
Anul LII 2007

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

2

Redacţia: 400084 Cluj-Napoca, Str. M. Kogălniceanu nr. 1 Tel: 405300

SUMAR – CONTENTS – SOMMAIRE

L. Ţâmbulea, M. Frenţiu, Professor Florian Mircea BOIAN at his sixties 3

F. Boian, Web Source Code Post-Processing: A New Approach Based on Classic
Models and Methods ... 13

C. M. Pintea, A. Vescan, Component-based Ant System for a Biobjective Assignment
Problem ... 21

M. Antal, Toward a Simple Phoneme Based Speech Recognition System 33

P. V. Borza, D. Ghiţă, M. Nadăş, O. Sabou, S. Motogna, KnowledgeSense:
Encyclopedic System Based on Semantic Search through NLP 49

B. Pârv, S. Motogna, I. Lazăr, I. Czibula, L. Lazăr, ComDeValCo - A Framework for
Software Component Definition, Validation, and Composition 59

L. Ţâmbulea, I. Gânscă, Generalized Cylinders Surfaces ... 69

A. Sabău, Indexing the Evolution of Moving Objects within a 2D Space Using the
BrickR Structures .. 79

I. G. Czibula, G. Şerban, A Study on Clustering Based Restructuring of
Object-Oriented Software Systems ... 93

I. Lazăr, B. Pârv, S. Motogna, I. Czibula, L. Lazăr, An Agile MDA Approach for
Executable UML Structured Activities ... 101

L. Dioşan, D. Dumitrescu, Evolutionary Coalition Formation in Complex Networks.. 115

A. Sterca, Towards an Utility-Based TCP-Friendly Rate Control 129

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LII, Number 2, 2007

PROFESSOR FLORIAN MIRCEA BOIAN AT HIS SIXTIES

L. ŢÂMBULEA AND M. FRENŢIU

Professor Florian Mircea Boian graduated the Faculty of Mathematics-
Mechanics 32 years ago, i.e. in 1975. He had the opportunity to be a graduate
of the first promotion of the newly born section of Computer Science in our
Faculty, in that year 1971.

The first year after graduation he worked in a computing center of the
Carbochim-Cluj factory, and the following three years as an analyst in our
University Computer Center, where he gained huge real experience in program-
ming, and especially in operating systems. Since 1979 he became a member
of department, were we are being colleagues for almost thirty years. During
these years he stepped through all the didactic positions: assistant, lecturer,
associate proffesor and, since 1997, full professor in Informatics Systems. As
a teacher he realised various didactical and extradidactical tasks: admission
commisions, license examination commisions, doctoral coordinations, the main
promoter of the organisation of our computers network. He is a good colleague
and colaborator, has published many scientifical papers and books together
with some of his colleagues, and has participated to many scientifical grants
and contracts of our department. He is an active participant at the huge
evolution of Computer Science during the last thirty years.

He obtained his PhD degree in 1986, and since 2001 he is a PhD supervisor.
He has an important contribution in many fields of Computer Science, and
in the education of many generations of Computer scientists. Shortly, we
mention:

• didactical activities at 28 disciplines (lectures, seminaries, laborato-
ries);

• 12 published books, and 38 university manuals or culegeri de probleme;
• 78 published scientifical papers and 82 scientific conference presenta-

tions;
• director or member of many research grants, real industrial contracts;
• director of endowment grants, having as main beneficiaries our stu-

dents and the young faculty members he cooperates with.

2000 Mathematics Subject Classification. 6803.
1998 CR Categories and Descriptors. A.0 [General Literature]: GENERAL – Bi-

ographies/autobiographies .

3

4 L. ŢÂMBULEA AND M. FRENŢIU

We must underline the quality of his work in our Department of Computer
Science and University:

• His lectures are very appreciated by his students for the their clarity
and contents. Consequently, he was elected by many generations as
their graduation dean.

• He has introduced some new born disciplines in the Curriculum of the
Computer Science Section at our University.

• He is coordinating our well organised network of computers from our
laboratories.

• He has participated in many committees and juries of sesions of the
students communications or competitions in Computer Science and
Computer Engineering, or of school children in olympiads of Computer
Science. He was a member of the scientific board of the international
Computer Science contest for high school pupils in Central and Eastern
Europe, May 1994.

