
INFORMATICA
2/2008

Anul LIII 2008

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

2

 RedacŃia: 400084 Cluj-Napoca, Str. M. Kogălniceanu nr. 1 Tel: 405300

SUMAR – CONTENTS – SOMMAIRE

A. Vescan, H.F. Pop, Constraint Optimization-based Component Selection
Problem... 3

S. Motogna, B. Pârv, I. Lazăr, I. Czibula, L. Lazăr, Extension of an OCL-based
Executable UML Components Action Language .. 15

C. Şerban, H.F. Pop, Software Quality Assessment Using a Fuzzy Clustering
Approach ... 27

K. Pócza, M. Biczó, Z. Porkoláb, Securing Distributed .NET Applications
Using Advanced Runtime Access Control ... 39

A. Sipos, Z. Porkoláb, V. Szok, Meta<Fun> - Towards a Functional-Style
Interface for C++ Template Metaprograms.. 55

K. T. Janosi Rancz, V. Varga, J. Puskas, A Software Tool for Data Analysis Based
on Formal Concept Analysis... 67

Z. Bodo, Z. Minier, On Supervised and Semi-supervised k-Nearest Neighbor
Algorithms .. 79

A. Sinkovits, Z. Porkoláb, Recursive and Dynamic Structures in Generic
Programming .. 93

R. Kitlei, The Reconstruction of a Contracted Abstract Syntax Tree 105

A. Verbová, R. Huzvár, Advantages and Disadvantages of the Methods of
Describing Concurrent Systems .. 117

I. G. Czibula, G. Czibula, A Partitional Clustering Algorithm for Improving
the Structure of Object-Oriented Software Systems ... 127

D. Rădoiu, Virtual Organizations in Emerging Virtual 3D Worlds 137

C. L. Lazăr, I. Lazăr, On Simplifying the Construction of Executable UML
Structured Activities.. 147

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LII, Number 2, 2008

CONSTRAINT OPTIMIZATION-BASED
COMPONENT SELECTION PROBLEM

ANDREEA VESCAN AND HORIA F. POP

Abstract. Component-Based Software Engineering (CBSE) is concerned
with the assembly of pre-existing software components that leads to a soft-
ware system that responds to client-specific requirements. Component se-
lection and component assembly have become two of the key issues involved
in this process.

We aim at a selection approach that guarantees the optimality of the
generated component-based systems, an approach that considers at each
step the cost of the selected component and the set of requirements remain-
ing to be satisfied. The dependencies between requirements are also consid-
ered. We have modeled the Component Selection Problem as a Constraint
Satisfaction Optimization Problem and applied the Branch and Bound al-
gorithm. The experiments and comparisons with the Greedy algorithm
show the effectiveness of the proposed approach.

1. Introduction

Since the late 90’s Component Based Development (CBD) is a very active
area of research and development. CBSE [5] covers both component develop-
ment and system development with components. There is a slight difference in
the requirements and business ideas in the two cases and different approaches
are necessary. Of course, when developing components, other components may
be (and often must be) incorporated and the main emphasis is on reusabil-
ity. Components-based software development is focused on the identification
of reusable entities and relations between them, starting from the system re-
quirements.

Building software applications using components significantly reduces de-
velopment and maintenance costs. Because existing components can often be

Received by the editors: October 5, 2008.
2000 Mathematics Subject Classification. 68W01, 68N01.
1998 CR Categories and Descriptors. D.2 [Software Engineering]: Subtopic –

Reusable Software; D. 1 [Programming Techniques]: Subtopic – Object-oriented Pro-
gramming .

Key words and phrases. Component selection problem, Constraint Satisfaction Optimiza-
tion Problem, Automatic assembly.

3

4 ANDREEA VESCAN AND HORIA F. POP

reused to build new applications, it is less expensive to finance their develop-
ment.

In this paper we address the problem of automatic component selection.
Generally, different alternative components may be selected, each coming with
their own set of offered functionalities (in terms of system requirements). We
aim at a selection approach that guarantees the optimality of the generated
component-based system, an approach that considers at each step the com-
ponent with the maximum set of offered functionalities needed by the final
system. In our previous research, disseminated in [14], the dependencies be-
tween requirements were not taken into account. The current paper considers
also the requirements dependencies during the selection process. The compat-
ibility of components is not discussed here, as it will be dealt with in a future
development.

We discuss the proposed approach as follows. Related work on Compo-
nent Selection Problem is discussed in Section 6. Section 2 introduces our
approach for Component Selection Problem: Subsection 2.1 presents a for-
mal statement of the Component Selection Problem (CSP), the necessity of
normalization in Subsection 2.3 and the modeling of the CSP as Constraint
Optimization Problems (COP) in Subsection 2.4. A Greedy and a Branch
and Bound approaches are considered. Section 3 presents the elements of the
Greedy algorithm and the chosen selection function. The Branch and Bound
algorithm is presented in Section 4. Using the example in Section 5 we discuss
the two proposed approaches: Greedy and Branch and Bound. We conclude
our paper and discuss future work in Section 7.

2. Constructing component-based systems by automatic
component selection

In Component-Based Software Engineering, the construction of cost-optimal
component systems is a nontrivial task. It requires not only to optimally select
the components but also to take their interplay into account.

We assume the following situation: Given a repository of components and
a specification of the component-based system that we want to construct (set
of final requirements), we need to choose components and to connect them such
that the target component-based system fulfills the specification. Informally,
our problem is to select a set of components from an available set which may
satisfy a given set of requirements while minimizing the number of selected
components and minimizing the sum of the costs of the selected components.
To achieve this goal, we should assign to each component a set of requirements
it satisfies.

2.1. Formal Statement of the Component Selection Problem. Com-
ponent Selection Problem (CSP) is the problem of choosing the minimum

CONSTRAINT OPTIMIZATION-BASED COMPONENT SELECTION PROBLEM 5

number of components from an available set such that their composition sat-
isfies a set of objectives (variation of CSP, the cost of each component is not
considered). The notation used for formally defining CSP (as laid out in [6]
with a few minor changes to improve appearance) is described in what follows.

Problem statement. Denote by SR the set of final system requirements
(target requirements) SR = {r1, r2, ..., rn}, and by SC the set of components
available for selection SC = {c1, c2, ..., cm}. Each component ci may satisfy
a subset of the requirements from SR, SRci = {ri1 , ri2 , ..., rik}. In addition
cost(ci) is the cost of component ci. The goal is to find a set of components
Sol in such a way that every requirement rj (j = 1, n) from the set SR may
have assigned a component ci from Sol where rj is in SRci, while minimizing∑

ci∈SSol cost(ci) and having a minimum number of used components.

2.2. Requirement dependencies. In [13] we have introduced the matrix
for the requirements dependencies.

In Table 1 the dependencies between the requirements r1, r2, r3 are spec-
ified: the second requirement depends on the third requirement, the third
requirement depends on the first and the second requirement.

Dependencies r1 r2 r3

r1
√ √

r2
√

r3
√ √

Table 1. Dependencies specification table

Some particular cases are required to be checked: no self dependency (the
first requirement depends on itself), no reciprocal dependency (the second
requirement depends on the third and the third depends on the second re-
quirements) and no circular dependencies (the second requirement depends
on the third, the first depends on the second and the third depends on the
first). All the above situations are presented in Table 1.

2.3. Data normalization. Normalization is an essential procedure in the
analysis to compare data having different domain values. It is necessary to
make sure that the data being compared is actually comparable. Normaliza-
tion will always make data look increasingly similar. An attribute is normal-
ized by scaling its values so that they fall within a small-specified range, such
as 0.0 to 1.0.

As we have stated above we would like to obtain a system by compos-
ing components, a system that will have a minimum final cost and all the
requirements are satisfied. The cost of each available component is between
0 and 100. At each step of the construction the number of requirements not

6 ANDREEA VESCAN AND HORIA F. POP

yet satisfied is considered as a criterion to proceed with the search. We must
normalize the cost of the components and also the number of requirements yet
to be satisfied.

We have used two methods to normalize the data: decimal scaling for the
cost of the components and min-max normalization for the requirements not
yet satisfied.

Decimal scaling. The decimal scaling normalizes by moving the decimal
point of values of feature X. The number of decimal points moved depends
on the maximum absolute value of X. A modified value new v corresponding
to v is obtained using:

new v =
v

10n
,

where n is the smallest integer such that max(|new v|) < 1.
Min-max normalization. The min-max normalization performs a lin-

ear transformation on the original data values. Suppose that minX and maxX
are the minimum and maximum of feature X. We would like to map interval
[minX,maxX] into a new interval [new minX, new maxX]. Consequently,
every value v from the original interval will be mapped into value new v using
the following formula:

new v =
v −minX

maxX −minX
.

Min-max normalization preserves the relationships among the original data
values.

2.4. Constraint Optimization-based Component Selection Problem.
Constraint Satisfaction Problems (CSPs) are mathematical problems where
one must find objects that satisfy a number of constraints or criteria. CSPs
are the subject of intense research in both artificial intelligence and operations
research. Many CSPs require a combination of heuristics and combinatorial
search methods to be solved in a reasonable time.

In many real-life applications, we do not want to find any solution but a
good solution. The quality of solution is usually measured by an application
dependent function called objective function. The goal is to find such solu-
tion that satisfies all the constraints and minimize or maximize the objective
function respectively. Such problems are referred to as Constraint Satisfaction
Optimization Problems (CSOP).

A Constraint Optimization Problem can be defined as a regular Constraint
Satisfaction Problem in which constraints are weighted and the goal is to find a
solution maximizing the weight of satisfied constraints. A Constraint Satisfac-
tion Optimization Problem consists [4] of a standard Constraint Satisfaction
Problem and an optimization function that maps every solution to a numerical
value. The most widely used algorithm for finding optimal solutions is Branch

CONSTRAINT OPTIMIZATION-BASED COMPONENT SELECTION PROBLEM 7

and Bound and it can be applied to CSOP as well. The Branch and Bound
algorithm was first proposed by A. H. Land and A. G. Doig in 1960 for linear
programming. In Section 4 a more detail description is given.

3. Greedy Algorithm

Greedy techniques are used to find optimum components and use some
heuristic or common sense knowledge to generate a sequence of sub-optimums
that hopefully converge to the optimum value. Once a sub-optimum is picked,
it is never changed nor is it re-examined.

The Pseudocode of the Greedy algorithm is illustrated in Algorithm 1.

Algorithm 1 Greedy algorithm

Require: SR; {set of requirements}
SC. { set of components }

Ensure: Sol. { obtained solution }
1: Sol := ∅; RSR := SR;{RSR=Remaining Set of Requirements}
2: while (RSR <> ∅) do
3: Choose a ci from SC, not yet processed;
4: @ Mark ci as processed.
5: if Sol

⋃ { ci } is feasible then
6: Sol := Sol

⋃ { ci };
7: RSR := RSR - SRci;
8: end if
9: end while

The selection function is usually based on the objective function. Our
selection function considers the sum of number of requirements to be satisfied
(function f) and the cost of the already selected components plus the cost of
the new selected component (function g) to be minimal ((g + h) is minimal)
and all the dependencies are satisfied.

4. Branch and Bound Algorithm

Branch and Bound algorithms are backtracking algorithms storing the cost
of the best solution found during execution and use it for avoiding part of the
search. More precisely, whenever the algorithm encounters a partial solution
that cannot be extended to form a solution of better cost than the stored best
cost, the algorithm backtracks, instead of trying to extend this solution.

The term Branch and Bound refers to search methods which have two
characteristics that makes them different from other searching techniques:

(1) The method expands nodes from the search tree (this expansion is
called branching) in a particular manner, trying to optimize the search.

8 ANDREEA VESCAN AND HORIA F. POP

(2) The search technique uses a bounding mechanism in order to elimi-
nate (not expand) certain branches (paths) that does not bring any
improvements.

The problem solving using B&B technique is based on the idea of building
a search tree during the problem solving process. By a successor of a node
n we mean a configuration that can be reached from n by applying one of
the allowed operations. By expansion of a node we mean to determine all the
possible successors of the node.

The selection of the successors of a node must also take into consideration
the dependencies between requirements. The list of successors of a node is
thus reduced.

Because by expanding the initial configuration some configurations can be
repeatedly generated, and because the number of nodes can be large, we will
not store the entire tree, but only a list with the nodes (configurations) that
have to be processed (denoted SOLUTION LIST). At a given time a node
from SOLUTION LIST can have one of the following states: expanded or
unexpanded.

The main problem is what node for the list should be selected at a given
moment in order to obtain the shortest solution of the problem. Each node n
from the list has an associated value (cost function),

f(n) = g(n) + h(n),

where:
• g(n) represents the cost of the components that were used until now

(from the root node to node n) to construct the solution;
• h(n) represents the number of remaining requirements that need to be

satisfied (to reach the final solution starting from the current node n).
The function h is called heuristic function.

The B&B [7] algorithm is described using Pseudocode in Algorithm 2.

5. Case study

In order to validate our approach the following case study is used.
Starting for a set of six requirements and having a set of ten available com-

ponents, the dependencies between the requirements of the components, the
goal is to find a subset of the given components such that all the requirements
are satisfied.

The set of requirements SR = {r0, r1, r2, r3, r4, r5} and the set of compo-
nents SC = {c0, c1, c2, c3, c4, c5, c6, c7, c8, c9} are given.

In Table 2 the cost of each component from the set of components SC is
presented. We have used decimal scaling to normalize the cost of the compo-
nents.

CONSTRAINT OPTIMIZATION-BASED COMPONENT SELECTION PROBLEM 9

Algorithm 2 Branch and Bound algorithm

Require: SR; {set of requirements}
SC. { set of components }

Ensure: Sol. { obtained solution }
1: Select a component (node) from the set of available components SC. The

component (node) is added into the list SOLUTION LIST , initially as-
sumed empty (hereby called “the list”). This component has the cost as
the value of the function g and the total number of requirements in the
set SR, yet to be satisfied, as the value of the function h.

2: while (unexpanded nodes still exist in the list) do
3: Select from the list the unexpanded node n having the minimum value

for the function f = g + h.
4: Expand node n and generate a list of successors SUCC.
5: for (each successor succ from SUCC) do
6: Compute the function g associated to succ.
7: Compute the function h associated to succ, i.e. the number of re-

maining requirements from the set SR that need to be satisfied to
reach the final solution (with all the requirements satisfied) starting
from the node succ.

8: if (the value of h is 0 (a solution is found)) then
9: Sol will memorize the best solution between the previously obtained

solution (if exists) and the current obtained solution.
10: else
11: if (component succ does not appear in the list) then
12: Add succ into the list with its corresponding cost value f(succ) =

g(succ) + h(succ) and mark as unexpanded;
13: else
14: if (the value g(succ) is < the g value of the node found in the

list) then
15: The node found in the list is directed to the actual parent of

succ (i.e. n) and is associated with the new value of g. If the
node was marked as unexpanded, its mark is changed.

16: end if
17: end if
18: end if
19: end for
20: end while

Table 3 contains for each component the provided services (in terms of
requirements of the final system).

Table 4 contains the dependencies between each requirement from the set
of requirements.

10 ANDREEA VESCAN AND HORIA F. POP

Component c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

Cost 12 7 3 9 6 14 8 14 7 6
Cost Normaliza-
tion

0.12 0.07 0.03 0.09 0.06 0.14 0.08 0.14 0.07 0.06

Table 2. Cost values for each component in the SC

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9

r0
√ √ √ √

r1
√ √

r2
√ √ √

r3
√ √

r4
√ √ √ √

r5
√ √ √ √

Table 3. Requirements elements of the components in SC

Dependencies r0 r1 r2 r3 r4 r5

r0
√

r1

r2
√ √

r3
√

r4
√

r5
√

Table 4. Specification Table of the Requirements Dependencies

Table 5 contains the normalization of the number of remain requirements
to be satisfied.

5.1. Results obtained by Greedy algorithm. In the current section we
discuss the application of the Greedy algorithm (presented in Subsection 3) to
our problem instance.

The first step of the selection function is the computation of the functions
g and h: g is the cost of the used components and h is the number of re-
quirements yet to be satisfied. The component with the minimum value of the
function f = g + h is chosen to be a part of the solution. The ties are broken
randomly. The dependencies must be also satisfied.

In the first iteration of the algorithm the c4 component has the minimum
value for the function f , i.e. 0.89 and has no dependencies. The set of require-
ments that are satisfied by choosing the c4 component is: {r1}. Next, only

CONSTRAINT OPTIMIZATION-BASED COMPONENT SELECTION PROBLEM 11

No. of requirements to be
satisified

Normalization Value

0 0/6 0
1 1/6 0.16
2 2/6 0.33
3 3/6 0.50
4 4/6 0.66
5 5/6 0.83
6 6/6 1

Table 5. Normalization of the number of requirements to be satisfied.

the components that may improve the solution (by satisfying new require-
ments) are considered: {c0, c1, c2, c3, c5, c6, c7, c8, c9} but only three of them
have all the dependencies satisfied, i. e. {c0, c2, c3}. The c0 component has
the smallest value of the f function (0.68) and this component is selected to
be considered into the solution.

The set of requirements that must still be fulfilled is {r2, r4, r5}. Only three
components may provide some of the remaining requirements and at the same
time having all the dependencies satisfied: {c6, c7, c9}. The c9 component has
the smallest value of the f function (0.40) and this component is the next to
be considered for selection.

There is only one requirement to be satisfied, i. e. {r2}. Only three com-
ponents may provide this functionality and all of them have the dependencies
satisfied: {c1, c5, c8}. The component with the minimum value for the g (0.31)
function is the c8 component.

The set of the requirements to be satisfied RSR is empty and we have
reached a solution with all the requirements satisfied by the selected compo-
nents: c4, c0, c9 and c8. The cost of the final solution 0.31 is the sum of the cost
of the selected components. Still, we will see in the next Section 5.2 that there
are better solutions with the final cost 0.24: {c4, c2, c6, c1} or {c4, c2, c6, c8}.

5.2. Results obtained by Branch and Bound algorithm. The Branch
and Bound algorithm initialize the first used component in the solution list
with the component c4 (the only component with no dependencies). The
set of satisfied requirements is: {r1}. The first iteration of the Algorithm 2
adds the {c0, c2, c3} components (ordered by the value of the function f) to
the list SOLUTION LIST (n represents not expanded node and e represents
expanded node).

SOLUTION LIST =
〈 c0 c2 c3 c4

n n n e

〉
.

12 ANDREEA VESCAN AND HORIA F. POP

The next step of the algorithm expands the first unexpanded node from
the list, i.e. c0. The components that may provide some functionalities from
the set of requirements to be satisfied are: {c1, c5, c6, c7, c8, c9}. Only three
components have the dependencies satisfied. The list of successors is reduced
to: {c6, c7, c9}. The new list of nodes is: {c9, c6, c7, c0, c2, c3, c4} with two
expanded nodes, components c4 and c0.

The next node to be expanded is c9. Three solutions are found but only the
best one is memorized: {c4, c0, c9, c8} with cost 0.31. Next expanded nodes are
c6 and c7 but the obtained solutions have the cost greater that the previously
best obtained solution.

The expansion of the c2 node modifies the list of nodes. From the list of
components that may provide new needed functionalities only four of seven
components have the dependencies satisfied: {c0, c6, c7, c9}. All the successor
are already part of the list but, except the c0 node, the value of the g function
is smaller than the value from the list. The list of nodes is updated according
to the new values of f functions.

SOLUTION LIST =
〈 c6 c9 c7 c0 c2 c3 c4

n n n e e n e

〉
.

The next node that is expanded is the node c6. The successors are:
{c1, c5, c8}. The new obtained solution considering the c1 component is better
then the current best solution: the cost is 0.24 < 0.31. The other two obtained
solutions (with components c5 and c8) have the cost greater or equal that the
cost of the new solution, i.e. 0.31 and 0.24.

By expanding next the node c9 four components may provide the needed
functionalities (r2 or r3) and all have the dependencies satisfied. For the
components c0 and c6 the new values for g are greater than those from the
list. Therefore the values for the stated components is not going to be changed.
The other components will be included into the final list:

SOLUTION LIST =
〈 c6 c1 c9 c5 c7 c0 c2 c3 c4

e n e n n e e n e

〉
.

With the next expanded node two solutions are found but with the cost
greater than the best found solution, i.e. 0.34 and 0.30. By expanding the
other nodes no new solution may be found and no new nodes mat be added
to the solution list.

The solution obtained with the Branch and Bound algorithm (considering
the g function as the sum of the cost of the used components and the h function
as the number of requirements to be satisfied) consists of the components:
{c4, c2, c6, c1} having the cost 0.24.

CONSTRAINT OPTIMIZATION-BASED COMPONENT SELECTION PROBLEM 13

6. Related work

Component selection methods are traditionally done in an architecture-
centric manner. An approach was proposed in [12], where the authors present a
method for simultaneously defining software architecture and selecting off-the-
shelf components. They have identified three architectural decisions: object
abstraction, object communication and presentation format. Three type of
matrix are used when computing feasible implementation approaches. Existing
methods include OTSO [10] and BAREMO [11].

Another type of component selection approaches is built around the rela-
tionship between requirements and components available for use. In [8] the
authors have presented a framework for the construction of optimal compo-
nent systems based on term rewriting strategies. By taking these techniques
from compiler construction they have developed an algorithm that builds a
cost-optimal component-based system. In PORE [2] and CRE [1] the same
relation between requirements and available components is used. The goal
here is to recognize the mutual influence between requirements and compo-
nents in order to obtain a set of requirements that is consistent with what the
market has to offer. The [6] approach considers selecting the component with
the maximal number of provided operations. The algorithm in [3] considers all
the components to be previously sorted according to their weight value. Then
all components with the highest weight are included in the solution until the
budget bound has been reached.

Paper [9] proposes a comparison between a Greedy algorithm and a Ge-
netic Algorithm. The discussed problem considers a realistic case in which
cost of components may be different.

7. Conclusion and future work

CBSE is the emerging discipline of the development of software compo-
nents and the development of systems incorporating such components. A
challenge in component-based software development is how to assemble com-
ponents effectively and efficiently.

A proposal for the Component Selection Problem as a Constraint Op-
timization Problem is given. Two considered approaches are: Greedy and
Branch and Bound. Further work will investigate different criteria for compo-
nent selection: dependencies, different non-functional qualities. A real world
system application will be considered next to (better) validate our approach.
We have discussed the case when only the dependencies between the require-
ments from the set of requirements SR. A more real case should be also
considered: a component could have other requirements that need to be sat-
isfied before some of its provided services are used.

14 ANDREEA VESCAN AND HORIA F. POP

8. Acknowledgement

This material is based upon work supported by the Romanian National
University Research Council under award PN-II no. ID 550/2007.

References

[1] C. Alves, J. Castro, Cre: A systematic method for cots component selection, Proceedings
of the Brazilian Symposium on Software Engineering, IEEE Press, 2001, pp. 193–207.

[2] C. Alves, J. Castro, Pore: Procurement-oriented requirements engineering method for
the component based systems engineering development paradigm, Proceedings of the Int’l
Conf. Software Eng. CBSE Workshop, IEEE Press, 1999, pp. 1–12.

[3] P. Baker, M. Harman, K. Steinhofel, A. Skaliotis, Search Based Approaches to Component

Selection and Prioritization for the Next Release Problem, Proceedings of the 22nd IEEE
International Conference on Software Maintenance, IEEE Press, 2006, pp. 176–185.

[4] R. Bartk, Constraint Programming, In Pursuit of the Holy Grail, Proceedings of the
Week of Doctoral Students, Part IV, MatFyzPress, 1999, pp. 555–564.

[5] I. Crnkovic, M. Larsson, Building Reliable Component-Based Software Systems, Norwood:
Artech House publisher, 2002.

[6] M. R. Fox, D. C. G. Brogan, P. F. Reynolds, Approximating component selection, Pro-
ceedings of the 36th conference on Winter simulation, 2004, pp. 429–434.

[7] M. Frentiu, H. F. Pop, G. Serban, Programming Fundamentals, Cluj University Press,
2006.

[8] L. Gesellensetter, S., Glesner, Only the Best Can Make It: Optimal Component Selection,
Electron. Notes Theor. Comput. Sci. 176 (2007), pp. 105–124.

[9] N. Haghpanah, S. Moaven, J., Habibi, M., Kargar, S. H., Yeganeh, Approximation Algo-

rithms for Software Component Selection Problem, Proceedings of the 14th Asia-Pacific
Software Engineering Conference, IEEE Press, 2007, pp. 159–166.

[10] J. Kontio, OTSO: A Systematic Process for Reusable Software Component Selection,
Technical report, University of Maryland, 1995.

[11] A. Lozano-Tello, A. Gómez-Pérez, BAREMO: how to choose the appropriate software
component using the analytic hierarchy process, Proceedings of the 14th International
Conference on Software engineering and knowledge engineering, ACM, 2002, pp. 781–
788.

[12] E. Mancebo, A. Andrews, A strategy for selecting multiple components, Proceedings of
the Symposium on Applied computing, ACM, 2005, pp. 1505–1510.

[13] A. Vescan, Dependencies in the Component Selection Problem, Proceedings of the In-
ternational Conference of Applied Mathematics, Baia–Mare, Romania, 2008 (accepted).

[14] A. Vescan, H. F. Pop, The Component Selection Problem as a Constraint Optimization

Problem, Proceedings of the Work In Progress Session of the 3rd IFIP TC2 Central and
East European Conference on Software Engineering Techniques (Software Engineering
Techniques in Progress), Wroclaw University of Technology, Wroclaw, Poland, 2008, pp.
203-211.

Department of Computer Science, Faculty of Mathematics and Computer
Science,, Babeş-Bolyai University, Cluj-Napoca, Romania,

E-mail address: {avescan,hfpop}@cs.ubbcluj.ro

EXTENSION OF AN OCL-BASED EXECUTABLE UML
COMPONENTS ACTION LANGUAGE

S. MOTOGNA, B. PÂRV, I. LAZĂR, I. CZIBULA, L. LAZĂR

Abstract. Executable models allow precise description of software sys-
tems at a higher level of abstraction and independently of a platform or a
programming language. In this paper we explore the use of a Procedural
Action Language based on OCL to specify executable UML components
and we propose an extension that will include array types and correspond-
ing operations.

1. Introduction

Model Driven Architecture (MDA) development represent a pertinent so-
lution to design and control of large software systems, while UML establihed
itself as a standard for software models. UML2 and its Action Semantics [6]
provide the foundation to construct executable models. In order to make a
model executable, the model must contain a complete and precise behavior
description. But, creating a model that has a complete and precise behav-
ior description is a tedious task or an impossible one because of many UML
semantic variation points.

We have introduced COMDEVALCO a framework aimed to support def-
inition, validation, and composition of software components, that allows the
construction and execution of UML structured activities [3]. The framework
refers only to UML structured activities because our first objective was to
allow model transformation from PIM (Platform Independent Model) to pro-
cedural constructs of imperative languages. It includes a modeling language,
a component repository and a set of tools. The object-oriented modeling lan-
guage contains finegrained constructions, aimed to give a precise description
of software components. Component repository is storing valid components,

Received by the editors: October 12, 2008.
2000 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.4 [SOFTWARE ENGINEER-

ING]: Software/Program Verification – Formal methods, Model checking, Validation;
D.2.13 [SOFTWARE ENGINEERING]: Reusable Software – Reuse models; I.6.5
[SIMULATION AND MODELING]: Model Development – Modeling methodologies .

Key words and phrases. Software components, Executable models, OCL.

16 S. MOTOGNA, B. PÂRV, I. LAZĂR, I. CZIBULA, L. LAZĂR

ready to be composed in order to build more complex components or systems.
The toolset contains tools dedicated to component definition, validation, and
composition, as well as the management of component repository.

Our approach uses Procedural Action Language (PAL) that is a concrete
syntax for UML structured activities and defines graphical notations for some
UML structured activity actions [7]. PAL simplifies the process of constructing
executable models by simplifying the construction of UML structured activi-
ties.

The execution of the model is performed without any transformation, and
by using this approach the time delay between the model changes and the
model execution is minimized.

The repository should contain executable models, ready to be used in any
further development. One aspect that can guarantee this principle is to use
some extra conditions, such as preconditions, postconditions and invariants to
the model definition that would describe in a formal way, the behavior of the
model.

Object Constraint Language - OCL - has been extensively used for mod-
els of UML [6], representing a well suited specification language for defining
constraints and requirements in form of invariants, pre- and post- conditions.

So, we add pre- and post-conditions to the model in the form of OCL
expressions. In such a way, we obtain the desired descriptions in terms of
OCL expressions, we then could use them in searching queries, and the layout
of the repository can be standardized.

The repository will store different types of models, and in the initial phase,
we have designed it for simple arithmetical and array problems. The OCL
specification [5] doesn’t contain array types, which are necessary in our ap-
proach. So, we have two options to tackle this problem: to express arrays
using the existing constructions or to extend OCL Expressions.

The first approach has two main disadvantages: it restricts the type of
the elements of the arrays and array specific operations should be re-written
any time they are needed. We would prefer to work with a more generic
construction, and do not worry about operations’ implementations each time
they are used. Array operations are defined once, and then called any time
they are needed.

The rest of the paper is organized as follows: the next section presents some
related works in the domain and compare them with our approach. Section 3
describes the action language defined as part of ComDeValCo framework and
then section 4 presents the extension of PAL with array types and associated
operations, and an example of an executable model that benefits from the use
of our extension. The next section draws some conclusions and suggests some
future development directions.

EXTENTION OF AN OCL-BASED ACTION LANGUAGE 17

2. Related work

The xUML [8] process involves the creation of platform independent, exe-
cutable UML models with the UML diagrams being supported by the action
semantics-compliant Action Specification Language (ASL). The resulting mod-
els can be independently executed, debugged, viewed and tested. The action
semantics extension to UML defines the underlying semantics of Actions, but
does not define any particular surface language. The semantics of the ASL
are defined but the syntax of the language varies. ComDeValCo is compliant
with UML 2.0 and uses structured activities for models [3].

According to several domain experts, a precise Action Semantics Language
(ASL) and a specified syntax are required. Unfortunately, actions defined in
UML do not have a concrete syntax and OMG does not recommend a specific
language, so there is not a standard ASL. Object Constraint Language (OCL)
is a formal language used to describe expressions on UML models. The great
overlap between ASL and OCL (large parts of the Action Semantics specifi-
cation duplicates functionality that is already covered by the OCL) suggests
that OCL can be used partly for ASL. OCL for Execution (OCL4X) [2] is
defined based on OCL to implement operations that have side effects and pro-
vide the ability for model execution. By mapping from ASL to OCL, OCL
is used to express some actions in ASL. This approach has identified some
open problems when using OCL in specification of the executable models, and
offered solutions based on extending OCL to include actions with side effects
in order to model behavior. Our approach is, in many ways, similar to this
one. We are also proposing some extensions of OCL, but based on identifying
some other problems and suggesting more efficient approaches of executable
model specification.

According to Stefan Haustein and Jorg Pleumann, since the OCL is a sub-
set of the ASL, there are two options for building an action surface language
based on OCL [1]: map all OCL constructs to actions, then add new syn-
tax constructs for actions that are required, but not covered, or embed OCL
expressions in new syntax constructs for actions.

The first option requires a complete mapping of the abstract OCL syntax
to actions. This would mean to give up declarative semantics in OCL, or to
have two flavours of OCL with different specifications that would need to be
aligned carefully.

The second option can be implemented by referring to the existing OCL
surface language, without modifying it, maintaining a clean syntactical sepa-
ration between plain queries and actions that may influence the system state.

ComDeValCo is oriented on this second approach.

18 S. MOTOGNA, B. PÂRV, I. LAZĂR, I. CZIBULA, L. LAZĂR

3. Procedural Action Language - description and features

As part of ComDeValCo framework we have defined a procedural action
language (PAL), that is a concrete syntax for UML structured activities, and
graphical notations for some UML structured activity actions [7].

The framework also includes an Agile MDA approach for constructing, run-
ning and testing models. Debugging and testing techniques are also included
according to the new released standards. In order to be able to exchange ex-
ecutable models with other tools, a UML profile is also defined. The profile
defines the mapping between PAL and UML constructs and is similar to the
profile defined for AOP executable models.

In order to develop a program we construct a UML model that contains
functional model elements and test case model elements. Functional model
elements correspond to the program and its operations and are represented as
UML activities. Test case model elements are also UML activities and they
represent automated tests written for some selected functional model elements.

The Procedural Action Language (PAL) is introduced to simplify the con-
struction of UML structured activities. PAL defines a concrete syntax for rep-
resenting UML structured activity nodes for loops, sequences of actions and
conditionals. The PAL syntax is also used for writing assignment statements
and expressions in structured activity nodes. PAL also includes assertion
based constructs that are expressed using OCL expressions.

The syntax of the language is given in Appendix A.
The framework accepts user-defined models described in UML-style or us-

ing PAL, validates them according to UML metamodel and construct the ab-
stract syntax tree, which is then used to simulate execution. For each syntac-
tical construction of PAL there exists a rule corresponding to the construction
of the abstract syntax tree.

4. Extending PAL with array type

The intention is to store different types of models in the repository, but,
in the initial phase, we have considered small models for simple arithmetical
problems, and we face the problem of dealing with arrays. As mentioned
before PAL uses OCL-based expressions, but the OCL specification language
does not allow arrays.

There are two things that should be taken into consideration when design-
ing types for models [9]:

• Languages that manipulate and explore models need to be able to
reason about the types of the objects and properties that they are
regarding within the models.

EXTENTION OF AN OCL-BASED ACTION LANGUAGE 19

• There is also a need to reason about the types of artifacts handled by
the transformations, programs, repositories and other model-related
services, and to reason about the construction of coherent systems
from the services available to us. While it is possible to define the
models handled by these services in terms of the types of the objects
that they accept, we argue that this is not a natural approach, since
these services intuitively accept models as input, and not objects.

At the first attempt, it would have looked simpler to add a new type array
that could create arrays with elements of any existing type in the system,
but taking a deeper look, creating an array of integers is totally different
from creating an array of components. Consequently, we have though at the
approach that is also taken in different strongly typed programming language
(Java, .NET), and that will guarantee an easy extension of the type system.

Figure 1. Type metaclasses

We have started from the type hierarchy from OCL [5] and refined it to
integrate ArrayType, as depicted in Figure 1. A Classifier may be a DataType,
a Class or an Interface. ArrayType and PrimitiveType are specializations of
DataType. The most important feature of DataType is that a variable of this
type can hold a reference to any object, whether it is an integer, a real or an
array, or any other type.

We highlight only the modifications of the grammar such that our models
will be able to handle arrays and records. Types can be arrays whose elements
can be of any type. Records will be structures that will group together a

20 S. MOTOGNA, B. PÂRV, I. LAZĂR, I. CZIBULA, L. LAZĂR

Figure 2. Assignment statements

number of fields, such that a field is similar to a variable declaration.

TY PE : DataType|Class|Interface

DataType : PrimitiveType|ArrayType

PrimitiveType : Integer|Boolean|String|Real|
ArrayType : TY PE[DOMAIN]
DOMAIN : INT..INT |INT.. ∗

In the specification of the domain, first case describes an array of known
size at declaration, and the second case specifies an array whose size is not
known when declared.

Consequently, we will allow expressions to contain values of the newly
introduced types, namely the value of an element of the array, and the value
of a field from a record:

atom : ID|INT |STRINGLITERAL|
ID′(′(expr)?(′,′ expr) ∗ endN =′)′|e = TRUE|

e = FALSE|condition|ID′[INT ′]′

EXTENTION OF AN OCL-BASED ACTION LANGUAGE 21

The statements that involve expressions need also to be revised. Figure 2
shows part of the syntax, without specifying all the statements. The complete
syntax is presented in the Appendix. The dashed components are the ones
defined in UML and the white-box components are the ones introduced in
ComDeValCo. Assignment statement is further specialized in two categories,
depending on its left-value: for variables or for properties. According to UML
2.1 Property can be associated to a Class or to a DataType.

The syntactical rules corresponding to these statements are:

AssigmentStatement : V arAssignStatement|PropAssignStatement

V arAssignStatement : IDASSIGNexpr

PropAssignStatement : Classname.PropASSIGNexpr|
ID[ID]ASSIGNexpr

We adopt the same approach as the OMG Specification of OCL: we con-
sider that there is a signature Σ = (T, Ω) with T being a set of type names,
and Ω being a set of operations over types in T . The set T includes the basic
types int, real, bool and String. These are the predefined basic types of OCL.
All type domains include an undefined value that allows to operate with un-
known or null values. Array types are introduced to describe vectors of any
kind of elements, together with corresponding operations. All the types and
operations are defined as in OCL.

DataType: is the root datatype of PAL and represents anything. There-
fore, its methods apply to all primitive types, array type and record type.
It is defined to allow defining generic operations that can be invoked by any
object or simple value. It is similar to AnyType defined in OCL, but we have
preffered this approach since AnyType is not compliant with all types in OCL,
namely Collection types and implicitely its descendants. Defining DataType
and its operation new we can create uniformly any new value as a reference
to its starting address.

