
INFORMATICA
1/2008

Anul LIII 2008

 S T U D I A

 UNIVERSITATIS BABEŞ-BOLYAI

 INFORMATICA

 1

 Redacţia: 400084 Cluj-Napoca, Str. M. Kogălniceanu nr. 1 Tel: 405300

SUMAR � CONTENTS � SOMMAIRE

G. Şerban, I. G. Czibula, A Search Based Approach for Identifying Design Patterns ... 3

K. T. Janosi Rancz, V. Varga, A Method for Mining Functional Dependencies in

Relational Database Design Using FCA ... 17

L. Dioşan, A. Rogozan, J.-P. Pecuchet, Evolutionary Optimisation of Kernel

Functions for SVMs... 29

A. Gog, Evolving Network Topologies for Cellular Automata .. 45

D. Rădoiu, Virtual Organizations - Conceptual Modelling ... 53

G. Droj, Improving the Accuracy of Digital Terrain Models .. 65

E. Ciurea, O. Georgescu, M. Iolu, Minimum Flow Algorithms. Dynamic Tree

Implementations .. 73

A. Sabău, SignedIntersection - A New Algorithm for Finding the Intersection of Two

Simple Polygons ... 83

I. M. Căpută, S. Motogna, Introducing a New Form of Parametric Polymorphism in

Object Oriented Programming Languages .. 97

D. Rădoiu, M. Frenţiu, Software Process Improvement at Sysgenic 107

I. Ispas, Modeling of the Image Recognition and Classification Problem (IRC) 113

M. Cimpoi, R. Meza, D. Zoicaş, C. Ciuhuţă, D. Suciu, GreenLife - A MMORPG

that Stimulates an Ecological Behavior .. 121

O. Şerban, RoboSlang - Concept of an Experimental Language................................... 129

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

A SEARCH BASED APPROACH FOR IDENTIFYING
DESIGN PATTERNS

GABRIELA ŞERBAN AND ISTVÁN GERGELY CZIBULA

Abstract. Software design patterns are well-known and frequently reused
micro-architectures: they provide proved solutions to design recurring
problems with certain contexts. In restructuring legacy code it is use-
ful to introduce a design pattern in order to add clarity to the system and
thus facilitate further program evolution. That is why the problem of de-
sign patterns identification is very important. Automating the detection
of design pattern instances could be of significant help to the process of
reverse engineering large software systems. The aim of this paper is to
introduce a new search based approach for identifying instances of design
patterns in a software system. We provide an experimental evaluation of
our approach, emphasizing its advantages.

1. Introduction

Design patterns have attracted significant attention in software engineering
in the last period. An important reason behind this is that design patterns are
potentially useful in both development of new, and comprehension of existing
object-oriented design, especially for large legacy systems without sufficient
documentation. The design patterns introduced by Gamma et al. [3] capture
solutions that have developed and evolved over time. Each design pattern
indicates a high level abstraction, encompasses expert design knowledge, and
represents a solution to a common design problem. A pattern can be reused as
a building block for better software construction and designer communication.

In restructuring legacy code is useful to introduce a design pattern in order
to add clarity to the system and thus facilitate further program evolution.
That is why the problem of design patterns identification is very important.
Automating the detection of design pattern instances could be of significant
help to the process of reverse engineering large software systems.

Received by the editors: December 4, 2007.
2000 Mathematics Subject Classification. 68N99, 62H30.
1998 CR Categories and Descriptors. D.2.7 [Software Engineering]: Distribution,

Maintenance, and Enhancement –Restructuring, reverse engineering, and reengineering ;
I.5.3 [Computing Methodologies]: Pattern Recognition – Clustering .

3

4 GABRIELA ŞERBAN AND ISTVÁN GERGELY CZIBULA

From a program understanding and reverse engineering perspective, ex-
tracting information from a design or source code is very important, the com-
plexity of this operation being essential. Localizing instances of design patterns
in existing software can improve the maintainability of software. Automatic
detection of design pattern instances is probably a useful aid for maintenance
purposes, for quickly finding places where extensions and changes are most
easily applied.

It would be useful to find instances of design patterns especially in designs
where they were not used explicitly or where their use is not documented. This
could improve the maintainability of software, because larger chunks could be
understood as a whole.

The presence of patterns in a design should be reflected also in the cor-
responding code: being able to extract pattern information from both design
and code is fundamental in identifying traceability links between different doc-
uments, explaining the rationale of the chosen solution in a given system and
thus simplifying the activity of building its conceptual model.

The main contributions of this paper are:
• To introduce an original search based approach for identifying in-

stances of design patterns in a software system.
• To emphasize the advantages of the proposed approach in comparison

with existing approaches.
The rest of the paper is structured as follows. Section 2 presents some ex-

isting approaches in the field of automatic design patterns identification. The
theoretical model of our search based approach for identifying design patterns
is introduced in section 3. Section 4 presents our approach and Section 5 con-
tains an experimental evaluation of it. An analysis of the proposed approach
is made in Section 6. Section 7 presents some conclusions of the paper and
future research directions.

2. Related Work

We will briefly present, in the following, the most significant results ob-
tained in the literature in the field of automatic design patterns identification.

Different approaches, exploiting software metrics, were used in previous
works to automatically detect design concepts and function clones [6, 7] in
large software systems. An approach for extracting design information directly
from C++ header files and for storing them in a repository is proposed in [7].
The patterns are expressed as PROLOG rules and the design information is
translated into facts. A single Prolog query is then used to search for all
patterns. The disadvantage of this approach is that handles a small number
of design patterns (only the structural design patterns – Adapter, Bridge,

A SEARCH BASED APPROACH FOR IDENTIFYING DESIGN PATTERNS 5

Composite, Decorator and Proxy) and the precision obtained in recognition is
small (40%).

A multi-stage approach using OO software metrics and structural proper-
ties to extract structural design patterns from object oriented artifacts, design,
or code, is introduced in [1]. The drawback of this approach is that only few
pattern families (the structural design patterns - Adapter, Bridge, Composite,
Decorator and Proxy) are considered.

In [8] the authors have developed an iterative semiautomatic approach to
design recovery using static analysis on the source code level of a system. The
approach facilitates a rule-based recognition of design pattern instances. It is
a highly scalable process which can be applied to large real world applications
with more than 100,000 LOC. The approach has been enhanced by fuzzyfied
rules to provide the reverse engineer with accuracy information about the
analysis results [9]. Fuzzyfied rules have a credibility value expressing how
much design pattern candidates identified by the rule are real design pattern
instances. The reverse engineer adapts the accuracy values of the results which
are then used to calibrate credibility values of the rules [4].

For a precise design pattern recognition, a static analysis is not sufficient.
The behavioral aspects of a pattern are an important factor. Dynamic analyses
can be used to analyze the runtime behavior of a system. A sole dynamic
analysis is not feasible since the amount of data gathered during runtime is
too big. A combination of static and dynamic analysis techniques is proposed
in [13]. The static analysis identifies candidates for design pattern instances.
These candidates form a significantly reduced search space for a subsequent
dynamic analysis that confirms or weakens the results from static analysis.

3. Theoretical model

Let S = {s1, s2, ..., sn} be a software system, where si, 1 ≤ i ≤ n may
be an application class, a class method or a class attribute. We will refer an
element of the software system S as an entity.

Let us consider that:
• Class(S) = {C1, C2, . . . , Cl}, Class(S) ⊂ S, is the set of applications

classes in the initial structure of the software system S.
• Each application class Ci (1 ≤ i ≤ l) is a set of methods and attributes,

i.e., Ci = {mi1, mi2, . . . , mipi , ai1, ai2, . . . , airi}, 1 ≤ pi ≤ n, 1 ≤ ri ≤
n, where mij (∀j, 1 ≤ j ≤ pi) are methods and aik (∀k, 1 ≤ k ≤ ri)
are attributes from Ci.

• Meth(S) =
l⋃

i=1

pi⋃
j=1

mij , Meth(S) ⊂ S, is the set of methods from all

the application classes of the software system S.

6 GABRIELA ŞERBAN AND ISTVÁN GERGELY CZIBULA

• Attr(S) =
l⋃

i=1

ri⋃
j=1

aij , Attr(S) ⊂ S, is the set of attributes from the

application classes of the software system S.
Based on the above notations, the software system S is defined as follows:

(1) S = Class(S)
⋃

Meth(S)
⋃

Attr(S).

A given design pattern p from the software system S can be viewed as a
pair p = (Cp,Rp), where

• Cp = {Cp
1 , Cp

2 , . . . , Cp
ncp} is a subset from Class(S), Cp ⊂ Class(S),

and represents the set of classes that are components of the design
pattern p. ncp represents the number of classes from the pattern p.

• Rp = {rp
1, r

p
2, . . . , r

p
nrp} is a set of constraints (relations) existing among

the classes from Cp, constraints that characterize the design pattern p.
Consequently, each constraint rp

i ,∀1 ≤ i ≤ nrp from Rp is a relation
defined on a subset of classes from Cp, and nrp represents the number
of constraints characterizing the design pattern p.

We mention that all the constraints from Rp can be expressed as binary
constraints (there are two classes involved in the constraint). That is why,
in the following, we will assume, without loosing generality, that all the con-
straints from Rp are binary.

Let us denote by cmin the minimum number of binary constraints from
Rp that a class from Cp can satisfy, as indicated by equality (2).

(2)
cmin = mini=1,ncp

|{j, |1 ≤ j ≤ nrp, ∃1 ≤ k ≤ ncp, k �= i s.t. Cp
i rp

j Cp
k ∨ Cp

k rp
j Cp

i }|

4. Our search-based approach

In this section we are focusing on identifying all the instances of a given
design pattern p in a given design (software system).

Based on the theoretical model defined in Section 3, it can be easily seen
that the problem of identifying all instances of the design pattern p in the
software system S is a constraint satisfaction problem [10], i.e., the problem
of searching for all possible combinations of ncp classes from S such that all
the constraints from Rp to be satisfied.

It is obvious that a brute force approach for solving this problem would
lead to a worst case time complexity of O(lncp). The main goal of the search
based approach that we propose in this section in order to find all instances of

A SEARCH BASED APPROACH FOR IDENTIFYING DESIGN PATTERNS 7

a design pattern p is to reduce the time complexity of the process of solving
the analyzed problem.

The main idea of our approach is to obtain a set of possible pattern can-
didates (by applying a preprocessing step on the set Class(S)) and then to
apply a hierarchical clustering algorithm in order to obtain all instances of the
design pattern p.

Our search-based approach for identifying instances of design patterns in
a software system consists of the following steps:

• Data collection: The existing software system is analyzed in order
to extract from it the relevant entities: classes, methods, attributes
and the existing relationships between them.

• Preprocessing: From the set of all classes from S we eliminate all
the classes that can not be part of an instance of pattern p. This
preprocessing step will be explained later.

• Grouping: The set of classes obtained after the Preprocessing step
are grouped in clusters using a hierarchical clustering algorithm. The
aim is to obtain clusters with the instances of p (each cluster contain-
ing an instance) and clusters containing classes that do not represent
instances of p.

• Design pattern instances recovery: The clusters obtained at the
previous step are filtered in order to obtain only the clusters that
represent instances of the design pattern p.

In the following we will give a descriptions of the above enumerated steps.

4.1. Data collection. During this step, the existing software system is an-
alyzed in order to extract from it the relevant entities: classes, methods, at-
tributes and the existing relationships between them. In order to verify the
constraints Rp of the design pattern p, we need to collect from the system
information such as: all interfaces implemented by a class, the base class of
each class, all methods invoked by a class, all possible concrete types for a
formal parameter of a method, etc.

In order to express the dissimilarity degree between any two classes relat-
ing to the considered design pattern p, we will consider the distance d(Ci, Cj)
between two classes Ci and Cj from S given by the number of binary con-
straints from Rp that are not satisfied by classes Ci and Cj . It is obvious
that as smaller the distance d between two classes is, as it is more likely that
the two classes are in an instance of the design pattern p. The distance is
expressed as in formula (3).

8 GABRIELA ŞERBAN AND ISTVÁN GERGELY CZIBULA

(3)

d(Ci, Cj) =
{

1 + |{k |1 ≤ k ≤ nrp s.t. ¬(Ci rp
k Cj ∨ Cj rp

k Ci)}| i �= j
0 i = j

.

Based on the definition of d given above it can be simply proved that d is
a semimetric function.

4.2. Preprocessing. After the Data collection step was performed and the
needed data was collected from the software system in order to compute the
distances between the classes (3), a preprocessing step is performed in order
to reduce the search space, i.e, the set of possible pattern candidates.

In order to significantly reduce the search space, we eliminate from the
set of all classes Class(S) those classes that certainly can not be part of an
instance of the design pattern p. By applying this filtering, we will obtain a
set of possible pattern candidates, denoted by PatCand(S). More specifically,
the following filtering step is performed:

• We eliminate from the set of all classes those classes that satisfy less
than cmin binary constraints from Rp. The idea is that based on the
definition of cmin given by (2), in order to be in an instance of design
pattern p, a class has to satisfy at least cmin constraints from Rp.
After the filtering step, the set of pattern candidates becomes:

PatCand(S) = Class(S)− {Cj |1 ≤ j ≤ l s.t.

l∑
i=1,i �=j

(1 + nrp − d(Cj , Ci)) < cmin}

After applying the previous filtering step, the set PatCand(S) of possible
pattern candidates is significantly reduced in comparison with the set of all
classes from S. Let us denote by nc the number of possible pattern candidates,
i.e, the cardinality of the set PatCand(S).

4.3. Grouping. After the grouping step we aim to obtain a partition K =
{K1, K2, ...,Kv} of the set PatCand(S) such that each instance of the design
pattern p to form a cluster. Based only on the distance semimetric d (3), it is
possible that two classes would seem to be in an instance of the design pattern
(a so called “false positive” decision), even if they are not cohesive enough in
order to take this decision. That is why we need a measure in order to decide
how cohesive are two classes.

We will adapt the generic cohesion measure introduced in [12] that is
connected with the theory of similarity and dissimilarity. In our view, this
cohesion measure is the most appropriate to our goal. We will consider the
dissimilarity degree (from the cohesion point of view) between any two classes

A SEARCH BASED APPROACH FOR IDENTIFYING DESIGN PATTERNS 9

from the software system S. Consequently, we will consider the dissimilarity
diss(Ci, Cj) between classes Ci and Cj as expressed in (4).

(4) diss(Ci, Cj) =

{
1− |p(Ci)∩p(Cj)|

|p(Ci)∪p(Cj)| if p(Ci) ∩ p(Cj) �= ∅
∞ otherwise

,

where p(C) defines a set of relevant properties of class C and it consists of the
application class itself, all attributes and methods defined in the class C, all
interfaces implemented by C and the base class of C.

We have chosen the dissimilarity between two classes as expressed in (4)
because it emphasizes the idea of cohesion. As illustrated in [2], “Cohesion
refers to the degree to which module components belong together”. The dis-
similarity measure defined in Equation (4) highlights the concept of cohesion,
i.e., classes with low dissimilarities are cohesive, whereas classes with higher
distances are less cohesive.

Based on the definition of diss (4), it can be easily proved that diss is a
semimetric function.

In the original paper [11] a theoretical validation of the semimetric dis-
similarity function diss is given. It is proved that diss highlights the concept
of cohesion, i.e., classes with low distances are cohesive, whereas classes with
higher distances are less cohesive.

Consequently, the dissimilarity semimetric diss can be used in order to
decide how cohesive are two classes. We will use diss in the Grouping step
of our approach in order to decide if two classes are cohesive enough in order
to be part of an instance of the design pattern.

In order to obtain the desired partition K, we introduce a hierarchical
agglomerative clustering algorithm (HAC).

In our approach the objects to be clustered are the classes from the set
PatCand(S) and the distance function between the objects is given by the
semimetric d (3). We use complete-link [5] as linkage metric between the
clusters, because it is the most appropriate linkage metric to our goal. Con-
sequently, the distance dist(k, k′) between two clusters k ∈ K and k′ ∈ K
(k �= k′) is given as in (5).

(5) dist(k, k′) = maxe∈k,e′∈k′d(e, e′)

In the hierarchical clustering process, the dissimilarity semimetric diss
will be used in order to decide how cohesive are two classes, i.e, if they will be
merged or not in the same cluster. That is why we will consider the dissimilar-
ity between two clusters k ∈ K and k′ ∈ K (denoted by dissimilarity(k, k′))
as the maximum dissimilarity between the objects from the clusters:

10 GABRIELA ŞERBAN AND ISTVÁN GERGELY CZIBULA

(6) dissimilarity(k, k′) = maxe∈k,e′∈k′diss(e, e′)

The main steps of HAC algorithm are:

• Each class from PatCand(S) is put in its own cluster (singleton).
• The following steps are repeated until the partition of classes remains

unchanged (no more clusters can be selected for merging):
– Select the two most similar clusters from the current partition,

i.e, the pair of clusters that minimize the distance from (5). If
this selection is nondeterministic (there are several pair of clus-
ters with the same minimum distance between them), we will
choose the pair (Ki, Kj) that has the minimum associated dis-
similarity value (dissimilarity(Ki, Kj)). Let us denote by dmin
the distance between the most similar clusters Ki and Kj .

– If dmin < 1 + nrp (nrp is the number of constraints imposed by
the design pattern p), then clusters Ki and Kj will be merged,
otherwise the partition remains unchanged. The idea of this step
is that two clusters will not be merged if their most distant classes
can not be part of an instance of the design pattern p (they in-
validate all the constraints that must hold).

We give next HAC algorithm.
Algorithm HAC is

Input: - the set of possible pattern candidates PatCand(S),

- the semimetric d,

- the semimetric diss,

- the number nrp of imposed constraints.

Precondition: - l ≥ 2.

Output: - the partition K = {K1, K2, ..., Kv}.
Begin

v ← |PatCand(S)| //the number of possible pattern candidates

For each C ∈ PatCand(S) do

Ki ← {C} //each possible candidate is put in its own cluster

endfor

K ← {K1, . . . , Kv} //the initial partition

change← true

While change do //while K changes

//the most similar clusters are chosen for merging

dmin←∞ //the minimum distance between clusters

dissmin←∞ //the minimum dissimilarity between clusters

For i∗ ← 1 to v-1 do //the most similar clusters are chosen

A SEARCH BASED APPROACH FOR IDENTIFYING DESIGN PATTERNS 11

For j∗ ← i∗ + 1 to v do

d← dist(Ki∗ , Kj∗) //the distance between the clusters

If d < dmin then

dmin← d

i← i∗

j ← j∗

else

If d = dmin then

dss← dissimilarity(Ki∗ , Kj∗) //the dissimilarity between the clusters

If dss < dissmin then

dissmin← dss

i← i∗

j ← j∗

endif

endif

endif

endfor

endfor

If dmin < 1 + nrp then

Knew ← Ki ∪Kj

K ← (K \ {Ki, Kj}) ∪ {Knew}
v ← v − 1

else

change← false //the partition remains unchanged

endif

endwhile

//K = {K1, K2, ..., Kv} is the output partition

End.

4.4. Design pattern instances recovery. The partition K obtained after
the Grouping step will be filtered in order to obtain only the clusters that
represent instances of the design pattern p. A cluster k from the partition K
is consider an instance of design pattern p iff the classes from k verify all the
constraints from Rp (the set of constraints imposed by the design pattern p).

5. Experimental Evaluation

In our experiment, we are focusing on identifying instances of Proxy de-
sign pattern using the search based approach that we have introduced in the
previous section.

12 GABRIELA ŞERBAN AND ISTVÁN GERGELY CZIBULA

Figure 1. Proxy design pattern.

5.1. The Proxy design pattern. The class diagram of the Proxy [3] design
pattern is given in Figure 1.

A Proxy pattern constitutes use of proxy objects during object interaction.
A proxy object acts as a substitute for the actual object Provide a surrogate
or placeholder for another object to control access to it

Proxy is a structural design pattern that provides a surrogate or place-
holder for another object to control access to it. Use of proxy objects is preva-
lent in remote object interaction protocols (Remote proxy): a local object
needs to communicate with a remote process but we want to hide the de-
tails about the remote process location or the communication protocol. The
proxy object allows to access remote services with the same interface of local
processes. In fact, when an Operation is required to the proxy object, it dele-
gates the implementation of the required operation to the RealSubject object.
Being both Proxy and RealSubject subclasses of Subject, this guarantees that
they export the same interface for Operation. To be able to call RealSubject
methods, Proxy needs an association to it.

According to the considerations from Section 3, the design pattern proxy
can be defined as the pair proxy = (Cproxy,Rproxy), where:

• Cproxy = {C1, C2, C3}, and ncproxy = 3 (the number of classes involved
in the design pattern proxy is 3).

• Rproxy = {r1, r2, r3}, nrproxy = 3 (the number of constraints imposed
by the design pattern proxy is 3), and the constraints are:

A SEARCH BASED APPROACH FOR IDENTIFYING DESIGN PATTERNS 13

Figure 2. The example design S.

– r1(C1, C2) represents the relation “C2 extends C1”.
– r1(C1, C3) represents the relation “C3 extends C1”.
– r1(C2, C3) represents the relation “C2 delegates any method in-

herited from a class C to C3, where both C2 and C3 extend C”.

Considering the above, the minimum number of binary constraints cmin
from Rp that a class from Cp can satisfy (as indicated in (2)) is 2.

5.2. Example. Let us consider as a case study the simple design illustrated
in Figure 2.

For the analyzed design S, the set of classes is Class(S) = {C1, C2, C3, C4,
C5, C6, C7, C8} and the number of classes is l = 8.

After performing the Data collection step from our approach, the matrix
D(8, 8) (where a line i corresponds to class Ci and a column j corresponds to
class Cj) of distances between the classes from Class(S) is:

(7) D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 3 3 4 4 4 4 4
3 0 3 3 4 4 4 4
3 3 0 4 4 4 4 4
4 3 4 0 4 4 3 4
4 4 4 4 0 3 3 4
4 4 4 4 3 0 3 4
4 4 4 3 3 3 0 4
4 4 4 4 4 4 4 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

14 GABRIELA ŞERBAN AND ISTVÁN GERGELY CZIBULA

After the Preprocessing step, the set of possible pattern candidates is
computed, PatCand(S) = {C1, C2, C3, C4, C5, C6, C7} and the number of pos-
sible pattern candidates is nc = 7. At this step, class C8 is eliminated because
it does not satisfy any constraint from the set of all constraints imposed by
the Proxy design pattern.

Now the Grouping step will be performed and first the matrix DISS(7, 7)
(where a line i corresponds to class Ci and a column j corresponds to class
Cj) of dissimilarities between the classes from PatCand(S) will be computed:

(8) DISS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.87 0.83 ∞ ∞ ∞ ∞
0.87 0 0.75 0.88 ∞ ∞ ∞
0.83 0.75 0 ∞ ∞ ∞ ∞
∞ 0.88 ∞ 0 ∞ ∞ 0.87
∞ ∞ ∞ ∞ 0 0.87 0.85
∞ ∞ ∞ ∞ 0.87 0 0.77
∞ ∞ ∞ 0.87 0.85 0.77 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

After applying HAC clustering algorithm, the obtained partition of
PatCand(S) is K = {K1, K2, K3}, where K1 = {C4}, K2 = {C3, C1, C2} and
K3 = {C5, C6, C7}.

We mention that without using the dissimilarity matrix DISS, the class
C7 would have been grouped with the class C4, instead of being grouped with
classes C5 and C6 and an instance of the design pattern Proxy would have
been missed.

Now we analyze the obtained partition K in order to identify instances of
Proxy design pattern, and the identified instances are correctly reported: K2

and K3.

6. Analysis of our approach

In the following we will make a time complexity analysis of our search
based approach for identifying instances of design patterns in a given software
system S. Let us consider that n is the number of entities from S and l is the
application classes from S.

Usually, the number nrp of constraints in a design pattern p is a small
constant (as 3 for the Proxy design pattern), that is why we will ignore it in
the worst time complexity asymptotic analysis.

Analyzing the steps performed in order to identify the instances of design
patterns in a given software system (as indicated in Section 4) we can compute
their worst time complexity. The results are given in Table 1.

A SEARCH BASED APPROACH FOR IDENTIFYING DESIGN PATTERNS 15

Step Worst time complexity
Data collection O(n)
Preprocessing O(l2)

Grouping O(l3)
Design pattern instances recovery O(l3)

Table 1. Complexity asymptotic analysis.

Based on the results from Table 1, we can conclude that the overall worst
time complexity of our approach is O(max{n, l3}). As, in a large real software
system, usually l3 > n, the overall complexity is O(l3).

As a conclusion, we can summarize the advantages of the search based
approach proposed in this paper in comparison with existing approaches:

• The overall worst time complexity (O(l3)) of our approach is reduced in
comparison with the worst time complexity of a brute force approach
(O(lncp)) (as the number of classes ncp of classes contained in a design
pattern p is greater or equal to 3).

• Our approach is not dependent on a particular design pattern. It may
be used to identify instances of various design patterns, as any design
pattern can be described according to the theoretical model introduced
in Section 3.

• Our approach may be used to identify both structural and behavioral
design patterns, as the constraints can express both structural and
behavioral aspects of the application classes from the analyzed software
system.

7. Conclusions and future work

We have introduced in this paper a search based approach for identifying
instances of design patterns in existing software systems. We have emphasized
the advantages of our approach in comparison with existing approaches in the
field.

Further work can be done in the following directions:
• Improving the Preprocessing and Grouping steps from our ap-

proach.
• Applying the proposed approach on real software systems.
• Extending the proposed approach towards identifying several design

patterns.
• Extending the proposed approach towards introducing design patterns

in existing software systems.

16 GABRIELA ŞERBAN AND ISTVÁN GERGELY CZIBULA

References

[1] G. Antoniol, R. Fiutem, and L. Cristoforetti, Using metrics to identify design patterns
in object-oriented software, Proc. of the Fifth International Symposium on Software
Metrics - METRICS’98, 1998, pp. 23–34.

[2] James M. Bieman and Byung-Kyoo Kang, Measuring design-level cohesion, Software
Engineering 24 (1998), no. 2, 111–124.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design patterns:
Elements of reusable object oriented software, Addison-Wesley Publishing Company,
USA, 1995.

[4] M. Meyer, J. Niere, and L. Wendehals, User-driven adaption in rule-based pattern recog-
nition, Technical Report TR-RI-04-249 (2004), University of Paderborn, Paderborn,
Germany.

[5] A. K. Jain, M. N. Murty, and P. J. Flynn, Data clustering: a review, ACM Computing
Surveys 31 (1999), no. 3, 264–323.

[6] Kostas Kontogiannis, Renato de Mori, Ettore Merlo, M. Galler, and Morris Bernstein,
Pattern matching for clone and concept detection, Automated Software Engineering 3
(1996), no. 1/2, 77–108.

[7] Christian Kramer and Lutz Prechelt, Design recovery by automated search for structural
design patterns in object-oriented software, WCRE ’96: Proceedings of the 3rd Working
Conference on Reverse Engineering (WCRE ’96), 1996, pp. 208–215.

[8] Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar Wendehals, and Jim Welsh,
Towards pattern-based design recovery, ICSE ’02: Proceedings of the 24th International
Conference on Software Engineering, 2002, pp. 338–348.

[9] Jörg Niere, Jörg P. Wadsack, and Lothar Wendehals, Handling large search space in
pattern-based reverse engineering, IWPC ’03: Proceedings of the 11th IEEE Interna-
tional Workshop on Program Comprehension, 2003, pp. 274.

[10] Elaine Rich and Kevin Knight, Artificial intelligence, 2nd ed., McGraw Hill, New York,
1991.

[11] G. Serban and I.G. Czibula, On evaluating software systems design, Studia Universitatis
“Babes-Bolyai”, Informatica LII (2007), no. 1, 55–66.

[12] Frank Simon, Silvio Loffler, and Claus Lewerentz, Distance based Cohesion Measuring,
Proceedings of the 2nd European Software Measurement Conference (FESMA), 1999,
pp. 69–83.

[13] L. Wendehals, Improving Design Pattern Instance Recognition by Dynamic Analysis,
Proc. of the ICSE 2003 Workshop on Dynamic Analysis (WODA), 2003, pp. 29–32.

Department of Computer Science, Babeş-Bolyai University 1, M. Kogălniceanu

Street, 400084, Cluj-Napoca, Romania,

E-mail address: gabis@cs.ubbcluj.ro

Department of Computer Science, Babeş-Bolyai University, 1, M. Kogălniceanu

Street, 400084, Cluj-Napoca, Romania,

E-mail address: istvanc@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

A METHOD FOR MINING FUNCTIONAL DEPENDENCIES
IN RELATIONAL DATABASE DESIGN USING FCA

KATALIN TUNDE JANOSI RANCZ AND VIORICA VARGA

Abstract. Formal Concept Analysis (FCA) is a useful tool to explore
the conceptual knowledge contained in a database by analyzing the formal
conceptual structure of the data. In this paper, we present a new method
to optimize and extend a previous research on FCA and databases, by
analyzing the functional dependencies in order to correctly build database
schemata. Our method intends to mine functional dependencies in a rela-
tional database table. The novelty of our method is that it builds inverted
index files in order to optimize the construction of the formal context of
functional dependencies.

1. Introduction

From a philosophical point of view a concept is a unit of thoughts consisting
of two parts, the extension, which are objects and the intension consisting of
all attributes valid for the objects of the context. Formal Concept Analysis
(FCA) introduced by [7] gives a mathematical formalization of the concept
notion. A detailed mathematic foundation of FCA can be found in [3]. Formal
Concept Analysis is applied in many different realms like psychology, sociology,
computer science, biology, medicine and linguistics.

Formal Concept Analysis has been proved to be a valuable tool to repre-
sent the knowledge contained in a database, for instance logical implications
in datasets. The subject of detecting functional dependencies in relational ta-
bles was studied in detail with different mathematical theories. Hereth (2002)
presents the relationship between FCA and functional dependencies. He in-
troduces the formal context of functional dependencies. In this context, impli-
cations hold for functional dependencies. Baixeries (2004) gives an interesting
framework to mine functional dependencies using Formal Context Analysis.
Detecting functional dependencies seems to be an actual theme, see [8].

Received by the editors: April 8, 2008.
2000 Mathematics Subject Classification. 03G10.
1998 CR Categories and Descriptors. H.2.4 [Database Management]: Systems – Re-

lational databases.

