAN and ISO9798 protocols are due to the fact that
ISO9798 makes use of public key cryptography, while BAN uses only symmet-
ric cryptography.

AUTOMATED EXECUTION 35

Table 1. Protocol execution timings

Protocol Spec. proc. Msg. constr. Msg. proc. Total
participant (ms) (ms) (ms) (ms)

BAN Init. 14.58 11.81 3.68 30.08
BAN Resp. 14.03 2.86 1.62 18.52
ISO9798 Init. 13.07 35.784 23.30 72.16
ISO9798 Resp. 13.51 6.876 12.24 32.63
Kerb. Init. 1 22.63 0.83 0 23.47
Kerb. Init. 2 12.61 0.55 1.58 14.76
Kerb. Init. 3 2.23 3.34 0.94 6.52
Kerb. Resp. 1 19.28 0 0.41 19.69
Kerb. Resp. 2 10.81 3.379 1.67 15.87
Kerb. Resp. 3 5.25 11.41 3.59 20.26

5. Conclusion and Future Work

We developed a novel method for the automated execution of security
protocols. Our approach is based on a semantic security protocol model from
which security protocol specifications are generated. The sequential compo-
nent of the proposed model is implemented as a WSDL-S specification while
the ontology component is implemented as an OWL specification.

Constructing the SSPM model is not a trivial task and can induce new
flaws in correct protocols that can lead to attacks. In order to ensure a correct
construction process, we developed several generating rules and algorithms.
The proposed rules and algorithms map each component from the input pro-
tocol model to a component in the SSPM model. The components from SPM
are extended with implementation-specific elements, that do not affect the se-
curity properties of the original protocol, as long as correct methods are used
to execute the resulted specifications.

In order to prove that the proposed model contains sufficient informa-
tion for automated execution, we generated and implemented several security
protocol specifications. The generated specifications were constructed for well-
known security protocols such as the ISO9798 protocol, CCITTX509 or the
Kerberos protocol.

As future work we intend to develop a service-based middleware to support
secure distribution of these specifications. The middleware will also be able
to create new protocols based on already existing protocols and distribute the
new specifications to Web services.

36 BÉLA GENGE

References

[1] Security Protocol Open Repository. Laboratoire Specification et Verification,
http://www.lsv.ens-cachan.fr/spore/, 2008.

[2] SAML V2.0 OASIS Standard Specification. Organization for the Advancement of Struc-
tured Information Standards, http://saml.xml.org/, 2007.

[3] OASIS Web Services Security (WSS). Organization for the Advancement of Structured
Information Standards, http://saml.xml.org/, 2006.

[4] L. Mengual, N. Barcia, E. Jimenez, E. Menasalvas, J. Setien, and J. Yaguez. Automatic
implementation system of security protocols based on formal description techniques. Pro-
ceedings of the Seventh International Symposium on Computers and Communications,
pages 355–401, 2002.

[5] I. Abdullah and D. Menasc. Protocol specification and automatic implementation using
XML and CBSE. IASTED conference on Communications, Internet and Information
Technology, November 2003.

[6] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M. Schmidt, A. Sheth, and K. Verma.
Web Service Semantics - WSDL-S. A joint UGA-IBM Technical Note, 2005.

[7] W. W. W. Consortium. OWL Web Ontology Language Reference. W3C Recommendation,
2004.

[8] J. Clark, J. Jacob. A Survey of Authentication Protocol Literature: Version 1.0. York
University, 17 November 1997.

[9] Gavin Lowe. Some new attacks upon security protocols. In Proceedings of the 9th Com-
puter Security Foundations Workshop, IEEE Computer Society Press, 1996, pp. 162–169.

[10] C. J. F. Cremers. Compositionality of Security Protocols: A Research Agenda. Electr.
Notes Theor. Comput. Sci., 142, pp. 99–110, 2006.

[11] C.J.F. Cremers, S. Mauw, E.P. de Vink. Injective Synchronization: an extension of the
authentication hierarchy. TCS 6186, Special issue on ARSPA’05, Editors: P. Degano and
L. Vigano, 2006, Elsevier.

[12] P. Gutmann. Cryptlib Encryption Toolkit. http://www.cs.auckland.ac.nz/-
pgut001/cryptlib/index.html, 2008.

[13] OpenSSL Project. version 0.9.8h, http://www.openssl.org/, 2008.
[14] Gong, L.: Fail-Stop Protocols: An Approach to Designing Secure Protocols. In Proceed-

ings of the 5th IFIP Conference on Dependable Computing and Fault-Tolerant Systems,
pp. 44–55 (1995).

“Petru Maior” University of Târgu Mureş, Electrical Engineering Depart-
ment, Nicolae Iorga str., No. 1, 540088, Târgu Mureş, jud. Mureş, ROMANIA

E-mail address: bgenge@engineering.upm.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIV, Number 2, 2009

HIERARCHICAL CLUSTERING IN LARGE OBJECT

DATASETS - A STUDY ON COMPLEXITY, QUALITY AND

SCALABILITY

ADRIAN SERGIU DARABANT AND ANCA GOG

Abstract. Object database fragmentation (horizontal fragmentation) deals
with splitting the extension of classes into subsets according to some crite-
ria. The resulting fragments are then used either in distributed database
processing or in parallel data processing in order to spread the computa-
tion power over multiple nodes or to increase data locality features on each
node. In this paper we propose an analysis on the application of hierar-
chical clustering over object datasets (databases). We use a hierarchical
clustering algorithm in order to split the object set into fragments and we
analyze their quality based on data accesses in a distributed system. In or-
der to measure the scalability of the algorithm we apply it consecutively to
a small, medium and large sized database. We also compare the obtained
results with those obtained with other fragmentation algorithms.

1. introduction

Splitting an object database into multiple subsets - usually named frag-
ments - is a process used whenever one needs to distribute computations over a
sets of nodes, each containing a subset of the total object database. Fragmen-
tation is used to improve locality features of datasets, processing parallelism
or a combination of both. The first approach is used when the entire object
set models informations from a real world macro-entity (like an organization)
that has a space distributed architecture (an organization with multiple of-
fices located in different geographical areas). The objects are divided into

Received by the editors: November 13, 2009.
2010 Mathematics Subject Classification. 68M14, 68P20.
1998 CR Categories and Descriptors. C.2.4 [Computer Systems Organization]:

Computer-Communication Networks – Distributed Systems ; E.1.2 [Data]: Data Structures
– Distributed Data Structures ; H.2.4 [Information Systems]: Database Management –
Systems.

Key words and phrases. clustering, distributed databases.
This work is supported by the Romanian Ministry of Education in the frame of PN2

ID550/2007.

37

38 ADRIAN SERGIU DARABANT AND ANCA GOG

subsets according to the affinity between the real entity modeled by each ob-
ject and the sets of locations. The main advantage of this approach is that
each location (node) already stores the maximum amount of local pertinent
information reducing thus the inter-node information exchange requirements.
Most applications running in a node will handle local informations in most of
the cases.

When parallel processing comes into discussion, one would like that when-
ever a data intensive request arrives in the (distributed) system it could be
divided into multiple sub-requests, each assigned to a different processing node
such that the maximum throughput is achieved. In this case data exchange
minimization in not the main goal. The main goal is to parallelize the process-
ing by dividing it over as many nodes of the system as possible. A single node
is subject to become a processing bottleneck as processing is always divided
over the entire system.

When both policies are needed (locality and parallelism) a request is di-
vided in multiple tasks that are assigned to the nodes of the system such that
only nodes that can provide data from their local storage to the final result
participate in task resolutions.

Experience shows that distributed databases do not evolve at the pace
of centralized systems. This is not due to the fact the we lack naturally dis-
tributed applications. On the contrary, most of today applications, from ticket
reservation to medical patient records management, are inherently distributed.
A common sense reason for this lack of development could be the complexity
involved in the design and management of distributed architectures. Com-
pared to centralized data stored, most known database distribution techniques
require a lot more apriori information about the data that would be stored and
applications that will run in the system than in centralized data stores. The
existing algorithms for relational database fragmentation [11] are either too
complicated to understand and follow or too sensitive to small changes in the
inputs, making them difficult to approach by the usual database administrator
(DBA).

2. Contributions

Our approach to object dataset fragmentation is based on the idea that a
distributed database as described above should be easy enough to design and
maintain. In this paper we present a fragmentation method using hierarchical
clustering algorithm [1]. The fragmentation quality is evaluated using a parti-
tion evaluation function already used in previous work [6, 4, 2, 5, 3]. The main
contribution here is to asses the validity of this partitioning method for differ-
ent sized databases. We also compare our results with those obtained in other

HIERARCHICAL CLUSTERING IN LARGE OBJECT DATASETS 39

similar works [9, 10, 4]. An application of a variant of the k-means algorithm
for clustering in fragmentation is presented in [7]. Most of the other methods
are based on variants of the relational database fragmentation algorithms.

We also strive to prove that the requirements of our method are far more
easier to accomplish and that the algorithm is almost automatic - i.e. it doesn’t
require a deep analysis of the potential data that will be stored in the database.
The algorithm is very simple and its application is almost immediate.

3. Numerical Model

The object data model formalization is based on one of the many equiv-
alent models in literature [8]. Hierarchical clustering splits a set of items (in
our case objects) according to their similarities on a common set of features
that can be quantified. We could let the set of features be values of the object
attributes or method results but this would lead to a classification based only
on attributes. Classifying the objects on their static data would certainly lead
to a set of fragments, but those fragments would not express at all the dynam-
ics of the system. This is hardly interesting for a distributed database where
data is only the static dimension. The dynamic part is represented by the
applications that access attributes and send messages to the objects according
to the class protocol. Our quantification of the features of each object will not
be value/attribute based but application based. The quantification leads to
a numerical representation of each object in a vector space. We classify then
objects into clusters according to their similarities in behavior in the context
of the running applications.

Let Class = {Ci∣Ci is a class in the system} be the set of all classes. The
extension of a class Ci, denoted Inst(Ci) is the set of all instances (objects) of
that class: Inst(Ci) = {Oj ∣ Oj is an instance of Ci}. We denote by Q ={q1
,. . . , q t} the set of all queries(applications) that will be running in the system.
It should be noted that only applications running with some frequency are
taken in account for quantification as those are the ones that will be most
influenced by the resulting clusters. Considering an SQL based system, each of
those applications will have filters of where clauses that will filter the accessed
objects. Let Pred={p1, . . . ,pq} be the set of all atomic predicates Q is defined
on. Let Pred(C)={p ∈Pred ∣ p imposes a condition to an attribute of class C
or to an attribute of its parent}.

Given the predicate p : C1.A1. . . .An µvalue, p∈Pred(Cn), where class Ci

is the complex domain of Ai−1, i = 2..n, and An is an attribute of Cn that has
a complex type(another object) or a simple type (scalar). µ ∈ {<,>,≤,≥,=
, ∕=,∈,⊃,⊇} is a filter operator, while value ∈ domain(An)

40 ADRIAN SERGIU DARABANT AND ANCA GOG

For each object Oi ∈ Inst(Cj) we can derive a vector having ∣Pred(C)∣
dimensions, each corresponding to a predicate and having a value of one if the
object is selected by that predicate or zero otherwise. All object vectors for
objects of a class C yield a matrix denoted object-condition matrix OCM(C):
OCM(C) = {aij , 1 ≤ i ≤ ∣Inst(C)∣, 1 ≤ j ≤ ∣Pred(C)∣}, where Inst(C) =
{O1, . . . Om} and Pred(C) = {p1, . . . , pn}.

Table 1 shows an example of a object-condition matrix. Each line in the
matrix is the object-condition vector of the corresponding class instance. The
features (is selected or not) of each object are only qualitative. If we want to
integrate some quantitative information about how objects are filtered by a
predicate we can add in the percent of objects that are filtered in the same
manner by a predicate. Right side of Table 1 shows the CVM.

OCM(C) p1 p2 p3 p4

O1 1 0 1 1
O2 0 1 0 1
O3 1 1 0 0
O4 0 0 0 0
O5 1 1 0 0
O6 0 1 0 0

CVM(C) p1 p2 p3 p4

O1 0.5 0.33 0.16 0.33
O2 0.5 0.66 0.84 0.33
O3 0.5 0.66 0.84 0.66
O4 0.5 0.33 0.84 0.66
O5 0.5 0.66 0.84 0.66
O6 0.5 0.66 0.84 0.66

Table 1. Object-condition and characteristic matrix for a class

A new matrix (characteristic vector matrix) CVM(C) = {wij ∣i = 1..m, j =
1..n} having same dimensions is obtained and defined as:

(1) wij =

∑
l=1..m,alj=aij

[(alj ∣alj = 1) + (1− alj ∣alj = 0)]

m

4. Hierarchical Clustering fragmentation

We obtain a numerical model that expresses the dynamic behavior of the
data in the context of user applications. The only missing thing is a measure
of similarity/dissimilarity between objects and an algorithm capable to take as
input the OCM or VCM matrices and produce the desired clusters by grouping
together only similar objects.

The similarity functions we used for our tests are based on some well known
metrics (euclidian and manhattan):

(2) dE(wei, wej) =

√√√⎷
n∑

k=1

(weik − wejk)2 , dM (wei, wej) =

n∑

k=1

∣weik − wejk∣

HIERARCHICAL CLUSTERING IN LARGE OBJECT DATASETS 41

(3) simE(Oi, Oj) = 1− dE(wei, wej)

∣Inst(C)∣ , simM (Oi, Oj) = 1− dM (wei, wej)

∣Inst(C)∣
The similarity functions have values between 0 (meaning that objects are

totally dissimilar) and 1 (meaning full similarity). The similarity needs to
be bounded so that we could asses 0 and full similarity. The hierarchical
clustering algorithm we used is presented bellow. The algorithm starts with
m = ∣Inst(C)∣ clusters, each containing a single object. The main iteration
unifies the two most similar clusters until the number of remaining clusters
drops bellow the desired number of clusters.

Algorithm HierachicalFragPrimar is

Input: C-class to cluster, Inst(C) - instances of C, similarity

function sim : Inst(C)xInst(C) −→ [0, 1],m = ∣Inst(C)∣, k-the number

of desired clusters where 1 < k ≤ m and OCM(C)/CVM(C)− wij.

Output: The set of clusters F = {F1, . . . , Fk}
Begin

For i=1 To |Inst(C)| do Fi = {wi};
F = {F1, . . . , Fm};
While |F|>k do

// Find (F ∗
u , F

∗
v) with the greatest similarity

(F ∗
u , F

∗
v) := argmax(Fu, Fv)[sim(Fu, Fv)];

Fnew = F ∗
u ∪ F ∗

v ;

F = F − {F ∗
u , F

∗
v } ∪ {Fnew};

End While;

End.

5. Results

The performance evaluation in the case of fragmentation is generally a
complex issue to be dealt with. Normally the generated fragments should
be allocated to the nodes of a distributed system. Then the applications
are run against the system and various parameters like execution times, data
transfer amounts, etc are measured. Since the allocation of the clusters to
nodes problem is by itself an entire research subject for which there is no yet a
linear solution, one can choose to do a simple allocation schema like: allocate
each cluster to the node where it is most used. This is the approach we used
in our tests. In order to be able to find the nodes where a cluster is most
accessed locally we need to apriori know:

42 ADRIAN SERGIU DARABANT AND ANCA GOG

∙ The objects that the application accesses, for each application and
class;

∙ The number of nodes in the system;
∙ The frequency of running a given application on a given node;

Given a system with S = {S1, . . . , SS} nodes, each application runs with
a certain frequency on each node of the system,freqSj (qi). We computed the
general impact application qi has on the clustering process as being the sum
of all frequencies over all the nodes of the system:

freq(qi) =
S∑

s=1

freqSs(qi)

By definition we only consider applications that have freq(qi) > 0. A
general frequency, freq(qi) = 0 means that the application is not running in
the system - so it is not useful for the clustering process.

We denote by pi ∈ qj the fact that pi is part of the filters (where clauses)
that define qi. We would like to capture the impact predicate pi has on the
clustering process according to its frequency of execution as well. This means
we need to weight the OCM/CVM matrices to take into account the frequency.
A predicate with a high execution frequency should have larger influence on
the clustering process than a predicate with a low execution frequency. Hav-
ing Q = {q1, . . . , qt} and FreqGen = {freq1, freq2, . . . , freqt}, 0 < freqi ≤
freqQMax, freqi ∈ Z . When a predicate pj is a filter in more than a single
application its frequency is the sum of individual execution frequencies of each
application that uses pj .

freq(pj) =
t∑

i=1,pj∈qi
freq(qi), 0 < freq(pj) ≤ freqMax ∈ Z

In order to use the predicate frequencies weights in the OCM/CVM ma-
trices we need to shift their values in a well know bounded interval, keeping in
the same time their semantic. After the interval shift we can directly weight
the OCM/CVM matrices:

(4) w‘
ij = wij × freq(pj)

t∑
i=1,pj∈qi

freqMax

For the numerical evaluation of the proposed model we consider small,
medium and large datasets. In order to asses the clustering quality we use
a set of applications with a predefined set of frequencies randomly chosen.

HIERARCHICAL CLUSTERING IN LARGE OBJECT DATASETS 43

We use the partition evaluator proposed in other similar works as [4, 2, 6] for
cluster quality:

(5) PE(C) = EM2 + ER2

The evaluator (PE) computes the cost of accessing local data (EM) and
remote data (ER) when running the set of user queries over the fragments of a
class. As the value of the cost increases, the quality of fragmentation is lower.

(6) EM2(C) =
M∑

i=1

T∑

t=1

freq2ts∗ ∣Accit∣ ∗
(
1− ∣Accit∣

∣Fi∣
)

(7) ER2(C) =
T∑

t=1

min

{
S∑

s=1

M∑

i=1

freq2ts ∗ ∣Accit∣ ∗
∣Accit∣
∣Fi∣

}

The EM term computes the local irrelevant access cost for all fragments
of a class. ER calculates the remote relevant access cost for all fragments of
a class. Accit represents the set of objects accessed by query t from fragment
Fi. The value freqts is the frequency of query t running on site s. In (6) s is
the site where Fi is located, while in (7) s is any site not containing Fi. M
is the number of clusters for class C, T is the number of queries and S is the
number of sites. The fragmentation is better when the local irrelevant costs
and the remote relevant access costs are smaller. Each term of PE calculates
in fact the average square error of these factors.

The quality of fragmentation expressed as the cost of evaluating queries
against the resulting database is expressed in Figure 1:

In Figure 1 we compare the application execution costs for a small database
clustered with the k-means algorithm (random initial centroids), hierarchical
clustering algorithm, single site database, fully replicated database and the
fragmented dataset when using the method exposed in [10]-Bai and in [9] -
Bel. According to the PE measure the single node database and full replication
both obtain very high, respectively high costs. This is mostly due to ER term
scoring very high in the case of single node database - most of the data is
accessed remotely in this case. For the fully replicated case the high score is
due to the local irrelevant accesses to data (EM).

We apply the hierarchical and k-means clustering to both OCM and CVM
matrices. The better results of the hierarchical clustering are due here to
the random initial centroids for the k-means method. Normally the k-means
algorithm should perform better in these scenarios, but the random choice
of the initial centroids often lead to lost clusters and bad results. Overall,

44 ADRIAN SERGIU DARABANT AND ANCA GOG

Figure 1. Cluster quality evaluation - PE measures.

on small databases the hierarchical clustering performs better than all other
methods. The best result is obtained when applying the algorithm on object-
condition matrices. The binary selection of predicates yields a better selection
than the quantification of selected/not selected percents of application objects.

Figure 2 shows the results from a scalability point of view. Three different
dataset sizes are tested: small, medium and large datasets. The small dataset
context has already been presented in Figure 1. With the significant growth
of the dataset, the inefficiency of randomness in centroid choosing fades away
and the k-means method takes its place with the smallest cost. Hierarchical
clustering scores linearly with the database size, as unifying entire clusters is
prone to introducing misplaced objects together with the good ones. At this
level hierarchical clustering is too coarse as it does not allow for individual
object placing in clusters. Bei and Bel methods are not very affected by the
size changes.

HIERARCHICAL CLUSTERING IN LARGE OBJECT DATASETS 45

Figure 2. Quality evaluation for small, medium and large datasets

6. Conclusions

Datasets and database fragmentation is a difficult subject to approach
from a practical point of view. Existing methods are far too demanding in
knowledge and experience for the average DBA to be able to perform them
correctly. In this paper we present a dataset fragmentation method based on
hierarchical clustering that is easy to apply. Basically, we need as input some
quantitative information about the applications that run in the system and
the sets of data selected by their filters. Building the OCM/CVM matrices
is straightforward and applying the algorithm does not require any additional
knowledge from the user. From the performance point of view the algorithm
produces clusters comparable in quality with other more elaborate fragmenta-
tion methods. We have also shown that our simple method yields good results
when evolving the database scale from small to medium.

References

[1] Han, J., Kamber, M., Data Mining: Concepts and Techniques, The Morgan Kaufmann
Series in Data Management Systems, 2000.

46 ADRIAN SERGIU DARABANT AND ANCA GOG

[2] Karlapalem, K., Navathe, S.B., Morsi, M.M.A. - Issues in distribution design of object-
oriented databases. In M. Tamer Ozsu, U. Dayal, P. Valduriez, editors, Distributed
Object Management, pp 148-164, Morgan Kaufmann Publishers, 1994.

[3] Karlapalem, K., Li, Q., Vieweg, S. - Method Induced Partitioning Schemes in Object-
Oriented Databases, In Proceedings of the 16th Int. Conf. on Distributed Computing
System (ICDCS’96), pp 377-384, Hong Kong, 1996.

[4] Ezeife, C.I., Barker, K. - A Comprehensive Approach to horizontal Class Fragmentation
in a Distributed Object Based System, International Journal of Distributed and Parallel
Databases, 33, pp 247-272, 1995.

[5] Karlapalem, K., Li, Q. Partitioning Schemes for Object-Oriented Databases, In Pro-
ceedings of the Fifth International Workshop on Research Issues in Data Engineering-
Distributed Object Management, pp 42-49, Taiwan, 1995.

[6] Darabant, A. S, Campan, A. - Semi-supervised Learning Techniques: k-means Cluster-
ing in OODB Fragmentation, In Proc of the IEEE Intl Conf on Computational Cyber-
netics ICCC 2004, pag: 333 338, Wien, Austria

[7] Darabant A. S., A new approach in fragmentation of distributed object oriented
databases using clustering techniques, in Studia Univ. Babes Bolyai Informatica, Vol I,
No 2, pag 91-106, 2005.

[8] Bertino, E., Martino, L. - Object-Oriented Database Systems; Concepts and Architec-
tures, Addison-Wesley, 1993.

[9] Bellatreche,L., Karlapalem, K., Simonet, A. - Horizontal Class Partitioning in Object-
Oriented Databases, In Lecture Notes in Computer Science, volume 1308, pp 58-67,
Toulouse, France, 1997.

[10] Baiao, F., Mattoso, M. - A Mixed Fragmentation Algorithm for Distributed Object
Oriented Databases, In Proc. Of the 9th Int. Conf. on Computing Information, Canada,
pp 141-148, 1998.

[11] Tamer, Oszu M., Patrick Valduriez. Principles of Distributed Database Systems,
Prentice-Hall, 1998.

Faculty of Mathematics and Computer Science, Babe-̧s-Bolyai University,
Cluj-Napoca, Romania

E-mail address: {dadi,anca}@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIV, Number 2, 2009

MACRO-ROUTING. PERFORMANCE EVALUATION

SANDA DRAGOŞ AND MARTIN COLLIER

Abstract. QoS routing is used in networks to find feasible paths that
simultaneously satisfy multiple (QoS) constraints. The scaling difficulties
in conventional shortest-path routing can be addressed using hierarchical
routing and state aggregation. State aggregation gives rise to an approxi-
mate representation of the network, which can lead to inaccurate path se-
lection. We evaluate in this paper our hierarchical routing protocol, called
Macro-routing, that we introduced in [4]. Macro-routing can distribute the
route computation efficiently throughout the network using mobile agents.
This allows it to process more detailed information than in conventional
hierarchical routing protocols and so increases the likelihood of finding the
best path between source and destination.

1. Introduction

The migration of all types of communications services to packet-switched
networks (notably the Internet) means that the proportion of traffic generated
by real-time applications continues to rise. The Quality of Service (QoS)
requirements of such applications can be met either by overprovisioning of
the network, or by service differentiation. The latter solution will require
ubiquitous network support for QoS routing. QoS routing is the process of
identifying efficient paths that can satisfy QoS constraints (e.g. bandwidth,
delay, delay variation).

The primary issue for QoS routing solutions in very large networks is
scalability [10, 9, 2]. Unlike routing protocols such as BGP that are based on
relatively static information (e.g. path hop count or AS count), QoS routing
requires the frequent updating of dynamic network state information. The
update messages consume significant network bandwidth. This amount of
state information needs considerable storage space, while processing it requires
significant computational power. A large scale deployment of QoS routing

Received by the editors: September 30, 2009.
2010 Mathematics Subject Classification. 68M12, 90B20.
1998 CR Categories and Descriptors. C.2.1. [Network Architecture and Design]:

Network topology – Hierarchical topology ; C.2.2. [Network Protocols]: Routing protocols.
Key words and phrases. QoS routing, hierarchical routing.

47

48 SANDA DRAGOŞ AND MARTIN COLLIER

generates three main types of overhead: communication, computation and
storage.

Topology aggregation [8] reduces the amount of routing information and
the routing table sizes by orders of magnitude. However, aggressive aggrega-
tion methods may have a negative impact on routing performance [7].

2. Hierarchical QoS routing protocols

Private Network-to-Network Protocol (PNNI) [3] is the only QoS-aware
hierarchical routing protocol standardized and implemented. It is used in
ATM networks and allows up to 104 hierarchical levels. A drawback of PNNI
is that the route computation load is distributed unevenly among the network
nodes. Also, the aggregation process used in PNNI leads to inaccurate state
information advertisements [7, 11] which can result in the inefficient utilization
of network resources.

HDP [5] is a proposal for a hierarchical routing protocol within Multipro-
tocol Label Switching (MPLS) networks. It uses cluster-based server farms
as managing nodes which collect all the routing information from their do-
mains and compute them centrally. The setup time of a path is reduced by
computing the routes within different domains on one level in parallel, at the
expense of an increase in the number of messages [5]. Also, by starting the
path computation at the top of the hierarchy and progressing downwards, the
aggregation strategies may be used inefficiently as some routing information
can already be obsolete by the time the protocol reaches the lower levels of
the hierarchy.