Operations on the type:
isType(element : DataType) : Boolean Checks if the argument is of the

specified type,
new() :DataType Creates a new instance of the type.
Operations on instances of the type:
isTypeOf(type) : Boolean Checks if the instance is of the specified type
isDefined() : Boolean Checks if the instance is defined (not null).
Array Type inherits from DataType.
Operations:
size() : Integer Returns the size of the array

22 S. MOTOGNA, B. PÂRV, I. LAZĂR, I. CZIBULA, L. LAZĂR

isEmpty() : Boolean Checks if the array has no items.
Operation [] takes an integer i as argument and returns the i-th element

of the array.
The operations regarding the variable declarations are implemented in the

DataType. In such a way, we may create new instances of array type, and we
may check if the instance is not null.

A type is assigned to every expression and typing rules determine which
expressions are well-formed. There are a number of predefined OCL types
and operations available for use with any UML model, which we considered as
given. For the newly introduced type constructions and its associated opera-
tions we will give typing rules. The semantics of types in T and operations in
Ω is defined by a mapping that assigns each type a domain and each operation
a function.

The following rule states that we may create arrays of any existing type
in the system:

G|−A:T
G|−Array(A):T

An array M is defined with elements of a type and an integer as index:
G|−N :Int,G|−M :A

G|−array(M,N):Array(A)

If i is an index of an array then i is of type Integer.
G|−M :Array(A)

G|−indexM :Integer

The following rule specifies the way we can infer the type of an element of
an array knowing the type of the array:

G|−N :Int,G|−M :Array(A)
G|−M [N]:A

The last rule states the constraints imposed on assignment to an element
of an array:

G|−N :Int,G|−M :Array(A),G|−P :A
G|−M [N]:=P :array(A)

In order to illustrate our workbench support for defining and executing
platform-independent components we consider a simple case study that prints
a given product catalog. The class diagram presented in Figure 3 shows an
extract of an executable UML model developed using COMDEVALCO Work-
bench [7]. The Product entity represents descriptive information about prod-
ucts and the ProductCatalog interface have operations that can be used to
obtain product descriptions as well as the product prices. The CatalogPrinter
component is designed to print the catalog, so it requires a reference to a
ProductCatalog. The model contains a SimpleProductCatalog implementation
that has an array of products and an array of prices.

The model defined in Figure 3 uses the stereotypes defined by the iCOM-
PONENT UML profile for dynamic execution environments [4]. According to
the iCOMPONENT component model, these model elements can be deployed

EXTENTION OF AN OCL-BASED ACTION LANGUAGE 23

Figure 3. Executable iComponents

as three modules (units of deployments): a module that contains the Product
class and the ProductCatalog interface, another one that contains the Catalog-
Printer component, and finally a module containing the SimpleProductCatalog
component. After deployment, the dynamic execution environment applies the
dependency inversion principle in order to inject the ProductCatalog reference
required by the CatalogPrinter component.

Using the validate stereotype the CatalogPrinter component register the
print method as a callback method that is executed when the component
acquire the required interface. The execution starts with this method.

The init method of the SimpleProductCatalog component is executed im-
mediately after an instance of the component is created. The updatePri-
cePercentage property is a configuration property that specifies that the up-
datePrices operation will be executed when a running component instance is
reconfigured.

Figure 4 and 5 show the code written using the proposed extended OCL-
based action language.

5. Conclusion and future work

We have presented an Action Language based on procedural paradigm
and defined an extension with arrays, that can be succesfully used in specify-
ing executable UML components. The approach taken in extending the PAL,

24 S. MOTOGNA, B. PÂRV, I. LAZĂR, I. CZIBULA, L. LAZĂR

operation print() {
Integer productCount = productCatalog.size();
for(int index = 0; index < productCount; index++) {
Product product = productCatalog.getProduct(index);
write(product.code);
write(product.description);
write(productCatalog.getPrice(product));

}
}

Figure 4. CatalogPrinter operation

operation size(): Integer {
return products.size();

}
operation getProduct(index: Integer): Product {
assert (0 <= index) and (index < products.size());
return products[index];

}
operation getPrice(product: Product): Real {
return prices[product.code];

}
operation init() {
products = new Product[] {
new Product(0, "A"), new Product(1, "B")

};
prices = new Real[] {5, 7};

}
operation updatePrices(percentage: Real) {
for(int index = 0; index < prices.size(); index++)
prices[index] = (1 + percentage) * prices[index];

}

Figure 5. SimpleProductCatalog operation

can be used in adding new features to it, and integrating them in the frame-
work. The main application of such specifications is to completely describe
executable components for storing in a repository, as suggested in [4].

As future developments we intend to add, when necessary, further exten-
sions to the PAL and integrate them in ComDeValCo workbench, and to use
information from these specifications to validate the components.

EXTENTION OF AN OCL-BASED ACTION LANGUAGE 25

6. ACKNOWLEDGEMENTS

This work was supported by the grant ID 546, sponsored by NURC -
Romanian National University Research Council (CNCSIS).

7. References

[1] S. Haustein and J. Pleumann. OCL as Expression Language in an Action
Semantics Surface Language. OCL and Model Driven Engineering, UML 2004 Con-
ference Workshop, 2004.

[2] K. Jiang, L. Zhang, and S. Miyake. OCL4X: An Action Semantics Language
for UML Model Execution. Proc. of COMPSAC, pages 633-636, 2007.

[3] I. Lazar, B. Parv, S. Motogna, I. Czibula, and C. Lazar. An Agile MDA
Approach for Executable UML Structured Activities. Studia Univ. Babes-Bolyai In-
formatica, 2:101-114, 2007.

[4] I. Lazar, B. Parv, S. Motogna, I.-G. Czibula, and C.-L. Lazar. iCOMPO-
NENT: A platform-independent component model for dynamic execution environ-
ments. In 10th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing. submitted, 2008.

[5] Object Management Group. Object Constraint Language Specification, version
2.0. http://www.omg.org/cgibin/ apps/doc?formal/06-05-01.pdf, 2006.

[6] Object Management Group. UML 2.1.1 Superstructure Specification.
http://www.omg.org/cgi-bin/doc?ptc/07-02-03/, 2007.

[7] B. Parv, I. Lazar, and S. Motogna. COMDEVALCO Framework - the Model-
ing Language for Procedural Paradigm. Int. J. of Computers, Communications and
Control, 3(2):183- 195, 2008.

[8] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie. Model Driven
Architecture with Executable UMl. Cambridge University Press, 2004.

[9] J. Steel and J.-M. Jezequel. On model typing. International Journal of Soft-
ware and System Modeling (SoSyM), 2008.

8. Appendix A - PAL grammar

prog: program (operation)* | (operation)+
program: PROGRAM ID pre post conditions statement block
operation : OPERATION ID operation parameter list

(’:’ TYPE)? pre post conditions statement block
operation parameter list : aux=’(’ (operation parameter)?

(’,’operation parameter)* ’)’
operation parameter : (PARAM TYPE)? aux=ID ’:’ TYPE
pre post condition:(precondstatement)?(postcondstatement)?
statement block : startN=’{’ statement* endN=’}’
statement: asignstatementstandalone | callstatement | ifstatement |

declstatement | whilestatement | forstatement | assertstatement |
readstatement | writestatement | returnstatement

callstatement : CALL expr endN=’;’

26 S. MOTOGNA, B. PÂRV, I. LAZĂR, I. CZIBULA, L. LAZĂR

readstatement : READ ID endN=’;’
writestatement : WRITE expr endN=’;’
asignstatement : ID ASSIGN expr
asignstatementstandalone : ID ASSIGN expr endN=’;’
declstatement :VARDECLR ID’:’TYPE(’:=’expr)?endN=’;’
ifstatement : IF ’(’ expr ’)’ b1=statement block

(ELSE b2=statement block)?
whilestatement : WHILE ’(’ expr ’)’ loop statement block
forstatement : FOR ’(’ e1=asignstatement ’;’ e2=expr ’;’

e3=asignstatement ’)’ loop statement block
assertstatement : ASSERT ’:’ expr endN=’;’
returnstatement : RETURN expr? endN=’;’
precondstatement : PRECOND ’:’ oclexpr endN=’;’
postcondstatement : POSTCOND (’(’ ID ’)’)? ’:’ oclexpr endN=’;’
loopinvariant : LOOPInv ’:’ expr endN=’;’
loopvariant : LOOPVa ’:’ expr endN=’;’
loop statement block : startN=’{’ (loopinvariant)?

(loopvariant)? statement* endN=’}’
condition : ’(’ expr ’)’
oclexpr : expr
expr: sumexpr
sumexpr : (conditionalExpr) (OP PRI0 =conditionalExpr)
conditionalExpr : (multExpr) (OP PRI1 e=multExpr)
multExpr : (atom) (OP PRI2 e=atom)*
atom: ID | INT |STRINGLITERAL | ID ’(’ (expr)? (’,’ expr)* endN=’)’|

e=TRUE | e=FALSE | condition
PARAM TYPE: ’in’| ’out’ | ’inout’
TYPE : ’Integer’ |’Boolean’ | ’String’ | ’Real’| DataType |

TYPE[DOMAIN]
DOMAIN : INT..INT | INT.. *
OP PRI0 :(’and’ | ’or’ | ’not’ |′ <′ |′ >′ |′ <=′ |′ >=′ |

′ ==′ |′ <>′)
OP PRI1 : (’+’ |’-’)
OP PRI2 : (’*’ |’/’ | ’div’)
ID : (’a’..’z’ |’A’..’Z’) (’a’..’z’|’A’..’Z’ | ’0’..’9’)*
INT : ’0’..’9’ +
STRINGLITERAL : ’ ” ’ (options {greedy=false;} : .)* ’ ” ’
BOOLEAN CONST : ’true’ | ’false’

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş-Bolyai University, 1, M. Kogălniceanu, Cluj-Napoca 400084, Ro-
mania

E-mail address: bparv,motogna,ilazar,czibula@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

SOFTWARE QUALITY ASSESSMENT USING A FUZZY
CLUSTERING APPROACH

CAMELIA SERBAN AND HORIA F. POP

Abstract. Metrics have long been studied as a way to assess the quality
and complexity of software, and recently this has been applied to object-
oriented software as well. However one of their shortcomings is the lack of
relevant result interpretation. Related to this, there is an aspect that has
a decisive influence on the accuracy of the results obtained: the issue of
software metrics threshold values.

In this paper we propose an alternative approach based on fuzzy clus-
tering analysis for the problem of setting up the software metrics threshold
values. Measurements are used to evaluate the conformance of an object
oriented model to well established design heuristics.

1. Introduction

In time, software systems become very large and complex due to repeated
modifications and updates, needed to meet the ever changing requirements of
the business. The code becomes more complex and drifts away from its original
design. The result is that the system becomes practically unmanageable. A
small change in one part of it may have unforeseen effects in completely other
parts, leading to potential disasters. In order to prevent this, we need proper
quantification means in order to assess the quality of software design during
its development lifecycle.

A good object-oriented design needs design rules, principles and practices
that must be known and used [11]. In this way, software metrics are very
useful being a mean for quantifying these aspects and identifying those design
entities that capture deviations from good design principles and heuristics.

Although a large number of metrics have been proposed by researchers to
assess object-oriented design quality, they pose some problems of their own,
the most important being the ability to give relevant interpretation of the

Received by the editors: October 10, 2008.
2000 Mathematics Subject Classification. 68N19, 68T37.
1998 CR Categories and Descriptors. D.2.8 [Software Engineering]: Metrics – Per-

formance measures; I.5.3 [Pattern recognition]: Clustering – Algorithms.
Key words and phrases. Software quality, Software metrics, Fuzzy clustering.

27

28 CAMELIA SERBAN AND HORIA F. POP

measurement results which in turn is due to the fact that threshold values
for the metrics are difficult to set. This problem is far from being new and
characterizes intrinsically any metrics-based approach. A threshold divides
the space of a metric value into regions. Depending on the region of the
metric value, we may make an informed assessment about the measured entity.
For example, if we measure the reusability of a design entity with possible
values in the [0..1] range and we define 0.7 as being the threshold with good
reusability, then all measured components whose reusability values are above
that threshold may be quantified as being reusable. This simple example
raises a set of questions: how did we come up with a threshold of 0.7 in the
first place? Why not 0.5? And, is a component with a reusability value of
0.68 not reusable compared to a component having a reusability value of 0.7?
Would such a threshold still be meaningful in a population where the largest
reusability value is 0.5?

As a conclusion, the accuracy of the results obtained is questionable. In
order to overcome this limitation, we propose an alternative approach for
the problem of setting up the software metrics threshold values using fuzzy
clustering analysis. This allows us to place an object in more than one group,
with different membership degrees.

The remainder of this paper is organized as follows. Section 2 describes the
theoretical background for an object-oriented design quality assessment system
while Section 3 presents the fuzzy-clustering approach used in the quality
evaluation of a system design. Section 4 describes in details our proposed
approach for detecting design flaws in an object-oriented system. Section
6 presents and discusses the experimental results obtained by applying the
proposed approach on an open source application, called log4net [3]. Section
7 reviews related works in the area of detection design flaws. Finally, Section
8 summarizes the contributions of this work and outlines directions for further
research.

2. Theoretical framework

Object oriented design quality evaluation implies identification of those
design entities that are relevant for the analysis of their properties and of
the relationships that exist between them and the software metrics that best
emphasize the aspects (design principle/heuristics) that we want to quantify.
So, our theoretical framework, consists of three groups of elements:

• a meta-model for the object-oriented systems;
• design principles/heuristics;
• relevant suites of software metrics.

SOFTWARE QUALITY ASSESSMENT USING A FUZZY CLUSTERING APPROACH 29

Thus, our object oriented design quality evaluation system will be associ-
ated with a 3-tuple, ES = (MModel, Aspects,Metrics). In what follows, all
the above mentioned elements will be briefly described.

2.1. A meta-model for object-oriented systems. A meta-model for object-
oriented systems consists of design entities together with their properties and
the relations between them [11]. Thus, a meta-model is a 3-tuple MModel =
(E,P, R) where,

- E = {E1, E2, ..., En}, represents the set of design entities of the software
system, Ei, 1 ≤ i ≤ n may be a class, a method from a class, an attribute
from a class, a parameter from a method or a local variable declared in the
implementation of a method. We also will consider that:

• Class(E) = {C1, C2, ..., Cl}, Class (E) ⊂ E is a set of entities that are
classes;

• Each class, Ci, 1 ≤ i ≤ l has a set of methods and attributes, i.e.
Ci = {mi1, mi2, ..., mipi , ai1, ai2, ..., airi}, 1 ≤ pi ≤ n, 1 ≤ ri ≤ n,
where mij(∀j, 1 ≤ j ≤ pi) are methods and aik (∀k, 1 ≤ j ≤ ri) are
attributes from Ci;

• Meth(E) =
l⋃

i=1

ri⋃
j=1

mij , Meth(E) ⊂ E, is a set of methods from all

classes of the software system;
• Each method mij , 1 ≤ i ≤ l, 1 ≤ j ≤ pi, has a set of parameters

and local variables, i.e., mij = {pij1, pij2, ..., pijpij , vij1, vij2, ..., vijvij}
1 ≤ pij ≤ n, 1 ≤ vij ≤ n, where pijk(∀k, 1 ≤ k ≤ pij) are parameters
and vijs(∀s, 1 ≤ s ≤ vij) are local variables;

• Param(E) =
l⋃

i=1

ri⋃
j=1

pij⋃
k=1

pijk, Param(E) ⊂ E;

• LocV ar(E) =
l⋃

i=1

ri⋃
j=1

vij⋃
s=1

vijs, LocV ar(E) ⊂ E;

• Attr(E) =
l⋃

i=1

ri⋃
j=1

aij , Attr(E) ⊂ E, is the set of attributes from all

classes of the software system.

- P represents the set of properties of the aforementioned design entities,
P = ClassP

⋃
MethP

⋃
AttrP

⋃
ParamP

⋃
LocV arP . Where,

• ClassP represents the properties of all classes in E (e.g. abstraction,
visibility, reusability);

• MethP represents the properties of all methods in E (e.g. visibility,
kind, instantiation, reuse, abstraction, binding);

• AttrP represents the properties of all attributes in E (e.g. visibility);

30 CAMELIA SERBAN AND HORIA F. POP

• ParamP represents the properties of all parameters in E (e.g. type,
aggregation);

• LocV arP represents the properties of all local variables in E (e.g. type,
aggregation);

- R represents the set of relations between the entities of the set E. These
relations are described in detail in [11].

2.2. Design principles and heuristics. The main purpose of our evalu-
ation is to identify those design entities that capture deviations from good
design principles and heuristics. Object-oriented design principles are mostly
extensions of general design principles in software systems (e.g., abstraction,
modularity, information hiding). Samples of principles for good design in soft-
ware systems are: high coupling, low cohesion, manageable complexity, proper
data abstraction. Design heuristics [17] are stated as the rules of thumb or
guidelines for good design. These rules are based on design principles and
their ultimate goal is to improve quality factors of the system and avoid oc-
currence of design flaws. These rules recommend designers and developers to
“do” or “do not” specific actions or designs. A sample of such heuristics is
“minimize the number of messages in a class”.

A literature survey showed a constant and important preoccupation for this
issue: several authors were concerned with identifying and formulating design
principles [14, 12] and heuristics [17, 9]. Riel [17] presents a set of heuristic
design guidelines and discusses some of the flawed structures that result if
these guidelines are violated. In the recent years, we found various forms
of descriptions for bad or flawed design in the literature such as bad-smells
[7]. In the same manner, Martin [12] discusses the main design principles of
object-orientation and shows that their violation leads to a rotting design.

2.3. A catalog of design metrics. As we mentioned earlier, the quantifica-
tion of object-oriented design principle needs a relevant metrics catalog. Thus,
the third element of the proposed framework is the set of design metrics. These
metrics have to be selected based on the definitions and classification rules of
each design principle/heuristics. We do not intend to offer an exhaustive list of
design metrics in this section, but to emphasize their relevance in quantifying
some rules related to good object oriented design.

Thus, in the following we make a short survey of the most important
object-oriented metrics defined in the literature. These metrics capture char-
acteristics that are essential to object-orientation including coupling, complex-
ity and cohesion.

Coupling Metrics. We selected Coupling Between Objects(CBO) [6]
as the primitive metric for coupling. CBO provides the number of classes to

SOFTWARE QUALITY ASSESSMENT USING A FUZZY CLUSTERING APPROACH 31

which a given class is coupled by using their member functions and/or in-
stance variables. Other metrics related with CBO are Fan - Out [19], Data
Abstraction Coupling(DAC) [1] and Access To Foreign Data(ATFD) [11]. A
second way of measuring coupling is: when two classes collaborate, count the
number of distinct services accessed (the number of distinct remote methods
invoked). One measure that counts the number of remote methods is RFC
(Response For A Class)[6]. Another important aspect that has to be taken
into account when measuring coupling is the access of a remote method from
different parts of the client class, each access being counted once. This is
the approach taken by Li and Henry in defining the Message Passing Cou-
pling(MPC) metric, which is the number of send statements defined in a class
[1] (also proposed in [10]). A similar type of definition is used by Rajaraman
and Lyu in defining coupling at the method level. Their method coupling MC
measure [16] is defined as the number of non-local references in a method.

Cohesion Metric. LCOM (Lack of Cohesion in Methods) [6] is not a
significant cohesion indicator as discussed in [8, 5]. In [5] the authors propose
two cohesion measures that are sensitive to small changes in order to evaluate
the relationship between cohesion and reuse. The two measures are TCC
(Tight Class Cohesion) and LCC (Loose Class Cohesion) TCC is defined as
the relative number of directly connected methods. Two methods are directly
connected if they access a common instance variable of the class. TCC refers
the relative number of directly connected methods in a given class. LCC is the
relative number of directly or indirectly connected methods. Two methods are
considered to be indirectly connected if they access a common instance variable
through the invocation of other methods.

Complexity Metric. In order to measure the structural complexity for a
class, instead of counting the number of methods, the complexities of all meth-
ods must be added together. This is measured by WMC (Weighted Method
per Class) metric [6]. WMC is the sum of the complexity of all methods for
a class, where each method is weighted by its cyclomatic complexity. The
number of methods and the complexity of the methods involved is a predictor
of how much time and effort is required to develop and maintain the class.

Several studies have been conducted to validate these metrics and have
shown that they are useful quality indicators [20].

After computing the metrics values, the next step is to give a relevant
interpretation of the obtained measurements results. Following a classical
approach we have to set threshholds values for metrics that we use. As we
mentioned before, the problem of setting up the threshholds is not simple and
the accuracy of the results obtained is questionable. In order to overcome this
limitation, we propose an alternative approach based on fuzzy clustering anal-
ysis for the problem of setting up the software metrics threshold values. Thus,

32 CAMELIA SERBAN AND HORIA F. POP

an object may be placed in more that one group, having different membership
degree.

3. Fuzzy clustering analysis

Clustering is the division of data set into subsets (clusters) such that,
similar objects belong to the same cluster and dissimilar objects to different
clusters. Many concepts found in real world do not have a precise membership
criterion, and thus there is no obvious boundary between clusters. In this case
fuzzy clustering is often better, as objects belong to more that one cluster with
different membership degrees.

Fuzzy clustering algorithms are based on the notion of fuzzy set that was
introduced in 1965 by Lotfi A. Zadeh [21] as a natural generalization of the
classical set concept. Let X be a data set composed of n data items. A
fuzzy set on X is a mapping A : X → [0, 1]. The value A(x) represents the
membership degree of the data item x ∈ X to the class A. Fuzzy clustering
algorithms partition the data set into overlapping groups based on similarity
amongst patterns.

3.1. Fuzzy Clustering Analysis – formalization. Let X = {O1, O2, ..., On}
be the set of n objects to be clustered. Using the vector space model, each
object is measured with respect to a set of m initial attributes A1, A2, ..., Am

(a set of relevant characteristics of the analyzed objects) and is therefore de-
scribed by a m-dimensional vector Oi = (Oi1, Oi2, ..., Oim), Oik ∈ <, 1 ≤ i ≤ n;
1 ≤ k ≤ m;

Our aim is to find a fuzzy partition matrix U = (C1, C2, ..., Cc), Ci =
(ui1, ui2, ..., uin), 1 ≤ i ≤ c, that best represents the cluster substructure of
the data set X., i.e. objects of the same class should be as similar as possible,
and objects of different classes should be as dissimilar as possible. The fuzzy
partition matrix, U has to satify the following constraints:

• membership degree: uik ∈ [0..1], 1 ≤ i ≤ c, 1 ≤ k ≤ n, uik represents
the membership degree of the data object Ok to cluster i;

• total membership: the sum of each column of U is constrained to the

value 1(
c∑

i=1
uik = 1).

The fuzzy clustering generic algorithm, named Fuzzy c-means clustering, is
described in [4]. This algorithm has the drawback that the optimal number of
classes corresponding to the cluster substructure of the data set, is a data entry.
As a result in this direction, hierarchical clustering algorithms, produce not
only the optimal number of classes (based on the needed granularity), but also
a binary hierarchy that show the existing relationships between the classes. In

SOFTWARE QUALITY ASSESSMENT USING A FUZZY CLUSTERING APPROACH 33

this paper we use the Fuzzy Divisive Hierarchic Clustering algorithm (FDHC)
[22].

4. Our Approach

The main objective of this paper is to use fuzzy clustering technique in
order to offer an alternative solution to the problem of setting up the software
metrics thresholds values, metrics applied for object-oriented design quality
investigation. In other words, we aim at identification of those design entities
that violate a specified design principle, heuristics or rule. These entities are
affected by some design flaw. Thus, our problem can be reduced at identifica-
tion of those design flaws that violate a specified design principle or heuristic.
In fact, design flaws are violations of these heuristics/principles.

Let us consider the theoretical framework proposed in Section 3. In addi-
tion, we adopt the following notations:

• DP denotes the set of design principles, heuristics or rules that we
want to quantify;

• DF denotes the set of design flaws that violate the entitites from DP ;
• R ⊆ DP ×DF , the associations set between DP and DF ;

Definition 1. The 3-tuple GPF = (DP,DF, R) is a bipartite graph, called
principles-design flaws.

For each element from the DP or DF set we have to identify a set of
relevant metrics. The set of all these metrics will be denoted by M . Let
also consider R1 to be the set of associations between the entities from DP
and their corresponding metrics from M and R2 to be the set of associations
between the entities from DF and their coresponding metrics from M .

Definition 2. The 3-tuple GPM = (DP,M, R1) is a bipartite graph, called
principle metrics.

Definition 3. The 3-tuple GFM = (DF,M,R2) is a bipartite graph, called
flaw metrics.

With these considerations our problem stated in Section 2 can be rephrased
as follows: given an element, p, from DP or DF set, its associated metrics
set Mp and a subset of design entities from E, we have to identify (using a
fuzzy clustering approach) those design entities that capture deviations from
a specified principle/heuristic or are affected by a specified design flaw. In
this way, for each entity implied in the evaluation, we obtain a set of metrics
values.

We may apply now the FDHC algorithm referred in Section 3. The de-
sign entities implied in the evaluation correspond to objects from the fuzzy
clustering algorithm and the metrics values to the attributes of these objects.

34 CAMELIA SERBAN AND HORIA F. POP

After applying this algorithm each assessed entity is placed into a cluster
having a membership degree. This approach offers a better interpretation of
measurements results than the thresholds values-based interpretation.

5. Case study

In order to validate our approach we have used the following case study.
The object oriented system proposed for evaluation is log4net [3], an open
source application. It consists of 214 classes. The elements of the meta-
model defined in Section 2.1 (design entities, their properties and the relations
between them) ware identified using our own dveloped tool.

The objective of this case-study is to identify those entities affected by
“God Class” [17] design flaws. So, the objects considered for fuzzy clustering
algorithm are classes from the analyzed system.

The first step in this evaluation is to construct (from the graph principles-
design flaws defined in Section 5) the subgraph that contains the node “God
Class” and its related “heuristics/rules”. As it is known, an instance of a god-
class performs most of the work, delegating only minor details to a set of trivial
classes and using the data from other classes. This has a negative impact on
the reusability and the understandability of that part of the system. This
design problem may be partially assimilated with Fowlers Large Class bad-
smell. In this case we will start from a set of two heuristics found in Riels
book [17]:

• Distribute system intelligence horizontally as uniformly as possible;
• Beware of classes with much non-communicative behavior.

The second step is to select proper metrics that best quantify each of the
identified heuristics/rules. This means identifying the subgraph obtained by
keeping the nodes corresponding with these heuristics and their corresponding
metrics that we want to take into account.

In our case the first rule refers to a uniform distribution of intelligence
among classes, and thus it refers to high class complexity. The second rule
speaks about the level of intraclass communication; thus it refers to the low
cohesion of classes. Therefore, we chose the following metrics:

• Weighted Method per Class (WMC) is the sum of the statical complex-
ity of all methods in a class [6]. We considered the McCabes cyclomatic
complexity as a complexity measure [13].

• Tight Class Cohesion (TCC) is the relative number of directly con-
nected methods [5].

• Access to Foreign Data (ATFD) represents the number of external
classes from which a given class accesses attributes, directly or via
accessor-methods [11]. The higher the ATFD value for a class, the

SOFTWARE QUALITY ASSESSMENT USING A FUZZY CLUSTERING APPROACH 35

higher the probability that the class is or is about to become a god-
class.

As a remark, a possible suspect of “God Class” will have high values for the
WMC and ATFD metrics and low values for the TCC metric.

Taking into account the metrics mentioned above each class from our sys-
tem, ci, will be identified by a vector of three elements, ci = (m1,m2,m3),
corresponding to the metrics values applied for class ci.

The next step is to apply the FDHC algorithm described in Section 3.
The objects from the algorithm are classes from our system and the features
are the computed values of the metrics corresponding to these classes. The
classification tree and the final binary partition produced by FDHC algorithm
are represented in Figure 1. By interpreting the results obtained we may
conclude that the algorithm has identified a list of suspects, those from class
1 and a list of the objects that do not need further investigation, class 2 of
objects. The list of suspects from class 1 are further partitioned according to
the values of the three metrics. For example, in class 1.1.1.1.1.1. the list of
suspects have the value 0 of the TCC and ATFD metrics and low value for
the WMC metric.

Due to space restrictions, we include in this paper only a subset of objects,
containing a list of suspects. These objects are described in Figure 2. All other
numerical data are available from the authors by request.

6. Related work

During the past years, various approaches have been developed to address
the problem of detecting and correcting design flaws in an object-oriented
software system using metrics. Marinescu [11] defined a list of metric-based
detection strategies for capturing around ten flaws of object-oriented design
at method, class and subsystem levels as well as patterns. However, how to
choose proper threshold values for metrics and propose design alternatives to
correct the detected flaws are not addressed in his research.

Mihancea et al. [15] presented an approach to establish proper threshold
values for metrics-based design flaw detection mechanism. This approach,
called tuning machine, is based on inferring the threshold values based on
a set of reference examples, manually classified in flawed, respectively good
design entities.

Trifu [18] introduced correction strategies based on the existing flaw de-
tection and transformation techniques. This approach serves as reference de-
scriptions that enable a human-assisted tool to plan and perform all necessary
steps for the removal of detected flaws. Consequently, it is a methodology that
can be fully supported.

36 CAMELIA SERBAN AND HORIA F. POP

Class Members
1.1.1.1.1.1. 1 5 15 24 35 46 137 155 183 198
1.1.1.1.1.2.1. 43 140 151
1.1.1.1.1.2.2. 41 96 102 103 105 106 207
1.1.1.1.2.1. 25 97 133 173
1.1.1.1.2.2.1. 69 86 91 93 152
1.1.1.1.2.2.2. 42 52 116 124
1.1.1.2.1.1. 6 26 27 57 71 83 84 115 129 144 166 170 199
1.1.1.2.1.2.1. 61 95 104 108
1.1.1.2.1.2.2. 98 110 191
1.1.1.2.2. 21 44 58 89 111 122 128 164 171
1.1.2. 2 14 28 45 47 48 49 66 88 113 120 121 123 136 146

160 161 162 178 187 192 193 194 197 201 206 208 213
1.2.1. 3 11 12 16 38 55 63 72 94 99 107 109 112 138 142 172

179 186 209 211
1.2.2. 18 19 37 77 87 114 1 26 132 134 135 139 163 167 168

169 180 190 210
2. 4 7 8 9 10 13 17 20 22 23 29 30 31 32 33 4 36 39 40

50 51 53 54 56 59 60 62 64 65 67 68 70 73 74 75 76
78 79 80 81 82 85 90 92 100 101 117 118 119 125 127
130 131 141 143 145 147 148 149 150 153 154 156 157
158 159 165 174 175 176 177 181 182 184 185 188 189
195 196 200 202 203 204 205 212 214

Figure 1. Classification tree and final partition for the set of
214 objects

M. Frenţiu and H.F.Pop [2] presented an approach based on fuzzy clus-
tering to study dependencies between software attributes, using the projects
written by second year students as a requirement in their curriculum. They
have observed that there is a strong dependency between almost all considered
attributes.

7. Conclusions and Future Work

We have presented in this paper a new approach that address the issue
of setting up the software metrics threshold values, approach based on fuzzy
clustering techniques. In order to validate our approach we have used a case
study, presented in Section 5. Further work can be done in the following
directions:

SOFTWARE QUALITY ASSESSMENT USING A FUZZY CLUSTERING APPROACH 37

Figure 2. A list of “God Class” design flaw suspects

(1) To apply this approach for more case studies;
(2) Comparison with others approaches regarding the issue of threshold

values;
(3) To develop a tool that emphasizes the approach presented in this paper.

8. Acknowledgement

This research has been supported by CNCSIS - the Romanian National
University Research Council, through the PNII-IDEI research grant ID 550/2007.

References

[1] W. Li and S. Henry. Maintenance Metrics for the Object Oriented Paradigm. IEEE
Proc. First International Software Metrics Symp., pages 5260, may 1993.

[2] M. Frentiu and H.F. Pop. A study of dependence of software attributes using data
analisys techniques. Studia Univ. Babes-Bolyai, Series Informatica, 2 (2002), 53–66.

[3] Project log4net.: http://logging.apache.org/log4net.
[4] Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum

Press, New York, 1981.
[5] Bieman, J. and Kang, B.: Cohesion and reuse in an object-oriented system. Proc.

ACM Symposium on Software Reusability, apr (1995).
[6] Chidamber, S. and Kemerer, C.: A metric suite for object- oriented design. IEEE

Transactions on Software Engineering, 20(6):476–493, June (1994).

38 CAMELIA SERBAN AND HORIA F. POP

[7] Fowler, M. Beck, K. Brant, J. Opdyke, W. and Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley, (1999).

[8] Henderson-Sellers, B.: Object-Oriented Metrics: Measures of Complexity. Prentice-
Hall, (1996).

[9] Johnson, R. and Foote, B.: Designing reuseable classes. Journal of Object-Oriented
Programming, 1(2):22–35, June (1988).

[10] Lorenz, M. and Kidd, J.: Object-Oriented Software Metrics. Prentice-Hall Object-
Oriented Series, Englewood Cliffs, NY, (1994).

[11] R. Marinescu, Measurement and quality in object-oriented design. Ph.D. thesis in
the Faculty of Automatics and Computer Science of the Politehnica University of
Timisoara, 2003.

[12] R. Martin, Design Principles and Patterns. Object Men-
tor,http://www.objectmentor.com, 2000

[13] McCabe, T.: A complexity measure. IEEE Transactions on Software Engineering,
2(4):308–320, dec (1976).

[14] Meyer, B.: Object-Oriented Software Construction. International Series in Computer
Science. Prentice Hall, Englewood Cliffs, (1988).

[15] P.F. Mihancea and R.Marinescu. Towards the optimization of automatic detection of
design flaws in object-oriented software systems. In Proc. of the 9th European Conf.
on Software Maintenance and Reengineering (CSMR), 92–101, (2005).

[16] Rajaraman, C. and Lyu, M.: Some coupling measures for c++ programs. Prentice-Hall
Object-Oriented Series, In Proceedings of TOOLS USA92, Prentice-Hall, Englewood
Cliffs, NJ, (1992).

[17] Riel, A.J.: Object-Oriented Design Heuristics. Addison-Wesley, (1996).
[18] Tahvildari, L. and Kontogiannis, K.: Improving design quality using meta-pattern

transformations : A metric-based approach. Journal of Software Maintenance and
Evolution : Research and Practice, 4-5(16):331–361, October (2004).

[19] D.Tegarden and S.Sheetz: Object-oriented system complexity: an integrated model of
structure and perceptions. In OOPSLA92 Workshop on Metrics for Object-Oriented
Software Development(Washington DC), (1992).

[20] Basili, V., Briand, L., and Melo, W.: A validation of object-oriented design metrics as
quality indicators. IEEE Transactions on Software Engineering 22(10), 751-761, (1996).

[21] Zadeh L. A.: Fuzzy sets, Inf. Control, 8, 338–353, (1965).
[22] Dumitrescu, D.: Hierarchical pattern classification, Fuzzy Sets and Systems 28, 145–

162, (1988).

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: camelia@cs.ubbcluj.ro, hfpop@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

SECURING DISTRIBUTED .NET APPLICATIONS USING
ADVANCED RUNTIME ACCESS CONTROL

KRISZTIÁN PÓCZA, MIHÁLY BICZÓ, ZOLTÁN PORKOLÁB

Abstract. The architecture and integration of distributed applications
increased in complexity over the last decades. It was Service Oriented Ar-
chitecture (SOA) that answered most of the emerging questions by its ex-
plicit and contract-based interface definitions for services and autonomous
components. The exposed functionality can be used by anyone who has
access to the public interface of SOA applications. Due to loose secu-
rity handling, risks often emerge in SOA applications. Interfaces are usu-
ally published to an unnecessarily wide set of clients. Although there are
attempts to implement fine-grained access control mechanisms in object-
oriented programming languages like Eiffel, C# and Java, these solutions
are in-process that means that they cannot cross service contract bound-
aries in distributed applications. For these, it is of utmost importance
to validate the type and the identity of the caller, track the state of the
business process and even validate the client itself using simple, declara-
tive syntax. In this paper we present a framework that aims to introduce
fine-grained access control mechanisms in the context of distributed .NET
applications. We present a semi-formalized description of the framework
and also a pilot implementation.

1. Introduction

The complexity of IT systems has been getting increasingly complex ever
since the beginning of software development. IT systems and the business
processes that they serve span over multiple networks, computers, and pro-
gramming languages. What makes things even more complicated is that pieces
of software serving specific business goals (the steps of business processes) are
dynamically changing. As a consequence, a rchitects and developers face sys-
tem integration issues in a dynamically changing technical and business en-
vironment. Until recently, integration of systems has been performed either

Received by the editors: August 5, 2008.
2000 Mathematics Subject Classification. 68M14.
1998 CR Categories and Descriptors. C.2.4 [Computer Systems Organization]:

Computer-Communication Networks – Distributed Systems;
Key words and phrases. Distributed applications, Security, Runtime access control, .NET.
This paper has been presented at the 7th Joint Conference on Mathematics and Computer

Science (7th MaCS), Cluj-Napoca, Romania, July 3-6, 2008.