17

18 KATALIN TUNDE JANOSI RANCZ AND VIORICA VARGA

This paper presents how some basic concepts from database theory trans-
late into the language of Formal Concept Analysis and attempts to develop
the functional dependencies.

We optimize an existing method introduced by [4], which provides a direct
translation from relational databases into the language of power context fam-
ilies and calculates the functional dependencies in a relational table. In order
to generate the tuple pairs necessary to build the formal context of functional
dependencies we build inverted index files for the values of every attribute,
because in the context of functional dependencies we need the tuple pairs,
where at least one of the attribute values are common. In order to make the
algorithm faster we reduce the size of the context file, which leads to fewer
concepts in the lattice with useless dependencies.

2. Functional dependencies

The most used database model is the relational model. To give the struc-
ture of data [1] presents the unnamed and named perspective. The data is
stored in data tables, which have attributes as columns and tuples as rows.
In the named perspective the attributes are given by names, in the unnamed
perspective they are given only by position. The operations on the relational
model are based on algebra or on logic. The data integrity constraints of the
model appear as functional dependencies.

We give the definition of a relational database from the unnamed perspec-
tive.

Definition 1. We define a relational database to be a tuple D := (dom,N)
with dom being the domain of the database and N being the set of named
data tables in the database. A data table is any element T ∈ ∪i∈N0β

(
domi

)
.

The arity of T is the smallest i ∈ N0 such that T ∈ β
(
domi

)
and is written

arity(T). For a tuple t ∈ T we write t [j] with 1 ≤ j ≤ arity (T) to denote the
j-th value of the tuple.

Example 1. In database implementations the named perspective is used. The
database scheme is composed of the table names with their attribute names.
The example gives the relational scheme of a university database. Students are
divided in groups; there can be many groups in one specialization. Students
are marked at different disciplines.

Specialization [SpecID, SpecName, Language]
Groups [GroupID, SpecID]
Students [StudID, GroupID, StudName, Email]
Disciplines [DiscID, DName, CreditNr]
Marks [StudID, DiscID, Mark]

In this example N is composed of the named data tables: Specialization,
Groups, Students, Disciplines, Marks, dom is the set of all attribute’s values

MINING FUNCTIONAL DEPENDENCIES 19

of the tables. In case of each table the arity is the number of its attributes,
so Groups table has arity 2, Students has 4. Let t be a tuple (row) of table
Students, than t[1] is the value of tuple t for StudID, t[2] is the value of
GroupID in the corresponding row, so on.

In relational database design the normalization theory is used to avoid
redundancy. Normal forms use the notion of functional dependencies. The
following definition uses the projection relational operator, see any database
theory book [1], [6]. In the following definition we use the unnamed perspec-
tive, so the attributes are given by there number.

Definition 2. Let T be a data table and X, Y ⊆ N0. Then, T fulfills the
functional dependency D : X → Y , if for all tuples s, t ∈ T πX (s) = πX (t)
implies that also πY (s) = πY (t).

Example 2. Let be the next relational table:
StudentInfos [StudID, StudName, Email, GroupID, SpecName]

For all tuples s, t ∈ StudentInfos for which πGroupID (s) = πGroupID (t)
implies that πSpecName (s) = πSpecName (t).

So, the following functional dependencies hold:

GroupID → SpecName

This means, we repeat for every student from a group the specialization
name.

In the same manner we can see that:

StudID → StudName,Email, GroupID, SpecName

Email → StudID, StudName, SpecName, GroupID

In order to define the functional dependencies in a formal context, we need
the notion of Power Context Family.

Definition 3. (Power Context Family). A power context family
−→
K :=

(Kn)n∈K0
is a family of formal contexts Kk := (Gk,Mk, Ik) such that Gk ⊆

(G0)
k for k = 1, 2, The formal contexts Kk with k ≥ 1 are called relational

contexts. The power context family
−→
K is said to be limited of type n ∈ N0 if−→

K = (K0, K1, ..., Kn), otherwise, it is called unlimited.

The following definition from [4] gives the method to construct the power
context family resulting from a relational database.

Definition 4. The power context family
−→
K (D) resulting from the canonical

database translation of the relational database D = (dom, N) is constructed
in the following way: we set K0 := (dom, ∅, ∅) and, for k ≥ 1, let Gk be the
set of all k-ary tuples and Mk ⊆ N be the set of all named data tables of arity
k. The relation Ik is defined by (g,m) ∈ Ik :⇔ g ∈ m.

20 KATALIN TUNDE JANOSI RANCZ AND VIORICA VARGA

K2 Groups
(531, I) X
(532, I) X
(111, M) X
(...) ...

Table 1. K2 for Example 1

K3 Specialization Disciplines Marks
(M, Mathematics, German) X
(I, Informatics, English) X
(...) ...
(11, Databases, 6) X
(22, Algebra, 6) X
(...) ...
(101, 22, 9) X
(157, 22, 8) X
(...) ...

Table 2. K3 for Example 1

Example 3. Let us construct the power context family of our Example 1. K0

has no attributes, because we haven’t any 0-ary relation. K2 has in his one
attribute table Groups, this is the only table with arity 2, objects are tuples
from this table, see Table 1. The attributes of K3 are the tables with arity 3,
objects are rows from these tables, the incidence relation shows which tuple
to which table belongs (Table 2). K4 has one attribute, Students table name,
see Table 3.

The formal context of functional dependencies is defined in the following
way in [4].

Definition 5. Let
−→
K be a power context family, and let m ∈ Mk be an at-

tribute of the k-th context. Than the formal context of functional dependencies
of m with regard to

−→
K is defined as FD

(
m,
−→
K

)
:=

(
mIk ×mIk , { 1, 2, ..., k}, J

)
with ((g, h) , i) ∈ J :⇔ πi (g) = πi (h) with g, h ∈ mIk and i ∈ { 1, 2, ..., k}.

Example 4. Let us construct the formal context of functional dependencies
for table StudentInfos of Example 2 notated by FD

(
StudentInfos,

−→
K(Uni)

)
.

This is a relation from database with name Uni. It has arity 5, so it is an
attribute of the K5 from the corresponding power context family

−→
K(Uni).

MINING FUNCTIONAL DEPENDENCIES 21

K4 Students
(101, 531, Irene Cates, IreneCates@email.com) X
(157, 111, Maria Jillian,MariaJillian@yahoo.com,) X
(234, 532, Frank Orlando,FrankOrlando@email.com) X
(...) ...

Table 3. K4 for Example 1

The attributes of FD
(
StudentInfos,

−→
K(Uni)

)
are the attributes of table

StudentInfos, the objects are pairs of tuples from this table. The incidence
relation of the context shows that the attribute is common to the tuple pair
from the row, see Fig. 1. We give short names to students and emails, in order
to fit the picture in page.

Figure 1. FD
(
StudentInfos,

−→
K(Uni)

)

In order to mine functional dependencies in the context defined in defini-
tion 5, we need the following proposition (see [4]).

Proposition 1. Let D be a relational database and m a k-ary table in D.
For two sets X, Y ⊆ { 1, ..., k} we have the following equality: The columns

22 KATALIN TUNDE JANOSI RANCZ AND VIORICA VARGA

Y are functionally dependent from the columns X if and only if X → Y is an
implication in FD

(
m,
−→
K (D)

)
.

Example 5. Let us construct the conceptual lattice for

FD
(
StudentInfos,

−→
K(Uni)

)
using the Concept Explorer (ConExp) from site http://sourceforge.net, see
Fig. 2. We can see the implication in the context of functional dependencies,
the software shows us too:

GroupID → SpecName

This is a transitive functional dependency, so the table isn’t in 3NF. The
software also find the following functional dependencies:

StudID → StudName,Email, GroupID, SpecName

Email → StudID, StudName, SpecName, GroupID

where the right hand side (StudID and Email) are candidate keys of the table
StudInfos.

3. Method description

This section presents how our method constructs the context of functional
dependencies of a database table.

In the first step, we introduce the structure of the table to be designed and
some significant tuples. It is not necessary to use all the rows of a database
table, but it is important to select varied tuples, with different styles of data,
in order to get as many conclusions as possible. Using definitions 3, 4, 5
we construct the formal context of functional dependencies to find existing
functional dependencies as implications in the constructed table. In order to
optimize the construction of the formal context, we build inverted index files
for the values of every attribute. With inverted indexes the number of rows
in the data file of formal context resulted by our method is half of the same
value resulted using Hereth’s method in [4]. In the consequence we can reduce
the time to build the conceptual lattice for functional dependencies and we
can eliminate useless dependencies.

An inverted index (or inverted file) is an index data structure, a sequence
of (key, pointer) pairs where each pointer points to a record in a database
which contains the key value in some particular field. The inverted index
is a central component of a typical search engine indexing algorithm. For
databases in which the records may be searched based on more than one field,
multiple indices may be created.

MINING FUNCTIONAL DEPENDENCIES 23

Figure 2. Conceptual lattice for FD (StudentInfos,−→(Uni))

Value Row numbers

v1j rnr1
1j , rnr2

1j , ...
v2j rnr1

2j , rnr2
2j , ...

...
vmj rnr1

mj , rnr2
mj , ...

Table 4. Inverted index InvIndj

We use the following notations for the j-th inverted file, which contains
the different values of the attribute aj : v1j , v2j , ..., vmj and for each value the
row numbers, where the corresponding attribute value appears, see Table 3.

24 KATALIN TUNDE JANOSI RANCZ AND VIORICA VARGA

Rownrs StudID StudName GroupID SpecName Email
1 1 a 531 Info aa
2 2 b 531 Info bb
3 3 c 531 Info cc
4 4 d 532 Info dd
5 5 e 631 Mathe ee
6 6 f 631 Mathe ff
7 7 a 631 Mathe a2

Table 5. Table StudentInfos

StudID
value row nrs

1 1
2 2
3 3
4 4
5 5
6 6
7 7

StudName
value row nrs

a 1,7
b 2
c 3
d 4
e 5
f 6

GroupID
value row nrs
531 1,2,3
532 4
631 5,6,7

SpecName
value row nrs
Info 1,2,3,4

Mathe 5,6,7

Email
value row nrs
aa 1
bb 2
cc 3
dd 4
ee 5
ff 6
a2 7

Table 6. Inverted index files for table StudentInfos

The context of functional dependencies being constructed, we build the
concept lattice. In the top of the concept lattice will be tuple pairs, in which
are no common values of the corresponding attributes, so we can omit to
generate these pairs of tuples. Pairs of form (t, t), where t is a tuple of the
table, have all attributes in common, these objects will arrive in the bottom
of the lattice, so they can be omitted too, because they don’t change the
implications in the context. Finally from the resulted context we generate the
functional dependencies.

MINING FUNCTIONAL DEPENDENCIES 25

Example 6. There is a simple example on how to build inverted index file.
Let be the following rows in table StudentInfos and the inverted index files
for every attribute, see Table 5 and 6.

The previous considerations alow us to formulate the next algorithm to
build the context of functional dependencies, inverted index files being con-
structed in the same time.

Algorithm
for each inserted row in table T do

begin
let k be the number of row
let ek1, ek2, ..., ekn be the attribute values of row k
for j:=1 to n do // for every attribute value

begin
search ekj in the j-th inverted index file //search the attribute

// value in the corresponding inverted file
if find, let vlj be the value in the inverted file

such that ekj = vlj then
begin // k is added to the list of row numbers for value vlj

build the array list alkj = {rnr1
lj , rnr2

lj , ...}
add k in alkj

add k in the j-th inverted index in the list of row numbers
for value vlj

end
else //value ekj doesn’t exist in the corresponding inverted index

//we insert it, k is the first row with value ekj of attribute j
insert new line in the j-th inverted index file with values (ekj , k)

end
// In order to insert tuple pairs as rows in the cex file:

build alk =
n⋃

j=1

alkj //alk contains the row numbers,

// which have attributes in common with row k
//if alk is empty, no row will be inserted in cex file
if alk
= ∅ then

for s = 1 to count(alk) do
insert in cex file tuple (k, alk(s))

end

Example 7. Let be the next table:

StudMarks [StudID, StudName, GroupID, Email, SpecID,
SpecName, Language, DiscID, DName, CreditNr, Mark]

26 KATALIN TUNDE JANOSI RANCZ AND VIORICA VARGA

Figure 3. Conceptual lattice for FD
(
StudMarks,

−→
K(Uni)

)
with 92 rows in the table StudMarks

In Fig. 3 is the concept lattice of the functional dependencies context for
the table StudMarks with 92 rows. The implications in this lattice, which are
functional dependencies in the table can be seen as follows: the concept with
label GroupID is a subconcept of concept with labels SpecID and SpecName.
This means, in every tuple pair where the GroupID field has the same value, the
specialization ID and name is the same. So we have the following implications,
which are functional dependencies:

GroupID →SpecID, SpecName
In the same manner the following functional dependencies can be read

from the conceptual lattice:
DiscID →CreditNr
DName →CreditNr

MINING FUNCTIONAL DEPENDENCIES 27

Figure 4. Implications, namely functional dependencies in
the table StudMarks

SpecID →Language
SpecName →Language
StudID →StudName
Email →StudName

The implications in this lattice given by Conexp can be seen in Fig. 4.

4. Conclusions and further research

This paper presents a method to optimize and to reduce the workload
of the users in the process of mining functional dependencies in a relational
database. Our method proves that FCA visualization makes easier to manage
database schemata and normal forms.

Our goal for further research is to develop an FCA exploration software
based on this method to be a front-end to relational database of any content.
This software would read any type of database table and construct the con-
text of functional dependencies, this way would not be necessary to introduce
the tuples by hand. As a part of this solution, we would use the resulted
implications to propose the structure of the database tables.

References

[1] Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison-Wesley, Reading
- Menlo - New York (1995)

[2] Baixeries, J.: A formal concept analysis framework to mine functional dependencies,
Proceedings of Mathematical Methods for Learning, (2004).

[3] Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer,
Berlin-Heidelberg-New York. (1999)

28 KATALIN TUNDE JANOSI RANCZ AND VIORICA VARGA

[4] Hereth, J.: Relational Scaling and Databases. Proceedings of the 10th International
Conference on Conceptual Structures: Integration and Interfaces LNCS 2393, Springer
Verlag (2002) 62–76

[5] Priss, U.: Establishing connections between Formal Concept Analysis and Relational
Databases. Dau; Mugnier; Stumme (eds.), Common Semantics for Sharing Knowledge:
Contributions to ICCS, (2005) 132–145

[6] Silberschatz, A., Korth, H. F.,Sudarshan, S.: Database System Concepts, McGraw-Hill,
Fifth Edition, (2005)

[7] Wille, R. : Restructuring lattice theory: an approach based on hierarchies of concepts.
In: I.Rival (ed.): Ordered sets. Reidel, Dordrecht-Boston, (1982) 445–470

[8] Yao, H., Hamilton, H. J.: Mining functional dependencies from data, Data Mining and
Knowledge Discovery, Springer Netherlands, (2007)

[9] Serhiy A. Yevtushenko: System of data analysis ”Concept Explorer”. (In Russian). Pro-
ceedings of the 7th National Conference on Artificial Intelligence KII-2000, p. 127-134,
Russia, 2000.

Sapientia University, Tg-Mures, Romania

E-mail address: tsuto@ms.sapientia.ro

Babes-Bolyai University, Cluj, Romania

E-mail address: ivarga@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

EVOLUTIONARY OPTIMISATION OF KERNEL
FUNCTIONS FOR SVMS

LAURA DIOŞAN, ALEXANDRINA ROGOZAN, AND JEAN-PIERRE PECUCHET

Abstract. The kernel-based classifiers use one of the classical kernels,
but the real-world applications have emphasized the need to consider a
new kernel function in order to boost the classification accuracy by a bet-
ter adaptation of the kernel function to the characteristics of the data. Our
purpose is to automatically design a complex kernel by evolutionary means.
In order to achieve this purpose we develop a hybrid model that combines
a Genetic Programming (GP) algorithm and a kernel-based Support Vec-
tor Machine (SVM) classifier. Each GP chromosome is a tree encoding
the mathematical expression of the kernel function. The evolved kernel
is compared to several human-designed kernels and to a previous genetic
kernel on several datasets. Numerical experiments show that the SVM
embedding our evolved kernel performs statistically better than standard
kernels, but also than previous genetic kernel for the considered classifica-
tion problems.

1. Introduction

The general problem of Machine Learning is to search a, usually very large,
space of potential hypotheses to determine the one that will best fit the data
and any prior knowledge. In 1995, Support Vector Machines (SVMs) marked
the beginning of a new era in the paradigm of learning from examples. Rooted
to the Statistical Learning Theory and the Structural Risk Minimization prin-
ciple developed by Vladimir Vapnik at AT&T in 1963 [19, 20], SVMs gained
quickly attention from the Machine Learning community due to a number of
theoretical and computational merits.

SVMs are a group of supervised learning methods that can be applied to
classification or regression. SVMs arose from statistical learning theory; the
aim being to solve only the problem of interest without solving a more diffi-
cult problem as an intermediate step. SVMs are based on the structural risk

Received by the editors: September 10, 2007.
2000 Mathematics Subject Classification. 68T05,91E45.
1998 CR Categories and Descriptors. code I.2.6 [Learning]: – Concept learning .

29

30 DIOŞAN, ROGOZAN, AND PECUCHET

minimisation principle, closely related to regularisation theory. This princi-
ple incorporates capacity control to prevent over-fitting and thus is a partial
solution to the bias-variance trade-off dilemma.

One issue with SVMs is finding an appropriate positive definite kernel
(and its parameters) for the given data. A wide choice of kernels already ex-
ists. Many data or applications may still benefit from the design of particular
kernels, adapted specifically to a given task (i.e. kernels for vectors, kernels
for strings, kernels for graphs, Fisher kernels or rational kernels). There are
only some hints for working with one or another of these classic kernels, be-
cause there is no rigorous methodology to choose a priori the appropriate one
between them. Moreover, the kernel parameters influence the performance
of the SVM algorithm. The selection of the penalty error for an SVM (that
controls the trade-off between maximizing the margin and classifying without
error) is also critical in order to obtain good performances. Therefore, one has
to optimise the kernel function, the kernel parameters and the penalty error of
the SVM algorithm in order to guarantee the robustness and the accuracy of
an SVM algorithm. Chapelle [4] has proposed to denote the kernel and SVM
parameters as hyper-parameters.

On the other hand, the evolutionary algorithms are able to search in a
continuous space without respecting some conditions (requirements) as those
regarding the differentiable of the score function. We do not have the certitude
that the solution provided by an EA is the optimal one, but it is very close to
the optimal one. The solutions proposed by an evolutionary algorithm allow
for better SVM performances.

Therefore, we choose to use the evolutionary framework in order to discover
the optimal expression of a new kernel and its parameters for several classi-
fication problems. The best (adapted) kernel is learnt by the algorithm itself
by using the data of a particular problem. For this aim the Genetic Program-
ming (GP) technique [12] is combined with an SVM algorithm [6, 11, 19, 15]
within a two-level hybrid model. The GP-kernel is involved into a standard
SVM algorithm to be trained in order to solve a particular classification prob-
lem. The optimal expression of a kernel is discovered by involving a guided
search process based on genetic operations: the selection has to provide high
reproductive chances to the fittest kernels, the crossover has to enable kernel-
children to inherit quickly beneficial characteristics of their kernel-parents and
the mutation has to ensure the diversity of the population and the exploration
of the search space. After an iterative process, which runs more generations,
an optimal evolutionary kernel (eK) is provided.

The paper is organized as follows: Section 2 outlines the theory behind
SVM classifiers with a particular emphasis on the kernel functions. Section 3
describes the hybrid technique used in order to evolve the SVM kernels. This

EVOLUTIONARY OPTIMISATION OF KERNEL FUNCTIONS FOR SVMS 31

is followed by a special section (Section 4) where the results of the experiments
are presented. Section 5 describes some related work in the field of automated
generation of kernel functions. Finally, Section 6 concludes our paper.

2. Support Vector Machine

2.1. Generalities. Initially, SVM algorithm has been proposed in order to
solve binary classification problems [19]. Later, these algorithms have been
generalized for multi-classes problems. Consequently, we will explain the the-
ory behind SVM only on binary-labelled data.

Suppose the training data has the following form: D = (xi, yi)i=1,m, where
xi ∈ �d represents an input vector and each yi, yi ∈ {−1,+1}, the output label
associated to the item xi. SVM algorithm maps the input vectors to a higher
dimensional space where a maximal separating hyper-plane is constructed [19].
Learning the SVM means (implies) to minimize the norm of the weight vector
(w in Eq. (1)) under the constraint that the training items of different classes
belong to opposite sides of the separating hyper-plane. Since yi ∈ {−1, +1}
we can formulate this constraint as:

(1) yi(wT x + b) ≥ 1, ∀i ∈ {1, 2, . . . , m}1,
where the primal decision variables w and b define the separating hyper-plane.

The items that satisfy Eq. (1) with equality are called support vectors
since they define the resulting maximum-margin hyper-planes. To account
for misclassification, e.g. items that do not satisfy Eq. (1), the soft margin
formulation of SVM has introduced some slack variables ξi ∈ � [5].

Moreover, the separation surface has to be nonlinear in many classification
problems. SVM was extended to handle nonlinear separation surfaces by using
a feature function φ(x). The SVM extension to nonlinear datasets is based
on mapping the input variables into a feature space F of a higher dimension
and then performing a linear classification in that higher dimensional space.
The important property of this new space is that the data set mapped by φ
might become linearly separable if an appropriate feature function is used,
even when that data set is not linearly separable in the original space.

Hence, to construct a maximal margin classifier one has to solve the convex
quadratic programming problem encoded by Eq. (2), which is the primal
formulation of it:

(2)
minimisew,b,ξ

1
2wT w + C

∑m
i=1 ξi

subject to: yi(wT φ(xi) + b) ≥ 1− ξi,
ξi ≥ 0,∀i ∈ {1, 2, . . . , m}.

1where vT represent the transpose of v

32 DIOŞAN, ROGOZAN, AND PECUCHET

The coefficient C (usually called penalty error or regularization parameter) is
a tuning parameter that controls the trade off between maximizing the margin
and classifying without error. Larger values of C might lead to linear functions
with smaller margin, allowing to classify more examples correctly with strong
confidence. A proper choice of this parameter is crucial for SVM to achieve
good classification performance.

Instead of solving Eq. (2) directly, it is a common practice to solve its
dual problem, which is described by Eq. (3):

(3)
maximisea∈�m

∑m
i=1 ai − 1

2

∑m
i,j=1 aiajyiyjφ(xi)T φ(xj)

subject to
∑m

i=1 aiyi = 0,
0 ≤ ai ≤ C,∀i ∈ {1, 2, . . . , m}.

In Eq. (3), ai denotes the Lagrange variable for the ith constraint of Eq.
(2).

The optimal separating hyper-plane f(x) = w · φ(x) + b, where w and b
are determined by Eq. (2) or Eq. (3) is used to classify the un-labelled input
data xk:

(4) yk = sign

⎛
⎝∑

xi∈S

aiφ(xi)T φ(xk) + b

⎞
⎠ ,

where S represents the set of support vector items xi.
We will see in the next section that is more convenient to use a kernel

function K(x, z) instead of the dot product φ(x)T φ(z).

2.2. Kernel formalism. The original optimal hyper-plane algorithm pro-
posed by Vapnik in 1963 was a linear classifier [19]. However, in 1992, Boser,
Guyon and Vapnik [2] have suggested a way to create non-linear classifiers by
applying the kernel trick. Kernel methods work by mapping the data items
into a high-dimensional vector space F , called feature space, where the sepa-
rating hyper-plane has to be found [2]. This mapping is implicitly defined by
specifying an inner product for the feature space via a positive semi-definite
kernel function: K(x, z) = φ(x)T φ(z), where φ(x) and φ(z) are the trans-
formed data items x and z [16]. Note that all we required is the result of such
an inner product. Therefore we do even not need to have an explicit repre-
sentation of the mapping φ, neither to know the nature of the feature space.
The only requirement is to be able to evaluate the kernel function on all the
pairs of data items, which is much easier than computing the coordinates of
those items in the feature space.

The kernels that correspond to a space embedded with a dot product
belong to the class of positive definite kernels. This has far-reaching con-
sequences. The positive definite and symmetric kernels verify the Mercer’s

EVOLUTIONARY OPTIMISATION OF KERNEL FUNCTIONS FOR SVMS 33

theorem [13] - a condition that guarantees the convergence of training for dis-
criminant classification algorithms such as SVM s. The kernels of this kind
can be evaluated efficiently even though they correspond to dot products in
infinite dimensional dot product spaces. In such cases, the substitution of the
dot product with the kernel function is called the kernel trick [2].

In order to obtain an SVM classifier with kernels one has to solve the
following optimization problem:

(5)
maximisea∈�m

∑m
i=1 ai − 1

2

∑m
i,j=1 aiajyiyjK(xi, xj)

subject to
∑m

i=1 aiyi = 0,
0 ≤ ai ≤ C, ∀i ∈ {1, 2, . . . , m}.

In this case, Eq. (4) becomes:

(6) yk = sign

⎛
⎝∑

xi∈S

aiK(xi, xk) + b

⎞
⎠ ,

where S represents the set of support vector items xi.
There are a wide choice for a positive definite and symmetric kernel K from

Eq. (6). The selection of a kernel has to be guided by the problem that must
be solved. Choosing a suitable kernel function for SVM s is a very important
step for the learning process. There are few if any systematic techniques to
assist in this choice. Until now, different kernels for vectors have been proposed
[18]; the most utilised of them by an SVM algorithm are listed in Table 1.

Table 1. The expression of several classic kernels.

Name Expression Type
Sigmoid KSig (x, z) = tanh(σxT · z + r) projective
RBF KRBF (x, z) = exp(−σ|x− z|2) radial
Polynomial KPol (x, z) = (xT · z + coef)d projective

3. Evolved Kernels

This section describes our approach for automatic design of kernels. The
model’s idea was initially proposed in [8] and here we try to detail it and
to performed a more deeply analysis of the new evolved kernels. The model
is a hybrid one: it uses GP [12] to construct positive and symmetric kernel
functions, and optimizes a fitness function by using an SVM classifier (see
Figure 1). A GP chromosome provides the analytic expression of such evolved
kernels. The model we describe actually seeks to replace the expert domain

34 DIOŞAN, ROGOZAN, AND PECUCHET

knowledge concerning the design of the SVM ’s kernel function with a GP
algorithm.

Crossover

eK(x,z)i
Mutation

SVM

…

with
quality

Learning
data set

SVM model

Validation
data set

eK(x,z) qualityi

without
quality

Population
of evolved

kernels

Selection

Chromosome evaluationGP - iteration i

Figure 1. Sketch of the hybrid approach

Our hybrid model is structured on two levels: a macro level and a mi-
cro level. The macro level algorithm is a standard GP [12], which is used to
evolve the mathematical expression of a kernel. The steady-state evolutionary
model [17] is involved as an underlying mechanism for the GP implementa-
tion. A steady state algorithm is much more tolerant of poor offspring than a
generational one. This is because in most implementations, the best individ-
uals from a given generation will always be preserved in the next generation,
giving themselves another opportunity to be selected for reproduction. The
best individuals are therefore given more chances to pass on their successful
traits. The GP algorithm starts by an initialisation step of creating a random
population of individuals (seen as kernel functions). The following steps are
repeated until a given number of iterations are reached: two parents are se-
lected using a binary selection procedure; the parents are recombined in order
to obtain an offspring O; the offspring is than considered for the mutation;
the new individual O∗ (obtained after mutation) replaces the worst individual
W in the current population if O∗ is better than W .

The micro level algorithm is an SVM classifier. It is taken from LIBSVM
[3] library. The original implementation of the SVM algorithm proposed in [3]
allows using several well-known kernels (Polynomial, RBF and Sigmoid – see
Table 1). In the numerical experiments, a modified version of this algorithm,
which is based on the evolved kernel (eK) is also used. The quality of each GP
individual is determined by running the SVM algorithm, which uses the eK
encoded in the current chromosome (Kiter,ind that corresponds to the indth

individual from the population during the iterth iteration). The accuracy rate

EVOLUTIONARY OPTIMISATION OF KERNEL FUNCTIONS FOR SVMS 35

estimated by the classifier (on the validation set) represents the fitness of the
GP chromosome.

3.1. Kernel representation. In our model, the GP chromosome is a tree
encoding the mathematical expression of the kernel function. Unlike a classic
GP tree, our model uses a particular category of trees that can contain two
types of nodes: scalar nodes and vectorial nodes. The terminal set is composed
only by vectors from �d: V TS = {x|x ∈ �d} (which correspond to the input
data). Since a kernel function operates only on two samples the resulting
terminal set V TS contains only two vector elements: x and z.

The function set (FS) contains two types of operations: scalar operations
and vectorial ones. The scalar function set (SFS) contains several well-known
binary (+, −, ×, /) and unary (sin, cos, exp, log) operators. The vectorial
function set VFS (see Table 2) contains two types of primitive functions:
operators that transform the initial multi-dimensional space into an R space
(known as norm functions) and operators that preserve the dimensionality of
the initial space. We also include several element-wise operations (EWOs) in
this last function category.

Table 2. The vectorial function set - V FS: the norms and
the element-wise operations

Type Elements Definition

EN EN(x, z) =
∑d

i=1(xi − zi)2

Norms SP SP (x, z) =
∑d

i=1 xizi

GN GN(x, z) = e−γ×∑d
i=1(xi−zi)

2

⊕ x⊕ z = v, vi = xi + zi, i = 1, d

EWOs � x� z = v, vi = xi − zi, i = 1, d

⊗ x⊗ z = v, vi = xi ∗ zi, i = 1, d

Starting with a bottom-up tree reading, the functions operate in this way:
• the element-wise operations transform the d-dimensional space of input

instances into another d-dimensional space.
• the norms (e.g., Euclidean, Gaussian, Scalar Product) transform the

d-dimensional space into an one-dimensional space. The norms link
the vector space with the scalar space in our GP tree.

• the scalar operations are used to combine the outputs of different
norms.

Note that these EWOs are performed in a manner that preserves a valid
dimension for the resulted vector. Our vectorial multiplication operation ⊗

36 DIOŞAN, ROGOZAN, AND PECUCHET

is an element-wise operation; it is different from the cross product, which is
a geometrical vector multiplication. The cross product performs the transfor-
mation (�d,�d) �−→ �d ×�d, or in our model we must have a transformation
(�d,�d) �−→ �d.