In Viewserver [1], the path computation is done by the source node, which
gathers centrally all the required routing information by traversing the hier-
archy upwards (to find the parent “view server”) and downwards (to collect
detailed routing information about transit and destination domains). How-
ever, the setup time is long as the whole path is computed on a single node,
and there are scalability concerns regarding the amount of state information
gathered.

3. Macro-routing

We proposed in [4] a new protocol that addresses the problem of hierarchi-
cal QoS routing within MPLS networks. It is called Macro-routing because,
being an inter-domain routing protocol, its routing decisions at the higher lev-
els are macro-decisions, as opposed to the detailed or micro-decisions made at
the lowest level of the hierarchy.

MACRO-ROUTING. PERFORMANCE EVALUATION 49

Macro-routing is capable of both routing and signalling functionalities
which are accomplished by the use of mobile agents. Thus, instead of adver-
tising state information, small mobile agents are dispatched to process such
information at each node. The advantage of this approach is that the infor-
mation used to compute routes can be much more detailed that in traditional
link-state protocols (e.g., it can feature multiple QoS constraints, or a Full-
Mesh aggregated representation). Moreover, by using mobile agents which
can replicate at each node and therefore analyse a large set of paths, route
computations are done in a distributed and parallel manner which reduces the
time required for path setup and distributes the processing burden amongst
mobile agents.

3.1. Protocol description. The hierarchical organization of Macro-routing
consists at the lowest level of a number of domains which are typically inde-
pendent administrative areas. The nodes within such domains are physical
network nodes (i.e. routers or switches). Each domain has a managing node,
which must be able to interpret mobile agent code. It can either be selected
from the nodes of the domain (as with PNNI) or it can be a distinct node (as
in HDP). Its main function is to maintain an aggregated representation of the
domain it is managing.

As the hierarchy is decided administratively, each domain at the lowest
level of the hierarchy may choose its own routing strategy. For example it
may use standard link-state methods, or may use mobile agents for route dis-
covery. The latter method implies the existence of a mobile agent interpreter
on each router or switch. The only Macro-routing requirement is that the
managing node must contain an Full-Mesh aggregate representation of the
managed domain. The maintenance of that aggregate representation is the
responsibility of the domain administrator.

For the higher levels of the hierarchy the managing node creates an aggre-
gated representation in four steps:

(1) Each border node and the source and destination nodes activates a
mobile agent that floods the domain by replicating itself at each node.
Its goal is to find all possible paths to all the other border nodes within
the same domain. Each mobile agent records the path it follows and
processes the routing information at each node. If one mobile agent is
revisiting a node, or the path it has traversed to date does not satisfy
the given QoS constraints, it will be discarded. If it reaches another
border node it will transmit the path used and its cost to the managing
node.

(2) The managing node chooses optimal paths between each pair of border
nodes.

50 SANDA DRAGOŞ AND MARTIN COLLIER

(3) A Full-Mesh aggregation topology is created using the selected paths.
The costs of the selected paths will become nodal costs when comput-
ing paths at the next level of the hierarchy.

(4) Some or all of the other computed paths, which have not been selected
for the aggregate representation, can be cached for recovery purposes
or as alternative paths.

There are three major phases in the Macro-routing protocol whereby it
finds and selects a QoS path from a given source to a given destination.

3.1.1. Determination of participant domains. The first phase involves deter-
mining the domains through which the path is likely to pass. It develops in
two stages.

In the first stage, the source node initiates an “upwards search” in the
hierarchy for the lowest level parent node, known as the root node, which has
a view of both source and destination, as in HDP and Viewserver.

In the second stage, the parent node initiates a “downwards search” in
parallel to all its children. Recursively, the nodes reached will continue the
search to all their children until they reach the lowest level of the hierarchy.
All the physical domains reached by this search will be participant domains.

3.1.2. Path computation. The second phase involves the determination of the
path.

Every managing node in the participant domains will create its own ag-
gregate representation by calculating routes between all domain border nodes.

Mobile agents released from each border node traverse the domain mul-
tiplying themselves in search of all possible paths that satisfy the QoS con-
straints. At the end of its journey (i.e. upon reaching a border node different
from the starting one) each mobile agent would send the gathered information
to the local managing node. Sending the information to the managing node
can be done either by piggybacking on legacy messages or using mobile agents.

Starting from the second level of the hierarchy, nodal costs will be consid-
ered as well as link costs when computing the path cost1. The topmost domain
will have as border nodes only the aggregated representation of the source and
destination domains. The managing node of this domain will determine all the
possible paths between its border nodes (the source and the destination) and

1Costs include link costs and nodal costs. Nodal costs represent the cost of traversing a
virtual node. This nodal cost is zero at the lowest level of the hierarchy.

MACRO-ROUTING. PERFORMANCE EVALUATION 51

based on their costs it can determine the optimal path. The other paths found
during this process can be used by fast recovery mechanisms or as alternative
paths.

3.1.3. Path reservation and set up. To accommodate the traffic for which the
request has been made, the final path must be set up and the resources re-
served. The overall path can be determined by traversing the hierarchy down-
wards and interrogating all the managing nodes along the chosen path about
the detailed sub-paths across their domains.

The path set up and resource reservation can be done either by existing
signaling protocols if they can set explicit paths, by existing resource reser-
vation protocols (such as the Resource reSerVation Protocol (RSVP)), or by
using suitably programmed mobile agents. Advantages of using mobile agents
instead of RSVP for the reservation process are:

∙ availability: Mobile agent support is already available in the nodes, so
there is no need to deploy or configure additional software;
∙ parallelism: RSVP has to traverse the path in a sequential manner

twice: by using PATH messages, from source to destination, to deter-
mine the path and then by using RESV messages, from destination
to source, to reserve the path. Mobile agents can do the reservation
in a parallel and distributed manner so that, from each hierarchical
level, within each domain, a mobile agent can be dispatched to reserve
resources corresponding to each logical/aggregated link.
∙ hierarchical reservation: We give the name “hierarchical reservation”

to the process of reserving the resources for the overall path in a man-
ner which corresponds with the hierarchical representation used by
the routing protocol (i.e. Macro-routing). The first resources to be
reserved are those corresponding to the links within the topmost (e.g.,
level k) domain within the hierarchy. If such resources are not avail-
able another level-k path will be selected until there is a path with
available resources. Then, the process continues within the k− 1 level
domains which are represented by the virtual nodes traversed by the
selected path at level k. The process stops when k = 0. The advan-
tage for such reservation strategy is that any unavailable sub-path can
be substituted on the spot while all other resources (previously ad-
dressed) remain reserved. RSVP, however, performs sequential reser-
vation. This means that any failure is reserving a resource will result
in an overall failure, which requires finding a new source-to-destination
path and starting the reservation process all over again.

52 SANDA DRAGOŞ AND MARTIN COLLIER

Macro-routing works best in the MPLS context as the separation between
the control and forwarding planes allows the coexistence of complex or dif-
ferent routing strategies. Setting up a hierarchical path in an MPLS network
is straight-forward. That is because MPLS has the label stack capability.
Thus, every sub-path within every domain and every hierarchical level can be
treated independently. This can be done either by using a mobile agent-based
“hierarchical reservation” or by using any other label distribution protocol.

When all the resources have been successfully reserved and the overall
path has been set up, the request is served and the traffic may flow. In the
case of resource unavailability or link/node failure, alternative paths which are
already computed can be used for a fast recovery.

3.2. Implementation details. The Macro-routing protocol can be imple-
mented using any mobile agent technology. We have chosen the Wave tech-
nology [12]. The main reason for selecting this particular technology is that
its syntax make Wave code very compact, perhaps 20 to 50 times shorter that
equivalent programs written in C++ or Java [13]. The use of Wave in MPLS
networks for routing purposes has already been advocated in [6] to discover
multi-point to point trees. Here it is used for hierarchical routing.

The two phases called (Determination of participant domains and Path
reservation and set-up) have a straightforward implementation. The imple-
mentation details of the initial Path computation phase of the protocol were
presented in [4].

4. Test results and performance evaluation

4.1. The simulation model. For all tests the Georgia Tech Internetwork
Topology Models (GT-ITM) [14] was used to generate random network topolo-
gies. One example of such topologies is presented in Fig. 1. The corresponding
values of number of nodes, number of links and connectivity degree for each
topology used in our simulations are shown in Table 1.

One or multiple constraints were associated to each link. The main metrics
used were administrative cost ∈ [1, 15] and hop count2 ∈ [20, 30]. For each link,
the corresponding metric was randomly chosen.

The results in [4] were obtained by deploying real wave agents on a virtual
(i.e., simulated) network running on a single host. Due to the complexity
of the virtual networks required to evaluate multi-constrained Macro-routing
(hierarchical networks with hundreds of nodes), we developed an application

2For the first hierarchical level, the hop count metric would be 1 for each link. However,
for the upper hierarchical levels, this hop count can have greater values and differ from one
link to another due to the aggregation process.

MACRO-ROUTING. PERFORMANCE EVALUATION 53

Figure 1. Two-level hierarchical topology similar with the
ones used in simulation

Table 1. Details about two-level hierarchical topologies used
in simulation

No. of nodes (N) No. of links (L) Connectivity degree (2L/N)

4 × 4 = 16 24 3.00

9 × 9 = 81 124 3.06

10 × 10 = 100 149 3.98

12 × 12 = 144 [216, 372] [3, 5.166]

13 × 13 = 169 282 3.33

15 × 15 = 225 368 3.27

20 × 20 = 400 600 3.00

to generate a list of the paths the waves would discover, rather than deploying
waves on such networks.

4.2. Macro-routing’s communication overhead. The communication
overhead incurred by Macro-routing was evaluated in [4]. It was shown that
many of the waves Macro-routing generates within high connectivity topologies
end in cycles, and thus do not contribute to route discovery. We introduced a
parameter called lifespan, which resembles the TTL field used in the IP proto-
col. Its purpose is to limit the number of waves generated during route search
by reducing the number of generations which the parent wave can produce.
The rationale for this is that the law of diminishing returns is assumed to ap-
ply - it is unlikely that an exhaustive search of every possible path is necessary
to find the optimal path. The modified algorithm is no longer guaranteed to
find the optimal path (and indeed will find no path if the destination is more

54 SANDA DRAGOŞ AND MARTIN COLLIER

than lifespan hops away). It was shown, however, that in a representative3

network comprising 9× 9 = 81 nodes, the optimal paths were found provided
that lifespan ≥ 5.

The following tests further explore the influence of the lifespan parameter
on the performance of Macro-routing. Before presenting our test results, we
first introduce some notation and terminology.

Definition Effort
Macro-routing’s effort is the ratio of the number of ineffective waves which

end up in cycles after n nodes have been visited to the number of waves which
might find a path.

Definition Efficiency
Let Copt be the optimal path cost between a specific source and destination,

and Cact the actual path cost obtained by the (sub-optimal) lifespan-limited
Macro-routing algorithm. Macro-routing’s efficiency is then:

(1) E =
Copt

Cact
,

Definition Failure, success, best
Let E be Macro-routing’s efficiency as defined in Definition 4.2. We define

Macro-routing’s results as:

∙ failure: no path is found (because of too low a lifespan value): E = 0
∙ success: paths satisfying the requirements are found, and: E > 0
∙ best : the paths found include the optimal path, i.e. : E = 1.

The tests were performed on two-level hierarchical networks with connec-
tivity varying from 3 to 5.166 and 12 × 12 = 144 nodes. These topologies
were divided into three different classes based on their connectivity degree4

(cd) varying in the following intervals:

(1) cd ∈ [3, 3.66]
(2) cd ∈ [4, 4.5]
(3) cd ∈ [5, 5.166]

3Each domain from the two level hierarchical networks has an average node degree of 3.5
(i.e. 2 ⋅ L/N = 3.5).

4We will refer to the average node degree (i.e. 2 ⋅ L/N , where L is the number of links
and N is the number of nodes) as connectivity degree.

MACRO-ROUTING. PERFORMANCE EVALUATION 55

We ran 30 sets of tests on each hierarchical topology class. The mean values
of the results obtained across the three classes are depicted in Fig. 2. They
show that on the given topology (with 12 × 12 = 144 nodes) a lifespan value
above 5 does not affect Macro-routing’s efficiency in a significant manner (see
Fig. 2(a) and 2(b)), while the number of waves is greatly reduced (see Fig. 2(c)
for the ratio between the cycle and the alive waves and Fig. 2(d) for the total
number of waves/link). Moreover, when the value of lifespan is set to 7 there
is no loss in Macro-routing’s efficiency, while its overhead (i.e. the number of
waves) is considerably reduced.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10

E
F

F
IC

IE
N

C
Y

lifespan

(a) Macro-routing’s Mean Efficiency (see
Definition 4.2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 3 4 5 6 7 8 9 10

pr
op

or
ti

on
 o

f
p

at
h

s
fo

u
n

d

lifespan

Macro-routing’s success
Macro-routing’s best

(b) Mean percentages of success and best
Macro-routing paths found (see Defini-
tion 4.2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2 3 4 5 6 7 8 9 10

E
F

F
O

R
T

lifespan

(c) Macro-routing’s Mean Effort (see Def-
inition 4.2)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 2 3 4 5 6 7 8 9 10

n
u
m

b
er

 o
f

w
av

es
/l

in
k

lifespan

(d) Mean number of waves/link generated

Figure 2. Macro-routing’s performance while applying the lifespan

56 SANDA DRAGOŞ AND MARTIN COLLIER

The average communication overhead generated by waves, as depicted in
Fig. 2(d) is significant for lifespan values above 5, considering the relatively
small size of the network. This is because of the high network connectivity in
these cases, as can be seen in Fig. 3, which shows the considerable variation
in the number of waves generated on three different classes of topologies.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 2 3 4 5 6 7 8 9 10

nu
m

be
r

of
 w

av
es

/li
nk

lifespan

connectivity degree in [3, 3.7]
connectivity degree in [4, 4.5]
connectivity degree in [5, 5.3]

Figure 3. Macro-routing’s communications overhead on dif-
ferent topologies

The number of waves generated by Macro-routing is overestimated in these
results due to the assumption that all paths satisfy the constraints. Demanding
constraints would significantly limit the number of compliant paths, and thus
the wave population.

5. Conclusions

In this paper we proposed solutions for Macro-routing ’s scalability in terms
of storage, computational and communication overhead introduced by QoS
routing. By using mobile agents, Macro-routing allows routes to be discovered
rapidly without the imprecision introduced by topological state aggregation
in other approaches. The price paid for this level of performance is that a
large number of mobile agents (implemented as waves) traverse the network.
However, the level of wave traffic can be restricted by limiting their lifespan.
Tests run on the two level hierarchical networks showed that there exists a
threshold over which this parameter significantly reduces the communication
overhead without impairing the performance of our protocol. Moreover, the
size of one wave packet is significantly smaller (i.e., less than one KB) com-
pared with the link-state packets used to distribute QoS routing information

MACRO-ROUTING. PERFORMANCE EVALUATION 57

(see details about the PNNI packet size in [3]). Also, due to the dynamic na-
ture of the routing information, such link-state packets need to be broadcast
frequently. In contrast, waves are only dispatched when needed. Thus, it can
be tentatively assumed that the communication overhead generated by the
wave population is, at worse, no greater than the overhead generated by the
link-state packets when centralized QoS mechanisms are used. This quanti-
tative argument will need to be confirmed by quantitative studies, which is a
topic for future research.

Acknowledgements

This material is partially supported by the Romanian National University
Research Council under award PN-II IDEI 2412/2009.

References

[1] C. Alaettinoglu and A. U. Shankar, The Viewserver Hierarchy for Interdomain
Routing: Protocols and Evaluation, IEEE Journal of Selected Areas in Communications,
13 (1995), pp. 1396–1410.

[2] G. Apostolopoulos, R. Guerin, S. Kamat, and S. K. Tripathi, Quality of service
based routing: A performance perspective, in ACM SIGCOMM 98, Vancouver, Canada,
August 1998, pp. 17–28.

[3] ATM Forum, Private network-network interface specification , version 1.0, Tech. Re-
port af-pnni-0055.000, ATM Forum, March 1996.

[4] S. Dragos and M. Collier, Macro-routing: a new hierarchical routing protocol, in
Proceedings of the IEEE Global Telecommunications Conference (Globecom), Novem-
ber/December 2004.

[5] M. El-Darieby, D. C. Petriu, and J. Rolia, A Hierarchical Distributed Protocol
for MPLS path creation, in 7th IEEE International Symposium on Computers and
Communications (ISCC’02), July 2002, pp. 920–926.

[6] S. Gonzalez-Valenzuela and V. C. M. Leung, QoS Routing for MPLS Networks
Employing Mobile Agents, IEEE Network Magazine, 16 (2002), pp. 16–21.

[7] R. Guerin and A. Orda, QoS-based Routing in Networks with Inaccurate Informa-
tion: Theory and Algorithms, in IEEE Conference on Computer Communications (IN-
FOCOM’97), April 1997, pp. 75–83.

[8] F. Hao and E. W. Zegura, Scalability techniques in qos routing, Tech. Report GIT-
CC-99-04, College of Computing, Georgia Institute of Technology, 1999.

[9] , On Scalable QoS Routing: Performance Evaluation of Topology Aggregation,
in 21st IEEE Conference on Computer Communications (INFOCOM’00), vol. 1, June
2000, pp. 147–156.

[10] S. S. Lee, S. Das, G. Pau, and M. Gerla, A Hierarchical Multipath Approach to
QoS Routing:Performance and Cost Evaluation, in IEEE International Conference on
Communications (ICC’03), Anchorage, AK, USA, May 2003.

[11] W. C. Lee, Topology Aggregation for Hierarchical Routing in ATM Networks, ACM
SIGCOMM Computer Communication Review, 25 (1995), pp. 82–92.

[12] P. S. Sapaty, Mobile Processing in distributed and Open Environments, Wiley, 2000.

58 SANDA DRAGOŞ AND MARTIN COLLIER

[13] S. T. Vuong and I. Ivanov, Mobile Intelligent Agent Systems: WAVE vs. JAVA, in
1st Annual Conference of Emerging Technologies and Applications in Communications
(etaCOM’96), Portland, Oregon, May 1996.

[14] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, How to Model an Internet-
work, in IEEE Conference on Computer Communications (INFOCOM’96), vol. 2, San
Francisco, California, USA, March 1996, pp. 594–602.

Babeş-Bolyai University, Department of Computer Science, 400084 Cluj-
Napoca, Romania

E-mail address: sanda@cs.ubbcluj.ro

Dublin City University, School of Electronic Engineering, Dublin 9, IRE-
LAND

E-mail address: collierm@eeng.dcu.ie

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIV, Number 2, 2009

CONCEPTUAL KNOWLEDGE PROCESSING FOR

DATABASES. AN OVERVIEW

CHRISTIAN SĂCĂREA AND VIORICA VARGA

Abstract. We present an overview of methods of Conceptual Knowledge
Processing and their applications for databases, pointing out recent devel-
opments and joint research work in this field. Based on the mathematical
theory of Formal Concept Analysis, we show how Conceptual Graphs can
be used as a representation tool for both database structure and queries.
Also we apply methods of Formal Concept Analysis to mine functional
dependencies in relational databases. These methods are then discussed
on several examples, presenting two software products developed so far,
FCAFuncDepMine and CGDBInterface.

1. Conceptual Knowledge Processing

1.1. Methods of Conceptual Knowledge Processing. Formal Concept
Analysis started in the early ’80s as an attempt to restructure the classical
lattice theory. The mathematical part of this theory quickly developed but the
power of its expressiveness became clear by dealing with concrete problems
of data analysis. Since then, Formal Concept Analysis has been extended
to a powerful general framework for Conceptual Knowledge Processing and
Representation.

According to [21], Conceptual Knowledge Processing is considered to be
an applied discipline dealing with ambitious knowledge which is constituted by
conscious reflection, discursive argumentation and human communication on
the basis of cultural background, social conventions and personal experiences.
Its main aim is to develop and maintain methods and instruments for pro-
cessing information and knowledge which support rational thought, judgment
and action of human beings and therewith promote the critical discourse. The
word Conceptual in the name Conceptual Knowledge Processing underlines

Received by the editors: October 30, 2009.
2010 Mathematics Subject Classification. 68P15, 03G10.
1998 CR Categories and Descriptors. H.2.1 [Database Management]: Logical design

– Normal forms; F.4.m [Mathematical Logic and Formal Languages]: Miscellaneous.
Key words and phrases. Conceptual Knowledge Processing, Formal Concept Analysis,

Database Theory, Conceptual Graphs.

59

60 CHRISTIAN SĂCĂREA AND VIORICA VARGA

the constitutive role of the thinking, arguing and communication of human
being in order to collect process knowledge. Conceptual Knowledge Process-
ing is grounded on the mathematization of traditional philosophical logic, as
a doctrine of concept, judgment and conclusion. The mathematical basis is
build on Formal Concept Analysis, a mathematical theory of concepts and
concept hierarchies, developed in the last 25 years, which has been proved
useful in a large number of applications. Conceptual Knowledge Representa-
tion, Conceptual Classification, Analysis of Concept Hierarchies, Conceptual
Identification, Conceptual Knowledge Inference, Acquisition and Retrieval are
just some methods which can prove their usefulness.

Conceptual Knowledge Processing differs from other data analysis methods
in that the emphasis is on recognizing structural similarities ([3]), turning a
collection of data into a set of knowledge units called concepts and unfolding
the subsequent encoded knowledge into a conceptual hierarchy.

Throughout this paper, information in the scope of Conceptual Knowledge
Processing should be understood in the same way as in Devlin’s book Infosense
- Turning Information into Knowledge ([6]). Here, he briefly summarize this
understanding in the formulas:

Data = signs + syntax
Information = Data + Semantics
Knowledge = Internalized Information + Possibility to use this

information in order to acquire new knowledge.

By this understanding, it becomes clear that Formal Concept Analysis
is able to support the representation of information and knowledge ([20]).
Moreover, it is important to point out the difference between information
and knowledge, difference which constitutes the very essence of knowledge
processing vs. data analysis. By this understanding, information is always
contextual, while knowledge is always conceptual.

The mathematical theory of Formal Concept Analysis is based on a set
theoretical semantics. Formal Concept Analysis starts with a formalization
of contexts. Thus, a formal context is a triple K := (G,M, I). The set G is
called the set of objects, M is the set of attributes, and I is a binary relation
between G and M indicating which object has which attribute, called incidence
relation. A formal context should be understood as a formalization of a part
of reality, containing the entire intended information about collected data.

Since a formal context is just a set of data and related information, we
need to unfold a so-called knowledge map, by highlighting the basic knowledge
units which are formal concepts. A formal concept is a pair (A,B), consisting
of two subsets, A the extension, a subset of G, and B the intension, a subset of

CONCEPTUAL KNOWLEDGE PROCESSING FOR DATABASES. AN OVERVIEW 61

M . The formal extension A contains all objects having the formal attributes
collected in the set B. The formal intension contains all attributes valid for
all formal objects collected in the set A. Concepts can be ordered in a hier-
archy by the subconcept - superconcept ordering relation. A concept (A,B) is
called a subconcept of (C,D), and (C,D) a superconcept of (A,B), if A is a
subset of C or, equivalent, D is a subset of B. We write (A,B) ≤ (C,D). A
subconcept can be understood as a specialization of the superconcept, while
the superconcept is the generalization of its subconcepts. The set of all for-
mal concepts of a given formal context K is denoted by ℬ(K). It is called
conceptual hierarchy or concept lattice. Indeed, ℬ(K) is a complete lattice or-
dered by the subconcept-superconcept relation. Conceptual hierarchies can
be understood as a knowledge map for the information encoded in the formal
context. Representing the conceptual hierarchy as a treelike structure enables
navigation and activates background knowledge. It makes possible to unfold
the conceptual structure of the entire data set in a very precise and coherent
way. Conceptual hierarchies are valuable visualization methods for complex
knowledge structures, enabling navigation from one knowledge object, i.e, a
concept, to another concept. Conceptual hierarchies are also comprehensives
knowledge maps, in which navigation is made along lines, from one node to an-
other. Every time a node is hit, the corresponding information is revealed, i.e,
what are the objects related to that node, and what are their attributes. By
restricting and/or enlarging the set of attibutes or objects navigation becomes
dynamic.

Implications in Formal Concept Analysis are an important feature for un-
derstanding the internal structure of data. The logic of data is part of the
subsequent knowledge which is unfolded in the conceptual hierarchy. Never-
theless, it might be of interest to investigate dependencies between attributes
in terms of implications. If (G,M, I) is a formal context, let A and B be sub-
sets of M . Formally, an implication is just a pair (A,B) of subsets of M . We
write A → B. We say that the implication A → B holds in (G,M, I) if and
only if every object which has all the attributes from A also has the attributes
from B. It can be proven that the implications determine the conceptual hi-
erarchy up to isomorphism and therefore offer an additional interpretation of
the conceptual structure.

1.2. Contextual Logic. The interplay of the theory of Conceptual Graphs
(CG) and Formal Concept Analysis (FCA) proved to be very fruitful in order
to formalize the Elementary Logic, defined by I. Kant as ”the theory of the
three main essential functions of thinking: concepts, judgements and conclu-
sions”.

62 CHRISTIAN SĂCĂREA AND VIORICA VARGA

While FCA provides the mathematization of the classical theory of con-
cepts, regarded as units of thoughts, CG are representing a formalization of
the theory of judgements and conclusions.

Conceptual graphs can be understood as formal judgements. A conceptual
graph is a labeled graph that represents the literal meaning of a sentence. Con-
ceptual graphs express ’meaning in a form that is logically precise, humanly
readable, and computationally tractable’ ([12]). They serve as an intermedi-
ate language for translating computer-oriented formalisms to and from natural
languages. With their graphic representation, they serve as a readable, but
formal design and specification language.

In particular, they are graphs that consist of concept nodes, which bear
references as well as types of the references. The concept boxes are connected
by edges, which are used to express different relationships between the refer-
ents of the attached concept boxes. Sowa provides rules for formal deduction
procedures on conceptual graphs; hence the system of conceptual graphs offers
a formalization of conclusions too.

Hence, a conceptual graph is a bipartite graph having to kind of labeled
nodes (concepts and relations) having the full description power of first order
logic, FCA is a mathematical theory of deriving a conceptual hierarchy from
a data table called formal context. Later on, these two theories have grown
together, FCA being now part of a successful formalization of CG theory.

As Formal Concept Analysis provides a formalization of concepts, and as
conceptual graphs offer a formalization of judgements and conclusions, a con-
vincing idea is to combine these approaches to gain a unified formal theory for
concepts, judgements and conclusions, i.e., a formal theory of elementary logic.
In [19], Wille marked the starting point for a such a theory. There he provided
a mathematization of conceptual graphs where the types of conceptual graphs
are interpreted by formal concepts of a so-called power context family. The
resulting graphs are called concept graphs. They form the mathematical basis
for contextual logic.