39

40 KRISZTIÁN PÓCZA, MIHÁLY BICZÓ, ZOLTÁN PORKOLÁB

manually or using hard-coded modules that were difficult to maintain and
failed in a changing environment. Manual integration has been time consum-
ing and prone to errors, while hard coded solutions require knowledge of all
connected systems and have to be re-designed and implemented when any of
the underlying systems or steps of the business process changes.

It is Service Oriented Architecture (SOA) [1] [10] that answers the most
common difficulties of system integration. From the historical point of view,
SOA is an evolution of modular programming, so it extends its basic prin-
ciples. Reuse, granularity, modularity, composability, componentization, and
interoperability are common requests for a SOA application as well as for
modular object oriented applications.

However, while the elementary building block of an object oriented soft-
ware is the class, the basic element of a SOA application is typically a much
larger component. These larger chunks of functionality are called services, and
this is where the name Service Oriented Architecture originates from. Services
implement a relatively large set of functionality, and should be as independent
of each other as possible. This means that services should have control over
the logic they encapsulate and should not call each other directly. Rather, if
a more complex behavior is required, they should be composed to more com-
plex composite services. In other words, services should be autonomous and
composable.

Services expose their functionality through service contracts. A contract
describes the functions that can be invoked, the communication protocols as
well as the authentication and authorization schemes. The exposed function-
ality is usually a public interface that can be called by anyone who is authen-
ticated, aware of the existence of the service and uses the required commu-
nication protocol. The keyword is that the exposed functionality is basically
public, and users have quite limited amount of control over the identity and
the nature of a caller.

However, in a realistic scenario it can also happen that the identity of the
caller or the set of allowed methods depends on the state of the underlying
business process or other available information. This is usually hard to express,
and due to the lack of technology support for fine-grained, or higher level
access control, it is challenging to implement the above mentioned scenario
using standard protocols, programming environments and tools.

In [4] [15] we have implemented a pilot approach to implement Eiffel-like
selective feature export in C# 3.0. This solution makes it possible to control
access to protected resources (methods of ’public’ interfaces) in a declarative
way using simple declarative syntax using the concepts of Aspect Oriented
Programming [12]. Although the approach works well in everyday application,
it cannot be applied in the case of distributed systems.

What makes things even more complicated is that SOA usually integrates
systems running on multiple computers and environments, in other words

SECURING DISTR. .NET APPS USING ADV. RUNTIME ACCESS CONTROL 41

these systems are distributed ones. To successfully implement our solution we
have to sacrifice the interoperability property of SOA, which means that our
connected applications have to be created using homogeneous communication
platforms. The exposed services are required to be aware of some information
about clients. Although this requirement is not common for SOA applications,
however, other important properties of SOA can remain unchanged (contract
based interface specification, autonomous services). Moreover, the security
validation attributes can be regarded as part of the contract.

In this paper our aim is to establish a framework that enables users to
control access to the members of public interfaces in a SOA-enabled distributed
object system [17].

There are several authors who deal with the security of distributed appli-
cations and show the importance of the topic [2] [21]. There are techniques
which can be used to generate formal proof of an access request satisfying an
access-control policy [3].

[6] provides a method for specifying authorization constraints for workflow
based systems that include separation of duty constraints (two different tasks
must be executed by different users), binding of duty constraints (same user
is required to perform multiple tasks) and cardinality constraints (specify the
number that certain tasks have to be executed). A custom reference monitor
has been also specified that checks the previously mentioned properties of
workflows and workflow tasks.

The concepts in [8] are based on the workflow RBAC authorization rules
that are represented as a tuple (r, t, execute, p) that states that users in r
role can execute task t when an optional predicate p holds true). They create
an extension to the WARM methodology that enables to determine workflow
access control information from the business process model. [21] presents
an approach where the workflow access control model is decoupled from the
workflow model that enables them to create a service oriented workflow access
control model. Our solution follows a different approach that makes it more
compact but harder to configure.

Another way would be to create a DSL that is dedicated to implementing
services [5] and extend this language with security concepts.

There are approaches that store and control policy settings using some
centralized database [7] or have multiple layers of configuration [18]. We de-
cided to create an application specific solution and have unified configuration
methodology.

In Section 2 we present a simple motivating example that draws attention
to issues when not using fine-grained access control mechanisms.

In Section 3 we present a semi-formalized approach to solving problems
presented through the motivating example.

42 KRISZTIÁN PÓCZA, MIHÁLY BICZÓ, ZOLTÁN PORKOLÁB

In Section 4 a possible implementation of the theory will be shown. The
chosen environment is the .NET platform, the Workflow Foundation engine
(now part of the .NET framework), and the C# programming language.

In the closing section we summarize our results, and present further re-
search areas.

2. Motivating Example

2.1. Ping-Pong Game. In order to highlight the problematic parts when
accessing fully public SOA interfaces, in this subsection we are going to show
a simple motivating example, is a ping-pong game.

The players of the ping-pong game run on different computers, so it is a
distributed application. We suppose that the reader knows the rules of the
game. The players register themselves at the game manager, who assigns a
unique identifier to both players.

The methods of the game are published as an interface. The Game man-
ager class implements this interface and exposes methods of the game to pos-
sible clients, primarily players.

A possible object diagram can be seen in Figure 1.

Figure 1. Possible object diagram of a distributed game

The game manager is a singleton, there is exactly one instance of the game
manager class.

The ’rules’ of the game can be described as a workflow. The workflow
itself and its state transitions is a finite state automaton. The finite state
automaton can be described as a UML activity diagram [19]. The activity
diagram can be seen in Figure 2.

SECURING DISTR. .NET APPS USING ADV. RUNTIME ACCESS CONTROL 43

The objects may possibly be hosted on different computers. The difficulty
is that we want to allow only objects of type Player to call methods of the
Ping-pong game object in this distributed environment. What makes things
even more complicated is that the ping-pong game has a well-defined sequence
of allowed events with a well-defined set of allowed callers, and we have to keep
the system consistent based on these rules.

2.2. Security Shortcomings of Recent Business Applications. In real
world business applications the sequence and branches of business operations
that instrument business processes are well defined and bounded. It is also
well defined who can execute a business operation in the lifetime of a business
process instance.

The business rules clearly define who is allowed to perform different tasks
and also define the exact workflow of our ping-pong game in troduced before
(even it is not a business application).

Unfortunately, in most real world applications these business rules are not
enforced on the server side, they are rather hard coded in the client appli-
cations. Moreover, the restricted functions - based on the user role and the
current state of the process - are simply hidden on the user interface. At the
same time the server is open for any kind of requests, therefore an attacker
can compromise the business process.

The reason of the previous can be one of the following:
(1) Architects and developers do not care of business security
(2) Architects and developers think that a simple firewall (that restricts

the access of the server from specific subnets) or some built-in authen-
tication is enough

(3) Architects and developers think or decide that it is satisfying to im-
plement business security on the client side

(4) There is no time and money to implement adequate security mecha-
nisms

(5) It is hard to implement business security in a distributed environment
Of course it is hard or cannot be carried out to change the mind of architects
and developers therefore we suggest a solution that makes server-side business
security checks easier and faster to implement.

3. Solve Shortcomings

First we have to denote which client and business properties are suggested
to be checked and tracked to raise the business process security level:

(1) The runtime type of the caller class on the client side (pin g-pong
player in the ping-pong game)

(2) State of the business process (e.g. The rules of the ping-pong game in
our example)

44 KRISZTIÁN PÓCZA, MIHÁLY BICZÓ, ZOLTÁN PORKOLÁB

(3) The identity of the client (e.g. Is it the first or the second player in
the ping-pong game?)

(4) Validate, verify the client itself (e.g. IP address, subnet or some kind
of certification of the client)

All of the previous are static or internal properties from the view of the busi-
ness process, therefore all of them can be checked using declarative syntax
(statically burned in) or can be read from a configuration database.

When creating a SOA application we publish a contract (an interface) to
clients. The previous properties can be validated contract-wide and can be
validated only for particular business operations published by the contract.

It means that the above properties can be validated at method level at
every single call. The granularity level of most of the above properties changes
from application level to method level. Informally speaking, we introduce a
business call level fine-grained ” firewall”.

In the next subsections we will examine these four properties from the
validability point of view.

We identified the need to give a semi-formalized description of our solution.
There are two approaches:

(1) Extend existing description languages (like BPEL [20] [11])
(2) Create a new language that only focuses on the problem presented in

this article

Because BPEL focuses on the business process rather than security, and uses
XML notation, we have chosen the second approach. BPEL and our semi-
formal description can be used side-by-side.

A contract (C) can be defined as a triplet of set of methods, restrictions
applied to the contract itself and the set of restrictions applied to individual
methods published by the contract.

C = ({M1,M2, . . . , Mn}, RC , {RM1 , RM2 , . . . , RMn})

The restrictions applied to the contract itself (Rc) can be formalized using
the following triplet:

Rc = ({Tc1 , Tc2 , . . . , Tcq}, {Ic1 , Ic2 , . . . , Icw}, {Nc1 , Nc2 , . . . , Nce})

Here Tcis represents a contract-level type restriction for allowed callers
(subsection 3.1), Icis denotes a contract-level identity restriction for allowed
callers (subsection 3.3), while Ncis defines a contract-level network restriction
(subsection 3.4).

Security restrictions applied to a single method (Mi):

RMi =
({TMi,1, TMi,2, . . . , TMi,ri}, {(SMi,1, AMi,1), (SMi,2, AMi,2), . . . , (SMi,ti , AMi,ti)},

{IMi,1, IMi,2, . . . , IMi,yi}, {NMi,1, NMi,2, . . . , NMi,ui})

SECURING DISTR. .NET APPS USING ADV. RUNTIME ACCESS CONTROL 45

Here TMi,is, IMi,js and NMi,js are the same as their contract-level pairs,
whileSMi,j , AMi,j pairs describe the allowed state and state transition con-
straints (subsection 3.2).

3.1. Distributed Runtime Access Control. We have stated in one of our
previous work about in-process systems [4] that reducing the interface where
software components can communicate with each other increases software
quality, security and decreases development cost. Compile time or runtime
visibility and access control checking that support encapsulation is the key
part of modern languages and runtime environments [16]. They enforce re-
sponsibility separation, implementation and security policies. Most modern
programming languages like C++, C# and Java do not have sophisticated
access control mechanisms only introduce a subset or combination of the fol-
lowing access modifiers: public, private, protected, internal, and friend while
Eiffel defines sophisticated selective access control called selective export.

The Eiffel programming language [13] allows features (methods) to be
exposed to any named class. The default access level of a feature is the public
level. However, an export clause can be defined for any feature which explicitly
list classes that are allowed to access the underlying feature.

In this paper we suggest a runtime access control extension to distributed
environments where only well identified classes are allowed to access particular
methods. To achieve this goal, the server side should be extended with the
ability to detect the runtime type of the caller (client) using a declarative
solution that statically predefines the allowed callers at the contract or method
level.

Another possibility would be to restrict access for clients based on group
membership or roles (like DCOM [9]). In this case different callers in different
roles are to be assigned to (domain level) groups and restrict access of pub-
lished contracts for certain groups. Moreover, restrictions can be enforced at
the operation (method) level to achieve more fine-grained security.

In our ping-ping example only players can participate in matches).

3.2. Business Process Validation. In [6] it is noted that it may be nec-
essary to impose constraints on who can perform a task given that a prior
task has been performed by a particular individual. In this section we feature
another approach to solve the problems stated in [6].

As we mentioned before business applications are driven by rules that
define the following properties:

(1) Who is allowed to perform specific actions in given states
(2) What is the resulting state of a state transition if a business operation

succeeds
(3) What is the resulting state of a state transition if a business operation

fails

46 KRISZTIÁN PÓCZA, MIHÁLY BICZÓ, ZOLTÁN PORKOLÁB

In most cases, business processes defined by rules are hard-coded into appli-
cations, therefore they can be treated as static properties.

As suggested before operations exported on the interface are statically
bounded to certain process states in which they can be executed, furthermore
often initiate a state transition where the process gets into another well-defined
state.

Figure 2. State Machine of the ping-pong game

Business processes can be represented by state machines which are a kind
of directed graphs. Vertices of such a graph are the states of the state machine,
while edges are the state transitions between states.

The state machine representing the ’business process’ behind our p ing-
pong game can be described by the following UML Activity diagram in Figure
2 For the sake of simplicity we have not incorporated the error states and
events where for example one of the players loses the ball.

The first operation is where the first player gets the ball and hits it (evt-
Ping) to the other player therefore the game will be in Ping state. After that
the second player hits the ball (evtPong) to the first player and the game gets
into Pong state. Now the first player comes again (evtPing). If any of the
players get bored of the game the match can be finished (evtFinish).

It is easy to see that such state machines can be statically connected or
bounded to one or more published contracts. Operations can be checked if the
state machine is in a state that allows the particular operation and can trigger
state transitions. When the user instantiates one of the published contracts a
state machine instance is automatically attached to the contracts.

Static binding can be implemented declaratively and it is compulsory to
have one state machine instance per session.

SECURING DISTR. .NET APPS USING ADV. RUNTIME ACCESS CONTROL 47

To describe it formally remind the definition of the finite state machine or
simply state machine:

FSM = (Σ, S, s0, δ, F)
Where
(1) Σ represents the input alphabet, in our case the set of state transitions
(2) S is a finite not empty set of states
(3) s0 is an initial state, that is member of S
(4) δ : S × Σ → S is the state transition function
(5) F is the set of finite states, non-empty set in our case
Using the above definition the following restrictions can be applied:

∀iε[1..n] : ∀jε[1..ti]
{ SMi,jεS

AMi,jεΣ
(SMi,j , AMi,j)εDδ

It restricts the states, the state transitions and the state transitions avail-
able in certain states.

3.3. Client Identity Validation. In the previous two subsections we have
shown that it is indispensable to restrict callers by runtime type or group
membership and it is also indispensable to instrument the correct order of
business operation execution, enforce business rules.

Notwithstanding the previously mentioned two assurances there is another
problem that we show in the context of our ping-pong game. When Player
1 and Player 2 start playing a ping-pong match we have to ensure that the
players remain the same until the end of the match. In other words, t hey
do not change sides and they are not substituted with other players. In short
we have to maintain and validate the identity of players until the end of the
match.

It is possible to dedicate a referee or coordinator that assigns well-defined
identities for participants that can be ensured at method calls. For example
the player that gets elected as First Player always gets Identity no. 1 while
the other player gets 2 .

The above may not give protection from tampering the player identity.
But when we assign the (Name of the Computer, Process Id, Object Refer-
ence Id) triplet to the identity and track it on the server side, it cannot be
tampered because the name of the computer must be unique on the network
level. Similarly the process id must be unique on the computer level; while the
object reference id (practically pair of the runtime type and some type-level
unique object id) must be unique on the process level (e.g. hash code is unique
for same-typed objects in .NET).

3.4. Network and Certificate Validation of Clients. Firewalls can re-
strict access from clients deployed on certain subnets or IP addresses to the

48 KRISZTIÁN PÓCZA, MIHÁLY BICZÓ, ZOLTÁN PORKOLÁB

server. More advanced firewalls can restrict access to the server by domain
level user identity; however that capability is only a subset of distributed run-
time access control described in this paper.

Our first aim is to declaratively restrict access to specific contracts and
also methods for certain subnets even IP addresses.

The other thing that loosely relates to some sort of network-level valida-
tion of clients is client certificate validation. Using client certificates it can
be verified if the server communicates with a certified, trusted, verified and
possibly well-working client. The server can verify if it communicates with
clients having the certificate issued by a trusted authority.

3.5. Definition of Legal Calls. Let H be the information-set provided and
available at a method call:

H = (TH , Sa, IH , NH)
Where
(1) TH is the type of the caller
(2) Sa the actual state (business process state)
(3) IH is the identity of the caller
(4) NH is the network properties of the caller
We say that a call is legal with respect to a method (Mi), when H conforms

to the following restrictions:
(1) THε{TMi,1, TMi,2, . . . , TMi,ri}

⋂ {Tc1 , Tc2 , . . . , Tcq}
(2) Saε{SMi,1, SMi,2, . . . , SMi,ti}
(3) IHε{IMi,1, IMi,2, . . . , IMi,yi}

⋂ {Ic1 , Ic2 , . . . , Icw}
(4) NHε{NMi,1, NMi,2, . . . , NMi,ui}

⋂ {Nc1 , Nc2 , . . . , Nce}
The four restrictions apply to the four eligible properties of H. However,

the second restriction applies only to the available states because the state
transitions are restricted by the FSM itself.

4. Possible Implementation in the .NET 3.0 Environment

We have created a pilot implementation of the previously described se-
curity mechanism extension in .NET 3.0. .NET [14] is a programming plat-
form from Microsoft that helps to easily and effectively create even large scale
connected applications built on standard technologies like the Web Service
platform [20].

Version 3.0 of .NET introduced two innovative technologies that are used
by our solution:

(1) WCF - Windows Communication Foundation and
(2) WF - Windows Workflow Foundation

In the following two subsections we shortly describe the benefits of these tech-
nologies then show some implementation details.

SECURING DISTR. .NET APPS USING ADV. RUNTIME ACCESS CONTROL 49

4.1. WCF - Windows Communication Foundation. ’WCF is Microsoft’s
unified framework for building secure, reliable, transacted, and interoperable
distributed applications.’ [22]

In our situation it means that we get a unified interface for distributed
communication while we have the possibility to configure the communication
address and binding for our contracts. We can configure different transport
and messaging formats (binary, HTTP request, SOAP (Web Service), WSE*,
message queue, etc.), and the communication platform (data transfer protocol,
encoding, formatting, etc.).

4.2. WF - Windows Workflow Foundation. ’WF is the programming
model, engine and tools for quickly building workflow enabled applications.
WF radically enhances a developer’s ability to model and support business
processes.’ [23]

WF has the ability to model states and state transitions of state machines
that resembles mathematical state machines.

4.3. Ping-Pong Example. Because of space limitations we can show only
the server side of our implementation in detail. First we will show and explain
the contract definition of our ping-pong game exposed by WCF.

The following listing shows the contract definition as an interface in C#:
[ServiceContract(SessionMode=SessionMode.Required)]
[StateMachineDriven]
[CallerIdentityDriven]
public interface IPingPongService : IMultiSession
{

[OperationContract]
[AllowedCaller("Client.Player")]
[AllowedIdentity("1")]
[AllowedState("stFirst,stPong")]
[RaiseTransitionEvent("PingEvent")]
int Ping();

[OperationContract]
[AllowedCaller("Client.Player")]
[AllowedIdentity("2")]
[AllowedState("stPing")]
[RaiseTransitionEvent("PongEvent")]
int Pong();

[OperationContract]
[AllowedCaller("Client.Player")]
[AllowedIdentity("1,2")]

50 KRISZTIÁN PÓCZA, MIHÁLY BICZÓ, ZOLTÁN PORKOLÁB

[AllowedState("stPong")]
[RaiseTransitionEvent("FinishEvent")]
int Finish();

}

The first line contains a built-in ServiceContract attribute attached to
the IPingPongService interface that enables classes implementing the inter-
face to be exported as a service.

The StateMachineDriven and the CallerIdentityDriver attributes are
part of our framework that enables the contract to be validated against state
machine states and events, and check for the caller.

The IPingPongService interface inherits from the IMultiSession inter-
face which enables our solution to share the same session across multiple in-
stances of the same contract and also multiple instances of multiple contracts.
It is not used in this example; we only indicate the possibility with the remark
that SOA applications and distributed object systems do not encourage the
usage of sessions.

The OperationContract attribute is the method-level pair of the at-
tribute ServiceContract. AllowedCaller and AllowedIdentity attributes
define the allowed caller types and identities at particular methods. The
AllowedState attribute relates to the state machine controlling the ping-pong
game and dictate the states that certain operations can be executed at while
the attribute RaiseTransitionEvent instructs our framework to do a state
transition after successful method executions.

The previously explained interface is exposed to the client side also while
the implementation of the interface stays on the server side and defines prop-
erties that are exclusively server specific:

[StateMachineParameters(typeof(PingPongWF),
typeof(PingPongController))]

class PingPongService : MultiSession,
IPingPongService

{
...

The StateMachineParameters attribute declares a state machine workflow
type and a controller type that will be instantiated when the first call occurs.
This state machine and controller instance will drive the process (the game in
our example).

4.4. Custom Behaviors. Every call to the exposed operations has to be
intercepted on the server side and the security checks described in this paper
have to be performed. WCF has the ability to extend our service endpoints
with custom behaviors that can be used to do security checks.

We mention that WCF calls do not submit the client side caller type and
identity information automatically therefore at the client side we have to add

SECURING DISTR. .NET APPS USING ADV. RUNTIME ACCESS CONTROL 51

headers to every call that contain this information using custom client-side
behaviors.

The following XML fragment shows the server side configuration that de-
fines the extension that is responsible for doing security checks before the
execution of the exposed operation:
<extensions>

<behaviorExtensions>
<add name="distrRac"

type="ServerLib.RACServerBehaviorExtension, ServerLib,
Version=1.0.0.0, Culture=neutral,
PublicKeyToken=d18ff0ec0229ce90" />

</behaviorExtensions>
</extensions>

At the client side, there is a similar configuration setting that refers to the
ClientLib.RACClientBehaviorExtension type in the ClientLib assembly.

Connecting these extensions to the appropriate services some more lines
of XML configuration has to be added.

We show the client code fragment that adds the type of the caller to the
request headers that will be verified on the server side:
StackTrace stackTrace = new StackTrace(false);
StackFrame callerFrame = ClientHelper.GetCallerMethod(stackTrace);
request.Headers.Add(MessageHeader.CreateHeader(

DISTRRAC_HEADERID, DISTRRAC_NS,
callerFrame.GetMethod().DeclaringType.FullName));

On the server side the following code fragment is executed that checks the
type and identity of the caller:
string absUri = request.Headers.To.AbsoluteUri;
Type contract = ServerHelper.GetContract(absUri);
object []drivenAttrs=ServerHelper.GetDrivenByAttributes(contract);
MethodInfo targetMethod = ServerHelper.GetTargetMethod(absUri);

bool callerIdentityDriven =
ServerHelper.IsDrivenByCallerIdentity(drivenAttrs);

bool stateMachineDriven =
ServerHelper.IsDrivenByStateMachine(drivenAttrs);

if (callerIdentityDriven)
{

object[] callerAttrs =
ServerHelper.GetCallerAttributes(targetMethod);

string callerType =
request.Headers.GetHeader<string>(DISTRRAC_HEADERID,

52 KRISZTIÁN PÓCZA, MIHÁLY BICZÓ, ZOLTÁN PORKOLÁB

DISTRRAC_NS);
if (!ServerHelper.IsCallerAllowed(callerAttrs, callerType))
{

throw new InvalidCallerException();
}

}

The state machine based verification is performed similarly, however, in that
case after the execution of the exposed operation the state machine is driven
to the next state.

The other components of the H information set can be checked similarly
therefore we omit the discussion of their implementation.

5. Summary and Future Work

In this paper we have studied access control mechanisms that can be ap-
plied in case of distributed software systems.

Applications serving business processes are usually implemented as a dis-
tributed system: they span over different servers on different networks. Typi-
cal properties of such applications include dynamism: the business goals they
serve change just as often as the programming or hardware environments. In
order to successfully fight challenges imposed by the nature of these applica-
tions, the basic principles of Service Oriented Architecture (SOA) have been
formed. SOA is a natural extension and descendant of modular programming:
the functions of modules are published through interfaces.

In our work we have focused on the public interfaces of SOA applications
with the following restrictions:

(1) The application should use homogeneous communication platform and
(2) The service should have some information about the clients.

We have described motivating examples showing why it is often not enough to
rely ourselves on standard security mechanisms of existing standards. Starting
from the motivating examples we have shown why lower level access control
mechanisms are necessary to protect the interfaces exposing functionality to
the outside world.

We have elaborated our research and extended the security context of dis-
tributed applications based on the following properties: distributed runtime
access control, business process and client identity validation, and the network
identity validation of clients. The above properties can be validated at method
level at every single call. The granularity level of most of the above proper-
ties changes from application level to method level. Informally speaking, we
introduce a business call level fine-grained ”firewall”.

We have been following a semi-formal approach of the topic, and have given
a definition of a legal method call. Other solutions described in the related
work section solve only a part of the security problems specific to distributed

SECURING DISTR. .NET APPS USING ADV. RUNTIME ACCESS CONTROL 53

enterprise applications while we aimed to create a framework that answers
most of emerging questions.

The formal approach described important runtime restrictions for dis-
tributed object systems. However, the formal approach itself cannot guarantee
that it can be implemented in practice. In order to prove the practical appli-
cability of the proposal, we have implemented a pilot framework in the .NET
3.0 programming environment. The implementation uses the innovative tech-
nologies of the .NET framework: Windows Communication Foundation and
Workflow Foundation. We exploited declarative programming to the maximal
possible extent.

One of our further research directions can be the extension of the pilot
implementation with different environments, such as the Java platform. The
capabilities of widely used industrial standards should be analyzed, and, if
necessary, the presented formal framework should be refined in order to adapt
to different security mechanisms.

We designed our framework to be extensible with other custom security
mechanisms that may be orthogonal to the formalized and implemented ones.

This paper also shows the need for runtime access control in order to secure
distributed applications. Therefore we hope that similar frameworks will gain
popularity and help the quality improvement of complex, distributed systems.

References

[1] A. Barros, G. Decker, M. Dumas, F. Weber: Correlation Patterns in Service-Oriented
Architectures, In Proceedings of the 10th International Conference on Fundamental
Approaches to Software Engineering (FASE 2007), Braga (Portugal), 2007. Springer
Verlag, pages 245-259.

[2] M. Blaze, J. Feigenbaum, J. Ioannidis, A. D. Keromytis. The role of trust management
in distributed systems security, Secure Internet Programming. Springer Verlag, 1999,
pages 185-210

[3] L. Bauer, S. Garriss, M. K. Reiter. Efficient Proving for Practical Distributed Access-
Control Systems. Computer Security - ESORICS 2007, 2007, Springer Verlag, pages
19-37

[4] M. Biczó, K. Pócza, Z. Porkoláb. Runtime Access Control in C# 3.0 Using Extension
Methods, Proceedings of the 10th Symposium on Programming Languages and Software
Tools (SPLST 2007), Dobogókő (Hungary), 2007, pages 45-60.

[5] D. Cooney, M. Dumas, P. Roe: GPSL: A Programming Language for Service Implemen-
tation, In Proceedings of the 8th International Conference on Fundamental Approaches
to Software Engineering (FASE), Vienna, Austria, March 2006. Springer Verlag, pages
3-17.

[6] J. Crampton: A reference monitor for workflow systems with constrained task execution,
In Proceedings of the 10th ACM Symposium on Access Control Models and Technolo-
gies, pages 38-47, 2005.

[7] N. Damianou, N. Dulay, E. Lupu, M. Sloman and T. Tonouchi. Policy Tools for Do-
main Based Distributed Systems Management . IFIP/IEEE Symposium on Network
Operations and Management. Florence, Italy, 2002.

54 KRISZTIÁN PÓCZA, MIHÁLY BICZÓ, ZOLTÁN PORKOLÁB

[8] D. Domingos, A. R. Silva, P. Veiga. Workflow Access Control from a Business Perspec-
tive. International Conference on Enterprise Information Systems, 2004

[9] Frank E. Developing Distributed Enterprise Applications With the MS Common Object
Model. Hungry Minds, 1997, ISBN 0-764580-44-2

[10] R. Gronmo, M. C. Jaeger, A. Wombacher: A Service Composition Construct to Support
Iterative Development, In Proceedings of the 10th International Conference on Fun-
damental Approaches to Software Engineering (FASE 2007), Braga (Portugal), 2007.
Springer Verlag, pages 230-244.

[11] M. B. Juric, B. Mathew, P. Sarang. Business Process Execution Language for Web
Services: BPEL and BPEL4WS, Packt Publishing, 2004, ISBN 1-904811-18-3

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Ir-
win. Aspect-Oriented Programming, Proceedings of the European Conference on Object-
Oriented Programming, 1997, Springer Verlag, pages 220-242.

[13] B. Meyer. Eiffel - The Language, Prentice Hall, 1992. ISBN 0-13-247925-7
[14] .NET Framework: http://msdn2.microsoft.com/netframework/
[15] K. Pócza, M. Biczó, Z. Porkoláb. Runtime Access Control in C#, Proceedings of the

7th International Conference on Applied Informatics (ICAI), Eger, Hungary, 2007, jan.
28-31.

[16] A. Snyder. Encapsulation and inheritance in object-oriented programming languages. In
Proceedings of OOPSLA ’86, pages 38-45. ACM Press, 1986.

[17] Z. Tari, O. Bukhres. Fundamentals of Distributed Object Systems: The CORBA Per-
spective, Wiley, 2001, ISBN 978-0-471-35198-6

[18] D. Thomsen, D. O’Brien, and J. Bogle. Role Based Access Control Framework for Net-
work Enterprises. In Proceedings of 14th Annual Computer Security Applications Con-
ference. December 1998

[19] UML: http://www.uml.org/
[20] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. F. Ferguson. Web Services

Platform Architecture : SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More . Prentice Hall PTR, 2005.

[21] X. Wei, W. Jun, L. Yu, L. Jing. SOWAC: a service-oriented workflow access control
model. Proceedings of the 28th Annual International Computer Security and Applica-
tions Conferences, 2004, pages 128-134.

[22] Windows Communication Foundation: http://wcf.netfx3.com/
[23] Windows Workflow Foundation: http://wf.netfx3.com/

Eötvös Loránd University, Fac. of Informatics, Dept. of Programming
Lang. and Compilers, Pázmány Péter sétány 1/c. H-1117, Budapest, Hungary

E-mail address: kpocza@kpocza.net, mihaly.biczo@t-online.hu, gsd@elte.hu

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

META<FUN> – TOWARDS A FUNCTIONAL-STYLE
INTERFACE FOR C++ TEMPLATE METAPROGRAMS

ÁDÁM SIPOS, ZOLTÁN PORKOLÁB, AND VIKTÓRIA ZSÓK

Abstract. Template metaprogramming is an emerging new direction in
C++ programming for executing algorithms at compilation time. Despite
that template metaprogramming has a strong relationship with functional
programming, existing template metaprogram libraries do not follow the
requirements of the functional paradigm. In this paper we discuss the
possibility to enhance the syntactical expressivity of template metapro-
grams using an embedded functional language. For this purpose we define
EClean, a subset of Clean, a purely functional lazy programming language.
A parser, and a graph-rewriting engine for EClean have been implemented.
The engine itself is a compile-time template metaprogram library using
standard C++ language features. To demonstrate the feasibility of the
approach lazy evaluation of infinite data structures is implemented.

1. Introduction

Template metaprogramming is an emerging new direction in C++ pro-
gramming for executing algorithms at compilation time. The relationship
between C++ template metaprograms and functional programming is well-
known: most properties of template metaprograms are closely related to the
principles of the functional programming paradigm. On the other hand, C++
has a strong heritage of imperative programming (namely from C and Algol68)
influenced by object-orientation (Simula67). Furthermore the syntax of the
C++ templates is especially ugly. As a result, C++ template metaprograms
are often hard to read, and hopeless to maintain.

Ideally, the programming language interface has to match the paradigm
the program is written in. The subject of the Meta<Fun> project is writing
template metaprograms in a functional language and embedding them into

Received by the editors: September 15, 2008.
1998 CR Categories and Descriptors. D.3 [Programming Languages]: D.3.2 Applica-

tive (functional) languages; D.3 [Programming Languages]: D.3.2 Language Classifica-
tion, C++.

Key words and phrases. C++ Template Metaprogramming, Clean.
This paper has been presented at the 7th Joint Conference on Mathematics and Computer

Science (7th MaCS), Cluj-Napoca, Romania, July 3-6, 2008.

55

56 ÁDÁM SIPOS, ZOLTÁN PORKOLÁB, AND VIKTÓRIA ZSÓK

C++ programs. This code is translated into classical template metaprograms
by a translator. The result is a native C++ program that complies with the
ANSI standard [3].

Clean is a general purpose, purely functional, lazy language [8]. In our
approach we explore Clean’s main features including uniqueness types, higher
order functions, and the powerful constructor-based syntax for generating data
structures. Clean also supports infinite data structures via delayed evaluation.
We defined EClean as a subset of the Clean language. EClean is used as an
embedded language for expressing template metaprogramming.

In this article we overview the most important properties of the func-
tional paradigm, and evaluate their possible translation techniques into C++
metaprograms. The graph-rewriting system of Clean has been implemented as
a C++ template metaprogram library. With the help of the engine, EClean
programs can be translated into C++ template metaprograms as clients of
this library and can be evaluated in a semantically equivalent way. Delayed
evaluation of infinite data structures are also implemented and presented by
examples.

The rest of the paper is organized as follows: In section 2 we give a technical
overview of C++ template metaprograms (TMP), and discuss the relationship
between TMP and functional programming. Lazy data structures, evaluation,
and the template metaprogram implementation of the graph rewriting system
of Clean is described in section 3. Section 4 discusses future work, and related
work is presented in section 5. The paper is concluded in section 6.

2. Metaprogramming and Functional Programming

Templates are key elements of C++ programming language [13]. They en-
able data structures and algorithms be parameterized by types thus capturing
commonalities of abstractions at compilation time without performance penal-
ties at runtime [17]. Generic programming [12, 11, 9], is a recently emerged
programming paradigm, which enables the developer to implement reusable
codes easily. Reusable components – in most cases data structures and algo-
rithms – are implemented in C++ with the heavy use of templates.

In C++, in order to use a template with some specific type, an instantia-
tion is required. This process can be initiated either implicitly by the compiler
when a template with a new type argument is referred, or explicitly by the
programmer. During instantiation the template parameters are substituted
with the concrete arguments, and the generated new code is compiled. The
instantiation mechanism enables us to write smart template codes that execute
algorithms at compilation time [16, 18]. This paradigm, Template Metapro-
gramming (TMP) is used for numerous purposes. These include transferring

META<FUN> 57

calculations to compile-time, thus speeding up the execution of the program;
implementing concept checking [22, 14, 21] (testing for certain properties of
types at compilation); implementing active libraries [5], and others.

Conditional statements, like the stopping of recursions, are implemented
with the help of specializations. Subprograms in ordinary C++ programs can
be used as data via function pointers or functor classes. Metaprograms are first
class citizens in template metaprograms, as they can be passed as parameters
for other metaprograms [6]. Data and computation results are expressed at
runtime programs as constant values or literals. In metaprograms we use
static const and enumeration values to store quantitative information.

Complex data structures are also available for metaprograms. Recursive
templates are able to store information in various forms, most frequently as
tree structures, or sequences. Tree structures are the favorite implementation
forms of expression templates [19]. The canonical examples for sequential
data structures are typelist [2] and the elements of the boost::mpl library
[22, 7, 1].

By enabling the compile-time code adaptation, C++ template metapro-
grams (TMP) is a style within the generative programming paradigm [6]. Tem-
plate metaprogramming is Turing-complete [20], in theory its expressive power
is equivalent to that of a Turing machine (and thus most programming lan-
guages).

Despite all of its advantages TMP is not yet widely used in the software
industry due to the lack of coding standards, and software tools. A com-
mon problem with TMP is the tedious syntax, and long code. Libraries like
boost::mpl help the programmers by hiding implementation details of cer-
tain algorithms and containers, but still a big part of coding is left to the
user. Due to the lack of a standardized interface for TMP, naming and coding
conventions vary from programmer to programmer.

Template metaprogramming is many times regarded as a pure functional
programming style. The common properties of metaprogramming and func-
tional languages include referential transparency and the lack of variables,
loops, and assignments. One of the most important functional properties of
TMP is that if a certain entity (the aforementioned constants, enumeration
values, types) has been defined, it will be immutable. A metaprogram does
not contain assignments. That is the reason why we use recursion and special-
ization to implement loops: we are not able to change the value of any loop
variable. Immutability – as in functional languages – has a positive effect too:
unwanted side effects do not occur.

In our opinion, the similarities require a more thorough examination, as
the metaprogramming realm could benefit from the introduction and library
implementation of more functional techniques.

58 ÁDÁM SIPOS, ZOLTÁN PORKOLÁB, AND VIKTÓRIA ZSÓK

Two methods are possible for integrating a functional interface into C++:
modifying the compiler to extend the language itself, or creating a library-level
solution and using a preprocessor or macros. The first approach is probably
quicker, easier, and more flexible, but at the same time a language extension
is undesirable in the case of a standardized, widely used language like C++.

Our approach is to re-implement the graph-rewriting engine of the Clean
language as a compile-time metaprogram library using only ANSI standard
compliant C++ language elements. Thus our solution has numerous ad-
vantages. As the user written embedded code is separated from the graph-
rewriting engine, the embedded Clean code fragments can be translated into
C++ template metaprograms independently. Since the engine follows the
graph-rewriting rules of the Clean language as it is defined in [4], the seman-
tics of the translated code is as close to the intentions of the programmer as
possible. As our solution uses only standard C++ elements, the library is
highly portable.