An example of a GP chromosome is depicted in Figure 2. The nodes that
contain scalar symbols form a connex region. The rest of the nodes form one
or more connex sub-regions.

Figure 2. Example of a chromosome - the nodes designed by
only a circle contain scalar symbols and the nodes designed by
two circles contain vectorial symbols (functions and terminals).
The vectors x and z, representing two data items, are the kernel
inputs.

The grow method [1], which is a recursive procedure, is used to initialize a
GP individual. This initialisation method is well known in the literature for
its robustness. The root of each GP tree must be a function from FS. If a
node contains a function, then its children are initialized either with another
function or with a terminal. The initialization process is stopped when is
attained a leaf node or at the maximal depth of the tree (the nodes from the
last level will be initialised by terminals). Moreover, the maximal depth of a
GP chromosome has to be large enough in order to assure a sufficient search
space for the optimal expression of our evolutionary kernel.

3.2. Genetic Operations.

3.2.1. Selection. The selection operator chooses from the current population
which individuals will act like parents in order to create the next generation
of kernels. Selection has to provide high reproductive chances to the fittest
kernels but, at the same time, it has to preserve the exploration of the search
space. The choice of which kernels are allowed for reproducing determines
which regions of the search space will be visited next. Indeed, achieving equi-
librium between the exploration and the exploitation of the search space is
very important for an evolutionary algorithm. When performing selection for

EVOLUTIONARY OPTIMISATION OF KERNEL FUNCTIONS FOR SVMS 37

recombination, the kernels are compared by means of a fitness function that
evaluates how good a potential solution is for the given problem.

3.2.2. Crossover. The crossover operator assures the diversity of the kernels
and is performed in a tree-structure preserving way in order to ensure the
validity of the offspring: first as a mathematical expression and second as a
Mercer’s kernel. The idea behind crossover is that the new chromosome may
be better than both of the parents if it takes the best characteristics from each
of the parents.

The model we describe uses an one-cutting point crossover [12]. Having
two parent trees, we randomly choose a cutting point in the first parent,
another cutting-point in the second parent and then, we exchange the subtrees
rooted to these points. This crossover type has been used because it is able to
guarantee a quite quickly convergence of the GP algorithm.

The cutting-point in the first parent is chosen randomly, but the other
cutting-point is constrained by the position of the first one. Thus, if the first
cutting-point is chosen right above a node that contains a scalar operator,
then the other cutting point must be chosen above another scalar node (from
the second parent). A similar procedure must be applied if the first cutting
point is chosen right above a node that contains a vector operator.

Why we need this restriction? Because if we choose the first cutting point
between a scalar function and a norm, then we must replace the sub-tree whose
root is the norm with a sub-tree from the other parent. If the cutting-point in
the second parent is chosen right above a node that contains a scalar function,
then there are two possibilities: the � function from the first parent acts on a
sub-tree rooted by a scalar function or on a sub-tree rooted by a norm. These
two possibilities are correct and they ensure a valid offspring. If the second
cutting-point is chosen right above a node that contain a vector operator, then
it is possible that scalar function from the first parent act on a vector (which
is an impossible operation).

3.2.3. Mutation. The purpose of the mutation operator is to create new in-
dividuals by small and stochastic perturbations of a chromosome. Mutation
operator aims to achieve some stochastic variability of an evolutionary al-
gorithm in order to get a quicker convergence. Furthermore, the mutation
operator aims to produce diversity of the population of candidate solutions
and to reconsider the lost genetic material of the population. Mutation is
therefore responsible for exploring new promising regions of the search space
and not for exploiting those already discovered. This genetic operation, also
as the crossover, preserves the syntactical validity of the new individual. For a
GP -based kernel, a cutting point is randomly chosen: the sub-tree belonging
to that point is deleted and a new sub-tree is grown there by applying the same

38 DIOŞAN, ROGOZAN, AND PECUCHET

random growth process that was used to generate the initial population. Note
that the maximal depth allowed for the GP trees limits the growth process.

3.3. Fitness Assignment. We must provide several information about the
datasets, before to describe the chromosome evaluation. The data sample
was randomly divided in two disjoint sets: a training set (80%) - for models
building - and a testing set (20%) - for performances evaluation. The training
set was than randomly partitioned into learning (2/3) and validation (1/3)
parts.

The SVM algorithm kernel uses the learning subset to construct the SVM
model and the validation subset for the evolved kernel performance assign-
ment. The quality of an evolved kernel, which is the current GP chromosome,
can be measured by the classification accuracy rate computed on the valida-
tion data set. The accuracy rate represents the number of correctly classified
items over the total number of items. Note that we deal with a maximization
problem: greater accuracy rates are, better evolved kernels are.

In order to evaluate the quality of a GP tree, it is also necessary to take into
account if the expression encoded into the current chromosome is a valid kernel
or not. We must verify therefore if the current expression satisfies the Mercer
conditions [5] regarding the positivity and the symmetry of the Gram matrix
associated to a kernel function. We have used the penalty method to involve
these restrictions in the evaluation process. More exactly, two important steps
are performed:

• (1) kernel positivity and symmetry verification - if a GP tree does
not satisfy these conditions then the fitness of the GP tree will be 0;
otherwise, we can go to step 2.

• (2) SVM algorithm running - there are two stages in this run: in the
first stage the SVM algorithm embedding the evolved kernel is con-
structed by using the learning data; in the second stage, the SVM
algorithm with the evolved kernel classifies the items from the valida-
tion set. The accuracy rate estimated on this subset will represent the
quality of the GP chromosome.

4. Numerical experiments

In this section, several numerical experiments about evolving kernel func-
tions for different classification problems are detailed. After evolving it on the
validation set, the kernel is embedded into an SVM classifier, which is run
on the test dataset. The SVM algorithm based on the classical kernels are
also used to classify the test data set. Finally, the performances of different
classifiers are compared.

EVOLUTIONARY OPTIMISATION OF KERNEL FUNCTIONS FOR SVMS 39

Four data sets [9] are used in thee experiments. All the data sets contain
information about the real-world problems (DS1 and DS2 – classification task
is to determine whether a person makes over $50K/year or not, DS3 and DS4

– classifying whether a web page belongs to a category or not). A binary
classification problem must be solved in each of these cases. The structure of
the problems is presented in Table 3.

Table 3. The structures of the data sets - each dataset is split
into training set and testing set. For each of these two subsets
it is specified: the total number of items, the number of items
from the first class and the number of items from the second
class, respectively

Data Training Testing
set Total 1th class 2nd class Total 1th class 2nd class
a1a 1604 395 1209 30995 7446 23549
a2a 2264 572 1692 30295 7269 23026
w1a 2477 2404 73 47272 45864 1408
w2a 3470 3362 108 46279 44906 1373

The steady-state model [17] is used for the GP algorithm. A population
of 50 individuals is evolved during 50 iterations, which is a reasonable limit to
assure the diversity of our eK s. The maximal depth of a GP tree is limited
to 10 levels, which allows encoding till 210 combinations. This maximal depth
was fixed by tacking into account the bloat problem (the uncontrolled growth
of programs during GP runs without (significant) return in terms of fitness
[14]). Furthermore, several empirical tests indicated that the efficient kernel-
trees do not expand to more than 10 levels. A binary tournament selection,
a probabilistic crossover, and a probabilistic mutation are performed in order
to obtain a new generation of chromosomes. The values of the crossover and
mutation probabilities (pc = 0.8 and pm = 0.3) are chosen in order to assure a
sufficient diversity of the population. The values used for the population size
and for the number of generations have been empirically chosen based on the
best results computed on the validation set. The soft margin hyper-parameter
C, which weights the misclassification errors, has been set to 1 for all the
classifiers used in our experiments.

4.1. Experiment 1. New kernel functions are evolved in this experiment.
As we already mentioned, there are two different stages in this experiment: in
the first stage the kernel expression is learnt and in the second stage the best
evolved kernel function is tested.

40 DIOŞAN, ROGOZAN, AND PECUCHET

We obtain various expressions of the kernel function, during different runs,
all of them having a similar complexity.

Figure 3 depicts the evolution of the quality for the best evolved kernels
along the number of iterations (for all the problems on the validation data
sets). Only the values corresponding to the first 20 generations are depicted
in this graphic for a better visualisation. Small improvements can be observed
in the chromosomes quality (or in the accuracy rate) after the first 15 GP
generations. This aspect is very important and it proves that the proposed
model can discover an efficient kernel in only a few generations.

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 3. Evolution (on the validation set) of the best evolved
kernel for all the problems.

Table 4 presents the accuracy rates estimated on the test data for each of
the problem and the expression of the best evolved kernel (provided by the
training process).

Table 4. The accuracy rates obtained on test datasets with an
SVM algorithm that involves the best kernel expression learnt
during the training stage.

Problem Acc Kernel Expression
DS1 72.43 K∗

1 (x, z) = GN(z, x� z)×GN(x, z � x)
K∗

1 (x, z) = e−γ
∑d

i=1[zi−(xi−zi)]
2
e−γ

∑d
i=1[xi−(zi−xi)]

2

DS2 79.60 K∗
2 (x, z) = SP (z, x⊗ z ⊕ x)

K∗
2 (x, z) =

∑d
i=1 zi[xi(zi + xi)]

DS3 89.39 K∗
3 (x, z) = GN(x, z) + SP (z, x)

K∗
3 (x, z) = e−γ

∑d
i=1(xi−zi)

2
+

∑d
i=1 zixi

DS4 90.27 K∗
4 (x, z) = SP (z, x⊗ z ⊕ x)

K∗
4 (x, z) =

∑d
i=1 zi[xi(zi + xi)]

EVOLUTIONARY OPTIMISATION OF KERNEL FUNCTIONS FOR SVMS 41

4.2. Experiment 2. This experiment serves our purpose to compare the best
evolved kernels to three commonly used kernels (the sigmoid kernel, the poly-
nomial kernel and the radial basis function (RBF) kernel, respectively) and to
the genetic kernel (GK) proposed in [10].

The SVM algorithm is run by the same error penalty as that from the
evolving stage, but using the sigmoid kernel, the polynomial kernel, and the
RBF kernel, respectively. For the Sigmoid kernel the parameter values are
σ = 0.01 and r = 0, for the Polynomial kernel the degree d is set to 2 and
for the RBF kernel the bandwidth value σ is 0.01. These values have been
optimised by a parallel grid search method.

The results obtained by running the SVM with our evolved kernel (the
second column), the Polynomial kernel, the RBF kernel, the Sigmoid kernel
(the next three columns) and the evolved kernel described in [10] (the last
column), respectively, are presented in Table 5.

The accuracy rate reflects the classification performance of the SVM al-
gorithm in a confidence interval. The confidence intervals associated to the
performances of the systems must be computed in order to decide if a system
outperforms another system. If these intervals are disjoint, then one system
outperforms the other ones. A confidence interval of 95% is used in order to
perform a statistical examination of the results. Therefore, the probability
that the accuracy estimations are not in the confidence interval is 5% (see
Equation (7)).

(7) ΔI = 1.96×
√

Acc(100−Acc)
N

%,

where N represents the number of test examples. In addition, Table 5 displays
the corresponding confidence intervals (on the test set of each problem).

Table 5. The accuracy rates and their confidence intervals for
each test data set using different kernel expressions.

Dataset eK KPol KRBF KSig GK

DS1 72.43±0.50 73.40±0.49 71.28±0.50 71.28±0.50 75.62±0.48
DS2 79.60±0.45 78.19±0.47 77.66±0.47 78.72±0.46 76.00±0.48
DS3 89.39±0.28 74.24±0.39 84.47±0.33 37.12±0.44 88.25±0.29
DS4 90.27±0.27 88.11±0.29 86.49±0.31 83.78±0.34 88.11±0.29

Table 5 shows that the accuracy rates computed by our hybrid approach
are globally better than those computed by an SVM classifier that involves
the classic kernels and also than the GK method proposed in [10] (in 3 cases
out of 4). These results prove that evolving a new kernel adapted to the

42 DIOŞAN, ROGOZAN, AND PECUCHET

classification problem is more promising than computing the results by using
several well-known fixed kernels and picking the best. However, more extended
experiments are need in order to validate our hybrid approach. Furthermore,
it is clear (Table 5) that the evolved kernels perform better (from a statistically
point of view) than the simple ones (the corresponding confidence intervals are
disjointed) for three problems (out of four).

5. Related Work and Discussions

Evolutionary techniques have been used in the past in order to evolve
complex functions in different domains. For instance, the expression of the
crossover operator used by the genetic algorithms for function optimization
[7] is only an example.

Although several methods [4, 21] have been proposed for optimizing the
parameters of the kernel functions, to our knowledge, only one attempt, per-
formed by Howley and Madden [10], yields of evolving the kernel function.
The authors [10] have tried to find an optimal kernel function by using the
genetic programming technique also. There are several and important differ-
ences between their approach and the model we describe. These differences
regard: the function set, the terminal set and the Mercer conditions.

Howley and Madden have used only a few binary operators (+, −, ×),
whereas we extend the function set by adding: several unary scalar operations
(exp, sin, cos, log); several norm functions (EN, SP, GN - that transform
the �d space into an � space and create the link between the GP tree part
reserved for the �d space and the GP tree part reserved for the � space) and
several element-wise operations (⊕,�,⊗). Moreover, they have used the same
function set for both type of operations (scalar and vectorial). The model we
develop uses two different function sets: one for the scalar operations and one
for the vectorial ones.

The terminals can be either vectors, or scalar values in the model proposed
in [10]. Our approach uses only vectors as terminals in the GP tree. By
contrast a trick has been used in [10]: the model decides the type of operators
(scalar or vectorial) based on the type of arguments (if both arguments are
scalar then the function is a scalar one and if at least one operand is a vector,
then the vectorial meaning for the operator is used) - a bottom-up approach.
The current model is a top-down one: it decides the type of operands based
on the type of functions.

In the model we describe, the set of functions contains both scalar and
vector operators which are used in order to generate valid kernel expressions
(starting by the initialization stage and continuing by the crossover and muta-
tion steps); this is different to the Howley’s approach [10] were the correctness

EVOLUTIONARY OPTIMISATION OF KERNEL FUNCTIONS FOR SVMS 43

of the kernel is imposed after the construction stage. The positivity and the
symmetry of the evolved kernels learnt by our approach are verified when a
kernel is evaluated (the expressions that do not satisfy these constraints are
penalized). Unlike to this, in [10] the authors have first evaluated the kernel
encoded into a GP tree on two samples x and z. These samples have been
swapped and the kernel has been evaluated again. The dot product of these
two evaluations has been returned as the kernel output. In this manner, the
obtained kernels are symmetric, but there is no guarantee that they obey Mer-
cer’s theorem. Moreover, the dot-product operation has increased the kernel
complexity.

Comparing to the standard SVM with a fixed kernel, the hybrid model we
describe involves certainly more computations because of the additional GP
step, which is needed in order to evolve an optimal kernel function. However,
more computations are performed only for the training stage, whereas our
hybrid model may give better accuracy when classifying the unlabelled data.

6. Conclusion and Further Work

A hybrid technique for evolving kernel functions has been described in this
paper. The model has been used in order to discover and adapt (optimise) the
mathematical expressions of the kernel function involved in an SVM algorithm
used for binary classification problems.

We have performed several numerical experiments in order to compare
our evolved kernel to others kernels (human designed or not). The numerical
experiments have shown that the evolved kernels perform slightly better than
the standard kernels (the sigmoid, the polynomial and the RBF kernels) or
the genetic kernels proposed by Howley and Madden [10]. However, for a
more pertinent conclusion regarding that the proposed method is a good one,
it should be supported by a stronger statistical analysis and by a new set of
experiments (especially for large data sets).

Further work will be focused on evolving better kernel functions, by taking
into account different initialization strategies in order to improve the quality
of the selected kernels and/or by using a multiple kernel approach.

References

[1] Banzhaf, W. Introduction. Genetic Programming and Evolvable Machines 6, 1 (2006),
5–6.

[2] Boser, B. E., Guyon, I., and Vapnik, V. A training algorithm for optimal margin
classifiers. In COLT (1992), pp. 144–152.

[3] Chang, C.-C., and Lin, C.-J. LIBSVM: a library for SVM, 2001. Software available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

44 DIOŞAN, ROGOZAN, AND PECUCHET

[4] Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S. Choosing multiple
parameters for SVM. Machine Learning 46, 1/3 (2002), 131–159.

[5] Cortes, C., and Vapnik, V. Support-vector networks. Machine Learning 20 (1995),
273–297.

[6] Cristianini, N., and Shawe-Taylor, J. An Introduction to Support Vector Machines.
Cambridge University Press, 2000.

[7] Dioşan, L., and Oltean, M. Evolving the structure of the particle swarm optimization
algorithms. In EvoCOP 2006 (2006), J. Gottlieb and et al., Eds., vol. 3906 of LNCS,
Springer, pp. 25–36.

[8] Dioşan, L., Rogozan, A., and Pécuchet, J.-P. Evolving kernel functions for SVMs
by Genetic Programming. In ICMLA’07, Ohio, USA (2007).

[9] D.J. Newman, S. Hettich, C. B., and Merz, C. UCI repository of machine learning
databases, 1998.

[10] Howley, T., and Madden, M. G. The genetic kernel SVM: Description and evalua-
tion. Artif. Intell. Rev 24, 3-4 (2005), 379–395.

[11] Joachims, T. Making large–scale SVM learning practical. In Advances in Kernel Meth-
ods — Support Vector Learning (1999), B. Scholkopf, C. J. C. Burges, and A. J. Smola,
Eds., MIT Press, pp. 169–184.

[12] Koza, J. R. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, 1992.

[13] Mercer, J. Functions of positive and negative type and their connection with the
theory of integral equations. Philosophical Transactions of the Royal Society 209 (1909),
415–446.

[14] Poli, R., Langdon, W. B., and McPhee, N. F. A field guide to ge-
netic programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008.

[15] Schoelkopf, B., and Smola, A. J. Learning with Kernels. The MIT Press, 2002.
[16] Schölkopf, B. The kernel trick for distances. In NIPS (2000), T. K. Leen, T. G.

Dietterich, and V. Tresp, Eds., MIT Press, pp. 301–307.
[17] Syswerda, G. A study of reproduction in generational and steady state genetic al-

gorithms. In Proceedings of FOGA Conference (1991), G. J. E. Rawlins, Ed., Morgan
Kaufmann, pp. 94–101.

[18] Taylor, J. S., and Cristianini, N. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

[19] Vapnik, V. The Nature of Statistical Learning Theory. Springer, 1995.
[20] Vapnik, V. Statistical Learning Theory. Wiley, 1998.
[21] Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., and Vapnik,

V. Feature selection for SVMs. In NIPS (2000), T. K. Leen, T. G. Dietterich, and
V. Tresp, Eds., MIT Press, pp. 668–674.

LITIS, EA - 4108, INSA, Rouen, France and Computer Science Department,

Babeş Bolyai University, Cluj Napoca, Romania

E-mail address: lauras@cs.ubbcluj.ro

LITIS, EA - 4108, INSA, Rouen, France

E-mail address: arogozan@insa-rouen.fr

LITIS, EA - 4108, INSA, Rouen, France

E-mail address: pecuchet@insa-rouen.fr

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

EVOLVING NETWORK TOPOLOGIES FOR CELLULAR
AUTOMATA

ANCA GOG

Abstract. The problem of evolving network topologies for celular au-
tomata has been approached by means of circular evolutionary algorithms.
This application is based on Watts proposal to consider small-world topolo-
gies for CAs. He has shown that small-world networks could give a better
performance for problems like the density task, compared to the perfor-
mance obtained when considering regular lattices for CAs. The circular
evolutionary algorithm proposed in this paper has been successfully ap-
plied for evolving network topologies for the density task.

1. Introduction

A new class of evolutionary techniques called Circular Evolutionary Algo-
rithms (CEA) is proposed. The main feature of these evolutionary algorithms
is a new selection scheme according to which each individual is recombined.
The philosophy behind this new model is a gradual propagation of the fittest
genetic material into the population. This goal is achieved by considering and
interpreting both a time dimension and a space dimension for the algorithm.

CEA selection and recombination take place asynchronously, which allows
an improvement of the individuals during the process of selection and recom-
bination in one generation. The circular settlement of all the individuals from
the population according to their fitness allows us to define a new notion of
neighborhood, recombination taking place only between individuals belonging
to the same neighborhood. The problem of evolving networks topologies for
cellular automata is addressed by using the proposed model.

Numerical experiments reported in this paper are just preliminary results
referring to the performance of obtained networks. Their study and classifica-
tion is the subject of future work.

Received by the editors: May 2, 2008.
2000 Mathematics Subject Classification. 68T20, 68Q80.
1998 CR Categories and Descriptors. I.2.8 [Artificial Intelligence]: Problem solving,

Control methods, and Search – Heuristic methods; F.1.1 [Computation by Abstract
Devices]: Models of Computation – Automata.

45

46 ANCA GOG

The paper is organized as follows. The new circular search model is de-
scribed in the second section. The problem of evolving network topologies
for cellular automata and existing methods are described in the third section.
Results obtained after applying a circular evolutionary algorithm for this prob-
lem are presented in the fourth section. Conclusions are presented in the last
section of the paper.

2. Circular Search Model

A new evolutionary model is proposed in what follows. A new way of
understanding the role of the selection process is the foundation of this model.
A new population topology and an asynchronous application of the search
operators are the main features that arise from this new philosophy of select-
ing individuals for recombination. The aim of the proposed technique is to
ensure a good exploitation of the good genetic material already obtained by
the search process, but in the same time to allow the increase of diversity in
the population. This aim is achieved by transferring to all individuals from
the population genetic material that is believed to be relevant for the search
process in a step by step manner that will be exhaustively explained in what
follows.

Let us suppose that P (t) is the current population at the time step t. The
size of the population is fixed during all stages of the algorithm and is chosen
to be a square number, in order to allow a certain topology of the population.
Let n2 be the size of the population (n is an even number). The algorithm ends
after a certain number of generations, given as parameter of the algorithm.

2.1. Space Dimension. All the individuals from the population are sorted
according to their fitness relative to the problem to solve. They will be dis-
tributed over n

2 concentric circles following the next constraint: the fittest
individuals will be placed on the smallest circle, while the less fit individuals
will be placed on the larger circle. Moreover, the number of individuals placed
on circle i(i = 0, n

2−2) is 4(n−2i−1). This means that the individuals belong-
ing to the concentric circles can be easily transposed into a two-dimensional
grid. Figure 1 describes proposed topology using both concentric circles and
the corresponding two-dimensional grid.

Let us suppose that we obtain the sorted population P (t) = x1, x2, . . . , xn2 ,
where x1 is the fittest individual and xn2 is the worst individual in the popula-
tion. On the smallest circle are placed the fittest four individuals (x1, x2, x3, x4)
from the population (their order does not matter). The next circle will hold
12 individuals (x5, . . . , x16), the individuals with the next best fitness values.
The largest circle will have the less fit individuals from the population, and
their number depends on the size of the population.

EVOLVING NETWORK TOPOLOGIES FOR CELLULAR AUTOMATA 47

Figure 1. Concentric circles topology of the population and
the corresponding two-dimensional grid topology

First of all, the individuals from the smallest circle (the fittest individuals
of the population) will always be copied in the next population just as they
are. This elitist choice is very suitable especially for algorithms that are using
a relative fitness that is slightly different for each generation, because copying
the best individuals in the next generation will mean that these individuals
will be then tested again but using a different fitness function and they will
survive only if they have a very good quality in this generation as well.

Each individual from the population will get the chance of being improved
by involving it in a recombination process. The diversity will be thus increased,
because considering each individual for recombination means to use genetic
material of both very fit individuals and less fit individuals. The selection
scheme will therefore decide the second parent involved in each recombination,
and this is where the exploitation of the search space is pursued.

Therefore, for each individual except the best four that will be copied in
the next generation, the selection scheme will choose its mate in the following
way. Let us number the concentric circles on which the individuals are placed,
so that the most exterior circle will have the value 0, and the most interior
circle will have the biggest value. For a population size of n2 (n even number),
we will obtain n

2 circles, therefore the value n
2 − 1 will be assigned to the most

interior circle. For one individual belonging to circle i, i = 0, n
2 − 2, we will

always choose a mate from the circle i+1. Because of the way individuals are
placed on the circles, according to their fitness, this means that each individual
from the population will be recombined with a better individual, but still close
to it regarding the fitness value. This means that individuals from the smallest
circle, even if they are not directly involved in recombination, will be chosen
as mates for the individuals belonging to circle n

2 − 2. We therefore have a

48 ANCA GOG

so-called local selection that refers to the fact that individuals are selected
only from a certain circle.

The local selection is done by using one of the existing selection operators
like proportional selection, tournament selection and so on. A tournament
selection scheme (Dumitrescu, 2000) is considered for all the experiments per-
formed in this paper.

Once we have selected a pair of individuals, they will be recombined by
using an existing recombination scheme, depending on their encoding (Back,
1997).

2.2. Time Dimension. The entire process described before takes place asyn-
chronously, which is another distinctive and strong feature of the proposed
search scheme. Both selection and recombination are done asynchronously.
First, individuals from the circle n

2 − 2 are considered for recombination. For
each of them, an individual from the circle n

2 − 1 is chosen according to a
local selection and the two individuals will be recombined. The best offspring
obtained after recombination will be mutated and the resulting individual will
be accepted only if it has a better quality. The offspring, mutated or not, will
then replace the first parent if it has a better quality. The elitist scheme that
allows only better individuals to replace the first parents is counteracted by
the fact that all individuals from the population are involved in recombination.

From the improved individuals of the circle n
2 − 2 we will then choose

mates for individuals belonging to the circle n
2 −3, according to the same local

selection scheme. The process that results from the described scheme is a
propagation process where the good genetic material of the fittest individuals
will be first transferred to the closest fit individuals, and they will transfer
it, together with their good genetic material, to the next fit individuals, and
so on, from close to close, until the good genetic material collected from the
entire population will reach the less fit individuals from the population.

2.3. Circular Evolutionary Algorithm. The algorithm that results from
the proposed search scheme is called Circular Evolutionary Algorithm and is
described in what follows.

Circular Evolutionary Algorithm
begin

t := 0
Initialize P (t)
while (not stop-criteria) do
begin

Evaluate P (t)
CircularSort P (t)

EVOLVING NETWORK TOPOLOGIES FOR CELLULAR AUTOMATA 49

for each circle c (c := n
2 − 2, 0)

begin
for each individual i from c
begin

j :=LocalSelection(c-1)
k :=Recombination (i, j)
Mutation(k)

end
end
t := t + 1

end
end

3. Evolving Network Topologies for Cellular Automata

The density-classification task is a prototypical distributed computational
task for CAs defined as follows. We denote by ρ0 the fraction (the density) of
1s in the initial configuration. The task requires deciding whether ρ0 > 1

2 . If
so, then the CA must go to a fixed-point configuration of 1s, otherwise it must
go to a fixed-point configuration of 0s. The lattice size is chosen to be odd
in order to avoid the case ρ0 = 1

2 . Because finding the density of the initial
configuration is a global task, and CA only relies on local interactions, this
task is not trivial.

Due to the similarities between the ring lattice where each cell is linked
to its r neighbors on each side and a graph where each node is connected
to a limited number of nodes, even if not in the topological neighborhood,
Watts proposed the use of a small-world graph instead of a ring lattice for
CAs (Watts, 1999). He computed the performance of hand-constructed small-
world graphs for the density task, and he obtained performance values bigger
than 0.8, while the best performances of a cellular automaton based on a ring
lattice topology were around 0.76. In order to obtain a different topology, he
fixed the rule to a majority rule which states that a node will receive the state
of the majority of its neighbors in the graph. Therefore, the problem that
arises from Watts proposal is to evolve small-world networks topologies for
the density task of CAs.

Besides the hand-constructed small-world networks proposed in (Watts,
1999), an evolutionary technique for evolving small-world networks for the
density task has been proposed in (Tomassini, 2005). The authors used a cel-
lular evolutionary algorithm (Alba, 2002) and they obtained topologies with
a performance around 0.8, similar to the hand-constructed small-world net-
works of Watts. Moreover, this performance was obtained in most of the runs

50 ANCA GOG

of the algorithm, while a good performance of ring lattice topology is diffi-
cult to obtain. When evolving small-world networks, they have started both
from regular lattices and from random networks, and have studied the results
obtained for both cases.

4. Detecting network configuration for density task using CEA

The proposed circular search model is applied for evolving network topolo-
gies for cellular automata, for the density task. The resulting algorithm is
called Circular Evolution of Network Topologies (CENTA) and is described in
what follows.

Encoding and Population Model
A potential solution of the problem represents an undirected graph de-

scribing the network topology. A two-dimensional grid is used to encode it.
The fixed number of individuals from a population are distributed over the
two-dimensional square grid. An array of integers represents all the nodes of
the graph, and for each node we have an array of nodes connected to it.

The initial population consists of randomly generated regular lattices of
size N =149, with a radius of 3, meaning that each node is connected to
3 nodes on both sides. One node in a graph can have a maximum of max
connections, max being a parameter of the algorithm. The set of initial con-
figurations is generated anew for each generation of the algorithm.

Fitness Assignment
The fitness function is a real-valued function f : X → [0, 1] , where X de-

notes the search space of the problem. f(x) represents the fraction of correct
classifications over 100 initial configurations randomly generated but with a
uniformly distributed density (Das, 1994).

Selection Operator
For each individual belonging to circle i(i = 0, n

2 −2) a mate will be chosen
from the circle i + 1. Because of the way individuals are placed on the circles,
according to their fitness, this means that each individual from the population
will be recombined with a better individual, but still close to it regarding the
fitness value. The local selection used for choosing a mate from the circle
i + 1 is a tournament scheme with a tournament size of 2(n − 2i − 1), where
4(n − 2i − 1) represents the number of individuals that belong to the circle
i(i = 0, n

2 − 2). The selection for recombination is performed asynchronously,
starting with the individuals belonging to circle n

2 − 2 and continuing until we

EVOLVING NETWORK TOPOLOGIES FOR CELLULAR AUTOMATA 51

select mates for the individuals belonging to circle 0.

Recombination Operator
Once we have selected two individuals for recombination, a two-point

crossover is used for our experiments. We start with the recombination of
the fittest individuals from the population, thus giving them the opportunity
to improve their fitness before they will be recombined with less fit individuals.