• He is a member of various scientifical organisations: SSM (Romanian
Society of Mathematical Sciences) since 1975; ACM (Association of
Computing Machinery) since 1995; EUNIS (European Universities In-
formating Systems) since November 1995; founding member of ANIRO
(Romanian National Association of Computer Scientists), since 1999;
founding member of RoEduNet Romanian Education Network; mem-
ber in the Editorial Advisory Board of: ”International Journal of In-
telligent Computing & Information Science”, Ain Shams University,
Cairo, Egypt; member in Editorial Board la ”Carpatian Journal of
Mathematics”, Univ. Baia Mare; Executive Editor of the Journal
”Studia Universitatis Babes-Bolyai”, series Mathematica-Informatica,
until 1996, co-president of the ”Teaching Center Cluj”, since 1998;
member in the National Comission RoEduNet of the Romanian Min-
istry of National Education since 1997; evaluation expert for grants of
the Romanian National Research Council of Higer Education, and of
the World Bank, since 1996; member in the Editorial Board of ”Studia
Universitatis Babes-Bolyai”, series Informatica.

• During the years 1994-2002 he has been the director of the newly born
Communication Center of our University.

• Starting from these years he succeded to gather many young enthusi-
atic and talented students, who have succeded in their future carrier.
Many of them received a PhD degree diploma and today are well ap-
preciated teachers, or are working in software companies in Romania
or abroad.

PROFESSOR FLORIAN MIRCEA BOIAN AT HIS SIXTIES 5

We, and all his colleagues do appreciate his hard work and effort to teach
our students and for the development of our didactical and scientifical activity
in Computer Science. We wish him a happy long life, full of achivements.

1. Scientific activity

1.1. Printed books.

(1) Informatica pentru elevi, ISBN 973-96096-2-7, Editura Microinformat-
ica, Cluj, editiile 1-2 1992, editia 3 1993, (coautor), 212 pagini.

(2) Programare Pascal; programe ilustrative, probleme propuse pentru
elevi si studenti, ISBN 973-96862-1-4, Editura Promedia-Plus, Cluj,
1995, (coautor), 228 pagini.

(3) Manualul ı̂ncepatorului ı̂n programare Pascal, ISBN 973-9215-04-1,
Editura Microinformatica, Cluj, 1995, (coautor), 252 pagini.

(4) Sisteme de operare interactive, ISBN 973-96494-1-6, monografie, Edi-
tura LIBRIS, Cluj, 1994, 416 pagini.

(5) De la aritmetica la calculatoare, ISBN 973-97535-5-8, Editura Presa
Universitara Clujeana, Cluj, 1996, 160 pagini.

(6) Programare distribuita ı̂n Internet: metode si aplicatii, ISBN 973-
9215-60-2, monografie, Editura Albastra (grupul Microinformatica),
editia 1 1998, editia 2 1999, editia 3 2000, 450 pagini.

(7) Bazele matematice ale calculatoarelor ISBN 973-8095-39-5, Editura
Presa Universitara Clujeana, Cluj, 2000, (coordonator, autor ı̂n co-
lab.cu Liana Bozga), 154 pagini.

(8) Programare concurenta pe platforme Unix, Windows, Java ISBN 973-
650-072-1, monografie, Editura Albastra - grupul Microinformatica,
Cluj, 2002. (coordonator, autor ı̂n colab.cu C Ferdean, R. Boian, R.
Dragos), 420 pagini.

(9) Tehnologii fundamentale Java pentru aplicatii Web, ISBN 973-650-
131-0, monografie, Editura Albastra - grupul Microinformatica, Cluj,
2004. (̂ın colaborare cu R. Boian), 469 pagini.

(10) Informatica de baza, ISBN 973-610-340-4, Editura Presa Universitara
Clujeana, Cluj, 2004. (̂ın colab.cu M. Frentiu, L. Tâmbulea, I. Lazar),
226 pagini.

(11) Arhitectura calculatoarelor. Limbajul de asamblare 80x86, ISBN 973-
651-037-2, Editura RISOPRINT, Cluj, 2005. (̂ın colab.cu A.Vancea,
D. Bufnea, A. Gog, A. Darabant, A. Sabau), 400 pagini.

(12) Sisteme de operare, ISBN 973-751-220-0 978-973-751-220-8, Editura
RISOPRINT, Cluj, 2006. (̂ın colab.cu A. Vancea, R. Boian, D. Bufnea,
A. Sterca, C. Cobrzan, D. Cojocar), 350 pagini.

6 L. ŢÂMBULEA AND M. FRENŢIU

1.2. Scientific papers.

(1) Metoda reducerii si marcajelor pentru rezolvarea problemei transpor-
turilor, ı̂n Studii si cercetari de calcul economic si cibernetica econom-
ica, Bucuresti, 1977, nr. 3, pp. 95-105.

(2) O metoda de rezolvare a problemei de transport dupa criteriul timp,
ı̂n Studii si cercetari de calcul economic si cibernetica economica, Bu-
curesti, 1980, nr. 4, pp. 35-42.

(3) Pastrarea bibliotecilor de subprograme stiintifice sub sistemul de op-
erare SIRIS, ı̂n Lucrarile primului simpozion national de teoria sis-
temelor, Craiova, 1980, vol II, pp. 260-264.