3. Lazy Evaluation and Implementation of the Graph-rewriting
Engine

As lazy evaluation is one of the most characteristic features of the Clean
language [10], our research centers around lazy evaluation and its application
in C++ template metaprograms. A lazy evaluation strategy means that ”a
redex is only evaluated when it is needed to compute the final result”. This
enables us to specify lists that contain an infinite number of elements, e.g. the
list of natural numbers: [1..]. Our running example for the usage of lazy
lists is the Eratosthenes sieve algorithm producing the first arbitrarily many
primes. (The symbols R1..R6 are line numberings)
(R1) take 0 xs = []
(R2) take n [x,xs] = [x, take n-1 xs]
(R3) sieve [prime:rest] = [prime : sieve (filter prime rest)]
(R4) filter p [h:tl] | h rem p == 0 = filter p tl

= [h : filter p tl]
(R5) filter p [] = []
(R6) Start = take 10 (sieve ([2..]))

The Clean graph rewriting engine carries out the following evaluation.
(F1) take 10 (sieve [2..])
(F2) take 10 (sieve [2, [3..]])
(F3) take 10 ([2, sieve (filter 2 [3..])])
(F4) [2, take 9 (sieve (filter 2 [3..]))]
(F5) [2, take 9 (sieve [3, filter 2 [4..])]
(F6) [2, take 9 [3, sieve (filter 3 (filter 2 [4..]))]]
(F7) [2, 3, take 8 (sieve (filter 3 (filter 2 [4..])))]

META<FUN> 59

...

In the following we present via examples the transformation method of
an EClean program into C++ templates. Our EClean system consists of
two main parts: the parser – responsible for transforming EClean code into
metaprograms–, and the engine – doing the actual execution of the functional
code.
The compilation of a C++ program using EClean code parts is done in the
following steps:

• The C++ preprocessor is invoked in the execution of the necessary
header file inclusions and macro substitutions. The EClean library
containing the engine and supporting metaprograms is also imported
at this point.

• The source code is divided into C++ parts and EClean parts.
• The EClean parts are transformed by the parser of EClean into C++

metaprogram code snippets.
• This transformed source code is handed to the C++ compiler.
• The C++ compiler invokes the instantiation chain at code parts where

the Start expression is used, thus activating the EClean engine.
• The engine emulates Clean’s graph rewriting, and thus executes the

EClean program.
• When no further rewriting can be done, the finished expression’s value

is calculated, if necessary.

eclean.h

ECLEAN

ECLEAN

C++

ECLEAN

in TMP

ECLEAN code
translated

in TMP
compiled

C++

parser
ECLEAN

include

engine

C++
standard

compiler

Figure 1. EClean transformation and compilation process

3.1. The sieve program. In Section 2 we have described the various lan-
guage constructs available in metaprogramming. We now use typedefs, and
types created from templates to represent the EClean expressions. In this

60 ÁDÁM SIPOS, ZOLTÁN PORKOLÁB, AND VIKTÓRIA ZSÓK

approach our example Start expression has the form take<mpl::int <10>,
sieve<EnumFrom<mpl::int <2> > > >. Here take, sieve, and EnumFrom are
all struct templates having the corresponding signatures.

The graph rewriting process can be emulated with the C++ compiler’s
instantiation process. When a template with certain arguments has to be
instantiated, the C++ compiler chooses the narrowest matching template of
that name from the specializations. Therefore the rules can be implemented
with template partial specializations. Each partial specialization has an inner
typedef called right which represents the right side of a pattern matching
rule. At the same time the template’s name and parameter list represent the
left side of a pattern matching rule, and the compiler will choose the most
suitable of the specializations of the same name. Let us consider the following
example, which describes the sieve rule (sieve [prime:rest] = [prime :
sieve (filter prime rest)]).
template <class prime, class ys>
struct sieve<Cons<prime,ys> > {

typedef Cons<prime,sieve<filter<prime,ys> > > right;
};

The sieve template has two parameters, prime and ys. This template
describes the workings of (R3) in our Clean example. In case a subexpres-
sion has the form sieve<Cons<N,T> > where N and T are arbitrary types, the
previously defined sieve specialization will be chosen by the compiler as a
substitute for the subexpression. Note that even though N and T are gen-
eral types, the sieve template expects N to be a mpl::int , and T a list of
mpl::int types.

However, in order to be able to apply this rewriting rule, an exact match
is needed during the rewriting process. For example in (F1) during the eval-
uation process the previous sieve rule will be considered as applicable when
rewriting the subexpression sieve [2..]. The problem is that the argu-
ment [2..] (EnumFrom 2) does not match the sieve partial specialization
parameter list which is expecting an expression in the form Cons<N,T> with
types N and T. During the compilation the C++ compiler will instantiate the
type sieve<EnumFrom<mpl::int <2> > >. However this is a pattern match-
ing failure which has to be detected. Therefore each function must implement
a partial specialization for the general case, when none of the rules with the
same name can be applied. The symbol NoMatch is introduced, which signs
that even though this template has been instantiated with some parameter
xs, there is no applicable rule for this argument. NoMatch is a simple empty
class.
template <class xs>
struct sieve {

META<FUN> 61

typedef NoMatch right;
};

The previously introduced filter function’s case distinction is used to
determine at compilation time whether x is divisible by p, and depending on
that decision either of the two alternatives can be chosen as the substitution.
The C++ transformation of filter utilizes mpl::if for making a compile-
time decision:
template <int p, class x, class xs >
struct filter<boost::mpl::int_<p>, Cons<x,xs> > {

typedef typename boost::mpl::if_
<

typename equal_to
<

typename modulus<x,p>::type,
boost::mpl::int_<0>

>::type,
filter<p,xs>,
Cons<x,filter<p,xs> >

>::type right;
};

The mpl::if construct makes a decision at compilation time. The first
type parameter is the if condition, which in our case is an equal to template,
whose inner type typedef is a mpl::bool . Depending on this bool ’s value,
either the first, or the second parameter is chosen.

The working of the transformed EnumFrom is similar to the one in Clean:
if a rewriting is needed with EnumFrom, a new list is created consisting of the
list’s head number, and an EnumFrom and the next number.
template <class r>
struct EnumFrom {

typedef
Cons<r,EnumFrom<boost::mpl::int_<r::value+1> > > right;

};

All other functions can also be translated into templates using analogies
with the previous examples.

In the following we present the parser recognizing EClean expressions, and
transforming them to the previous form.

3.2. The parser. The parser was written in Java, using the ANTLR LL(k)
parser generator. The parser recognizes a subset of the Clean language, as
our aim was to create an embedded language aiding programmers in writing
metaprograms, and not the implementation of a fully capable Clean compiler.

62 ÁDÁM SIPOS, ZOLTÁN PORKOLÁB, AND VIKTÓRIA ZSÓK

The parser’s workings are as follows. The first stage in transforming an
embedded clean code into a template metaprogram is parsing the EClean code.
The notation for distinguishing between regular C++ code and EClean code
is the two apostrophes: ‘‘

3.2.1. Function transformation. Each function’s signature is recorded when
the function’s declaration is parsed. At the same time, the declaration is
transformed into a general template definition with the NoMatch tag, support-
ing the non-matching cases of the graph rewriting.
Let us consider the following example:
take :: Int [Int] -> [Int]

This function declaration is transformed into the following template:
template <class,class>
struct take {

typedef NoMatch right;
};

The two function alternatives of take are transformed as follows:
template <int n, class x, class xs>
struct take<mpl::int_<n>, Cons<x,xs> > {

typedef Cons<x,take<mpl::int_<n - 1>,xs> > right;
};

template <class xs>
struct take<mpl::int_<0>, xs> {

typedef NullType right;
};

The first alternative accepts three parameters, an int n representing the
first Int parameter (how many elements we want to take), and two arbitrary
types x and xs representing the head and tail of a list. On the other hand it is
guaranteed that when this function is invoked, x will always be a mpl::int ,
and xs will either be a list of mpl::int types, or the NullType (Nil). The
working mechanism of the parser’s code transformation is the guarantee for
this.

3.3. The graph-rewriting engine. Until now we have translated the Clean
rewriting rules into C++ templates, by defining their names, parameter lists
(the rule’s partial specialization), and their right sides. These templates will
be used to create types representing expressions thus storing information at
compilation time. This is the first abstraction layer. In the following we
present the next abstraction level, that uses this stored information. This
is done by the library’s core, the partial specializations of the Eval struct
template, which evaluate a given EClean expression.

META<FUN> 63

Since the specialization’s parameter is a template itself (representing an
expression), its own parameter list has to be defined too. Because of this con-
straint separate implementations are needed for the evaluation of expressions
with different arities. In the following we present one version of Eval that
evaluates expressions with exactly one parameter:

1 template <class T1, template <class> class Expr>
2 struct Eval<Expr<T1> >
3 {
4 typedef typename
5 if_c<is_same<typename Expr<T1>::right,
6 NoMatch>::value,
7 typename
8 if_c<!Eval<T1>::second,
9 Expr<T1>,

10 Expr<typename Eval<T1>::result>
11 >::type,
12 typename Expr<T1>::right
13 >::type result;
14
15 static const bool second =
16 !(is_same<typename Expr<T1>::right,NoMatch>::value &&
17 !Eval<T1>::second);
18 };

The working mechanism of Eval is as follows. Eval takes one argument,
an expression Expr with one parameter T1. The type variable T1 can be any
type, e.g. int, a list of ints, or a further subexpression. This way Eval
handles other templates. The return type result defined in line 13 contains
the newly rewritten subexpression, or the same input expression if no rule can
be applied to the expression and its parameters.

When the template Expr has no partial specialization for the parameter
T1, the compiler chooses the general template as described in Section 3.1. The
compile-time if c in line 5 is used to determine if this is the case, and the
Expr<T1>::right is equal to NoMatch.

• If this is the case, another if c is invoked. In line 8 T1, the first
(and only) argument is evaluated, with a recursive call to Eval. The
boolean second determines whether T1 or any of its parameters could
be rewritten. If no rewriting has been done among these children,
Eval’s return type will be the original input expression. Otherwise the
return type is the input expression with its T1 argument substituted
with Eval<T1>::result, which means that either T1 itself, or one of

64 ÁDÁM SIPOS, ZOLTÁN PORKOLÁB, AND VIKTÓRIA ZSÓK

its parameters has been rewritten. This mechanism is similar to type
inference.

• On the other hand, if a match has been found (the if c conditional
statement returned with a false value), the whole expression is rewrit-
ten, and Eval returns with the transformed expression (line 12).

The aforementioned boolean value second is defined by each Eval special-
ization (line 15). It is the logical value signaling whether the expression itself,
or one of its subexpressions has been rewritten.

The implementation of Eval for more parameters is very similar to the
previous example, the difference being that these parameters also have to be
recursively checked for rewriting.

As our expressions are stored as types, during the transformation process
the expression’s changes are represented by the introduction of new types.
The course of the transformation is the very same as with the Clean example.
The following types are created as right typedefs:

take<10,sieve<EnumFrom<2> > >
take<10,sieve<Cons<2,EnumFrom<3> > > >
take<10,Cons<2,sieve<filter<2,EnumFrom<3> > > > >
Cons<2,take<9,sieve<filter<2>,EnumFrom<3> > > >
Cons<2,take<9,sieve<3,filter<2,EnumFrom<4> > > > >
Cons<2,take<9,Cons<3,sieve<filter<3,EnumFrom<4> > > > > >
Cons<2,3,take<8,filter<3,filter<2,EnumFrom<4> > > > >
...

(Note that in the example all mpl::int prefixes are omitted from the int
values for readibility’s sake.)

We have demonstrated the evaluation engine’s implementation, and its
working mechanism.

4. Future work

One of the most interesting questions in our hybrid approach is to distin-
guish between problems that can be dealt with by EClean alone, and those that
do require template metaprogramming and compiler support. The EClean
parser could choose function calls that can be run separately and their result
computed without the transformation procedure and the invocation of the
C++ compiler. On the other hand, references to C++ constants and types
could be placed within the EClean code, and used by the EClean function in a
callback-style. This would result in much greater flexibility and interactivity
between EClean and C++.

In the future we will include support for more scalar types (bool, long,
etc) besides the implemented Int, and the list construct. Another interesting

META<FUN> 65

direction is the introduction of special EClean types like Type representing a
C++ type, Func representing a C++ function or even a function pointer.

5. Related Work

Functional language-like behavior in C++ has already been studied. Func-
tional C++ (FC++) [15] is a library introducing functional programming
tools to C++, including currying, higher-order functions, and lazy data types.
FC++, however, is a runtime library, and our aim was to utilize functional
programming techniques at compilation time.

The boost::mpl library is a mature library for C++ template metapro-
gramming. Boost::mpl contains a number of compile-time data structures,
algorithms, and functional-style features, like Partial Metafunction Applica-
tion and Higher-order metafunctions. However, boost::mpl were designed
mainly to follow the interface of the C++ Standard Template Library. There
is no explicit support for lazy infinite data structures either.

6. Conclusion

In this paper we discussed the Meta<Fun> project which enhances the
syntactical expressivity of C++ template metaprograms. EClean, a subset
of the general-purpose functional programming language Clean is introduced
as an embedded language to write metaprogram code in a C++ host envi-
ronment. The graph-rewriting system of the Clean language has been im-
plemented as a template metaprogram library. Functional code fragments
are translated into classical C++ template metaprograms with the help of
a parser. The rewritten metaprogram fragments are passed to the rewriting
library. Lazy evaluation of infinite data structures is implemented to demon-
strate the feasibility of the approach. Since the graph-rewriting library uses
only standard C++ language features, our solution requires no language ex-
tension and is highly portable.

References

[1] D. Abrahams, A. Gurtovoy, C++ template metaprogramming, Concepts, Tools, and
Techniques from Boost and Beyond, Addison-Wesley, Boston, 2004.

[2] A. Alexandrescu, Modern C++ Design: Generic Programming and Design Patterns
Applied, Addison-Wesley, 2001.

[3] ANSI/ISO C++ Committee, Programming Languages – C++, ISO/IEC 14882:1998(E),
American National Standards Institute, 1998.

[4] T. H. Brus, C. J. D. van Eekelen, M. O. van Leer, M. J. Plasmeijer, CLEAN: A lan-
guage for functional graph rewriting, Proc. of a conference on Functional programming
languages and computer architecture, Springer-Verlag, 1987, pp.364-384.

[5] K. Czarnecki, U. W. Eisenecker, R. Glck, D. Vandevoorde, T. L. Veldhuizen, Generative
Programming and Active Libraries, Springer-Verlag, 2000.

66 ÁDÁM SIPOS, ZOLTÁN PORKOLÁB, AND VIKTÓRIA ZSÓK

[6] K. Czarnecki, U. W. Eisenecker, Generative Programming: Methods, Tools and Appli-
cations, Addison-Wesley, 2000.

[7] B. Karlsson, Beyond the C++ Standard Library, An Introduction to Boost, Addison-
Wesley, 2005.

[8] P. Koopman, R. Plasmeijer, M. van Eeekelen, S. Smetsers, Functional programming in
Clean, 2002

[9] D. R. Musser, A. A. Stepanov, Algorithm-oriented Generic Libraries, Software-practice
and experience 27(7), 1994, pp.623-642.

[10] R. Plasmeijer, M. van Eeekelen, Clean Language Report, 2001.
[11] J. Siek, A. Lumsdaine, Essential Language Support for Generic Programming, Pro-

ceedings of the ACM SIGPLAN 2005 conference on Programming language design and
implementation, New York, USA, pp 73-84.

[12] J. Siek, A Language for Generic Programming, PhD thesis, Indiana University, 2005.
[13] B. Stroustrup, The C++ Programming Language Special Edition, Addison-Wesley, 2000.
[14] G. Dos Reis, B. Stroustrup, Specifying C++ concepts, Proceedings of the 33rd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
2006, pp. 295-308.

[15] B. McNamara, Y. Smaragdakis, Functional programming in C++, Proceedings of the
fifth ACM SIGPLAN international conference on Functional programming, pp.118-129,
2000.

[16] E. Unruh, Prime number computation, ANSI X3J16-94-0075/ISO WG21-462.
[17] D. Vandevoorde, N. M. Josuttis, C++ Templates: The Complete Guide, Addison-

Wesley, 2003.
[18] T. Veldhuizen, Using C++ Template Metaprograms, C++ Report vol. 7, no. 4, 1995,

pp. 36-43.
[19] T. Veldhuizen, Expression Templates, C++ Report vol. 7, no. 5, 1995, pp. 26-31.
[20] T. Veldhuizen, C++ Templates are Turing Complete
[21] I. Zólyomi, Z. Porkoláb, Towards a template introspection library, LNCS Vol.3286

(2004), pp.266-282.
[22] Boost Libraries.

http://www.boost.org/

Eötvös Loránd University, Faculty of Informatics, Dept. of Programming
Languages, Pázmány Péter sétány 1/C H-1117 Budapest, Hungary

E-mail address: shp@inf.elte.hu, gsd@elte.hu, zsv@inf.elte.hu

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

A SOFTWARE TOOL FOR DATA ANALYSIS BASED ON
FORMAL CONCEPT ANALYSIS

KATALIN TUNDE JANOSI RANCZ, VIORICA VARGA, AND JANOS PUSKAS

Abstract. Formal Concept Analysis is a useful tool to represent logi-

cal implications in datasets, to analyze the underground knowledge that

lies behind large amounts of data. A database relation can be seen as a

many-valued context [3]. J. Hereth in [4] introduces the formal context of

functional dependencies. In this context, implications hold for functional

dependencies. We develop a software application that analyzes an existing

relational data table and detect functional dependencies in it. The user

can choose to analyze a table from a MS SQL Server, Oracle or MySQL

database and the software will build the formal context of functional depen-

dencies. We use Conexp [6] to build the concept lattice and implications

in this context. These implications will be the functional dependencies

for the analyzed table. Having the functional dependencies, we can detect

candidate keys and we can decide if the table is in 2NF or 3NF or BCNF.

To our knowledge, this method was not implemented yet.

1. Introduction

Formal Concept Analysis (FCA) appeared in 1980s ([7]) as a mathematical
theory which formalises the notion of concept and is nowadays considered as
an AI theory. It is used as a technique for data analysis, information retrieval
and knowledge representation with various successful applications ([3]).

Functional dependencies (FDs shortly) are the most common integrity
constraints encountered in databases. FDs are very important in relational
database design to avoid data redundancy. Extracting FDs from a relational

Received by the editors: August 9, 2008.

2000 Mathematics Subject Classification. 68P15 Database theory, 03G10 Lattices and

related structures.

1998 CR Categories and Descriptors. H2 Database Management [Topic]: Subtopic –

H2.1 Logical design Normal forms.

Key words and phrases. Formal concept analysis, Normal forms.

This paper has been presented at the 7th Joint Conference on Mathematics and Computer

Science (7th MaCS), Cluj-Napoca, Romania, July 3-6, 2008.

67

68 KATALIN TUNDE JANOSI RANCZ, VIORICA VARGA, AND JANOS PUSKAS

table is a crucial task to understand data semantics useful in many database
applications. Priss in [5] presents the visualization of normal forms using
concept lattices, where the notion of functional dependencies is life-line.

The subject of detecting functional dependencies in relational tables was
studied for a long time and recently addressed with a data mining viewpoint.
Baixeries in [2] gives an interesting framework to mine functional dependencies
using Formal Context Analysis. Detecting functional dependencies seems to
be an actual theme, [5].

Hereth [4] presents how some basic concepts from database theory trans-
late into the language of Formal Concept Analysis. The definition of the
formal context of functional dependencies for a relational table can also be
found in [4]. Regarding to this definition the context’s attributes are the
columns (named attributes) of the table, the tuple pairs of the table will be
the objects of the context. [4] gives the proposition which asserts that in the
formal context of functional dependencies for a relational table, implications
are essentially functional dependencies between the columns of the relational
database table.

Proposition 1. Let D be a relational database and m a k-ary table in D.
For two sets X, Y ⊆ { 1, ..., k} we have the following assertion: The columns
Y are functionally dependent from the columns X if and only if X → Y is
an implication in the formal context of functional dependencies for table m,
which is notated FD

(
m,
−→
K (D)

)
.

Informally, normal forms are defined in traditional database theory as a
means of reducing redundancy and avoiding update anomalies in relational
databases. Functional dependency means that some attributes’ values can be
reconstructed unambiguously by the others [1].

In this paper we intend to extend a previous research presented in [8]. We
implemented the method presented in [8] for database design and completed it
with a software tool, which analyzes an existing relational database table. Our
software named FCAFuncDepMine constructs the formal context of functional
dependencies. It uses Conexp [10] to build the concept lattice and to determine
the implications in this context. The implications obtained correspond to
functional dependencies in the analyzed table. The software can be used in
relational database design and for detecting functional dependencies in existing
tables, respectively.

DATA ANALYSIS BASED ON FORMAL CONCEPT ANALYSIS 69

2. Software description

This section presents how our software constructs the context of functional
dependencies of an existing relational database table. The method used in
relational database design was described in [8].

The aim of our software tool is to connect to an existing database by
giving the type and the name of the database, a login name and password,
then the software offers a list of identified table names which can be selected
for possible functional dependency examination.

The formal context of functional dependencies for the selected table has
to be constructed. The attributes of the context will be the attributes of the
studied table and the context’s objects will be the tuple pairs of the table. A
table may have a lot of tuples and much more tuple pairs. We optimize the
construction of the context in both approaches.

The top of the concept lattice corresponds to tuple pairs in which there are
no common values of the corresponding table attributes. Pairs of form (t, t),
where t is a tuple of the table, have all attributes in common, these objects
will arrive in the bottom of the lattice.

An existing table may have a very large number of tuples. In this version
of our software we use Conexp, which is not able to handle very large context
tables. An input set for Conexp that consists of 15 000 selected tuple pairs is
processed in a reasonable time (some seconds), but if the size of the input set
is larger than 20 000, Conexp will fail. In order to omit this failure, the user
can set a limit for the number of the selected tuples.

Let T be this table having attributes A1, . . . , An. The top of the concept
lattice corresponds to tuple pairs in which there are no common values of the
corresponding attributes. A lot of pairs of this kind may be present. Pairs
which have all attributes in common, will arrive in the bottom of the lattice.

We tested concept lattices omitting tuple pairs in the top and the bottom of
the lattice. During this test we did not find the same lattice as that obtained
with these special tuple pairs. In order not to alter the implications, we
generate only a few (but not all) of these pairs. On the other hand, we need
pairs of tuples of table T, where at least one (but not all) of the attributes
have the same value.

The connection being established and table T selected to analyze the ex-
isting functional dependencies, the program has to execute the next SELECT
- SQL statement:

70 KATALIN TUNDE JANOSI RANCZ, VIORICA VARGA, AND JANOS PUSKAS

SELECT T1.A1,...,T1.An,T2.A1,...,T2.An

FROM T T1, T T2

WHERE (T1.A1=T2.A1 OR ... OR T1.An=T2.An)

AND NOT (T1.A1=T2.A1 AND ... AND T1.An=T2.An)

This statement leads to a Cartesian-product of table T with itself, which is a
very time consuming operation. The statement is transformed by eliminated
NOT from it.

SELECT T1.A1,...,T1.An,T2.A1,...,T2.An

FROM T T1, T T2

WHERE (T1.A1=T2.A1 OR ... OR T1.An=T2.An)

AND (T1.A1<>T2.A1 OR ... OR T1.An<>T2.An)

Both (s, u) and (u, s) pairs of tuples will appear in the result, but we
need only one of these. Let P1, P2, ..., Pk(k ≥ 1) be the primary key of table
T . The definition of a relational table’s primary key can be found in [6]. In
order to include only one of these pairs, we complete the statement’s WHERE
condition in case of k = 1 with:

AND (T1.P1 < T2.P1)

or if k > 1 with

AND (T1.P1k < T2.P1k)

where P1k denotes the string concatenation of the primary key’s component
attributes, respectively.

Constructing a clustered index on one of the attributes can speed up the
execution of the SELECT statement. The advantage of using this SELECT
statement is that every Database Management System will generate an opti-
mized execution plan.

With Selected Columns button the user can choose a list of attributes
of the selected table, otherwise all attributes will be selected. In order to
create the cex file for Conexp the Select Tuple Pairs button have to be
pressed, which selects tuple pairs which have at least one of its attribute value
in common. Tuple pairs in the top and in the bottom of the concept lattice
can be generated optionally, checking the Add Extra Tuple Pairs option in
the File menu. Tuple pairs being generated we have to save the cex file, then
it can be used as input for Conexp, which will build the concept lattice and
implications. In the following we will examine the concept lattice of the context
of functional dependencies which was constructed for a relational table.

DATA ANALYSIS BASED ON FORMAL CONCEPT ANALYSIS 71

3. The structure of the application

Figure 1. The class diagram of the application

The application was developed in Java programming language conforming
to object-oriented programming paradigms. The class diagram of the appli-
cation can be seen in Figure 1.

The class DBFuncDepView is the main class of the application. This class
executes the graphical interface and also has a reference to the other classes,
this means that every functionality can be reached trough this class.

72 KATALIN TUNDE JANOSI RANCZ, VIORICA VARGA, AND JANOS PUSKAS

In the interface DatabaseInterface are defined those functionalities with
which we can execute the SELECT statement described in previous section
against different Database Management Systems. It contains functionalities
for selecting the list of the existing tables in the studied database and methods
for selecting the rows and columns of the tables.

The class DBConnectorBaseClass implements the functions described in
the earlier presented interface which can be implemented for each of the three
DBMS.

The classes MySQLConnector, MSSqlServerConnector, OracleConnector
contain the specific functions and drivers needed for the connection to the dif-
ferent databases.

The role of the CexWriter class is to export the tuple pairs of the context
table in .cex format which is in fact in XML format. An example is in Figure
2.

4. Data Analysis

FD lattices can be used to visualise the normalforms [5]. The lattice
visualizations can help to convey an understanding of what the different nor-
malforms mean. All attributes of a database table must depend functionally
on the table’s key, by definition. Therefore for each set of formal concepts of a
formal context there exists always a unique greatest subconcept (meet) which
must be equal the bottom node of the FD lattice.

Let us begin with a simple example.

Example 1. Let be the next relational database table scheme:

Students [StudID,StudName,GroupID,Email]

We have analyzed this table with our software. The FD lattice and func-
tional dependencies obtained for this table are shown in the Figure 3. The FD
lattice interpretation is: the concept StudID, StudName, Email is a subcon-
cept of concept GroupID. This means there is an implication from the concept
StudID, StudName, Email to the concept GroupID. Accordingly, in every tu-
ple pair where the StudID field has the same value, the value of the GroupID

will remain the same.
Because all keys meet in the bottom node, for a determinant to be a

candidate key means that the unique greatest subconcept of its attributes
equals the bottom node. Consequently every attribute depends on StudID,

therefore it is a candidate key. The same case is for StudName and Email.

DATA ANALYSIS BASED ON FORMAL CONCEPT ANALYSIS 73

Figure 2. Cex file example for Students table

These attributes appear in the bottom of the FD lattice. StudName appears as
candidate key, because all student name values were different in the analyzed
table. We know that students may have the same name, but not the same ID,
not the same Email address.

In Figure 4 we can see the results when in every group all students has
different names than the GroupID and the StudName together form a composite
key.

Figure 5 shows the FD lattice and functional dependencies obtained in
case when we have same value for some student names in the same group and

74 KATALIN TUNDE JANOSI RANCZ, VIORICA VARGA, AND JANOS PUSKAS

Figure 3. FD lattice and implications for the Students table
with different values for student names

Figure 4. FD lattice and implications for the Students table
when in every group all students has different names, but there
are some students with same value for name

Figure 5. FD lattice and implications for the Students table
with same value for some student names in the same group and
in different groups too

DATA ANALYSIS BASED ON FORMAL CONCEPT ANALYSIS 75

in different groups too. This is the real case. We can see, that StudName

doesn’t appear in the bottom of the lattice, it isn’t in the left hand side of any
functional dependency, therefore it can’t be a candidate key.

For determining whether an FD lattice is in BCNF, all non-trivial impli-
cations other than the ones whose left-hand side meets in the bottom node
need to be checked. We can see, that every nontrivial functional dependency
in the Students table has in its left hand side a superkey, therefore the table
is in BCNF.

Example 2. Let StudAdvisor be a wrongly designed database table of a
university database.

StudAdvisor [StudID,StudName,GroupID,StudEmail,SpecID,SpecName,

Language,AdvisorId,TeacherName,TeacherEmail,TeacherPhone]

Figure 6. FD lattice for the StudAdvisor table

The FD lattice obtained for this table with software FCAFuncDepMine
is in the Figure 6 and functional dependencies are in Figure 7. The con-
cept StudID, StudName, Email is a subconcept of the concept GroupID,

AdvisorID, TeacherID, TeacherName, TeacherEmail,TeacherPhone, which
is the subconcept of the concept SpecID, SpecName and so on. The analysed
data is not enough diversified, because every advisor has different name, every
student has different name. The candidate keys of the table StudAdvisor are
in the bottom of the FD lattice. But there are other functional dependencies,

76 KATALIN TUNDE JANOSI RANCZ, VIORICA VARGA, AND JANOS PUSKAS

that has in its left hand side attributes, that are not in the bottom of the
lattice: SpecID, SpecName,TeacherPhone,etc., therefore the table is not in
BCNF.

Figure 7. Functional dependencies in the StudAdvisor table

Introducing more varied data we get the FD lattice from the Figure 8 and
functional dependencies from Figure 9.

Figure 8. FD lattice for the StudAdvisor table with varied data

Having the functional dependencies, the candidate keys of the table can be
seen and we can propose a decomposition of the table. From the last two FD’s
results, that every attribute is functionally dependent on StudID, as well as
on StudEmail, therefore these two attributes are candidate keys. From the
first two functional dependencies we can propose the next table:

DATA ANALYSIS BASED ON FORMAL CONCEPT ANALYSIS 77

Figure 9. Functional dependencies in the StudAdvisor table
with varied data

Specializations [SpecId,SpecName,Language]

The FD’s with number between 3 and 7 suggest the next table:

Advisors [GroupID,SpecId,AdvisorId,TeacherName,TeacherEmail,

TeacherPhone]

The remaining attributes form the studied relation forms the next table:

Students [StudID,StudName,GroupID,StudEmail]

5. Conclusions and further research

We have proposed a software tool to detect functional dependencies in re-
lational database tables. Our software constructs the power context family of
the functional dependencies for a table, then Conexp gives the conceptual lat-
tice and implications. Further we tend to analyze the functional dependencies
obtained, to construct the closure of these implications and to give a cor-
rect database scheme by using an upgraded version of the proposed software,
respectively.

References

[1] Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison-Wesley, Reading

- Menlo - New York (1995)

[2] Baixeries, J.: A formal concept analysis framework to mine functional dependencies,

Proceedings of Mathematical Methods for Learning, (2004).

[3] Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer,

Berlin-Heidelberg-New York. (1999)

[4] Hereth, J.: Relational Scaling and Databases. Proceedings of the 10th International

Conference on Conceptual Structures: Integration and Interfaces LNCS 2393, Springer

Verlag (2002) 62–76

78 KATALIN TUNDE JANOSI RANCZ, VIORICA VARGA, AND JANOS PUSKAS

[5] Priss, U.: Establishing connections between Formal Concept Analysis and Relational

Databases. Dau; Mugnier; Stumme (eds.), Common Semantics for Sharing Knowledge:

Contributions to ICCS, (2005) 132–145

[6] Silberschatz, A., Korth, H. F.,Sudarshan, S.: Database System Concepts, McGraw-Hill,

Fifth Edition, (2005)

[7] Wille, R. : Restructuring lattice theory: an approach based on hierarchies of concepts.

In: I.Rival (ed.): Ordered sets. Reidel, Dordrecht-Boston, (1982) 445–470

[8] Janosi Rancz, K. T., Varga, V.: A method for mining functional dependencies in re-

lational database design using FCA. Studia Universitatis ”Babes-Bolyai” Cluj-Napoca,

Informatica, vol. LIII, No. 1, (2008) 17–28.

[9] Yao, H., Hamilton, H. J.: Mining functional dependencies from data, Data Mining and

Knowledge Discovery, Springer Netherlands, (2007)

[10] Serhiy A. Yevtushenko: System of data analysis ”Concept Explorer”. (In Russian).

Proceedings of the 7th National Conference on Artificial Intelligence KII-2000, p. 127-

134, Russia, 2000.

Sapientia University, Tg-Mures, Romania

E-mail address: tsuto@ms.sapientia.ro

Babes-Bolyai University, Cluj, Romania

E-mail address: ivarga@cs.ubbcluj.ro

Tg-Mures, Romania

E-mail address: puskasj@gmail.com

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

ON SUPERVISED AND SEMI-SUPERVISED k-NEAREST
NEIGHBOR ALGORITHMS

ZALÁN BODÓ AND ZSOLT MINIER

Abstract. The k-nearest neighbor (kNN) is one of the simplest classifi-
cation methods used in machine learning. Since the main component of
kNN is a distance metric, kernelization of kNN is possible. In this pa-
per kNN and semi-supervised kNN algorithms are empirically compared
on two data sets (the USPS data set and a subset of the Reuters-21578
text categorization corpus). We use a soft version of the kNN algorithm
to handle multi-label classification settings. Semi-supervision is performed
by using data-dependent kernels.

1. Introduction

Suppose the training data is given in the form D = {(xi, yi) | i = 1, 2, . . . , `}
∪ {xi | i = 1, 2, . . . , u} where the first set is called the labeled data, while the
second is the unlabeled data set, which contains data drawn from the same
distribution as the labeled points but there is no label information for them.
Usually ` ¿ u. We will denote the size of the whole data set by N = `+u. The
xi ∈ X are called the independent variables, while the yi ∈ Y are the dependent
variables, X ⊆ Rd, Y = {1, 2, . . . , K}, where K denotes the number of classes.
In supervised classification we use only the first data set to “build” a classifier,
while in semi-supervised classification we additionaly use the second data set
that sometimes can improve predictions [11].

Semi-supervised learning (SSL) is a special case of classification; it is
halfway between classification and clustering. The unlabeled data can be used
to reveal important information. For example, suppose that in a text cate-
gorization problem the word “professor” turns out to be a good predictor for
positive examples based on the labeled data. Then, if the unlabeled data shows

Received by the editors: September 15, 2008.
2000 Mathematics Subject Classification. 68T10, 45H05.
1998 CR Categories and Descriptors. I.2.6. [Computing Methodologies]: ARTIFI-

CIAL INTELLIGENCE – Learning .
Key words and phrases. Supervised learning, Semi-supervised learning, k-nearest neigh-

bors, Data-dependent kernels.
This paper has been presented at the 7th Joint Conference on Mathematics and Computer

Science (7th MaCS), Cluj-Napoca, Romania, July 3-6, 2008.

79

80 ZALÁN BODÓ AND ZSOLT MINIER

that the words “professor” and “university” are correlated, then using both
words the accuracy of the classifier is expected to improve. To understand how
can one use the unlabeled data to improve prediction, consider the simplest
semi-supervised learning method, called self-training or bootstrapping: train
the classifier on the labeled examples, make predictions on the unlabeled data,
add the points from the unlabeled set with the highest prediction confidence
to the labeled set along with their predicted labels, and retrain the classifier.
This procedure is usually repeated until convergence.

In order to be able to effectively use the unlabeled data to improve the
system’s performance some assumptions have to be conceived about the data.
These are the smoothness assumption (SA), the cluster assumption (CA) and
the manifold assumption (MA): SA says that points in a high density region
should have similar labels, that is labels should change in low density regions,
CA states that two points from the same cluster should have similar labels,
while MA presumes that the data lies roughly on a low-dimensional manifold
[7].

Most of the semi-supervised methods can be classified in the following
four categories: generative models, low-density separation methods, graph-
based methods and SSL methods based on change of representation. Methods
belonging to the last category attempt to find some structure in the data
which is better emphasized or better observable in the presence of the large
unlabeled data set. These algorithms consist of the following following steps:

(1) Build the new representation – new distance, dot-product or kernel –
of the learning examples.

(2) Use a supervised learning method to obtain the decision function based
on the new representation obtained in the previous step.

Kernels referred in the first step are tools for non-linear extensions of linear
algorithms like perceptron, linear support vector machines, kNN, etc. Kernel
functions, or simply kernels were proposed for learning non-linear decision
boundaries in 1964 in [1], but they became popular after the introduction of
non-linear support vector machines (SVMs) in 1992 [6]. Kernel functions are
symmetric functions of two variables, which return the “similarity” of two
points in a high-dimensional space, without actually mapping the points to
that space. More precisely, kernel functions return the dot product of two
vectors in a so-called “feature” space:

k(x, z) = φ(x)′φ(z)

Any machine learning algorithm in which the input data appears only in the
form of dot products can be extended to learn non-linear decision functions
by simply using a positive semi-definite kernel function instead of the inner
product of the vectors. This is called the “kernel trick”. We call the matrix

ON SUPERVISED AND SEMI-SUPERVISED k-NEAREST NEIGHBOR ALGORITHMS 81

containing the dot products of the data points – i.e. the Gram matrix – the
kernel matrix or simply the kernel. Whether we are referring to the kernel
function or the kernel matrix by the expression “kernel” will be clear from the
context.