Mutation Operator
The individual resulted after each recombination will be mutated similar

to the mutation proposed in (Tomassini, 2005), only that they consider a dif-
ferent scheme of choosing the individuals that will be subject of mutation.
Each node of a graph that represents a possible solution for the problem will
be mutated with a certain probability, parameter of the algorithm. For a node
chosen for mutation we will either add or remove a link to another randomly
chosen node, with a given probability.

Selection for Replacement and Survival
The replacement of the first parent with the best offspring obtained after

recombination and mutation takes place asynchronously, due to the asynchro-
nous selection and recombination scheme. The offspring will replace the first
parent only if it has a better fitness.

The circular evolutionary algorithm is applied for evolving network topolo-
gies for CAs, for the density task. The parameters of the algorithm are written
in Table 1.

Table 1. CENTA algorithm parameters

Population size 100
Probability of mutation 0.5
Max 30
Probability of adding a new link to
node

0.5

Number of generations 100

The algorithm successfully evolves, in most of the runs, networks with
performances around 0.8 for the density task. These results confirm the hy-
pothesis of Watts regarding the fact that network topologies seem to be a
better environment for local interactions that lead to a global behavior for
the density task. On the other hand, the results could be interpreted as an
indicator for the efficiency of the new proposed evolutionary technique.

52 ANCA GOG

Future work will investigate several static structural properties of obtained
networks, such as degree distribution, clustering coefficient and average path
length. The results will indicate the nature of evolved networks.

5. Conclusions

A new evolutionary search model has been proposed in this paper. The
main features of the proposed model are a new population topology, which is
distributed over concentric circles, according to the fitness of the individuals
and an asynchronous selection and recombination of the individuals, which
allows involving in recombination individuals that improve their quality, their
adaptation to the environment from close to close.

The algorithm is applied for evolving network topologies for cellular au-
tomata, for the density task. The results obtained have been compared with
the results reported by the authors of other techniques for these problems, and
they can be considered as a proof for the efficiency of the proposed circular
evolutionary model. The study of obtained networks will be the subject of a
future paper.

References

[1] Alba E., Giacobini M., Tomassini M., Romero S. , Comparing Synchronous and Asynchro-
nous Cellular Genetic Algorithms, J.J. Merelo et al. (eds.), Proceedings of the Parallel
Problem Solving from Nature VII, Granada (SP), 2002, LNCS 2439, p. 601-610.

[2] Back, T., Fogel, D.B., Michalewicz, Z. (Ed.), Handbook of Evolutionary Computation,
1997, Institute of Physics Publishing, Bristol and Oxford University Press, New York.

[3] Das, R., Mitchell, M., Crutchfield, J. P., A genetic algorithm discovers particle-based com-
putation in cellular automata, Parallel Problem Solving from Nature Conference (PPSN-
III), 1994, Berlin, Germany, Springer-Verlag, p. 244-253.

[4] Dumitrescu, D., Lazzerini, B., Jain, L.C, Dumitrescu, A., Evolutionary Computation,
2000, CRC Press, Boca Raton, FL.

[5] Tomassini M., Giacobini M., Darabos Ch., Evolution and Dynamics of Small-World
Cellular Automata, Complex Systems, 2005, 15(4), p. 261-284.

[6] Watts, D., Small worlds: The Dynamics of Networks between Order and Randomness,
Princeton University Press, Princeton, NJ, 1999.

Babes-Bolyai University of Cluj-Napoca, Faculty of Mathematics and Com-

puter Science, Computer Science Department

E-mail address: anca@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

VIRTUAL ORGANIZATIONS – CONCEPTUAL MODELLING

DUMITRU RĂDOIU

Abstract. Although there is a vast literature on virtual organizations
(VO), there’s little agreement on this subject from the definition to the
reference model. Explanation seems to be the lack of a consistent, easy to
operate with and largely accepted definition and the absence of a frame-
work to build useful conceptual models, based on formal theories. The
present paper, presents an axiomatic, easy to operate with VO definition,
the outline of VO concept modelling and a theorem supporting the idea
that a consistent VO conceptual model must be backed up by a non-trivial
formal theory (T). Empirically derived models – based on interpreting and
generalising available “experimental” data - might lead to valid VO models
but in the end, formalism (i.e. just formal description) cannot substitute
formal theory.

Keywords: Virtual organization, conceptual model, formalism, formal
theory

1. VO conceptual models

A VO conceptual model is a theoretical construct, an idealized logical
framework, representing VO through a set of logical and mathematical ob-
jects (e.g. axioms, formulas, functions, processes). A conceptual model is
explicitly chosen to be independent of implementation details. The value of a
solid conceptual model is in the easiness of reasoning about VOs making it an
important component of any scientific research. Reasoning on VOs with mod-
els is determined by a set of logical principles and regards a large spectre of
aspects, starting from logically describing operation functions to theoretically
evaluating hypotheses, and devising experimental procedures to test them (in-
cluding computer simulations).

Developing a conceptual model within any domain, assumes the existence
of domain ontology. By ontology we understand a consistent set of concepts
within the domain and the relationships between those concepts. In the begin-
ning of the paper we will address some general aspects regarding VO ontology.

Received by the editors: May 15, 2008.
2000 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. K.6.3 [Management of Computing and Infor-

mation Systems]: Software Management – Software process.

53

54 DUMITRU RĂDOIU

The description of a conceptual model assumes a description/modelling
language. The paper identifies several required qualities of the modelling lan-
guages, necessary to develop VO conceptual models: syntactic quality (cor-
rectness, validity, completeness with respect to the VO domain) and semantic
quality (validity and completeness). Validity regards correctness of mappings
with regard to VO. Completeness regards relevancy of mappings in solving the
problem. The above conclusions are based on an axiomatic definition of VO.

2. An axiomatic definition of VO

The Virtual Organization (VO) concept was introduced by Mowshowitz
(1986) and started to be popularized by Davidow and Malone (1992). In the
following years a very large number of papers approached this topic presenting
VO as a way to address critical issues like accessing expertise in a global
market, sharing skills and information within a network of independent entities
which present themselves as a unified actor in a joint project, reducing costs,
increasing flexibility, boosting innovation, accommodating increased demands
from employees for a better quality of life.

A major effort to clarify the concept was conducted by Kasper-Fuehrer
(2004) who reviewed a vast literature dealing with VO, written by German and
English authors. Introducing an ideal definition Kasper-Fuehrer (2004) derives
ten corollaries (natural consequences) which give the definition more accuracy
and flexibility, in the same time dramatically diminishing its operability (i.e.
easiness to operate with the definition in a formal manner).

We believe that an axiomatic definition of VO is simpler and eliminates
the necessity of corollaries. Here are the axioms.

Axiom 1. All co-operation forms (collective actions, following collective
goals, based on dependencies among members) are enabled (in some instances
created) by one or more forms of symbolic communication.

The evidence of this axiom is based on the process of converting an unse-
cure transaction into a secure collaboration (well known aspect from the game
theory). Symbolic communication is required to build the “trust mechanism”,
to convert the “unsecure game” into an “insurance game”:

Axiom 2. New forms of cooperation - enabled by new communication
technologies – are successful only if they succeed to create new forms of wealth
or add new value (e.g. info, sharing knowledge).

Axiom 3. The new forms of collective organizations may act to influence
/ further-develop the communication technology to secure their success.

The reason for introducing Axioms 2 and 3 is evident: the success of the
collective approach/action. If we accept these Axioms:

VIRTUAL ORGANIZATIONS – CONCEPTUAL MODELLING 55

• We cast a clear light on the beginnings of collective actions (from
individual action towards collective action involving complex depen-
dencies)

• We underline the effect of the information and communication tech-
nologies (ICT) in the emergence of new forms of collective action

• Anticipate the emergence of new forms of organization as an effect of
new communication technologies

In order to introduce the definition of VO, we start from one of the most
largely accepted definition of an organization:

Definition 1. An Organization (O) is a collective action among a
group of members which pursues specific collective goals, controls its perfor-
mance, and has a boundary separating it from its environment.

Definition 2. AVirtual Organization (VO) is an organization with
the following characteristics:

• spatial: operates within geographically distributed work environments
• temporal: has a limited life span, until it performs its tasks or actions
• configurational: uses information and communication technology ICT

to enable, maintain and sustain member relationships

As the term organization is used in multiple ways, it is necessary to specify
that in this paper we consider only process-related type of organizations
(organization as task or action) as opposed to functional organizations
(organizations as permanent structures) or institutional organizations (as
an actual purposeful structure within a social context)

Examples:

(1) Co-operation with the goal of creating new forms of wealth is VOs us-
ing off-shore services in software development (dedicated individuals
and/or teams belonging to different permanent organizations partici-
pate in a project)

(2) Co-operation with the goal of creating a new form of value is Open
Source movement. It represents a new form of production (peer to
peer production). E.g. Linux is world class software developed in a
virtual organization.

And here are a few observations:

• The VOs set is a subset of the Os set
• Spatial distribution condition is critical for is the reason for the man-

ifestation of virtuality within a VO
• By definition, all VOs are temporary and only exist until they perform

towards their collective goals, be it the creation of (new form of) wealth
or (a new) value

56 DUMITRU RĂDOIU

• The definition can accommodate new forms of VOs as new forms of
symbolic communication emerge (e.g. avatar face-to-face communica-
tion in virtual worlds like Second Life)

3. Some ontology aspects of VOs

As we mentioned before, conceptual modelling assumes the existence of
a consistent set of concepts within the VO domain and the relationships be-
tween those concepts. By VO ontology we understand the common vocabulary
describing the concepts, the actors and relationships.

We start with a few observations on architecture. For a significant number
of VOs the Internet is the network supporting ICT services for:

• Creating, gathering, integrating and distributing information through-
out the organization components

• Sharing (human) resources via platforms through which individuals
collaborate.

Noting that technology is just the platform over which information is dis-
tributed and resources shared, we can consider three large areas which should
addressed in VO ontology and concept modelling:

• VO Enabling Technology (the platform, e.g. applications, compo-
nents), enabling information to be created, distributed, consumed (e.g.
interoperability, standardization, security, speed)

• VO Processes Design, or how VO uses the platform (how we create,
organize, distribute and consume information, how it supports the VO
operations (procedures), and tactics (business processes)

• VO Superstructure (business level), or how we create new wealth
and/or new value (strategy, trust mechanisms, organization)

In Figure 1 a simplified business architectures is represented.
The role of each architecture level is to support the level above and in

a first approximation (“week interaction approximation”) one can develop a
theory and an “independent” model for each level considering its own role
is to support the level above. (The approximation consists in neglecting the
changes/optimisations of any supporting level, induced by the level above).
VO involves coupling at different levels and coupling assumes the existence of
models.

Based on VO goals, strategy and organization, next step would be to
select the most adequate topology of the type of VO we want to model. The
main topologies are process oriented, peer-to-peer or main contractor
topology. Topology clarifies not only at what levels the parties need to
manifest interoperability but also their major roles in the VO.

VIRTUAL ORGANIZATIONS – CONCEPTUAL MODELLING 57

Figure 1. Basic VO architecture types: financial ser-
vices, telecommunications, and manufacturing (adapted from
Radoiu, 2008)

Based on topology, next step is to identify VO life cycle functions, and
model them for each phase: creation, operation, evolution, and dissolu-
tion; emphasise on operation.

As any VO is based on interoperability, it follows that this also must
be modelled and most likely at all levels: business level (e.g. organizational
roles), business processes (e.g. sharing knowledge assets), enabling technology
(e.g. communication components).

It appears obvious that ontology descriptions at all levels must be de-
veloped and used in order to secure consistent VO concept modelling.

It also appears evident that a “complete conceptual model” will actually
consist of a collection of models developed at each architecture level, for a
specific topology and for all VO lifecycle functions.

4. Towards VO conceptual modelling

Models – for each of the levels in discussion - are developed using a mod-
elling environment. Modelling environments (platforms, languages, tools and
paradigms) are specific to each level (as we have different semantic needs at
each level, it is likely that we use different modelling languages at each archi-
tecture level). At this moment, the author is not aware of any concept model of

58 DUMITRU RĂDOIU

VOs. The explanation seems to be the substitution of the formal theory with
formalism and it is here where we would like to make some comments. Com-
ments refer to the modelling process which makes all the difference between
formalism and formal modelling. The difference between the two concepts
(formalism vs formal theory in VO modelling) has been firstly discussed by
Putnik, (2004).

The main elements of every modelling environment are: the modelling
language (L) (containing the elements with which a model can be described)
and the modelling algorithms for each step of the modelling process which
validate the outcome of the modelling process.

Advantages of using a modelling process (and we underline the word
process) are:

• One can predict the outcome (e.g. a valid and successful conceptual
model)

• The outcome of the modelling process (the conceptual model) depends
on the capability of the modelling process

• An algorithmic process enables consistent quantitative approaches (use
of metrics)

• An algorithmic modelling process lowers the risks with regard to the
value of the VO model

For virtual organizations, obviously, the modelling environment must permit
the modelling of all characteristics of a VO (e.g. spatial, temporal and con-
figurational) plus the modelling of the coupling mechanisms among parties in
a VO (having in mind the topology) and most important, the VO life cycle
functions.

In order to reveal the requirements of VO conceptual modelling we will use
the analogy between mathematical abstract models and VO concept models.

A mathematical model is an abstract model that uses mathematical
language (formal language) to describe an existing system (or a system
to be constructed) which presents knowledge of that system in usable form
(Sakharov, 2008).

A formal language is defined by an alphabet and formation rules. Syn-
tactically complex languages are defined by means of grammars or regular
expressions (Sakharov, 2008). The alphabet is a set of symbols used to build
the language. The formation rules specify which strings of symbols count as
well-formed.The well-formed strings of symbols are also called words, ex-
pressions, formulas, or terms. The formation rules are usually recursive.
Some rules postulate that such and such expressions belong to the language
in question. Some other rules establish how to build well-formed expressions
from other expressions belonging to the language.

VIRTUAL ORGANIZATIONS – CONCEPTUAL MODELLING 59

Any meaningful mathematical model is based on a theory, the theory
being the set of sentences which is closed under logical implication. One of its
useful aspects is that, given any subset of sentences {s1, s2, ..., } in the theory,
if sentence r is a logical consequence of {s1, s2, ..., }, then r must also be in
the theory (Weisstein, E. W.).

Back to VO conceptual modelling, let us define a VO conceptual model
as an abstract model that uses modelling language to describe the system.
The modelling language is described by its alphabet, syntax (grammar),
and semantics. The similarity with mathematical modelling is straightfor-
ward. Any useful VO conceptual model must be described by a theory. A
set of sentences closed under a logical implication. But, there’s at least one
more aspect.

In connection with the modelling language we have a syntax constructs
domain (D), defined as the set of all formulas which are part of the language.
We note LS the modelling language built with the syntax S over a given
alphabet. Worth mentioning here that there are two major approaches to
describe a syntax: graph grammars and meta-models (i.e. a meta-model
is the model of the syntax) (Karagiannis, 2002). As such, a language is useless
as long as we do not associate meanings to all its syntax constructs (terms,
formulas, sentences). The meaning is given by a chosen set of “meaning values”
(i.e. significance values) which are formally named the semantics domain
(V). It follows than that the semantics of a language LS describes the
significance of a modelling language by mapping (say a map a) the set of all
syntax constructs (D) to a set of significance values (V). Obviously, in our
case, the significance values must be related to the VO theory. The map a
will allocate a VO-related meaning to every syntactically correct construction
in a given language. Because of the degree of freedom in choosing the set (V),
different syntax constructs, expressed in different modelling languages, could
have the same meaning/interpretation. It follows that there’s not only one
language susceptible to describe VOs.

The map a and the domain (V) form a structure and is noted VOstructure
= (V, a));

If under a given interpretation a formula becomes true, then that in-
terpretation is a model of that formula. A sentence is called satisfiable
if there is at least one interpretation under which that sentence is true.

When applying an interpretation to a sentence the assignment of vari-
ables is irrelevant (as the sentence has no variables occurring free). Thus
one can say that a sentence is satisfiable if exists at least one structure
making the sentence true, that is, if exists at least one structure that is a
model of the sentence. As seen before, some of the formulas that constitute
a language are sentences. From all those sentences some will eventually

60 DUMITRU RĂDOIU

be satisfiable. The subset of all sentences, whose elements are satisfiable
sentences, and closed under consequence, is a Theory. Because sen-
tences are satisfied by VOstructure, the referred subset of sentences can
be designated by Theory of VOs.

Theorem 1. The condition of a given modelling language (LS) to correctly
describe a VO conceptual model is to permit the description of at least one
nontrivial theory (T) on that VO.

And here is an informal proof of this theorem. If the sentences describing
the model do not verify the axioms and are not consistent with the defini-
tions, than the model is not describing a VO. Let us assume that the axioms
are verified. Another group of sentences must completely describe the archi-
tecture, topology, operation functions, and interoperability functions. We find
ourselves in the situation where the sentences are satisfied by a VOstructure.
As the modelling sentences have to be true under the same restrictions, these
sentences can be referred as the theory of VO. Obviously, not any modelling
language (LS) fulfils the above criteria. Next to general modelling language
qualities (syntactic correctness and validity), a few other are essential: syn-
tactic completeness and semantic validity and completeness with respect to
the VO domain (i.e. to be able to describe the theory behind VO). Seman-
tic validity regards correctness of mappings with regard to VO. Completeness
regards relevancy of mappings in solving the conceptual modelling problem.

Table 1. Models classification with regard to description and ontology

Another observation is that semantic completeness requires a complete
ontology of the domain.

In the end, it is fair to ask what the benefits of VO concept modelling are.
After all, working VO models were discovered and could be perfected through
observations (e.g. analyzing and generalizing empirical data, case studies).

VIRTUAL ORGANIZATIONS – CONCEPTUAL MODELLING 61

The immediate risk is that a theoretical approach alone is likely to produce
results without practical importance. The utility of a theoretical approach is
several folds. Firstly, a formal theory approach always proves to have utility
for “engineering” tasks such as design and implementation of VOs, because it
provides the “desired efficiency and effectiveness” (Putnik 2005). Secondly, it
could be used to explain the success or failure of different VOs, their emergence
or absence in the market. Thirdly, it could help existing VOs to lower the risk
in their future development and help them better understand the mechanisms
of their informally and iteratively developed working model. And it could also
help future VOs in developing their working model. Obviously, the conditions
for VO emergence exist for some time now, but only those which were able to
develop (so far, empirically) a consistent working model, survived.

5. Comments around a simple example and conclusions

Let us take a very simple example: a VO consisting of two parties, dedi-
cated to custom software development. The theory which must be supported
by modelling language (e.g. the logic of an operation function at the busi-
ness process level) will be described at the highest level by the meta-model
which concepts and operations must be reflected by the appropriate modelling
language. The spatial distribution of VO allow us to focus only at the busi-
ness process level and ICT services level assuming that ICT infrastructure
is the Internet. At the business level, the goal is developing custom made
software applications, the strategy is to address the market needs using geo-
graphically dispersed resources, the organization consists of high level design
process undertaken by one party, low level design, development, and testing
with the other. Let us assume that the trust mechanism is contractual. The
topology is obviously of the type “main contractor”. Starting from the the-
ory describing the methodology of custom software development process, and
introducing the constraints (the process is being carried out by a distributed
organization), the modelling language for the business process level must be
able to consistently describe business processes interoperability: input, out-
put, coordination events and events notification). The modelling language
must be able to model interoperability at the ITC services level (e.g. files
synchronisation). The VO conceptual model will consist of several models:

• Operational model (formally describing the realization of the opera-
tions functions)

• Evolution model (formally describing VO growth)
• Integration models at all three levels: business level, business pro-

cesses, enabling technology (formally describing how parties will prac-
tically integrate)

62 DUMITRU RĂDOIU

Figure 2. One operation function (software development),
modelled with BPMN, for business processes level

Figure 3. One integration function (file synchronization),
modelled with UML, for two parties VO ITC services level

VIRTUAL ORGANIZATIONS – CONCEPTUAL MODELLING 63

Two of these models are depicted in Fig. 2 and 3.
Let Σ be the set of sub-processes necessary to cover the custom software

development workflow in the VO, in line with the specifications of such a
workflow. Let be Σ1 the sub-processes taking place within Lane 1 and Σ2the
sub-processes taking place within Lane 2.

Σ = Σ1U Σ2 (set of sub-processes necessary to cover the custom
software development workflow is the reunion of Σ1 and Σ2. AS All of these
sub-processes are mandatory, the interfaces between the two project lanes must
formally describe the channels for input data, output data, event notification,
and monitoring and control events.

Today “VO research area is recognized as a scientific discipline” and it is
probable that “in 2015 most enterprises will be part of some sustainable col-
laborative networks that will act as breeding environments for the formation
of dynamic virtual organizations in response to fast changing market condi-
tions”, Camarinha (2002, 2003). The drivers for this trend (Gartner, 2007)
are: maturing technology and standards (e.g. EDI, XML, GDS, CPFR, SOA,
Web services, virtualization, semantic Web (Berners-Lee, 2003)), improved
integration (integration as a service) and potential business impact.

Conceptual modelling proves its utility in the design and implementation
of VOs also helping existing VOs to lower the risk in their present operation
and future development.

References

Berners-Lee, T: Semantic Web Road map. W3C Design Issues,
http://www.w3.org/DesignIssues/Semantic.html, last change 2003/01/06

Camarinha-Matos L-M, Afsarmanesh H: A Roadmap for Strategic Research
on Virtual Organizations, in “Processes and foundations for virtual organiza-
tions”, (L.M. Camarinha-Matos, H. Afsarmanesh, Editors), Kluwer Academic
Publishers, ISBN 1-4020-7638-X, Oct 2003

Camarinha-Matos L-M, Afsarmanesh H: THINKcreative Interim Green Re-
port on New Collaborative forms and their needs, THINKcreative report,
(L.M. Camarinha-Matos, H. Afsarmanesh, Editors), Sep 2002

Davidow, W., and M. Malone: 1992. The Virtual Corporation: Structuring
and Revitalizing the Corporation for the 21st Century. New York: Harper
Collins.

Eva C. Kasper-Fuehrer and Ashkanasy, Neal M.: Int. Studies of Mgt. & Org.,
vol. 33, no. 4, Winter 2003–4, pp. 34–64.

64 DUMITRU RĂDOIU

The Gartner Scenario: Current Trends and Future Direction of the IT Indus-
try, April 22-26, 2007, San Francisco, CA

Radoiu D. (2008), Virtual Organizations in emerging3D Virtual Worlds, in
submitted to 14th International Conference on Concurrent Enterprising –
ICE2008, Lisbon, Portugal

Mowshowitz, A. 1986. “Social Dimensions of Office Automation.” In Ad-
vances in Computers, vol. 25, ed. M. Yovitz, 335–404. New York: Academic
Press.

Putnik, G. and Sousa, R. (2004). On Formal Theories for Virtual Enterprises,
in submitted to PRO-VE’04 5th IFIP Working Conference on Virtual Enter-
prises, Toulouse, France.

Putnik, G. D., Cunha, M. M., Sousa, R., Ávila, P. (2005) BM Virtual En-
terprise: A Model for Dynamics and Virtuality, in Putnik G., Cunha M. M.
(Eds.) Virtual Enterprise Integration: Technological and Organizational Per-
spectives, IDEA Group Publishing, Hershey, PA, USA, pp: 124-143

Turner, K. J., Ed. (1993). Using Formal Description Techniques: An Intro-
duction to ESTELLE, LOTOS and SDL, John Wiley & Sons.

Sakharov, A.. ”Formal Language.” From MathWorld–A Wolfram Web Re-
source, created by Eric W. Weisstein. http://mathworld.wolfram.com/ For-
malLanguage.html (2008/20/03)

Weisstein, E. W. ”Theory.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/Theory.html (2008/20/03)

Petru Maior University, 1 Nicolae Iorga St., Târgu Mureş, Romania

E-mail address: Dumitru.Radoiu@Sysgenic.com

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

IMPROVING THE ACCURACY OF DIGITAL TERRAIN
MODELS

GABRIELA DROJ

Abstract. The change from paper maps to GIS, in various kinds of ge-
ographical data analysis and applications, has made it easy to use the
same spatial data for different applications and also for combining several
layers into quite complex spatial models, including the three-dimensional
reference space (surface), known as Digital Terrain Model (DTM). The ob-
jectives of this study are: (1) to compare the different algorithms involved
in producing a DTM, (2) to establish the factors which affect the accuracy
of the DTM and (3) to improve the quality of the generated DTM.

1. Introduction

The change from paper maps to digital data, in various kinds of geograph-
ical data analysis and applications, has made easy to use the same spatial
data for different applications and also for combining several layers into quite
complex spatial models.

Using GIS technology, contemporary maps have taken radical new forms
of display beyond the usual 2D planimetric paper map. Today, it is expected
to be able to drape spatial information on a 3D view of the terrain. The 3D
view of the terrain is called Digital Terrain Model (DTM) or Digital Elevation
Model (DEM) [2].

The digital terrain models are frequently used to take important decisions
like to answer hydrological questions concerning flooding. In order to judge
these decisions the quality of DTM must be known. The quality of DTM
is, unfortunately, rarely checked. While the development of GIS advances,
DTM research has so far been neglected. The objectives of this study are:
(1) to compare the different algorithms involved in producing a DTM, (2) to
establish the factors which affect the accuracy of the DTM and (3) to improve
the quality of the generated DTM.

Received by the editors: June 10, 2007.
2000 Mathematics Subject Classification. 65D05, 65D07, 68U05.
1998 CR Categories and Descriptors. I.3.5 [Computational Geometry and Ob-

ject Modeling]: Subtopic – Curve, surface, solid, and object representations I.3.7 [Three-
Dimensional Graphics and Realism]: Subtopic – Visible line/surface algorithms.

65

66 GABRIELA DROJ

2. Digital Terrain Modeling

A digital terrain model (DTM) is a digital representation of ground surface,
topography or terrain. It is also known as digital elevation model (DEM).
DTM can be represented as a raster (a grid of squares), as contour lines or as
a triangular irregular network (TIN) [3, 4, 9].

Two methods are frequently used to obtaining digital terrain model: car-
tographic digitizing, or automatic measurements [6]. The cartographic digi-
tizing method is widely used because topographic maps are usually available.
The input data form the basis for the computation of the DTM, consisting
of points. The computation itself consists in spatial interpolation algorithms.
Automatic measurement techniques like photogrammetry and airborne laser
scanning, output bulk points, with a high density. The DTM is realized in the
post processing phase usually by creating the TIN or by interpolation.

2.1. Interpolation. The current research and industrial projects in GIS re-
quire higher standards for the accuracy of spatial data. The data in geograph-
ical informational systems (GIS) are usually collected as points, where a point
is considered a triplet (x,y,z), where x and y are the coordinates of the point
and z is the specific information. This specific information can be for exam-
ple: the altitude level in the point (x, y), the quantity of precipitations, the
level of pollution, type of soil, socio-economic parameters etc.. The mapping
and spatial analysis often requires converting this type of field measurements
into continuous space. Interpolation is one of the frequently used methods to
transform field data, especially the point samples into a continuous form such
as grid or raster data formats.

There are several interpolation methods frequently used in GIS. The fol-
lowing eight widely used methods are compared and studied in this paper.
These methods are Inverse distance weighted (IDW), Spline Biquadratic inter-
polation, Spline Bicubic interpolation, B-spline interpolation, Nearest neigh-
bors - Voronoi diagrams , Delaunay Triangulation, Quadratic Shepard inter-
polation, Kriging interpolation [1, 5, 7].

2.2. Quality of surface. Measurement of errors for the results is often im-
possible because the true value for every geographic feature or phenomenon
represented in this geographic data set is rarely determinable. Therefore the
uncertainty, instead of error, should be used to describe the quality of an in-
terpolation result. Quantifying uncertainty in these cases requires comparison
of the known data with the created surface [10].

To analyze the pattern of deviation between two sets of elevation data,
conventional ways are to yield statistical expressions of the accuracy, such as
the root mean square error, standard deviation, mean, variance, coefficient of

IMPROVING THE ACCURACY OF DIGITAL TERRAIN MODELS 67

variation. In fact, all statistical measures that are effective for describing a
frequency distribution, including central tendency and dispersion measures,
may be used, as long as various assumptions for specific methods are satisfied
[6, 10].

For the evaluation of DTM the most widely used measure, usually the
only one, is the well known Root Mean Square Error (RMSE). Actually, it
measures the dispersion of the frequency distribution of deviations between
the original elevation data and the DTM data, mathematically expressed as:

RMSE =

√√√√ 1
n

n∑
i=1

(zd,i − zr,i)
2

where: Zd,i is the ith elevation value measured on the DTM surface; Zr,i is the
corresponding original elevation; n is the number of elevation points checked.

It’s important to mention that for an accurate evaluation, is necessary
to evaluate the surface by using an independent set of data. In this case
the RMSE mirrors the quality of the surface but for a correct evaluation
we recommend to analyze at least one more statistical index like standard
deviation or Median absolute deviation.

3. Experiments with real-world data

DTMs are the most popular results of interpolation. In the following, we
will test different methods and algorithms for creation of DTM in order to
compare the different algorithms involved in producing a DTM, to establish
the factors which affect the accuracy of the DTM, and to determine how to
improve the quality of the generated DTM. To test and compare the methods
with real data we have selected an area from north hills of Oradea municipality.

Figure 1. The Oradea 3D Model

68 GABRIELA DROJ

For the first DTM we used photogrammetric measurement of spot eleva-
tions from orthorectified airborne image of the area. This is the fastest way
of obtaining the digital elevation model. In the case of collecting data with
close-range photogrammetry or airborne laser scan the result consists in a high
density of points with three coordinates (x,y,z). By computing the TIN model
of these points we obtain fast a DTM. The TIN of the area was generated using
ARCGIS Desktop 9.1. In the figure 1 we represented the 3D model created.

This model will consider the reference for testing and evaluating the most
popular interpolation algorithms used for DTM creation. These methods
are Inverse distance weighted (IDW), Spline Biquadratic interpolation, Spline
Bicubic interpolation, B-spline interpolation, Nearest neighbors - Voronoi dia-
grams, Delaunay Triangulation, Quadratic Shepard interpolation and Kriging
interpolation.