Interaction with computers becomes more and more important in our daily
lifes. The goal of conceptual graphs is to provide a graphical representation for
logic which is able to support human reasoning. Possible applications of such a
logical representation system have been described in [13], [14]. One interesting
application is a consistent, graphical interface for database interaction, which
has not been completely developed until today.

2. Conceptual graphs as database interface

The basic idea of using conceptual graphs as query interface to relational
databases has been stated in the mid ’70s by Sowa [11]. Almost twenty years

CONCEPTUAL KNOWLEDGE PROCESSING FOR DATABASES. AN OVERVIEW 63

later, after a consistent development of database theory, a first attemp to use
conceptual graphs for relational databases was stated ([8]), namely it presents
the scheme of a relational table as a conceptual graph and queries also as
conceptual graphs.

The mathematization of conceptual graphs started by Wille, and continued
by Prediger was completed by F. Dau [4]. Here, he studies a calculus for
the mathematization of conceptual graphs and their equivalence to first order
logic. In database theory (see [1]) the equivalence of the relational calculus
and the relational algebra is well known. Modern database languages extend
this expressivity, considering especially aggregate functions. F. Dau and J. C.
Hereth [5] developed Nested Concept Graphs with Cuts to express aggregate
functions and negation.

In our research, we made use of the previous results mentioned above, but
we decided that there is need for specialization and slightly modification of
the theory developed so far. Hence, we have modeled a new form of concep-
tual graphs. They enable vizualisation of both the structure of a relational
database, and queries, allowing a user friendly representation of queries and
structure of the relational database. A software product has been developed,
presented at [18] named CGDBInterface, which offers a graphical tool to query
an existing relational database. The aim of our software tool is to connect to
an existing database by giving the type and the name of the database, a login
name and password, then the software offers the structure of the database in
form of a conceptual graph. The relation between tables was not represented
with conceptual graphs in earlier works. We also have been successful in our
attempt to represent the relation between tables too by a conceptual graph,
method which has been implemented in the above mentioned software. We
illustrate our results by the next examples. The mathematical background of
the proposed model for database scheme and queries is under development,
since the particular structure of the conceptual graphs we use, imposes some
modifications of the theory stated in [4].

Example 1. Let be the next relational Sales database scheme. Figure 1
shows the conceptual graph obtained by CGDBInterface software.

Customers(CustomerID, CompanyName, ContactName, Address, Phone)

Suppliers(SupplierID, CompanyName, ContactName, Address, Phone)

Orders(OrderID, CustomerID, OrderDate, RequiredDate)

Products(ProductID, ProductName, SupplierID, UnitPrice,

UnitsInStock, UnitsOnOrder)

OrderDetails(OrderID, ProductID, UnitPrice, Quantity)

64 CHRISTIAN SĂCĂREA AND VIORICA VARGA

Figure 1. Conceptual graph for Sales scheme

Queries generated by software CGDBInterface covers all types of queries,
starting with simple queries to very complex ones. The software uses hypo-
static abstraction to model aggregation and nested queries.

Example 2. The next query is constructed by CGDBInterface, which has a
graph editor. The SELECT SQL statement is generated by the software,
then the generated query can be executed. In Figure 2 is presented the
query, which searches for product names having been ordered for 3th of June,
2009. It gives the OrderID and order quantity too for every product. The
selected attributes are marked by ’?’ in the query conceptual graph. To con-
struct the query we have to join three tables: Orders, OrderDetails and
Products. The join attributes connect the tables.

Example 3. The query in Figure 3 selects for every customer the number
of products ordered by him. In order to use relations as objects in other
relations, we have to reconsider these relations and to make use of a method
introduced by Peirce, called hypostatic abstractions. Hypostatic abstraction,
also known as hypostasis or subjectal abstraction, is a formal operation that
takes an element of information, such as might be expressed in a proposition
of the form X is Y , and conceives its information to consist in the relation
between a subject and another subject, such as expressed in a proposition
of the form X has Y -ness. The existence of the latter subject, here Y -ness,
consists solely in the truth of those propositions that have the corresponding

CONCEPTUAL KNOWLEDGE PROCESSING FOR DATABASES. AN OVERVIEW 65

Figure 2. Conceptual graph for query involving join operation

concrete term, here Y , as the predicate. The object of discussion or thought
thus introduced may also be called a hypostatic object ([9]).

In reasoning, we can consider the elements of a set and their properties,
and sometimes the set itself as an element on its own having other properties.
This shift in perspective transforms a relation into an object which then may
be attached to relations again. In visualization, we use nested concept boxes
as rectangle T1, which contains the joins of the tables: Orders, OrderDetails
and Products. The result of the join is a relation too and the aggregation is
applied to it.

3. Mining functional dependencies in relational databases

Functional dependencies (FDs shortly) are the most common integrity
constraints encountered in databases. FDs are very important in relational
database design to avoid data redundancy. Extracting FDs from a relational
table is a crucial task to understand data semantics useful in many database
applications. The subject of detecting functional dependencies in relational
tables was studied for a long time and recently addressed with a data mining

66 CHRISTIAN SĂCĂREA AND VIORICA VARGA

Figure 3. Conceptual graph for query involving grouping and
aggregate functions

viewpoint. Baixeries [2] gives an interesting framework to mine functional
dependencies using Formal Context Analysis.

Hereth [7] presents how some basic concepts from database theory are
translated into the language of Formal Concept Analysis. The definition of
the formal context of functional dependencies for a relational table can also
be found in [7]. Regarding to this definition, the context’s attributes are the
columns (named attributes) of the table, the tuple pairs of the table will be the
objects of the context. In [7] you can find the proposition which asserts that
in this context, implications are essentially functional dependencies between
the columns of the relational database table.

A detailed analysis and complex examples of the formal context of func-
tional dependencies for a relational table are presented in [15]. The novelty
of our method is that it builds inverted index files in order to optimize the
construction of the formal context of functional dependencies.

We implemented the method presented in [15] and completed it with a
software tool, which analyzes an existing relational database table. Our soft-
ware named FCAFuncDepMine (see [17]) can connect to a MS SQL Server,

CONCEPTUAL KNOWLEDGE PROCESSING FOR DATABASES. AN OVERVIEW 67

Oracle or MySQL database by giving the type and the name of the database,
a login name and password, then the software offers a list of identified table
names which can be selected for possible functional dependency examination.

It constructs the formal context of functional dependencies, uses Conexp
[22] to build the concept lattice and to determine the implications in this con-
text, which corresponds to functional dependencies in the analyzed table. The
software can be used in relational database design and for detecting functional
dependencies in existing tables, respectively. A detailed data analysis using
software FCAFuncDepMine is presented in [16].

Example 4. Let be a complex example, which is illustrative for our work.
The next table:

OrderDetail [OrderID, CustomerID, OrderDate, CompanyName,

Address, Phone, City, Quantity, UnitPrice, ProductID]

stores orders of different customers together with order details information
as product ID, order price and quantity too. CompanyName is the name of
customer, Address is the customer’s address and the City is his city. In
Figure 4 there are the first rows from table OrderDetail .

Figure 4. First rows from table OrderDetail

68 CHRISTIAN SĂCĂREA AND VIORICA VARGA

The conceptual lattice for context of functional dependencies in table
OrderDetail is represented in Figure 5.

Figure 5. Conceptual lattice for context of functional depen-
dencies in table OrderDetail

The implications in this lattice, which are functional dependencies in the
table can be seen as follows: concept with label OrderID is subconcept of con-
cept with labels Phone, Address, CompanyName, CustomerID and of concept
with label OrderDate too. So we can read the following functional dependen-
cies.

OrderID →CustomerID,CompanyName,Address,Phone

Figure 6. Implications, namely functional dependencies in
the table OrderDetail

Another implication is: OrderID → OrderDate. The possible implica-
tions given by Conexp software are in Figure 6. The user can make attribute

CONCEPTUAL KNOWLEDGE PROCESSING FOR DATABASES. AN OVERVIEW 69

exploration to decide which implication is valid. The number before the im-
plication can help us. The implications labeled with biger numbers usually
are valid. Having these functional dependencies we can propose the decom-
position of the table OrderDetail. It is clear that the information about
customers have to be in a separate table, candidate keys is Customers ta-
ble are: CustomerID, CompanyName, Phone, Address. If we introduce the
same name for different customers, the CompanyName attribute will appear in
a concept, which is subconcept of the concept with label CustomerID, Phone,

Address. The same results if we introduce different companies with the same
address. The CustomerID attribute is functionally dependent on OrderID, so
we will design an Orders table too. The proposed tables are:

Customers(CustomerID, CompanyName, City, Address, Phone)

Orders(OrderID, CustomerID, OrderDate)

OrderDetails(OrderID, ProductID, UnitPrice, Quantity)

4. Future work

There are two directions we intend to apply conceptual knowlegde pro-
cessing. We are developing the mathematical backgound for the schema and
query model with conceptual graphs of a relational database.

On the other hand, we intend to analyze semistructured data presented in
XML form. Many papers are dedicated to the theory of functional dependency
in XML data. Our aim is to construct the context of functional dependencies
for an XML tree and generate implications in it, which will be functional
dependencies in XML data.

References

[1] Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading
- Menlo - New York (1995)

[2] Baixeries, J.: A Formal Concept Analysis Framework to Mine Functional Dependencies,
Proceedings of Mathematical Methods for Learning, (2004).

[3] Carpineto, C., Romano, G.: Concept Data Analysis, Theory and Applications, Wiley and
Sons, 2004.

[4] Dau, F.: The Logic System of Concept Graphs with Negation And Its Relationship to
Predicate Logic, LNCS, Vol. 2892, Springer Berlin / Heidelberg (2003)

[5] Dau, F., Hereth, J. C.: Nested Concept Graphs: Mathematical Foundations and Appli-
cations for Databases. In: Ganter, B.; de Moor, A. (eds.): Using Conceptual Structures.
Contributions to ICCS 2003. Shaker Verlag, Aachen, (2003), pp. 125-139.

[6] Devlin, K.: Infosense - Turning Information into Knowledge, Freeman, New York, 1999.
[7] Hereth, J.: Relational Scaling and Databases. Proceedings of the 10th International Con-

ference on Conceptual Structures: Integration and Interfaces LNCS 2393, Springer Verlag
(2002) pp. 62-76

70 CHRISTIAN SĂCĂREA AND VIORICA VARGA

[8] Boksenbaum, C., Carbonneill, B., Haemmerle O., Libourel, T.: Conceptual Graphs for
Relational Databases in Conceptual Graphs for Knowledge Representation., Guy, M. W.,
Moulin B., Sowa, J. F. eds. Lecture Notes in AI 699, Springer-Verlag, Berlin (1993).

[9] Peirce, C.S.: The Simplest Mathematics, in Collected Papers, CP4.235, CP4.227-323,
1902.

[10] Silberschatz, A., Korth, H. F.,Sudarshan, S.: Database System Concepts, McGraw-Hill,
Fifth Edition, (2005)

[11] Sowa, J. F.: Conceptual Graphs for a Database Interface. In: IBM Journal of Research
and Development, vol. 20, no. 4, (1976) pp. 336-357.

[12] Sowa, J. F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison Wesley Publishing Company Reading, (1984).

[13] Sowa, J. F.: Conceptual graphs summary, in Nagle, T. E.; Nagle, J. A.; Gerholz, L. and
Eklund, P. W. (editors): Conceptual Structures: Current Research and Practice, Ellis
Horwood, (1992), pp 3-51.

[14] Sowa, J. F.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations, Brooks Cole Publishing Co., Pacific Grove, CA. (2000)

[15] Janosi Rancz, K. T., Varga, V.: A Method for Mining Functional Dependecies in Re-
lational Database Design Using FCA, Studia Univ. Babeş-Bolyai, Informatica, Vol. LIII,
Nr. 1(2008).

[16] Janosi Rancz, K.T., Varga, V., Puskas, J.: A Software Tool for Data Analysis Based on
Formal Concept Analysis, Studia Univ. Babeş-Bolyai, Informatica, Vol. LIII, Nr. 2(2008).

[17] Varga, V., Janosi Rancz, K. T.: A Software Tool to Transform Relational Databases in
order to Mine Functional Dependencies in it Using Formal Concept Analysis, Proc. of the
Sixth International Conference on Concept Lattices and Their Applications, Olomouc,
21-23 October, 2008. pp. 1-8.

[18] Varga, V., Săcărea, C., Takács, A.: A Software Tool for Interactive Database Access
using Conceptual Graphs, International Conference Knowledge Engineering Principles
and Techniques, KEPT 2009, Cluj-Napoca, July 2-4.

[19] Wille, R.: Conceptual Graphs and Formal Concept Analysis, Lecture Notes In Computer
Science; Vol. 1257, Proceedings of the Fifth International Conference on Conceptual
Structures: Fulfilling Peirce’s Dream, Springer Verlag (1997), pp 290 - 303.

[20] Wille, R.: Conceptual Contents as Information - Basics for Contextual Judgement Logic,
Conceptual Structures for Knowledge Creation and Communication, ICCS 2003, LNAI
2746, Springer, pp. 1-15, 2003.

[21] Wille, R.: Methods of Conceptual Knowledge Processing, ICFCA 2006, LNAI 3874,
Springer, pp. 1-29, 2006.

[22] Serhiy A. Yevtushenko: System of Data Analysis ”Concept Explorer”. (In Russian).
Proceedings of the 7th National Conference on Artificial Intelligence KII-2000, p. 127-
134, Russia, 2000.

Babes-Bolyai University, Faculty of Mathematics and Computer Science,
Cluj-Napoca, Romania

E-mail address: csacarea@math.ubbcluj.ro

E-mail address: ivarga@nessie.cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIV, Number 2, 2009

DEFAULT REASONING BY ANT COLONY OPTIMIZATION

MIHAIELA LUPEA

Abstract. Drawing conclusions from incomplete information by making
default assumptions represents default reasoning. Default logics, a class
of nonmonotonic logical systems, formalize this type of reasoning using
special inference rules, the defaults. During the inferential process, a de-
fault theory is extended with plausible conclusions (beliefs) obtaining de-
fault extensions. The very high theoretical complexity of the extension
computation problem suggests the use of non-deterministic techniques for
an efficient computation. In this paper we propose a uniform theoretical
approach of the extension computation problem for all default logics (clas-
sical, justified, constrained, rational) applying Ant Colony Optimization
metaheuristic.

1. Introduction

A lot of applications from Artificial Intellingence domain suppose reasoning
with incomplete information. The specificity of this reasoning process, the
nonmonotonicity, imposes that in the light of new information, some already
derived conclusions (which are only consistent, not necessarily true) to be
invalidated.

A special case of nonmonotonig reasoning, default reasoning, uses reason-
ing patterns of the form: ”in the absence of information to the contrary of... it
is consistent to assume that...”. In the deductive process, default assumptions
are applied in order to derive conclusions, called beliefs.

A class of nonmonotonic logical systems, default logics was introduce to
formalize the default reasoning. Based on first-order logic, default logics use
special inference rules, called defaults, to model the above nonmonotonic rea-
soning patterns. The differences among the versions (classical, justified, con-
strained, rational) of default logic are caused by the semantics of the defaults.

Received by the editors: November 1, 2009.
2010 Mathematics Subject Classification. 03B79, 68T15, 68T27, 68T20.
1998 CR Categories and Descriptors. I.2[Artificial Intelligence]: Logics in artificial

intelligence – default logics, nonmonotonic reasoning .
Key words and phrases. default logics, nonmonotonic reasoning, ant colony optimization.

71

72 MIHAIELA LUPEA

Default logics provide a very expressive representation of an incomplete
knowledge base (default theory), ruled by laws that are true with a few ex-
ceptions, using a simple syntactic formalism (first-order formulas and the de-
faults). The default reasoning process consists of combining the classical de-
duction with the defaults in order to derive new facts (beliefs), and obtain the
default extensions, even if some information are not available.

This great power of the inferential process causes a high level of theoretical
complexity. The problem of computing the extensions (classical, justified,

constrained, rational) of a default theory is
∑P

2 = NPNP -complete, this class
belonging to the second level of the polynomial hierarchy of complexity classes
based on calculus with oracles. For an efficient computation non-deterministic
approaches must be used.

Automated proof systems for default logics proposed in the literature
[1, 2, 6, 15, 16] and based on the well known classical theorem proving meth-
ods as resolution, connection method, semantic tableaux method, have good
performances only for particular classes of default theories and are not efficient
for general non-trivial default theories.

In the papers [10, 11, 12] new generation systems for default reasoning
were introduced. These are based on heuristics such Genetic Algorithms, Ant
Colony Optimization and Local Search, in order to overcome the high com-
plexity and to obtain efficient reasoning systems. ANTDEL [11] is a system
which uses Ant Colony Optimization to compute the classical default extension
of a default theory that is equivalent to a logic program.

Inspired from the good performances of ANTDEL, in this paper we propose
a uniform theoretical approach of the extension computation problem (ECP)
for all versions (classical, justified, constrained, rational) of default logic using
Ant Colony Optimization metaheuristic.

The paper is structured as follows. In Section 2 the main theoretical as-
pects of default logics are presented. A heuristic approach of the extension
computation problem for default logics (classical, justified, constrained, ratio-
nal) is introduced in Section 3. In section 4 an Ant Colony Optimization based
procedure to compute all types of extensions for a default theory is proposed.
Conclusions and future work are outlined in Section 5.

2. Default logics

Definition 1. [13] A default theory Δ = (D,W) consists of a set D of
default rules and W , a set of consistent first-order logic formulas (the facts). A

default has the form d = �:�1,...,�m
 , where: � is called prerequisite, �1, . . . , �m

are called justifications and is called consequent.

DEFAULT REASONING BY ANT COLONY OPTIMIZATION 73

A default d = �:�1,...,�m
 can be applied and thus derive if � is believed

and it is consistent to assume �1, . . . , �m (meaning that ¬�1, . . . ,¬�m are not
believed).

Using the classical inference rules and the defaults, the set of facts, W ,
can be extended with new formulas, called nonmonotonic theorems (beliefs),
obtaining extensions. The set of all the defaults used in the construction of
an extension is called the generating default set for that extension.

The results from [8] show that default theories can be represented by uni-

tary theories (all the defaults have the syntax: d = �:�
), in such a way that

extensions (classical, justified, constrained, rational) are preserved. In the pa-
per we will use only unitary default theories and the following notations:
Prereq(d) = �, Justif(d) = �, Conseq(d) = ,
Prereq(D) =

∪
d∈D Prereq(d), Justif(D) =

∪
d∈D Justif(d),

Conseq(D) =
∪
d∈D Conseq(d),

Tℎ(U) = {A∣U ⊢ A}, the classical deductive closure of the set U of formulas.

Definition 2. [16] A set X of defaults is grounded in the set of facts W if
there is an enumeration ⟨di⟩i∈I of the defaults from X such that:
∀i ∈ I, W ∪ Prereq({d0, d1, ..., di−1}) ⊢ Prereq(di).

The following theorems provide global characterizations for default exten-
sions using the generating default sets.

Theorem 1. [14] Let (D,W) be a default theory, and let E be a set of
formulas. E is a classical extension of (D,W) if and only if E = Tℎ(W ∪
Conseq(D′)) for a maximal set D′ ⊆ D such that D′ is grounded in W and
the conditions:

− ∀d = �:�
 ∈ D

′: W ∪ Conseq(D′) ∪ {�} is consistent;

− ∀d = �:�
 /∈ D′: W ∪ Conseq(D′) ∪ {�} is inconsistent or

W ∪ Conseq(D′) ∪ {¬�} is consistent
are satisfied.

Theorem 2. [6] Let (D,W) be a default theory, and let E, J be sets
of formulas. (E, J) is a justified extension of (D,W) if and only if E =
Tℎ(W ∪ Conseq(D′)) and J = Justif(D′) for a maximal set D′ ⊆ D such
that D′ is grounded in W and the conditions:

∀d = �:�
 ∈ D

′: W ∪ Conseq(D′) ∪ {�} is consistent;

are satisfied.

74 MIHAIELA LUPEA

From the above theorems we remark that a classical/justified default ex-
tension is a consistent set and these two logics satisfy the weak regularity
property, expressed as an individual consistency condition (stronger in justi-
fied logic than in classical default logic) for the justifications of the generating
defaults.

Theorem 3. [14] Let (D,W) be a default theory, and let E,C be sets
of formulas. (E,C) is a constrained extension of (D,W) if and only if
E = Tℎ(W ∪ Conseq(D′)) and C = Tℎ(W ∪ Conseq(D′) ∪ Justif(D′)) for a
maximal set D′ ⊆ D such that D′ is grounded in W and the condition:

W ∪ Conseq(D′) ∪ Justif(D′) is a consistent set;
is satisfied.

Theorem 4. [6] Let (D,W) be a default theory, and let E,C be sets
of formulas. (E,C) is a rational extension of (D,W) if and only if E =
Tℎ(W ∪Conseq(D′)) and C = Tℎ(W ∪Conseq(D′)∪ Justif(D′)) for a max-
imal set D′ ⊆ D such that D′ is grounded in W and the conditions:

− W ∪ Conseq(D′) ∪ Justif(D′) is a consistent set;
− ∀d ∈ D∖D′ we have:

W ∪ Conseq(D′) ∪ ¬Prereq(d) is consistent or
W ∪ Conseq(D′) ∪ Justif(D′ ∪ d) is inconsistent;

are satisfied.

Theorems 3 and 4 show that the strong regularity property is common to
these logics. According to this property, the reasoning process is guided by a
consistent context C containing the actual extension E and the assumptions
(justifications) of the applied defaults. For the rational default logic the set of
generating defaults must be maximal-active [9] with respect to W and E.

Another important formal property is semi-monotonicity which expresses
a ”monotonicity” with respect to the set of defaults. Justified and con-
strained default logics have this desirable property (useful in the computa-
tion of an extension), with an important consequence: the existence of a
justified/constrained extension for any default theory. The existence of a
classical/rational extension for a default theory is not guaranteed and semi-
monotonicity property is not satisfied by classical/rational default logics.

From theorems 1, 2, 3 and 4 we can conclude that all four types of exten-
sions are deductive closures of the set W (explicit content) and the consequents
of the generating default set D′(implicit content).

According to the initial fixed-point definitions of all variants of default
logic we have the following definitions:

DEFAULT REASONING BY ANT COLONY OPTIMIZATION 75

Definition 3. Let E1 be a classical extension, (E2, J) be a just ified exten-
sion, (E3, C3) be a constrained extension and (E4, C4) be a rat ional extension
of the default theory (D,W). The generating default sets are:

GDE1,clas
(D,W) =

{
�:�
 ∈ D∣if � ∈ E1 and E1 ∪ {�} consistent , tℎen ∈ E1}

for the classical extension E1;

GD
(E2,J),just
(D,W) =

{
�:�
 ∈ D∣if � ∈ E2 and ∀� ∈ J ∪ {�} : E2 ∪ {, �} consistent

then ∈ E2, � ∈ J} for the justified extension (E2, J);

GD
(E3,C3),cons
(D,W) =

{
�:�
 ∈ D∣if � ∈ E3 and C3 ∪ {�, } consistent

tℎen ∈ E3, �, ∈ C3} for the constrained extension (E3, C3);

GD
(E4,C4),rat
(D,W) =

{
�:�
 ∈ D∣if � ∈ E4 and C4 ∪ {�} consistent, tℎen ∈ E4,

�, ∈ C4} for the rational extension (E4, C4).

3. A heuristic approach of the extension computation problem

In this section we extend the heuristic approach of the classical extension
computation problem from [11, 12] to all types of default extensions: justified,
constrained, rational.

The theorems from the previous section show that the problem of finding
extensions can be reduced to the problem of finding the generating default
sets for those extensions.

In this heuristic approach we need to define a search space for the gener-
ating default sets and an evaluation function to compute the fitness of each
element of this space according to the definitions of different types of default
extensions.

Definition 4. For a default theory (D,W) we define the search space as
the set CGD = 2D, representing all possible configurations, called candidate
generating default sets.

Definition 5. Let (D,W) be a default theory and X ∈ CGD, a candidate
generating default set. We define:
- the candidate extension associated to X: CE(X) = Tℎ(W ∪ Conseq(X));
- the candidate context associated to X: CC(X) = Tℎ(W ∪ Conseq(X) ∪
Justif(X));
- the candidate support set associated to X: CJ(X) = Justif(X).

For defining the evaluation function we need four intermediate functions:
f type0 , f type1 , f type2 , f type3 , where type=clas for classical extensions, type=just for
just ified extensions, type=cons for constrained extensions and type=rat for
rat ional extensions.

76 MIHAIELA LUPEA

Using f type0 we check if the candidate extension (for classical and justified
default logics) or the candidate context (for constrained and rational default
logics) is consistent or not:

f clas0 (X), f just0 (X) =

{
0 if CE(X) is consistent
1 otherwise

f cons0 (X), f rat0 (X) =

{
0 if CC(X) is consistent
1 otherwise

f type1 rates the correctness of the candidate generating default set according
to the definitions of different types of default extensions.

f type1 (X) =
∑n

i=1 �(di), where D = {d1, d2, ..., dn}

The table below defines �(di) ∈ Z, a penalty for each default of D, indi-
cating if a default from X was correctly/wrongly applied and a default from
D −X was correctly/wrongly not applied in order to generate the candidate
extension CE(X).

di ∈ X Cpre Ctype
justif �(di) di = �i : �i

i
true true true 0 correctly applied
true true false k wrongly applied
true false true k wrongly applied
true false false k wrongly applied
false true true k wrongly not applied
false true false 0 correctly not applied
false false true 0 correctly not applied
false false false 0 correctly not applied

Cpre(X, di) : CE(X) ⊢ �i is the groundness condition for the applied
default di.

The conditions Ctypejustif , according to Definition 3, imply the weak regularity

property for classical/justified default logics and the strong regularity property
for constrained/rational default logics.

∙ Cclasjustif (X, di): the set CE(X) ∪ {�i} is consistent;

∙ Cjustjustif (X, di): ∀� ∈ CJ(X) ∪ {�i}, the set

CE(X) ∪ {�, i} is consistent;
∙ Cconsjustif (X, di): the set CC(X) ∪ {�i, i} is consistent;

∙ Cratjustif (X, di): the set CC(X) ∪ {�i} is consistent.

f type2 rates the level of groundness of the candidate generating default

set as follows: f type2 (X) = card(Y), where Y is the biggest grounded set
Y ⊆ X ∈ CGD.