Data-dependent kernels are similar to semi-supervised learning machines:
the kernel function does not depend only on the two points in question, but
in some form it makes use of the information contained in the whole learning
data available. That is the value of k(x, z) with data set D1 is not necessarily
equal to the value of k(x, z) with data set D2, however the kernel function –
or more generally the kernel construction method – is the same. This can be
formalized as

k(x, z;D1) m k(x, z; D2)

provided that the additional data sets are different, i.e. D1 6= D2, where
“m” means “not necessarily equal” and “;” stands for conditioning. In SSL
methods with change of representation data-dependent kernels are used.

We will use data-dependent kernels to construct a semi-supervised version
of the kNN classifier. These methods then will be empirically compared to
another semi-supervised kNN method, the label propagation (LP) algorithm.

The paper is structured as follows. Section 2 introduces the kNN and the
“soft” kNN classifier. In Section 3 we present label propagation for binary
and multi-class cases. Label propagation can be viewed as a semi-supervised
kNN technique. Section 4 describes the kernelization of the kNN classifier
and shortly presents three data-dependent kernels, namely the ISOMAP, the
multi-type and hierarchical cluster kernels, used in the experiments. The
experiments and the obtained results are presented in Section 5. The paper
ends with Section 6 discussing the results obtained in the experiments.

2. K-nearest neighbor algorithms

The k-nearest neighbor classification was introduced by Cover and Hart in
[10]. The kNN classifier determines the label of an unseen point x by simple
voting: it finds the k-nearest neighbors of x and assigns to it the winning label
among these.

f̃(x) = argmax
c=1,2,...,K

∑

z∈Nk(x)

sim(z,x) · δ(c, f(z))

where the function f assigns a label to a point, Nk(x) denotes the set of
k-nearest neighbors of x, K is the number of classes, the function sim(·, ·)
returns the similarity of two examples, and δ(a, b) = 1 if a = b, 0 otherwise.
The function sim(·, ·) is used to give different weights for different points.
One choice could be to use some distance metric d(·, ·) with the property of

82 ZALÁN BODÓ AND ZSOLT MINIER

Figure 1. Figure showing the 1NN decision boundaries for
the two-moons data set.

assigning a lower value to nearby points and a higher value to farther points
to x. Then one can choose for example

sim(x, z) =
1

g(d(x, z))

where g(·) is an adequate function. If the constant function sim(x, z) = 1
is chosen, we arrive to simple kNN, where all the neighbors have the same
influence on the predicted label.

In order to work efficiently implement the kNN method, no explicit form
of the inductive classifier is built, since representing and storing the decision
boundaries can become very complex. On Figure 1 the decision boundaries
of a 1NN classifier are shown; we used the popular “two-moons” data set for
this illustration. Here we have two classes: the positive class is represented
by the upper crescent, while the points of the negative class lie in the lower
crescent. The polygons represent the area in which an unseen point gets the
label of the point which “owns” the respective cell. The red curve shows the
decision boundary between the classes.

2.1. Soft kNN. In the soft version of the kNN we average the labels of the
surrounding points. That is the prediction function becomes

f(x) =
1∑

z∈Nk(x) Wzx

∑

z∈Nk(x)

Wzxf(z)

where Wzx denotes the similarity between z and x. In case of binary classifi-
cation, that is Y = {−1, 1} or Y = {0, 1} we use thresholding after computing
the prediction by the above formula, e.g. using the value 0 or 0.5 for the
threshold. Thus we arrive to the same decision function.

ON SUPERVISED AND SEMI-SUPERVISED k-NEAREST NEIGHBOR ALGORITHMS 83

3. Label propagation

Label propagation was introduced in [23] for semi-supervised learning. It is
a transductive graph-based semi-supervised learning technique, i.e. the labels
are determined only in the desired points. We can call LP a semi-supervised
kNN algorithm, because the label of a point is determined considering only the
labels of its neighbors. The only and considerable difference between kNN and
LP is that while in LP the labels propagate through the neighbors, and the
label of an unseen point depends on the labels of the other unseen/unlabeled
points too, the labels are static in kNN and only the labeled points count.

For binary class learning consider the vector f ∈ {−1, 1}N of class labels,
where N = ` + u. Then the energy/cost function to be minimized is the
following

(1) E1(f) =
1
2

N∑

i,j=1

Wij(fi − fj)2

where fi, i = 1, . . . , ` is fixed according to the labeled training points. If f

is divided as
[

fL
fU

]
where fL and fU denote the parts corresponding to the

labeled and unlabeled examples, then the optimization problem can be written
as

min
fU

E1(f)

It is easy to check that

E1(f) =
∑

ij

Wijf
2
i −

∑

ij

Wijfifj

= f ′Df − f ′Wf = f ′Lf

where L = D −W is the graph Laplacian [9] of the similarity matrix of the
points. For the sake of simplicity we divide the matrices into the following
blocks:

W =
[

WLL WLU

WUL WUU

]
; D =

[
DL 0
0 DU

]

L =
[

LLL LLU

LUL LUU

]
; P =

[
PLL PLU

PUL PUU

]

We want to minimize E1(f), therefore we calculate its derivative and set to
zero. Thus we obtain

(2) fU = −L−1
UU · LUL · fL

or equivalently (I−D−1
U WUU)−1D−1

U ·WUL · fL = (I−PUU)−1PUL · fL.

84 ZALÁN BODÓ AND ZSOLT MINIER

The above energy function can be simply modified for the multi-class,
multi-label case:

E2(f) =
1
2

N∑

i,j=1

Wij‖fi· − fj·‖2
2

where now f ∈ {0, 1}N×K . One can observe that E2(f) = tr(f ′Lf). If we
decompose f into column vectors

f =
[

f·1 f·2 · · · f·K
]

then the problem can be rewritten as K independent constrained optimization
problems involving vectors of size N × 1.

f ′Lf =

f·1′

f·2′
...

f·K ′

 · L ·

[
f·1 f·2 · · · f ·K

]

=

f·1′Lf·1 · · · · ·
· f·2′Lf·2 · · · ·
...

...
. . .

...
· · · · · f·K ′Lf·K

from which it follows that

tr(f ′Lf) = tr(f·1′Lf·1) + . . . + tr(f·K ′Lf·K)

that is we can minize now f·i′Lf·i with respect to (fU)·i, i = 1, 2, . . . ,K and
from these solutions the solution of the original problem can be built. In our
notation used above f·i denotes the ith column, while fj· denotes the jth row
of f .

By calculating the derivative of E2(f) with respect to fU , we arrive to the
same formula as (2), but f is now a matrix, not a vector.

The iterative solution for LP is composed of the following steps:
(1) Compute W and D.
(2) i = 0; Initialize f (i)

U .
(3) f (i+1) = D−1Wf (i).
(4) Clamp the labeled data, f (i+1)

L = fL.
(5) i = i + 1; Unless convergence go to step 3.

Convergence means that the difference between the class assignment matrices
f obtained in two consecutive steps drops below a predefined threshold. The
value of the threshold greatly influences the running time of the algorithm.
The difference between consecutive solutions can be measured by the Frobenius
matrix norm. The convergence of the above algorithm is proven in [23]. On

ON SUPERVISED AND SEMI-SUPERVISED k-NEAREST NEIGHBOR ALGORITHMS 85

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

1

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

7

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

10

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

14

Figure 2. The propagation of labels (iteration 1, 7, 10 and
14). At the beginning – step 0, not shown separately here –
only the 2 points put in the black squared frames are labeled.

Figure 2 the propagation of labels is illustrated on the two-moons data set,
starting from only two labeled points.

If we decompose f , we arrive to the simpler formula

f (i+1)
U = D−1

U WULfL + D−1
U WUU f (i)

U

or by using the notation A = PULfL = D−1
U WULfL and PUU = D−1

U WUU ,
we obtain the update formula f (i+1)

U = A + PUU f (i)
U , which can be included

into the algorithm by replacing steps 3 and 4.
Consider now the the case of binary classification. Given the solution f

according to the update formula we can write that

fi = (D−1W)i· · f

=
1∑N

j=1 Wij

·
N∑

j=1

Wijfj

that is the label of a point is equal to the weighted average of the other points’
class labels. When the Gaussian kernel/similarity function is used (which is
one of the most common choices in practice), which assigns an exponentially
decreasing similarity to the more distant points, those weights can be consid-
ered to be equal to zero. Thus we get a kNN-like algorithm, where k changes

86 ZALÁN BODÓ AND ZSOLT MINIER

dynamically, so this is rather an εNN algorithm, where ε denotes a threshold
above which similarity is considered to be 0.

In the multi-class case we can write

f·j = Pf·j
that is

fij = Pi·f·j
which is equivalent to

fij =
1∑N

k=1 Wik

N∑

k=1

Wikfkj

for all i = 1, 2, . . . , N and j = 1, 2, . . . ,K.
Label propagation can be considered as a constrained mincut problem,

which is a very popular clustering technique [3]. Since graph mincut can be
written as (1/4) · f ′Lf , where f ∈ {−1, 1}N , therefore label propagation is
equivalent to searching for a mincut of the data graph, given that the labeled
points are fixed.

4. Semi-supervised kNN

The k-nearest neighbor algorithm determines labels based on the labels
of the nearest points. “Nearest” is defined using some metric, in the origi-
nal formulation taking the Euclidean metric. The Euclidean distance can be
rewritten in form of dot products as

‖x− z‖2
2 = 〈x,x〉+ 〈z, z〉 − 2 · 〈x, z〉

= k(x,x) + k(z, z)− 2 · k(x, z)

where k(·, ·) denotes in this case the linear kernel k(x, z) = 〈x, z〉 = x′z. Using
the kernel trick, this can be replaced by any other positive semi-definite kernel.
Thus the points are implicitly mapped to a – possibly higher dimensional –
space, where their dot product is given by the kernel function k(·, ·).

In multi-label learning let us denote the decision function as f : X →
[0, 1]K . For hard classification we can set a threshold, for example 0.5, but for
soft classification we use the values of the output vector as class membership
probabilities. The decision function is expressed in the same way as in the
case of binary classification,

f(x) =
1∑

z∈Nk(x) Wzx

∑

z∈Nk(x)

Wzxf(z)

with the difference that now the output is a K × 1 vector, instead of a scalar
value.

ON SUPERVISED AND SEMI-SUPERVISED k-NEAREST NEIGHBOR ALGORITHMS 87

4.1. Data-dependent kernels. There are other methods to determine the
nearest neighbors of a point by using the following data-dependent kernels.

4.1.1. The ISOMAP kernel. ISOMAP (ISOmetric feature MAPping) was in-
troduced in [20] for dimensionality reduction using the manifold assumption.
The ISOMAP kernel is defined as

Kisomap = −(1/2)JG(2)J

where G(2) contains the squared graph distances (shortest paths in the graph
whose vertices are the original data points and the edges are among the nearest
neighbors of each point) and J is the centering matrix, J = I− 1

N ·1 ·1′, I is the
identity matrix, and 1 is the N×1 vector of 1’s. G(2) is not necessarily positive
semi-definite so neither is the ISOMAP kernel. But since only the largest
eigenvalues and the corresponding eigenvectors are important, we proceed in
the following way. The kernel matrix can be decomposed into USU′, where U
contains the eigenvectors, while the diagonal matrix S holds the eigenvalues of
the decomposed matrix [15, p. 393]. Then the ISOMAP kernel we will use is
Kisomap = US̃U′, where S̃ is the diagonal matrix of the eigenvalues in which
each negative eigenvalue was set to zero.

Informally, the ISOMAP kernel maps the points to the space, where their
pointwise distances equal to the shortest path distances on the data graph in
the input space. If the points are centered at each dimension, then −(1/2) ·
JG(2)J is equal to the dot products of the vectors mapped to the above-
mentioned space [5, p. 262].

4.1.2. The multi-type cluser kernel. In [8] the authors develop a cluster kernel
which connects several techniques together like spectral clustering, kernel PCA
and random walks. The proposed cluster kernel is built following the steps
described below:

(1) Compute the Gaussian kernel and store in matrix W.
(2) Symmetrically normalize W, that is let L = D−1/2WD−1/2, where

D = diag(W · 1), and compute its eigendecomposition, L = UΣU′.
(3) Determine a transfer function ϕ(·) for transforming the eigenvalues,

λ̃i = ϕ(λi), and construct L̃ = UΣ̃U′, where Σ̃ contains the trans-
formed eigenvalues on the diagonal.

(4) Let D̃ be a diagonal matrix with diagonal elements Dii = 1/L̃ii, and
compute K = D̃1/2L̃D̃1/2.

The kernel type depends on the chosen transfer function. We discuss here
three types of transfer functions as in [8]. In the following let λi represent the
eigenvalues of matrix L defined in step (2).

88 ZALÁN BODÓ AND ZSOLT MINIER

The step transfer function is defined as ϕ(λi) = 1 if λi ≥ λcut and 0
otherwise, where λcut is a predetermined cutting threshold for the eigenvalues.
This results in the dot product matrix of the points in the spectral clustering
representation [17].

The linear step transfer function simply cuts off the eigenvalues which are
smaller that a predetermined threshold, ϕ(λi) = λi if λi ≥ λcut, otherwise
equals 0. Without normalization, that is with D = I and similarly D̃ = I, the
method would be equal to the data representation in KPCA space [18], since
in that case we simply cut off the least significant directions to obtain a low
rank representation of L.

The polynomial transfer function is defined as ϕ(λi) = λt
i, where t ∈ N or

t ∈ R is a parameter. Thus the final kernel can be written as

(3) K̃ = D̃1/2D1/2
(
D−1W

)t D−1/2D̃1/2

where D−1W = P is the probability transition matrix, where Pij is the prob-
ability of going from point i to point j. This is called the random walk kernel,
since (3) can be considered as a symmetrized version of the transition proba-
bility matrix P.

4.1.3. The hierarchical cluster kernel. Hierarchical cluster kernels for super-
vised and semi-supervised learning were introduced in [4]. We used hierarchical
clustering techniques to build ultrametric trees [21]. Then we used the dis-
tances induced by the clustering method to build a kernel for supervised and
semi-supervised methods. The hierarchical cluster kernels are generalizations
of the connectivity kernel [14].

The algorithm has the following steps:

-2. Determine the k nearest neighbors or an ε-neighborhood of each point
and take all the distances to other points equal to zero.

-1. Compute shortest paths for every pair of points – using for example
Dijkstra’s algorithm.

0. Use these distances in clustering for the pointwise distance d(·, ·) in
single, complete and average linkages distances [16, Chapter 3], [13,
Chapter 4].

1. Perform an agglomerative clustering on the labeled and unlabeled data
using one of the above-mentioned linkage distances.

2. Define matrix M with entries Mij = linkage distance in the resulting
ultrametric tree at the lowest common subsumer of i and j; Mii = 0,
∀i.

3. Define the kernel matrix as K = −1
2JMJ.

ON SUPERVISED AND SEMI-SUPERVISED k-NEAREST NEIGHBOR ALGORITHMS 89

method accuracy

kNN (linear, Gaussian) 94.00
(kkNN = 1)

LP (linear, Gaussian) 80.29
(1/(2 · σ2) = 0.05)

kNN + ISOMAP 95.71
(kisomap = 5, kkNN = 5)

kNN + mt. cluster kernel
95.00

(linstep, 1/(2 · σ2) = 0.05,
λcut = 0.1, kkNN = 4)

kNN + h. cluster kernel
96.64

(average linkage,
kisomap = 4, kkNN = 3)

Table 1. Accuracy results obtained for the modified USPS
handwritten digits data set.

The first three steps of the method – numbered with -2, -1 and 0 – are optional;
they can be applied if the semi-supervised manifold assumption is expected to
hold.

5. Experiments

In the experiments we compared the methods of kNN, kNN with data-
dependent kernels and label propagation. We used the data-dependent kernels
presented in the previous section: the ISOMAP, the multi-type and the hierar-
chical clusters kernels. The methods were tested on two data sets: a modified
version of the USPS (United States Postal Service) handwritten digits data
set and a subset of Reuters-21578 [12]. The USPS data set is derived from the
original USPS set of handwritten digits1. The set is imbalanced, since it was
created by putting the digits 2 and 5 into one class, while the rest is in the
second class. 150 images belong to each of the ten digits. Because the set was
used as a benchmark data set for the algorithms presented in the book [7],
it was obscured using a simple algorithm to prevent recognizing the origin of
the data. The set contains 1500 examples and 2× 12 splits of the data, where
the first 12 splits contain 10 labeled, and 1490 unlabeled, while the second
12 splits contain 100 labeled and 1400 unlabeled examples. We used only the
first split with 100 labeled points2.

1http://archive.ics.uci.edu/ml/datasets/
2The modified USPS data set can de downloaded from

http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html

90 ZALÁN BODÓ AND ZSOLT MINIER

method microBEP/macroBEP

kNN (linear) 89.60 / 89.22
(kkNN = 14)

kNN (Gaussian) 90.05 / 90.02
(kkNN = 17)

LP (linear) 88.44 / 88.39

LP (Gaussian) 89.81 / 90.33
(1/(2 · σ2) = 1)

kNN + ISOMAP 88.37 / 87.99
(kisomap = 16, kkNN = 16)

kNN + mt. cluster kernel
91.12 /91.04

(linstep, 1/(2 · σ2) = 1,
λcut = 0.01, kkNN = 16)

kNN + h. cluster kernel
87.46 / 87.42

(average linkage,
kisomap = 3, kkNN = 7)

Table 2. Micro- and macro-averaged precision–recall
breakeven point results for the modified Reuters-21578 text
categorization corpus.

We also modified the Reuters-21578 text categorization corpus in order to
make it smaller and to balance the categories. The original corpus3 contains
12 902 documents – 9603 for training and 3299 for testing – categorized into
90 classes. We kept the following 10 categories: alum, barley, bop, carcass,
cocoa, coffee, copper, cotton, cpi, dlr. Thus we were left with 626 training and
229 test documents. For representing documents we used the bag-of-words
document representation [2, Chapter 2] with tfidf weighting [2, p. 29]. We
stemmed the words of the documents using the Porter stemmer, and selected
500 terms with the χ2 feature selection technique [22, 19].

For evaluation we used accuracy for the USPS data set and precision–recall
breakeven point for the Reuters corpus.

The results are shown on Tables 1 and 2. For each method we searched
for the parameters that result in the best performance on the test data (these
parameters are shown in brackets). The best results for each data set were
formatted with boldface.

3The 90 and 115-categories version of Reuters can be downloaded from the homepage of
Alessandro Moschitti, http://dit.unitn.it/∼moschitt/corpora.htm

ON SUPERVISED AND SEMI-SUPERVISED k-NEAREST NEIGHBOR ALGORITHMS 91

6. Discussion

In this paper we compared kNN and some semi-supervised kNN methods
on two data sets. We saw that semi-supervised kNN methods can outperform
conventional kNN: for the USPS data set we obtained an improvement of
2.64% with the average linkage hierarchical kernel. However label propagation
showed a very low performance on this data set. We considered the values
between 1 and 5 for k, which means that the classes are separated quite well.
For the Reuters corpus we found the multi-type cluster kernel with linear step
function to provide the best performance, but the improvement was not so
significant as for the USPS data set. This also shows that KPCA is able
to remove irrelevant dimensions from the bag-of-words representation of the
Reuters corpus. Label propagation with Gaussian kernel showed only little
performance improvement to linear kNN. We see however that the best values
of k for kNN were between 7 and 17, which could imply the intertanglement
of the documents, that is one should search for a better initial representation
than bag-of-words.

Acknowledgement

We acknowledge the support of the grants CNCSIS/TD-35 and CNCSIS/TD-
77 by the Romanian Ministry of Education and Research.

References

[1] A. Aizerman, E. M. Braverman, and L. I. Rozonoer. Theoretical foundations of the
potential function method in pattern recognition learning. Automation and Remote
Control, 25:821–837, 1964.

[2] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley, 1999.

[3] Tijl De Bie. Semi-Supervised Learning Based On Kernel Methods And Graph Cut Al-
gorithms. PhD thesis, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, 3001
Leuven (Heverlee), 2005.

[4] Zalán Bodó. Hierarchical cluster kernels for supervised and semi-supervised learning. In
Proceedings of the 4nd International Conference on Intelligent Computer Communica-
tion and Processing, pages 9–16. IEEE, August 2008.

[5] Ingwer Borg and Patrick J. F. Groenen. Modern multidimensional scaling, 2nd edition.
Springer-Verlag, New York, 2005.

[6] B. E. Boser, I. Guyon, and V. N. Vapnik. A training algorithm for optimal margin
classifiers. Computational Learning Theory, 5:144–152, 1992.

[7] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. Semi-Supervised Learning.
MIT Press, September 2006. Web page: http://www.kyb.tuebingen.mpg.de/ssl-book/.

[8] Olivier Chapelle, Jason Weston, and Bernhard Schölkopf. Cluster kernels for semi-
supervised learning. In Suzanna Becker, Sebastian Thrun, and Klaus Obermayer, edi-
tors, NIPS, pages 585–592. MIT Press, 2002.

[9] Chung. Spectral graph theory (reprinted with corrections). In CBMS: Conference Board
of the Mathematical Sciences, Regional Conference Series, 1997.

92 ZALÁN BODÓ AND ZSOLT MINIER

[10] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Transactions
on Information Theory, IT-13, 1967.

[11] Fabio G. Cozman and Ira Cohen. Risks of semi-supervised learning. In Olivier Chapelle,
Bernhard Schölkopf, and Alexander Zien, editors, Semi-Supervised Learning, chapter 4,
pages 55–70. MIT Press, 2006.

[12] Franca Debole and Fabrizio Sebastiani. An analysis of the relative hardness of reuters-
21578 subsets. Journal of the American Society for Information Science and Technology,
56:971–974, 2004.

[13] Richard Duda, Peter Hart, and David Stork. Pattern Classification. John Wiley and
Sons, 2001. 0-471-05669-3.

[14] Bernd Fischer, Volker Roth, and Joachim M. Buhmann. Clustering with the connectivity
kernel. In Sebastian Thrun, Lawrence K. Saul, and Bernhard Schölkopf, editors, NIPS.
MIT Press, 2003.

[15] Gene H. Golub and Charles F. Van Loan. Matrix Computations, 3nd Edition. The Johns
Hopkins University Press, Baltimore, MD, 1996.

[16] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data. Prentice-Hall, 1988.
[17] Andrew Y. Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and

an algorithm. In T. G. Dietterich, S. Becker, and Zoubin Ghahramani, editors, Advances
in Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.

[18] Bernhard Schölkopf, Alexander J. Smola, and Klaus-Robert Müller. Kernel principal
component analysis. Advances in kernel methods: support vector learning, pages 327–
352, 1999.

[19] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM Comput-
ing Surveys, 34(1):1–47, 2002.

[20] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, December 2000.

[21] Bang Ye Wu and Kun-Mao Chao. Spanning Trees and Optimization Problems. Chapman
and Hall/CRC, Boca Raton, Florida, 2004.

[22] Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in text
categorization. In International Conference on Machine Learning, pages 412–420, 1997.

[23] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with
label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University,
2002.

Department of Computer Science, Babeş–Bolyai University, Mihail Kogălniceanu
nr. 1, RO-400084 Cluj-Napoca

E-mail address: {zbodo,minier}@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

RECURSIVE AND DYNAMIC STRUCTURES IN GENERIC
PROGRAMMING

ÁBEL SINKOVICS AND ZOLTÁN PORKOLÁB

Abstract. Generic programming – an emerging new programming para-
digm – best known from Standard Template Library as an essential part
of C++ provides an opportunity to extend libraries in an efficient way.
Both containers (abstract data structures) and algorithms working on them
could be independently designed and implemented at O(1) cost. Unfortu-
nately, smoothless cooperation of generic programming and object orien-
tation is still an open problem. In this paper we will focus on reducing
development and maintenance costs of systems using generative program-
ming with recursive data structures to avoid multiple implementations of
the components. For cases when separate implementation of algorithms
can’t be avoided we provide a system protecting us against changing exist-
ing code during extension. Providing such a design is not a trivial problem
using currently available tools. We will show a possible solution using a
graphic library to demonstrate the problem and our solution with.

1. Introduction

In software development, working with recursive data structures is an ubiq-
uitous problem. Graphic editors, web browsers, office software, etc. have to
work with complex systems with sets of different (including recursive) com-
ponent types. These software have to deal with algorithms operating on the
components. The longest and most time and money consuming part of a soft-
ware system’s life is maintenance, and with poor design it is hard to maintain
and extension is always expensive. Extending the system with new compo-
nents, all algorithms have to be implemented for them. Extending the system

Received by the editors: September 14, 2008.
2000 Mathematics Subject Classification. 68N15, 68N19.
1998 CR Categories and Descriptors. D.2 [Software Engineering]: D.2.3 Coding

tools and techniques – Object-oriented and generative programming D.3 [Programming
Languages]: D.3.2 Language Classification – C++;

Key words and phrases. Generic programming, Software engineering, Expression problem,
C++.

This paper has been presented at the 7th Joint Conference on Mathematics and Computer
Science (7th MaCS), Cluj-Napoca, Romania, July 3-6, 2008.

93

94 ÁBEL SINKOVICS AND ZOLTÁN PORKOLÁB

with new algorithms, they have to be implemented for every component. In-
dependent extension could make development and maintenance faster, more
flexible, and cheaper. In this paper we will examine commonly used design
patterns and will introduce a new one supporting independent development
and extension in several cases.

The rest of the paper is organized as follows: In this section we present
a practical example of the problem after which we analyse currently existing
solutions in section 2. We present our solution in section 3 and use it to solve
the practical example in section 3.3. We analyse runtime performance of our
solution in section 3.4 and finally we summarize our results in section 4.

As a motivating example we chose a graphic application since it has every
feature required to demonstrate the problem. Our sample graphic application
supports different shapes and transformations. It is not uncommon to define
such a system with at least 20 different shapes and 50 transformations. One
of the suggested design methods [3] [10] [12] is using the Interpreter design
pattern [15], which indicates to create an abstract base class called Shape,
inherit all shapes from it and implement the transformations using virtual
functions. The other suggested method [3] [10] [12] is using the Visitor design
pattern [15], which indicates to create an abstract base class called Visitor
for transformations with a virtual function for every shape type. For example
if the system has Oval shape, Visitor should have a virtual function called
visitOval accepting Oval shapes. Every transformation should be imple-
mented in a different class inherited from Visitor and implement the virtual
functions.

The example above refers to a well-known scaling problem of object-
oriented library design. Philip Wadler called it the expression problem on
the Java-Genericity mailing list for the first time in 1998 [13]. Given a set of
recursive data structures and a set of operations operating on the data struc-
tures and a design is required which supports extension of both data types
and operations independently. Extension (or modification) of one set should
not affect the other and should not imply changes in existing code.

Zenger and Odersky presented a list of requirements [3] for a solution
which we have extended with an extra item. Our main goal is to find a design
which (1) is extensible with algorithms (transformations in the example)
and data types (shapes in the example). (2) is independently extensible.
Extensions shouldn’t imply changes to previously written code. None of the
data types should be changed because of writing a new operation and none of
the operations should be changed because of creating a new data type. (3)
is type safe. Validity of the operations are check at compile time eliminating
runtime errors which can remain untested in practice causing embarrassing
and commonly expensive issues in production. (4) is effective. When types

RECURSIVE AND DYNAMIC STRUCTURES IN GENERIC PROGRAMMING 95

are available at compile-time, the efficiency of the compiled code should be
similar to hand-written code allowing automatic optimalisation of the code.
(5) supports separate compilation. Different components of the system (dif-
ferent data types and algorithms) can be compiled independently from each
other. (6) supports the reduction of the number of implementations where
possible by using generic algorithms to describe similar implementations. This
is our extension to Zenger’s and Odersky’s list. Generic algorithms – first in-
troduced in Ada – can support data types which are written independently of
the algorithm, maybe later after the creation of the algorithm.

2. Existing solutions

Matthias Zenger and Martin Odersky collected a set of (partial) solutions
for the problem in [3]. We will go through them and see their benefits and
drawbacks. Structural and functional decomposition are the two most impor-
tant ones since the rest of the approaches are extensions or improvements of
them.

2.1. Structural decomposition. Structural decomposition uses the Inter-
preter design pattern [15]. It requires a base class from which every data type
is inherited, and the base class has a pure virtual function for every algorithm.
Every data type implements it’s own version of the algorithm.

Extension with a new data type is easy, a new class implementing the data
type need to be created. One of the disadvantages is that every algorithm has
to be implemented for it, but the main problem with this solution is that every
class has to be changed during extension with a new algorithm: a new virtual
function has to be created in the base class, and it has to be implemented in
every class inherited from the base class.

2.2. Functional decomposition. Functional decomposition uses the Visitor
desing pattern [15]. There are no restrictions for data types. Each algorithm
is implemented by a class with multiple member functions – one for every
data type. The objects of these classes are called visitors, and the classes
are inherited from a base class which has a pure virtual function for every
data type. These pure virtual functions are overridden in the visitor classes to
implement the algorithm for the data types. To run an algorithm for a data
object a visitor object needs to be created and it’s member function for the
data object needs to be called.

Extension with a new algorithm is easy, a new class has to be created for
the new algorithm. It has the same problem as structural decomposition: ev-
ery algorithm has to be implemented for every data type. The main problem
with this solution is that extension with a new data type is difficult: every
visitor has to be extended with a new member function.

96 ÁBEL SINKOVICS AND ZOLTÁN PORKOLÁB

(1) Extensible visitors Krishnamurti, Felleisen and Friedman [2] extended
the Visitor pattern [15] to be more flexible. They refined the way to introduce
new data types: visitors don’t need to be changed, the set of member functions
can be extended by subclassing. The main problem with this solution is that
it is still not type safe – it requires casting. Zenger and Odersky advanced the
approach [17] by adding default cases to types and visitors to handle future
extensions, but was still not satisfactory because of allowing application of
visitors to data variants they were not designed for.
(2) External extension of classes Some programming languages [16] sup-
port external extensions of classes making possible extension of a class without
changing it’s code. Defining functions externally requires default implementa-
tions making separate compilation impossible.
(3) Reflection based approach Palsberg and Jay advanced the Visitor
pattern [15] to Walkabouts [11] which use reflection to iterate over attributes
of unsupported objects, but their solution has no static type safety because of
using reflection.
(4) Self types Kim B. Bruce presented a way [10] of using a type construct
called ThisType to advance the Interpreter design pattern [15]. ThisType
changes in subclasses and the signature of inherited methods using ThisType
ensure better static type safety, but the dynamic type of an object has to
be available at compile time when calling a method expecting an object with
ThisType as it’s static type.
(5) Generics based approaches Mads Torgersen used generic classes [12].
He presented an approach based on structural decomposition (which he called
data-centered) and one on functional decomposition (he called operation-
centered). They were both difficult to use for programmers and did not support
independent extensibility.

3. Our solution

We approached the problem with generic programming but in a different
way Mads Torgersen did [12]: we rely on the term concept defined in [4]. A
concept is a set of requirements for a class, and a class models the concept if it
meets the requirements. These requirements can be syntactic, semantic, etc.
Syntactic requirements will be supported in the upcoming standard of C++
called C++0x [19] [20] [21]. We assume the existence of a concept every data
type (including recursive ones) models. A data type can be any class model
the concept and an operation can be any function relying only on the concept.

An example for this in the C++ Standard Template Library [9]: a class
models the forward iterator concept if it can read through a sequence of objects
in one direction. A container is forward iterable if it provides a subclass
modelling the forward iterator concept and reading through the elements of

RECURSIVE AND DYNAMIC STRUCTURES IN GENERIC PROGRAMMING 97

the container. Algorithms use these iterators to access the containers (which
they know nothing more about), they rely only on the concept.

These systems can be extended in non-intrusive way: new data types can
be introduced by creating a new class modelling the concept, new operations
can be introduced by writing new generic functions relying only on the concept.
This solution is also efficient, since in most cases the compiler knows every type
at compile time and can heavily optimise the program.

3.1. Recursive data types. We examine creation of recursive data types for
this design. Recursive data types contain one or more data objects (modelling
the concept) and are data objects themselves, so recursive data types model
the concept as well. When the type of the child objects are known at compile
time the interface of the children can be used directly: all types are known at
compile time. When the types of the child objects are unknown at compile
time the only thing the recursive object can assume is that they model the
concept. Not only their dynamic but also their static type is unknown at
compile time (there is no common base class for data types).

Mat Marcus, Jaakko Järvi and Sean Parent use the Bridge design pattern
in [4]. The goal of this pattern is separation of abstraction (in our case the
concept) and implementation (classes modelling the concept). They connect
static and dynamic polymorphism by creating an abstract base class for every
class modelling the concept and a generic wrapper class which is a subclass of
the base class and can be instantiated by any class modelling the concept. The
abstract base class provides pure virtual functions for every operation required
by the concept and wrappers implement these virtual functions by using the
wrapped object’s interface since every wrapper knows the static type of the
wrapped class at compile time.

Inheritance between the base class and wrappers implement dynamic, in-
stantiation of the generic wrapper for each data type implements static poly-
morphism. Using this idea recursive data types could be implemented when
static type of children is unknown at compile time using smart reference ob-
jects which could be special objects containing a pointer to wrapper objects
and model the concept themselves by calling virtual functions of the wrappers.

Concepts requiring the existence of subtypes modelling another concept
(e.g. STL containers need to have an iterator type [9]) make creation of the
abstract base class more difficult: since the static type of the wrapped object
is not known at compile time, neither does the compiler know the static type
of the subtype. The open question is what type should the common base class
provide as the subtype. Our answer to this question is repetition of the idea
of Marcus, Järvi and Parent [4] for the subtype: the base class could provide
the smart reference class to the real subtype as the subtype. For example
the base class for STL containers could provide the smart reference class for

98 ÁBEL SINKOVICS AND ZOLTÁN PORKOLÁB

iterators as it’s iterator type and instances of STL algorithms not knowing
the static type of the container at compile time could access the iterators
through smart reference objects. For example a container could be created
accepting any random access STL container [9] using this solution. First
iterators of these containers need to be wrapped, so a base class is required
for random access iterators. The codes here are not complete classes, just
examples demonstrating the logic of the solution, and to keep examples simple
we assume that the container’s elements are ints.

class RandomAccessIteratorBase {
public:

virtual int operator*() const = 0;
virtual int& operator*() = 0;

};

The wrapper template needs to be implemented for iterators:

template <typename T>
class RandomAccessIteratorWrapper :

public RandomAccessIteratorBase {
public:

RandomAccessIteratorWrapper(const T& t) : _wrappedObject(t) {}
virtual int operator*() const { return *_wrappedObject; }
virtual int& operator*() { return *_wrappedObject; }

private:
T _wrappedObject;

};

Finally a smart reference class needs to be created simulating a random
access iterator and calling a wrapper in the background. (We use shared ptr
from Boost [18] as an underlying smart pointer implementation). We fo-
cus on the core idea here and skip other parts (e.g. copy constructor for
RandomAccessIterator) which a real implementation has to deal with.

class RandomAccessIterator {
public:

template <typename T> RandomAccessIterator(const T& t) :
_wrapped(new RandomAccessIteratorWrapper<T>(t)) {}

int operator*() { return _wrapped->operator*(); }
int& operator*() const { return _wrapped->operator*(); }

private:
boost::shared_ptr<RandomAccessIteratorBase> _wrapped;

};

Now since iterators have been wrapped the wrapper for containers can be
created using the iterator wrapper:

RECURSIVE AND DYNAMIC STRUCTURES IN GENERIC PROGRAMMING 99

class RandomAccessContainerBase {
public:

virtual RandomAccessIterator begin() = 0;
virtual RandomAccessIterator end() = 0;

};
template <typename T> class RandomAccessContainerWrapper :

public RandomAccessContainerBase {
public:

RandomAccessContainerWrapper(const T& t) : _wrapped(t) {}
virtual RandomAccessIterator begin()
{ return _wrapped.begin(); }
virtual RandomAccessIterator end() { return _wrapped.end(); }

private:
T _wrapped;

};
class RandomAccessContainer {
public:

template <typename T> RandomAccessContainer(const T& t) :
_wrapped(new RandomAccessContainerWrapper<T>(t)) {}

RandomAccessIterator begin() { return _wrapped->begin(); }
RandomAccessIterator end() { return _wrapped->end(); }

private:
boost::shared_ptr<RandomAccessContainerBase> _wrapped;

};

Every STL algorithm [9] for random access containers could work with
these wrappers and accept any random access container – without recompiling
the algorithm itself. It has a runtime cost but it still acceptable (we have
implemented the motivating example using this and measured the runtime
cost – see table 1 and table 2).