The comparisons of these algorithms were made by analyzing their results.
The evaluation of the created surfaces was made by direct observation: with
visual comparisons of the models using the spot image as reference and by
using statistical parameters.

The first step was to create a regular grid with the step of 500 m, for a
total of 30 points. On this set of points we tested the algorithms specified
before. In Figure2 we represented the results of these algorithms.

In the second experiment, we have created a regular grid with the step of
250 m, for a total of 121 points. On this sets of points we tested the algorithms
specified before. In Figure 3 we represented the results of these algorithms.

The visual comparisons show a high similarity with the reference for the
Delaunay Triangulation and Shepard interpolation in both test cases.

In order to evaluate the surfaces generated by using statistical methods
it is necessary to test the quality of the surfaces with an independent set of
data, which were not considered in the interpolation.

In the following we will evaluate the surfaces generated by using a random
set of points for which was determined the real value of the altitude. For this
independent random set we have determined the following statistical param-
eters: variation, median absolute deviation, standard deviation and the root
mean square error. The determined values are presented in the table below:

4. Results of test cases

The results obtained in the both cases show that the most accurate sur-
faces are generated, for the first case (grid of 500 m), by Kriging, Shepard
and B-spline algorithms and for the second case (grid of 250m) by Delauney
triangulation followed by Shepard and Kriging.

IMPROVING THE ACCURACY OF DIGITAL TERRAIN MODELS 69

Figure 2. DTM model generated with 30 known points

If we evaluate all the statistical data we notice that the Delauney triangula-
tion represents the optimal method. Similar results can be obtained by Kriging
and Shepard interpolation. Even these methods are sometimes more efficient
than the Delauney triangulation. Nevertheless, the Delauney algorithm is rec-
ommended because it needs less computing time and it is not changing the
original values of the points. The b-Spline algorithm gives also a good result
but in this case the computing time is much higher and it is smoothing the
surface, fact which is making this method inadequate for surfaces with a high
altitude difference.

70 GABRIELA DROJ

Figure 3. DTM model generated with 121 known points

Many studies have examined the DTMs generated by interpolation but
the earlier studies compare fewer methods, usually by testing a strong algo-
rithm with a fast one or by testing one algorithm with two or three different
point density. Some examples of studies are: a comparison between IDW and
Voronoi [4], IDW vs. Kriging [11], and between IDW, Kriging, Thiessen poly-
gons and TIN [8] and IDW, minimum curvature, modified Shepard and TIN
[10]. Except the study made by Weng, all of them are using only one set of
input data.

Our results regarding the accuracy of surfaces created by interpolation are
similar with the earlier studies. By testing a higher number of methods and in

IMPROVING THE ACCURACY OF DIGITAL TERRAIN MODELS 71

Methods Vari-
ation
250

Vari-
ation
500

Median
abso-
lute
devi-
ation
250

Median
abso-
lute
devi-
ation
500

Stan-
dard
devi-
ation
250

Stan-
dard
devi-
ation
500

RMSE
250

RMSE
500

IDW 231 167 11.6 10.17 15.21 12.29 13.48 10.93
Bi-
quadratic

390 426 16.17 16.56 19.75 20.64 15.35 13.84

Bi-
cubic

947 1044 26.53 26 30.77 32 19.14 17.14

B-spline 166.2 145 9.67 9.9 12.89 12 12.54 10.37
Voronoi 246 94.5 11.38 7.3 15.71 9.75 13.79 9.27
Delaunay 218 36.63 10.85 3.41 14.78 6.05 13.34 7.99
Shepard 164 71.78 9.56 6.40 12.81 8.47 11.97 8.49
Kriging 160.06 78.97 9.74 6.81 12.65 8.88 11.75 8.94

Table 1. The statistics for all the created surfaces,based on a
set of random control points

two different cases we demonstrated that DTM accuracy can vary to a certain
degree with different interpolation algorithms and interpolation parameters.

5. Conclusion

In this paper we compared the most popular algorithms involved in pro-
ducing a DTM, in order to establish the main factors which affect the accuracy
of the DTM and to improve the quality of the generated DTM.

The performance of eight methods, in two different cases, was evaluated in
this paper, based on the accuracy of the generated surface. The first conclusion
which is pointed up by the values presented in table 1 and by the analysis of
the visual results, in the both cases, shows that input data form the basis
for the computation of the DTM. The density of the known points is a more
important factor in increasing DTM quality than the algorithm used in surface
creation.

A second conclusion is that there is no optimal algorithm for any situation,
the results given by different computational method are influenced by more
factors like: the conformation of the field, the density of the initial points, the
quality of the known values and nevertheless by algorithm used.

The last conclusion is that, we can improve the quality of the DTM by
using the Delauney algorithm and a high density of known points. Regarding

72 GABRIELA DROJ

the way of computing for Delaunay triangulation, it is necessary to have at
least 3 points for each hill or valley.

References

[1] M. R. Asim, M. Ghulam, K. Brodlie, “Constrained Visualization of 2D
Positive Data using Modified Quadratic Shepard Method,” WSCG’2004,
Plzen, Czech Republic.

[2] J. K. Berry and Associates “The GIS Primer - An Introduction to
Geographic Information Systems,” http://www.innovativegis.com/basis/,
May 2006.

[3] L. De Floriani, E. Puppo, P. Magillo “Application of Computational Geom-
etry to Geographic Informational Systems,” Handbook of Computational
Geometry, 1999 Elsevier Science, pp. 333-388.

[4] Chongjiang Du “An Interpolation Method for Grid-Based Terrain Model-
ing,” The Computer Journal,vol.39, nr. 10, 1996

[5] ESRI. Environmental Science Research Institute “Arc/Info 8.0.1,” ESRI,
Inc. 1999.

[6] W. Karel, N. Pfeifer, C. Briese “ DTM Quality Assessment,” ISPRS Tech-
nical Commission II Symposium , 2006 XXXVI/2, pp. 7-12.

[7] R. T. Trambitas “Analiza numerica. Note de curs,
http://math.ubbcluj.ro/ tradu/narom.html, 2003

[8] P. Siska, I. Hung “Assessment of Kriging Accuracy in the GIS Environ-
ment,” Annual ESRI International User Conference, San Diego, CA, 2001.

[9] M. van Kreveld “ Algorithms for Triangulated Terrains,” Conference on
Current Trends in Theory and Practice of Informatics, 1997.

[10] Qihao Weng, “Quantifying Uncertainty of Digital Elevation Model,”
http://isu.indstate.edu/qweng, December 2006.

[11] Y. Ziary, H. Safari, “To Compare Two Interpolation Methods: IDW,
KRIGING for Providing Properties (Area) Surface Interpolation Map
Land Price,” FIG Working Week, 2007

University of Oradea, Department of Geodesy and Topography

E-mail address: gaby@oradea.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

MINIMUM FLOW ALGORITHMS. DYNAMIC TREE
IMPLEMENTATIONS

ELEONOR CIUREA, OANA GEORGESCU, AND MIHAI IOLU

Abstract. We present augmenting path algorithms for minimum flows

with dynamic tree implementations. The time bounds for augmenting

path for minimum flows automatically improve when the algorithms are

implemented with dynamic tree.

1. Introduction

The computation of a maximum flow in a graph has been an important
and well studied problem, both in the fields of computer science and operations
research. Many efficient algorithms have been developed to solve this problem,
see, e.g., [1], [3]. Sleator and Tarjan [7] developed the dynamic tree data
structure and used it to improve the worst-case complexity of Dinic’s algorithm
from O(n2m) to O(nmlogn). Since then, researchers have used this data
structure on many occasions to improve the performance of a range of network
flow algorithms. Using the dynamic tree data structure, Goldberg and Tarjan
[6] improved the complexity of the FIFO preflow-push algorithm from O(n3)
to O(nmlog(n2/m)), and Ahuja, Orlin and Tarjan [2] improved the complexity
of the excess scalling algorithm and several of its variants.

The computation of a minimum flow in a network has been investigated by
Ciurea and Ciupala [4]. The algorithms for minimum flows with dynamic tree
implementations were not treated. In this paper we present the augmenting
path algorithms for minimum flows with dynamic tree implementations.

In the presentation to follow, we assume familiarity with flow problems
and we omit many details. The reader interested in further details is urged
to consult the books [1, 3] for maximum flow problem and the paper [4] for
minimum flow problem.

Received by the editors: May 1, 2008.

2000 Mathematics Subject Classification. 90B10, 90C35, 05C35, 68R10.
1998 CR Categories and Descriptors. code G.2.2 [Graph Theory]: Subtopic – Network

problems .

73

74 ELEONOR CIUREA, OANA GEORGESCU, AND MIHAI IOLU

2. Terminology and Preliminaries

We consider a capacitated network G = (N, A, b, c, s, t) with a nonnegative
capacity c(x, y) and with a nonnegative lower bound l(x, y) associated with
each arc (x, y) ∈ A. We distinguish two special nodes in the network G: a
source node s and a sink node t.

For a given pair of not necessarily disjoint subset X, Y of the nodes set N

of a network we use the notation:

(X, Y) = {(x, y)|(x, y) ∈ A, x ∈ X, y ∈ Y }
and for a given function f on arcs set A we use the notation:

f(X,Y) =
∑

(X,Y)

f(x, y)

A flow is a function f : A → R+, satisfying the next conditions:

f(x, N)− f(N, x) =

⎧⎨
⎩

v, x = s

0, x �= s, t

−v, x = t

(2.1a)

l(x, y) ≤ f(x, y) ≤ c(x, y),∀(x, y) ∈ A(2.1b)

for some v. We refer to v as the value of the flow f . The maximum (minimum)
flow problem is to determine a flow f̃(f̂) for which v is maximized (minimized).
A cut is a partition of the node set N into two subset S and T = N − S; we
represent this cut using the notation [S, T]. We refer to a cut [S, T] as a s− t

cut if s ∈ S and t ∈ T . We refer to an arc (x, y) with x ∈ S and y ∈ T as a
forward arc of the cut and an arc (x, y) with x ∈ T and y ∈ S as a backward
arc of the cut. Let (S, T) denote the set of forward arcs in the cut and let
(T, S) denote the backward arcs.

For the maximum flow problem we define the capacity c̃[S, T] of a s − t

cut [S, T] as:

(2.2) c̃[S, T] = c(S, T)− l(T, S)

and for the minimum flow problem, we define the capacity ĉ[S, T] of a s − t

cut [S,T] as:

(2.3) ĉ[S, T] = l(S, T)− c(T, S)

We refer to a s − t cut where capacity c̃[S, T] (capacity ĉ[S, T]) is the
minimum (maximum) among all s− t cuts as a minimum (maximum) cut.

The maximum (minimum) flow problem in a network G = (N, A, l, c, s, t)
can be solved in two phases:

MINIMUM FLOW ALGORITHMS. DYNAMIC TREE IMPLEMENTATIONS 75

(P1) establishing a feasible flow f , if it exists;
(P2) from a given feasible flow f , establishing the maximum flow f̃

(minimum flow f̂)

Theorem 2.1. Let G = (N, A, l, c, s, t) be a network, [S, T] a s− t cut and f

a feasible flow with value v. Then

v = f [S, T] = f(S, T)− f(T, S)(2.4a)

and therefore, in particular,

ĉ[S, T] ≤ v ≤ c̃[S, T](2.4b)

Theorem 2.2. Let G = (N, A, l, c, s, t) be a network, [S̃, T̃] a minimum s− t

cut and [Ŝ, T̂] a maximum s− t cut. Denote the values of a maximum flow f̃

and a minimum flow f̂ by ṽ and v̂, respectively. Then

ṽ = c̃[S̃, T̃](2.5a)

and

v̂ = ĉ[Ŝ, T̂](2.5b)

By convention, if (x, y) ∈ A and (y, x) /∈ A then we add arc (y, x) to the set
of arcs A and we set l(y, x) = 0 and c(y, x) = 0. For the maximum (minimum)
flow problem, the residual capacity r̃(x, y)(r̂(x, y)) of any arc (x, y) ∈ A, with
respect to a given flow f , is given by r̃(x, y) = c(x, y)−f(x, y)+f(y, x)−l(y, x)
(r̂(x, y) = c(y, x) − f(y, x) + f(x, y) − l(x, y)). The network G̃(f) = (N, Â)
(Ĝ(f) = (N, Â)) consisting only of the arcs with r̃(x, y) > 0 (r̂(x, y) > 0)
is referred to as the residual network with respect to flow f for maximum
(minimum) flow problem.

There are two approaches for solving maximum flow problem [1]:

(1̃) using augmenting directed path algorithms from source node s to sink
node t in residual network G̃(f);

(2̃) using preflow-push algorithms starting from source node s in residual
network G̃(f).

There are three approaches for solving minimum flow problem [4]:

(1̂) using decreasing directed path algorithms from source node s to sink
node t in residual network Ĝ(f);

(2̂) using preflow-pull algorithms starting from sink node t in residual
network Ĝ(f);

76 ELEONOR CIUREA, OANA GEORGESCU, AND MIHAI IOLU

(3̂) using augmenting directed path algorithms from sink node t to source
node s or using preflow-push algorithms starting from sink node t in
residual network G̃(f).
In this paper we present the augmenting directed path algorithms from

sink node t to source nodes s with dynamic tree implementations for solving
minimum flow problems.

All the algorithms from Table 2.1 are augmenting path algorithms, i.e.
algorithms which determine augmenting directed path from source node s to
sink node t (by different rules) in residual network G̃(f) and then augment
flows along these paths.

We have n = |N |, m = |A|, c = max{c(x, y)|(x, y) ∈ A}.

Augmenting path algorithms Running time
General augmenting path algorithm O(nmc)
Ford-Fulkerson labelling algorithm O(nmc)
Gabow bit scaling algorithm O(nmlog(c))
Ahuja-Orlin maximum scaling algorithm O(nmlog(c))
Edmonds-Karp shortest path algorithm O(nm2)
Ahuja-Orlin shortest path algorithm O(n2m)
Dinic layered networks algorithm O(n2m)
Ahuja-Orlin layered networks algorithm

Table 2.1. Running times for augmenting path algorithms

Actually, any augmenting path algorithm terminates with optimal residual
capacities. From these residual capacities we can determine a maximum flow
by following expression:

f̃(x, y) = l(x, y) + max{0, c(x, y)− r̃(x, y)− l(x, y)}

3. Augmenting path algorithms for minimum flows. Dynamic tree

implementations

A dynamic tree is an important data structure that researchers have used
extensively to improve the worst-case complexity of several network algo-
rithms. In this section we describe the use of this data structure for aug-
menting direct path algorithms from sink node t to source node s.

The dynamic tree data structure maintains a collection T of node-disjoint
rooted trees, each arc with an associated value. Each rooted tree is a directed
in-tree with a unique root. Each node x (except the root node) has a unique

MINIMUM FLOW ALGORITHMS. DYNAMIC TREE IMPLEMENTATIONS 77

predecessor, which is the next node on the unique path in the tree from that
node to the root. We store the predecessor of node x using a predecessor index
p(x). If y = p(x), we say that node y is the predecessor of node x and node x is
a successor of node y. These predecessor indices uniquely define a rooted tree
and also allow us to trace out the unique direct path from any node back to
the root. The descendants of a node x consist of the node itself, its successors,
successors of its successors and so on. We say that a node is an ancestor of all
of its descendants. Notice that, according to our definitions, each node is its
own ancestor and descendant.

This data structure supports the six operations obtained by performing
the following six procedures:
ROOT (x): finds the root of the tree containing node x;

V ALUE(x): finds the value of the tree arc leaving node x;

if node x is a root node, then it returns the value ∞;

ANCES(x): finds the ancestor u of x with the minimum value V ALUE(u);

in case of a tie, chooses the node u closest to the tree root;

CHANGE(x, w): adds a real number w to the value of every arc along the directed path from node

x to ROOT (x);

LINK(x, y, w): combines the tree containing tree root x and tree containing node y the predecessor

of node x and giving arc (x, y) the value w;

DELET (x): break the tree containing node x into two trees by deleting the arc joining node x to

its predecessor; we perform this operation when x is not a tree root;

The following important result lies at the heart of the efficiency of the
dynamic tree data structure[1].

Theorem 3.1. If q is the maximum number of nodes in any tree, a sequence of
k tree operations, starting with an initial collection of singleton trees, requires
a total of O(klog(k + q)) time.

The dynamic tree implementation stores the values of tree only implicitly.
Storing the values implicitly allows us to update the values in only O(logq)
time.

Before describing the augmenting directed path algorithms for sink node t

to source node s with dynamic tree implementation for minimum flow problem,
we introduce some definitions. In the residual network G̃(f), the distance
function with respect to a given flow f is a function d̃′ : N → N from the set
of nodes N to the nonnegative integers N . We say that a distance function d̃′

is valid if it satisfies the following conditions:

d̃′(s) = 0(3.1a)

d̃′ ≤ d̃′(y) + 1 for every arc (x, y) ∈ Ã(3.1b)

78 ELEONOR CIUREA, OANA GEORGESCU, AND MIHAI IOLU

We refer to d̃′ as the distance label of node x. We say that distance labels
are exact if for each node x, d̃′(x) equals the length of the shortest directed path
from node x to source node s in the residual network G̃(f). If d̃′(x) = d̃′(y)+1
we refer to arc (x, y) as an admissible arc, otherwise inadmissible. We refer
to a directed path from sink node t to source node s consisting entirely of
admissible arcs as an admissible directed path.

The following results are very important:

Theorem 3.2. An admissible directed path in the residual network G̃(f) is a
shortest directed path from the sink node t to the source node s.

Theorem 3.3. If d̃′(t) ≥ n, the residual network G̃(f) contains no directed
path from the sink node t to the source node s.

These theorems can be proved in a manner similar to the proof of distance
function d̃ for maximum flow problem [1] or similar to the proof of distance
function d̂ for minimum flow problem [4].

We can determine exact distance labels d̃′(x) for all nodes in O(m) time
by performing a backward breadth first search of the residual network G̃(f)
from node source s to node sink t.

How we might use the dynamic tree data structure to improve the com-
putational performance of augmenting directed path algorithms for sink node
t to source node s? Let us use the variant of Ahuja-Orlin shortest path al-
gorithm as an illustration. The following basic idea underlies the algorithmic
speed-up. In the dynamic tree implementation, each arc in the rooted tree is
an admissible arc. The value of an arc is its residual capacity.

Figures 3.1 and 3.2 give a formal statement of the algorithm.
The first two procedures, TADV and TRET, are straight forward, but the

TAUG procedure requires some explanation. If node u is an ancestor of sink
node t with the minimum value of V ALUE(u) and among such nodes in the
directed path, it is closest to the source node s, then value V ALUE(u) gives
the residual capacity of the augmenting path.

The procedure CHANGE(t,−w) implicitly updates the residual capaci-
ties of all the arcs in the augmenting directed path. This augmentation might
cause the capacity of move than one arc in the directed path to become zero.
The WHILE loop identifies all such arcs, one by one and deletes them from
the collection of rooted trees T .

Theorem 3.4. The TAP algorithm correctly computes a minimum flow.

MINIMUM FLOW ALGORITHMS. DYNAMIC TREE IMPLEMENTATIONS 79

(1) ALGORITHM TAP;

(2) BEGIN

(3) let f be a feasible flow in network G;

(4) determine the residual network G̃(f);

(5) compute the exact distance labels d̃′(x) in G̃(f);

(6) let T̃ be the collection of all singleton nodes;

(7) x:=t;

(8) WHILE d̃′(t) < n DO

(9) BEGIN

(10) IF exists admissibile arc (x,y) in G̃(f)

(11) THEN TADV(x)

(12) ELSE TRET(x);

(13) IF x=s

(14) THEN TAUG;

(15) END;

(16) END.

Figure 3.1. Dynamic tree implementation for the variant of
Ahuja-Orlin shortest path algorithm.

Proof. The TAP algorithm is same as the variant of Ahuja-Orlin short-
est path algorithm except that it performs the procedures TADV, TRET and
TAUG differently using trees. Notice that, knowing a feasible flow, we deter-
mine a minimum flow from the source node s to the sink node t by establishing
a maximum flow from the sink node t to the source node s [4].

Theorem 3.5. The TAP algorithm solves the minimum flow problem in
O(nmlogn) time.

Proof. Using simple augments, we can show that the algorithm performs
each of the six tree operations O(nm) times. It performs each tree operations
on a tree of maximum size n. The use of Theorem 3.1 establishes the result.

4. Example

Consider the network G = (N, A, l, f, c, s, t) given in figure 4.1 with s = 1
and t = 4, which shows the lower bounds, feasible flows and capacities next to
the arcs. The residual network G̃(f) is shown in figure 4.2, which represents
the distance labels next to the nodes and residual capacities next to the arcs.

Figure 4.3 shows the collection of singleton nodes T̃ . The algorithm starts
with the singleton tree containing only the sink node 4. Suppose that algo-
rithm selects admissible arc (4, 2) and it performs the procedure TADV (x)
for x = 4, x = 2. The algorithm obtains a rooted tree that contains both the
sink and source nodes (see figure 4.4).

80 ELEONOR CIUREA, OANA GEORGESCU, AND MIHAI IOLU

(1) PROCEDURE TADV(x);

(2) BEGIN

(3) LINK(x,y,r̃(x, y));

(4) x:=ROOT(y);

(5) END;

(1) PROCEDURE TRET(x);

(2) BEGIN

(3) d̃′(x) := min{d̃′(y) + 1|(x, y) ∈ Ã};
(4) FOR (z, x) ∈ T̃ DO

(5) DELET(z);

(6) x:=ROOT(t);

(7) END;

(1) PROCEDURE TAUG;

(2) BEGIN

(3) u:=ANCES(t);

(4) w:=VALUE(u);

(5) CHANGE(t,-w);

(6) WHILE VALUE(u)=0 DO

(7) BEGIN

(8) DELET(u);

(9) u:=ANCES(t);

(10) END;

(11) x:=ROOT(t);

(12) update the residual network G̃(f);

(13) END;

Figure 3.2. Procedures of TAP algorithm

Figure 4.1 Figure 4.2

The procedure TAUG determines the collection T̃ of node-disjoint rooted
trees from figure 4.5, x = 2 and residual network G̃(f) from figure 4.6. But
node 2 has no outgoing admissible arc; so the algorithm performs the procedure
TRET (2), which increases the distance label of node 2 to 2 (d̃′ = (0, 2, 1, 2)),
determines the rooted trees T̃ from figure 4.3 and x = 4.

MINIMUM FLOW ALGORITHMS. DYNAMIC TREE IMPLEMENTATIONS 81

Figure 4.3 Figure 4.4

Figure 4.5 Figure 4.6

Figure 4.7 shows the last residual network G̃(f) and figure 4.8 shows the
lower bounds, minimum flows and capacities next to the arcs.

Figure 4.7 Figure 4.8

References

[1] R. Ahuja, T. Magnati and J. Orlin, Network Flows. Theory, algorithms and applications,

Prentice Hall Inc., Englewood Cliffs, NJ, 1993.

[2] R. Ahuja, J. Orlin and R. Tarjan, Improved time bounds for the maximum flow problem,

SIAM Journal on Computing, 18(5) (1989), pp. 939-954.

82 ELEONOR CIUREA, OANA GEORGESCU, AND MIHAI IOLU

[3] J. Bang-Jensen, G. Gutin, Digraph: Theory, Algorithms and Applications, Springer-

Verlag London Limited, 2001.

[4] E. Ciurea, L. Ciupala, Sequential and parallel algorithms for minimum flow, Journal of

Applied Mathematics and Computing, 15 1-2 (2004), pp. 53-75.

[5] E. Ciurea, O. Georgescu, Minimum flows in unit capacity networks, Analele Universitatii

Bucuresti, XLV (2006), pp. 11-20.

[6] A. Goldberg, R. Tarjan, A new approach to the maximum flow problem, Journal of

ACM, 35 (1988), pp. 921-940.

[7] D. Sleator, R. Tarjan, A data structure for dynamic trees, Journal of Computer and

System Sciences, 24 (1983), pp. 362-391.

Department of Computer Science, Faculty of Mathematics and Informatics,

Transilvania University of Braşov, Str. Iuliu Maniu nr. 50, 500091, Braşov RO

E-mail address: {e.ciurea, o.georgescu}@unitbv.ro, mihaiiolu@yahoo.com

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

SIGNEDINTERSECTION - A NEW ALGORITHM FOR
FINDING THE INTERSECTION OF TWO SIMPLE

POLYGONS

ANDREEA SABAU

Abstract. The operation of determining the intersection of two poly-
gons is one of the most important operations of computational geometry.
This paper presents a new algorithm called SignedIntersection which
founds the intersection of two simple polygons, convex or concave, without
holes, in two steps. The first step is using a sweep line in order to find the
intersection points and segments that form the polygons’ intersection. This
data is enriched with additional values that indicate the way the sweep line
traverse the segments, if the vertexes are given in counter-clockwise order.
Such an additional value is a sign, positive or negative. The final step
consists in building the result using the data determined by the previous
step. The result of the intersection of two (possible) non-convex polygons
may be empty or may consist of one or more polygons, convex or concave.

1. Introduction

Determining the intersection of two polygons (in the 2D space) is one of
the basic operations of the computational geometry. This operation is usually
used within spatial data systems (like GIS), CAD and computer graphics.

The algorithms that determine the intersection of two polygons usually
receive as input data two convex polygons [4, 6], or two polygons such as
at least one of them is not convex (it is concave) [2, 3]. More, there are
also algorithms that can handle polygons which may have holes [8]. The
algorithms from the first category are easier to implement, based on simpler
computations. The one presented in [6] is based on computing the convex hull
of the two input polygons. The convex hull of the two polygons contains two
segments that do not belong to any of the two polygons; starting with one of
them, the vertexes (and the edges) of the polygons are traversed toward the
other convex hull’s considered segment in order to determine the intersection

Received by the editors: May 1, 2008.
2000 Mathematics Subject Classification. 68U05.
1998 CR Categories and Descriptors. I.3.5. [Computing Methodologies]: Computer

Graphics – Computational Geometry and Object Modeling .

83

84 ANDREEA SABAU

(which is also a convex polygon). Some algorithms belonging to the second
category are splitting the input polygons into convex parts and apply a method
for convex polygons [1, 7] (usually - trapezoids), followed by the reunion of
the intermediate results. The paper [8] describes an algorithm that runs in
three steps in order to find the intersection of two polygons, possibly with
holes. First, the intersection points of the two input polygons are found using
a sweep line. Some navigational data (numerical data) is associated with each
intersection point during the second step. The last part of the algorithm
determines the intersection by traversing the polygon edges and intersection
points.

This paper presents another algorithm that determines the intersection
of two simple (non-self-intersecting) polygons, convex or concave. The next
section presents the data structures used by the algorithm and the algorithm
itself.

2. The SIGNEDINTERSECTION Algorithm

An algorithm called SignedIntersection that builds the intersection
of two simple, convex or concave, polygons is presented in this section. This
algorithm is original, according to the author’s knowledge, in the way it pro-
cesses and analyzes data, the used data structures, and the manner in which
the result is determined. This algorithm was implemented in order to be used
within the 3SST relational data model [5]. Therefore this algorithm works
with data stored within relations on a Microsoft SQL-Server [5] and it is writ-
ten in the Transact-SQL language.

The algorithm’s input data is given by two simple polygons, convex or
concave. According to the 3SST relational data model, a polygon P is repre-
sented by the list of its vertexes, given in the counter-clockwise order.

Let R and Q be the two polygons considered as input data, where R =
(R1, R2, ..., Rn) and Q = (Q1, Q2, ..., Qm). Ri, i:=1..n, n≥3, are the R’s
vertexes, and Qj , j:=1..m, m≥3, are the Q polygon’s m vertexes. The two
coordinates of a vertex V will be noted as V.x, and V.y respectively.

The main step of the SignedIntersection algorithm consists in sweep-
ing the plane with a line (the sweep line) parallel with the Oy axis, beginning
with the R’s or Q’s vertex with the minimum x coordinate. If there are (at
least) two such points the whole ensemble can be rotated so that only one
vertex has the minimum x coordinate. As the sweep line is moving toward
the vertex with the maximum x coordinate, the segments that are forming
the intersection’s final result are determined. The last step of the presented

A NEW ALGORITHM THE INTERSECTION OF TWO POLYGONS 85

algorithm consists in analyzing the segments previously found and building
the intersection polygons (none, one or more such polygons).

2.1. The SignedIntersection Algorithm’s Data Structures. The
data structures used during the execution of the SignedIntersection al-
gorithm are arrays of which elements contain the following elements:

Points [PID, x, y, PgID]

• PID - one polygon’s vertex identifier (PID is the unique identifier in
Points table of the 3SST relational data model [5]),

• x, y - the coordinates of the point identified by PID,
• PgID - the identifier of the polygon of which one of the vertexes is
PID.

Segments [SgID, PID1, PID2]

• SgID - segment identifier,
• PID1, PID2 - the end-points of the segment given by SgID. PID1

is the start end-point and PID2 is the final end-point, in accordance
with the counter-clockwise order of the polygons’ vertexes.

Intersections [PID, x, y, SgID1, SgID2]

• PID - the identifier of an intersection point between two segments of
polygons R, and Q respectively,

• x, y - the coordinates of the point identified by PID,
• SgID1, SgID2 - the identifiers of the segments from whose intersec-

tion resulted PID.
Overlapping [PID1, PID2]

• PID1, PID2 - the identifiers of the end-points of the overlapping
between two segments or a vertex and a segment of the two polygons;
if the overlapping is given by a single point, then PID1 = PID2; PID1
and PID2 always represent polygon vertexes.

OrderPoints [PID]

• PID - the identifier of a point from Points or Intersections data
structures.

Stack [position, SgID, sgn, sw y]

• SgID - a segment identifier, from R or Q,
• sgn - the way the segment is swept according to the sweep line; if the

sweep line goes first through the start end-point of the segment, then
sgn = +1, else sgn = -1,

• sw y - the y coordinate of the intersection between the segment and
the sweep line (the x coordinate of the intersection is given by the
position of the sweep line).

86 ANDREEA SABAU

Results [SgID, sgn, PID1, PID2, checked]

• SgID - a segment identifier, from R or Q,
• sgn - the way the segment is swept according to the sweep line (this

value is taken from one Stack’s entry),
• PID1, PID2 - the end-points of the segment or of the part of the seg-

ment which is included in the final result of the polygons’ intersection,
• checked - a Boolean value, used in order to build up the final result;

indicates if the segment has already been analyzed or not.
In this point the following observation has to be made. The PID values

from the Points and Intersections lists are unique (such a value uniquely
identifies an intersection point or one of the polygons’ vertexes).