DEFAULT REASONING BY ANT COLONY OPTIMIZATION 77

f type3 checks the groundness property of X:

f type3 (X) =

{
0 if X is grounded
1 otherwise

Definition 6. For a default theory (D,W) the evaluation function for
a candidate generating default set X ∈ CGD of an extension of type ∈
{clas, just, cons, rat} is defined by:
evaltype : CGD 7−→ Z ∪ {⊥,⊤} with ∀z ∈ Z,⊥ < z < ⊤
if f type0 (X) = 1

then evaltype(X) = ⊤
else if f type1 (X) = 0 and f type3 (X) = 0

then evaltype(X) = ⊥
else evaltype(X) = f type1 (X)− f type2 (X)

endif
endif

The following theorem provides a necessary and sufficient condition for a
set of defaults to be a generating set for an extension, using evaltype.

Theorem 7.[7] Let (D,W) be a default theory. A candidate generating
default set X ∈ CGD generates an extension of type ∈ {clas, just, cons, rat}
if and only if evaltype(X) = ⊥.

This evaluation function can be used by different non-deterministic ap-
proaches as Genetic Algorithms and Ant Colony Optimization, to evaluate
the candidate generating default sets from the search space. The efficiency of
these approaches derives from the fact that the search space is not entirely
explored. An initial candidate is progressively improved in order to obtain a
solution for ECP.

4. Computing default extensions using Ant Colony Optimization

Based on the theoretical considerations of ANTDEL [11, 12], in this sec-
tion we propose a uniform theoretical approach of the extension computation
problem for all versions (classical, justified, constrained, rational) of default
logic using Ant Colony Optimization.

Ant Colony Optimization(ACO) is a population-based metaheuristic used
successfully to solve difficult problems which can be reduced to finding good
paths through graphs.

The collective behavior of ants, seeking for food and cooperating via the
environment (the pheromone deposited on the paths), was the inspiration for
this optimization technique.

78 MIHAIELA LUPEA

Informally, the extension computation problem is represented as a search
problem and it is solved using the ACO metaheuristics as follows:

∙ Given a default theory, a default graph, representing all the candidate
generating default sets, is built. The default rules and two particu-
lar vertices: in and out form the set of vertices. The arcs connect
the vertices containing compatible defaults. Each arc is weighted by
pheromone which is initialized to 1 and is updated (deposited and
evaporated) during the search process.
∙ An ant colony must find an optimal path from in to out in the graph,

path which corresponds to a generating default set for an extension.
∙ The ants individually build their paths from in to out (corresponding

to candidate generating default sets), using a probabilistic choice bi-
ased on the pheromone deposited on the arcs and a local evaluation
function.
∙ The pheromone evaporates in time and increases on better paths.

Therefore, during the optimization process, the paths are progressively
improved in order to find an optimal solution (according to the evalu-
ation function from the previous section).

The following definitions formalize the above description using the con-
cepts defined in the previous section.

Definition 7. Let (D,W) be a default theory. The default graph of
type∈ {clas, just, cons, rat} associated to the default theory is Gtype(D,W) =
(D ∪ {in, out} , Atype). The arc set, Atype, is defined as follows:
Atype = {(in, out)} ∪ {(d, out), ∀d ∈ D}∪

∪
{

(d, d′) ∈ D2∣d ∕= d′ and Ctype(d, d′) is true
}
∪

∪
{

(in, d),∀d = �:�
 ∈ D∣W ⊢ � and W ∪ {�, } consistent

}
,

where: d = �:�
 , d

′ = �′:�′

′ and the conditions Ctype are:

Cclas(d, d′) = Cjust(d, d′) :
W ∪ {�, , ′} and W ∪ {�′, , ′} consistent;

Ccons(d, d′) = Crat(d, d′) : W∪{�, �′, , ′} consistent; Each arc (i, j) ∈ Atype
is weighted by a positive real number 'i,j , called artificial pheromone.

In order to decrease the search space, the arc set of the default graph is
built using the following observations:

∙ The arc (in, d) is added to the arc set if d is applicable to W and its
application will not lead to a contradiction. This condition is the same
for all versions of default logic.

DEFAULT REASONING BY ANT COLONY OPTIMIZATION 79

∙ There is an arc between two defaults d and d′ only if they are ”com-
patible”, meaning that they can belong together to a candidate gen-
erating default set. Cclas(d, d′), Cjust(d, d′), Ccons(d, d′), Crat(d, d′) ex-
press these ”compatibility” conditions which are particular cases of the
weak/strong regularity properties for the default logics.

Definition 8. For the default theory (D,W) and a path P = (in, ..., out)
in Gtype(D,W), DP = D ∩ P ∈ CGD represents a candidate generating de-
fault set of type ∈ {clas, just, cons, rat}.

Definition 9. Let P be a path in the default graph Gtype(D,W) and

d = �:�
 ∈ D − P .

∙ d is grounded in P if W ∪ Conseq(DP) ⊢ �,
∙ d is type-compatible with P if Ctype(P, d) is true,

where: DP = P ∩D, type ∈ {clas, just, cons, rat}
Cclas(P, d) : W ∪ Conseq(DP) ∪ {�} consistent;
Cjust(P, d) : ∀� ∈ Justif(DP) ∪ {�} :

W ∪ Conseq(DP) ∪ {�, } consistent;
Ccons(P, d) : W ∪ Conseq(DP) ∪ Justif(DP) ∪ {�, }

consistent;
Crat(P, d) : W ∪ Conseq(DP) ∪ Justif(DP) ∪ {�}

consistent
∙ the local evaluation function is defined by:

loctype(P, d) =

⎧⎨⎩ 1 if d is grounded in P and
d is type-compatible with P

0 otherwise

Remarks:

∙ The compatibility conditions for all types of versions are the apllica-
bility conditions of the defaults and are used to apply one by one the
defaults and to build candidate generating default sets (paths from in
to out in the default graph).
∙ The local evaluation function is used to choose efficiently the next

vertex in the path (the next default to be applied) in order to reach
the out vertex.
∙ Due to the semi-monotonicity property of justified/constrained default

logics applying new defaults will not contradict previously applied de-
faults. If the locjust/cons(P, d) = 1, then DP = P ∩ D is a partial
generating default set and P is a ”good” path, which will lead to an
optimal solution.

80 MIHAIELA LUPEA

∙ For classical/rational default logics, which do not satisfy the semi-

monotonicity property, locclas/rat(P, d) = 1 will not guarantee that P
is a ”good” path, because the application of new defaults can lead to a
contradiction and the defaults from DP = P ∩D can not be generating
defaults.

Definition 10. Let (D,W) be a default theory and P = (in, ..., vi) a path
in the default graph Gtype(D,W) = (V,Atype). The set of vertices reachable
from vi is R(vi, P) =

{
vj ∈ V − P ∣(vi, vj) ∈ Atype

}
. The attractivity of each

reachable vertex vj from vi ∈ P is

attype(vi, vj , P) =
'i,j∗loctype(P,vj)∑

vk∈R(vi,P) 'i,k∗loctype(P,vk)

An ant chooses the next vertex on its path using the probability given by
the attractivity function.
The following ACO-based procedure, compute default extensions of any type:
classical, justified, constrained, rational.

Procedure Extension-Computation-Problem-ACO
Input data:

(D,W) - a default theory
type - the type of default extension
na - the number of ants in the colony
ni - the maximum number of iterations
e - the evaporation coefficient // e=0.01
k - the number of the best paths used for reinforcement

build G = (V,A, ') // the default graph: Gtype(D,W);
it← 1; sol← false;
while (it <= ni and not sol) do

for i = 1 to na do
P [i]← path(G, type);
e[i]← evaltype(P [i]);

endfor
order the arrays e[i], P [i], i = 1, na ascending with respect to e[i]
bestP ← P [1];
if (e[1] = ⊥) then

sol← true; break;
endif
'←update(', P, k);
'←evaporation(', e);
it← it+ 1;

endwhile
endprocedure

DEFAULT REASONING BY ANT COLONY OPTIMIZATION 81

Function path(G, type)
v ← in;
P ← in;
while (v ∕= out) do

compute R(v, P); // the vertices reachable from v
for all u ∈ R(v, P) do

compute attype(v, u, P); // attractivity
endfor
choose w ∈ R(v, P) with the probability attype(v, w, P);
P ← P ∪ {w};
v ← w;

endwhile
return P ;
endfunction

The evaporation function acts globally decreasing the pheromone on all
the arcs: '(i, j)← (1− e) ∗ '(i, j), ∀(i, j) ∈ Atype.

In order to improve the paths in the next iterations, the pheromone on the
best k paths is increased by the function update as follows:

'(i, j)← '(i, j) + 0.9k−m, ∀(i, j) ∈ D ∩ P [m],m = 1, . . . , k.

We remark that the update function can be improved, for justified /
constrained extensions, by reinforcing all the partial paths representing partial
generating defaults, due to the semi-monotonicity property.

The fact that the existence of classical/rational extensions for a default
theory is not guaranteed implies that the execution of the procedure will stop
when the maximum number of iterations was done, but we cannot conclude if
there is an extension or not.

For justified/constrained logics, in the worst case there is at least one
extension for a default theory, corresponding to the path (in, out), which rep-
resents ∅ as the generating default set.

5. Conclusions

In this paper we proposed a uniform theoretical approach of the extension
computation problem for all versions (classical, justified, constrained, rational)
of default logic using Ant Colony Optimization. Due to the high complexity
of this problem for non-trivial default theories, the ECP is solved as a search
problem using this metaheuristic.

We are now working at the implementation of an automated system in
order to obtain experimental results for non-trivial general default theories and
to find the best combinations for the parameters of the proposed procedure.

82 MIHAIELA LUPEA

A first-order theorem prover [6], based on the sematic tableaux method will
be used to check the consistency, inconsistency, derivability and groundness,
needed for computing the local and general evaluation functions.

References

[1] G. Antoniou, A. P. Courtney, J. Ernst, J., M. A. Williams, “A System for Computing
Constrained Default Logic Extensions”, Logics in Artificial Intelligence, Lecture Notes
in Artificial Intelligence, 1126, pp. 237–250, 1996.

[2] P. Cholewinski, W. Marek, M. Truszczynski, “Default reasoning system DeReS”, Pro-
ceedings of KR-96, pp. 518–528, Morgan Kaufmann,1996.

[3] A. Dorigo, E. Bonabeau, G. Theraulaz, “Ant algorithms and stigmergy”, Future
Generation Computer Systems, no. 16, pp. 851–871, 2000.

[4] G. Gottlob, “Complexity results for nonmonotonic logics”, Journal of Logic and Com-
putation, vol. 2, no. 3, pp. 397–425, 1992.

[5] W. Lukasiewicz, “Considerations on default logic - an alternative approach”, Compu-
tational Intelligence, no. 4, pp. 1–16, 1988.

[6] M. Lupea, Nonmonotonic Reasoning Using Default Logics, Ph.D. Thesis, Babes-Bolyai
University, Cluj-Napoca, 2002.

[7] M. Lupea, “Computing default extensions - a heuristic approach”, Studia Universitatis
Babes-Bolyai, Informatica, L, no. 2, pp. 49–58, 2005.

[8] W. Marek, M. Truszczynski, “Normal Form Results for Default Logics”, Non-monotonic
and Inductive logic, LNAI, no. 659, pp. 153–174, Springer Verlag, 1993.

[9] A. Mikitiuk, M. Truszczynsky, “Constrained and Rational Default Logics”, Proceedings
of IJCAI-95, pp. 1509–1515, Morgan Kaufman, 1995.

[10] P. Nicolas, F. Saubion, I. Stephan, “GADEL: a genetic algorithm to compute de-
fault logic extensions”, Proceedings of European Conference on Artificial Intelligence,
pp. 484–488, 2000.

[11] P. Nicolas, F. Saubion, I. Stephan, “Genes and Ants for Default Logic”, AAAI
Technical Report SS-01-01, 2001.

[12] P. Nicolas, F. Saubion, I. Stephan, “New generation systems for non-monotonic reason-
ing”, International Conference on Logic Programming and NonMonotonic Reasoning,
pp. 309–321, 2001.

[13] R. Reiter, “A Logic for Default reasoning”, Artificial Intelligence, no. 13, pp. 81–132,
1980.

[14] T. H. Schaub, Considerations on Default Logics, Ph.D.Thesis, Technischen Hochschule
Darmstadt, Germany, 1992.

[15] T. H. Schaub, “XRay system: An implementation platform for local query-answering
in default logics”, Applications of Uncertainty Formalisms, Lecture Notes in Computer
Science, no. 455, pp. 254–378, Springer Verlag, 1998.

[16] C. Schwind, “A tableaux-based theorem prover for a decidable subset of default logic”,
Proceedings of the Conference on Automated Deduction, Springer Verlag, 1990.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science,
Cluj-Napoca, Romania

E-mail address: lupea@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIV, Number 2, 2009

GENERALIZED FORMAL DEFINITION OF CONFLICT

DETECTION AND RESOLUTION

CIPRIAN COSTA

Abstract. In a distributed environment where information that is not
read-only is shared between multiple parts of the system, the problem
of conflict detection and resolution has to be addressed. In this paper
we discuss the issue of generalized conflict definition because this main
aspect of the consistency of any distributed system is often treated on a
case by case basis. Based on the formal definition we can move on and
identify what are the main types of conflict resolution algorithms which is
very important for an accurate description of the guarantees offered by a
distributed system.

1. Introduction

A lot of effort was channelled into making sure that the conflicts do not
appear in a distributed environment mainly because a system that is fully
consistent is a simple abstraction and we can reuse many of the concepts that
were developed and proven in non-distributed systems. Several types of dis-
tributed systems have abandoned this line of thought and moved towards more
complicated abstractions, where conflicts are allowed to exist. A simple ex-
ample are classical desktop database front end applications that have moved
from connected environments using pessimistic concurrency to disconnected
environments using optimistic concurrency techniques in order to manage the
relatively rare but possible conflicts. Why and when these types of systems
are created and how to decide which to use is not in the scope of this paper.
However, since they gained a lot of traction in recent times, we think that the
notion of conflict detection and resolution deserves a unified and formal defi-
nition that can be used to better understand these distributed environments.

It is proven by the CAP theorem that availability, consistency and parti-
tion tolerance can not be achieved at the same time in a distributed system([2]).
Consistency is a desirable property of any system since it makes programming
and reasoning on the results of that system simpler, practically eliminating

Received by the editors: December 1, 2009.
2010 Mathematics Subject Classification. 68P15, 68M14.
1998 CR Categories and Descriptors. H.2.4 [Systems]: Subtopic – Distributed databases;
Key words and phrases. distributed systems, conflict.

83

84 CIPRIAN COSTA

uncertainty. In order to achieve consistency in a distributed system, a ma-
jority of the parts need to agree on every operation that affects the common
state. In order to achieve that, a lot of consensus algorithms like Paxos ([6])
were created and found their way into various real live implementations like
the Chubby system at Google ([3]).

The problem with consistency is that, according to the CAP theorem, we
need to give up on availability or partition tolerance. Since in many distributed
systems of large scale such requirements are non-negotiable because of the
impact they would have on the perceived quality of the system, new approaches
in which conflicts are allowed to temporarily exist in the system have been
proposed ([10]).

Because the system is no longer consistent, it is much more difficult to
build something on top of it (one may never be sure that the values returned
by a part of the system are actually correct), it is important to define what
type of guarantees can the system provide. We argue that an important part
of this is generated by the way conflicts are detected and resolved. Throughout
this paper we analyse existing work in the domain of conflict detection and
resolution and propose a generalized conflict detection definition and some
criteria that can be used for conflict resolution categorization.

2. Conflict definition

Informally, we define conflicts as situations in which one or more parts of
a system have different representations of a shared fact.

Significant research on conflicts has been done in the field of autonomous
agents, specifically addressing the problem of distributed constraint satisfac-
tion DCSP ([11]). A constraint satisfaction problem is defined as finding an
assignment to a set of variables with the property that a set of given pred-
icates are satisfied by the said assignment. A DCSP is a CSP (constraint
satisfaction problem) where the variables and the predicates are distributed
among several independent agents and gathering all the information required
for solving the CSP on a single node is impossible for various reasons (avail-
ability requirements, software incompatibility, etc). In this case, a conflict is
defined as an assignment chosen by one of the agents that is valid under all
the local predicates but does not hold in at least one of the other predicates.

Another field in which conflicts and conflict resolution algorithms were
researched is collaborative editing ([8], [1], [5]). Several aspects related to
conflicts and conflict resolution appear in collaborative editing that are not
present in DCSPs:

∙ Intent - In the case of distributed agents the software that runs on
each agent is well understood and the intent of any operation is always
known. In the case of collaborative editing the intent of the user has
to be inferred from their actions, it is not a priori known .

GENERALIZED FORMAL DEFINITION OF CONFLICT DETECTION AND RESOLUTION85

∙ Operational transformations - certain conflicts can be transformed in
ways that allow them to be applied to the same document and pre-
serve the operations of both users. This situation occurs when a user
inserts a character at position 2 while another will insert a character
at position 6. If we transform the operation of the second in an insert
on position 7, both users can save their edits. This conflict is called
a non-exclusive conflict . Extensive studies of operational transforma-
tions in various scenarios can be found in Sun and all 1998 [7] and Sun
and all 2004 [9].

A definition that is often used in these scenarios is based on causality
relations because they are supposed to capture the intent of the user. The
supposition is that everything the user knows about a document is the cause
of the intent, and any change in the cause could possibly alter the intent. From
this, if two users are performing an operation having different knowledge of
the environment, their actions could be in conflict. Informally, we say that
o1 → o2 (o1 causally precedes o2) if the user performing o2 was aware of o1
before performing o2. A conflict in this case is defined as a pair of operations
with the property that o1 ↛ o2 and o2 ↛ o1.

We consider this to be a pessimistic intent preservation. The problem
with it is that, in some systems, it could lead to a lot of false positives and
the main assumption of these distributed systems is that conflicts are rare
and far between. We argue that we need a more generic definition of conflict
that would allow a finer grained control over what constitutes intent, what
part of the existing state is relevant for an operation and what alternatives
are available to merge the two operations thus avoiding a conflict that might
lead to an expensive negotiation in order to be resolved.

3. Generalized conflict definition

Let us assume that x1 ∈ D1, x2 ∈ D2, ..., xn ∈ Dn is a set of facts shared
between multiple parts of the system. We define an operation as being the
tuple

ok = (xk1 , ..., xkp , statek, altk)

where k is the system that executed the operation, xk1 , ... xkp are assignment
on a subset of shared facts, state is a representation of the facts and other
information that captures the relevant context of the operation, thus defining
the intent of the user performing the operation, alt is a function defined as
alt : O × O → O ∪ {⊘} where O is a set of all the possible operations. The
function alt represents the means of merging two operations into a third with
the property that the third is not in conflict with either of the first two. We
say that two operations can not be merged if alt(o1, o2) = ⊘.

In order to define conflicts based on causality relations we can consider
state to be some sort of vector clocks that summarize the knowledge of the

86 CIPRIAN COSTA

user when attending the operation, while alt would be undefined. But in this
definition we have the freedom to alternate state from user generated intent
description to artificial intelligence algorithms, depending on how the system
deals with conflicts and what sort of conflict tolerance it has. The complexity
of the conflict definition reflects directly in the guarantees the system is able
to make about consistency and other observable metrics, therefore most of
the systems will probably stay on the safe side, but still prefer to relax causal
dependency.

Since, unlike in the case of the DCSP, we are not trying to solve a set
of constraint that may not all fit on an agent but rather satisfy the single
constraint of consistency, we can use specific predicates defined on the data
existing on each node and define conflicts based on the evaluation of these
predicates. We consider consistency to be a predicate defined on O ×O that
is evaluated to true if the two operations can be applied in parallel and preserve
the intent of both. We define the conflict between two operations and write
o1 ⊗ o2 if

¬consistency(o1, o2) ∧ alt(o1, o2) = ⊘
.

As it can be seen from the definition, there are simplified implementation
of the predicates and functions that will lead to all the conflict definitions
that were described earlier. Also, the definition allows us to further define and
formalize the conflict resolution algorithms.

4. Conflict resolution types

Once a conflict is detected, it must be resolved in order for the system as a
whole to function properly. Most of the systems that allow conflicts to appear
between parts have a certain built in tolerance for conflicts, but that usually
degrades the quality of the service or renders it useless. Since the degradation
is acceptable because the cost of avoiding it altogether is prohibitive, the
system must ensure that the conflicts are resolved as quick as possible, or, at
the very least, ensure that the conflicting situation will not exist forever in the
condition of normal functioning of the system.

We identify the following characteristics of any conflict resolution algo-
rithm that can be used in order to classify and better understand the conse-
quences of using them:

∙ Convergence - The guarantee that the system will converge from a con-
flict state to a conflict free state in a bounded interval of time. It is very
difficult to work with a system that does not guarantee convergence
in at least some cases. While such systems where perpetual conflict
situations are accepted could exist, usually there are guarantees like
”system converges if it is partition free, all the components are up and
no additional conflicts are added”. It is very important for a conflict

GENERALIZED FORMAL DEFINITION OF CONFLICT DETECTION AND RESOLUTION87

resolution algorithm to clearly state the conditions under which it will
converge, since convergence under any conditions is impossible.
∙ Performance - One of the reasons to implement conflict tolerance in

the first place is to decrease the cost of the system, therefore perfor-
mance is an important characteristic. The performance level can be
measured in many ways and the relevance of these metrics depend on
the specific application. Possible metrics include the time, the net-
work resources that are used, the number and type of resources that
are involved (for example an algorithm that requires a human to make
decisions will probably be more expensive than one that relies entirely
on computers).
∙ Impact on non-conflicting state - Most of these systems accept conflicts

because they are supposed to be rare, and an optimistic approach
to resolving them is applicable. However, if the enforcement of the
optimistic concurrency will affect all operations, including the majority
that will be conflict free, the price might be prohibitive. One might
argue that this is just another possible type of performance metric, but
we would rather consider it as a separate category because performance
is strictly bound to the process of resolving a conflict situation.
∙ Intention preservation - This characteristic takes into consideration

the source of the conflict. Usually conflicts are not introduced by
errors in the system but by users or systems working independently
and having only a partial knowledge of the environment. In such cases,
it is important to determine how and to what degree is the intent of
each state that is in conflict being preserved by the conflict resolution
algorithm. For example, if a document contains a circle, a user can
alter the document to become a ”happy face” while another could
change the circle to a square. The result of having a square ”happy
face” will not preserve the intent of either user.

5. Conclusions and future work

In this paper we unified approaches from various communities involved in
the research of distributed systems and created a generic definition of what a
conflict is. Another contribution is the enumeration of several aspects that are
important in the conflict resolution phase. As a system can not remain in a
conflict state forever, all systems need to address the issue of conflict resolution,
therefore, identifying the characteristics of a conflict resolution algorithm is of
utmost importance.

We have used the conflict detection and resolution analysis from this pa-
per in order to implement the JStabilizer ([4]) system and model the object
oriented framework so that it accommodates a wide range of possible usage

88 CIPRIAN COSTA

patterns. We will continue to develop the JStabilizer framework and imple-
ment more test cases that will refine and reinforce the validity and generality
of the definitions and concepts included in this paper.

References

[1] Pauline M. Berry, Tomás Uribe, Neil Yorke-Smith, Cory Albright, Emma Bowring, Ken
Conley, Kenneth Nitz, Jonathan P. Pearce, Bart Peintner, Shahin Saadati, and Milind
Tambe. Conflict negotiation among personal calendar agents. Proceedings of the fifth
international joint conference on Autonomous agents and multiagent systems - AAMAS
’06, page 1467, 2006.

[2] E.A. Brewer. Towards robust distributed systems. Proceedings of the Annual ACM Sym-
posium on Principles of Distributed Computing, 19:710, 2000.

[3] T.D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: an engineering perspec-
tive. Proceedings of the twenty-sixth annual ACM symposium on Principles of distributed
computing, page 407, 2007.

[4] Costa Ciprian. JStabilizer code repository (http://code.google.com/p/jstabilizer/),
2009.

[5] S. Citro, J. McGovern, and C. Ryan. Conflict management for real-time collaborative
editing in mobile replicated architectures. Proceedings of the thirtieth Australasian con-
ference on Computer science-Volume 62, page 124, 2007.

[6] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems
(TOCS), 16:133–169, 1998.

[7] C Sun, X Jia, Y Zhang, Y Yang, and D Chen. Achieving convergence, causality preser-
vation, and intention preservation in real-time cooperative editing systems. ACM Trans-
actions on Computer Human Interaction, 5:63–108, 1998.

[8] Chengzheng Sun and David Chen. Consistency maintenance in real-time collaborative
graphics editing systems. Interactions, 9:1–41, May 2002.

[9] D. Sun, S. Xia, C. Sun, and D. Chen. Operational transformation for collaborative word
processing. Proceedings of the 2004 ACM conference on Computer supported cooperative
work, 6:446, 2004.

[10] Werner Vogels. Eventually consistent. ACM Queue Communications, 2008.
[11] M. Yokoo, E.H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satis-

faction problem: Formalization and algorithms. IEEE Transactions on Knowledge and
Data Engineering, 10:673685, 1998.

Babes-Bolyai University, Department of Computer Science, Cluj-Napoca,
Romania

E-mail address: costa@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIV, Number 2, 2009

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE

META-METAMODEL

VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

Abstract. Specifying a complete set of OCL Well Formedness Rules
(WFRs) is essential for the well-definedness of any (meta)modeling lan-
guage’s abstract syntax. Within this paper, we report on the definition of
a set of OCL WFRs for the Ecore meta-metamodel. We use some relevant
WFRs for the Ecore generics accompanied by meaningful test cases, in or-
der to illustrate our proposal and its advantages over related approaches.

1. Introduction

The highest level of abstraction in any model-driven approach, be it Model
Driven Architecture (MDA) [5], Model Driven Engineering (MDE) [14], or
Language Driven Development (LDD) [8], is represented by the metamodel-
ing language - the language used for defining all modeling languages, itself
included. This is level M3 of the classical four-level modeling architecture
promoted by the Object Management Group (OMG). It is well known that a
complete definition of any language should include formal representations of
its abstract syntax, concrete syntax, and semantics; for modeling languages,
the abstract syntax is generally given in terms of a metamodel (which de-
scribes the concepts used by the language and their relationships), which
should be accompanied by appropriate Well Formedness Rules (WFRs, that
further constrain the legal instantiations of metamodel concepts). It follows
that the abstract syntax of a metamodeling language should be defined by
means of its meta-metamodel and associated WFRs. OMG’s Meta Object
Facility (MOF) [3], Eclipse Modeling Framework’s (EMF’s) Ecore [15], and
eXecutable Metamodelling Facility’s (XMF’s) XCore [8] are probably the best
known meta-metamodels today.