3.2. Evaluation of our solution against the requirements. We have a
set of requirements (Zenger’s and Odersky’s list with an extension in section
3.3): (1) Extensibility with algorithms and data types. Algorithms
can be added by implementing new generic functions, data types can be added
by creating new classes modelling the concept. (2) Independent exten-
sion. Extension with a new generic function or a new class has no effect on
data types or other functions. (3) Static type safety. Validity of call-
ing a generic function on a data type is checked when the code calling the
function is compiled. Data types have to model the concept and algorithms
have to rely only on the concept. In case algorithms rely on a refinement of
the original concept data types they are called with have to model that as
well. When using unrestricted containers the type of the objects is checked

100 ÁBEL SINKOVICS AND ZOLTÁN PORKOLÁB

when the objects are placed in the container, therefore algorithms operating
on the elements of the container can assume that every element models the
concept. (4) Efficiency. When runtime type of data objects is known at
compile time the compiler can optimise the code. (5) Separate compila-
tion. When using unrestricted containers (or references to objects modelling
the concept) algorithms can be compiled separately from data types they use.
(6) Reduction of the number of implementations Generic algorithms
do this.

3.3. Using this idea for the motivating example. We are going to use
this solution for the motivating example and check how effectively can this
approach solve the problem compared to the commonly used design patterns.
[3] [10] [12] In the motivating example a set of shapes and a set of transfor-
mations operating on the shapes are given. Groups of shapes can be created
which groups are shapes themselves, operations need to support them either.
Shapes are the data types of the expression problem, groups of shapes make
them recursive. Transformations are operations operating on the data types.

Since our solution requires a generic concept for data types, the first step
of applying the approach to a practical problem is finding one. This concept
needs to be generic enough to avoid restriction of the data types since changes
in the concept are likely to indicate changes in every data type and operation.
In our example data types are shapes, a concept has to be generic enough to
describe all kinds of shapes. There are multiple approaches to find one, we
use one we found generic enough here for demonstration.

First we define a concept for vectors: we expect a vector type to have a
scalar type associated with it, the scalar values form a field and the vectors
form a vector space over this field. For example the vector space of two
(or three) dimensional vectors over the field of real numbers satisfy these
requirements. A generic concept for shapes can be defined based on the generic
concept for vectors. Commonly used shapes can be described by a set of
vectors. Here are the shapes of the well-known vector graphics standard the
Scalable Vector Graphics (SVG) format [27]: (1) line can be represented by
it’s two endpoints. (2) triangle can be represented by it’s three vertices.
(3) Rectangles can be represented by two or three vectors (depending on
if their edges are always parallel to the axis of the coordinate system or they
can be rotated by any angle). (4) Ellipses can be represented by their
bounding rectangle, which indicates that they can be represented by two or
three vectors. (5) Circles can be represented by the origin and one point on
the edge. (6) Paths and shapes described by them (polylines, polygons,
bezier curves, splines) can be represented by their control points. As we
can see there are shapes which support extension and reduction of the set of

RECURSIVE AND DYNAMIC STRUCTURES IN GENERIC PROGRAMMING 101

their points (polylines, curves, etc.) and there are shapes where the number
of points are fixed (rectangles, lines, etc.).

Figure 1. Example shapes and vectors describing them

A generic concept for shapes could be defined based on this idea: a shape
is represented by a set of vectors completely describing it’s shape, location,
orientation and size. Each type of shape has a forward iterator type and has
begin() and end() methods similarly to STL containers which can be used
to iterate over the vectors representing the shape. Transformations could be
implemented similarly to algorithms of the Standard Template Library: they
are generic functions using iterators to access the shapes. Here is an example
implementation of translation:
template <typename Shape>
void translate(Shape& shape, typename Shape::Vector d) {

for (typename Shape::iterator i = shape.begin();
i != shape.end(); ++i)

*i += d;
}

Basic shapes like lines, curves, etc. could be implemented by containers of
vectors. For example a rectangle or a line could be implemented by an array
of vectors to provide O(1) random access to the vectors, a polyline could be
implemented by a list of vectors to provide O(1) vector insertion and deletion.
Groups of shapes could be implemented by containers of shapes, but they
have to be shapes themselves. The union of sets representing the contained
shapes could be the set of shapes representing the group itself as a shape
since this is the set of shapes which satisfies the expectations of the abstract
concept for shapes (completely describes the whole group). This indicates
the creation of a special iterator iterating over the elements of the contained
shapes. Unrestricted containers could be implemented by creating generic
wrappers for shapes. Since the type of iterators is not fixed, generic wrappers
have to be created for iterators either.

102 ÁBEL SINKOVICS AND ZOLTÁN PORKOLÁB

3.4. Runtime performance. We implemented the motivating example to
measure the runtime performance of the solution. The test environment was a
Linux box with the GNU C++ compiler version 4.1.2, and the code was com-
piled with level 6 optimalisation. We measured the speed of the translation
of two dimensional points and polylines in homogeneous and in unrestricted
containers. Using homogeneous containers dynamic type of the shapes are
known at compile time making optimalisation possible but restricting flexibil-
ity while unrestricted containers accept any type of shapes but have runtime
costs because of using dynamic polymorphism.

Table 1. Measurements with point shapes

Unrestricted Homogeneous
container (s) container (s)

1 000 shapes
1 000 times 0.373 0.056

10 000 shapes
1 000 times 3.497 0.365

1 000 shapes
10 000 times 3.546 0.950

Table 2. Measurements with polylines

Unrestricted Homogeneous
container (s) container (s)

100 shapes
100 times 0.092 0.059
100 control points

1 000 shapes
100 times 0.675 0.367
100 control points
100 shapes

1 000 times 0.940 0.903
100 control points
100 shapes
100 times 0.901 0.884

1 000 control points

The results are what we expected – runtime polymorphism has a strong
impact on runtime speed (unrestricted containers were 3 - 6 times slower than
homogeneous ones).

RECURSIVE AND DYNAMIC STRUCTURES IN GENERIC PROGRAMMING 103

4. Summary

A large class of software is working on recursive data types. Web browsers,
office software, graphic editors, etc. have different components containing
other components, and perform operations on them. These software need to
be designed carefully, since by applying commonly used design patterns, the
possibility of independent development and extension of these components
and operations could be lost. In this paper we analysed common patterns
and found that they supported independent extension of one of data types or
operations, but not both of them. We analysed other existing approaches as
well to see their benefits and drawbacks. We proposed a new approach using
generic programming in C++ and a solution when a concept is available for
data types. In our approach data types are required to model the concept and
algorithms required to rely only on the concept when accessing data objects.

A drawback of generic programming in C++ is the lack of support for
runtime polymorphism which is required to create unrestricted containers for
data objects supporting any data type. We used the technique described by
Mat Marcus, Jaakko Järvi and Sean Parent in [4] to connect compile time and
runtime polymorphism. We extended the idea with support to unrestricted
containers. After measuring the runtime cost of unrestricted containers we
found that although they were 3-6 times slower than homogeneous ones, but
they are more advantegous in means of flexibility, type safety, and quality of
source code.

References

[1] Thomas Becker, Type Erasure in C++: The Glue between Object-Oriented and Generic
Programming, ECOOP MPOOL workshop, pp.4-8, Berlin, 2007.

[2] Shriram Krishnamurthi, Matthias Felleisen, Daniel P. Friedman, Synthesizing Object-
Oriented and Functional Design to Promote Re-Use, LNCS Vol.1445, p..91-111, 1998.

[3] Matthias Zenger, Martin Odersky, Independently Extensible Solutions to the Expression
Problem, Technical Report IC/2004/33 EPFL, Lausanne, 2004.

[4] Mat Marcus, Jaakko Järvi, Sean Parent, Runtime Polymorphic Generic Programming
- Mixing Objects and Concepts in ConceptC++, ECOOP MPOOL workshop, Berlin,
2007.

[5] Ronald Gracia, Jaakko Järvi, Andrew Lumsdaine, Jeremy Siek, Jeremiah Willcock, A
Comparative Study of Language Support for Generic Programming, ACM SIGPLAN
Notices, Vol.38, Issue 11, OOPSLA conference paper, pp.115-134, Anaheim, 2003.

[6] Scott Meyers, Effective C++, Addison-Wesley, 2005, [220], ISBN: 0321334876
[7] Scott Meyers, More Effective C++, Addison-Wesley, 1996, [336], ISBN: 020163371X
[8] Scott Meyers, Effective STL, Addison-Wesley, 2001, [288], ISBN: 0201749629
[9] Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley, 1997, [1040],

ISBN: 0201327554
[10] Kim B. Bruce, Some challenging typing issues in object-oriented languages. In Proceed-

ings of Workshop on Object-Oriented Development (WOOD’03), volume 82 of Elec-
tronic Notes in Theoretical Computer Science, 2003.

104 ÁBEL SINKOVICS AND ZOLTÁN PORKOLÁB

[11] Jens Palsberg, C. Barry Jay, The Essence of the Visitor Pattern, Proceedings of the
22nd International Computer Software and Applications Conference, p.9-15, August
19-21, 1998

[12] Mads Torgersen, ”The Expression Problem Revisited. Four New Solutions Using Gener-
ics.” In: M. Odersky (ed.): ECOOP 2004 - Object-Oriented Programming (18th Euro-
pean Conference; Oslo, Norway, June 2004; Proceedings). Lecture Notes in Computer
Science 3086, Springer-Verlag, Berlin, 2004, 123-143.

[13] Philip Wadler, The expression problem, Message to Java-genericity electronic mail list,
November 12, 1998.

[14] Philip Wadler, The expression problem: A retraction, Message to Java-genericity elec-
tronic mail list, February 11, 1999.

[15] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Abstraction and reuse
of object-oriented designs, Addison-Wesley, 1994, [416], ISBN: 0201633612

[16] C. Clifton, G. T. Leavens, C. Chambers, T. Millstein, MultiJava: Modular open classes
and symmetric multiple dispatch for Java, Proceedings of the Conference on Object-
Oriented Programming: Systems, Languages, and Applications, pp.130-145, ACM
Press, 2000.

[17] Matthias Zenger, Martin Odersky, Extensible algebraic datatypes with defaults, Proceed-
ings of the International Conference on Functional Programming, Firenze, 2001.

[18] B. Karlsson, Beyond the C++ Standard Library, An Introduction to Boost, Addison-
Wesley, 2005.

[19] Bjarne Stroustrup, The Design of C++0x, C/C++ Users Journal, May, 2005
[20] Douglas Gregor, Bjarne Stroustrup, Concept Checking, Technical Report, N2081,

ISO/IEC SC22/STC1/WG21, Sept, 2006
[21] G. Dos Reis, B. Stroustrup, Specifying C++ concepts, Proceedings of the 33rd ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
2006, pp. 295-308.

[22] ANSI/ISO C++ Committee, Programming Languages – C++, ISO/IEC 14882:1998(E),
American National Standards Institute, 1998.

[23] K. Czarnecki, U. W. Eisenecker, Generative Programming: Methods, Tools and Appli-
cations, Addison-Wesley, 2000.

[24] J. Siek, A. Lumsdaine, Essential Language Support for Generic Programming, Pro-
ceedings of the ACM SIGPLAN 2005 conference on Programming language design and
implementation, New York, USA, pp 73-84.

[25] Bjarne Stroustrup, The Design and Evolution of C++, Addison-Wesley, 1994
[26] D. Vandevoorde, N. M. Josuttis, C++ Templates: The Complete Guide, Addison-

Wesley, 2003.
[27] Scalable Vector Graphics (SVG) 1.1 Specification, W3C Recommendation 14 January

2003.
http://www.w3.org/TR/2003/REC-SVG11-20030114

Eötvös Loránd University, Faculty of Informatics, Dept. of Programming
Languages, Pázmány Péter sétány 1/C H-1117 Budapest, Hungary

E-mail address: abel@sinkovics.hu, gsd@elte.hu

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

THE RECONSTRUCTION OF A CONTRACTED ABSTRACT
SYNTAX TREE

RÓBERT KITLEI

Abstract. Syntax trees are commonly used by compilers to represent
the structure of the source code of a program, but they are not convenient
enough for other tasks. One such task is refactoring, a technique to improve
program code by changing its structure.

In this paper, we shortly describe a representation of the abstract syntax
tree (AST), which is better suited for the needs of refactoring. This is
achieved by contracting nodes and edges in the tree. The representation
serves as the basis of the back-end of a prototype Erlang refactoring tool,
however, it is adaptable to languages different from Erlang.

In turn, we introduce an algorithm to reconstruct the AST from the
representation. This is required in turn to reproduce the source code, the
ultimate step of refactoring.

1. Introduction

The ASTs constructed using context-free grammars is the representation
most applications choose to describe the syntactic structure of source code of
programming languages. Most applications use standard lexers and parsers
that are designed with the goals of compilers in mind. Compilers – and there-
fore their standard tools – drop inessential infomation such as punctuation and
whitespace after using them to determine token boundaries. Such information
is important if one has to preserve the source code as a whole. Also, ASTs are
not designed to support searching, as this feature is not required in compilers,
the most common users of ASTs.

The above representation does not sufficiently support some applications.
An alternative representation is proposed by the Erlang refactoring group at

Received by the editors: September 16, 2008.
2000 Mathematics Subject Classification. 68N20,68Q42.
1998 CR Categories and Descriptors. D.2.10. [Software]: Software engineering – Rep-

resentation.
Key words and phrases. Abstract syntax tree, Syntactic reconstruction.
Supported by GVOP-3.2.2-2004-07-0005/3.0 ELTE IKKK and Ericsson Hungary.
This paper has been presented at the 7th Joint Conference on Mathematics and Computer

Science (7th MaCS), Cluj-Napoca, Romania, July 3-6, 2008.

105

106 RÓBERT KITLEI

Eötvös Loránd University (Budapest, Hungary), although this representation
has proved useful for purposes other than refactoring as well. The group
proposed this representation after previous experience with refactoring [5, 7].
Details about the representation and the refactoring tool can be found in [4].

Although the new representation is more convenient for many purposes,
e.g. refactoring, there was a trade-off between usability and functionality,
described in detail in section 3.1. Namely, for standard compiler tools, pretty-
printing the source from the constructed AST is straightforward using a depth-
first algorithm. However, since the new representation does not have all child
edges of a node in order, a more elaborate algorithm was needed, which is
described in section 3.

The structure of the paper is as follows. In section 2, the representation
of the graph is described to such depth as is necessary for understanding the
rest of the paper. Section 3.1 poses the central problem of the paper. The
rest of section 3 proposes an algorithm that solves this problem. Sections 3.2
and 3.4 in this section describe the contribution of the paper. Finally, section
4 lists related work.

2. Representation structure

2.1. Node and edge contractions. ASTs built on top of source codes are
typically created by compilers in compilation time. Such syntax trees are
discarded after they have been used, and their construction does not involve
complex traversals: they follow the construction of the tree. There are, how-
ever, applications in which the role of ASTs are augmented. In refactoring,
for example, tree traversals are extensively used, because a lot of information
is required that can be acquired from different locations.

In order to facilitate these traversals, a new representation of the AST was
introduced, which is described in detail in [4]. Here we give an overview of the
relevant parts of the representation.

ASTs inherently involve parts that are unnecessary for information collec-
tion, or are structured so that they make it more tedious. One obvious case
is that of chain rules: the information contained in them could be expressed
as a single node, yet the traversing code has to be different for each node that
occurs on the way.

Another case can be described by their functionality: the edges of the
nodes can be grouped so that one traversal should follow exactly those that are
in one group. To give a concrete example, clauses in Erlang have parameters,
guard expressions and a body, and there are associated tokens: parentheses
and an arrow. Yet the actual appearance of the clauses can be vastly different,
see Figures 1 and 2. When collecting information, often either all parameters

THE RECONSTRUCTION OF A CONTRACTED ABSTRACT SYNTAX TREE 107

if
X == 1 -> Y = 2;
true -> Y = 3

end

Figure 1. If clauses.

to_list(Text) when is_atom(Text) -> atom_to_list(Text);
to_list(Text) when is_integer(Text) -> integer_to_list(Text);
to_list(Text) when is_float(Text) -> float_to_list(Text);
to_list(Text) when is_list(Text) -> Text.

Figure 2. Function clauses with guards.

or all guard expressions are required at a time during a traversal pass, but
seldom both at the same time of the traversal. Therefore, it is natural to
partition the edges into groups along their uses. Since the partitions depend
on the traversals used, the programmer has to decide by hand how groups
should be made. This way, only as few groups have to be introduced as
needed in a given application.

Another way to make the representation more compact is to contract rep-
etitions. Repetitions are common constructs in programming languages: they
are repeated uses of a rule with intercalated tokens as separators. Instead
of having a slanted tree as constructed by an AST, it is more convenient for
traversal purposes to represent them by a parent node with all of the repeated
nodes and the intermediate tokens as its children. As a matter of fact, in the
example in the above paragraph the parameters and guard expressions are
already a result of such a contraction. These contractions are similar to the
list formation annotations in Overbey and Johnson [2].

Performing the above contractions has two main advantages. One is that
much fewer cases have to be considered. In the case of Erlang, the gram-
mar contained 69 nonterminals, which was reduced to three contracted node
groups: forms, clauses and expressions.

Since the contraction groups are different for each language (and may even
differ in each application, depending on the needed level of detail), it is impor-
tant that the approach should be adaptable to a wide range of grammars. This
is one of the reasons why an XML representation was chosen. The grammar
rules, the contraction groups and the edge labels are described in this file. The
scanner and parser are automatically generated from this file. The contracted

108 RÓBERT KITLEI

Expr

Expr

1
Rest

Token

comma

Expr

2
Rest

Token

comma

Expr

3

(a) AST.

expr

Token

comma

elex/1

Token

comma

elex/2

expr

1

sub/1

expr

2

sub/2

expr

3

sub/3

(b) Contracted AST.

Figure 3. Repetition in the expression 1,2,3.

structure is automatically constructed during parse time (not converted from
an AST).

2.2. Representation of the contracted AST. The inner nodes of the con-
tracted AST are the contracted nodes, which also contain the originating non-
terminal as information. The leaf nodes of the contracted AST are the tokens,
which contain the token text and the whitespace before and after the token.
The nodes are connected by labelled edges; the labels determine the contrac-
tion classes they can connect.

Contractions do not fully preserve edge ordering: order is preserved only
between the edges with the same label, not between different labels. This is
why the original AST cannot be restored easily: in Figure 4b, it is not possible
to determine whether the tokens of the clause come before, after or in between
the expressions. To make it possible, more information about the structure of
the contracted nodes is needed.

The lack of order between label groups is the result of using a database
for storage, which is required for fast queries. However, it is expected to be a
good trade-off, since the exact AST order of the nodes is seldom needed (most
importantly, when reprinting the contents of the graph into a file), while it
provides queries in linear time of their length. The order of the links with the
same label, which is important during queries, is retained.

THE RECONSTRUCTION OF A CONTRACTED ABSTRACT SYNTAX TREE 109

clause

funcl

token

(

clex/1

token

)

clex/2

token

->

clex/3

expr

body/1

expr

pattern/1

expr

name/1

integer

1

elex/1

integer

1

elex/1

atom

f

elex/1

(a) Part of an automatically printed contracted AST. The
order of the edges between groups in unknown.

clause

funcl

expr

name/1

token

(

clex/1

expr

pattern/1

token

)

clex/2

token

->

clex/3

expr

body/1

atom

f

elex/1

integer

1

elex/1

integer

1

elex/1

(b) The nodes rearranged in the right order. The order
within the groups is retained. The tokens read:
f(1) -> 1.

Figure 4. A contracted AST node with a body, a pattern, a
name and three clex edges.

3. Reconstruction of the AST

3.1. Problem when reproducing the original token order. In the previ-
ous versions of RefactorErl, the token nodes in a file were linked by edges with
the special label next, with the first token linked from the file by first token.

110 RÓBERT KITLEI

This solved the problem of getting the original tokens: they could be acquired
by getting the first token, then iterating on the next edges until there were
none left. Another related question, determining the token at a given position
in the file, was also solved easily by iteration on the next edges, and calculating
the remaining positions. However, these edges have proved to be too difficult
to handle when manipulating the syntax tree: the next edges would have to
be synchronised each time parts of the syntax tree were inserted, removed or
moved. Also, when manipulating repeat constructs such as lists, some tokens
(in the case of lists, the separating commas) would have to be dealt with.

The approach taken in this paper is different. Instead of repairing the
next edge links, they are omitted altogether. This immediately solves the
problem that occurs when manipulating the syntax tree, because the adjacent
tokens are not linked anymore. At the same time, the two other questions are
reopened: how to get the token by position and how to print the file. In the
rest of the chapter, a method is presented to reproduce the AST. This also
yields the original tokens as the front of the tree. Using the original tokens,
both questions are trivially answered.

3.2. Grammar rule constructs. The chosen grammar description is close
to a BNF description. The grammar rules are grouped by what contraction
group their head belongs to. Rules, of course, may have more alternatives.
The right hand sides of rules consist of a sequence of the following:

• tokens, that contain the token node label,
• symbols, that contain the child symbol’s nonterminal and the edge

label,
• optional constructs, sequences that either appear or not in a con-

crete instance and
• repeat constructs that contain a symbol and a token; its instances

are several (at least one) symbols with tokens intercalated.
Since optionals and repeats may contain one another, we shall refer to the
number of contained nestings as the depth of the construct.

As an example that contains both constructs described above, let us exam-
ine the structure of lists. The structure of lists is described as follows. Lists
start with an opening bracket token and end with a closing bracket token.
Between them is an optional construct. The optional part consists of a repeat
construct. The repeat construct uses comma tokens to separate symbols that
are linked using “sub” edges from the parent node. The portion of the actual
Erlang code that shows the above structure is shown in figure 5 in order to
have a more concise overview.

Lists can be empty lists, or lists containing expression symbols separated
by comment tokens. In the first case, the optional part is not present. In

THE RECONSTRUCTION OF A CONTRACTED ABSTRACT SYNTAX TREE 111

[{token,"op_bracket"},
{optional,[{repeat,"comma","sub"}]},
{token,"cl_bracket"}];

Figure 5. The structure of lists as an Erlang structure used
in the actual implementation. Slightly abridged.

the second case, the optional is present. If there is one element in the re-
peat construct, there is exactly one symbol element present which denotes the
expression.

[︸︷︷︸
token

︸︷︷︸
empty optional

]︸︷︷︸
token

[︸︷︷︸
token

1︸︷︷︸
repeat in optional

]︸︷︷︸
token

[︸︷︷︸
token

1, 2, 3, 4, 5, 6, 7, 8 + 9, f()︸ ︷︷ ︸
repeat in optional

]︸︷︷︸
token

The grammar description contains the following restrictions. First, no
optionals may start with another optional. Second, two repeats in the same
rule may not contain the same symbols, nor tokens. Third, no constructs
(optionals and repeats) may have a depth of more than two.

The main reason for these restrictions is that they help prevent ambigui-
ties, as seen in the absence and multichoice constructs in the description or
reconstruction.

The third restriction is not necessary for theoretical, but for practical
purposes: it is there to keep the processing algorithm described later at a
manageable size and complexity while not deducing the expressive power of the
constructs too much. Indeed, for a construct at any depth, a new nonterminal
can be introduced to take its place, thereby reducing the depth of the parent
construct. This way, the depth of the constructs could be limited to one;
practice has shown that two is a reasonable limit.

The grammar is expressive enough, as even without the constructs it has
Chomsky class L2.

The first restriction can be enforced by the DTD of the XML. The third
restriction could also be enforced if the inner optionals and repeats would have
different names, at the expense of comfort.

112 RÓBERT KITLEI

3.3. Derived constructs used in reconstruction. The rule descriptions
above are sufficient in most cases to reconstruct the original node order of a
node in the contracted AST by looking at only the nonterminal of the node,
the node’s child links and the rule description. Yet there are two types of rules
where these data are not enough. In these cases, another kinds of constructs
have to be prepared before reconstruction. These structural constructs are
automatically derived from the syntax description like the scanner and the
parser. Both of these constructs require information about the children nodes,
and conglomerate several grammar rules.

The first skeleton construct is called absence multi-rule construct be-
cause it selects the appropriate grammar rule based on the absence or presence
of a token or a symbol. The following example shows a fun-expression that
can either have explicit clauses (in the first case) or can be an implicit fun
expression, just showing the function name and arity (the second case). Here,
the only way to decide which rule to use is to check for the end token: if it is
present, it is the first rule, if it is not, the second.

fun︸︷︷︸
token

(1)→ ok; (2)→ error︸ ︷︷ ︸
repeat

end︸︷︷︸
token

fun︸︷︷︸
token

another module/2︸ ︷︷ ︸
repeat

Named functions have the name of the function as a subexpression in the
beginning of each clause. The clauses of unnamed functions start immediately
with the parameter list in parentheses. The only way to decide between them
is to search for the symbol at the beginning. (Note that symbols also contain
the link label. Its omission, similar to calling the parameter list a “repeat in
optional,” is a simplification.)

search︸ ︷︷ ︸
symbol

(︸︷︷︸
token

Structure, Pattern︸ ︷︷ ︸
repeat in optional

)︸︷︷︸
token

→︸︷︷︸
token

...︸︷︷︸
repeat

(︸︷︷︸
token

Structure, Pattern︸ ︷︷ ︸
repeat in optional

)︸︷︷︸
token

→︸︷︷︸
token

...︸︷︷︸
repeat

The second skeleton construct the multichoice multi-rule construct.
In it, there is a list of possible present symbols or tokens. The actual rule can
be decided depending on which of the symbols (or tokens) occur. The symbols
(or tokens) listed are mutually exclusive: one and only one occurs, provided
that the source is valid.

Both if and case clauses are branch clauses and they may look identical.
Similarity occurs when the case clause has no guard and the guard of the

THE RECONSTRUCTION OF A CONTRACTED ABSTRACT SYNTAX TREE 113

if expression is a single variable. They can be separated only if they make
different links to their first symbol as “guard” and “pattern” respectively.

Infix expressions provide an example for a token-based multichoice con-
struct. Logical operators andalso and orelse (and several other operators)
can function on the same pair of arguments. Here, checking all the possible
token types, exactly one will be present, and this of course determines the
operation as well.

3.4. AST reconstruction. From the XML syntax description, a node struc-
ture skeleton is automatically generated. It assigns to each contracted node
type either a one-rule structure, or an absence or multichoice multi-rule con-
struct.

The syntax tree can be reconstructed using a recursive algorithm. Starting
from the node in the tree that corresponds to the file, we do the following.

(1) We determine the structure of the actual rule which is used. If a one-
rule structure is assigned to the parent node, it is the structure; if a
multi-rule construct describes it, we have to check the children of the
node as well.

(2) The sequence in the structure is processed.
(a) For any token or symbol, take the next fitting one.
(b) For repeats, take all symbols (altogether n) with the appropriate

edge label, and take n− 1 fitting tokens.
(c) For optionals beginning with a token or symbol, use the optional

sequence if a fitting child is present.

Tokens’ edge labels are determined by the type of the parent node. We call
a token node fitting the token in the description if it is linked to the parent
node by such a link. A symbol is called fitting in a similar way, except that
for symbols, the description explicitly contains their expected links.

Using the above algorithm, the original AST can be recovered. Strictly
speaking, this is not the AST, as chain rules are still not expanded; this does
not add significant information, and can easily be done, should the need arise.

The front of the AST contains the token nodes in their original order.
Since all whitespace information is contained in the tokens, and punctuation
tokens are not omitted, the whole original file can be reprinted. Determining
the token at a given position of the file can be done by doing a linear search
on the original tokens in order.

With an additional layer between the lexer and the parser, it is possible to
handle preprocessor constructs such as include files and macros (even ones that
cross-cut the syntax). Additional information relating to such preprocessor
constructs can be stored in the graph as well. During reconstruction, finding

114 RÓBERT KITLEI

a node that originates from such a construct does not pose a challenge, as
these constructs mostly involve directly storing all of their relevant tokens.

{absence, "end", token,
[{token, "fun"}, {repeat, ";", "exprcl"}, {token, "end"}],
[{token, "fun"}, {symbol, "sub"}]

}

Figure 6. The skeleton description of a fun expression.

expr

fun_expr

token

fun

elex/1

token

;

elex/2

token

;

elex/3

token

end

elex/4

clause

exprcl/1

clause

exprcl/2

clause

exprcl/3

Figure 7. Graph representation of a function expression with
three clauses. One instance of such a function is the following.
fun
(X) when X > 0 -> ok, X;
(X) when X < 0 -> ok, -X;
(0) -> error
end

3.5. Example. Figure 7 shows a fun expression with three subclauses in the
graph representation. The nodes representing the clauses are not in order,
as ordering exists only within the elex and the exprcl edge classes. Let us
use the algorithm described in Section 3.4 in order to recover the order of the
nodes.

The description of the fun expression in 6 contains a skeleton construct. In
order to eliminate it, we have to check whether the actual structure contains
an end token. It does, therefore the first of the two descriptions is chosen.
This description starts with a token, therefore the first element in the order
is the first token that is connected to the expr parent node. The label of
the connecting edge is determined by class of the parent node, expr: elex.
Thus, the first child node in order is the one connected by elex/1. Next

THE RECONSTRUCTION OF A CONTRACTED ABSTRACT SYNTAX TREE 115

in the description is a repeat construct with the exprcl symbol link and
the semicolon. For this, we take all three nodes that are linked by exprcl,
and one less token (linked, as before, by elex/1). The restored order is the
symbols with the tokens intercalated between them. The last element of the
description is another token, for which we take the last remaining token. Since
all the description and the actual nodes are consumed, the representation is
syntactically valid. The restored order can be seen in Figure 8; restoration is
continued for all child nodes.

expr

fun_expr

token

fun

elex/1

clause

exprcl/1

token

;

elex/2

clause

exprcl/2

token

;

elex/3

clause

exprcl/3

token

end

elex/4

Figure 8. Graph representation of a function expression with
three clauses.

4. Related work

The design of the representation was shaped through years of experimen-
tation and experience with refactoring functional programs. The first refac-
toring tools produced at Eötvös Loránd University [5, 7] used standard ASTs
for representing the syntax. It became evident that such a representation is
not convenient enough for refactoring purposes, and a new design was needed.
The resulting design [4] used the contracted graph described in section 2 as
representation of the syntax tree, but it relied on superfluous next edges to
maintain the order of tokens. Section 3.1 argues why having these was unde-
sirable, and the whole of section 3 describes the new structures and algorithms
that were necessary to avoid them.

The Java language tools srcML [8], JavaML [3] and JaML [1] use XML to
model Java source code. Since XML naturally outlines a tree structure, these
representations conserve node order, which enables them to easily reprint the
source.

Since the representation outlined in this paper differs so much from the
usual approach taken – using a contracted representation instead of the more
conventional ASTs – the problem of reproducing the original nodes in order
does not appear in other works, as this task is trivial when using an AST.

116 RÓBERT KITLEI

References

[1] G. Fischer, J. Lusiardi, J. Wolff v. Gudenberg, Abstract syntax trees and their role in
model driven software development, in Proceedings of the International Conference on
Software Engineering Advances, IEEE Computer Society (2007), page 38.

[2] J. Overbey, R. Johnson, Generating Rewritable Abstract Syntax Trees, in Proceedings
of the 1st International Conference on Software Language Engineering (SLE 2008),
Toulouse, France, 2008.

[3] G. J. Badros, Javaml: a markup language for Java source code, in Proceedings of the
9th international World Wide Web conference on Computer networks: the international
journal of computer and telecommunications networking, North-Holland Publishing Co.
Amsterdam, The Netherlands, 2000, pp. 159–177.

[4] R. Kitlei, L. Lövei, T. Nagy, Z. Horváth, T. Kozsik, Preprocessor and whitespace-aware
toolset for Erlang source code manipulation, in Proceedings of the 20th International
Symposium on the Implementation and Application of Functional Languages, Hatfield,
UK, 2008.

[5] R. Szabó-Nacsa, P. Diviánszky, Z. Horváth, Prototype environment for refactoring Clean
programs, in Proceedings of the 4th Conference of PhD Students in Computer Science
(CSCS 2004), Szeged, Hungary, 2004.

[6] H. Li, S. Thompson, L. Lövei, Z. Horváth, T. Kozsik, A. Vı́g, T. Nagy, Refactoring Er-
lang Programs, in Proceedings of the 12th International Erlang/OTP User Conference,
2006.

[7] Lövei, L., Horváth, Z., Kozsik, T., Király, R., Vı́g, A. Nagy T, Refactoring in Erlang,
a Dynamic Functional Language, in Proceedings of the 1st Workshop on Refactoring
Tools, Berlin, Germany, 2007, pp. 45-46.

[8] J. I. Maletic, M. L. Collard, A. Marcus, Source code files as structured documents, in Pro-
ceedings of 10th IEEE International Workshop on Program Comprehension (IWPC’02),
IEEE Computer Society, Washington, DC, USA, 2002, pp. 289–292.

Faculty of Informatics, Eötvös Loránd University, Pázmány Péter sétány
1/c, H–1117 Budapest, Hungary

E-mail address: kitlei@elte.hu

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

ADVANTAGES AND DISADVANTAGES OF THE METHODS
OF DESCRIBING CONCURRENT SYSTEMS

ANITA VERBOVÁ AND RÓBERT HUŽVÁR

Abstract. This paper provides a review of existing paradigms for mod-

elling concurrent processes. First we describe in short some formal methods

designed for the development of the theory of concurrency.

Because no unified theory or calculus for concurrency has showed up,

we concentrate on interaction categories and their features relevant for our

purposes. They are able to describe some essential features of communi-

cating processes.

Finally we confront all these methods and point out their limitations

and expressive power. We highlight some open problems with regard to

reasoning about concurrent systems.

1. Description of concurrent systems by process calculi

There exists many methods for the formal description of concurrent sys-
tems. The most substantial of these paradigms is the process calculus [3]. Its
pioneers were Milner a Hoare with their methods CCS [7] and CSP [5] respec-
tively. There are also another paradigms, which describe concurrent processes
and some of their properties. Here belongs for instance the π-calculus [10],
the structure of events [17], Petri nets [4] and SCCS [8]. SCCS (synchronous
calculus of communicating systems) is a process algebra in which processes
contribute their visible activity synchronously, or in other words, in unison
with a global clock. The algebra also contains operators for structuring process

Received by the editors: September 14, 2008.

2000 Mathematics Subject Classification. 18C10.

1998 CR Categories and Descriptors. F.3.2 [Logics and Meanings of Programs]:

Semantics of Programming Languages – Process models; F.4.1 [Logics and Meanings of

Programs]: Mathematical Logic – Proof theory .

Key words and phrases. Category theory, Concurrent systems, Process algebra, Interac-

tion categories.

This paper has been presented at the 7th Joint Conference on Mathematics and Computer

Science (7th MaCS), Cluj-Napoca, Romania, July 3-6, 2008.

116117

ON METODS OF DESCRIBING CONCURRENT SYSTEMS 117

definitions, renaming and inhibiting actions and permitting nondeterministic
choices of behaviour [11].

Main result of this paradigm is to develop an algebraic theory of concur-
rency as a foundation for structural methods for describing concurrent systems.

2. Description of concurrent systems by the π-calculus

In [9] Milner describes the π-calculus as a step towards a canonical calculus
for concurrent systems. It is a minimal calculus such that all programs that
are computable by a concurrent system can be encoded in it. The π-calculus
hopes to play a similar role for concurrent systems to that played by the
λ-calculus for sequential computation.

The π-calculus is a process algebra, similar to CCS, but is designed to
model systems with dynamically changing structure: that is, the links bet-
ween the components of a system can vary dynamically during the evolution
of the system. This property, which is called mobility, can at best be modelled
indirectly in established process algebras.

The π-calculus allows channel names to be passed as values in communi-
cations. In fact the π-calculus combines the concepts of channel names, value
and value variables into a single syntactic class: names. The π-calculus is not
a higher order calculus: it is only accesses to agents that are being passed
in communications, not the agents themselves. The passing of agents as pa-
rameters in communications is undesirable since agents would then become
replicated, and the replication of agents with state is difficult. Limiting our-
selves to the passing of accesses means that we can allow certain agents only
limited access to other agents, and have several agents having different access
abilities to some common agent.

The main features of the π-calculus are the dynamic creation of channel
names and handshake communication on these names.

3. Mathematical theory of computational paradigm

The latest established of current paradigms for the semantics of computa-
tion is denotational semantics. In spite of its pretensions to universality, deno-
tational semantics has a natural slant to computational paradigm: functional
computation. By this we mean not only functional programming languages,
but the whole range of computation, where the behaviour of the program is ab-
stracted as the computation of a function. This view of programs as functions

118

ANITA VERBOVÁ AND RÓBERT HUŽVÁR

ANITA VERBOVÁ AND RÓBERT HUŽVÁR

118 ANITA VERBOVÁ AND RÓBERT HUŽVÁR

is built into the fundamental mathematical framework, which was denota-
tional semantics found on: a category of sets for the interpretation of types,
and specific functions between these sets for the interpretation of programs.

4. Category theory for modelling concurrent systems

The development of interaction categories [15] results from the limitations
of the paradigms mentioned above. These paradigms have developed indepen-
dently. Their separate development is considered to be the main open prob-
lem, i.e. how can we combine the functional and concurrent process paradigms
with their associated mathematical support in a single unified theory. This
unification is the consequence of the following investigations:

(1) in process algebras:
• There is no typing, hence there is a need of a good type theory for

concurrent processes.
• Stress is laid mainly on which are these processes, rather than on

what structure they have collectively.
• There is a real confusion of formalisms, combinators and equiva-

lences.
• Their major objection is that did not appear any generalized the-

ory or calculus for concurrency.
(2) in denotational semantics:

• Denotational semantics works well not only for the description
but also for the language design and programming methods.