The OrderPoints and Stack lists are sorted. Without describing the
operations, any insertion or deletion in / from these lists is maintaining the
sorting order. The items of the OrderPoints structure are sorted according
to the x coordinate of the point identified by PID. The list OrderPoints
contains all the polygons’ vertexes and intersection points after the sweep line
completely swept both polygons. If there are two (or more) points having
the same value of their x coordinate, the sorting is made according to the y
coordinate. Specifically, the order in which the points of the OrderPoints
list are stored denotes the order in which the sweep line encounters the two
polygons’ vertexes. The segments of the Stack list are sorted in the ascending
order of the sw y values. The Stack list contains at a specific moment all
the two polygons’ segments which are currently intersected by the sweep line.
These segments’ order is given by the y coordinate of their intersection points
with the sweep line.

2.2. The SignedIntersection Algorithm. The algorithms that determine
intersection points or intersection surfaces usually use the sweep line tech-
nique. The novelty and the name of the presented algorithm come from the
importance of the way the polygon’s edges are traversed by the sweep line.
Also, there are identified four types of vertexes of a polygon and the segments
in the Stack list are managed according to these types. The types of vertexes
and the manner in which the segments are inserted, updated, or deleted in /
from Stack are outlined next.

Let R be a simple concave polygon given by the list of vertexes R = (R1,
R2, R3, R4, R5, R6, R7) (see figure 1) and a sweep line parallel with the Oy
axis. The order in which the vertexes are traversed by the sweep line is (R1,
R7, R2, R6, R4, R3, R5). The manner in which the edges of this polygon
are managed in Stack is exemplified next. R1 is called extreme left ver-
tex of the R polygon, in which case both segments that leave from R1 are
inserted in Stack: R1R2 is inserted with sgn=+1 because the way the sweep

A NEW ALGORITHM THE INTERSECTION OF TWO POLYGONS 87

line traverses it is from the initial end-point (R1) through the final end-point
(R2); R1R7 is inserted with sgn=-1 because the seep line traverses the seg-
ment as the vertexes would be taken in clockwise order (the segment R1R2

is inserted in Stack under the segment R1R7 because, even if R1 belongs to
both segments, R2 has a smaller y coordinate than R7). Next, R7 is called
transition point with negative sign, in which case the segment finished
by R7 is replaced with R7R6 in Stack (also with sgn=-1). R2 is called tran-
sition point with positive sign, in which case the segment finished by R2

is replaced with the segment that starts at R2 (the segment R1R2 is replaced
with the segment R2R3 with sgn=+1). R7R6 is replaced with R6R5 in Stack
when the vertex R6 is encountered. R4 is an other extreme left vertex of R,
therefore the segments R4R3 and R4R5 are inserted in Stack between R2R3

and R6R5. The vertex R3 is called extreme right vertex. This vertex indi-
cates the moment when the sweep line has just finished traversing the segments
R2R3 and R4R3, therefore they are deleted from Stack. R4R5 and R6R5 are
deleted from Stack when R5 is swept finally by the sweep line. Having two
polygons, their individual segments are managed within the list Stack in the
same manner as presented above.

Figure 1. The simple concave polygon R given by R = (R1,
R2, R3, R4, R5, R6, R7), where the vertex R1 has the minimum
x coordinate.

The operation of determining the intersection’s result is described in the
algorithm presented below. The algorithm also handles the case when two
segments of the two considered polygons are overlapping.

The following functions are considered to exist, without specifying their
implementation details:

88 ANDREEA SABAU

• no elem(L) - returns the number of elements of one of the list struc-
tures (L) used by the SignedIntersection algorithm,

• y int(SgID, SWL) - returns the y coordinate of the intersection
point between the segment identified by SgID and the sweep line SWL,

• coord x(PID) - determines the x coordinate of the point identified
by PID (from the list Points or Intersections),

• sgn(SgID) - returns the sign of the segment SgID during the sweep
line’s movement through the polygons’ vertexes.

Three routines are presented next: InitializeStructures initial-
izes the lists Points, Segments, Intersections, Stack, and Results;
SignedIntersection determines the intersection of the two given poly-
gons; ShowResults analyzes and prints the intersection’s result.

InitializeStructures(R, Q)
// Input:
// R, Q - polygons given by their vertexes lists,
// R = (R1, R2, ..., Rn) and Q = (Q1, Q2, ..., Qm),
// and identified by IdR, and IdQ respectively

// Initialize the lists Points, Segments, Intersections,
// Stack, Results
For each point Ri, i:=1..n, do
Insert the entry (Ri.PID, Ri.x, Ri.y, IdR) in Points
Insert the entry (Ri.PID) in OrderPoints
Let SgID be a new segment identifier
Insert the entry (SgId, Ri.PID, R(i+1) MOD n.PID) in
Segments

endfor
// The points Qi, i:=1..n, are handled in the same manner
// as the vertexes of R

end InitializeStructures

SignedIntersection(R, Q)
// Input:
// R, Q - polygons given by their vertexes lists,
// R = (R1, R2, ..., Rn) and Q = (Q1, Q2, ..., Qm),
// and identified by IdR, and IdQ respectively

InitializeStructures(R, Q)

crt pos:=1

A NEW ALGORITHM THE INTERSECTION OF TWO POLYGONS 89

// the position of the current point within OrderPoints

While crt pos < no elem(OrderPoints) do
SWL:=coord x(OrderPoints[crt pos].PID)
// SWL is the sweep line and its current position is
// given by the x coordinate of the current point
// (polygon vertex or intersection point)
For each i:=1..no elem(Stack) do
// Update the y coordinate of the intersection point
// between SWL and each segment within Stack
Stack[i].sw y:=y int(Stack[i].SgID, SWL)

endfor

If OrderPoints[crt pos].PID is in Points then
// This point is a polygon vertex
Let s1 be the identifier of the segment from Segments
for which OrderPoints[crt pos].PID is the initial
end-point

Let s2 be the identifier of the segment from Segments
for which OrderPoints[crt pos].PID is the final
end-point

Let Pg complem be the identifier of the polygon such as
OrderPoints[crt pos].PID is not its vertex

If (� ∃ k such as Stack[k].SgID=s1) and
(� ∃ l such as Stack[l].SgID=s2) then
// If neither the segment s1 nor s2 are in Stack
// then OrderPoints[crt pos].PID is extreme left
// vertex of the polygon
HandleExtremeLeftVertex(s1, s2, Pg complem)

else
If (∃ k such as Stack[k].SgID=s1) and
(∃ l such as Stack[l].SgID=s2) then
// If both segments s1, s2 are in Stack then
// OrderPoints[crt pos].PID is extreme right vertex of
// the polygon
Delete from Stack the entries where SgID in s1, s2
// The segments that have been "terminated" by the
// current point are deleted from Stack

else
If (� ∃ k such as Stack[k].SgID=s1) and

90 ANDREEA SABAU

(∃ l such as Stack[l].SgID=s2) and
(� ∃ m such as
Overlapings[k].PID1=OrderPoints[crt pos].PID) then
// The current point is transition point with positive
// sign and it is not an overlapping point
HandleTransitionPointPositiveSign(s1, s2)

else
If (∃ k such as Stack[k].SgID=s1) and
(� ∃ l such as Stack[l].SgID=s2) and
(� ∃ m such as
Overlapings[m].PID1=OrderPoints[crt pos].PID) then
// The current point is transition point with negative
// sign and it is not an overlapping point
HandleTransitionPointNegativeSign(s1, s2)

else
// The current point is a transition point and an
// overlapping point
If ∃ k such as
Overlapping[k].PID1=OrderPoints[crt pos].PID then
Let s1 and s2 be the segments of the two polygons
for which the current point is a right end-point
(maximum x coordinate) or an overlapping point

HandleInitialOverlappingPoint(s1, s2)
else
If ∃ k such as
Overlapping[k].PID2=OrderPoints[crt pos].PID
and Overlapping[k].PID1<>Overlapping[k].PID2 then
Let s1 and s2 the segments of the two polygons for
which the current point is a left end-point
(minimum x coordinate) or an overlapping point.
Consider s1.PID2.x<s2.PID2.x

HandleFinalOverlappingPoint(s1, s2)
endif; endif

endif; endif; endif; endif
CheckIntersections(Stack)

else // The current point is an intersection point
// and it is not an overlapping point

Let s1 and s2 be the segments that determined the
current intersection point

Invert the segments s1 and s2 in Stack
// The sweep line reached the intersection point of the

A NEW ALGORITHM THE INTERSECTION OF TWO POLYGONS 91

// two segments
HandleIntersectionInResults(s1)
HandleIntersectionInResults(s2)
CheckIntersections(Stack)

endif
crt pos:=crt pos+1

endwhile

If no elem(Results)>0 then
ShowResults(Results)

endif
End SignedIntersection

HandleExtremeLeftVertex(s1, s2, Pg complem)
// Input:
// s1, s2 - two segments that have as left end-point the
// current point
// Pg complem - the polygon that does not contain s1 and s2

Insert the entry (s1, +1, y int(s1, SWL)) in Stack
Insert the entry (s2, -1, y int(s2, SWL)) in Stack
If the point OrderPoints[crt pos].PID is inside the
Pg complem polygon then
// (inside the polygon) or (on the frontier and the
// other end-points of s1 and s2 are inside the
// polygon)
Let PID1, PID2 be the initial and final end-points of s1
Insert the entry (s1, +1, PID1, PID2) in Results
Let PID1, PID2 be the initial and final end-points of s2
Insert the entry (s2, -1, PID2, PID1) in Results

endif
end HandleExtremeLeftVertex

HandleTransitionPointPositiveSign(s1, s2)
// Input:
// s1, s2 - the segments for which the current point makes
// a transition with positive sign; the current point
// finishes the sweeping of s2 and starts the sweeping of
// s1

// Replace s2 with s1 in Stack

92 ANDREEA SABAU

Stack[k].SgID:=s1, where k such as Stack[k].SgID:=s2
If ∃ k such as Results[k].SgID=s2 and Results[k].PID2 is
the initial end-point of the s1 segment then
Let PID1, PID2 be the initial and final end-points of s1
// Insert s1 in Results
Insert the entry (s1, Stack[k].sgn, PID1, PID2) in
Results

endif
end HandleTransitionPointPositiveSign

HandleTransitionPointNegativeSign(s1, s2)
// Input:
// s1, s2 - the segments for which the current point makes
// a transition with negative sign; the current point
// finishes the sweeping of s1 and starts the sweeping of
// s2

// Replace s1 with s2 in Stack
Stack[k].SgID:=s2, where k such as Stack[k].SgID:=s1
If ∃ k such as Results[k].SgID=s1 and Results[k].PID2
is the final end-point of the s1 segment then
Let PID1, PID2 be the initial and final end-points of s2
// Insert s2 in Results
Insert the entry (s2, Stack[k].sgn, PID2, PID1) in
Results

endif
end HandleTransitionPointNegativeSign

HandleInitialOverlappingPoint(s1, s2)
// Input:
// s1, s2 - two segments that are overlapping; the current
// point represents the initial end-point of the
// overlapping segment

// Handle s1 and s2 as in the case when the point current
// is an intersection point
If ∃ k such as Results[k].SgID=s1 and
Results[k].PID2 is a polygon vertex then
Results[k].PID2:=OrderPoints[crt pos].PID

endif
If ∃ k such as Results[k].SgID=s2 and

A NEW ALGORITHM THE INTERSECTION OF TWO POLYGONS 93

Results[k].PID2 is a polygon vertex then
Results[k].PID2:=OrderPoints[crt pos].PID

endif
If Overlapping[k].PID1<>Overlapping[k].PID2 then
Delete from Stack the entries where SgID in s1, s2
Insert in Stack the segment determined by
Overlapping[k].PID1 and Overlapping[k].PID2

Insert in Results two entries corresponding to the two
segments that overlap, given by Overlapping[k].PID1
and Overlapping[k].PID2

endif
end HandleInitialOverlappingPoint

HandleFinalOverlappingPoint(s1, s2)
// Input:
// s1, s2 - two segments that are overlapping; the current
// point represents the final end-point of the overlapping
// segment

Insert in Stack two entries corresponding to the
segments s1 and s2

If sgn(s1)=+1 then
If sgn(s2)=+1 then
Insert in Results entries corresponding to s1 and s2

else
Insert in Results entry corresponding to s2

endif
else
If sgn(s2)=+1 then
// Insert no entry in Results

else
Insert in Results entry corresponding to s1

endif
endif

end HandleFinalOverlappingPoint

HandleIntersectionInResults(s)
// Input:
// s - one of the two segments involved in an intersection;
// the current point is the corresponding intersection
// point

94 ANDREEA SABAU

// Handle segment s in Results
If ∃ k such as Results[k].SgID=s and
Results[k].PID2 is a polygon vertex then
// The part of the segment s that belongs to the
// intersection is finished by the current point
Results[k].PID2:=OrderPoints[crt pos].PID

else
If (� ∃ k such as Results[k].SgID=s) or
(∃ k such as Results[k].SgID=s1 and Results[k].PID2 is
an intersection point) then
Insert the entry
(s, Stack[l].sgn, OrderPoints[crt pos].PID, P) in
Results, where l such as Stack[l].SgID=s, and P is
the final end-point of s (if Stack[l].sgn=+1) or P
is the initial end-point of s1 (if Stack[l].sgn=-1)

endif
endif

end HandleIntersectionInResults

The CheckIntersections routine checks whether two neighbor seg-
ments in Stack intersect when they belong to different polygons. If a new
intersection point Pi is found, such as Pi is not an end-point, then it is in-
serted into list Intersections. If Pi is a polygon vertex such as it is the
final end-point of a segment s1 and the initial end-point of a segment s2, and
belongs to a segment’s interior of the other polygon (s) then Pi is inserted in
Overlapping as PID1. If s2 and s are overlapping then the pair of the two
points that determine the overlapping segment is inserted in Overlapping.

ShowResults(Results)
// Input:
// Results - the list of segments that determine the result
// of the two polygons’ intersection

While ∃ k such as Results[k].checked=false do
// Initiate the building of a new intersection polygon
Let P1 be the point PID1 or PID2 from Results which has
the minimum x coordinate and is an end-point of a
segment s’ with sgn=+1. Let l be the position of P1
in Results

Let P init:=P1

A NEW ALGORITHM THE INTERSECTION OF TWO POLYGONS 95

Let P2 be the other end-point of s’
While P init P2 do
Print P1, P2
Results[k].checked:=true
P1:=P2
Find l’ such as Results[l’].checked=false and
Results[l’].PID1=P1 or Results[l’].PID2=P1

endwhile
Show P1, P2

endwhile
end ShowResults

The SignedIntersection algorithm determines the intersection of two
simple polygons, where the intersection can be empty or can consists of one
or more simple polygons.

3. Conclusions and Future Work

In this paper a new approach to determine the intersection between two
simple polygons has been proposed. The presented algorithm uses the well-
known technique of the sweep line and assigns a special sign value to each of the
polygons’ edges in order to find the intersection result. Also, the sign of each
segment that belongs to the intersection’s frontier is used to build the polygons’
intersection. The SignedIntersection algorithm and the corresponding
data structures are easy to implement on top of the 3SST relational data
model.

It is intended to extend the SignedIntersection algorithm in order to
be able to determine the intersection of two polygons with or without holes.

References

[1] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Computational
Geometry, Algorithms and Applications, Springer-Verlag, Berlin, 1997.

[2] A. Margalit, G. D. Knott, An Algorithm for Computing the Union, Inter-
section or Difference of Two Polygons, Computers & Graphics, Vol. 13 (2)
(1989), pp. 167-184.

[3] J. O’Rourke, Computational Geometry in C, Cambridge University Press,
1993.

[4] J. O’Rourke, C.B. Chien, T. Olson, D. Naddor, A New Linear Algorithm for
Intersecting Convex Polygons, Computer Graphics and Image Processing, No.
19 (1982), pp. 384-391.

[5] A. Sabau, The 3SST Relational Model, Studia Universitatis ”Babes-Bolyai”,
Informatica, Vol. LII (1) (2007), pp. 77-88.

[6] G. T. Toussaint, A Simple Linear Algorithm for Intersecting Convex Polygons,
The Visual Computer, Vol. 1 (1985), pp. 118-123.

96 ANDREEA SABAU

[7] B. Zalik, G. Clapworthy, A Universal Trapezoidation Algorithm for Planar
Polygons, Computers & Graphics, Vol. 23(3) (1999), pp. 353-363.

[8] B. Zalik, M. Gombosi, D. Podgorelec, A Quick Intersection Algorithm for
Arbitrary Polygons, SCCG98 Conf. on Comput. Graphics and it’s Applicat.
(1998), pp. 195-204.

Faculty of Mathematics and Computer Science

Babes-Bolyai University, Cluj-Napoca

E-mail address: deiush@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

INTRODUCING A NEW FORM OF PARAMETRIC
POLYMORPHISM IN OBJECT ORIENTED PROGRAMMING

LANGUAGES

IANCU MIHAI CĂPUTĂ AND SIMONA MOTOGNA

Abstract. Nowadays software development tools have to provide effec-
tive means of data manipulation with minimal development time. As types
represent the meaning of raw data, this paper focuses upon taking types
to another level in an object oriented dynamically type-safe programming
language, in order to increase language flexibility and productivity.

1. Introduction

Mainstream object oriented programming languages, such as .NET lan-
guages or Java, support both kind of type-checks (static and dynamic).

Static type checking or static typing means that the typechecker, which
may or may not be part of the compiler, performs an analysis over the source-
code at compile time to ensure that certain type-constraints are not being
violated.

In C#, for instance, static type checks are made when resolving the over-
loading of methods, or when performing an upcast (casting from derived type
into base type). Dynamic type checking (also known as runtime type check-
ing) characterizes a dynamically typed programming language which is one
where type constraints are being checked at runtime. In C#, dynamic type
checks are made when a downcast (casting from base type into a derivate
type) is performed, in order to ensure that the backing object, that is cast
into the derivate type, is an instance of the derivate type or of another type
that derives from that derivate type. This check can only be done at runtime,
except some scenarios in which a smart compiler can figure out that the cast
is possible.

By taking the dynamically-typing even further, productivity can be in-
creased considerably. This can be achieved by introducing the concept of

Received by the editors: May 5, 2008.
2000 Mathematics Subject Classification. 68N15, 68N19.
1998 CR Categories and Descriptors. D.3.3 [Language Constructs and Features]:

Data types and structures, Polymorphism.

97

98 IANCU MIHAI CĂPUTĂ AND SIMONA MOTOGNA

Type-unbound variables which induces a new form of parametric polymor-
phism. We propose a programming language prototype, called X Language
or shortly X, that will incorporate this new form of parametric polymorphism
with clear benefits in productivity. It targets the .NET framework 2.0 and
the syntax is almost identical to C# 2.0s. This language is under develop-
ment. We will often make references to C#, which is very popular amongst
developers, but these references are traceable in most of the OOPL on the
mainstream. (Java, Delphi.NET, C++.NET etc.)

This paper is organized as follows: The second paragraph is introducing
the notion of type unbound variables, and then in paragraph three we discuss
its relation with parametric polymorphism, describing in several examples the
role of type unbound variables in implementing paramatric polymorphism.
Section 4 discusses different aspects that should be taken into consideration
when introducing this feature in a programming language. Paragraph 5 refers
to some details regarding the implementation of type unbound variables, tar-
geting a virtual machine, and in the end some ideas for our future work on
this langauge.

2. Introducing type unbound variables

In C#, when you declare a variable, you must specify its type. This is a
hint for the compiler so that it will be able to enforce type-safety. That variable
will be bound to its type throughout its entire scope. This means that you
wont be able to change its type at runtie. Please note that eventhough a
variable of type B can have a backing object of type D, which is a derivate
of B, conceptually speaking that variable is of type B (from a compilers point
of view). Type unbound variables refer to variables that arent bound to a
certain type. At the moment i of execution the variable has the type Ti and
at the moment i + 1 it can have any other type, Ti+1 which is not necessarily
ad-hoc polymorphic with Ti.

In almost every object oriented programming language, there are system
classes used to manipulate the concept of Type, such that information about
types (system or user defined ones) is accessible at runtime throughout in-
stances of this classes. In C# there are mechanisms (such as reflection [4]) for
creating objects based on information held by these instances.

This is the common way to create instances of a variable type at runtime.
Sometimes this turns to be quite tedious and the usage of System.Type class
in order to do that does not intervene to the programmer in a natural manner.
This class hints us more to a class schema or an object runtime inspector rather
than to a usable type.

In the X language, which implements the concept of type unbound vari-
ables, the behavior of System.Type class instances is similar to the one of
a type identifier. We can use an instance of the System.Type class (which

A NEW FORM OF PARAMETRIC POLYMORPHISM 99

holds meta-informations about a type) just as if it was a type, as shown in the
following example:

Example 1: Usage of a type unbound variable (a)
System.Type T;
T = int;
T a = 10; //a is a valid integer with the value of 10

3. Type unbound variables and parametric polymorphism

Polymorphism is a programming language feature that allows values of
different data types to be handled using a uniform interface. Christopher Stra-
chey identified in 1967, two fundamentally different kinds of polymorphism:
ad-hoc and parametric [3].

Ad-hoc polymorphism is when the range of actual types that can be used
is finite, and the combinations must be specified individually prior to use.
In object-oriented programming this is implemented through class-inheritance
(objects of different types can be handled uniformly through an interface or a
common base class called superclass).

Parametric polymorphism enables a function or a data type to be written
generically so that it can handle values identically without depending on their
type[1], such that it increases the expresiviness of the language.

Firstly introduced in ML (1967), and then inherited in several other lan-
gauges, parametric polymorphisim still remains a desirable feature in a pro-
gramming langauge, due to its benefits. Recently, Java and C# introduced
”generics” as a form of parametric polymorphism.

Cardelli and Wegner [1] introduced in 1985 ”bounded parametric polyor-
phism”, which imposes some bounds on the parameters, such as to be subtypes
of a given type.

For example, in C++ parametric polymorphism is implemented with tem-
plates or in C# with generics, as presented in Example 2.

Example 2: C# Generics
List<int> myList = new List<int>();
myList.Add(1);
myList.Add(2);
myList.Add(3);
This kind of parametric polymorphism is resolved statically at compile

time: ”In .NET 2.0, generics have native support in IL (intermediate lan-
guage) and the CLR itself. When you compile generic C# server-side code,
the compiler compiles it into IL, just like any other type. However, the IL only
contains parameters or place holders for the actual specific types. In addition,
the metadata of the generic server contains generic information. The client-
side compiler uses that generic metadata to support type safety. When the
client provides a specific type instead of a generic type parameter, the client’s

100 IANCU MIHAI CĂPUTĂ AND SIMONA MOTOGNA

compiler substitutes the generic type parameter in the server metadata with
the specified type argument. This provides the client’s compiler with type-
specific definition of the server, as if generics were never involved. This way
the client compiler can enforce correct method parameters, type-safety checks,
and even type-specific IntelliSense”[2].

In the following, we propose some use cases and present some examples
that show how type unbound variables are introduced and what improvements
they have on the written code.

Use case 1: In C# the abstract data type List is available as a generic
type. When you use the class List to specify the type of a variable, or to
derive from it, you have to specialize it by telling the compiler what kind of
elements this list will handle. Parametric polymorphism comes inherently in
X Language when using an instance of System.Type class as a type identifier
for a methods return type, a methods argument or class member, as illustrated
below.

Example 3:
class GenericList
{ protected System.Type itemType;

public ItemType
{

get { return this.itemType;}
set {this.itemType = value;}

}
public GenericList(System.Type itemType)
{

ItemType = itemType;
}
public void Add(ItemType item)
{//... }
public void Remove(ItemType item)
{ //...}
public ItemType operator [](int index)
{//...}
. . .
}

In the above example notice that the property ItemType, that represents
the type of one item from the GenericList, is used in Add, Remove method
declaration, and in [] operator declaration. Parametric polymorphism comes
from the fact that by changing the ItemType of the GenericList instance, it
will handle different lists of items, without having to change any code.

When specializing this kind of genericity (by supplying a valid System.Type
instance for each Type variable in the class), you will not create a new type,

A NEW FORM OF PARAMETRIC POLYMORPHISM 101

but a new behavior. This approach makes the definition of generic lists more
naturally.

Use case 2: Another situation in which type unbound variables can be
useful is the following: Suppose that we have a class, named MyClass, written
by a third party, leaving out of posibilities of modifying this class. We want
to create a proxy for MyClass, named MyClassProxy which delegates all the
methods calls to a Remote method call server (this illustrates the design pat-
tern Proxy, and is often used in RMI - Remote Method Invocation, and RPC
- Remote Procedure Call). MyClassProxy looks identical in terms of method
signatures to MyClass, but those types are not ad-hoc polymorphic since in-
stances of these types cannot be treated uniformly through an interface or a
base class that exposes their methods. Suppose that we have to write down
code that dynamically decides whether it uses objects of MyClass or objects
of MyClassProxy and does a certain task. In order to achieve that, in C# 2.0,
well either have to write the code that does the job, twice, firstly for MyClass,
and secondly for MyClassProxy, or as an alternative we will have to extract
that code into a generic method, but that is a bit intrusive, and sometimes it
is not quite straight-forward.

In X programming language the solution comes from the usage of the
parametric polymorphism in the form of type-unbound variables. We declare
a variable of type System.Type, and we fill it with MyClass or MyClassProxy
accordingly. Then we use that variable to declare the instances of the class
MyClass/MyClassProxy, and operate with them just as if we dont have to
decide whether to use MyClass or MyClassProxy. Example 4 shows how this
approach is taken in X.

Example 4:
System.Type T;
if (bUseProxy) //we need to use the proxy class
{

T = MyClassProxy;
}
else
{

T = MyClass;
}
T obj; // crete an instance of MyClass or MyClassProxy

depending on the previous decision
// use obj no matter what type underlies it

Example 5: Dynamic casting - Suppose that we have a variable T of
type Type. A cast will be performed at runtime from int to the value of the
T variable (which is a type).

int a;

102 IANCU MIHAI CĂPUTĂ AND SIMONA MOTOGNA

Type T;
T b;
//read a value for a;
if (a>0)
{

b = float;
}
else
{

b = double;
}
b = (T)a; //a dynamic cast is performed from int to float or

// double, depending on the runtime value of T.

4. Implications of type unbound variables

When implementing this new form of parametric polymorphism several
aspects must be kept in mind regarding: type safety, strong typing, threads
safety and limitations of type unbound variables.

4.1. Type safety. For each variable that is about to be used, at the mo-
ment of execution, the underlying type must be known, otherwise a runtime
exception will be thrown.

4.2. Strong Typing.
• Whenever a method argument is a type unbound variable, that meth-

ods overloading resolution must be done at runtime
• Member access of a type unbound variable is resolved at runtime hence

all the validations upon that member must be done at runtime
• Method calls of type unbound variables are late bound
• Each operator is subject to all the constraints the methods are subject

to
• When changing the underlying type of a type-unbound variable, a

policy regarding the current value of the variable needs to be adopted:
Since every type has a default value, the value of the variable will be
reset to this default value.

4.3. Limitations. We have identified three restrictions that must be imposed:
• Variable types (variables of type System.Type) cannot be used in class

hierarchies definition (cannot be used as base types)
• Variable types cannot be used to define delegate types (function pointer

types), as pointed out below.
class D {...}
class A

A NEW FORM OF PARAMETRIC POLYMORPHISM 103

{
Type typeVar = D;
class C:typeVar { ...} //this is not allowed
delegate typeVar myDelegate(D b, A a) ;// not allowed
delegate int myDelegate(typeVar b, A a);//not allowed

}
• Type instances cannot be used to define entities (variables/members)

of a larger domain of visibility, as in the following sequence
class C
{

private Type memberType;
public memberType member1; //not allowed: member1

// has a larger domain of visibility than memberType
protected memberType member2; //not allowed: member2

//has s larger domain of visibility than memberType
}

4.4. Thread safety. System.Type instances can be regarded as shared re-
sources once they were used to create instances of a type. The problem of
thread safety arises here.

Suppose that a type-unbound variable V is used by thread Th1, and thread
Th2 wants to change the underlying type of V. The system should expose a
mechanism through which the programmer could be able to ensure thread-
safety.

In order to ensure this, the System.Type class from X, exposes a variable
counter, which indicates the number of type unbound variables of that type.
When the variable counter is 0, the type can be changed without causing any
havoc. Please note that this variable counter is different than the reference
counter which indicates how many instances of that type are being referenced
at a moment of execution.

In a compiler implementation, the type-variables could be copied into the
thread local storage (with a compiler directive the programmer is able to
modify this implicit behaviour) so the programmer wont have to interogate
the variable counter before changing the value of the type variable.

4.5. Lifetime and variable storage. The lifetime of a type-unbound vari-
able is not determined by the lifetime of the type instance that was used to
define it. Consider the sequence:

{
Type T;
T a = new T();
StartThread(a); //start a thread and pass ’a’ as parameter

}

104 IANCU MIHAI CĂPUTĂ AND SIMONA MOTOGNA

When T runs out of scope, the instance that was passed to the thread
doesnt get garbage collected. In the storage of variable a, a reference to the
value of T will be held. When variable T runs out of scope, its reference
counter gets decremented, but it will not reach down to 0 because the instance
referenced by a, will be passed to a thread, hence incremented.

The type-unbound variable storage is subjected to all the policies, that
the type-bound variables (the regular ones) are subjected to.

5. Implementation details

When implementing such a feature in a programming language, several
aspects should be taken into consideration. Firstly, type-unbound variables
are not syntactic sugar. In order to implement this feature several extensions
must be supported by the core of the virtual machine and covered by the
design of the compiler.

There are plenty of ways to implement such a feature, and many performance-
related policies can be applied. These implementation details aim a virtual
machine that will support type-unbound variables.

The compiler will not be able to fully handle the usage of variables, because
their type might be unknown at compile time. This implies that the virtual
machine will provide mechanisms to handle variables (such as member function
call, member access, etc) as instructions built within its core. In the sequence
of code below, well try to exemplify how one can implement this feature. The
code is written in C++, and covers only the surface of the concept: how to
implement instructions in the virtual processor, that provide method invoking
and member access of type-unbound variables.