(4) Intocmirea orarelor ı̂n ı̂nvatamânt cu ajutorul calculatorului, (̂ın co-
lab.cu I. Boieriu, A. Diaconu s.a.), ı̂n Informatica pentru conducere,
progrese ı̂n informatica romaneasca, 1980, p. 127.

(5) Determinarea functiilor FIRST1, FOLLOW1 si EFF1 folosind metode
booleene, ı̂n Lucrarile celui de-al IV-lea colocviu national de informat-
ica, INFO-IASI, 1983, pp. 183-192.

(6) Automatizarea procesului de luare a deciziilor, (̂ın colab.cu Z. Kasa,
D. Oprean, L. Tâmbulea), ı̂n Supliment la revista economica, nr. 50,
1984, pp. 4-6.

(7) Syntactic Equivalence between Marked Graph Schemes and Loop-
Exit Schemes, ı̂n ”Babes-Bolyai” University, Faculty of Mathemat-
ics, Seminar on Computer Science, Preprint no. 4/1984, pp. 34-56.
(MR87h.68008, p. 4489).

(8) INTADA/k: Subsets of Ada language for Teaching Computer Pro-
gramming, ı̂n Proc. of the First Conference of Program Designers,
Eotvos Lorand University, Budapest, 1985 pp. 25-30.

(9) Programarea calculatoarelor asistata de calculator, ı̂n Lucrarile semi-
narului de cercetari interdisciplinare, Universitatea din Cluj-Napoca,
1985, pp. 17-18.

(10) Sistemul pentru instruire INTADA; cerinte, definire, implementare, ı̂n
Lucrarile celui de-al V-lea colocviu national de informatica, INFO-
IASI, 1985, vol II, pp. 550-557.

(11) O metoda eficienta de implementare a deexecutiei, (̂ın colab.cu A.
Szekely), ı̂n Lucrarile celui de-al V-lea colocviu national de informatica,
INFO-IASI, 1985, vol III, pp. 688-692.

(12) Reducing the Loop-Exit Schemes, ı̂n Mathematica, Cluj-Napoca, 28
(51), no. 1, 1986, pp. 1-7. (Zbl. Math. 614.68003, p.363).

(13) Towards a New Standard FORTRAN, (̂ın colab.cu M. Frentiu, Z. Kasa,
L. Tâmbulea), ı̂n ”Babes-Bolyai” University, Faculty of Mathematics,
Seminar on Computer Science, Preprint no. 6/1985, pp. 1-20.

PROFESSOR FLORIAN MIRCEA BOIAN AT HIS SIXTIES 7

(14) Simularea automatelor programabile, (̂ın colab.cu M. Frentiu, Z. Kasa,
L. Tâmbulea, L. Erdo, A. Szen), ı̂n Lucrarile simpozionului ”Informat-
ica si aplicatiile sale”, Zilele academice Clujene, Cluj-Napoca, 1985, pp.
44-51.

(15) Compilare conversationala bidirectionala cu aplicatii la sistemul IN-
TADA, ı̂n Lucrarile simpozionului ”Informatica si aplicatiile sale”,
Zilele academice Clujene, Cluj-Napoca, 1985, pp. 52-58.

(16) Folosirea corecta a matricelor ı̂n programarea modulara, (̂ın colab.cu
M. Frentiu), ı̂n Lucrarile Seminarului ”Didactica matematica”, 1986,
pp. 86-101.

(17) Loop-Exit Schemes and Grammars; Properties, Flowchartablies, ı̂n
Studia Univ. ”Babes-Bolyai”, Mathematica, XXXI, 3, 1986, pp. 52-
57. (Zbl. Math. 639.68017, p.353)

(18) A System for Program Writing and Debuging, (̂ın colab.cu M. Fren-
tiu, Z. Kasa), ı̂n ”Babes-Bolyai” University, Faculty of Mathematics,
Seminar on Computer Science, Preprint no. 5/1987, pp. 1-21.

(19) Analiza semantica bidirectionala, ı̂n Lucrarile celui de-al VI-lea colocviu
national de informatica, INFO-IASI, 1987, vol I, pp. 83-88.

(20) Analiza sintactica bidirectionala, ı̂n Lucrarile sesiunii stiintifice a CCUB,
Bucuresti, 1987, pp. 145-150.

(21) Sistem de programe pentru elaborarea statelor de functii, (̂ın colab.cu
M. Frentiu, Z. Kasa, L. Tâmbulea), ı̂n Lucrarile sesiunii stiintifice a
CCUB, Bucuresti, 1987, pp. 438-443.

(22) FORTRAN can be Improved, (̂ın colab.cu M. Frentiu, Z. Kasa, L.
Tâmbulea), ı̂n Studia Univ. ”Babes-Bolyai”, Mathematica, XXXII, 3,
1987, pp. 15-16.