Unification of these two methods is necessary to obtain correct basis for
languages connecting concurrent processes and communication with types on
one hand, and higher order constructions with polymorphism on the other. It
is also desirable for the foundations of suitable type systems for concurrency.

4.1. Interaction categories. In the categorical semantic approach, we define
a category of processes [2], where we model types as objects, processes as
morphisms, and interaction as morphism composition.

Once this structure of typed arrows closed under composition has formu-
lated, then a great amount of further structure is determined up to isomor-
phism.

4.2. Categorical structure of synchronous processes. In [2] interaction
categories are introduced by presentation of a canonical example, category of
synchronous processes SProc. In general objects of interaction categories are

119 ON METHODS OF DESCRIBING CONCURRENT SYSTEMS

ON METODS OF DESCRIBING CONCURRENT SYSTEMS 119

concurrent system specifications, their morphisms are synchronisation trees,
composition is given by synchronous product and restriction and identities are
synchronous buffers. The category SProc has a very rich structure.

More formally the objects of SProc are pairs A = (ΣA, SA), where ΣA

is an alphabet of actions (labels) and SA ⊆nepref Σ∗A is a safety specification.
Hence, a safety specification is a non-empty and prefix-closed set of traces over
A, which represents a linear-time safety property.

A process p of type A, written p : A, is a synchronization tree modulo
strong bisimulation, with labels from ΣA, such that traces(p) ⊆ SA. Follow-
ing Aczel we use a representation of synchronization trees as non-well-founded
sets, in which a process p with transitions p

a→ q, p
b→ r becomes {(a, q) (b, r)}.

The most convenient way of defining the morphisms of SProc is first to
define a *-autonomous structure on objects, then say that the morphisms from
A to B are processes of the internal hom type A (B. Given objects A and
B, the object A�B has

ΣA�B = ΣA × ΣB

SA�B =
{
σ ∈ Σ∗A�B|fst∗ (σ) ∈ SA ∧ snd∗ (σ) ∈ SB

}
.

The duality is trivial on objects: A⊥ = A. This means that at the level
of types, SProc makes no distinction between input and output. Because
communication is based on synchronization, rather than on value-passing, pro-
cesses do not distinguish between input and output either.

The definition of � makes clear how are processes in Sproc synchronous.
An action performed by a process of type A�B consists of a pair of actions,
one from the alphabet of A and one from that of B. Thinking of A and B as
two ports of the process, synchrony means that at every time step a process
must perform an action at every one of its ports.

A *-autonomous category in which� is self-dual, i.e. such that (A�B)⊥ ∼=
A⊥ � B⊥, is a compact closed category. Hence in a compact closed category
AOB ∼= A � B. In the special case when A⊥ ∼= A the linear implication,
defined by A (B = A⊥OB, also corresponds to A� B. In SProc A⊥ = A,
and so AOB = A (B = A�B.

Not all interaction categories are compact closed, but those that are, sup-
port more process constructions than those, that are not.

A morphism of SProc p : A → B is a process p of type A (B. Since
A (B = A�B, this means for the process p that it is of type A�B.

Given p : A → B and q : B → C then we can define their composition
p; q : A → C in the category SProc as follows:

120

ON METHODS OF DESCRIBING CONCURRENT SYSTEMS
ANITA VERBOVÁ AND RÓBERT HUŽVÁR

120 ANITA VERBOVÁ AND RÓBERT HUŽVÁR

p
(a,b)−→ p′ q

(b,c)−→ q′

p; q
(a,c)−→ p′; q′

in which matching of actions takes place in the common type B (as in rela-
tional composition), at each time step. This ongoing communication is the
interaction of interaction categories.

The identity morphisms are synchronous buffers: whatever is received by
idA : A → A in the left copy of A is instantaneously transmitted to the right
copy (and vice versa – there is no real directionality). If p is a process with
sort Σ and S ⊆nepref Σ∗ then the process p¹S is defined by:

p
a−→ q a ∈ S

p¹ S
a−→ q ¹(S/a)

where S/a
def= {ε} ∪ {σ|aσ ∈ S}.

The identity morphism idA : A → A is defined by idA
def= id ¹ SA(A

where the process id with sort ΣA is defined by:

a ∈ ΣA

id
(a,a)−→ id

Since � is a coproduct, its dual is a product; because all objects of SProc
are self-dual, this means that A � B is itself also a product of A and B – so
it is a biproduct. If p; q : A → B then their non-deterministic combinator is
defined by:

p + q = A
∆A−→ A�A

[p,q]−→ B

= A
〈p,q〉−→ B �B

∇B−→ B

where ∆A
def= 〈idA, idA〉 is the diagonal and ∇B

def= [idB, idB] is the codiag-
onal. To make clear the definition of +, consider the composition 〈p, q〉 ;∇B.
Pairing creates a union of the behaviours of p and q, but with disjointly la-
belled copies of B. Composing with ∇B removes the difference between the
two copies. A choice can be made between p and q at the first step, but
then the behaviour continues as behaviour of p or behaviour of q. Thus we
obtain the natural representation of the non-deterministic sum in terms of
synchronisation trees in CCS.

121

R

ON METHODS OF DESCRIBING CONCURRENT SYSTEMS

ON METODS OF DESCRIBING CONCURRENT SYSTEMS 121

4.3. Categorical structure of asynchronous processes. Category of pro-
cesses Buf with a similar structure as interaction categories is defined in [14].
Morphisms are given by labelled transition systems representing processes in
a language like CCS. These processes are asynchronous in the sense that a
sender does not wait for the message delivering as in handshake mechanism of
CCS. In the category Buf

• Objects are sets (names of channels).
• Morphisms A → B are labelled transition systems with input actions

from A and output actions from B, illustrated according to weak bisi-
mulation.

• Composition of morphisms is interaction in the form of parallel com-
position and restriction.

• Identities are asynchronous buffers, i.e. processes, which simply for-
ward the messages, which they deliver and they do not necessarily
preserve order.

We can define products as parallel composition without interaction, and
Buf is a traced monoidal category [6], thus it provides a feedback operation,
and we are able to build cycles of processes.

The category Buf is obtained by restricting the sets of morphisms to
those processes that are buffered. In [13], axioms are given to classify those
processes that behave the same when composed with a buffer, for the case
when the buffer does not preserve the order of messages (as in Buf), and
for first-in-first-out buffers. These axioms are quite strong. They require, for
example, that a process can at every state do an input transition on each input
channel. For first-in-first-out buffers, they require that from each state there
is at most one output transition.

5. Comparison of paradigms for the description of concurrent

systems

In this section we summarize the point of view of the designed paradigms.
Still is widely appreciated that the functional computation is only one, re-

latively restricted part of computational universe, where distributed systems,
real-time systems and reactive systems do not really fit. Success of denota-
tional semantics out of the area of functional computation is very limited.

Partly because of the absence of a good type theory, in process algebras
has been a considerably systematic chaos between specifications and processes.
Names in process calculi are used as corresponding names, which distinguish

122 ANITA VERBOVÁ AND RÓBERT HUŽVÁR

122 ANITA VERBOVÁ AND RÓBERT HUŽVÁR

these calculi syntactically and strongly from the others. For example, process
algebra tend to be more abstract and specification-oriented than Petri nets,
while the latter describe concurrency at a more intricate structural level.

The π-calculus is not higher order, unlike the λ-calculus where λ expre-
ssions (interpreted as agents) can be passed as arguments to functions and
bound to variables. In the π-calculus we cannot pass processes themselves in
communications or substitute them for names. We can construct implemen-
tations of functional and higher order programming languages on the basis of
passing simple data items between registers and carrying out simple opera-
tions on them, where these data items function either as pointers to the code
of functions or other complex data structures, or as values, instead of pass-
ing the functions and complex data structures themselves. Perhaps the most
valuable aspect of the π-calculus is that it gives us an abstract, mathematical
way to model this kind of computing, and so allows us to reason about such
implementations in a formal way.

It is debatable whether the π-calculus can be extended in such a way as
to make representations of complex constructions easier. Summation and τ -
actions produce semantic difficulties, and so it might be worth investigating
some other external choice operator. Even with summation and conditional
guards we could not build the infinite functions and operators. The question
of how best to extend the calculus in order to make it more useful therefore
remains open. Similar open problem is the extension of π-calculus to include
some notions of type.

Method of formal calculus [1] stems from the set of combinators forming
a syntax. The weakness of these methods is already in the use of this set of
combinators rather then another.

In the category Sproc a synchronous product is choosen to represent the
interaction of processes for the following reasons:

• Buffers are taken as the identity morphisms. This is in accordance
both with synchronous processes, where buffers are without delay –
they behave like hardware wires, also in the case where are buffered
processes, in which they are insensitive to delay. Also it satisfies asyn-
chronous case, where identity morphisms are also synchronous buffers.

• Milner‘s synchronous calculus SCCS is very expressive. Asynchronous
calculi such as CCS and CSP can be derived from SCCS. Therefore we
can take synchronous interaction as a basic notion.

123 ON METHODS OF DESCRIBING CONCURRENT SYSTEMS

ON METODS OF DESCRIBING CONCURRENT SYSTEMS 123

Instead of considering labels to be appropriate names, a typed framework
[12] is used to take a more structural view of concurrent processes. Interpre-
tations of type constructors in interaction categories require set-theoretic
constructions on the set of labels (sorts) associated with each type. A carte-
sian product of sorts (pairing of labels) is used to express the concurrent exe-
cution of some distributed actions. Coproduct is used to tag actions to allow
controlled choices. Multisets of actions are used to support replication of pro-
cesses. Product, coproduct and multisets represent in the notions of linear
types [16] multiplicatives, additives and exponentials respectively. In that
way we can generate such a set of categorical combinators for process algebra,
which is free of labels. Therefore we should use categorical combinators for
the translation of functional programs in a variable-free fashion.

Interaction categories clearly distinguish processes (computational enti-
ties) and specifications (logical entities).

Hoare in CSP considers processes with one input and one output, designed
to be connected in a pipeline – this is very close to the view indicated in
interaction categories. The same divergence problem arises in the case of
interaction categories as in CSP. Two conditions are defined to avoid this si-
tuation. For the process p; q must hold that p have to be left-guarded and q

right-guarded. In that case p cannot perform an infinite sequence of actions in
its right port without doing some actions in its left port; process q is defined
symmetrically. These conditions ensure that the process p; q does not diverge.
Therefore if we adjust this idea to interaction categories, then we require
all morphisms to be left- and right-guarded, so that all composites are non-
divergent.

Here we would like to compare categories SProc and Buf. In contrast
to the category SProc, processes A → B in the category Buf are oriented –
channels in A are input channels, these in B are output channels.

In SProc the identity process is a process that continually offers to do
the same action on both sides of its interface — it can be seen as a buffer
that immediately sends on any message it receives. Because it is synchronous,
the receive and the send actions happen at the same time, and so it cannot
be distinguished whether a message was sent through the buffer or not. In
an asynchronous setting a buffer will not generally work as an identity for
composition.

124 ANITA VERBOVÁ AND RÓBERT HUŽVÁR

124 ANITA VERBOVÁ AND RÓBERT HUŽVÁR

Acknowledgement

This work was supported by VEGA Grant No.1/0175/08: Behavioral cat-
egorical models for complex program systems.

References

[1] Abramsky, S. What are the fundamental structures of concurrency? we still don’t

know! In Electronic Notes in Theoretical Computer Science, 162 (2006), pp. 37–41.

[2] Abramsky, S., Gay, S., and Nagarajan, R. Interaction categories and the founda-

tions of typed concurrent programming. In Proceedings of the NATO Advanced Study

Institute on Deductive program design (Secaucus, NJ, USA, 1996), Springer-Verlag New

York, Inc., pp. 35–113.

[3] Baeten, J. C. M. A brief history of process algebra. Theor. Comput. Sci. 335, 2-3

(2005), 131–146.

[4] Brauer, W., Reisig, W., and Rozenberg, G., Eds. Petri Nets: Central Models and

Their Properties, Advances in Petri Nets 1986, Part II, Proceedings of an Advanced

Course, Bad Honnef, 8.-19. September 1986 (1987), vol. 255 of Lecture Notes in Com-

puter Science, Springer.

[5] Hoare, C. A. R. Communicating Sequential Processes. Prentice Hall, 1985.

[6] Joyal, A., Street, R., and Verity, D. Traced monoidal categories. Math. Proc.

Cambridge Philos. Soc. 119, 3 (1996), 447–468.

[7] Milner, R. A Calculus of Communicating Systems, vol. 92 of Lecture Notes in Com-

puter Science. Springer-Verlag, Berlin, 1980.

[8] Milner, R. Communication and Concurrency. 1989.

[9] Milner, R. Functions as processes. In ICALP (1990), pp. 167–180.

[10] Parrow, J. An Introduction to the π-Calculus, in The Handbook of Process Algebra.

Elsevier, Amsterdam, 2001, p. 479.

[11] Ross, B. J. Mwsccs: A stochastic concurrent music language. In In: Proc. II Brazilian

Symposium on Computer Music (1995).

[12] Schweimeier, R. A categorical framework for typing ccs-style process communication.

Electr. Notes Theor. Comput. Sci. 68, 1 (2002).

[13] Selinger, P. First-order axioms for asynchrony. In International Conference on Con-

currency Theory (1997), pp. 376–390.

[14] Selinger, P. Categorical structure of asynchrony. Electr. Notes Theor. Comput. Sci.

20 (1999).

[15] Verbová, A., Hužvár, R., and Slodičák, V. On describing asynchronous processes

by traced monoidal categories. In Proceedings of CSE 2008 International Scientific Con-

ference on Computer Science and Engineering (2008), elfa, s.r.o. Košice, pp. 99–106.

[16] Verbová, A., Novitzká, V., and Slodičák, V. From linear sequent calculus to

proof nets. In Informatics 2007, Proceedings of the Ninth International Conference on

Informatics (2007), Slovak Society for Applied Cybernetics and Informatics Bratislava,

pp. 100–107.

125ON METHODS OF DESCRIBING CONCURRENT SYSTEMS

ON METODS OF DESCRIBING CONCURRENT SYSTEMS 125

[17] Winskel, G., and Nielsen, M. Models for concurrency. In Handbook of Logic in Com-

puter Science, S. Abramsky, D. Gabbay, and T. S. E. Maibaum, Eds. Oxford University

Press, 1995.

Department of Computers and Informatics, Technical University of Košice,

Slovakia

E-mail address: anita.verbova@tuke.sk

Department of Computers and Informatics, Technical University of Košice,

Slovakia

E-mail address: robert.huzvar@tuke.sk

126

ANITA VERBOVÁ AND RÓBERT HUŽVÁR

ANITA VERBOVÁ AND RÓBERT HUŽVÁR

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

A PARTITIONAL CLUSTERING ALGORITHM FOR
IMPROVING THE STRUCTURE OF OBJECT-ORIENTED

SOFTWARE SYSTEMS

ISTVAN GERGELY CZIBULA AND GABRIELA CZIBULA

Abstract. In this paper we are focusing on the problem of program re-
structuring, an important process in software evolution. We aim at intro-
ducing a partitional clustering algorithm that can be used for improving
software systems design. The proposed algorithm improve several clus-
tering algorithms previously developed in order to recondition the class
structure of a software system. We experimentally validate our approach
and we provide a comparison with existing similar approaches.

1. Introduction

The software systems, during their life cycle, are faced with new require-
ments. These new requirements imply updates in the software systems struc-
ture, that have to be done quickly, due to tight schedules which appear in
real life software development process. That is why continuous restructuring
of the code is needed, otherwise the system becomes difficult to understand
and change, and therefore it is often costly to maintain. Without continuous
restructurings of the code, the structure of the system becomes deteriorated.
Thus, program restructuring is an important process in software evolution.

A continuous improvement of the software systems structure can be made
using refactoring, that assures a clean and easy to maintain software structure.

We have previously introduced in [6] a clustering approach for identifying
refactorings in order to improve the structure of software systems. For this pur-
pose, a clustering algorithm named kRED was introduced. To our knowledge,
there is no approach in the literature that uses clustering in order to improve
the class structure of a software system, excepting the approach introduced in

Received by the editors: November 10, 2008.
2000 Mathematics Subject Classification. 68N99, 62H30.
1998 CR Categories and Descriptors. D.2.7 [Software Engineering]: Distribution,

Maintenance, and Enhancement –Restructuring, reverse engineering, and reengineering ;
I.5.3 [Computing Methodologies]: Pattern Recognition – Clustering .

Key words and phrases. Software design, Refactoring, Clustering.

127

128 ISTVAN GERGELY CZIBULA AND GABRIELA CZIBULA

[6]. The existing clustering approaches handle methods decomposition [26] or
system decomposition into subsystems [13].

We have improved the approach from [6] by developing several clustering
algorithms that can be used to identify the refactorings needed in order to
recondition the class structure of an object-oriented software system [3–5, 20,
21].

The aim of this paper is to introduce a partitional clustering algorithm
which takes an existing software and reassembles it, in order to obtain a better
design, suggesting the needed refactorings. The clustering algorithm proposed
in this paper improves all the algorithms that we have already developed.

The rest of the paper is structured as follows. Section 2 presents the main
aspects related to the clustering approach (CARD) for determining refactor-
ings [6] that we intend to improve in this paper. A new partitional clustering
algorithm for determining refactorings is introduced in Section 3. Section 4
presents experimental evaluations of the proposed approach: the open source
case study JHotDraw [10] and a real software system. Some conclusions and
further work are given in Section 6.

2. Background

We have previously introduced in [6] a clustering approach (CARD) in or-
der to find adequate refactorings to improve the structure of software systems.
CARD approach consists of the following steps:

(1) The existing software system is analyzed in order to extract from it
the relevant entities: classes, methods, attributes and the existing re-
lationships between them: inheritance relations, aggregation relations,
dependencies between the entities from the software system.

(2) The set of entities extracted at the previous step are re-grouped in clus-
ters (classes) using a clustering algorithm (PARED in our approach).
The goal of this step is to obtain an improved structure of the existing
software system.

(3) The newly obtained software structure is compared with the original
software structure in order to provide a list of refactorings which trans-
form the original structure into an improved one.

3. A Partitional Clustering Algorithm for Refactorings
Determination (PARED)

In this section we introduce a new partitional clustering algorithm (PARED)
(Partitional Clustering Algorithm for Refactorings Determination). PARED
algorithm can be used in the Grouping step of CARD in order to identify a

IMPROVING THE STRUCTURE OF SOFTWARE SYSTEMS 129

partition of a software system S that corresponds to an improved structure
of it.

In our clustering approach, the objects to be clustered are the entities from
the software system S, i.e., O = {s1, s2, . . . , sn}. Our focus is to group similar
entities from S in order to obtain high cohesive groups (clusters).

We will adapt the generic cohesion measure introduced in [22] that is
connected with the theory of similarity and dissimilarity. In our view, this
cohesion measure is the most appropriate to our goal. We will consider the
dissimilarity degree between any two entities from the software system S.
Consequently, we will consider the distance d(si, sj) between two entities si

and sj as expressed in Equation (1).

(1) d(si, sj) =

{
1− |p(si)∩p(sj)|

|p(si)∪p(sj)| if p(si) ∩ p(sj) 6= ∅
∞ otherwise

,

where, for a given entity e ∈ S, p(e) defines a set of relevant properties of
e, expressed as follows. If e ∈ Attr(S) (e is an attribute) then p(e) consists
of: the attribute itself, the application class where the attribute is defined,
and all the methods from Meth(S) that access e. If e ∈ Meth(S) (e is a
method) then p(e) consists of: the method itself, the application class where
the method is defined, all the attributes from Attr(S) accessed by the method,
all the methods from S used by e, and all methods from S that overwrite
method e. If e ∈ Class(S) (e is an application class) then p(e) consists of: the
application class itself, all the attributes and the methods defined in the class,
all interfaces implemented by class e and all classes extended by class e.

Our distance, as defined in Equation (1), highlights the concept of cohe-
sion, i.e., entities with low distances are cohesive, whereas entities with higher
distances are less cohesive.

Based on the definition of distance d (Equation (1)) it can be easily proved
that d is a semi-metric function, so a k-medoids based approach can be applied.

In order to avoid the two main disadvantages of the traditional k-medoids
algorithm, PARED algorithm uses a heuristic for choosing the number of
medoids (clusters) and the initial medoids. This heuristic is particular to our
problem and it will provide a good enough choice of the initial medoids.

After selecting the initial medoids, PARED behaves like the classical k-
medoids algorithm.

The main idea of PARED ’s heuristic for choosing the initial medoids and
the number p of clusters (medoids) is the following:

(i) The initial number p of clusters is n (the number of entities from the
software system) and the intial number nr of medoids is 0.

130 ISTVAN GERGELY CZIBULA AND GABRIELA CZIBULA

(ii) The entity chosen as the first medoid is the most “distant” entity from
the set of all entities (the entity that maximizes the sum of distances
from all other entities). The number nr of medoids becomes 1.

(iii) In order to choose the next medoid we reason as follows. For each re-
maining entity (that was not chosen as medoid), we compute the mini-
mum distance (dmin) from the entity and the already chosen medoids.
The next medoid is chosen as the entity e that maximizes dmin and
this distance is greater than a positive given threshold (distMin), and
nr is increased. If such an entity does not exist, it means that e is very
close to all the medoids and should not be chosen as a new medoid
(from the software system structure point of view this means that e
should belong to the same application class with an existing medoid).
In this case, the number p of medoids will be decreased.

(iv) The step (iii) will be repeatedly performed, until the number nr of
chosen medoids is equal to p.

We have to notice that step (iii) described above assures, from the software
system design point of view, that near entities (with respect to the given
threshold distMin) will be merged in a single application class (cluster), instead
of being distributed in different application classes.

We mention that at steps (ii) and (iii) the choice could be a non-deterministic
one. In the current version of PARED algorithm, if such a non-deterministic
case exists, the first selection is made. Future improvements of PARED algo-
rithm will deal with these kind of situations.

The main idea of the PARED algorithm that we apply in order to group
entities from a software system is the following:

(i) The initial number p of clusters and the initial medoids are determined
by the heuristic described above.

(ii) The clusters are recalculated, i.e., each object is assigned to the closest
medoid.

(iii) Recalculate the medoid i of each cluster k based on the following idea:

if h is an object from k such that
∑

j∈k

(d(j, h)−d(j, i)) is negative, then

h becomes the new medoid of cluster k.
(iv) Steps (ii)-(iii) are repeatedly performed until there is no change in the

partition K.
We mention that PARED algorithm provides a partition of a software

system S, partition that represents a new structure of the software system.
Regarding to PARED algorithm, we have to notice the following:

• If, at a given moment, a cluster becomes empty, this means that the
number of clusters will be decreased.

IMPROVING THE STRUCTURE OF SOFTWARE SYSTEMS 131

• Because the initial medoids are selected based on the heuristic de-
scribed above, the dependence of the algorithm on the initial medoids
is eliminated.

• We have chosen the value 1 for the threshold distMin, because dis-
tances greater than 1 are obtained only for unrelated entities (Equation
(1)).

The main refactorings identified by PARED algorithm are Move Method,
Move Attribute, Inline Class, Extract Class [9]. We have currently imple-
mented the above enumerated refactorings, but PARED algorithm can also
identify other refactorings, like: Pull Up Attribute, Pull Down Attribute, Pull
Up Method, Pull Down Method, Collapse Class Hierarchy. Future improve-
ments will deal with these situations, also.

4. Experimental Evaluation

In order to experimentally validate our clustering approach, we will con-
sider two evaluations, which are described below.

Our first evaluation is the open source software JHotDraw, version 5.1 [10].
It is a Java GUI framework for technical and structured graphics, developed
by Erich Gamma and Thomas Eggenschwiler, as a design exercise for using
design patterns. It consists of 173 classes, 1375 methods and 475 attributes.
The reason for choosing JHotDraw as a case study is that it is well-known as
a good example for the use of design patterns and as a good design.

Our focus is to test the accuracy of our approach on JHotDraw, i.e., how
accurate are the results obtained after applying PARED algorithm in com-
parison with the current design of JHotDraw. As JHotDraw has a good class
structure, PARED algorithm should generate a nearly identical class struc-
ture.

After applying PARED algorithm, we have obtained a partition in which
there are no misplaced methods and attributes, meaning that the class struc-
ture discovered by PARED is identical to the actual structure of JHotDraw.

Our second evaluation is a DICOM (Digital Imaging and Communica-
tions in Medicine) [8] and HL7 (Health Level 7) [11] compliant PACS (Picture
Archiving and Communications System) system, facilitating medical images
management, offering access to radiological images, and making the diagnosis
process easier. We have applied PARED algorithm on one of the subsystems
from this application, subsystem containing 1015 classes, 8639 methods and
4457 attributes.

After applying PARED algorithm, a total of 84 refactorings have been
suggested: 7 Move Attribute refactorings, 75 Move Method refactorings, and

132 ISTVAN GERGELY CZIBULA AND GABRIELA CZIBULA

2 Inline Class refactoring. From the refactorings obtained by PARED algo-
rithm, 55% were accepted by the developers of the considered software system.

Analyzing the obtained results, we have concluded that a large number
of miss-identified refactorings are due to technical issues: the use of Java
anonymous inner classes, introspection, the use of dynamic proxies. These kind
of technical aspects frequently appear in projects developed in JAVA. In order
to correctly deal with these aspects, we have to improve only the data collection
step from our approach, without modifying PARED algorithm. Another cause
of miss-identified refactorings is due to the fact that the distance (Equation
(1)) used for discriminating entities in the clustering process take into account
only two aspects of a good design: low coupling and high cohesion. It would be
also important to consider other principles related to an improved design, like:
Single Responsibility Principle, Open-Closed Principle, Interface Segregation
Principle, Common Closure Principle [7], etc. Future improvements of our
approach will deal with these aspects, also.

5. Related Work

In this section we present some approaches existing in the literature in
the fields of software clustering and refactoring. We provide, for similar ap-
proaches, a comparison with our approach.

There is a lot of work in the literature in the field of software clustering.
One of the most active researches in the area of software clustering were

made by Schwanke. The author addressed the problem of automatic cluster-
ing by introducing the shared neighbors technique [17], technique that was
added to the low-coupling and high-cohesion heuristics in order to capture
patterns that appear commonly in software systems. In [18], a partition of a
software system is refined by identifying components that belong to the wrong
subsystem, and by placing them in the correct one. The paper describes a
program that attempts to reverse engineer software in order to better provide
software modularity. Schwanke assumes that procedures referencing the same
name must share design information on the named item, and are thus “design
coupled”. He uses this concept as a clustering metric to identify procedures
that should be placed in the same module. Even if the approaches from [17]
and [18] were not tested on large software systems, they were promising.

Mancoridis et al. introduce in [14] a collection of algorithms that facilitate
the automatic recovery of the modular structure of a software system from
its source code. Clustering is treated as an optimization problem and genetic
algorithms are used in order to avoid the local optima problem of hill-climbing
algorithms. The authors accomplish the software modularization process by

IMPROVING THE STRUCTURE OF SOFTWARE SYSTEMS 133

constructing a module dependency graph and by maximizing an objective func-
tion based on inter- and intra-connectivity between the software components.
A clustering tool for the recovery and the maintenance of software system
structures, named Bunch, is developed. In [15], some extensions of Bunch are
presented, allowing user-directed clustering and incremental software structure
maintenance.

A variety of software clustering approaches have been presented in the
literature. Each of these approaches looks at the software clustering problem
from a different angle, by either trying to compute a measure of similarity
between software objects [17]; deducing clusters from file and procedure names
[1]; utilizing the connectivity between software objects [2, 12, 16]; or looking
at the problem at hand as an optimization problem [14]. Another approach
for software clustering was presented in [1] by Anquetil and Lethbridge. The
authors use common patterns in file names as a clustering criterion. The
authors’ experiments produced promising results, but their approach relies on
the developers’ consistency with the naming of their resources.

The paper [24] also approaches the problem of software clustering, by
defining a metric that can be used in evaluating the similarity of two differ-
ent decompositions of a software system. The proposed metric calculates a
distance between two partitions of the same set of software resources. For
calculating the distance, the minimum number of operations (such as moving
a resource from one cluster to another, joining two clusters etc.) one needs to
perform in order to transform one partition to the other is computed. Tzerpos
and Holt introduce in [25] a software clustering algorithm in order to discover
clusters that follow patterns that are commonly observed in decompositions
of large software systems that were prepared manually by their architects.

All of these techniques seem to be successful on a number of examples.
However, not only is there no approach that is widely recognized as superior,
but it is also hard to compare the effectiveness of different approaches. As
presented above, the approaches in the field of software clustering deal with the
software decomposition problem. Even if similarities exist with refactorings
extraction, a comparison is hard to make due to the different granularity of
the decompositions (modules vs. classes, methods, fields).

There were various approaches in the literature in the field of refactoring,
also. But, only very limited support exists in the literature for automatic
refactorings detection.

For most existing approaches, the obtained results for relevant case studies
are not available. There are given only short examples indicating the obtained
refactorings. That is why we have selected for comparison only two techniques
mentioned below.

134 ISTVAN GERGELY CZIBULA AND GABRIELA CZIBULA

The paper [23] describes a software vizualization tool which offers sup-
port to the developers in judging which refactoring to apply. We have applied
PARED algorithm on the example given in [23] an the Move Method refactor-
ing suggested by the authors was obtained.

A search based approach for refactoring software systems structure is pro-
posed in [19]. The authors use an evolutionary algorithm for identifying refac-
torings that improve the system structure.

The advantages of our approach in comparison with the approach pre-
sented in [19] are illustrated bellow. Our technique is deterministic, in com-
parison with the approach from [19]. The evolutionary algorithm from [19] is
executed 10 times, in order to judge how stable are the results, while PARED
algorithm from our approach is executed just once. The technique from [19]
reports 11 misplaced methods, while in our approach there are no misplaced
methods. The overall running time for the technique from [19] is about 300
minutes (30 minutes for one run), while PARED algorithm in our approach
provide the results in about 1.2 minutes. We mention that the execution was
made on similar computers. Because the results are provided in a reasonable
time, our approach can be used for assisting developers in their daily work for
improving software systems.

6. Conclusions and Future Work

We have presented in this paper a new partitional clustering algorithm
(PARED) that can be used for improving software systems design. We have
demonstrated the potential of our algorithm by applying it to the open source
case study JHotDraw and to a real software system, and we have also presented
the advantages of our approach in comparison with existing approaches. Based
on the feedback provided by the developers of a real software system we have
identified some potential improvements of our approach.

Further work will be done in the following directions: to use other search
based approaches in order to determine refactorings that improve the design
of a software system; to improve the distance function used in the clustering
process; to apply PARED algorithm on other large software systems; to apply
our approach in order to transform non object-oriented software into object-
oriented systems.

ACKNOWLEDGEMENT

This work was supported by the research project TD No. 411/2008, spon-
sored by the Romanian National University Research Council (CNCSIS).

IMPROVING THE STRUCTURE OF SOFTWARE SYSTEMS 135

References

[1] Nicolas Anquetil and Timothy Lethbridge, Extracting concepts from file names; a new
file clustering criterion, 20th International Conf. Software Engineering, 1998, pp. 84–93.

[2] Song C. Choi and Walt Scacchi, Extracting and restructuring the design of large systems,
IEEE Softw. 7 (1990), no. 1, 66–71.

[3] I.G. Czibula and G. Serban, A hierarchical clustering algorithm for software systems
design improvement, KEPT 2007: Proceedings of the first International Conference on
Knowledge Engineering: Principles and Techniques, August 2007June 6, pp. 316–323.

[4] I. G. Czibula and G. Serban, Hierarchical clustering for software systems restructuring,
INFOCOMP Journal of Computer Science, Brasil 6 (2007), no. 4, 43–51.

[5] I.G. Czibula and G. Serban, Software systems design improvement using hierarchical
clustering, SERP’07: Proceedings of SERP’07, 2007, pp. 229–235.

[6] Istvan G. Czibula and Gabriela Serban, Improving Systems Design Using a Clustering
Approach, International Journal of Computer Science and Network Security (IJCSNS)
6 (2006), no. 12, 40–49.

[7] Tom DeMarco, Structured analysis and system specification (2002), 529–560.
[8] Digital Imaging and Communications in Medicine. http://medical.nema.org/.
[9] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts, Refactoring:

Improving the design of existing code, Addison-Wesley, Reading, MA, USA, 1999.
[10] E. Gamma, JHotDraw Project. http://sourceforge.net/projects/jhotdraw.
[11] Health Level 7. www.hl7.org/.
[12] David H. Hutchens and Victor R. Basili, System structure analysis: clustering with data

bindings, IEEE Trans. Softw. Eng. 11 (1985), no. 8, 749–757.
[13] Chung-Horng Lung, Software architecture recovery and restructuring through cluster-

ing techniques, Isaw ’98: Proceedings of the third International Workshop on Software
Architecture, 1998, pp. 101–104.

[14] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R. Gansner, Using automatic
clustering to produce high-level system organizations of source code, IEEE Proceedings
of the 1998 int. Workshop on Program Understanding (IWPC’98), 1998, pp. 45–52.

[15] Spiros Mancoridis, Brian S. Mitchell, Yih-Farn Chen, and Emden R. Gansner, Bunch:
A clustering tool for the recovery and maintenance of software system structures, ICSM,
1999, pp. 50–59.

[16] James M. Neighbors, Finding reusable software components in large systems, Working
Conference on Reverse Engineering, 1996, pp. 2–10.

[17] R. W. Schwanke and M. A. Platoff, Cross references are features, Proceedings of the
2nd International Workshop on Software Configuration Management, 1989, pp. 86–95.

[18] Robert W. Schwanke, An intelligent tool for re-engineering software modularity, ICSE
’91: Proceedings of the 13th International Conference on software engineering, 1991,
pp. 83–92.

[19] Olaf Seng, Johannes Stammel, and David Burkhart, Search-based determination of
refactorings for improving the class structure of object-oriented systems, GECCO ’06:
Proceedings of the 8th annual conference on genetic and evolutionary computation,
2006, pp. 1909–1916.

[20] G. Serban and I.G. Czibula, A new clustering approach for systems designs improvement,
SETP-07: Proceedings of the International Conference on Software Engineering Theory
and Practice, December 2007 July 9, pp. 47–54.

136 ISTVAN GERGELY CZIBULA AND GABRIELA CZIBULA

[21] G. Serban and I. G. Czibula, Restructuring software systems using clustering, ISCIS
2007: Proceedings of the 22nd International Symposium on Computer and Information
Sciences, September 2007 November 7, pp. 33, IEEExplore.

[22] Frank Simon, Silvio Loffler, and Claus Lewerentz, Distance based cohesion measuring,
Proceedings of the 2nd European Software Measurement Conference (FESMA), 1999,
pp. 69–83.

[23] Frank Simon, Frank Steinbruckner, and Claus Lewerentz, Metrics based refactoring,
CSMR ’01: Proceedings of the Fifth European Conference on Software Maintenance
and Reengineering, 2001, pp. 30–38.

[24] Vassilios Tzerpos and Richard C. Holt, Mojo: A distance metric for software clusterings,
Working conference on reverse engineering, 1999, pp. 187–193.

[25] Vassilios Tzerpos and Richard C. Holt, ACDC: An algorithm for comprehension-driven
clustering, Working conference on reverse engineering, 2000, pp. 258–267.

[26] Xia Xu, Chung-Horng Lung, Marzia Zaman, and Anand Srinivasan, Program restruc-
turing through clustering techniques, SSAM ’04: Proceedings of the Workshop on source
code analysis and manipulation, Fourth IEEE International (SCAM’04), 2004, pp. 75–
84.

Department of Computer Science, Babeş-Bolyai University, 1, M. Kogălniceanu
Street, Cluj-Napoca, Romania,

E-mail address: istvanc@cs.ubbcluj.ro

Department of Computer Science, Babeş-Bolyai University 1, M. Kogălniceanu
Street, Cluj-Napoca, Romania,

E-mail address: gabis@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

VIRTUAL ORGANIZATIONS IN EMERGING VIRTUAL 3D
WORLDS

DUMITRU RĂDOIU

Abstract. Our paper explores virtual organizations supported by emerg-
ing virtual world platforms, analysing them in the perspective of the sup-
porting technology. The shortcomings of the used paradigms are identified
as well as new directions for research. The paper concludes that, in order
for virtual organizations to take full advantage of virtual world platforms,
a new architecture based on open standards is needed, a new in-world par-
adigm to secure intellectual property and an agent-web service gateway to
allow the composition of services between virtual worlds and Web.

1. The Problem

Emerging virtual worlds (VW) push the experience from 2D to 3D, from
flat to immersive, from one-on-one to social. As all human beings live in a 3D
real world (RW) and our experiences in virtual VW closely parallel our real
life experiences, we witness an accelerated acceptance speed of VW platforms
and 3D GUIs. The mix of grid computing, physics engine and spatial data,
that enable virtual worlds, is also becoming also more powerful and well-fit
to disrupt the present social and economic landscape. The anticipated huge
impact on IT, business, and society in the very near future makes this field
worth researching.