The idea behind the implementation can be understood from the defini-
tions of the structures and the functions.

The structure Method holds metainfo about a method. These kind of
metainfo are also usefull for reflecting upon a method. The structure Type
holds metainfo about a type, in which the methods and the type contains can
be organized as a dictionary that maps a method hash to a Method. The
structure Instance contains information about an instance of a class. If the
type member of this structure can be chagned, we are talking about a type
unbound variable.

The function call() represents the call instruction supported by the vir-
tual processor. The function OverloadingResolution() resolves the collision of
methodes that have same methodHash. Two methodes have same methodHash
if they have same name.

The function xcall represents the extended call instruction suported by
the virtual processor. It perfoms a dynamic call.This means that the method
cannot be determined at compile time, and it has to be searched through the
methods of the underlying type, by the methodHash. This hash is determined

A NEW FORM OF PARAMETRIC POLYMORPHISM 105

at compile time by applying some sort of a hash function on the method name.
methodAddress represents the method address that needs to be determined. If
the type does not contain a definiton for that method, then an exception will
be thrown. If the method is virtual, then we need to lookup its address into
the virtual function table, still by its hash, and if the method is not virtual
then its address is the one held by the methodInfo structure returned by the
method overloading.

The xMemberAccess function provides access to a member returning its
address from a specific variable storage. It will perform a look-up by the
memberHash, into the Type of Instance, to find the address of the member
into the Instance storage. This access is type checked, which means that if
the Type does not contain a definiton for the specified member, an exception
will be thrown.

struct Method
{

void* address; //address of method, determined at load-time
bool isVirtual; //whether or not the method is virtual
//... //any other metainfo

};
struct Type
{

Method** methodes;
};
struct Instance
{

Type* type; //the type of the instance
void* vft; //virtual function table
void* storage; //data storage
//...//other related info

};
void call(void* method) { }
Method* OverloadingResolution(Type* type, unsigned long methodHash,

Instance** params)
{ }
void xcall(Instance* this, unsigned long methodHash,

Instance** params, unsigned int paramCount)
{

void* methodAddress = 0;
Method* methodInfo = OverloadingResolution(this→type,
methodHash, params);
if (methodInfo==0)

throw new Exception();
if (methodInfo→IsVirtual)
{

106 IANCU MIHAI CĂPUTĂ AND SIMONA MOTOGNA

methodAddress = this→vft[methodInfo];
}
else
{

methodAddress = methodInfo→address;
}
push(this);
for (int i=0;i<paramCount;++i)
{

push(params[i]);
}
call(methodAddress);

}
void* xMemberAccess(Instance* this, unsigned long memberHash) { }

6. Future work

The fully development of the X Language, will illustrate this concept.
We also intend to describe the complete definition of type constraints that will

allow the static type-checker to resolve some validations which are currently done by
the runtime type-checker.

Also the intellisense of the development environment X Language will integrate
in, would be developed so that it will work in the case of type-unbound variables and
variable types.

7. References

[1] L. Cardelli and P. Wagner: On Understanding Types, Data Abstraction and
Polymorphism, Technical Report CS-85-14, Brown University, Department of Com-
puter Science, 1985

[2] Juval Lowy: An Introduction to C# Generics, Visual Studio 2005 Technical
Articles, 2005, http://msdn2.microsoft.com/en-us/library/ms379564(vs.80).aspx

[3] C. Strachey, Fundamental concepts in programming languages. Lecture notes
for International Summer School in Computer Programming, Copenhagen, August
1967

[4] T.L. Thai, Hoang Lam - .NET Framework Essentials, O’Reilly Programming
Series, 2001

Department of Computer Science, Faculty of Mathematics and Computer

Science, Babeş-Bolyai University, 1 M. Kogălniceanu, Cluj-Napoca 400084, Ro-

mania

E-mail address: ci29836@scs.ubbcluj.ro

E-mail address: motogna@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

SOFTWARE PROCESS IMPROVEMENT AT SYSGENIC

DUMITRU RĂDOIU AND MILITON FRENŢIU

Abstract. The Capability Maturity Model (CMM) was defined by Soft-
ware Engineering Institute as a mean to improve the state of Software
Engineering process. Going from CMM level i to the next level i+1 is seen
as a major improvement. How such an improvement was obtained at Sys-
genic is presented in this paper. Also, some consequences on the teaching
process are presented.

Keywords: Software Process Improvement, CMM, education

1. Introduction

The term “software crisis” was introduced by the participants at two
NATO conferences held in 1968 and 1970. It was observed that for a large
number of software development projects deadlines are frequently missed, cost
overruns are a rule not an exception, and it is increasingly difficult to mea-
sure the project progress. It was estimated [18] that more than 50% of the
development project time is spent on testing and debugging. And the final
product is not error-free; on average there still can be three to five errors for
every hundred statements. We all expect the results given by our programs are
correct, but 71% of software products have errors during their usage [16]. It
is well known that some errors are not detected by testing, and some of them
are never detected. Moreover, there are projects that have never been finished
[4]. It is estimated that one from three large projects was never finished [7,
16].

There is a growing requirement of new programs. But our ability to build
new programs hardly keeps pace with the demand for new programs. We
have all observed the permanent and rapid growth of computer usage in all
fields of human activity. The need for new programs is immense and their
complexity is continuously growing. There are known today programs with
millions of lines of code written by hundreds of people. These more complex
programs cannot be developed like the old small ones. It has become necessary

Received by the editors: May 15, 2008.
2000 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.9 [Software Engineering]: Management –

Software process models.
107

108 DUMITRU RĂDOIU AND MILITON FRENŢIU

to analyze software costs over the entire life cycle of the system. It is known
today that the major errors are due to errors in specifications, or poor design
of the system, not to bad coding. After all, the fraction of time needed for
programming is about 20% of the entire development process.

Among the factors that make software difficult four of them are inherently
difficult [1, 14]. They are well known: the complexity of software, the confor-
mity of the software product with the real world, the changeability and the
invisibility of the product. The complexity of the problem affects the entire
development process. It is difficult to understand the problem, to analyze it,
to design and to implement the software product. And the real world cannot
be changed to make the software product simpler.

The maintenance activity is a fundamental aspect of software engineering.
It is a significant portion (exceeding 50%) of the total development process.
But poor design and inadequacies resources threaten our ability to maintain
existing programs.

To improve the state of programming activity the Software Engineering
Institute approved a project to study this activity and to suggest ways of
improving it. One of the project outcomes is a report [12,13] that contains the
conclusions of that study and – based on the findings – suggests a number of
steps considered to improve the software processes. According to this study
the software companies are classified in 5 levels, defined by their performances.
Key process areas specific to each level are also given.

Going from CMM level i to the next level i+1 is seen as a major improve-
ment of the software processes of a company. In this respect CMM is seen as
a guide for a continuous improvement.

Software Process Improvement (SPI) may be simply characterized by three
main outcomes:

• respecting the cost and schedule of projects specified in the contracts;
• increasing the productivity;
• improving the quality of software products.

Reducing the rework is one possibility to increase software productivity,
and to respect the schedule. We must build correct programs from the be-
ginning [9, 11, 3]. As Gilb said: “Prevention is more effective than cure” [8].
Also, removing errors earlier permits to reduce the rework, and it is known
today the importance of inspections (peer reviews) in this direction [6].

Building correct programs from the beginning is not a dream, today it
becomes a reality. At IBM Mills introduced such a methodology, known as
Cleanroom [10]. It has been successfully used for 20 years.

SOFTWARE PROCESS IMPROVEMENT AT SYSGENIC 109

2. Reaching CMMi level 3 at Sysgenic

Sysgenic is a Romanian software development company with expertise in
projects for financial and capital markets supplying customers in Europe and
USA. The company software process improvement (SIP) started with docu-
menting and institutionalizing ISO 9001:2000 requirements and this quality
management system was certified in august 2005. The decision to implement
a more professional quality management system (CMMi Level 3) was based
on the need of more control over the projects based on more structured and
practical project management principles. The outcomes were expected to be
reflected in work performance, project visibility and control and in the end
higher quality.

The Process Areas involved in CMMi Level 3 implementation are: Re-
quirements Management (REQM), Project Planning (PP), Project Monitoring
and Control (PMC), Measurements and Analysis (MA), Process and Product
Quality Assurance (PPQA), Configuration Management (CM), Requirements
Development (RD), Technical Solution (TS), Product Integration (PI), Veri-
fication (VER), Validation (VAL), Organizational Process Focus (OPF), Or-
ganizational Process Definitions (OPD), Organizational Training (OT), Inte-
grated Project Management (IPM), Risk Management (RSKM), and Decision
Analysis and Resolution (DAR).

First step was to set up the project team, also known as the Process
Improvement Group (PIG), consisting of process oriented practitioners, with
extensive experience in process design, software development and project man-
agement.

Second step was to provide them professional training (in CMMi) and doc-
umentation. PIG initial training started with an “Introduction to CMMI” SEI
course, plus recent and extensive documentation on the capability maturity
model integration (CMMi).

Third step consisted in initiating a “gap analysis” to document the dif-
ferences (in the above mentioned areas) between what was implemented in
the company and what are CMMi requirements. Based on these findings PIG
initiated the design of the new internal process and started to implement
them. Within the space of one year, these set of standard processes (OSSP)
were institutionalized in the organization. Processes started to follow the new
standards and to be documented accordingly.

After the processes were institutionalized and appeared to comply with
the new requirements, the fourth step was an internal evaluation, also known
as SCAMPI B. The differences between SCAMPI B findings and CMMi Level
3 required compliance were were smoothed up.

110 DUMITRU RĂDOIU AND MILITON FRENŢIU

The following step is called “running in production mode”: release internal
process assets library, OSSP in organizational and software projects.

The on-site assessment, also called SCAMPI A, consists of
• pre-onsite period (consisting in collection and evaluation of project

evidence), and
• on-site evaluation.

Following the on-site evaluation, Sysgenic achievement was recognized by
Software Engineering Institute [15] in August 2007.

Now, one year later after being certified CMMi level 3, Sysgenic is fol-
lowing an internal QA audit on processes followed by a process improvement
analysis and implementation on evaluation results. It is worth mentioning
the constraints under which Sysgenic went into this SPI. Here are the most
“visible” ones:

(1) making use of the already defined processes, known and largely used
by employees;

(2) analyzing and deciding on the best usage of the existing tools (not
always the best choice under CMMi level 3 exigency);

(3) a limited number of human resources who could be allocated to the
SPI.

A first remark, following the above presented constraints, is that the
newly CMMi Level 3 defined and institutionalized processes were sometimes
time consuming and some even redundant. As projects are usually allocated
small teams (8-10 people), any overhead generated by excessive documentation
and/or training is “visible” in planning and cost and will lower the company
competitiveness.

Following the first observation is that SPI never ends and the processes
should be continuously reviewed and improved in successive iterations, focused
mostly on:

(1) process and documentation simplification, maintaining compatibility
with CMMi Level 3 and 4 requirements;

(2) identifying the most suitable tools which automate certain activities;
(3) processes institutionalization and periodic training (and re-training).

3. Conclusions

There are a significant number of lessons learned; here are some mistakes
which we could have avoided.

• Make sure you have really experienced PIG team members, with a
positive attitude, knowledgeable in their respective areas or expertise.
During the process the PIG is usually overloaded, in a small company

SOFTWARE PROCESS IMPROVEMENT AT SYSGENIC 111

they have to play multiple roles and therefore more likely to make
errors. Their expertise and attitude, plus good planning as well as
monitoring and control are essential in the success of the project.

• Simplify your processes to be more close to what we do, more natural
to perform, to really help you in improving your organization perfor-
mance.

• Develop your own simple and goal oriented metrics to document and
track performance.

Software critical systems [2] require error-free programming and high qual-
ity software development processes. Obviously this requires also better edu-
cated work force, able to do this. It was a pleasant finding to learn that CMMi
is taught at Petru Maior University (based in Tirgu Mures where Sysgenic HQ
is located) as part of the Software Engineering course.

Attaining level 4 is, certainly, the next goal of Sysgenic. Quantitative
process management and Software quality management are the Key Process
Areas for this level. Continuous improvement, training and learning from our
experience will help. A Software Metrics Program must be introduced to offer
a quantitative feedback for improvement.

Nevertheless, we need more and more educated people as Software Engi-
neers. And these people need a serious background from universities. Knowl-
edge on Process Management, Verification and Validation (and consequences
from the theory), Software Metrics must be present in their curricula [17].

There is a contradiction between the desire to obtain a system as quickly as
possible, and to have a correct system. We need confidence in the quality of our
software products. We need to educate the future software developers in the
spirit of producing correct, reliable systems. For this we must teach students
to develop correct programs. We are aware that usually programmers do not
prove the correctness of their programs. There always must be a balance
between cost and the importance of reliability of the programs. But even
if the well educated people do not prove the correctness, their products are
more reliable than the products of those “programmers” who never studied
program correctness. Therefore, we consider that the students must listen,
and pay attention to the correctness of their products.

It is unbelievable that students are superficially taught the theory of pro-
gram correctness. As teachers, we must strive for a better education of the
new generations of programmers. As scientists, we must look for better tools.
The software development process must be based more on mathematical tech-
niques, the formal methods must be taught and used as much as possible.

112 DUMITRU RĂDOIU AND MILITON FRENŢIU

References

[1] Brooks, F.P., No Silver bullet: Essence and accidents of software engineering, IEEE
Comput. 20, 4(1987), 10-19.

[2] Ricky W.Butler, Sally C.Johnson, Formal Methods for Life-Critical Software, NASA
Langley Research Center, http://shmesh.larc.nasa.gov.

[3] Dromey, G., Program Derivation. The Development of Programs from Specifications,
Addison Wesley, 1995.

[4] Effy Oz, When Professional Standards are LAX. The CONFIRM Failure and its lessons,
Comm. A.C.M., 37(1994), 10, 29-36.

[5] M. Fagan, Design and Code Inspections to Reduce Errors in Program Development,
IBM Systems Journal, 15 (3), 1976.

[6] Tom Gilb and Dorothy Graham, Software Inspection, Addison-Wesley, 1993.
[7] Gibs W.W., Software’s Chronic Crisis, Scientific American, September, 1994.
[8] Gilb T., Software Inspection for the Internet Age: how to increase effect and radically

reduce the cost, 2001, www.Result-Planning.com
[9] Gries, D., The Science of Programming, Springer Verlag, Berlin, 1985.
[10] Mills H., M.Dyer, and R. Linger, Cleanroom Software Engineering, IEEE Software, 4

(1987), 5, 19-25.
[11] Carol Morgan, Programming from Specifications, Springer, 1990.
[12] Paulk M.C., B.Curtis, M.B.Chrissis, C.V.Weber, The Capability Maturity Model for

Software, Tech.Report, CMU/SEI-93-TR-25.
[13] Paulk M.C., B.Curtis, M.B.Chrissis, C.V.Weber, The Capability Maturity Model, Ver-

sion 1.1, IEEE Software, 10(1993), 4, 18-27.
[14] Schach S.R., Software Engineering, IRWIN, Boston, 1990.

[15] http://sas.sei.cmu.edu/pars/pars detail.aspx?a=9828 (retrieved 3rd of June 2008)
[16] The Standish Group Report: Chaos, http://www.scs.carleton.ca/∼bean/PM/ Standish-

Report.html
[17] ***. Computer Science Curricula at Babes-Bolyai University, www.cs.ubbcluj.ro
[18] Yourdon, E., Modern Software Analysis, Yourdon Press, Prentice Hall Buiding, New

Jersey 07632, 1989

Petru Maior University, 1 Nicolae Iorga St., Târgu Mureş, Romania

E-mail address: Dumitru.Radoiu@Sysgenic.com

Babeş Bolyai University, 1 Mihail Kogălniceanu St., Cluj-Napoca, Romania

E-mail address: mfrentiu@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

MODELING OF THE IMAGE RECOGNITION AND
CLASSIFICATION PROBLEM (IRC)

IOAN ISPAS

Abstract. The problem of the image recognition and classification (IRC)
based on the pattern recognition is of a paramount importance in lots of
domains. The present paper discusses topics related with the complexity
of the algorithms for image recognition and classification. This leads to
some precise statements on the computational difficulty of the problem of
the image recognition and classification (IRC).

KEY WORDS: modeling, image recognition and classification, algorithm
complexity

1. Defining the problem of image recognition and classification

(IRC)

The automatic classification of the images is of a strategic importance
in lots of domains. Its solving is based on the methods and algorithms of
automatic pattern/object recognition and image classification [3].

In the following part, we will define the IRC problem:
Given an image data base (data stream) B = {I1, I2, . . . , In} containing

a ‘main character‘, each image incorporating only one object; given a set of
descriptions of some known distinct objects R = {O1, O2, . . . , Ok}; knowing
that any human operator is able to recognized easily, by means of rapid visual
inspection, the object in the image; the aim of the algorithm is to determine
the images that contain these objects, and to classify them in k + 1 distinct
classes: C1, C2, . . . , Ck and Ck+1. The classes Ci, i = 1, k will group all the
images containing the objects Oi, i = 1, k, and the class Ck+1 will group the
images without any of the R objects.

The diagram of the IRC problem is the following:

Received by the editors: April 2, 2008.
2000 Mathematics Subject Classification. 93A30, 68T10.

113

114 IOAN ISPAS

Stream

of

images Image

data

base B

Algorithm

for image

recognition

and

classifica-

tion

C1

Ck+1

Figure 1. offers a small example consisting of eight images with ‘characters‘
[13] that can be classified into seven image classes: 1. the class of the images
containing horses; 2. the class of the images containing cheetahs; 3. the
class of the images containing elephants; 4. the class of the images containing
airplanes; 5. the class of the images containing bears; 6. the class of the images
containing eagles; 7. the class of the images ”neutral”, without recognized
object. In this case, the component elements of the set of the recognized
‘objects‘ are: 1. horses; 2. cheetahs; 3. elephants; 4. airplanes; 5. bears; 6.
eagles.

Figure 1. Examples of images to be classified

MODELING OF THE IRC PROBLEM 115

Having studied the specialized literature [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11] we can state that the image recognition algorithms describe a
four-stepped process. Each step is essential and inevitable. The diagram of
the image recognition process is the following:

�
�
�
�
�

��
�	
�

	�
��
�
�

���
�����
	�
���	�
�����

���
�������
�����	��
�������
�����

����
�����	���

����	�
����	�
����

�

I. Preprocessing of the image. This means the application of some DIP
(Digital Image Processing) algorithms specialized in enhancing image quality
[1], [3], [5], [10].

II. Feature extraction. This is the key step, the one that measures the
performances and the quality of the recognition software. The discovery of the
most proper features and characteristics of the recognition object is the key of
the success [12], [14], [15], [16], [17], [18], [19], [20]. The FeatureExtraction
algorithm, the implementation of this essential step, output a feature vector
description of the recognized object (v1, v2, . . . , vn), not necessarily numerical.

III. Feature/pattern measurement. This step is well theoretically
founded; there is a developed mathematical theory (The measure theory)
which can help us select the proper and efficient n-dimensional metrics. The
final result of this step is usually a one- or multi- dimensional value (a vector)
percepted as the ‘distance‘ of the feature vector towards the borders of the
class [1], [12], [15], [18], [19].

IV. Image/Pattern classification. This is the final step which com-
bines the results of the prior measurements. The pattern/object - described
by the feature vector - belongs to a class of images, according to certain ap-
partenance mathematical criteria. The final result of the classification step
must be the index i of the image class Ci .

2. The modeling of the problem of the image recognition and

classification

The primary modeling of the problem of the image recognition and clas-
sification is an extremely difficult subject. In order to reduce its degree of
difficulty, a gradual approach is indicated to be used in a step-by-step man-
ner.

116 IOAN ISPAS

2.1. The simplified version of the problem of the image recognition
and classification (sIRC).

If we consider the objects-‘characters‘ from the images as marks/signatures,
that were previously inserted in the images. Consequently, every object be-
came obviously a ”main character”, in front of the scene. Then the recognition
of images leads us to the following simplified version of the IRC problem de-
fined at the beginning:

Given an image data base (or an image stream) B = {I1, I2, . . . , In} con-
taining a ‘main character‘ that marks them; given a set of descriptions of some
known distinct objects R = {O1, O2, . . . , Ok}; the following algorithm deter-
mines the images from B that contain these objects and classifies them in k+1
distinct classes: C1, C2, . . . , Ck and Ck+1. The algorithm has an image I as
input and is calling the sub-algorithm Recognition; this algorithm decided if
object Ok is contained in image I.

Algorithm sIRC(image I);
For i = 1, k do

If Recognition (Oi, I) return (i);
Return (k + 1);

Our belief, just like its title shows, is that the simplified version sIRC
problem is less difficult than the initial one. Unfortunately, we cannot prove
rigorously this statement although the multitude of facts strongly confirms it.
It is obvious that its complexity relies on the complexity of the Recognition
sub-algorithm. The total complexity of the algorithm is in the worst of cases:

WorstCase(Classification sIRC) = k ×O(Recognition),

where k is the dimension of the set of objects R. O(Recognition) is the
classical notation for the complexity class of the Recognition algorithm.

The Recognition algorithm is the clue of the sIRC problem. Its input
is I image and the description of the recognition pattern/object O. For every
object Oi it works like a validation function with the output true or false.
Considering that any human operator is able to easily recognize the presence
of the object O in the image I by visual inspection, based on a primary process
of the mathematical modeling and formalization of the sIRC problem, we can
design the following modeling:

2.2. Mathematical modeling of the sIRC problem.

Definition 1. A searching space is a set of data S which has to be exhaus-
tively covered in order to find the target data x among S data.

MODELING OF THE IRC PROBLEM 117

Giving n the cardinal of the set S; considering that the exhaustive covering
condition is needed, then the number of required steps (comparisons) in order
to find out x is in the worst case n.

Definition 2. A pattern P of an (bi-dimensional) object is the set of the
contour points (laying on the external edges of the shape of the object) which
delimits the space occupied by it.

The pattern P of an object is that what makes it distinguished from the
environment and confers its identity.

Definition 3. An informational content (colorist) C of a certain object
is a set of points belonging to the object, grouped together according to an
association (relational) criteria.

For instance, the set of the ‘interior‘ points of the object, the set of the
points of the same color, etc. The information content (colorist) C is the
visible, descriptive expression of the object.

Proposition 1. Therefore we can state that every object is uniquely defined
by its pattern P and its informational content C. As the pattern P and its
informational content C are described by numerical vectors, the pair (P, C)
uniquely defines every object.

2.3. Introducing the auxiliary problem IRC(R).

The terms of the auxiliary problem IRC(R) are the following: this prob-
lem is particular case of the sIRC problem in which the set of objects to be
recognized consists in a single type of objects R, as an image of the solid
rectangle.

Any rectangle R is defined by the pair of corners A(xA, yA) and B(xB, yB),
and by its colour C. Thus R = R(A,B, C).

The problem requests to determine the subset Q of the image set contain-
ing one rectangle R.

The easiest method (considering the effort in designing the recognition
algorithms) is the scanning of all the images, i.e. for every image, to check up
every possible matching position of the rectangle R. The effort of recognition
and classification of the images, which is directly proportional to the image
resolution and indirectly proportional to the dimension of the rectangle R,
will thus be huge. Redesigning this brute force approach method implies of
new, more efficient methods to match the rectangle R, other than exhaustive
scanning of the image. Since an image I certainly contains a rectangle R, one
can question if the image I, having M ×N × c resolution, could be seen as a
searching space for rectangle R(A, B,C), where c is the color resolution of the
image I.

118 IOAN ISPAS

Given the set of all valid coordinations S(A, B) for the rectangle R in the
image I. Every recognition algorithm A of R in I, seen from the Turing-
Church Thesis perspective [21], can be simulated by a Universal Turing Ma-
chine U is possible. The algorithmic complexity of the Machine U is identical
with the recognition algorithm A. Moreover the Universal Turing Machine U
is designed to display every pair of possible coordinates (A,B) as algorithm
A overpasses them at its run-time, following its specific steps.

Therefore, it is obvious that the set of all valid coordinations S(A,B)
becomes a searching space for the algorithm A. None of the pairs (A,B) can
avoid being checked. In conclusion, the difficulty of the IRC(R) problem is
the same with the difficulty of finding a value x in the searching space S by
exhaustively scanning. In this case, x represents the coordinate pair (A,B)
while S represents the set of all valid coordinations the rectangle can have in
the image.

2.4. Reduction of the sIRC problem to IRC(R) problem. According
to Proposition 1 every recognized object O is defined by the pair of vectors
(P, C), pattern and informational content. Since P and C are vectors and
not singular values, the pair (P, C) denotes a rectangle in a multidimensional
space. The recognition of the object O in the set of the images can be conse-
quently regarded as the matching of the rectangle (P, C) in the corresponding
searching space, resulted from the union of all the pairs of valid coordinates
(P, C) of the object O in the images. Thus, the sIRC problem is reduced to
the IRC(R) problem.

3. Conclusions resulting from the mathematical modeling of the

sIRC problem

Conclusion 1. Generally speaking, for each Recognition(O, I) algorithm the
image I becomes a searching space for the object to be recognized O(P, C).

Conclusion 2. The complexity of the algorithm Recognition(O, I) is direct
proportional with the dimension of the image I and with the dimension of the
codes P and C :

O(Recognition(O, I)) = O(Dim(I)×Dim(P)×Dim(C))

4. Final results and conclusions

Resuming the statements before, we can reach the following final results.

Result 1. The difficulty of the simplified version of the problem sIRC is a
consequence of the complexity of the algorithm Recognition(O, I).

MODELING OF THE IRC PROBLEM 119

Result 2. The essential step in the recognition process of the object O is the
feature extraction of the patterns and of the information content (P, C) from
the image I. Notice. This feature extraction step is inevitable because the
image I is formed by a matrix of pixels, but the descriptors (P, C) are a pair
of codes describing the shape and the information content of the object O.

Result 3. The complexity of the algorithm Recognition(O, I) is directly pro-
portional with the dimension of the features (P, C) extracted by the sub-
algorithm FeatureExtraction(O), the main component of the second step of
the recognition process, pointed out earlier in the diagram of the image recog-
nition process.

Result 4. The complexity of the algorithm Recognition(O, I) is given by the
formula:

O(Recognition(O, I)) = Dim(I)×O(FeatureExtraction(O))

where O(FeatureExtraction(O)) is the complexity class of the
FeatureExtraction algorithm.

Important notice. The extraction of the color and of the pattern fea-
tures from the image may imply a very consistent number of operations m
(i.e. associations and relations) over the pixels within the interest zones. The
complexity of the extraction algorithm of the object O becomes:

O(FeatureExtraction (O))) = m×Dim(ExtractionZone)
Note that the determination/discrimination of the interest zones (which

could contain the object) is the most important but also the most difficult step
in the entire feature extraction process. This can lead to a situation wherein
the recognition of an object having dimension 200×200 pixels, within an image
having a resolution of 800×600 pixels and 256 colors, could require a number of
operations directly proportional with the huge value 800×600×256×200×200,
greater than 1012.

The final conclusion about the difficulty of the image recognition and clas-
sification problem is that a proper solution of the problem and of its simplified
version sIRC depends in the most direct way on the design of an efficient pat-
tern/information content extraction sub-algorithm.

References

[1] Gonzalez R., Woods R. - Digital Image Processing, Prentice Hall, 2002, 2nd Edit.
[2] Jain A., Duin R., Mao J. - Statistical Pattern Recognition: A Review, IEEE

Transactions On Pattern Analysis and Machine Intelligence, Vol. 22, No. 1, pp.
720-736, January 2000.

120 IOAN ISPAS

[3] Russ, John C., The image processing handbook, 5th ed., CRC Press, 2006.
[4] Richard O. Duda, Peter E. Hart, David G. Stork, Pattern Classification, 2nd ed.,

Wiley Interscience, 2000.
[5] Sankar K. Pal, Amita Pal (eds), Pattern Recognition. From Classical to Modern

Approaches, World Scientific Publishing Company, 2002.
[6] Mitra Basu and Tin Kam Ho (eds), Data Complexity in Pattern Recognition,

Advanced Information and Knowledge Processing, Springer-Verlag, 2006.
[7] Bahram Javidi (ed), Image Recognition and Classification. Algorithms, Systems,

and Applications, CRC Press, 2002.
[8] Bernd Jahne, Digital Image Processing, 5th ed., Springer, 2002.
[9] Yali Amit, 2D Object Detection and Recognition. Models, Algorithms and Net-

works, The MIT Press, 2002.
[10] Sing-Tze Bow, Patern Recognition and Image Preprocessing, 2nd ed., Marcel

Dekker Ltd., 2002.
[11] Ioan Ispas, The image recognition and classification, a four-steped modeling, Proc.

2nd International Conf. on European Integration - Between Tradition and Moder-
nity, Petru Maior University, T̂ırgu Mureş, Sept 20-21, pp. 724-730, 2007.

[12] Kian-Lee Tan, Beng Chin Ooi, Chia Yeow Yee - An Evaluation of Color-Spatial Re-
trieval Techniques for Large Image Databases, Multimedia Tools and Applications,
14, 55-78, 2001, Kluwer Academic Publishers.

[13] elib.cs.berkeley.edu/photos/classify/
[14] Oge Marques, Borko Furht - Muse: A Content-Based Image Search and Retrieval

System Using Relevance Feedback, Multimedia Tools and Aplications, 17, 21-50,
2002, Kluwer Academic Publishers.

[15] Y. Alp Aslandogan, Clement T. Yu, Ravishankar Mysore, Bo Liu - Robust content-
based image indexing using contextual clues and automatic pseudofeedback, Mul-
timedia Systems 9: 548-560 Springer-Verlag 2004.

[16] Kian-Lee Tan, Beng Chin Ooi, Chia Yeow Yee - An Evaluation of Color-Spatial Re-
trieval Techniques for Large Image Databases, Multimedia Tools and Applications,
14, 55-78, 2001, Kluwer Academic Publishers.

[17] A. Srivastava, A.B. Lee, E.P. Simoncelli, S.-C. Zhu - On Advances in Statistical
Modeling of Natural Images, Journal of Mathematical Imaging and Vision 18: 17-
33, 2003 Kluwer Academic Publishers.

[18] Jörg Dahmen, Daniel Keysers, Hermann Ney and Mark Oliver Güld - Statisti-
cal Image Object Recognition using Mixture Densities, Journal of Mathematical
Imaging and Vision 14: 285-296, 2001, Kluwer Academic Publishers.