Received by the editors: November 1, 2009.
2010 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.4 [SOFTWARE ENGINEERING]: Soft-

ware/Program Verification – Programming by contract, Class invariants, Validation; D.2.11
[SOFTWARE ENGINEERING]: Software Architectures – Languages (e.g., description,
interconnection, definition) .

Key words and phrases. Model Driven Engineering (MDE), meta-metamodel, Object
Constraint Language (OCL), Well Formedness Rules (WFRs), Ecore.

89

90 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

Having a complete set of metamodel WFRs is of utmost importance for
the well-definedness of any modeling language. This is due to the fact that
the graphical formalism used to represent the metamodel itself (that of class
diagrams) is not powerful enough so as to capture all the constraints that
govern the individual meta-concepts, as well as their inter-relationships. Even
more, these WFRs should be formalized, in order to allow the existing tools
to validate the models against them; a model is considered to be valid/correct
if and only if it conforms to both its metamodel and associated WFRs. The
language used in order to formalize the WFRs should be the Object Constraint
Language (OCL) [7], for the following three reasons at least. First of all, OCL
is the standard formalism. Second, defining the WFRs as OCL invariants is
preferred to implementing them directly in the repository code, since the OCL
expressions are more compact and intelligible compared to their equivalents
in a programming language. Third, today we can benefit from a powerful
tool support, regarding both the evaluation of OCL constraints on snapshots
and their automatic translation into code. The Object Constraint Language
Environment (OCLE) [6] and EMF [1] with Model Development Tools (MDT)-
OCL [4] are notable examples in this respect.

The arguments above are even stronger when it comes to metamodeling
languages. Their abstract syntax is used in defining the metamodels of all
possible modeling languages. There has to be possible to check/ensure the
correctness of all these metamodels which are to be reused by instantiation in
thousands of modeling applications.

Still, a study that we have carried out on the three above mentioned meta-
metamodels, MOF, Ecore, and XCore, has revealed that the goal of having
a correct and complete set of OCL WFRs for each of them is far from being
reached. The closest to this aim is Ecore, whose repository code contains
a set of WFRs implemented directly in Java. In case of the OMG MOF
standard, a great number of OCL specifications used in describing the Core
UML Infrastructure (which is part of MOF) are wrong. As for XCore, it only
contains two such WFRs, specified using the OCL-like language XOCL.

Given this state of facts, our overall aim has been to define a complete
set of OCL WFRs for each of the three meta-metamodels, as well as to test
and validate them on relevant metamodel examples (finding appropriate test
models even before or simultaneously with defining the OCL constraints - test
driven (meta(-meta))modeling - is highly important). Within this context, the
current paper reports on the definition and validation of such a complete set
of OCL WFRs for Ecore.

The rest of the paper is organized as follows. Section 2 reviews the state of
facts regarding the Ecore WFRs, which provides the context and motivation
of our work. Section 3 testifies our contribution, using some relevant WFR for

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE META-METAMODEL 91

the Ecore generics. Related work is summarized in Section 4. We conclude
the paper in Section 5, giving some hints on future work.

2. Ecore WFRs. State of Facts

Compared to the other meta-metamodels that we have studied, namely
MOF and XCore, Ecore has a special status, that may be described by the
following:

∙ Ecore is, beyond any doubt, the best known EMOF (Essential MOF)
implementation. However, Ecore does not match EMOF exactly. On
the one side, the approach taken with Ecore is more pragmatic and
implementation-oriented. On the other side, starting with EMF 2.3,
Ecore includes constructs for modeling with generics [11]; this is consid-
ered to be a departure from EMOF, which does not currently provide
such support.
∙ Due to the framework it ships with (EMF), Ecore is definitely the most

tested meta-metamodel.
∙ The Ecore repository includes a set of WFRs that allow validating the

metamodels that instantiate it. These rules are implemented within
the EcoreValidator class. However, although the code does contain
comments, these do not reflect all implementation decisions. Espe-
cially in case of those rules used to check the correctness of parame-
terized types, the code complexity is increased and the lack of detailed
comments and examples is disturbing. The fact that, as stated in [11],
“The design of Ecore’s support for generics closely mirrors that of Java
itself” is expected to help in this respect. Still, the tests that we have
run have shown that there are differences among the two, regarding
both the declaration of generic types and their correct instantiation.
∙ The Ecore implementation witnesses the fact that the value of meta-

metamodel level WFRs has been acknowledged. However, even though
EMF integrates an OCL plugin (MDT-OCL), we have not found any
OCL equivalent of the implemented constraints.
∙ The paper [9] proposes some OCL WFRs that may be used in vali-

dating the Ecore generics; this is actually the only paper concerning
the OCL formalization of Ecore WFRs that we have found in the lit-
erature. However, even though they are a good starting point and
comparison base, the OCL specifications described there are far from
complete and not entirely correct.

Within this context, our goal has been to identify, classify and specify in
OCL a complete set of WFRs for Ecore, complete at least with respect to
the rules already implemented in EMF. We report on accomplishing this goal
in the following sections using some relevant constraints concerning generics.

92 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

The OCL specifications are preceded by their informal equivalents and are
accompanied by relevant test cases used for their validation.

3. A Complete Set of OCL WFRs for Ecore

Taking the EMF implementation as a reference, we have defined a com-
plete set of OCL WFRs for Ecore, which we have tested and validated on
relevant examples using OCLE. The entire set can be found at [2]. Within
this section, we detail on one such WFR, regarding the Ecore generics. Choos-
ing this particular constraint for exemplification purposes is due to both its
complexity level (since it is a non-trivial WFR) and the fact that it allows a
close comparison with related work described in [9].

3.1. Generics in Ecore. Figure 1 shows that part of the Ecore meta-
metamodel that ensures the generic modeling support it provides. As pre-
viously mentioned, this has been introduced starting with EMF 2.3, the newly
added concepts being ETypeParameter and EGenericType. We briefly explain
and exemplify these concepts in the following.

ENamedElement

EClass

ETypedElement

EOperationETypeParameter 0..n
+eTypeParameters
0..n

{ordered}

EClassifier
+ instanceTypeName : String

0..n+eTypeParameters 0..n
{ordered}

EGenericType

0..n +eTypeArguments0..n
{ordered}

0..1 +eUpperBound0..1 0..1 +eLowerBound0..1

0..n

+eAllGenericSuperTypes

0..n

{ordered}

0..n

+eGenericSuperTypes

0..n

{ordered}

0..1

+eGenericType

0..1

0..n

+eGenericExceptions

0..n

{ordered}

0..n+eBounds 0..n
{ordered}

0..1 +eTypeParameter0..1

1+eRawType 1
0..1 +eClassifier0..1

File: D:\Vladi\Cercetare\Proiecte\PN2\Idei\CUEM_SIVLA\work\Ecore\Rose\Ecore.mdl 1:02:55 AM Tuesday, November 17, 2009 Class Diagram:
ecore / Generics Page 1

Figure 1. Ecore generics

Similar to Java, Ecore supports generic type and operation declarations,
as well as generic type instantiations (also known as parameterized types).

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE META-METAMODEL 93

An ETypeParameter instance stands for a type parameter used by ei-
ther a generic classifier or a generic operation declaration. That particular
ETypeParameter is contained by its corresponding EClassifier or EOperation
instance. This is denoted by the composition relationships EClassifier -
ETypeParameter and EOperation - ETypeParameter from Figure 1, which
are mutually exclusive (xor constraint). As an example, the Java generic
type declaration interface Collection<T> would be modeled in Ecore by
means of an EClass instance named Collection, having its interface at-
tribute set to true, and whose eTypeParameters sequence contains a single
ETypeParameter instance, named T.

Type parameters may have bounds, as indicated by the composition rela-
tionship between ETypeParameter and EGenericType. For a Java type dec-
laration such as

1 class OrderedList <T extends Comparable <T>> { ... }

the eBounds sequence owned by the type parameter T contains a single EGe-
nericType instance, namely Comparable<T>.

An EGenericType instance may denote one of the following: a type pa-
rameter reference, a (generic) type invocation, or a wildcard. This is re-
flected by its associations to ETypeParameter and EClassifier, respectively.
The two associations are mutually exclusive; there is a WFR specifying that
an EGenericType instance cannot be simultaneously associated to both an
eTypeParameter and an eClassifier. In case it has an eTypeParameter,
then it is a type parameter reference, if it has an eClassifier, then it is a
(generic) type invocation, and when both are missing, it is a wildcard. An
EGenericType instance denoting a generic type invocation may specify type
arguments (see the eTypeArguments role name); in case it does not specify
any type arguments, then it is used as a raw type, the reason being that of
ensuring compatibility with the previous, non-generic EMF releases. Wild-
cards may specify a lower or an upper bound (see the corresponding unary
compositions of EGenericType). To exemplify all these, let us consider the
following Java interface definition:

2 interface List <T> extends Collection <T>

3 {

4 boolean add(T elem);

5 boolean addAll(Collection <? extends T> col);

6 ...

7 }

The listing above contains a generic type declaration for List. In the equiv-
alent Ecore model (Figure 2), this would be modeled by means of an EClass
instance named List, which contains an ETypeParameter instance with the

94 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

name T. The newly declared type specifies a generic supertype, Collection<T>.
The latter is modeled using an EGenericType instance that corresponds to
a generic type invocation with a type argument; the referred classifier is
Collection and the contained type argument T. At its turn, this type ar-
gument is an EGenericType instance that corresponds to a type parameter
reference, the referenced type parameter being the ETypeParameter instance
T. The fourth line of the listing contains another EGenericType instance that
corresponds to a type parameter reference, only this time it is used not as a
type argument, but as the type of the EParameter instance elem. The type
of col in line 5 denotes a generic type invocation; the referenced classifier is
again Collection and the type argument is ? extends T. The latter is an
EGenericType instance that corresponds to an upper bounded wildcard; it has
no eClassifier or eTypeParameter and it specifies an eUpperBound, namely
T.

Figure 2. Ecore model for List<T>.
EMF tree-editor screenshot

EGenericType instances can play
various roles in an Ecore model, each
kind of usage being constrained by
suitable WFRs. Such an instance
can be exactly one of the following:

1. A generic supertype of a
class, as shown by the composition
relationship EClass-EGenericType;
Collection<T> in line 2 of the listing
above is such an example;

2. The type of a typed el-
ement (attribute, reference, oper-
ation, parameter), as shown by
the composition relationship between
ETypedElement and EGenericType;
an example is T in line 4 above;

3. A bound of a type pa-
rameter, as shown by the compo-
sition relationship ETypeParameter-

EGenericType; Comparable<T> in line 1 above is such an example;
4. One of the type arguments of a generic type invocation, fact de-

noted by the unary composition relationship of EGenericType owning the
eTypeArguments role; T from Collection<T> in line 2 above is a good exam-
ple;

5. The upper or lower bound of a wildcard, as shown by the other two
unary compositions of EGenericType; T from Collection<? extends T> in
line 5 above is an example of an upper bound usage of a generic type;

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE META-METAMODEL 95

6. An exception type, fact denoted by the composition between EOperation
and EGenericType.

3.2. A WFR for Generics in Ecore. Equipped with this knowledge re-
garding the Ecore generics, we seek to provide an OCL specification for the
following informal WFR: “Assuming that a generic type denotes a type pa-
rameter reference, the referenced type parameter must be in scope and must
not be a forward reference. The type parameter is in scope if its container is
an ancestor of this generic type within the corresponding Ecore containment
tree”. We give a few examples in the following, in order to ensure a deeper
understanding of the rule and to set up some test cases for its validation.
Assuming a closer familiarity of the reader with Java than Ecore, we start
with the Java equivalent of each chosen example, followed by OCLE and EMF
snapshots for the corresponding Ecore model.

As a first example, let us consider the Java declaration class Cls1<P, R
extends P>. The generic type declaration for Cls1 uses P and R as type pa-
rameters, the latter being upper bounded by the former. This is a valid generic
declaration since the referenced type parameter P is in scope and is not a for-
ward reference (P being declared prior to R). The equivalent Ecore model con-
sists of an EClass instance named Cls1 which contains two ETypeParameter
instances named P and R (Figure 3 shows the corresponding EMF and OCLE
snapshots). The type parameter R has a bound, which is an EGenericType
instance that references the type parameter T. The OCLE snapshot shows
explicitly the EGenericType instance used as a bound (GT P) and its link to
the referenced type parameter. Within the EMF tree, the bound appears as
a direct descendent of the type parameter it bounds, being labeled with the
name of the referenced type parameter.

(a) EMF snapshot (b) OCLE snapshot

Figure 3. Ecore model for Example 1: Cls1<P, R extends P>

96 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

For the second example, consider the Java declarations class Cls2<Q>
and class Cls3<S, T extends Q>. The second one is obviously not valid,
since the bound of T references type parameter Q, which is out of scope. The
corresponding OCLE snapshot is shown in Figure 4; its EMF equivalent is
missing since the framework constrains a referenced type parameter to be
chosen from the list of those in scope. Therefore, it is impossible to model
such a case using the EMF tree-like editor. However, this erroneous situation
could still occur if the model were loaded from an XMI file instead of being
created directly with the editor.

Figure 4. OCLE snaphot for Example 2: Cls2<Q>, Cls3<S,
T extends Q>

In both examples described above, the container of each type parameter
has been a classifier. Let us now consider the following Java generic operation
declaration <V> void Op(V param). The equivalent Ecore model has at its
root an EOperation instance, Op, whose eTypeParameters sequence contains
only the type parameter V. Op owns a single parameter, param, whose type
is an EGenericType instance that references the type parameter V. The EMF
and OCLE snapshots are illustrated in Figure 5. This is again a valid model
with respect to the WFR under consideration.

The fourth and last example we take is again a generic class declaration,
of the form class Cls4<T1, T2 extends T3, T3>. Such a declaration is
not valid, since the bound of T2 performs a forward referencing of the type
parameter T3. The equivalent snapshots are given in Figure 6.

The constraints in Listing 1 formalize the WFR stated at the beginning
of this subsection. The OCL specification has been splitted in two invariants
defined for the EGenericType context, namely InScopeTypeParameter and
NotForwardReference; as their names indicate, the former enforces the type
parameter referenced by a generic type to be in scope, while the latter checks
for forward referencing. As in programming, the splitting of large constraints
into smaller pieces is a good modeling practice. This way, the constraints
become easier to write and their comprehensibility is enhanced. Even more,
this also provides valuable support in localizing exactly and in real time the
cause of a constraint violation during model checking activities.

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE META-METAMODEL 97

(a) EMF snapshot (b) OCLE snapshot

Figure 5. Ecore model for Example 3: <V> void Op(V param)

(a) EMF snapshot (b) OCLE snapshot

Figure 6. Ecore model for Example 4: Cls4<T1, T2
extends T3, T3>

1 context EGenericType
2 −− The re f e renced type parameter must be in scope , i . e . ,
3 −− i t s conta iner must be an ances tor o f t h i s gener i c type . . .
4 inv InScopeTypeParameter :
5 s e l f . i sTypeParameterReference () implies
6 s e l f . an c e s t o r s ()−> i n c l u d e s (s e l f . eTypeParameter . eContainer ())

8 context EGenericType
9 −− . . . and must not be a forward re f e r ence .

10 inv NotForwardReference :
11 (s e l f . i sTypeParameterReference () and se l f . isUsedInATypeParameterBound ())
12 implies

98 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

13 (let re fParameter : ETypeParameter = s e l f . eTypeParameter
14 let boundedParameter : ETypeParameter = s e l f . boundedTypeParameter ()
15 let paramSeq :Sequence (ETypeParameter)=
16 (i f re fParameter . eContainer () . oc l I sKindOf (E C l a s s i f i e r)
17 then re fParameter . eContainer () . oclAsType (E C l a s s i f i e r) . eTypeParameters
18 else re fParameter . eContainer () . oclAsType (EOperation) . eTypeParameters
19 endif)
20 let posRefParameter : Integer = paramSeq−>indexOf (re fParameter)
21 let posBoundedParameter : Integer =
22 (i f paramSeq−>i n c l u d e s (boundedParameter)
23 then paramSeq−>indexOf (boundedParameter)
24 else −1
25 endif)
26 in
27 ((posBoundedParameter <> −1) implies
28 ((posRefParameter < posBoundedParameter) or
29 ((posRefParameter = posBoundedParameter) and
30 (not boundedParameter . eBounds−>i n c l u d e s (s e l f))
31)
32)
33)
34)

Listing 1. EGenericType invariants prohibiting invalid type
parameter references

We do not insist on the OCL specification for InScopeTypeParameter
(lines 1 to 6 of Listing 1), since it carefully matches the comments it goes along
with. However, we detail the three query operations it makes use of, namely
isTypeParameterReference(), eContainer() and ancestors(). Their OCL
definitions are provided in Listing 2.

The core query here is ancestors(), which should compute all parents
of an arbitrary object from within the Ecore containment tree to which the
object belongs. The returned set should include the object’s direct container,
the direct container of the latter, and so on. In case the particular object
is the root of the tree, then the empty set is returned. In order to provide
its intended functionality, ancestors() makes use of eContainer(), which
returns the direct container of an arbitrary object.

The eContainer() operation is given a default definition for the root of
the Ecore modeling hierarchy, EObject, which is overriden in all its descen-
dants, according to the composition relationships they are involved in (see
Figure 7). The default implementation returns Undefined(EObject) (Listing
2, lines 12-13) and most of the overridings simply perform a one-step nav-
igation of a composition relationship (Listing 2, lines 52-65). However, the
composition relationships which involve ETypeParameter and EGenericType
are uni-directional in the Ecore model, therefore the OCL expressions for

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE META-METAMODEL 99

eContainer() in these two particular cases (Listing 2, lines 15-50) are more
complex and unefficient, due to the calls to allInstances().

1 context EGenericType
2 def : i sTypeParameterReference () : Boolean =
3 not se l f . eTypeParameter . i sUnde f ined ()

5 context EObject
6 def : a n c e s t o r s () : Set (EObject) =
7 let empty : Set (EObject) = Set{} in
8 i f s e l f . eContainer () . i sUnde f ined () then empty
9 else Set{ s e l f . eContainer ()}−>union (s e l f . eContainer () . a nc e s t o r s ())

10 endif

12 context EObject
13 def : eContainer () : EObject = oc lUndef ined (EObject)

15 context EGenericType
16 def : eContainer () : EObject =
17 let c l s=EClass . a l l I n s t a n c e s−>any (c ∣ c . eGenericSuperTypes−>i n c l u d e s (s e l f))
18 let param=ETypeParameter . a l l I n s t a n c e s ()−>any (p ∣ p . eBounds−>i n c l u d e s (s e l f))
19 let te=ETypedElement . a l l I n s t a n c e s ()−>any (t ∣ t . eGenericType=s e l f)
20 let gt1=EGenericType . a l l I n s t a n c e s ()−>any (g ∣
21 g . eTypeArguments−>i n c l u d e s (s e l f))
22 let gt2=EGenericType . a l l I n s t a n c e s ()−>any (g ∣ g . eLowerBound=s e l f)
23 let gt3=EGenericType . a l l I n s t a n c e s ()−>any (g ∣ g . eUpperBound=s e l f)
24 let op=EOperation . a l l I n s t a n c e s ()−>any (o ∣
25 o . eGener icExcept ions−>i n c l u d e s (s e l f))
26 in
27 (i f not c l s . i sUnde f ined () then c l s
28 else i f not param . i sUnde f ined () then param
29 else i f not te . i sUnde f ined () then te
30 else i f not gt1 . i sUnde f ined () then gt1
31 else i f not gt2 . i sUnde f ined () then gt2
32 else i f not gt3 . i sUnde f ined () then gt3
33 else i f not op . i sUnde f ined () then op
34 else oc lUndef ined (EObject)
35 endif
36 endif
37 endif
38 endif
39 endif
40 endif
41 endif)

43 context ETypeParameter
44 def : eContainer () : EObject =
45 let c l a s s i f i e r = E C l a s s i f i e r . a l l I n s t a n c e s ()−>any (c ∣
46 c . eTypeParameters−>i n c l u d e s (s e l f))
47 in
48 (i f not c l a s s i f i e r . i sUnde f ined () then c l a s s i f i e r
49 else EOperation . a l l I n s t a n c e s ()−>any (o ∣ o . eTypeParameters−>i n c l u d e s (s e l f))
50 endif)

100 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

52 context EPackage
53 def : eContainer () : EObject = s e l f . eSuperPackage

55 context E C l a s s i f i e r
56 def : eContainer () : EObject = s e l f . ePackage

58 context EStructura lFeature
59 def : eContainer () : EObject = s e l f . eConta in ingClass

61 context EOperation
62 def : eContainer () : EObject = s e l f . eConta in ingClass

64 context EParameter
65 def : eContainer () : EObject = s e l f . eOperation

Listing 2. Query operations used by InScopeTypeParameter

ETypeParameter, for instance, is involved in two composition relationships
(with EClassifier and EOperation, see Figure 1 for reference), both of which
are unidirectional, navigable only from container to part (we did not manage
to find the rationale for this design decision). Therefore, the direct container
of a type parameter is always either a classifier or an operation. However,
this container cannot be accessed through a simple navigation. The only way
to identify it involves searching that particular type parameter within the
eTypeParameters collections of all classifiers and operations that belong to
the current model (which explains the use of allInstances() in lines 45, 49
of Listing 2). That operation or classifier which includes the searched type pa-
rameter within its eTypeParameters collection is its direct container. There
will definitely be at most one such classifier or operation, since the consid-
ered relationships are compositions. Therefore, the use of the undeterministic
any() in lines 45, 49 of Listing 2 is completely safe; it should produce the
same result no matter the tool used. The overriding of eContainer() for
EGenericType can be justified in a similar manner, only this time the number
of composition relationships involved, therefore the complexity, is greater.

EPackage
0..n

+eSubpackages
0..n

+eSuperPackage

EParameter

EClassifier
0..n+ePackage

+eClassifiers
0..n

EOperation

0..n

+eOperation

+eParameters 0..n

EClass 0..n+eContainingClass

+eOperations

0..nEStructuralFeature 0..n
+eStructuralFeatures

0..n +eContainingClass

File: D:\Vladi\Cercetare\Proiecte\PN2\Idei\CUEM_SIVLA\work\Ecore\Rose\Ecore.mdl 11:28:10 PM Saturday, November 21, 2009 Class Diagram:
ecore / Containers Page 1

Figure 7. Ecore containment relationships

The evaluation of InScopeTypeParameter using OCLE has ended suc-
cessfully for the first, third and fourth of the test examples considered above,

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE META-METAMODEL 101

while failing for the second, in accordance with the results given by the EMF
EcoreValidator and the Java compiler. In case of the first test example, the
constraint is evaluated for the EGenericType instance GT P, which references
the ETypeParameter instance P. The computed set of ancestors() of GT P
contains the ETypeParameter instance R (its direct container, of which it is a
bound) and the EClass instance Cls1 (the direct container of R). Also, the
direct container (eContainer()) of P is Cls1. Since the latter belongs to the
ancestors() set, the constraint evaluates to true on GT P. The evaluation re-
sults for the second and fourth examples (false and true, respectively) can
be explained in a similar way. In case of the third one, the invariant is eval-
uated on the EGenericType instance GT V, which references type parameter
V. The ancestors() of GT V are its direct container, param, (GT V being the
eGenericType of param) and the EOperation instance Op (the direct container
of param); the eContainer() of V is Op, therefore the required inclusion takes
place, which ends successfully the evaluation.

In order to simplify the reading, we will use the phrase “generic type”
instead of “EGenericType instance” from here on.

The invariant that completes the proposed WFR’s OCL definition, NotFor-
wardReference, rules out all generic types which reference type parameters
that are in scope, but are declared afterwards. This situation can only oc-
cur when the generic type is contained in a type parameter bound, either
of a classifier or of an operation. The employed query operations, specifi-
cally isUsedInATypeParameterBound() and boundedTypeParameter(), are
defined in Listing 3.

1 context EGenericType
2 def : isUsedInATypeParameterBound () : Boolean =
3 −− checks whether s e l f i s i nvo l v ed in de f i n i n g a type parameter bound
4 s e l f . an c e s t o r s ()−> e x i s t s (o ∣ o . oclIsTypeOf (ETypeParameter))

6 context EGenericType
7 def : boundedTypeParameter () : ETypeParameter =
8 −− re turns the type parameter in whose bound s e l f i s used
9 s e l f . an c e s t o r s ()−>any (o ∣

10 o . oclIsTypeOf (ETypeParameter)) . oclAsType (ETypeParameter)

Listing 3. Query operations used by NotForwardReference

A generic type is said to be used in a type parameter bound if and only if
there is an ETypeParameter instance among its ancestors. This is expressed
by means of line 4 of Listing 3 above. If that particular ETypeParameter
instance is its direct container, then the generic type identifies itself with the
bound, otherwise it is contained at a certain level in this bound. If a generic
type is involved in defining the bound of a type parameter, then this will be
the only ETypeParameter instance among its ancestors (since no containment,

102 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

direct or not, is possible among type parameters). Therefore, the use of any()
within the OCL expression which returns the type parameter in whose bound
the current generic type is involved (line 9, Listing 3) is safe.

Resuming to the OCL definition of NotForwardReference (lines 8-34,
Listing 1), we should make clear that a forward reference can only happen
when a generic type, let us call it GT, references a type parameter, let us call
it T, which is declared at a later time compared to the moment of use of
GT. Since type parameters can only be declared within a generic classifier or
operation definition, and assuming that the referenced type parameter is in
scope (out of scope type parameters are ruled out by the first invariant), it
follows that GT can only be involved in defining a bound for a type parameter
owned by the same classifier or operation that owns T. This explains line 11
from the definition of NotForwardReference. Following this, the invariant
computes the referenced type parameter (refParameter), the bounded type
parameter (boundedParameter), and the sequence of all parameters owned by
the direct container of refParameter (paramSeq). For the invariant to evalu-
ate to true, refParameter should be declared prior to boundedParameter in
paramSeq (line 28, Listing 1), or the two should be the same type parameter
(line 29, same listing). In the latter case, however, it is prohibited for a type
parameter to bound itself (line 30). Therefore, a situation such as the follow-
ing class Cls5<P1, P2 extends P2> is not allowed, since P2 bounds itself.
Still, a declaration of the kind Cls6<P3, P4 extends Cls<P4>>, in which P4
is involved in defining its own bound, is valid.