In the last few years, based on these new VW platforms, new virtual
organization (VO) models have been developed. Our paper explores these
new models analysing them in the perspective of the supporting technology.

2. The Concepts

As there is no large agreement in the available literature on the terminol-
ogy, we’ve considered useful introducing the following definitions.

Real World (RW): Physical World, Universe
Digital World (DW) 2D Web, Internet

Received by the editors: June 15, 2008.
2000 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.9 [Software Engineering]: Management –

Software process models.
Key words and phrases. Virtual organization, Virtual worlds, Metaverse.

137

138 DUMITRU RĂDOIU

Virtual World (VW): a fully immersive 3D virtual space. VWs use the
metaphor of the real world, but without its physical limitations.

Avatar (AV) A 3d representation of an agent, operating in a VW, also
called “digital persona”. Avatars with facial expressions and body language
provide a virtual experience almost as rich as real-life.

3D Web: VW interconnected
Metaverse: A Virtual World that has primarily social and economic role.

Users (represented in-world by agents/avatars interact with each other (so-
cially and economically) and with other software agents. Metaverse charac-
teristics:

• Scalability
• Access levels: from low quality to very high
• Face to face (F2F) communication
• Code protocols as law: coding protocols define what can and cannot

be done, what is legal, what is not
• Economics

Paraverse: A Virtual World linked to regions and/or bodies in the RW (e.g.
Google Earth, virtual surgery or virtual shared meeting places)

Intraverse: A Virtual World built behind a firewall (concept similar to
2D intranet). A grid of a company, the region domain only allows agents from
their agent domain to connect, and they can be sure that all those people in
their agent domain are actually employees.

Open Ended VW (OEVW): A Virtual World in which residents (rep-
resented by avatars) use communication, available co-operation services and
their skills to involve in social and/or economic activities. These virtual worlds
exist simply as places to explore, experience, create and, based on IP Intellec-
tual Property, to exchange goods and values (i.e. to conduct commerce).

Open Ended VW are currently developing relationships (economic, social,
cultural and legal) with the RW. Here are some similarities between RW and
OEVW socio-economic features: Innovation and Intellectual property (IP),
market (goods and values exchange, from both RW and VW), currency, fi-
nancial organizations, face to face (F2F) communication, identification and
authorisation, mass-media, education organizations, political organizations.

The technological features available now in OEVW which support co-
operation are: voice communication, audio and video feeds, instant messaging,
file exchange, encryption.

Closed Ended VW (CEVW): A Virtual World (the stage) in which
players (represented by avatars as alter egos) use communication, available
co-operation services and their skills to involve activities related to a scenario.
These virtual worlds have as goal or purpose a game.

In this paper, we will analyse only virtual organizations operating in open-
ended virtual worlds.

VIRTUAL ORGANIZATIONS IN EMERGING VIRTUAL 3D WORLDS 139

Figure 1. Open-ended virtual worlds

The paper addresses virtual organizations (VO) in open ended virtual
worlds. The VO definition with which we operate is:

Virtual Organization (VO) is an organization with the following char-
acteristics [1]:

• spatial: operates within geographically distributed work environments
• temporal: has a limited life span, until it performs its tasks or actions
• configurational: uses information and communication technology ICT

to enable, maintain and sustain member relationships
VO in VW are those virtual organizations which allow its members to work in
a 3D immersive environment by emulating face-to-face communication with
colleagues.

3. The Platform

We start from a generic architecture [2] of a VO operating in 2D and 3D
(Figure 2) the dotted line representing the focus area of this paper.

Most of the VW run on proprietary collaboration platform, not open yet
(only the client); exception OpenSimulator and collaboration services run with
disruption.

The OpenSimulator Project is an open source Virtual Worlds Server which
can be used for creating and deploying 3D Virtual Environments, able to run
both in a standalone mode or connected to other OpenSimulator instances
through built in grid technology. It can be extended to produce more spe-
cialized 3D interactive applications via plug-in modules. Several OEVW were

140 DUMITRU RĂDOIU

Figure 2. A generic architecture of a VO operating in 2D and 3D

Figure 3. A generic, proprietary VW infrastructure

built with open source technology from the open simulator project (Openlife
Grid, DeepGrid, OSGrid, 2008)

OpenSimulator uses libsecondlife to handle communication between the
client and server, so it is possible to connect to an OpenSim server using the

VIRTUAL ORGANIZATIONS IN EMERGING VIRTUAL 3D WORLDS 141

Figure 4. A generic, open VW infrastructure

Linden Lab Second Life viewer. Second Life (SL) is the largest proprietary
metaverse, owned by Linden Research, Inc.

OpenSimulator operates in one of two modes: standalone or grid mode.
In standalone mode, a single process handles the entire simulation. In grid
mode, various aspects of the simulation are separated among multiple pro-
cesses, which can exist on different machines. In grid mode, responsibilities
are divided among five servers: the user server, the grid server, the asset server,
the inventory server and the simulation server.

3.1. Platform features supporting collaboration. Security: All VW
platforms include a number of security levels. One is based on the ability
to secure the deployment and access of the collaboration infrastructure. The
second level is based on the collaboration session itself and the ability to secure
the access to a session and/or encrypt the data communication channel. You
can encrypt IM/Chat and/or Video and/or Audio from your viewer to the
grid. Second Life (SL) uses standard JAVA encryption libraries (JCE).

Communication: Many VW platforms are voice enabled adding more
to the “realism” of F2F communication. Text Chat, Instant Messaging, and
E-mail are common features in almost all VW platforms.

Movement: Features like teleport and location are also common.
Transfer: Notes, Files/objects/money transfer are available
Interface with 2D Web: Audio-video streaming, instant messaging,

e-mail, VoIP, XML from 2D Web to virtual worlds are available

142 DUMITRU RĂDOIU

3.2. Platform issues with regard to collaboration. Scalability: Present
VW architectures present a limited scalability which does not support the ex-
pected increased number in regions, users/residents and concurrency (number
of users simultaneously connected to the VW). Second Life estimates for the
next ten years a growth to 50 million regions, 2 billion users and 50 million
concurrencies. As a first step, scalability was addressed by the subdivision of
the metaverse into fix sized regions, of 256x256 m, each being emulated by a
simulator running on one CPU core. At this moment, the simulator handles
everything that happens in the region, avatar agents included. Because there’s
a limit in what a processor can handle, Linden Lab is considering as a next
step be a separation between agents and regions into two separate domains:
the agent domain and the region domain. The agent domain knows every-
thing about an agent: name, profile, inventory etc. This halves the load of the
CPU. The agent domain consists of some web services which allows to login,
to retrieve inventory etc. The region domain consists of a number of simula-
tors and knows everything about regions: their name, location, and what’s on
them. The viewer needs to connect to both domains to first login the agent
and then connect to the region.

Standards: There’s no standard yet for VW; you cannot host your own
simulator connected to a different main region grid (than the one you belong
to and which “recognises your avatar: its identity, inventory, and payment
info.

The solution is obviously an open standard for VW, an open architecture
allowing the development of 3D Web, grid architecture similar to the web
where everybody can connect their own server.

Interoperability: The metaphor used in 2D Web is that of services [3],
while the one used in VW is that of agents. The two domains use different
directory services, different transport services and different languages (syn-
tax and semantics). Web services aim is to enable dynamic service discovery,
composition, invocation, execution and monitoring. Software agents – on the
other hand – are designed as autonomous, proactive entities. Software agents
have been envisioned as potential user of semantic Web services in order to
interact with semantic descriptions of SWS to autonomously discover, select,
compose, invoke and execute the services based on user requirements [4]. The
communication gap between the two worlds resides in the fact that software
agents are not compatible with widely accepted standards of Web services.
Research is conducted [4] to make multi agent systems compatible with exist-
ing Web services standards without changing the existing specifications and
implementations.

At the moment, with no interoperability between software agents and se-
mantic Web services, most of VOs operate either in 2D Web basing their

VIRTUAL ORGANIZATIONS IN EMERGING VIRTUAL 3D WORLDS 143

processes on Web services or completely in-world. Further research and stan-
dardisation is needed on the Agent-Web gateway, to enable interoperability
between 2D and the future 3D Web.

4. Virtual organizations in virtual worlds

Open ended virtual worlds are platforms for three key functions: social
interactions, business, and entertainment. Social interactions and entertain-
ment are the most visible. In SL for instance, there are16 million users, almost
50000 concurrent users at any given moment, millions of dollars businesses,
hundreds of universities, virtual embassies, thousands of companies. An entire
economy exists, facilitated by intellectual property and virtual world banks.

Social events participation is limited only by the simulators concurrency
limit. They are so successful because they are face to face (F2F), voice enabled
events, with interactive sharing, allowing an almost real life interaction.

The most visible reasons for businesses for establishing a presence in VW
are:

• to extend their brand into a virtual world (information centres, train-
ing, interactive demonstrations, virtual 3D stores, collecting data on
shopping experience, customer feedback, free market research)

• to brand engagement (e.g. witness the construction of your own laptop
or desktop computer while you interact and select components)

• to engage in virtual worlds specific new businesses (e.g. terra-forming,
building, creation and scripting)

The real huge advantage for virtual organizations is face to face, voice enabled
real time communication.

We can distinguish between virtual organizations which processes are based
entirely on the interoperability provided by the virtual world platform and
virtual organization whose processes span over both virtual world and digital
world.

4.1. Virtual data centre. IBM had built a 3D data centre application in
an effort to leverage VW capabilities to RL business processes, thus gaining a
competitive edge. RW data centres (serviced by IBM) are connected to a VW
data centre which mirrors the real environment. The virtual world platforms
that render the 3-D environment is based on the OpenSim Application Plat-
form for 3D Virtual Worlds. The VW data center comprises of models of RW
equipment and facilities such as servers, racks, network equipment, and power
and cooling equipment. The VW models receive data from live RW enterprise
management systems (IBM Director, Enterprise Workload Manager, Tivoli
Omegamon, and MQ Series). Live RW information is aggregated (using VW
SDK) and presented in 3D. Functions like power control and virtual machine
migration can be performed completely in world, managers being able to re-
spond quickly to alerts and events on demand. The 3D data center allows an

144 DUMITRU RĂDOIU

intuitive visual inspection of how the real data centre is performing. Specific
VW effects (sounds, particle effects) are used to visualize if there are network
or server issues allowing event location in a timely manner [5]. Multiple users
collaborate in-world, explore the operations in 3D in near real time, take part
in the analysis and the decision making process. The Intraverse solution (pri-
vately hosted VW) was adopted for security reasons. Interoperability between
RW and VW is provided by a proprietary virtual world middleware, named
Holographic Enterprise Interface (HEI).

Figure 5. Intraverse 3D data centre architecture

IBM has more than 5,000 employees using VW for purposes such as sales
training or collaborating across different geographic regions, showcase for dif-
ferent offerings, meetings with clients in current projects (virtual conferences),
sales meetings, presenting concepts in a manner not attainable in RW or 2D
Web (e.g. manipulation of 3D models).

5. Comments, preliminary conclusions and further research

To the above mentioned issues (3.2), we can add some more, like the
limited access to VW (residents have a single access point, the PC, cross-
platform online access from the large range of converged consumer electronics

VIRTUAL ORGANIZATIONS IN EMERGING VIRTUAL 3D WORLDS 145

devices is still in the research phase. Yet, despite all these challenges, for many
VW communities (e.g. SL) a certain kind of virtual economy has evolved.

Gartner [6] has opined that, by 2011, 80 percent Fortune 500 companies
will have some kind of virtual world presence meaning that major transforma-
tion into how the organizations will interact in the near future will occur in
the near future. It seems that at least for a good time from now on, the 3D
platform will be completing the current web platform, rather than replacing
it.

Figure 6. 3D Web topology

3D Web topology will look probably like the one depicted in Figure 6, with
the enterprise-class virtual worlds running behind firewalls.

For such a topology to exist, a number of issues must be addressed:
• New trustful, open architecture enabling viewers to handle assets and

inventory services
• Standard libraries used in communication with the viewer
• Portable identities (the same AV can travel in different virtual worlds);

probably associated with an AV certification system (maybe through
vendors of trusted agents)

• Standard interfaces between worlds

146 DUMITRU RĂDOIU

• O standardized software stack that will be portable outside and beyond
VW

• Open standards for the representation of information
• Business level quality of in-world services (security, performance, reli-

ability, stability, availability)
• API and SDK for developing custom business applications in-world
• A new way to address intellectual property, presently handled through

permissions
Permissions represent a crude way to enforce licenses and can’t anticipate
all possible licensing scenarios. For instance, SL provides about everything
needed to copy about anything in-world, excepting scripts. So, in an open 3D
Web, if we attach permission to an object, that object permission could get
ignored in some regions.

Virtual Worlds Web Integration is a growing research field which might
lead to intertwining between the two despite the huge difference between the
metaphors they are built on: agents vs. services. A detailed discussion of
the research status in this area is behind the scope of this paper. But we can
only imagine the impact it will have on the web as we know it: web pages
empowered with immersive, presence-based features.

References

[1] Radoiu D, Contributions to Conceptual Modelling of Virtual Organizations, in sub-
mitted to 5th International Workshop on Grid Economics and Business Models, Las
Palmas, Canary Island, Spain, 2008

[2] Karagiannis D., Kun H., Metamodelling Platforms, LNCS 2455, Spinger-Verlag 2002,
p 182

[3] 3S Green Paper on Software and Service Architectures, Infrastructures and Engineering
– a working document for the future EU Action paper on the area, version 1.2URL:
www.eu-ecss.eu (Retrieved 30 March 2008)

[4] Omair Shafiq M., Ding Y., Fensel D., Bridging Multi Agent Systems and Web Ser-
vices: towards interoperability between Software Agents and Semantic Web Services,
Enterprise Distributed Object Computing Conference, 2006. EDOC apos;06. 10th IEEE
International

[5] IBM Corporation: Made in IBM Labs: IBM 3-D Data Centers Show Vir-
tual Worlds Fit for Business, Press Release, 21 February 2008, http://www-
03.ibm.com/press/us/en/pressrelease/23565.wss (Retrieved 15 April 2008)

[6] The Gartner Scenario: Current Trends and Future Direction of the IT Industry, April
22-26, 2007, San Francisco, CA

Petru Maior University, 1, Nicolae Iorga, Târgu Mures, Romania
E-mail address: Dumitru.Radoiu@Sysgenic.com

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 2, 2008

ON SIMPLIFYING THE CONSTRUCTION OF EXECUTABLE
UML STRUCTURED ACTIVITIES

C.-L. LAZĂR AND I. LAZĂR

Abstract. UML, with its Action Semantics package, allows the user to
create object-oriented executable models. Creating such models, however,
is a very difficult task, because the UML primitives are too fine-grained
and because UML has many variation points. This article proposes a
computationally complete subset of the Action Semantics and raises the
level at which the user works, from actions to statements and expressions.
New graphical notations are also proposed, so that the resulting structured
activity diagram is more intuitive and clear.

1. Introduction

The Action Semantics package from UML [9] gives the user the possibility
to create executable models [11]. Before, the behavior of an operation, for in-
stance, had to be specified using an opaque expression, which means platform
dependent code. The package supports many features, so that it may be used
in different domains, not just in tasks similar to programming. The actions
are also very flexible: the structured control nodes, for instance, are more gen-
eral than the corresponding statements found in the most used programming
languages [5].

The UML activities support both a structured action model and a flow
action model, each one being more suited for a specific modeling task than
another. They are equivalent only for small examples, and, in general, the
functionality written in one action model can be converted in the other form,
though not easy. The two action models are not independent of each other,
as the structured action model mainly addresses control, and still needs flow
to pass data between actions.

Received by the editors: October 20, 2008.
1991 Mathematics Subject Classification. 68N15, 68N30.
1998 CR Categories and Descriptors. D.2.2 [SOFTWARE ENGINEERING]: Design

Tools and Techniques – Computer-aided software engineering, Flow charts, Object-oriented
design methods.

Key words and phrases. UML, Action Semantics, Structured Activities, Action Language.

147

148 C.-L. LAZĂR AND I. LAZĂR

The structured model fits better with a textual notation style, which is
usually designed for well nested control, using variables to pass data between
actions, instead of data flow. The textual notation is what most program-
mers are used to, so the structured action model would be more suited for
programmers using UML.

1.1. The Problem and Motivation. It is very hard to use the Action Se-
mantics package directly while trying to reproduce the functionality from a
simple piece of code written in a programming language. This happens be-
cause the Action Semantics package supports too many features, which makes
it hard to be learned, it has many variation points, which makes it hard to
be used properly [13], and combining the actions inside an activity feels like
working in an assembler language. Many implicit things from a programming
language code have to be explicitly formulated in the UML model, which cre-
ates a need for a better tool support in this area.

Another problem with the Action Semantics is that no notations are given
for many elements. In general, the graphical notation from Action is used, with
different stereotypes. The graphical notations can be improved a lot, and this
article proposes a new set of graphical notations. Also, textual notations may
be used, but this is not covered here.

1.2. The Solution. In this article we choose a well defined subset of the UML
action semantics, in order to represent the structured activities, as this is still
in the process of standardization [7]. The subset must be computationally
complete, and have a precise behavior (as opposed to the semantic variation
points from UML, which are many).

New graphical notations are introduced, which help create a clear and
simplified view of the structured activity. The expressions, for instance, will
be presented as an aggregate to the user, not as distinct UML objects, even
though, behind the scenes, the expressions are represented using the UML
model.

This article is meant to expand the Procedural Action Language model,
the UML profile and the graphical notations proposed in [10].

2. Action Semantics (subset)

A Procedural Action Language (PAL) model was presented in previous
articles [12, 6, 10]. A UML profile was also defined, so that the PAL model
can be exchanged among UML compliant tools. This PAL model is used as
a target of what are the desired capabilities of the chosen subset of Action
Semantics, with certain deviations.

EXECUTABLE UML STRUCTURED ACTIVITIES 149

The new model moves away from the procedural aspect, to object −
oriented. The structured Activity will no longer be done for a standalone
operation or program, but as the behavior of an Operation that is an owned
operation of an UML Class.

2.1. SequenceNode and StructuredActivityNode. We choose to repre-
sent the main block of an activity and all the other blocks with SequenceNodes,
and we follow as much as possible the structured programming model. If the
push model (as described below) is used to represent the statements, then
each group of actions corresponding to one statement from a programming
language will be grouped inside a StructuredActivityNode. This is done in
order to maintain a manageable model, because the number of actions will
grow very fast.

The chosen structure of the Activity is like this: the Activity has one Ini-
tialNode that marks the beginning of the execution, one SequenceNode as the
main node of the activity (the body of the operation), and an ActivityFinalN-
ode that marks the finalization of the execution [3, 5]. One ControlFlow edge
will go from the InitialNode to the main SequenceNode, and one ControlFlow
edge will go from the SequenceNode to the ActivityFinalNode. The Sequen-
ceNode is a structured node, so it may contain other actions. Also, it will
execute the actions in order, without a need for explicit ControlFlow edges.

Figure 1. General Structure of an Activity

Figure 1 shows the general structure of an activity. Part (a) shows a
possible representation inside an UML tool, part (b) shows the model structure
of an activity, and part (c) presents the proposed representation of a simple

150 C.-L. LAZĂR AND I. LAZĂR

sample activity. The tools should automatically arrange the elements in the
diagram, using a top-to-bottom layout for the statements, optionally showing
the implicit control flow with arrows.

We propose to represent the blocks of statements with rectangles, with a
double edge on the left and right sides, as shown in Figures 1, 2 and 5.

2.2. Variables. The SequenceNode has a set of Variables, that may be used
for computations inside the node. The Action Semantics package provides
convenient actions to access the values of the variables: AddVariableValue-
Action (to set a value to the variable), ReadVariableValueAction (to read the
value from a variable), and others. The proposed representation for the used
variables is shown in Figures 1, 2 and 5. Each block will present its set of
variables at the top, in a distinct compartment.

2.3. Parameters. The Operation owns a set of Parameters, that describe the
inputs and outputs of the operation. We choose that the Activity that rep-
resents the behavior of an Operation will always have a similar set of owned
Parameters as the Operation. One operation may be invoked from the be-
havior of another operation by using CallOperationAction [2]. The tools may
automate keeping the Parameters of the Operation in sync with the Parame-
ters of the Activity.

There are no actions in UML to access the values of the parameters. In-
stead, the standards ask for ActivityParameterNodes [1, 4] to be used to pro-
vide the parameter input values when the activity starts and to output values
to the parameters when the activity ends. One ActivityParameterNode will
be created for each in and inout parameter, only with outgoing edges, and
one ActivityParameterNode will be created for each inout, out and return
parameter, only with incoming edges.

The input parameter nodes will receive control when the activity starts, at
the same time as the InitialNode, and they will provide their parameter values
to the outgoing edges. Because the parameter data object may flow over only
one outgoing edge (the least resistant one), the usual approach would be to
use an intermediate ForkNode [3] to copy the value to all the InputPins of the
actions that require it.

The output parameter nodes will copy the values that reached them to
the parameters when the activity ends, at the same time when the ActivityFi-
nalNode is executed. The values reaching the parameter nodes will overwrite
each other, so, at the end, only the last value that reaches the parameter node
will be set to the parameter. Because an action cannot start executing unless
all incoming edges provide a token, the usual approach is not to set the edges
from the activity actions to go directly in the parameter node, but to merge
them before they reach the node, using a MergeNode [3].

EXECUTABLE UML STRUCTURED ACTIVITIES 151

Figure 2. Activity with inout and return Parameters

Figure 3. Problem (left) and Fix (right) for an Activity with
an inout Parameter

152 C.-L. LAZĂR AND I. LAZĂR

Figure 2, on the left side, exemplifies the usual approach of working with
parameters, for an inout and a return parameter. The figure uses the UML
notations. The “...” actions represent an action or a group of actions that
provide the functionality mentioned in the notes placed on the right side.

Using this approach of accessing the parameter values from the actions
inside the activity has some problems:

• the model and diagram get very complicated when the functionality is
bigger, or when there are many parameters, or if the parameters are
accessed many times. The diagram may be fixed if the tools would not
show the edges from the parameter nodes.

• the values that are intermediately set to an inout parameter during
the execution cannot be read, if this scheme is used, as the subsequent
actions using the parameter value will receive the initial parameter
value from the input parameter node. This can be fixed by passing the
intermediate values to the subsequent actions that use the parameter,
but this will lead to complicated structures. This issue is presented in
Figure 3.

• the out parameters cannot be built incrementally, as the stored values
cannot be accessed. This can be solved with schemes similar to the
one mentioned for inout parameters.

To solve these problems, we propose using an alternative approach, pre-
sented in Figure 4. For each parameter, except the return parameter, there
should be a similar Variable (with the same name and type) at the Activ-
ity level, and the actions that want to access the parameters will access the
corresponding variable instead.

An initialization StructuredActivityNode is introduced between the Ini-
tialNode and the main sequence node, having initialization actions:

• for each of the variables corresponding to the in and inout parameters
there will be an AddVariableValueAction that will set the value re-
ceived directly from the corresponding input ActivityParameterNode
to the variable

• for each of the variables corresponding to the out parameters there will
be an AddVariableValueAction that will set LiteralNull value to the
variable.

The actions from the main sequence node that need to access the param-
eters will simply connect themselves to AddVariableValueActions, ReadVari-
ableValueActions and ClearVariableValueActions configured with the proper
variables.

A finalize StructuredActivityNode is introduced between the main se-
quence node and the ActivityFinalNode, having actions that will read the

EXECUTABLE UML STRUCTURED ACTIVITIES 153

Figure 4. Proposed Structure of an Activity

Figure 5. Solution and Representation for an Activity with
inout Parameters

154 C.-L. LAZĂR AND I. LAZĂR

variable values from the inout and out variables and send them directly to the
corresponding output ActivityParameterNodes.

The return parameter is handled using the usual approach, but this is
described in a subsection below (Return / Output Statement).

In Figure 5 we present the example above with the inout parameter prob-
lem, solved with this approach (the structured nodes marking the statements
are omitted, for brevity). The creation of the variables that correspond to the
parameters, along with the init and finalize nodes containing the variables
initialization / output actions, should be automated by the tools. The right
side of the figure shows our proposed representation for the activity.

The parameters are presented graphically as part of the activity signature.
A distinct compartment containing all the parameters may also be present at
the activity level, similar to the compartment for the block variables.

2.4. Model for Statements and Expressions. The actions that form each
statement may be composed using either the default push style model (data
tokens will be pushed using ObjectFlow edges from OutputPins to InputPins),
or, by using the pull style model (data tokens will be pulled by ActionInput-
Pins from Actions with exactly one OutputPin) [5]. The expressions needed
in conditions, for instance, are constructed in the same manner. The differ-
ence between a statement and an expression is that an expression provides an
output value, which is used by a statement (for instance, the test node of the
LoopNode is an expression that provides a boolean value).

In the push style model, the actions are all contained in the same node.
The control will arrive at the actions with no input edges, and the data will
be pushed through the actions, to the root action. This is not a very intuitive
flow for the developers used to structured programming, but UML provides
graphical notations and the UML tools have graphical support for it.

Figure 6. Assignment Statement (v:=123) With push Style Model

EXECUTABLE UML STRUCTURED ACTIVITIES 155

Figure 7. Assignment Statement (self.field1:=123) With pull
Style Model
(Graphical representation on the left is not UML compliant!)

In the pull style model, the root action contains the action input pins,
which, in turn, contain the from actions, and so on. The control will arrive
at the root action, which will begin its execution by trying to get the data
tokens from the ActionInputPins, which, in turn, will pull the data tokens
from the contained actions, by executing them. The control will arrive in this
way at the leaf actions. After the actions are executed and the data tokens
are placed in the OutputPins, these data tokens are used as the values for the
ActionInputPins. The problem with the pull style is that UML provides no
graphical notations for the ActionInputPins, as these are meant to be used in
textual representations. And this means that most of the UML tools do not
have graphical support for the ActionInputPins.

UML provides a special kind of ActionInputPin, called ValuePin [4], that
is a shorthand for an ActionInputPin providing the value from a ValueSpecifi-
cationAction. The ValuePin provides the value directly from a ValueSpecifica-
tion. The UML tools might have graphical support for the ValuePin, though
UML doesn’t propose a graphical notation. However, using ValuePin only, in
conjunction with InputPins, is insufficient for more complex statements.

The pull style model is chosen, as it fits better to our purpose, and it
produces fewer objects, grouped in a well nested structure. However, in order
to be able to exchange the models between UML tools, a conversion tool
between the two styles is needed, so that a pull style model may be viewed
and edited inside a UML compliant tool, as a push style model.

156 C.-L. LAZĂR AND I. LAZĂR

2.5. Assignment / Input Statement.

• The AssignmentStatement from the PAL model is represented with
an action structure that has the root an AddVariableValueAction (if
the statement assigns a value to a Variable), or an AddStructuralFea-
tureValueAction (if the statement assigns a value to a Property of a
Classifier). The isReplaceAll boolean property of the action will be
set to true. The proposed representation for this statement is shown
in Figures 1, 2 and 5 (a simple rectangle containing the textual repre-
sentation).

• The InputStatement from PAL is represented with the same actions,
with the difference that the input value is obtained from a CallBe-
haviorAction using a FunctionBehavior called read, with one return
parameter. The proposed representation for this statement is shown
in Figure 1.

2.6. Return / Output Statement.

• The return parameter is handled using the usual approach (in a non-
structured fashion), because the return parameter is set only once in
an execution path, and after it is set, the execution of the activity
has to end. A return action sends its result value to the MergeNode
found in the finalize StructuredActivityNode, which forwards it to
the return ActivityParameterNode. Also, the return action gives the
control to the finalize node, so that the values from the variables are
copied to the corresponding parameter nodes and forcing the execution
of the activity to end. A CallBehaviorAction is used as the root action
of the return statement, which means a special return FunctionBe-
havior needs to exist. This behavior should have one in parameter
(the value to be returned) and one return parameter (the same value,
that is returned). The action needs one output pin, in order to forward
the value to be returned to the return ActivityParameterNode. The
proposed representation for this statement is shown in Figures 2 and
5.

• The OutputStatement from PAL is represented in a similar fashion, by
using a CallBehaviorAction as the root action of the statement. The
used FunctionBehavior is called write and it has only an in parameter.
The proposed representation for this statement is shown in Figure 1.

2.7. Branch Statement. The BranchStatement from PAL is represented
with a ConditionalNode, with one Clause object if only then branch is present,
or with two Clause objects if else branch is also present. The clauses will be

EXECUTABLE UML STRUCTURED ACTIVITIES 157

properly ordered by using their successor / predecessor properties. The Condi-
tionalNode will contain all the test and body executable nodes, and the clauses
will properly reference them as test or body nodes. The decider pin for a test
clause will always be the output pin of its test node. The else clause will
always have a true clause test, meaning that the test node will consist of one
ValueSpecificationAction for the true LiteralBoolean.

The body node is a block of statements and is represented with a single
SequenceNode, which will contain the actions for the statements.

The ConditionalNode is not assured, meaning that it is possible that no
test will succeed (this is needed when the else clause is missing). And it is
determinate, meaning that at most one test will succeed (this is needed when
else clause is present, so that, if the test of then clause passes, the body of
else clause will not be executed, as the test of else clause will always succeed).

An example for the proposed graphical representation is given in Figure 2,
on the right side. If else branch is missing, there will be a control edge shown,
with no statements, going to the merge node at the bottom.

2.8. While / Do While / For Statement. WhileStatement and ForState-
ment from PAL are represented with a tested first LoopNode. DoWhileState-
ment (a variant of RepeatStatement) is represented with a tested last LoopN-
ode.

The LoopNode is a StructuredActivityNode, so it may have variables,
which may be used as iterators for the ForStatement, as opposed to using
the built-in system of loop input/output pins, which is hard to use. The
LoopNode will contain all the actions for the setupPart, test and bodyPart,
which will simply reference the used actions. The iterator may be initialized
in the setupPart actions. The test actions will have to output a boolean
value. The decider pin for the test will always be the output pin of its test
actions. The bodyPart needs to contain both the actual body actions (inside a
SequenceNode) and, if needed, the actions that update the iterator variables.

For the While and Do While statements, the iterator parts are omitted,
and only the test and bodyPart (without the actions that update the iterator
variables) will be present.

The loop node has a set of setupPart nodes, each one being represented in
the model by actions corresponding to a single statement. ControlFlow edges
will be set between the setupPart nodes, so that the statements are executed
in order. The bodyPart node includes the main block of statements, which is
represented with a single SequenceNode. This node is the first node (has no
incoming ControlFlow edges) and will contain the actions for the statements.
The statements that update the iterator variables are kept in the bodyPart
node, also. A ControlFlow edge will go form the main block node to the first

158 C.-L. LAZĂR AND I. LAZĂR

iterator update statement, and the rest of the statements are ordered using
ControlFlow edges, similar to the setupPart nodes.

The graphical representations are similar to those provided in [14], as
they help the user understand the flow of the algorithm [15]. A sample for
WhileStatement is provided in Figure 1 (c). The tools might support different
layouts for the loop nodes, allowing the users to choose the preferred one. The
layout used in [14] for ForStatement is chosen, as it does a good job in visually
separating the four parts of the statement, while keeping the occupied space
to a minimum and providing an intuitive flow.

2.9. Extra Object related actions.
• Reading self (or this) instance will be done using ReadSelfAction.

This instance will need to be provided whenever the invoked operation
or the accessed property is not static and no other instance is explicitly
specified by the user.

• Creating a new object instance will be done using CreateObjectAc-
tion. This action will not invoke any operation, or behavior, so the
created instance could be uninitialized. To obtain the constructor
behavior found in programming languages, the tools could also exe-
cute, if needed, an operation that has the same name as the Classifier
and one return parameter of the same Classifier type. The CallOper-
ationAction becomes the root, obtaining its target input value from
the CreateObjectAction. The CallOperationAction will provide the
initialized object to the action that needs the instance, not the Cre-
ateObjectAction.

2.10. Primitive Functions. Similar to the other FunctionBehaviors men-
tioned before, a FunctionBehavior needs to be created for each primitive oper-
ation (==, +, -, ...) between Integer, Boolean and String typed operands, to be
used in expressions. The primitivefunctions are limited, at this point, to hav-
ing only operands of the data types defined in UML. All these primitivefunctions
should be packaged in a separate model resource, so that they may be easily
reused in different UML tools and different projects.

3. Conclusions and Future Work

Using SequenceNode (sequence), ConditionalNode (decision) and LoopN-
ode (loop) from UML’s CompleteStructuredActivities package, the chosen sub-
set of actions is computationally complete.

The new level at which the user creates the executable models is raised
from actions to statements and expressions, increasing user efficiency. The
tools should take care of a lot of redundant steps while creating the model,

EXECUTABLE UML STRUCTURED ACTIVITIES 159

as well as properly arranging the diagram, allowing the user to focus on the
actual algorithm.

The Action Semantics subset was chosen in such a way that the resulting
models are as simple and clear as possible, while preserving the abstract syntax
and the execution semantics of the UML elements. This has great benefits, as
the resulting models are small and well structured, which makes it easier for an
user to analyze them, if needed. It is also not that hard to create conformant
models for small operations using existing UML tools.

There is no UML profile defined for the Action Semantics subset chosen
in this article, which means that the executable models can be built without
having to apply stereotypes. Instead, the article provides exact operational
semantics for the selected elements, so that there is an exact interpretation of
the model.

Formal OCL [8] constraints need to be defined, so that the UML models
can be statically analyzed for conformance with the proposed action language,
before being executed. In order to be conformant with this action language,
the models must not contain other UML elements, except those proposed here,
and they must also comply with the extra operational semantics defined in this
article.

This article provides an exhaustive description for the core of an action
language using UML Action Semantics. There are many elements remaining
to be considered in the future: preconditions, postconditions, ...; re-analyze
the support for arrays; switch statement; in-line if statement (with output
value): a > b ? a : b; other non-structured statements: break, continue;
exception handling; threads; synchronized blocks; operations for associations;
events.

FunctionBehaviors for common utility operations may also be defined in
the future, and packaged together with the primitive functions. Also, more
data types could be defined, as the existing ones are far from being enough.

ACKNOWLEDGMENTS

This work was supported by the grant ID 546, sponsored by NURC -
Romanian National University Research Council (CNCSIS).

References

[1] Conrad Bock. UML 2 activity and action models. Journal of Object Technology, 2(4):43–
53, 2003.

[2] Conrad Bock. UML 2 activity and action models, part 2: Actions. Journal of Object
Technology, 2(5):41–56, 2003.

[3] Conrad Bock. UML 2 activity and action models, part 3: Control nodes. Journal of
Object Technology, 2(6):7–23, 2004.

160 C.-L. LAZĂR AND I. LAZĂR

[4] Conrad Bock. UML 2 activity and action models, part 4: Object nodes. Journal of
Object Technology, 3(1):27–41, 2004.

[5] Conrad Bock. UML 2 activity and action models, part 6: Structured activities. Journal
of Object Technology, 4(4):43–66, 2005.

[6] I.-G. Czibula, C.-L. Lazăr, I. Lazăr, S. Motogna, and B. Pârv. Comdevalco development
tools for procedural paradigm. Studia Univ. Babeş-Bolyai, III, 2008.

[7] Object Management Group. Semantics of a Foundational Subset for Executable UML
Models RFP. http://www.omg.org/docs/ad/05-04-02.pdf, 2005.

[8] Object Management Group. Object Constraint Language Specification, version 2.0.
http://www.omg.org/docs/formal/06-05-01.pdf, 2006.

[9] Object Management Group. UML 2.1.2 Superstructure Specification.
http://www.omg.org/docs/formal/07-11-02.pdf, 2007.

[10] I. Lazăr, B. Pârv, S. Motogna, I.G. Czibula, and C.-L. Lazăr. An agile MDA approach
for executable UML structured activities. Studia Univ. Babeş-Bolyai, LII(2):101–114,
2008.

[11] Stephen J. Mellor and Marc J. Balcer. Executable UML: A Foundation for Model-Driven
Architecture. Addison Wesley, 2002.

[12] Bazil Pârv. Comdevalco - a framework for software component definition, validation,
and composition. Studia Univ. Babeş-Bolyai, LII(2):59–68, 2007.

[13] Tim Schattkowsky and Alexander Förster. On the pitfalls of UML 2 activity modeling.
International Workshop on Modeling in Software Engineering, 2007.

[14] Tia Watts. A Structured Flow Chart Editor. http://watts.cs.sonoma.edu/SFC/.
[15] Tia Watts. The SFC editor a graphical tool for algorithm development. Journal of

Computing Sciences in Colleges, 4(1):73–85, 2004.

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş-Bolyai University, 1, M. Kogălniceanu, Cluj-Napoca 400084, Ro-
mania

E-mail address: ilazar@cs.ubbcluj.ro

	00cuprinsInformatica_2_2008
	01-VescanPop
	02-MotognaParv
	03-SerbanPop
	04-Pocza
	05-Porkolab
	06-Varga
	07-Bodo
	08-Sinkovics
	09-Kitlei
	10-Verbova
	11-Czibula
	12-Radoiu
	13-Lazar