[19] Martin Heczko, Alexander Hinneburg, Daniel Keim, Markuswawryniuk - Mul-
tiresolution similarity search in image databases, Digital Object Identifier (DOI)
10.1007/s00530-004-0135-6, Multimedia Systems 10: 28-40, Springer-Verlag 2004.

[20] Wei-Ying Ma, B. S. Manjunath - NeTra: A toolbox for navigating large image
databases, Multimedia Systems 7: 184-198 (1999) Multimedia Systems, Springer-
Verlag, 1999.

[21] Stanford Encyclopedia of Philosophy, The Church-Turing Thesis,
first published Jan 8, 1997; substantive revision Aug 19, 2002.
http://plato.stanford.edu/entries/church-turing/

N. Iorga 1, T̂ırgu-Mureş

E-mail address: ispas@science.upm.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

GREENLIFE – A MMORPG THAT STIMULATES AN
ECOLOGICAL BEHAVIOR

MIRCEA CIMPOI, RADU MEZA, DIANA ZOICAŞ, CRISTINA CIUHUŢĂ,
AND DAN SUCIU

Abstract. In recent years, MMOGs (Massively Multiplayer Online Games)
had become popular. In the same time, more and more ways of implement-
ing interactions between real world and game’s virtual worlds are devel-
oped. These facts gave us the idea to develop GreenLife application, as a
solution of involving people in recycling and ecological activities. Green-
Life is a Massively Multiplayer Online Role Playing Game and its basic
idea is recycling business management. The game resources are increased
based on players behavior in their real life.

Key words: multiplayer game, online gaming, role-playing game.

1. Introduction

Massively Multiplayer Online Role-Playing Games (MMORPGs) are a new
class of Multi-User Domains (MUDs) - online environments where multiple
users can interact with each other and achieve structured goals. The first
MUD - an adventure game in a persistent world that allowed multiple users to
log on at the same time - was created in 1979 by Roy Trubshaw and Richard
Bartle [1].

Even if MUDs descended from Role-Playing Games (RPGs), the two gen-
res emerged around the same time and co-evolved beginning in the early 70’s
and became popular during the 80’s. Both games allowed users to create
characters based on numerical attributes (like power, dexterity, intelligence)
and combat-oriented roles (ie. warrior, archer, healer, cleric, druid etc) with
different strengths and weaknesses. Game-play typically revolved around a
combination of interactive story-telling and logistical optimizations under the
guise of slaying monsters and attaining higher levels and skills.

Received by the editors: June 1, 2008.
2000 Mathematics Subject Classification. 68N01, 68U20.
1998 CR Categories and Descriptors. I.2.1 [Computing Methodologies]: Artificial

Intelligence – Applications and Expert Systems - Games ; I.6.8 [Computing Methodolo-
gies]: Simulation and Modeling – Types of Simulation - Gaming .

121

122 CIMPOI, MEZA, ZOICAŞ, CIUHUŢĂ, AND SUCIU

In RPGs, a designated Game Master controlled the outcome of events
based on dice-rolls and references to charts and tables. In MUDs, this was
controlled by the server. As the graphical and processing capabilities of the
modern personal computer increased, and as accessibility to the Internet be-
came widely available, it became possible in the early 90’s to build MUDs with
graphical front-ends.

Ultima Online, launched in 1997, is recognized to be the first MMORPG -
a persistent, graphical, online environment that allowed thousands of users to
be logged on at the same time. The second MMORPG, EverQuest, launched
in 1999 was the most popular MMORPG in North America for more than 5
years. [8] Today hundreds of MMORPGs are available over the internet, some
of them with millions of registered users and thousands online users in every
moment. According to statistics presented on Gamespy.com, for Half-Life and
Counterstrike games there are more than 50.000 users online everyday and
Lineage games had more than 2.000.000 (paying) subscribers at the end of
2004. The average age of MMORPG players is round to 26, with a range from
11 to 68. The lower and upper quartile boundaries are 19 and 32 respectively.
[7]

In the same time, the connection between the virtual worlds created in
MMORPGs and the real life became stronger and stronger:

• users with very good abilities in playing a particular game are selling
virtual items (weapons, buildings or technologies) or even their own
accounts via e-Bay;

• game creators are selling different real objects that allow game users
(based on some codes) to unlock game facilities;

• certain amounts of virtual resources could be obtained in exchange for
real money.

The popularity of MMORPGS and the various possibilities of influencing
the virtual world through real world actions gave us a perfect context to imag-
ine a way to involve people in recycling activities. We have imagined a virtual
world modeled around the recycling concept and business management. The
solution that we proposed is called GreenLife. Its core consists of a MMORPG
and two distinct components that provide two ways of supporting the game
from the outside world:

• ShopSmart program: using your eco-card to get some money for eco-
friendly shopping;

• Recycling - get in-game resources for equivalent amounts of recyclable
materials taken to Collecting Centers.

A MMORPG THAT STIMULATES AN ECOLOGICAL BEHAVIOR 123

2. GreenLife description

The game site opens with a game setting (planet Earth depleting its re-
sources, extracting more and more each day, recycling very little) and de-
scription (what are the objectives of a player and how they can develop their
recycling business).

The basic idea of the game is recycling business management. Each player
starts with an amount of money. The first thing a player has to do is to
buy one or several locations. Locations are defined as sectors of the areas
corresponding to cities. Each city has a certain amount of waste that can be
recycled. Each sector represents a percentage of the city’s recyclable waste.
Depending on the size of the city and implicitly on the amount of waste, each
location (sector) has a price.

After buying one or several locations, the player buys/builds recycling fa-
cilities at each location. These facilities can be upgraded as the game develops.
A facility converts waste into a certain amount of recycled resources per day
(depending on the technology level of the facility). These resources (glass,
tin, wood and plastic) can be sold for money at the market (the market will
fluctuate daily depending on the amount of that kind of resource sold overall
the preceding day). The market will use real-world recycled resource prices as
reference. As the game develops, the player can buy new locations and build
new facilities in neighboring areas thus expanding the profits. Also, for each
facility, the user can build one specialization annex that boosts the output of
one specific resource (glass, tin, wood and plastic).

Players can interact with each other by chatting, forming alliances and
competing for better locations (takeover). A player can try to takeover a
certain location from another player. The prerequisites for this action are:
the owner of the location the player wants to takeover is within two levels
(overall technology level) of him and the hostile player either already has a
location in that city or is part of an alliance within which one player already
has a location in that city.

The player can protect himself against takeovers by investing in commu-
nity support (can be achieved by giving out some of the money for recycling
education at the community level, also increases the amount of recyclable
waste for that location) and profitability. The outcome of a takeover action
is computed depending on the technology level and profitability of the hostile
player versus the community support and profitability. When a takeover suc-
ceeds, the hostile player obtains the respective location but not the facility.
This can be bought (and downgraded 1 or 2 levels) from the previous owner for
a certain amount of money (which the previous owner receives). The hostile

124 CIMPOI, MEZA, ZOICAŞ, CIUHUŢĂ, AND SUCIU

player also has the option of building a new facility from scrap and not paying
for the existing one.

3. GreenLife architecture

Most of commercial MMORPGs have been implemented as client server
systems where the global game state consisting of positions and states of all
players is managed in a centralized way. The centralized control has advan-
tages in keeping security high and implementation easy. The model used for
our MMORPG is based on a desktop client application. The decision stays
on the advantages gained by using Presentation Foundation and on the need
to have an executable proof of concept version. Figure 1 contains the archi-
tectural diagram of GreeLife system. The main components of this diagram
are:

• GreenLife MMORPG - available as a desktop application version (in
future it will be replaced with a web application version);

• GreenLife Game Service - WCF web service that facilitates the access
to the database.

• GreenLife Mobile (Collecting Center, Shopping Center) - the mobile
device version of the game. Communication will be achieved using
Mobile Service

Figure 1. GreenLife architecture

Green Life database has the following structure:

A MMORPG THAT STIMULATES AN ECOLOGICAL BEHAVIOR 125

Figure 2. GreenLife user management tables

Users, Alliances and UserAlliances are tables that contain information
about GreenLife registered users and groups of interests formed by them during
game play.

UserModels stores 3D models of factories build / owned by a specific user.
UserResources table contains amounts of specific resource (glass, tin, wood

and plastic) owned by a user. The records of UserResources together with
Users.Points field help users to develop and increase their recycling business.

Products is an isolated table which contains the list of items that can
increase game points of an user if they are obtained from certain point of
sales (like hypermarkets, supermarkets or petrol station chains) involved in
GreenLife system.

Locations, SectorOfLocations, Resources and ResourceInLocations describe
the waste quantities and their position on Earth map. Each user will own one
or more factory models (stored in FactoryModels table) that will exploit the
waste of a specific location sector.

126 CIMPOI, MEZA, ZOICAŞ, CIUHUŢĂ, AND SUCIU

Figure 3. GreenLife resources/points management tables

Accounts and ResourceAcounts define the type and quantity of resources
and money owned by a user and which is not visible for other competitor in
the game.

Factories, FactoryModels, FactoryModelAnnexes and TechnologyLevels
store 3D models descriptions used for graphical representation of factories
and their annexes and their capacity and cost of exploiting the waste from a
certain location sector.

Different technologies have been used in our implementation. We mention
here Windows Presentation Foundation - that provides the ease of creating a
rich user experience, with minimum of code behind, Windows Communication
Foundation - for reliability and security of data transfers, Microsoft Live Labs
Volta and Virtual Earth v6 API - for game map representation and 3dvia
ShapeIt for building tridimensional models of recycling factories.

A MMORPG THAT STIMULATES AN ECOLOGICAL BEHAVIOR 127

Figure 4. GreenLife map locations management tables

4. Conclusions

GreenLife MMORPG solution is characterized by the following novelties:

• it is a new type of MMORPG, considering the ecological and econom-
ical perspective;

• it redirects game dependence towards ecological education;
• it is a stronger bound between real life and virtual life through interac-

tion with economic agents and the involvement of non-playing relatives
and acquaintances;

• a new model of eco-game of great impact with the young and many
others. The existing solutions of this kind were limited to simple action
and a small target, preschools through teens in general.

128 CIMPOI, MEZA, ZOICAŞ, CIUHUŢĂ, AND SUCIU

We think that GreenLife MMORPG solution is interesting as a commer-
cial project, mainly because of the interaction with the real world, and the
advantages it presents in the collaboration with hypermarket networks and
recyclable waste collecting centers. Offering low implementation costs, and
the chance to promote the game easily (advertising in collaboration with mar-
kets), our solution seems a good opportunity for a successful and fast growing
business. We believe that the catchy story behind the game and the attractive
graphics, together with the rewards from the real world will contribute to the
success of the idea.

References

[1] Bartle, R., “Early MUD History”, 1990.
Available at http://www.mud.co.uk/richard/mudhist.htm

[2] Chris Chambers, Wu-Chang Feng, Sambit Sahu, Debanjan Saha, “Measurement-based
Characterization of a Collection of On-line Games”, Proceedings of the Internet Mea-
surement Conference on Internet Measurement Conference, pp. 1-1, 2005

[3] T. Iimura, H. Hazeyama, Y. Kadobayashi, “Zoned Federation of Game Servers: a Peer-
to-peer Approach to Scalable Multiplayer Online Games”, Proceedings of the 3rd Work-
shop on Network and System Support for Games (NETGAMES 2004), 2004

[4] Yugo Kaneday, Hitomi Takahashiy, Masato Saitoy, Hiroto Aiday, Hideyuki Tokuda, “A
Challenge for Reusing Multiplayer Online Games without Modifying Binaries”, Pro-
ceedings of 4th ACM SIGCOMM workshop on Network and system support for games,
pp. 1-9, 2005

[5] R. Koster, “Online World Timeline”. 2002
Available at http://www.legendmud.org/raph/gaming/mudtimeline.html

[6] Shinya Yamamoto, Yoshihiro Murata, Keiichi Yasumoto, Minoru Ito, “A Distributed
Event Delivery Method with Load Balancing for MMORPG”, Proceedings of 4th ACM
SIGCOMM workshop on Network and system support for games, 2005

[7] Nicholas Yee, “The Demographics, Motivations, and Derived Experiences of Users of
Massively Multi-User Online”, Graphical Environments, 2004

[8] Nicholas Yee, “The Psychology of Massively Multi-User Online Role-Playing Games:
Motivations, Emotional Investment, Relationships and Problematic Usage”, appeared
in Avatars at Work and Play: Collaboration and Interaction in Shared Virtual Envi-
ronments, edited by R. Schroder and A. Axelsson, London: Springer-Verlag, 2005

Department of Computer Science, Babeş-Bolyai University, 1 M. Kogălniceanu

St., RO-400084 Cluj-Napoca, Romania

E-mail address: cm20294@scs.ubbcluj.ro

E-mail address: mr20338@scs.ubbcluj.ro

E-mail address: zd29939@scs.ubbcluj.ro

E-mail address: cc20297@scs.ubbcluj.ro

E-mail address: tzutzu@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LIII, Number 1, 2008

ROBOSLANG – CONCEPT OF AN EXPERIMENTAL
LANGUAGE

OVIDIU SERBAN

Abstract. There are very few platforms trying to unify the program-
ming process of robots and none of them is concerned with building an
extensible language that would allow anyone to have access to the hard-
ware. RoboSlang’s main goal is to allow programmers to build easily new
modules without needing any hardware programming knowledge and their
concern should be to create better algorithms for some well-known prob-
lems.
Keywords: Robots, Programming on embedded device, Programming
languages, Communication

1. Introduction

Programming on different types of platforms (such as different hardware
devices and operating systems) was always a difficult task and when trying to
program non standard devices or mobile systems without a proper language
or platform can be a very a very dangerous approach. Middleware platforms
[12] were developed to unify the developing process, but they are only the
starting point for the programming process and not all the problems were
being solved. There are some problems that you may need to solve, even if
you program on top of a Middleware platform, such as unifying the data feeds(
communications and sensors data) or planning tasks in a distributed way.

This paper presents the concept of an experimental language and the way
it could be implemented using some of the programming languages (such as
Java, C, C++ or SQL). It is trying to answer some usual questions about
robots communication and solve some of the basic problems of exchanging
data. There are some projects oriented on the intelligent side of the robots,
trying to search for a perfect algorithm that solves a problem, but there are
many communication issues and hardware problems that should be solved in
a different manner. RoboSlang is an entry point for every other project that

Received by the editors: October 9, 2007.
2000 Mathematics Subject Classification. 68T05, 91E45.
1998 CR Categories and Descriptors. I.2.6 [Learning]: – Concept learning .

129

130 OVIDIU SERBAN

intends to do something intelligent with some hardware and it should not be
focused on the platform programming issues.

Also there should be a transparent way of exchanging information and
the intelligent devices should have a platform ready for programming and for
further extension. RoboSlang is trying to offer a solution for this issue. Many
industrial project desire to achieve communication between the production
machines, but they are, in most of the cases not able to do so. What if there
existed a platform able to do these tasks such that the main concern of the
industrial programmers would be a better algorithm to improve the production
and not a hardware issue for some component ?

This platform is designed to be scalable by the ability to add as many
dialects as needed. So if you need a domain specific dialect you will not need
to implement all of the transmission mechanism from its base point, you should
only extend RoboSlang for what you need.

There are many hardware incompatibilities and so many different types of
architectures that only a transparent layer for every kind of communication
should solve the problem, so RoboSlang proposes a unified way to transmit
messages between devices.

The paper is organized as follows: The motivation and the real problems
that should be handled when trying to program such platform are described
in Section 1. Section 2 contains the actual description of the language. The
two main dialects of RoboSlang are presented in Sections 3 and 4. Section 5
contains a few of the implementation problems and some programming sug-
gestions. Section 6 concludes the paper.

2. Motivation of the implementation of such a platform

2.1. What would robots say to each other? The robots can exchange
information like sensors data or positioning diagrams. This information has a
huge potential in a network considering the fact that many robots and devices
do not have powerful hardware or sensors to work with. An entire theory about
distributed computing [13] was developed, but there is no standard protocol
of communication between two devices that are able to exchange information.

Not only robots and smart devices need to communicate results, also the
humans would like to communicate with the robots in a “human-like“ language
and if they are capable of doing that, why would not be any other smart living
creature capable of communicating with a robot or a smart device.

Imagine a situation when a cat would like to ask your robot to clean all
the mess inside its sleeping place. Why would not that be possible? If you
consider that a cat is capable of thinking and expressing its thoughts then
there should not be a problem to exchange the information.

ROBOSLANG – CONCEPT OF AN EXPERIMENTAL LANGUAGE 131

2.2. Hardware and other communication problems. Hardware compat-
ibilities are a real issue. There are so many possibilities for exchanging infor-
mation that even trying to keep a collection with all the data for them is a
problem. The platform will try to offer support to any further implementations
so that the hardware level will be transparent.

For example if you consider different types of wireless protocols [2], you
will see that some of them are incompatible even if they are supported by the
same device and you do not have to mention problems related to incompatible
devices that support the same protocols. Also related to wireless problems
there are some issues for data transmission in a hostile environment. We
should consider that our device should be able to transmit data even if the
environment is unfriendly.

Suppose that all the hardware problems are not so difficult to solve, there
are also some software and communication problems. For instance two plat-
forms support different type of data, one is able to deal with big quantity of
information and other is very slow and cannot process such information. What
can we do ? Fortunately the network research area gives us some answers, but
there are some problems that still remain unsolved.

Another problem is related to listening process, when you search for an-
other device to exchange information. If you do this from time to time, it is
most probable to miss some of the partners. If you do this permanently then
you could waste valuable energy that could be used to perform other tasks.
In the real life there are some situations when you establish a synchronization
moment with another partner, but in robotic like situations this is not a good
way to discover other devices. You should be able to discover and exchange
information as much as you can and as fast as you can, not to wait for a
certain moment.

Therefore the hardware and communication problem still remains open,
but in this area a lot of research is done so RoboSlang would be able to apply
certain fixes as fast are discovered by other researchers. The main concern
on the developing process should be the platform and not to solve certain
hardware or software problems.

3. RoboSlang

This section contains the description of the proposed language (called Ro-
boSlang).The language itself should be as light as possible. It must contain
a discovery procedure, that should also involve a handshake mechanism and
a procedure for choosing a dialect. The entire process can be described in a
step by step manner :

132 OVIDIU SERBAN

Figure 1. The handshake and dialect choosing mechanism

• Step 1 (Discovery procedure): Robots are inside the “visible“ area of
each other. They recognize some hardware signatures (such as wireless
signal [3, 4] or an available Bluetooth service [1]) and try to establish
a communication channel.

• Step 2 (Handshake mechanism): The handshake procedure consists
of exchanging of identification data. This information contains a key
(unsigned nonzero integer on 16 bits) that uniquely identifies each de-
vice. The uniqueness of the key must be assured by the developer of
the platform using a key generator application. In the first version of
the system the key will be assign manually at the moment of assigning
name to devices, but further improvement may consist of an automat-
ically way of assigning the keys. When a device receives identification
data from other devices it must send back a confirmation message.
If no confirmation message is received the identification data will be
resent. The handshake process ends when each of the devices has re-
ceived and accepted the identification data of the other devices. Once
the communication channel between two devices is set, each of them
will assign a local key to the session for the simple fact that between
two devices could exist several sessions.

• Step 3 (Dialect choosing): Each robot or device has a list with some
known dialects. The basic information about a dialect is:

– the name of the dialect: 61 printable ASCII characters2;
– the version of the dialect: 8 bits integer.

1There are 94 characters and there 4.2 * 1015 combinations that can be used for choosing
the names. The names are given in a fixed size, so if you want to specify a 3 character
dialect, then you should put 3 spaces after or before the name.

2Printable ASCII characters are numbered from 33 to 126 in decimal notation

ROBOSLANG – CONCEPT OF AN EXPERIMENTAL LANGUAGE 133

More information about the structure of the dialects will be discussed later
in this section.

The handshake and dialect choosing mechanism is described in the Figure
1.

After choosing the dialect the two robots will decide what information
should change. The structure of the exchange package remains the same for
every dialect.

The package structure is as follows:

• 16 bits - the unique identification key of the destination device or 0 for
a broadcast. The key is written in fixed 16 bits form.

• 32 bits - representing the length of the data transmitted in the package(
number of bytes)

• 1 bit - the checksum bit of an error detection algorithm for the trans-
mitted data the actual data

The proposed checksum algorithm is a simple one revealed by the following
function:

(1) checksum(x) = XORi=1,..nxi,

where xi is the bit representation of x, n is the length of x and XOR is the
bits operator applied on multiple bits.

There are some special packages transmitted by the RoboSlang handshake
and dialect negotiation protocol. For a better understanding of the concepts
of the language and dialects I will use a hex base notation for all the numbers.
The first of the series is the presentation package.

It has the following structure:

0000h 000000000000000Fh checksum(key) key

And the response should be:

key 000000000000000Fh checksum(key) key

After this procedure the robots will ask each other the interested dialect
list:

key 0000000000000040h checksum(command) command

134 OVIDIU SERBAN

command = { transmission error == 0h
retransmit data == 1h
do you know == 3h dialect version
yes == 7h
no == 15h
begin == 31h
end == 63h }

This codes should be enough for device to establish communication and
begin the whole exchange process. The RoboSlang language should be kept as
light as possible because it should be used only for initiating the data exchange
process.

The codes are chosen to solve the transmission error problem in a easy
way, so if you consider the bit representation of these commands you will see
that each of it begins with a variable number of zeros followed by a variable
number of ones. When receiving a command, a simple check should be made to
verify if the data conforms with the specification. If not both error commands
(transmission error and retransmit data) will be send.

4. CommonRoboSlang (CRS)

4.1. The tasks - breaking into small pieces. CommonRoboSlang is a
dialect of RoboSlang and its main goal is to handle the tasks in a uniform
manner. Imagine a huge task that a single robot could not handle, but a lot of
them can. So you need a proper language to exchange the information about
the task and the way it can be divided. Also you would need an algorithm to
divide these tasks.

The main principles of CRS are:
• If you can do a task without any help, do it!
• If you can’t do a task without any help, then consider the most suitable

robot to do it.
So first of all you would analyze that it is better to split the task and than

to do it. A second argument for this should come when there are not any
robots available in the area and you need to search them. Also you should
consider the transmission time. When all the answers are negative then you
should consider splitting as an option.

When you split something you take the task that you can do in an afford-
able time, but then it comes another question: “How many units of time are
affordable¿‘. So CRS answers this question in a simple manner. Try to split
the task in as many pieces as the known robots are. Also you should consider
the task that you are able to perform.

ROBOSLANG – CONCEPT OF AN EXPERIMENTAL LANGUAGE 135

We talked about splitting tasks into small pieces, but what the tasks are?
A task is a collection of abstract steps that you should follow to reach at the
end. Abstract steps are known algorithms and they cannot be divided into
small pieces. For instance an abstract step can be “go from point x to y“ and
also “climb a mountain“. I suggest keeping the steps as small as possible, but
if it is necessary you can construct them in a more complex way. These steps
are encoded so the transmitted information is as well, as small as possible.
The encoding of the steps is chosen by the programmer and it does not have a
standard form. If a robot does not know what an abstract step means then it
should reject the whole task. The rejection cause can be one of the following:
“unknown resource needed“, “unknown steps“ or “task too big“.

The robot should keep a log of the current task so that every time it would
know how much time remains.

Nobody should consider that splitting the tasks and describing the ab-
stract steps is an easy job. In fact the intricacy of the problem is equivalent
to designing a very complex programming language. The description of the
abstract steps is a difficult task and putting them in the task collection can
be also very complex. You must decide if to create a task as an abstract step
or to split it into small pieces and let the devices decide their flow. In the
final stage, when a device is getting and mixing all the results can be also
considered a task and could be designed as an abstract step collection.

4.2. The main commands of CommonRoboSlang. After switching the
conversation to CRS the dialect will have a standard form of question(Q) and
answer(A):

Q: status
A: busy means that the other party does not ac-

cept any task for the moment
idle this means that the robot is available and

ready for any task
none is an undefined state, meaning that the ro-

bot have some problems or could not serve
any task

Q can you perform [task]
A: yes means that the robot is sure that it can

perform the given task
no means that the robot is not able to per-

form the entire task
possible means that the robot is not sure about the

task so it can be rejected later
The other phrases of the dialect have an imperative form:

136 OVIDIU SERBAN

• job done [task] [result]
• job rejected [cause]

Task assignment should be considered immediately and the results should
be given to the robot that assigned the task. Also when all the sub tasks are
done the main robot should finish the task also.

5. HumanRoboSlang (HRS)

This dialect is one of final goals of RoboSlang as smart devices should
be able to communicate with humans in a natural manner. There are some
problems related to this subject and that include human language semantics,
natural language processing [11], the criteria to choose a certain language
and the list could continue. If we speak of getting the semantics of a certain
language we would see that current research in this area is not very surprising
[14]. Unfortunately this subject is far away from human dream that we should
be able to talk to robots and they would be able to perform tasks given by
us. There is some hope also because there are some algorithms capable of
answering and learning from humans, but they are still in research and used
only for experimental purposes or fun.

The HumanRoboSlang is proposing o way of communicating only certain
task to a robot using an SQL like language [15]. So suppose that every task
and its description and steps are described in a database. Your only problem
now is to figure out what task should be done at a certain time and you take
the ID of the task from the TASKS table and insert it into your REQUESTS
table. The device will query the table from time to time and perform the
tasks ordered by the priority. I know that this is far from a human to robot
language, but is a simple way to communicate and it is very easy and low
costing solution to implement.

Once the research in the natural language processing is getting some useful
results, then a certain solution for HumanRoboSlang should be found, but until
then we will be able to communicate with smart devices thought some pseudo
natural languages.

6. Implementation

Regarding to the programming languages, there is no restriction for using
one or other. If you consider one language better than other, then search
for the RoboSlang architecture implemented in your language and begin the
programming process. Also there are some cases when you do not really need
a RoboSlang implementation and you only want to send or receive some data
from a certain language using a known data exchange method.

ROBOSLANG – CONCEPT OF AN EXPERIMENTAL LANGUAGE 137

The platform will be implemented using Java [7] and C on a Linux [5, 6]
platform because of the portability and numerous Linux distributions that
can be installed on every kind of platform. RoboSlang is not intending for
the moment to build a platform of its own, but in time, if it is considered
necessary, it would be considered as an option.

As an approach for the platform implementation we can use network pro-
gramming after we establish an IP connection with a server. The whole scan-
ning process and wireless network [10] detection can be done by the operating
system. Another way of implementing the connection between robots is based
on bluetooth programming [9]. It can be easily done in Java and Java ME
[8] and it does not need any more platforms. There are a few settings to be
done under Linux for using bluetooth, but there are a lot of materials on the
Internet describing how to do it.

7. Conclusions and further work

The current researches done by some companies suggested that there isn’t
a certain platform available on the market that could solve the problem of
communication between two intelligent devices. So every product comes with
its own firmware that it is able to do some tasks that would be designed for,
but nobody is concerning in exchanging results and important data between
two or more devices. Even if the industrial usage of the robots is extending,
the companies propose non distributed solutions for task management and
production improve. There is some research for algorithms to control robotic
swarms, but there is not a stable platform to test those algorithms. Swarm OS
from IRobot Industries is a platform for swarms, but that operating system
is still under research, it would not be available for free and their purpose is
to control only their hardware (IRobot swarms) [16]. After performing some
research you would see that even is a critical problem there are few companies
that are implementing some platforms for robots programming, but none of
them is dealing with the robots in an autonomous manner and none of them
is proposing a distributed solution and a communication platform. RoboSlang
will begin as an Open Source project and will became a solution for some of
the companies that would like to have real intelligent devices, because they
will be able to exchange data and work as a team.

References

[1] Kenneth C. Cheung, Stephen S. Intille, and Kent Larson : An Inexpensive Bluetooth-
Based Indoor Positioning Hack, Massachusetts Institute of Technology Press, 2003

[2] Andrew S. Tanenbaum: Computer Networks 4rd Edition, Prentice Hall ,2003
[3] Halk Gmskaya, and Hseyin Hakkoymaz : WiPoD Wireless Positioning System based on

802.11 WLAN Infrastructure, ENFORMATIKA, 2005

138 OVIDIU SERBAN

[4] Y. Wang, X. Jia, H.K. Lee : An indoors wireless positioning system based on wire-
less local area network infrastructure, Satellite Navigation and Positioning Group
(SNAP),School of Surveying and Spatial Information Systems ,2005

[5] Daniel Bovet , Marco Cesati: Understanding the Linux Kernel, Third Edition, O’Reilly
Media, 2005

[6] Linux kernel docs and FAQ http://www.kernel.org/pub/linux/docs/lkml/, last vis-
ited on 05.05.2008

[7] Sun Java API and Docs http://java.sun.com/, last visited on 06.05.2008
[8] Sun Java ME API and References http://java.sun.com/javame/reference/apis.jsp,

last visited on 06.05.2008
[9] C. Bala Kumar : Bluetooth Application Programming with the Java API , Morgan

Kaufmann Publishers, August 2003
[10] Andreas Lerg : Wireless Networks: LAN and Bluetooth, Data Becker, August 2002
[11] Natural language processing

http://en.wikipedia.org/wiki/Natural_language_processing,
last visited on 08.05.2008

[12] Hans-Arno Jacobsen: Extensible Middleware, Kluwer Academic Publishers, 2004
[13] Jim Farley : Java Distributed Computing, O’Reilly Media, 1998
[14] I. Heim; A. Kratzer : Natural Language Semantics, Springer Netherlands, 2002
[15] Alex Kriegel, Boris M. Trukhnov : SQL Bible,John Wiley & Sons Inc, 2003
[16] IRobot swarms http://www.irobot.com/filelibrary/GIvideos/swarm3%20ad.html,

last visited on 12.05.2008

Babeş Bolyai University, Department of Computer Science, 1, M. Kogălniceanu

St., Cluj-Napoca, Romania

E-mail address: so29769@scs.ubbcluj.ro

	00coperta
	00cuprins
	01opr09KJ1
	02opr09KJ3
	03opr09KJ4
	04opr09KJ5
	05opr09KJ6
	06opr09KJ7
	07opr09KJ8
	08opr09KJ9
	09opr09KJA
	10opr09KJB
	11opr09KJC
	12opr09KJD
	13opr09KJE