From the test examples above, the one intended to capture forward ref-
erencing was the fourth. There, the NotForwardReference invariant will be
evaluated for the generic type GT T3, which bounds type parameter T2 and ref-
erences type parameter T3. The sequence of all parameters having the same
container as the referenced one evaluates to Seq{T1,T2,T3}, from which it is
obvious that the position of the referenced type parameter (3) is greater than
the one of the bounded parameter (2). Therefore, the boolean expression in
lines 28-32 of Listing 1 evaluates to false, and so does the whole invariant.

4. Related work

As already mentioned in Section 2, the only benchmarks we have for com-
paring our work with are the EMF implementation of the EcoreValidator and
the paper [9].

4.1. The EMF EcoreValidator. We have already made clear in Section 1
which are the advantages derived from using OCL, instead of a programming
language, in formalizing WFRs. In addition, in Section 2, we have pointed
out some of the drawbacks of the current EMF implementation of Ecore’s
WFRs. Among them, there have been mentioned some discrepancies between

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE META-METAMODEL 103

the Java specification of generics and the corresponding WFRs implemented
by the EMF EcoreValidator. We will take one such example in the following,
so as to justify a new OCL WFR that we propose for the Ecore generics and
that should also be implemented by the EcoreValidator.

Concerning the correct declaration of generic types and methods, the Java
Language Specification [10] (pp. 50) states the following constraints: “Type
variables have an optional bound, T & I1 ... In. The bound consists of either
a type variable, or a class or interface type T possibly followed by further
interface types I1, ..., In. ... It is a compile-time error if any of the types
I1 ... In is a class type or type variable. The order of types in a bound is only
significant in that ... and that a class type or type variable may only appear
in the first position.”

Figure 8. OCLE snaphot corresponding to GenericClass1
<T1 extends InterfaceA & ClassB>

Therefore, a generic type declaration of the kind

1 class GenericClass1 <T1 extends InterfaceA & ClassB >

where InterfaceA is an interface type and ClassB is a class type, gives the
following compile-time error in a Java environment “The type ClassB is not an
interface; it cannot be specified as a bounded parameter”. However, by mod-
eling the exact same type in EMF and validating it, the validation completes
successfully.

In a similar manner, the declaration

2 class GenericClass2 <T1, T2 extends T1 & InterfaceA >

generates the Java compile-time error “Cannot specify any additional bound
InterfaceA when first bound is a type parameter”, while its equivalent Ecore
model validates successfully under EMF.

This is due to the fact that the EcoreValidator class does not include
code for checking the above mentioned constraints. Therefore, we propose the
following OCL WFR for the Ecore generics:

104 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

Figure 9. OCLE snaphot corresponding to GenericClass2
<T1, T2 extends T1 & InterfaceA>

1 context ETypeParameter
2 inv ValidBounds :
3 −− I f a type parameter has bounds and the f i r s t bound i s a type parameter
4 −− re ference , then there are no other bounds .
5 (s e l f . eBounds−>notEmpty () and
6 s e l f . eBounds−> f i r s t () . i sTypeParameterReference ()
7 implies s e l f . eBounds−>s i z e () = 1
8)
9 and

10 −− I f t he re are at l e a s t two bounds ,
11 −− then a l l excep t (maybe) the f i r s t one shou ld r e f e r to i n t e r f a c e types .
12 (s e l f . eBounds−>s i z e () >= 2
13 implies Sequence { 2 . . s e l f . eBounds−>s i z e ()}−> s e l e c t (i ∣
14 not se l f . eBounds−>at (i) . h a s I n t e r f a c e R e f e r e n c e ())−> isEmpty ()
15)

Listing 4. The ValidBounds OCL WFR

The aforementioned WFR makes use of the following query operations:

1 context EGenericType
2 def : h a s C l a s s i f i e r R e f e r e n c e () : Boolean =
3 not se l f . e C l a s s i f i e r . i sUnde f ined ()

5 def : hasClas sRe fe rence () : Boolean =
6 s e l f . h a s C l a s s i f i e r R e f e r e n c e () and se l f . e C l a s s i f i e r . oc l IsTypeOf (EClass)

8 def : h a s I n t e r f a c e R e f e r e n c e () : Boolean =
9 s e l f . hasClas sRe fe rence () and se l f . e C l a s s i f i e r . oclAsType (EClass) . i n t e r f a c e

11 def : i sTypeParameterReference () : Boolean =
12 not se l f . eTypeParameter . i sUnde f ined

Listing 5. Query operations used by ValidBounds

By evaluating the proposed WFR on the OCLE snapshots given in Fig-
ures 8 and 9, which correspond to the declarations in lines 1, respectively 2
above, the obtained result is false in both cases, in accordance with the Java
specification.

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE META-METAMODEL 105

4.2. The approach taken in [9]. In the following, we will focus on com-
paring our work with the one described in [9]. The above mentioned paper
aims at stating a set of OCL constraints that allow checking whether (1) a
given generic type declaration or (2) a corresponding instantiation with type
arguments (a so called parameterized type) are well formed or not. For fur-
ther reference and comparison, we provide in Listing 6 the OCL code for the
consistentTypeParameters WFR, meant to accomplish the first goal above
(the OCL specification used for accomplishing goal number 2 is omitted, since
it is not directly comparable with the WFRs included in this paper). Its cor-
responding informal specification, as can be deduced from the paper, would be
the following: “The type parameters of any classifier should have non-empty,
distinct names. The bounds of a type parameter (if any) can reference either a
type parameter or a classifier (they cannot be wildcards). If the bound refer-
ences a type parameter, then the referenced parameter should be in scope; if it
references a classifier, it should be a valid type invocation (either non-generic
or generic, possibly raw).”

1 context E C l a s s i f i e r
2 inv cons istentTypeParameters :
3 a l l D i f f e r e n t (eTypeParameters . name) and
4 eTypeParameters−>f o r A l l (tp ∣ tp . i s C o n s i s t e n t (eTypeParameters))

6 context ETypeParameter : : i s C o n s i s t e n t (
7 tpsInScope : Collection (ETypeParameter)) : Boolean
8 def : s e l f . name <> ’ ’ and (s e l f . eBounds−>isEmpty () or
9 s e l f . eBounds−>f o r A l l (t r ∣ t r . i sCons i s t entTypeRefe rence (tpsInScope)))

11 context EGenericType : : i sCons i s t entTypeRefe rence (
12 tpsInScope : Collection (ETypeParameter)) : Boolean
13 def : not i sWi ldcard () and
14 ((s e l f . isReferenceToTypeParameter () and
15 tpsInScope−>i n c l u d e s (s e l f . eTypeParameter))
16 xor
17 (s e l f . i s R e f e r e n c e T o C l a s s i f i e r () and
18 s e l f . e C l a s s i f i e r . i sVa l idTypeInvocat ion (s e l f . eTypeArguments))
19)

21 context EGenericType : : isReferenceToTypeParameter () : Boolean
22 def : e C l a s s i f i e r −>isEmpty () and
23 not eTypeParameter−>isEmpty () and eTypeArguments−>isEmpty ()

25 context EGenericType : : i s R e f e r e n c e T o C l a s s i f i e r () : Boolean
26 def : not e C l a s s i f i e r −>isEmpty () and eTypeParameter−>isEmpty ()

Listing 6. The consistentTypeParameters constraint from [9]

The set of constraints described in [9] can be analysed with respect to both
its declared purpose and our final goal of defining a complete set of WFRs for
Ecore in general, and Ecore generics in particular.

106 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

Regarding the first criterion, there are certain shortcomings concerning
these constraints, that we mention briefly in the following:

(1) The proposed constraints are incomplete with respect to their intended
purpose. On the one side, those meant to check the well formedness of a
generic type declaration only constrain the bounds of a type parameter
to reference parameters from within the same type declaration, with-
out prohibiting forward references (lines 14-15, Listing 6). However,
forward referencing is not allowed, neither in EMF not in Java (whose
generics’ model inspired the one in Ecore). On the other side, for the
WFRs that check the correct instantiation of a generic type definition
(which are not reproduced here), only a skeleton is given. The OCL
expressions for captureConversion(...) and isSuperTypeOf(...)
(which are the core queries of these WFRs, both in matter of com-
plexity and functionality) are missing from the paper and no reference
to them is provided. As a consequence, it is impossible to evaluate on
snapshots the correctness or efficiency of these WFRs.

(2) There is some redundancy in the OCL specification. The isConsis-
tentTypeReference(...) query operation (starting in line 11 above)
states that a generic type used in a parameter bound (1) should not be
a wildcard and (2) shoud reference either a classifier or a type param-
eter. The latter implies the former, so it should be enough to only im-
pose (2) as a constraint. Moreover, the isConsistent(...) operation
(starting in line 6) requires any type parameter to have a nonempty
name. However, in Ecore, ETypeParameter inherits ENamedElement,
and the latter owns a WFR that checks the well formedness of its name
attribute (well formed implies not empty).

(3) As a matter of style, the OCL specification patterns state that the
use of forAll on collections should be avoided. The corresponding
constraints should be rewritten to use either reject or select, thus
allowing an easy identification of the cause of an evaluation-time error.

With respect to defining a complete set of WFRs for the Ecore generics,
those described in [9] are only a small subset. They are only focused on
the definition and instantiation of generic classifiers; generic operations are
not taken into account. Moreover, even if a given generic type is a valid
instantiation of a certain generic classifier, depending on its usage, it may be
further constrained. There are various ways of using such a generic type (we
have detailed on that in Subsection 3.1), with several constraints that result
thereof. Here are some examples: a generic type used as a generic supertype
should have a classifier that refers to a class; there may not be two different
instantiations of the same generic classifier among the generic supertypes of a
class; the classifier of a generic type that types an attribute should be a data

PROPOSAL OF A SET OF OCL WFRS FOR THE ECORE META-METAMODEL 107

type instance, while the one used for a reference should be a class instance,
and so on.

The WFRs that we have described here are part of a broader set of OCL
WFRs meant to cover all constraints that apply to the Ecore concepts, gener-
ics included. Their expressions have been written following OCL specifica-
tion patters that provide for an easy debugging in case of an evaluation-time
error; therefore all usages of forAll() have been replaced with eqivalent
select()/reject() rephrasings. Lines 13-14 of Listing 4 are a proof of this.
Unefficient OCL constructs have only been used when there has been no other
option (see the discussion related to the use of allInstances()), and the
safety of using undeterministic constructs such as any() has been justified
whenever the case. All WFRs have been tested and validated using OCLE.

The OCL WFRs that we have defined for generics take into account both
generic classifier and generic operation declarations, as well as all previously
mentioned usages of a generic type. From a completeness perspective, the
WFR described in Subsection 3.2 is stronger than its equivalent part from
Listing 6, since it checks for forward referencing, and this aligns it with both
the EMF implementation and the Java specification; the one proposed in
Subsection 4.1 is missing from the EMF implementation, while being enforced
by the Java specification.

5. Conclusions and Future Work

In this paper we have reported on the definition of a set of OCL WFRs
for Ecore. We have used medium-complexity WFRs for generics in order to
illustrate our work and relate it to existing approaches in the literature. As far
as we know, this is the first attempt to provide an OCL formalization of the
well-formedness rules of Ecore. In a broader context, we have emphasized the
importance of OCL WFRs in defining the abstract syntax of a (meta)modeling
language.

Further work includes specifying complete sets of OCL WFRs for the other
two meta-metamodels under study, MOF and XCore. This should lead to the
identification of a “core” set of constraints used by all meta-metamodels. The
definition of some relevant metamodels to help us in validating the proposed
WFRs is also considered (in this respect, in [12], [13] we have already proposed
and tested such a metamodel for components, named ContractCML).

Acknowledgements

This research has been realized in the framework of the IDEI research
project “Frame based on the extensive use of metamodeling for the specifi-
cation, implementation and validation of languages and applications”, code

108 VLADIELA PETRAŞCU, DAN CHIOREAN, AND DRAGOŞ PETRAŞCU

ID 2049, financed by the Romanian National University Research Council
(CNCSIS).

References

[1] Eclipse Modeling Framework (EMF). http://www.eclipse.org/modeling/emf/.
[2] Frame Based on the Extensive Use of Metamodeling for the Specification, Implementa-

tion and Validation of Languages and Applications (EMF SIVLA) project homepage.
http://www.cs.ubbcluj.ro/∼chiorean/CUEM SIVLA.

[3] Meta Object Facility (MOF) 2.0. http://www.omg.org/spec/MOF/2.0/.
[4] Model Development Tools (MDT) OCL. http://www.eclipse.org/modeling/mdt/

?project=ocl.
[5] Model Driven Architecture (MDA). http://www.omg.org/mda/.
[6] Object Constraint Language Environment (OCLE). http://lci.cs.ubbcluj.ro/ocle/.
[7] Object Constraint Language (OCL) 2.0. http://www.omg.org/spec/OCL/2.0/.
[8] Tony Clark, Paul Sammut, and James Willans. Applied Metamodeling. A Foundation

for Language Driven Development. Ceteva, 2008.
[9] Miguel Garcia. Rules for Type-checking of Parametric Polymorphism in EMF Generics.

In Wolf-Gideon Bleek, Henning Schwentner, and Heinz Züllighoven, editors, Software
Engineering 2007 – Beiträge zu den Workshops, volume 106 of GI-Edition Lecture Notes
in Informatics, pages 261–270, 2007.

[10] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification,
Third Edition. Addison-Wesley Longman, May 2005.

[11] Ed Merks and Marcelo Paternostro. Modeling Generics with Ecore. In EclipseCon 2007,
5-8 March 2007. http://www.eclipsecon.org/2007/index.php.

[12] Vladiela Petraşcu, Dan Chiorean, and Dragoş Petraşcu. ContractCML - a Contract
Aware Component Modeling Language. SYNASC 2008 10th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, pages 273–276, 2008.

[13] Vladiela Petraşcu, Dan Chiorean, and Dragoş Petraşcu. Component Models’ Simula-
tion in ContractCML. Proceeding of Knowledge Engineering: Principles and Techniques
(KEPT 2009), Studia. Universitatis Babes-Bolyai. Informatica, Special Issue, pages
198–201, 2009.

[14] Douglas C. Schmidt. Model-Driven Engineering. Computer, 39(2):25–31, 2006.
[15] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse

Modeling Framework (2nd Edition). Addison-Wesley Professional, December 2008.

Babeş-Bolyai University, 1 Mihail Kogălniceanu, Cluj-Napoca, Romania
E-mail address: {vladi, chiorean, petrascu}@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIV, Number 2, 2009

ON THE DEBTS’ CLEARING PROBLEM

CSABA PĂTCAŞ

Abstract. The debts’ clearing problem is about clearing all the debts in

a group of n entities (eg. persons, companies) using a minimal number

of money transaction operations. First we will model the problem using

graph theoretical concepts and we will reduce the problem to a minimum

cost maximum flow problem in a bipartite graph. Because our cost function

is not the usual one, a classical minimum cost maximum flow algorithm

cannot be applied in this case. We propose a solution using the dynamic

programming method with Θ(2n) space and exponential time complexity.

We will also examine other solving possibilities.

1. Introduction

In this article we will discuss an original problem proposed in 2008 by

the author at the qualification contest of the Romanian national team of

informatics for the Central European Olympiad of Informatics and Balkan

Olympiad of Informatics. The problem of debts’ clearing is one, that arises

in real life situations as well. In a group of persons that know each other it

is not uncommon to borrow some amount of money to an acquaintance for a

period of time. This process is also happening among different banks, or even

countries. As money transactions are time and money sensitive operations,

it is desirable to clear the debts in a minimal number of money transaction

operations.

Our article studies some methods to solve this task, conjectured to be

NP-complete.

Received by the editors: November 1, 2008.

2010 Mathematics Subject Classification. 05C85, 90C39.

1998 CR Categories and Descriptors. G.2.2 [Graph theory]: Network problems – Net-

work flow .

Key words and phrases. NP-completeness, dynamic programming, network flow.

This paper has been presented at the 7th Joint Conference on Mathematics and Computer

Science (7th MaCS), Cluj-Napoca, Romania, July 3-6, 2008.

109

110 CSABA PĂTCAŞ

2. The task

In the following we will give the problem statement.

Let us consider a number of n entities (eg. persons, companies), and a list

of m borrowings among these entities. A borrowing can be described by three

parameters: the index of the borrower entity, the index of the lender entity

and the amount of money that was lent. The task is to find a minimal list of

money transactions that clears the debts formed among these n entities as a

result of the m borrowings made.

Let us clarify this by the following example:

Let n = 6, m = 5

List of borrowings:
Borrower Lender Amount of money

1 2 10

2 3 10

4 5 5

5 6 5

6 4 5
Solution:
Sender Reciever Amount of money

1 3 10
Explanation: The circular borrowings among entities 4, 5 and 6 cancel out

each other, and the two borrowings made among 1, 2 and 3 can be cleared

using just one money transaction.

3. Reformulation using graph theory

We can reformulate the problem using graph theoretical concepts. For this

purpose we need to define some new terms first.

Definition 1. Let G(V,A,W) be a directed, weighted multigraph without

loops, ∣V ∣ = n, ∣A∣ = m, W : A → ℤ, where V is the set of vertices, A is the

set of arcs and W is the weight function. G represents the borrowings made,

so we will call it the borrowing graph.

Definition 2. Let us define for each vertex v ∈ V the absolute amount of

debt over the graph G: DG(v) =
∑

v′ ∈ V

(v, v′) ∈ A

W (v, v′)−
∑

v′′ ∈ V

(v′′, v) ∈ A

W (v′′, v)

Definition 3. G(V,A,W) ∼ G′(V,A′,W ′) if and only if:

ON THE DEBTS’ CLEARING PROBLEM 111

DG(vi) = DG′(vi),∀i = 1, n, where V = {v1, v2, . . . , vn}

Theorem 4. The ”∼” relation defined above is an equivalence relation.

Proof.

(1) Reflexivity can be proved trivially: DG(vi) = DG(vi), ∀i = 1, n

(2) Symmetry is also trivial to prove: DG(vi) = DG′(vi) ⇒ DG′(vi) =

DG(vi),∀i = 1, n

(3) Transitivity: DG(vi) = DG′(vi), DG′(vi) = DG′′(vi) ⇒ DG(vi) =

DG′′(vi),∀i = 1, n

Definition 5. There is an infinite number of G′ graphs, that are in ”∼”

relation with the G borrowing graph. As these G′ graphs represent the tran-

sactions that are needed to clear the borrowings, we will call them transaction

graphs.

In the following we will state the problem using the terms defined above:

We are looking for a minimal transaction graph Gmin(V,Amin,Wmin), for

which ∀G′(V,A′,W ′) : G ∼ G′, ∣Amin∣ ≤ ∣A′∣ holds.

Figure 1 shows the borrowing graph, that can be associated with the ex-

ample given in Section 2, while Figure 2 shows the respective minimum trans-

action graph.

Figure 1. The borrowing graph associated with the given ex-

ample. An arc from node i to node j with weight w means,

that entity i must pay w amount of money to entity j.

112 CSABA PĂTCAŞ

Figure 2. The respective minimum transaction graph. An

arc from node i to node j with weight w means, that entity i

pays w amount of money to entity j.

4. Possible solutions

In this Section we will propose some methods to solve the problem.

4.1. Graph transformations. It is clear that the original borrowing graph is

also a transaction graph, because of the reflexivity of the ”∼” relation (G ∼ G).

This yields the following idea: Is it possible to find a sequence of graphs, such

that G = G1, G2, . . . , Gk = Gmin, G1 ∼ G2, G2 ∼ G3,. . . ,Gk−1 ∼ Gk and

Gj is obtained from Gj−1 using some ”elementary transformation operation”

for every j = 2, k? Because the ”∼” relation is also transitive, it would

immediately result, that G = G1 ∼ Gk = Gmin.

Let us enumerate some transformation operations we could use:

∙ All arcs having weight zero can be discarded.

∙ It is clear, that if we have multiple arcs between two vertices, these

can be united in a single one, having a weight equal to the sum of the

original weights.

∙ It is also easy to see, that if for any two vertices a and b we have

(a, b) ∈ A and also (b, a) ∈ A, the arc having the smaller weight out of

those two can be deleted, and its weight can be substracted from the

another arc.

These findings suggest the existence of an elementary transformation ope-

ration, that can be given in the most general way as follows:

(1) Let vi1 , vi2 , . . . , vip be a sequence of vertices.

ON THE DEBTS’ CLEARING PROBLEM 113

(2) Let x be any integer number (x ∈ ℤ).

(3) Substract x from all the weights of two consecutive vertices in the

sequence (W (vij−1 , vij) := W (vij−1 , vij) − x, j = 2, p). If a weight

becomes negative, an edge in the opposite direction should be added.

As a result some edges could disappear and new edges could appear.

(4) Add an arc between vi1 and vip having weight x.

Theorem 6. After applying the transformation described above, the resulting

graph will be in ”∼” relation with the original one.

Proof.

Let G(V,A,W) be the graph before the transformation and let G′(V,A′,W ′)

be the graph after the transformation. Thus we must prove, that G ∼ G′.

Let us note with d the vector of absolute amount of debts of the graph

before the transformation and with d′ the vector of absolute amount of debts

of the graph after the transformation (di = DG(vi), d
′
i = DG′(vi),∀i = 1, n).

Thus we must prove, that d = d′.

The first two steps of the transformation does not alter the graph. During

the third step, the absolute amount of debts do change:

W (vi1 , vi2) = W (vi1 , vi2)− x→ d′i1 = di1 − x, d′i2 = di2 + x

W (vi2 , vi3) = W (vi2 , vi3)−x→ d′i2 = d′i2−x = di2+x−x = di2 , d
′
i3

= di3+x
...

W (vip−1 , vip) = W (vip−1 , vip) − x → d′ip−1
= d′ip − x = dip−1 + x − x =

dip−1 , d
′
ip

= dip + x

So, when step 3 is completed, the only d values that are changed are di1
and dip , that is d′i1 = di1 − x and d′ip = dip + x. As a result of the fourth step

these elements also get back to their original value:

W (vi1 , vip) = W (vi1 , vip) + x → d′i1 = d′i1 + x = di1 − x + x = di1 , d
′
ip

=

d′ip − x = dip + x− x = dip
An attempt of using two concrete versions of this transformation was the

following:

(1) Reduce the number of arcs in all the cycles of the graph, by using the

minimal weight of the cycle’s arcs as the x value.

(2) The resulting graph has no cycles, thus can be sorted topologically.

Try to find a strategy to reduce the number of arcs in the paths of this

graph, using the topological order. For instance simplify the longest

paths first, in a similar way as the cycles, by using the weights’ mini-

mum as the x value.

114 CSABA PĂTCAŞ

Unfortunately this strategy doesn’t work for all graphs. The order in which

we eliminate the cycles and paths does matter, and it is not clear what this

order should be. In Figure 3 a borrowing graph is illustrated. If we first apply

the transformation to path 2-4-5-7 no more transformations can be made, and

we get a graph with 5 arcs, that can be seen in Figure 4. The optimal solution

is to apply the transformation to path 1-4-5-6, then to path 3-4-5-8, thus

obtaining the graph from Figure 5, which has only 4 arcs.

Figure 3. Example for a graph in which the order of trans-

formations does matter

Figure 4. Non-optimal solution gained using graph transformations

The general problem with this approach is, that it is not clear in which

order to choose which sequences, and what x values to use. The author could

not find an algorithm based on this approach, that works for any borrowing

graph.

ON THE DEBTS’ CLEARING PROBLEM 115

Figure 5. Optimal solution gained using graph transformations

4.2. Reducing the debts’ clearing to a flow problem. A better approach

is to try to solve the problem using network flows. Let us construct a bipartite

graph Gb(Vb, Ab) from the initial borrowing graph, as follows:

(1) Vb = Vleft ∪ Vrigℎt

(2) Vleft = {v∣v ∈ V,DG(v) > 0}
(3) Vrigℎt = {v∣v ∈ V,DG(v) < 0}
(4) Ab = {(a, b)∣a ∈ Vleft, b ∈ Vrigℎt}

Using this graph let us construct a flow network Gf (Vf , Af , c), where

c : Af → ℤ is the capacity function.

(1) We add a source and a sink: Vf = Vb ∪ {s, t}
(2) We add arcs from the source to all the nodes from Vleft and from all

nodes from Vrigℎt to the sink: Af = Ab ∪{(s, v)∣v ∈ Vleft}∪ {(v, t)∣v ∈
Vrigℎt}

(3) We set the capacities of the arcs as follows:

c(i, j) =

⎧⎨⎩
DG(j), if i = s, j ∈ Vleft

−DG(i), if i ∈ Vrigℎt, j = t

∞, if i ∈ Vleft, j ∈ Vrigℎt

Theorem 7. Finding the minimal transaction graph of the borrowing graph

G is equivalent to finding a maximal flow in Gf with a minimal number of

arcs, for which the flow is strictly positive.

Proof.

116 CSABA PĂTCAŞ

Let F be a maximal flow with a minimal number of arcs, for which the flow

is strictly positive. From this flow network we can construct the transaction

graph G′(V,A′,W ′) in the following way:

(1) V = Vf/{s, t} ∪ {k ∈ V ∣DG(k) = 0}
(2) A′ = {(i, j)∣F (i, j) > 0, i ∕= s, j ∕= t}
(3) W ′(i, j) = F (i, j)

Lemma 8. The maximal flow F will saturate all arcs outgoing from s and all

arcs incoming in t.

Proof. Each arc (i, j) ∈ A will increase DG(i) by W (i, j) and decrease

DG(j) by the same amount⇒
∑

DG(k)>0

DG(k) =
∑

DG(l)<0

−DG(l) =: S. In other

words the sum of capacities of all arcs outgoing from s equals to the sum of

capacities of all arcs incoming in t. We will prove that the maximal flow in

the network has cost S. Let us suppose that the cost of the maximal flow is

S′ ∕= S. As the sum of capacities of all arcs outgoing from s is S ⇒ S′ < S (the

maximal flow cannot be greater than S). This means, that we have (at least)

two unsaturated arcs (s, i) and (j, t). But the structure of the flow network

(c(i, j) =∞) leads to the existence of the augmenting path s− i− j− t, which

contradicts the assumption, that S′ was the cost of the maximal flow. We

have proved, that the cost of the maximal flow F is S, which immediately

yields the proof of the lemma (we cannot have this maximal flow, unless we

saturate the respective arcs).

Lemma 9. Let G be the borrowing graph and G′ be the graph constructed in

the beginning of the proof of Theorem 7. Then G′ ∼ G.

Proof.

We must prove, that DG′(vi) = DG(vi)∀i = 1, n. We have two cases:

(1) If DG′(vi) > 0, there is an arc (s, v′i) in the flow network. It results

from Lemma 8, that this arc is saturated. From the flow conservation

rule ([3]) it results that the sum of the costs of all arcs outgoing from

vertex v′i will be c(s, v′i) = DG(vi). From the construction of G′ it

follows, that there are no arcs incoming in v′i, so DG′(vi) = DG(vi)

(2) If DG′(vi) < 0, there is an arc (v′i, t) in the flow network, which is

saturated. The rest of the proof, that DG′(vi) = DG(vi) is done in the

same manner as in the first case. □

ON THE DEBTS’ CLEARING PROBLEM 117

From the fact, that we chose the maximal flow F in a way that minimizes

∣A′∣, and from Lemma 9 it results, that we reduced the original problem to a

maximal flow problem.

5. Solving the flow problem

5.1. Minimal cost maximal flow. The first idea would be to associate costs

z(e), e ∈ Af to the arcs of the flow network. Let the arcs between Vleft and

Vrigℎt have cost 1, and the other arcs have cost 0, and let us use a classical

minimum cost maximum flow algorithm to solve the problem:

z(i, j) =

{
1, if i ∈ Vleft, j ∈ Vrigℎt

0, otherwise
Figure 6 shows the flow network, that can be associated to the borrowing

graph shown in Figure 1. The first number on each arc represents the capacity

of the arc, and the second number represents the cost of the arc.

Figure 6. The flow network associated with the example

This approach doesn’t work, because the cost of an arc is multiplied by

the flow, we don’t have fixed costs on the arcs. In a classical minimum cost

maximum flow algorithm the cost function looks like: Cost(e) = f(e) ⋅ z(e),

but in our case this is:

Cost(e) =

{
z(e), if f(e) > 0

0, otherwise
It can be rewritten to a more simple form, as: Cost(e) = ind(f(e)) ⋅ z(e),

where ind is the indicator function, defined as follows:

ind(x) =

{
1, if x > 0

0, if x = 0
In the literature this problem is called Minimum Edge-Cost Flow and

is known to be NP-complete([4], problem [ND32]). Even if the problem is

constrained so that the capacity of each arc is 2, and the cost of each arc

can be 0 or 1, it remains NP-complete. This fact leads us to the following

conjecture:

Conjecture 10. The debts’ clearing problem is NP-complete.

118 CSABA PĂTCAŞ

The fact that we have a special case, with all the costs equaling to 0 or

1, and having a complete bipartite graph, gives us a hope that a polynomial

solution does exist.

5.2. Convex flow. Efficient minimum cost maximum flow algorithms do exist,

when the cost function is convex ([1]). Unfortunately this is not our case. In-

deed, a function to be convex must satisfy:

f(t ⋅x+(1−t) ⋅y) ≤ t ⋅f(x)+(1−t) ⋅f(y) for any x and y from the function

domain, and ∀t ∈ [0, 1]. For t = 1
2 , x = 0, y = 1 we get f(1

2) ≤ f(0)
2 + f(1)

2 ,

which is obviously not true in our case, so our cost function is not convex.

5.3. Nonlinear programming. We can formulate the problem as a non-

linear programming (NLP) problem:

Minimize p =
∑

e∈Af

ind(f(e)) subject to∑
k∈Vrigℎt

f(i, k) = c(s, i)∑
k∈Vleft

f(k, j) = c(j, t)

Unfortunately no polinomial algorithm is known for solving any NLP in-

stance. However good approximation algorithms do exist ([6]).

5.4. Dynamic programming. We will give a solution using the dynamic

programming method. It uses similar techniques to the algorithm discovered

independently by Bellman ([2]), respectively Held and Karp ([5]) for solving

the Traveling Salesman Problem.

Let us note n1 = ∣Vleft∣ and n2 = ∣Vrigℎt∣. Let us define the subproblems

of the dynamic programming problem with two parameters i and j, where i is

a binary representation of n1 bits, and j is a binary representation of n2 bits

(i = 0, 2n1 − 1, j = 0, 2n2 − 1). A subproblem will have the following meaning:

dpi,j = the minimal number of arcs having strictly positive flow, such that

the arcs between s and the nodes determined by the bits of i, and the arcs

between the nodes determined by the bits of j and t are all saturated.

The recursive formula to determine the values of the subproblems is the

following1:

dpi,j = min(dpi XOR i′,j XOR j′ + bitcount(i′) + bitcount(j′)− 1), where

(1) i AND i′ = i′

1We note by AND the bitwise and operation and by XOR the bitwise exclusive or operation

ON THE DEBTS’ CLEARING PROBLEM 119

(2) j AND j′ = j′

(3)
∑

i′ AND 2k ∕=0

c(s, k) =
∑

j′ AND 2k ∕=0

c(k, t)

(4) bitcount(x) returns the number of bits of x equal to 1.

It can be easily seen, that in the worst case we will need n1 + n2 − 1 arcs,

and in the best case max(n1, n2) arcs. We choose all the possible subsets i′ of

i and j′ of j. The nodes determined by i′ and j′ can form an ”independent

subnetwork” only if the respective sums of capacities are equal. In this case

we consider the worst case scenario, so we add bitcount(i′) + bitcount(j′)− 1

to the solution not containing these nodes. If we didn’t find an independent

subnetwork, it means, that the chosen arcs must form a connected graph, thus

the minimal number of arcs is n1 +n2− 1, so we can’t get any better than the

worst case scenario.

Let us analyze the performance of the proposed algorithm. The number

of subproblems is 2n1 ⋅ 2n2 = 2n1+n2 , which in the worst case is 2n. Thus the

space complexity of our algorithm is Θ(2n). To solve a subproblem (i, j) we

need all the pairs (i′, j′), such that i′ is a subset of i and j′ is a subset of j.

We can codify any pair (i, i′) with a sequence of length n1 of ternary digits.

A digit will be 0, if the respective node is not in i, 1 if it is in i but not in

i′ and 2 if it is in i′ (and thus also in i). The same codification can be done

for any (j, j′) pair. Thus the number of steps performed by our algorithm is

proportional to 3n1 ⋅ 3n2 = 3n

6. Conclusions and future work

In this article we stated the debt’s clearing problem, and analyzed some

solving possibilities. An algorithm, that finds the optimal solution using the

dynamic programming method was given, and its exponential running time

and space complexity was proven.

We didn’t analyze deeply the solving possibilities using nonlinear program-

ming strategies. Also, the presented non optimal solutions, such as convex

flow, could work in a high percentage of the cases, this possibility must be

studied in the future. Approximation algorithms were not considered.

The biggest concern regarding this problem is its NP-completeness. The

problem is a special instance of the known NP-complete problem of Minimum

Edge-Cost Flow, and seems to be NP-complete too.

120 CSABA PĂTCAŞ

References

[1] Ravindra K. Ahuja and Thomas L. Magnanti and James B. Orlin, Network flows,

Prentice-Hall, 1993.

[2] Bellman, Richard, Dynamic Programming Treatment of the Travelling Salesman Prob-

lem, Journal of the ACM, 1962.

[3] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Intro-

duction to Algorithms (2nd edition), 2001.

[4] Michael R. Garey, David S. Johnson, Computers and intractability: A guide to the

theory of NP -completeness, W. H. Freeman and Company, San Francisco, 1979.

[5] Held, Michael and Karp, Richard M, A dynamic programming approach to sequencing

problems, Proceedings of the 1961 16th ACM national meeting, 1961.

[6] D. Luenberger, Linear and nonlinear programming, Addison-Wesley, New York, 1989.

Department of Computer Science, Babeş-Bolyai University, M. Kogălniceanu

1, 400084 Cluj-Napoca, Romania

E-mail address: patcas@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIV, Number 2, 2009

A PREDICTOR-CORRECTOR ALGORITHM FOR LINEARLY

CONSTRAINED CONVEX OPTIMIZATION

ZSOLT DARVAY

Abstract. In a recent paper we have introduced a new class of search
directions for solving linear optimization (LO) problems. These direc-
tions are based on an algebraic equivalent transformation of the nonlinear
equation from the system which defines the central path. However, from
the implementation point of view predictor-corrector algorithms proved to
be the most efficient among the class of interior point methods (IPMs).
Therefore, we have defined also other variants of this class of algorithms,
for example a weighted path-following algorithm, and a predictor-corrector
algorithm for LO problems. Recently, the technique of finding search di-
rections has been applied with success for linearly constrained convex op-
timization (LCCO), by Zhang, Bai and Wang. In this paper we define
a new predictor-corrector algorithm for solving LCCO problems. We ob-
tain new search directions by applying the method of algebraic equivalent
transformation in this case too. Polynomial complexity of this algorithm
is proved.

1. Introduction

The field of IPMs has been very active since Karmarkar published his fa-
mous paper [7] in 1984. However, in general one of the significant aspects
of determining a new algorithm resides in the method of following the cen-
tral path. Therefore, search directions play an important role in finding new
algorithms. Peng, Roos and Terlaky [10] have defined the notion of self reg-
ular functions and, using this concept, they have introduced a new class of
search directions for LO. They have extended their results also to comple-
mentarity problems (CP), semidefinite optimization (SDO) and second order
cone optimization (SOCO), and they have proved polynomial complexity of

Received by the editors: November 20, 2009.
2010 Mathematics Subject Classification. 90C25, 90C51.
1998 CR Categories and Descriptors. G.1.6. [Mathematics of Computing]: Numer-

ical Analysis – Optimization – Convex programming ;
Key words and phrases. Linearly constrained convex optimization, interior-point meth-

ods, predictor-corrector algorithm, equivalent algebraic transformation, centering equation,
Newton step.

121

122 ZSOLT DARVAY

different large-update algorithms, which use self-regular functions to obtain
new directions.

An alternative method has been introduced in [3, 5] by applying alge-
braically equivalent transformations to the nonlinear centering equation of the
system, which defines the central path. The method has been applied with
success to convex quadratic optimization (CQO) by Achache [2] and LCCO by
Zhang et al. [17]. Recently, the new technique for LO has been extended also
to monotone mixed linear complementarity problems (LCPs) by Wang, Cai
and Yue [15], and to SDO and SOCO by Wang and Bai [13, 14]. The method of
algebraically equivalent transformation has been generalized also to weighted-
path-following algorithms. The first results for LO have been given in [4].
Later on, Achache [1] generalized this algorithm to standard LCPs, and Wang
et al. [16] to monotone horizontal LCPs. The above mentioned algebraic
transformations, followed by a Newton step, resulted in small-update feasible
algorithms, and for all of them the best known iteration bounds were obtained.
However, Pan, Li and He [9] introduced a large-update infeasible algorithm us-
ing a logarithmic transformation. This logarithmic equivalent transformation
was mentioned formerly by Tuncel and Todd [12].

Another approach of developing an efficient algorithm is considering pre-
dictor and corrector steps. We mention that the first algorithm, that have
divided the Newton direction into the affine-scaling and centering direction,
is due to Mehrotra [8]. In [6] we have defined a predictor-corrector algorithm
obtained by applying an equivalent algebraic transformation, using the square
root function, as in [3]. In this paper we extend this algorithm to LCCO.

The notations used in this paper are the following: ℜn is the set of n-
dimentional vectors and ℜm×n is the set of m× n matrices. Moreover, ℜ+ is
the set of nonnegative real numbers, if x ∈ ℜn then diag(x) is the diagonal
matrix formed by the elements of x, and e is the all-one vector.

This paper is organized in the following way. In the next section we intro-
duce the basic issues regarding the central path, and we discuss the primal-dual
algorithm for LCCO. In the third section we define the predictor-corrector al-
gorithm for LCCO and we prove its polynomial complexity. Finally, we present
some conclusions in Section 4.

2. Primal-Dual Path-Following Algorithm

Let us consider the following problem

(P) min {f(x) : Ax = b, x ≥ 0},

and its Wolfe dual

(D) max {bT y + f(x)− (∇f(x))Tx : AT y + s−∇f(x) = 0, s ≥ 0},

A PREDICTOR-CORRECTOR ALGORITHM FOR LCCO 123

where A ∈ ℜm×n, rank(A) = m, b ∈ ℜm and f : ℜn → R is a convex and
twice continuously differentiable function. Suppose that the interior point
condition (IPC) holds. Thus, there exist (x0, y0, s0) such that

Ax0 = b, x0 > 0,

AT y0 + s0 −∇f(x0) = 0, s0 > 0.
(IPC)

The IPC can be assumed without loss of generality, and we may assume x0 =
s0 = e. The optimality condition for the pair (P)-(D) can be written as

Ax = b, x ≥ 0,

AT y + s−∇f(x) = 0, s ≥ 0,

xs = 0.

(1)

If the IPC holds, then for a fixed � > 0 the system

Ax = b, x > 0,

AT y + s−∇f(x) = 0, s > 0,

xs = �e,

(2)

has a unique solution, called the �-center. Let us consider the function ' such
that

(3) ' ∈ C1, ' : ℜ+ → ℜ+, and '−1 exists.

Then, the system (2) is equivalent to

Ax = b, x > 0,

AT y + s−∇f(x) = 0, s > 0,

'

(
xs

�

)
= '(e),

(4)

Assume that we have Ax = b, x > 0, AT y+ s−∇f(x) = 0, s > 0 for a triple
(x, y, s). Applying Newton’s method for system (4) we get

AΔx = 0,

ATΔy + Δs−∇2f(x)Δx = 0,

s

�
'′
(
xs

�

)
Δx+

x

�
'′
(
xs

�

)
Δs = '(e)− '

(
xs

�

)
.

(5)

Denote dx =
vΔx

x
, ds =

vΔs

s
.

We have

(6) �v(dx + ds) = sΔx+ xΔs,

124 ZSOLT DARVAY

(7) dxds =
ΔxΔs

�
.

The linear system (5) is equivalent to

Ādx = 0,

ĀTdy + ds − H̄dx = 0,

dx + ds = pv,

(8)

where V = diag(v), X = diag(x), S = diag(s) and we also use the following
notations:

pv =
'(e)− '(v2)

v'′(v2)
, H̄ = �V S−1∇2f(x)V S−1 and Ā =

1

�
AV −1X.

Observe that '(t) = t yields pv = v−1−v, and we obtain the standard primal-
dual algorithm. Let '(t) =

√
t. Then we have

(9) pv = 2(e− v).

From (5) we obtain

AΔx = 0,

ATΔy + Δs−∇2f(x)Δx = 0,(10) √
s

x
Δx+

√
x

s
Δs = 2(

√
�e−

√
xs).

The system (10) can be written in the following form:

AΔx = 0,

ATΔy + Δs−∇2f(x)Δx = 0,(11)

sΔx+ xΔs = 2(
√
�xs− xs).

We define a proximity measure to the central path

(12) �(xs, �) =
∥pv∥

2
= ∥e− v∥ =

∥∥∥∥e−√xs

�

∥∥∥∥ .
Denote qv = dx− ds. The function f is convex, thus the matrices ∇2f(x) and
H̄ are symmetric and positive semidefinite. Thus dTx ds ≥ 0 and

∥qv∥ ≤ ∥pv∥.

We have

�(xs, �) ≥ ∥qv∥
2

,

dx =
pv + qv

2
, ds =

pv − qv
2

,

A PREDICTOR-CORRECTOR ALGORITHM FOR LCCO 125

(13) dxds =
p2v − q2v

4
.

Algorithm 2.1 Let � > 0 be the accuracy parameter, 0 < � < 1 the update
parameter (default � = 1

2
√
n

), and 0 < � < 1 the proximity parameter (default

� = 1
2). Suppose that for the triple (x0, y0, s0) the IPC holds, and let �0 =

(x0)T s0

n . Furthermore, suppose �(x0s0, �0) < � .
begin

x := x0; y = y0; s = s0; � := �0;
while xT s > � do begin
� := (1− �)�;
Compute (Δx,Δy,Δs) from (11)
x := x+ Δx;
y := y + Δy;
s := s+ Δs;

end
end.
The complexity analysis of this algorithm has been given in [17]. The results
are similar to the LO analogue [5]. We revisit the following lemmas given in
[17].
Lemma 2.1 Let x+ = x+ Δx and s+ = s+ Δs. Moreover, let � = �(xs, �)
and suppose that � < 1. Then

x+ > 0 and s+ > 0,

hence the full Newton step is strictly feasible.
Proof: Denote x+(�) = x + �Δx and s+(�) = s + �Δs for each 0 ≤ � ≤ 1.
We have

(14)
1

�
x+(�)s+(�) = (1− �)v2 + �

(
e− (1− �)

p2v
4
− �q

2
v

4

)
.∥∥∥∥(1− �)

p2v
4

+ �
q2v
4

∥∥∥∥
∞
≤ �2 < 1.

Thus, for each 0 ≤ � ≤ 1 we have x+(�)s+(�) > 0.
Lemma 2.2 Let � = �(xs, �) < 1. Then

�(x+s+, �) ≤ 1−
√

1− �2.

Thus the Newton process is quadratically convergent.

Proof: Let v+ =
√

x+s+
� . Using (14) we obtain

(15) v2+ = e− q2v
4

126 ZSOLT DARVAY

(16) min(v+) =

√
1− 1

4
∥q2v∥∞ ≥

√
1− ∥qv∥

2

4
≥
√

1− �2.

�(x+s+, �) =

∥∥∥∥e− v2+e+ v+

∥∥∥∥ ≤ �2

1 +
√

1− �2
= 1−

√
1− �2.

Hence �(x+s+, �) < �2, and this proves the lemma.
Lemma 2.3 Let � = �(xs, �) and suppose that the vectors x+ and s+ are
obtained after a full Newton step, thus x+ = x + Δx and s+ = s + Δs. We
have

(x+)T s+ = �(n− ∥qv∥
2

4
)

Hence (x+)T s+ ≤ �n.
Proof: We have

1

�
x+s+ = e− q2v

4
.

Consequently

(x+)T s+ = eT (x+s+) = �(eT e− eT q2v
4

) = �(n− ∥qv∥
2

4
) = �(n− �2).

This proves the lemma.
Lemma 2.4 Let � = �(xs, �) < 1 and �+ = (1−�)�, where 0 < � < 1. Then

�(x+s+, �+) ≤ �
√
n+ �2

1− � +
√

(1− �)(1− �2)
Moreover, if � ≤ 1

2 , � = 1
2
√
n

and n ≥ 4 then we have �(x+s+, �+) ≤ 1
2 .

Proof: Using (15) and (16) we may write

�(x+s+, �+) =

∥∥∥∥e−√x+s+
�+

∥∥∥∥ =
1√

1− �

∥∥∥∥ (1− �)e− v2+√
1− �e+ v+

∥∥∥∥ ≤
≤ 1

1− � +
√

(1− �)(1− �2)

∥∥∥∥−�e+
q2v
4

∥∥∥∥ ≤ �
√
n+ �2

1− � +
√

(1− �)(1− �2)
This implies the first part of the lemma. To prove the second part observe
that for n ≥ 4 and � = 1

2
√
n

we have 1 − � ≥ 3
4 . Finally, for � ≤ 1

2 a simple

calculus yields �(x+s+, �+) ≤ 1
2 .

Lemma 2.5 Suppose that x0 = s0 = e. Then Algorithm 2.1 performs at
most ⌈

1

�
log

n

�

⌉
interior point iterations.
Proof: For the proof we refer to [17], and for the LO variant [5].
Thus, we obtain the following theorem.

A PREDICTOR-CORRECTOR ALGORITHM FOR LCCO 127

Theorem 2.6 Suppose that x0 = s0 = e. Using the default values for � and
� Algorithm 2.1 requires no more than⌈

2
√
n log

n

�

⌉
interior point iterations. The resulting vectors satisfy xT s ≤ �.

3. Predictor-corrector algorithm

The third equation in the system (8) can be written in the form:

dx + ds = 2e− 2v.

Observe that the expression on the right hand side can be viewed as a sum of
two terms. Consider the following equations.

(17) dax + das = −2v,

(18) dcx + dcs = 2e,

and conclude that the standard Newton direction has been breaking down into
two steps, the affine-scaling, or predictor one: dax and das , and the centering,
or corrector step: dcx and dcs. The equations (17) and (18) yield the following
systems:

Ādax = 0,

ĀTday + das − H̄dax = 0,

dax + das = −2v,

(19)

and

Ādcx = 0,

ĀTdcy + dcs − H̄dcx = 0,

dcx + dcs = 2e,

(20)

where Ā = 1
�Adiag(xv) and H̄ = �V S−1∇2f(x)V S−1. The systems (19) and

(20) have unique solutions. Denote by dax, das , d
c
x and dcs these solutions. We

have

(21) (dax)T das ≥ 0, (dcx)T dcs ≥ 0,

and the solution of (8) can be obtained from (19) and (20) as follows

dx = dax + dcx,

ds = das + dcs.

128 ZSOLT DARVAY

The step direction vectors in the original space are

Δax =
x

v
dax, Δas =

s

v
das , Δay = day,

Δcx =
x

v
dcx, Δcs =

s

v
dcs, Δcy = dcy.

Thus

(22) xΔas+ sΔax = �v(dax + das) = −2�v2 = −2xs,

(23) xΔcs+ sΔcx = �v(dcx + dcs) = 2�v = 2
√
xs�,

(24) ΔaxΔas = �daxd
a
s .

From (22) we obtain that (Δax,Δay,Δas) is the solution of the system:

AΔax = 0,

ATΔay + Δas−∇2f(x)Δax = 0,

sΔax+ xΔas = −2xs.

(25)

Now we are ready to describe the predictor-corrector algorithm.
Algorithm 3.1
Let 0 < � < 1 be the proximity parameter (default value � = 5

13), � > 0

the accuracy parameter, and 0 < � < 1
2 the update parameter (default � =

1
3
√
n

). Assume that for the triple (x0, y0, s0) IPC holds, and let �0 =
(x0)

T
s0

n .

Furthermore, assume that �(x0s0, �0) ≤ � .
begin

x := x0; s := s0; � := �0;
while xT s > � do begin

Compute (Δx,Δy,Δs) from (11).
x := x+ Δx;
s := s+ Δs;
Compute (Δax,Δay,Δas) using the system (25).
x := x+ �Δax;
s := s+ �Δas;
� := (1− 2�)�;

end
end.
Our first aim is to prove that this algorithm is well defined. We discuss also
the complexity of the algorithm. To achieve these goals, in the first lemma we
find lower and upper bounds for the components of the vector v.

Lemma 3.1 Let x > 0, s > 0, � > 0, v =
√

xs
� and � = �(xs, �) = ∥e− v∥.

Assume that � < 1. Then, for all i such that 1 ≤ i ≤ n, we have

1− � ≤ vi ≤ 1 + �.

A PREDICTOR-CORRECTOR ALGORITHM FOR LCCO 129

Moreover, the following inequalities hold

(26) min
(
v2
)
≥ (1− �)2, ∥v∥2 ≤ n(1 + �)2.

Proof: See [6].
The following lemma provides upper bounds for the Euclidian norm and the
infinity norm of the product of two vectors with non-negative inner product.
Lemma 3.2 (Extension of the first uv-lemma in [11]) Let � ∈ ℜn and
� ∈ ℜn are two vectors such that �T � ≥ 0. Then we have

∥��∥∞ ≤
1

4
∥� + �∥2, ∥��∥ ≤

√
2

4
∥� + �∥2.

Proof:
We have ∥� + �∥2 = ∥� − �∥2 + 4�T �, resulting ∥� + �∥ ≥ ∥� − �∥.

Furthermore

(27) �� =
1

4
(� + �)2 − 1

4
(� − �)2.

Thus

−1

4
(� − �)2 ≤ �� ≤ 1

4
(� + �)2,

and

−1

4
∥� + �∥2e ≤ −1

4
∥� − �∥2e ≤ �� ≤ 1

4
∥� + �∥2e.

This proves the first inequality. To prove the second one, observe that from
(27) and ∥��∥2 = eT (��)2 we obtain:

∥��∥2 =
1

16
eT
(
(� + �)2 − (� − �)2

)2 ≤ 1

16
eT
(
(� + �)4 + (� − �)4

)
.

Moreover, for each � ∈ ℜn the eT �4 ≤ ∥�∥4 inequality holds, therefore

∥��∥2 ≤ 1

16
∥� + �∥4 +

1

16
∥� − �∥4,

and using again the relation ∥� − �∥ ≤ ∥� + �∥ we get the second inequality.
This proves the lemma.
We introduce the followig notations. Let

(28) �(�) =
(

1 +
√

2
)
�2 − 2

(√
2− 1

)
� +
√

2,

(29) K(�, �, n) = (1− �)2 − �2n

1− 2�
(1 + �)2 ,

and

(30) Φ(�, �, n) =
�(�)−

√
2K(�, �, n)

1 +
√
K(�, �, n)

.

130 ZSOLT DARVAY

Consider the following function

(31) !(t) = 1−
√

1− t2,
defined for every 0 ≤ t < 1. For fixed � introduce the function

(32) Ψ� (�) =
1

(1 + �)2

(
�2 − 2� +

√
2� − �2

2

)
.

We give a sufficient condition for yielding strictly feasible vectors after an
affine-scaling step.
Lemma 3.3 Let x > 0, s > 0, � > 0 in such a way, that � = �(xs, �) < 1.
Furthermore, let 0 < � < 1

2 . Denote x+ = x + �Δax and s+ = s + �Δas.
Then

x+ > 0 and s+ > 0,

if the inequality K(�, �, n) > 0 holds.
Proof: Let us introduce the notations

x+(�) = x+ ��Δax and s+(�) = s+ ��Δas

for each real number 0 ≤ � ≤ 1. We have the following equality:

x+(�)s+(�) = xs+ ��(xΔas+ sΔax) + �2�2ΔaxΔas.

Using the relations (22) and (24) we get:

(33) x+(�)s+(�) = (1− 2��)xs+ ��2�2daxd
a
s

thus we obtain

(34)
x+(�)s+(�)

(1− 2��)�
= v2 +

�2�2

(1− 2��)
daxd

a
s .

Therefore

min

(
x+(�)s+(�)

(1− 2��)�

)
≥ min

(
v2
)
− �2�2

1− 2��
∥daxdas∥∞ .

Moreover, for each fixed 0 < � < 1
2 , the function #(�) = �2�2

1−2�� defined for

0 ≤ � ≤ 1 is strictly increasing, thus

(35) min

(
x+(�)s+(�)

(1− 2��)�

)
≥ min

(
v2
)
− �2

1− 2�
∥daxdas∥∞ .

From Lemma 3.2, using the equality (17) and Lemma 3.1 we obtain

(36) ∥daxdas∥∞ ≤
1

4
∥dax + das∥

2 = ∥v∥2 ≤ n(1 + �)2.

Now, using the relation (35) and Lemma 3.1 again, we get

(37) min

(
x+(�)s+(�)

(1− 2��)�

)
≥ K(�, �, n)

A PREDICTOR-CORRECTOR ALGORITHM FOR LCCO 131

But K(�, �, n) > 0, and we deduce that for each 0 ≤ � ≤ 1 the inequality
x+(�)s+(�) > 0 holds. Therefore the x+(�) and s+(�) functions are not
changing sign on the [0, 1] interval. We know that x+(0) = x > 0, and
s+(0) = s > 0, thus we conclude that x+(1) = x+ > 0, and s+(1) = s+ > 0.
This proves the lemma.
In the next lemma we investigate the modification of the proximity measure
after an affine-scaling step, and the update of the parameter �.
Lemma 3.4 Let x > 0, s > 0, � > 0 such that � = �(xs, �) < 1. Moreover,
let 0 < � < 1

2 and assume that K(�, �, n) > 0. Assume that we obtain the
vectors x+ and s+ from an affine-scaling step, thus x+ = x + �Δax and
s+ = s + �Δas. Denote �+ = (1 − 2�)� and �+ = �(x+s+, �+). Then the
inequality

(38) �+ ≤ Φ(�, �, n)

holds.
Proof: From Lemma 3.3 we deduce that the affine-scaling step is strictly
feasible. Denote

v+ =

√
x+s+

�+
.

By substituting � = 1 in the relations (34) and (37) we get

(39)
(
v+
)2

= v2 +
�2

1− 2�
daxd

a
s ,

(40) min
(
v+
)
≥
√
K(�, �, n).

Moreover

�+ =
∥∥e− v+∥∥ =

∥∥∥∥∥e− (v+)
2

e+ v+

∥∥∥∥∥ ,
so the following inequality holds

(41) �+ ≤

∥∥e− v2∥∥+
∥∥∥v2 − (v+)

2
∥∥∥

1 + min (v+)
.

Using Lemma 3.2, the equality (17) and Lemma 3.1 we obtain

(42) ∥daxdas∥ ≤
√

2

4
∥dax + das∥

2 =
√

2∥v∥2 ≤
√

2n(1 + �)2.

Now, from (39) we get

(43)
∥∥∥v2 − (v+)2∥∥∥ ≤ �2

1− 2�

√
2n(1 + �)2.

132 ZSOLT DARVAY

Observe that
∥∥e− v2∥∥ ≤ �+ ∥v(e− v)∥, and Lemma 3.1 yields ∥v∥∞ ≤ 1 +�,

therefore

(44)
∥∥e− v2∥∥ ≤ � + ∥v∥∞ ∥e− v∥ ≤ �

2 + 2�.

Finally, using the relations (40), (41), (43) and (44) we deduce

(45) �+ ≤
�2 + 2� + �2

1−2�
√

2n(1 + �)2

1 +
√
K(�, �, n)

and this results in (38). Thus, the lemma is proved.
The next lemma is devoted to the proximity measure of the vectors obtained
by a full Newton step. We use also the results of Lemma 2.2.
Lemma 3.5 Let x > 0, s > 0, � > 0, and 0 < � < 1 in such a way that
� = �(xs, �) ≤ � . Suppose that the vectors x+ and s+ are produced by a full
Newton process, thus x+ = x+ Δx and s+ = s+ Δs. Then

(46) �(x+s+, �) ≤ !(�).

Moreover, if � ≤ 3
4 , then �(x+s+, �) < 6− 4

√
2 and �(x+s+, �) < �√

2
.

Proof: From Lemma 2.2 we obtain

�(x+s+, �) ≤ !(�).

Furthermore, the function !(t) is increasing for 0 ≤ t < 1, so the inequality
(46) holds. If we assume � ≤ 3

4 , then a simple calculus yields

�(x+s+, �) ≤ !(�) ≤ !
(

3

4

)
= 1−

√
7

4
< 6− 4

√
2.

For the last relation it is sufficient to prove that the inequality !(�) < �√
2

holds. We have � ≤ 3
4 < 2

√
2

3 , thus 3�2 < 2
√

2� , therefore
(√

2� − 1
)2

=

2�2 − 2
√

2� + 1 < 1− �2. We obtain

�

1 +
√

1− �2
<

1√
2
,

and from this inequality we get !(�) < �√
2
. This proves the lemma.

In the following lemma we provide a sufficient condition, which guarantees
that after an affine-scaling step the proximity measure will not exceed the
proximity parameter.
Lemma 3.6 Let � be fixed such that 0 < � ≤ 3

4 and let � > 0. Assume
now that x > 0 and s > 0 are the vectors generated by the full Newton step of
Algorithm 3.1. Let x+ and s+ be the vectors obtained after the affine-scaling
step, thus x+ = x + �Δax and s+ = s + �Δas. Denote �+ = (1 − 2�)�

A PREDICTOR-CORRECTOR ALGORITHM FOR LCCO 133

and �+ = �(x+s+, �+). Finally, assume that the update parameter satisfies
the 0 < � < 1

2 condition. Then the inequality

(47) �+ ≤ �
holds if

(48)
�2n

1− 2�
≤ Ψ� (�),

Moreover, Ψ� (�) > 0 and for each fixed � the function Ψ� is decreasing on the
closed interval [0, !(�)].
Proof: Let us introduce the notation

(49) � (�) = �2 − 2� +
√

2� − �2

2
.

Thus

Ψ� (�) =
 � (�)

(1 + �)2
.

Observe that for 0 < � ≤ 3
4 we have 1− �√

2
≥ 1− 3

√
2

8 > 0. Therefore

(50) � (�) = (1− �)2 −
(

1− �√
2

)2

< (1− �)2

Suppose that the inequality (48) holds. Then, from (50) results K(�, �, n) > 0,
and we obtain that Lemma 3.4 can be applied. Because x > 0 and s > 0 are
the vectors generated by a full Newton step of Algorithm 3.1, we deduce that
there exists the vectors x̃ > 0 and s̃ > 0 in such a way that, from these vectors
we obtain x and s by a full Newton step. Moreover, �(x̃s̃, �) ≤ � , and applying
Lemma 3.5 for the vectors x̃ and s̃ we get the following inequalities

(51) � <
�√
2
,

(52) � < 6− 4
√

2.

Lemma 3.4 implies that the inequality �+ ≤ � holds if Φ(�, �, n) ≤ � . This
can be written in the following form

√
2K(�, �, n) + �

√
K(�, �, n) + � − �(�) ≥ 0.

Denote � =
√
K(�, �, n) and %(t) =

√
2t2 + �t + � − �(�). Then (47) holds

if %(�) ≥ 0. The next issue is to determine lower and upper bounds of �(�)
and using these results to study the sign of the function %. From (52) we get
0 ≤ � < 6− 4

√
2, therefore(

1 +
√

2
)
�2 ≤ 2

(√
2− 1

)
�,

134 ZSOLT DARVAY

thus �(�) ≤
√

2. Moreover, we have

�(�) =
(

1 +
√

2
)(

� −
(

3− 2
√

2
))2

+ 7− 4
√

2 ≥ 7− 4
√

2,

resulting in

(53) 7− 4
√

2 ≤ �(�) ≤
√

2.

Let

(54) Δ�,� = �2 − 4
√

2 � + 4
√

2 �(�).

The roots of the %(t) = 0 equation are

t1 =
−� −

√
Δ�,�

2
√

2
, t2 =

−� +
√

Δ�,�

2
√

2
.

Since 0 < � ≤ 3
4 , from (53) we get � < �(�) thus

Δ�,� > �2 > 0.

We obtain the inequalities t1 < 0 and t2 > 0, and this means that if � ≥ t2,
then %(�) ≥ 0 holds, and (47) is satisfied. Using (53) from (54) we get√

Δ�,� ≤
√
�2 − 4

√
2 � + 8 =

√(
2
√

2− �
)2

= 2
√

2− �,

therefore

t2 ≤
2
√

2− 2�

2
√

2
= 1− �√

2
.

We deduce that the inequality (47) holds if � ≥ 1− �√
2
, and this can be written

in the form

K(�, �, n) ≥
(

1− �√
2

)2

.

Using (29) the inequality (48) follows. This proves the first assertion of the
lemma. Now, from Lemma 3.5 the inequality � ≤ !(�) holds, therefore we are
going to study the functions � and Ψ� on the [0, !(�)] interval. Observe,
that from (50) we have

 � (�) =

(
�√
2
− �

)(
2− �√

2
− �

)
.

Since

2− �√
2
− � > 2

(
1− �√

2

)
> 0

we obtain the inequality � (�) > 0, which results in Ψ� (�) > 0. Taking the
derivative of the function � we get

(�)′ (�) = 2� − 2 < 0.

A PREDICTOR-CORRECTOR ALGORITHM FOR LCCO 135

Thus, the function � is positive and is decreasing on the interval [0, !(�)].
The same is true for the function 1

(1+�)2
and this implies the last result of the

lemma.
In Lemma 3.7 we investigate how will be modified the duality gap after an
affine-scaling step.
Lemma 3.7 Let x > 0, s > 0 and � > 0 such that � = �(xs, �) < 1
and 0 < � < 1

2 . Assume that x+ and s+ are the vectors obtained after the
affine-scaling step of Algorithm 3.1. Then the following inequality holds(

x+
)T
s+ ≤ (1− 2� + 2�2)xT s ≤ (1− �)xT s.

Proof: Substitute � = 1 in the relation (33). Thus(
x+
)T
s+ = eT

(
x+s+

)
= (1− 2�)eT (xs) + ��2eT (daxd

a
s) .

Since (17) we have

daxd
a
s = 2v2 − (dax)2 + (das)

2

2
and this leads to

eT (daxd
a
s) = 2eT

xs

�
− ∥d

a
x∥2 + ∥das∥2

2
≤ 2

�
xT s.

We obtain ��2eT (daxd
a
s) ≤ 2�2xT s and this implies the first inequality of the

lemma. Now observe that for 0 < � < 1
2 the inequality

1− 2� + 2�2 ≤ 1− �

holds, thus we get the second inequality. This proves the lemma.
Lemma 3.8 is devoted to finding an upper bound for the duality gap after

a whole iteration (full Newton step followed by an affine-scaling step).
Lemma 3.8 Let x > 0, s > 0 and � > 0 such that � = �(xs, �) < 1 and
0 < � < 1

2 . Assume that the vectors x+ and s+ are obtained after an iteration
of Algorithm 3.1. Moreover, let �+ = (1− 2�)�. Then the relation(

x+
)T
s+ ≤ (1− �)n� < n�+

1− 2�

is satisfied.
Proof: Let x̄ and s̄ be the vectors obtained by a full Newton step. Using
Lemma 2.3 we get x̄T s̄ ≤ n�. Furthermore, from Lemma 3.7 and 1 − � < 1
we obtain (

x+
)T
s+ = (1− �)x̄T s̄ ≤ (1− �)n� < n�+

1− 2�
.

136 ZSOLT DARVAY

This completes the proof.
In the following lemma we analyse the question of the bound on the number
of iterations performed by the algorithm. We assume that we would like to
approximate the optimal solution with a given precision.
Lemma 3.9 Let xk and sk be the vectors generated by Algorithm 3.1 after k
iterations, where k > 1. Then for each k satisfying the condition

k ≥ 1 +

⌈
1

2�
log

(x0)T s0

�

⌉
the inequality (xk)T sk < � holds.
Proof: Let �k be the value of � after k iterations. From Lemma 3.8 results

(xk)T sk <
n�k

1− 2�
= (1− 2�)k−1n�0 = (1− 2�)k−1(x0)T s0.

Thus the inequality (xk)T sk < � holds if

(1− 2�)k−1(x0)T s0 ≤ �.
Taking logarithms we obtain

(k − 1) log(1− 2�) + log((x0)T s0) ≤ log �

and using the relation − log(1 − 2�) ≥ 2� we conclude that this inequality is
satisfied if

2�(k − 1) ≥ log((x0)T s0)− log � = log
(x0)T s0

�
.

This implies the lemma.
In the following theorem we give a sufficient condition, which guarantees that
the algorithm will be well defined. Furthermore, we provide an upper bound
for the number of iterations.

Theorem 3.10 Let 0 < � ≤ 3
4 and 0 < � < 1

2 . If

(55)
�2n

1− 2�
≤ Ψ� (!(�)),

then Algorithm 3.1 is well defined and performs at most

(56) 1 +

⌈
1

2�
log

(x0)T s0

�

⌉
iterations. The generated vectors satisfy the xT s < � inequality.

Proof: As in the proof of Lemma 3.6 let x̃ and s̃ be the vectors at the begining
of a new iterate. Furthermore, let x and s be the vectors after the full Newton
step. Finaly, denote by x+ and s+ the vectors obtained by the affine-scaling
step. We have to prove that the interior point condition holds every time a

A PREDICTOR-CORRECTOR ALGORITHM FOR LCCO 137

new iterate begins and the proximity measure is not greater than � . This
assertion will be true if we have the following one. Suppose that x̃ > 0, s̃ > 0
and �(x̃s̃, �) ≤ � then we have to prove that x+ > 0 and s+ > 0 and for the
proximity measure we have the inequality �(x+s+, �+) ≤ � , where �+ denotes
the value of the parameter � at the end of the iteration.

From Lemma 2.1 results x > 0 and s > 0. Using these relations, from
Lemma 3.3 we obtain that the inequalities x+ > 0 and s+ > 0 are satisfied if
K(�, �, n) > 0. Moreover, using Lemma 3.6 the inequality �(x+s+, �+) ≤ �
holds if we have the relation (48) and from (50) we deduce that in this case
the inequality K(�, �, n) > 0 is also satisfied.

This means that it is sufficient to prove that the inequality (48) holds.
From Lemma 3.5 we deduce

� = �(xs, �) ≤ !(�).

Since the function Ψ� is decreasing, we conclude that the inequality (48) is
satisfied if the relation (55) holds. Lemma 3.9 implies the upper bound for
the number of iterations. This completes the proof.

In the next theorem we prove that Algorithm 3.1 is well defined for the default
values. From the upper bound on the number of iterations we conclude that
this predictor-corrector type algorithm finds an �-solution in polynomial time.

Theorem 3.11 Let � = 5
13 and � = 1

3
√
n

, where n ≥ 2. Then Algorithm 3.1

is well defined and requires no more than⌈
3
√
n log

(x0)T s0

�

⌉
iterations. For the vectors obtained we have the xT s ≤ � inequality.

4. Conclusion

We have introduced a new predictor-corrector algorithm for solving LCCO
problems. The method of finding a new search direction is based on an equiva-
lent algebraic transformation of the centering equation from the system, which
defines the central path. Polynomial complexity is proved, and the best known
iteration bound for small-update methods is obtained.

References

[1] M. Achache. A weighted-path-following method for the linear complementarity problem.
Studia Universitatis Babeş-Bolyai, Series Informatica, 49(1):61–73, 2004.

[2] M. Achache. A new primal-dual path-following method for convex quadratic program-
ming. Computational & Applied Mathematics, 25(1):97–110, 2006.

138 ZSOLT DARVAY

[3] Zs. Darvay. A new algorithm for solving self-dual linear optimization problems. Studia
Universitatis Babeş-Bolyai, Series Informatica, 47(1):15–26, 2002.

[4] Zs. Darvay. A weighted-path-following method for linear optimization. Studia Univer-
sitatis Babeş-Bolyai, Series Informatica, 47(2):3–12, 2002.

[5] Zs. Darvay. New interior point algorithms in linear programming. Advanced Modeling
and Optimization, 5(1):51–92, 2003.

[6] Zs. Darvay. A new predictor-corrector algorithm for linear programming. Alkalmazott
matematikai lapok, 22:135–161, 2005. (In hungarian).

[7] N.K. Karmarkar. A new polynomial-time algorithm for linear programming. Combina-
torica, 4:373–395, 1984.

[8] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM
Journal on Optimization, 2(4):575–601, 1992.

[9] S. Pan, X. Li, and S. He. An infeasible primal-dual interior-point algorithm for lin-
ear programs based on logarithmic equivalent transformation. Journal of Mathematical
Analysis and Applications, 314(2):644–660, 2006.

[10] J. Peng, C. Roos, and T. Terlaky. Self-Regular Functions: a New Paradigm for Primal-
Dual Interior-Point Methods. Princeton University Press, 2002.

[11] C. Roos, T. Terlaky, and J.-Ph. Vial. Theory and Algorithms for Linear Optimization.
An Interior Approach. John Wiley & Sons, Chichester, UK, 1997.

[12] L. Tuncel and M.J. Todd. On the interplay among entropy, variable metrics and po-
tential functions in interior-point algorithms. Computational Optimization and Appli-
cations, 8:5–19, 1997.

[13] G.Q. Wang and Y.Q. Bai. A new primal-dual path-following interior-point algorithm for
semidefinite programming. Journal of Mathematical Analysis and Applications, 353:339–
349, 2009.

[14] G.Q. Wang and Y.Q. Bai. A primal-dual interior-point algorithm for second-order cone
optimization with full Nesterov-Todd step. Applied Mathematics and Computation,
215:1047–1061, 2009.

[15] G.Q. Wang, X.Z. Cai, and Y.J. Yue. A new polynomial interior-point algorithm for
monotone mixed linear complementarity problem. In ICNC ’08: Proceedings of the 2008
Fourth International Conference on Natural Computation, pages 450–454, Washington,
DC, USA, 2008. IEEE Computer Society.

[16] G.Q. Wang, Y.J. Yue, and X.Z. Cai. A weighted-path-following method for monotone
horizontal linear complementarity problem. In B.-y. Cao, C.-y. Zhang, and T.-f. Li,
editors, Fuzzy Information and Engineering, volume 54 of Advances in Soft Computing,
pages 479–487. Springer-Verlag, Berlin, Heidelberg, 2009.

[17] M. Zhang, Y.Q. Bai, and G.Q. Wang. A new primal-dual path-following interior-point
algorithm for linearly constrained convex optimization. Journal of Shanghai University,
12(6):475–480, 2008.

Department of Computer Science, Babeş-Bolyai University, 1 M. Kogălni-
ceanu St., 400084 Cluj-Napoca, Romania

E-mail address: darvay@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIV, Number 2, 2009

A NOTE ON A PROBLEM OF ŢÂMBULEA

ZOLTÁN KÁSA

Abstract. In [6] and [7] L. Ţâmbulea studied the number of positive
integers sequences (s1, s2, . . . , s2n+1) with the properties: s1 = s2n+1 = 1
and ∣si − si+1∣ = 1 for each i between 1 and 2n. In this note we discuss
the algorithm to code this sequences by Dyck words and several related
problems.

In [6] Ţâmbulea studied the problem of the number of elements in the set

Sn =
{

(s1, s2, . . . , s2n+1) ∣ s1 = s2n+1 = 1, ∣si − si+1∣ = 1 for i = 1, . . . , 2n,

and sj ∈ N∗ for j = 2, 3, . . . , 2n
}

and proved that this is equal to the Catalan number Cn = 1
n+1

(
2n
n

)
. In [7]

was proved that this number is equal to the number of possibilities to divide a
convex (n+2)-gon into triangles using noncrossing diagonals. The equivalence
with the problem of the number of binary trees with n nodes was proved too.

Stanley collected in [4, 5] more than a hundred problems related to Catalan
numbers. This problem is not listed in [4] nor in [5]. In [5] there is a similar
problem:

(p5) Sequences a1, . . . , a2n of nonnegative integers with a1 = 1, a2n = 0
and ai − ai−1 = ±1.

Using the idea of coding elements of sets whose cardinality is a Catalan
number, described in [1, 2], each sequence from Sn can be coded as follows. If
si − si+1 = 1 let us put a 0, and if si − si+1 = −1 let us put a 1 in the code.
E. g. the sequence 1,2,3,2,1 can be coded as 0011, and the sequence 1,2,1,2,1
as 0101. It is easy to see that such a code is a Dyck word, which is a binary
word with equal number of 0s and 1s, the number of 1s never exceeding the
number of 0s in each position from left to right. It is well-known that the
number of 2n-length Dyck words is the Catalan number Cn (see e.g. [8]). In
the following algorithm description we consider correct inputs only.

Received by the editors: December, 2009.
2010 Mathematics Subject Classification. 05A99, 68R05, 68P30.
1998 CR Categories and Descriptors. G.2.1 [Combinatorics]: Subtopic – Combinatorial

algorithms.
Key words and phrases. sequences of integers, Catalan numbers, Dyck words.

139

140 ZOLTÁN KÁSA

Encoding1(s1, s2, . . . , s2n+1)
j ← 0
for i← 1 to 2n

do j ← j + 1
if si+1 − si = 1

then dj ← 0
else dj ← 1

return d1, d2, . . . , d2n

Decoding1(d1, d2, . . . , d2n)
s1 ← 1; j ← 1
for i← 1 to 2n

do j ← j + 1
if di = 0

then sj ← sj−1 + 1
else sj ← sj−1 − 1

return s1, s2, . . . , s2n+1

These two algorithms prove that between the set Sn and the set of 2n-
length Dyck words there is a bijection.

For the similar problem the codification can be made as follows. Consider
the elements of sequence backwards. If ai−1−ai = 1 let us put a 0, else an 1 in
the output word. At the end let us add a 1. For example, in the case of n = 2,
we have two such sequences 1,2,1,0 and 1,0,1,0, the corresponding codes are:
0011 and 0101. Each code is a Dyck word. In the following algorithms we
omitted the input verification.

Encoding2(a1, a2, . . . , a2n)
j ← 0
for i← 2n downto 2

do j ← j + 1
if ai−1 − ai = 1

then dj ← 0
else dj ← 1

d2n ← 1
return d1, d2, . . . , d2n

Decoding2(d1, d2, . . . , d2n)
a2n ← 0;
j ← 2n
for i← 1 to 2n

do j ← j − 1
if di = 0

then aj ← aj+1 + 1
else aj ← aj+1 − 1

return a1, a2, . . . , a2n

For a list of codifications of elements related to Catalan numbers see [3].
Another problem given in [7], which can be included in the set of problems

being an interpretation of Catalan numbers, but not listed in [4, 5] is the
following. A labelled binary tree is contructed by the rules:
∙ the root (which has the level 1) is labelled with 1,
∙ a node with the label i has a left subtree with the root labelled with i−1

and a right subtree with the root labelled with i + 1,
∙ any subtree having the root labelled with 0 is omitted from tree.
The number of nodes labelled with 1 at level 2n+1 is the Catalan number

Cn. This can be proved easily by coding the paths between the root and nodes
with label 1 at the level 2n + 1. Going from root on these paths, let us put 0
in code for a right edge and 1 for a left edge. In the Figure 1 for n = 2, we
have two such paths with the codes: 0101 and 0011.

The labels of the nodes of such paths from root to the leaf correspond to the
elements of sequence Sn, while the edges in the same order represent the bits of

A NOTE ON A PROBLEM OF ŢÂMBULEA 141

1

2

1 3

2 2 4

1 3 1 3 3 5

0

1 0

0 1 0

1 0 1 0 1 0

Figure 1. The tree corresponding to the set S2. The two
paths from the root to the nodes labelled with 1 at the level 5
are: 1,2,1,2,1 coded as 0101 and 1,2,3,2,1 coded as 0011.

the corresponding code. Such trees can be easily generated, so the generation
of elements of Sn and the corresponding Dyck words is a straightforward task.

In future these two problems maybe will get into the list [5] of problems
being an interpretation of Catalan numbers.

References

[1] Bege, A., Kása, Z., Coding object related to Catalan numbers, Studia Univ. Babes-
Bolyai, Informatica, 46, 1 (2001) 31-40.

[2] Kása, Z., Generating and ranking of Dyck words, Acta Univ. Sapientiae, Informatica, 1,
1 (2009) 109-118.

[3] Kása, Z., Coding elements related to Catalan numbers by Dyck words, version January
19, 2009. http://www.ms.sapientia.ro/∼kasa/CodingDyck.pdf

[4] Stanley, R. P., Enumerative combinatorics, Vol. 2, Cambridge University Press, 1999.
[5] Stanley, R. P., Catalan addendum, version August 11, 2009.

http://www-math.mit.edu/∼rstan/ec/catadd.pdf
[6] Ţâmbulea, L., Data organization according to the property of consecutive retrieval, Math-

ematica, Revue d’analyse numérique et de theorie de l’approximation, 9, 2 (1980) 269–
281.

[7] Ţâmbulea, L., Binary trees, an Euler’s problem and finite sequences of numbers, Studia
Univ. Babeş-Bolyai, Mathematica, 35, 3 (1990) 84–94.

[8] Vilenkin, N, Ia., Combinatorial mathematics for recreation, 1972 (translated from Rus-
sian).

Sapientia Hungarian University of Transylvania, RO 400112 Cluj-Napoca,
Str. Matei Corvin 4, Department of Mathematics and Informatics, Târgu Mureş

E-mail address: kasa@ms.sapientia.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIV, Number 2, 2009

IN MEMORIAM: PROFESSOR EMIL MUNTEANU

Professor Emil Muntean, age 76, one of the founders of the computer
science school in Cluj-Napoca, died Thursday, November 29, 2009, in Cluj-
Napoca following a courageous battle with illness.

He was born on July 31, 1933, in Magura, Hunedoara County. After fin-
ishing secondary school in 1952, he studied at the University of Cluj-Napoca.
He graduated in Mathematics from Cluj University in 1957. Still being in the
fifth year, he was named at the Computing Institut of Academy. Since then,
the entire activity of Professor Munteanu is connected with computers. He
worked to the construction of MARICA (1959), a Romanian computer built
from relays, and to the construction (in 1961) of DACICC-1, the first Roma-
nian transistor-based computer.Then (1967-1969) he worked to the complex
project of building DACICC-200. Also, he had contributed to the realisation
of some programs.

He obtained his Ph.D. from the Saint Petersburg University, U.S.S.R.,
in 1964. In 1968 he became the Head of the newly Institut of Computer
Technology (ITC). As the Head of the ITC in a pioniering period, he has
directed with much competence and inspiration the research activity, to design
and to implement high-level software products. He was really a very good
organizer.

In 1990 he became full professor at our Faculty, Department of Computer
Science, but his teaching activity started long time ago. He used to teach the
students of Mathematics various computers related subjects. In the last four
years he taught courses in Expert Systems, and Computers Networks. His
courses were held at a high scientific and pedagogical level.

From 2000, he became full professor at the “Dimitrie Cantemir” University,
Faculty of Economical Science, the Cluj branch. In the same time, professor
Muntean had classes of History of Computer Science at our faculty.

There are eight computer scientists who owe their Ph. Degrees to their
supervisor, professor Emil Munteanu. In the last years he became interested
in spreading computer science knowledge, i.e. he is today a known editor of
books in this area. He was the father of Microinformatica Publishers, and in
the last years he created Promedia Publishers.

Professor Emil Muntean was a distingushed pedagogue, very appreciated
by his students. It was, as well, a pleasure for all of us to have such a generous
colleague.

142