(23) Reversibile Execution with Loop-Exit Schemes, ı̂n Studia Univ. ”Babes-
Bolyai”, Mathematica, XXXII, 3, 1987, pp. 29-36. (Zbl. Math.
638.68012, p. 321 si MR 1989, p. 119).

(24) Parallel Execution in Loop-Exit Schemes, (̂ın colab.cu M. Frentiu, Z.
Kasa), ı̂n ”Babes-Bolyai” University, Faculty of Mathematics, Seminar
on Computer Science, Preprint no. 9/1988, pp. 3-16. (Zbl. Math.
668.68023).

(25) Translatare bidirectionala ı̂ntre doua limbaje, ı̂n Lucrarile celui de-
al doilea colocviu national de limbaje, logica, lingvistica matematica,
Brasov, 1988, pp. 25-33. (Zbl. Math. 667.68022, p. 321).

(26) Folosirea calculatorului personal ı̂n predarea geometriei, (̂ın colab.cu
M. Frentiu, Z. Kasa), ı̂n Lucrarile Seminarului ”Didactica matemat-
ica”, 1987 1988, pp. 39-50.

8 L. ŢÂMBULEA AND M. FRENŢIU

(27) Elemente de programare ı̂n limbajul BASIC, (̂ın colab.cu M. Frentiu,
Z. Kasa), ı̂n Lucrarile Seminarului ”Didactica matematica”, 1987 1988,
pp. 51-64.

(28) Sistem de fisiere bazat pe B-arbori, ı̂n Lucrarile celui de-al VII-lea
colocviu national de informatica, INFO-IASI, 1989, pp. 33-40.

(29) Cautare rapida ı̂n B-arbori, ı̂n Lucrarile simpozionului ”Informatica si
aplicatiile sale”, Zilele academice Clujene, Cluj-Napoca, 1989.

(30) Parallel Executable Sequences ı̂n Serial Programs, (̂ın colab.cu M.
Frentiu, Z. Kasa), ı̂n Studia Univ. ”Babes-Bolyai”, Mathematica,
XXXIV, 3, 1989, pp. 3-16.

(31) Computer aided Geometry, (̂ın colab.cu M. Frentiu, Z. Kasa), ı̂n ”Babes-
Bolyai” University, Faculty of Mathematics, Seminar on Computer
Science, Preprint no. 9/1989 pp. 11-20.

(32) Efficiency ı̂n parallel evaluation of Arithmetic Expressions, (̂ın colab.cu
M. Frentiu, Z. Kasa), ı̂n ”Babes-Bolyai” University, Faculty of Math-
ematics, Seminar on Complexity, Preprint no. 10/1989, pp. 1-14.
(MR92m:65009, p. 7036 si Zbl. Math. 796.68110 p. 470).

(33) A Translator for Syntactic Bidirectional Analysis, ı̂n Analele Univer-
sitatii Bucuresti, Matematica-Informatica, XXXVIII, no. 2, 1989, pp.
14-20. (MR 1991 p. 125 si Zbl. Math. 739.68012 p. 371).

(34) Extended B-tree, ı̂n Studia Univ. ”Babes-Bolyai”, Mathematica, XXXVII,
3, 1992 pp. 13-20.

(35) Program testing for LOOP - EXIT Schemes, (̂ın colab.cu M.Frentiu),
ı̂n Studia Univ. ”Babes-Bolyai”, Mathematica, XXXVII, 3, 1992 pp.
21-30.

(36) Doua decenii de informatica universitara Clujeana, ı̂n Gazeta de In-
formatica 11/1992, pp. 7-8.

(37) An Implementation Scheme for PARBEGIN - PAREND Construction,
(̂ın colab.cu A. Vancea), ı̂n Studia Univ. ”Babes-Bolyai”, Mathemat-
ica, XXXVIII, 3, 1993, pp. 7-10.

(38) Bounds in very big arithmetic with very big bases, ı̂n ”Babes-Bolyai”
University, Faculty of Mathematics, Seminar on Computer Science,
Preprint no. 4/1993 pp. 79-82 (Zbl. Math. 883.68043 pp. 483-484).

(39) The UNIX Environment at the ”Babes-Bolyai” University, (̂ın colab.cu
A. Vancea, H.F. Pop, S. Iurian, M. Iurian), ı̂n Proc. of 2-nd Interna-
tional Conference ROSE, Bucuresti, 1994, pp. 145-149.

(40) Distributed Processing in Extended B-tree, (̂ın colab.cu A. Vancea),
ı̂n Studia Univ. ”Babes-Bolyai”, Mathematica, XXXIX, 3, 1994, pp.
25-34 (Zbl. Math. 857.68058 p.474).

PROFESSOR FLORIAN MIRCEA BOIAN AT HIS SIXTIES 9

(41) Teaching Parallel and Distributed Computing, (̂ın colab.cu A. Vancea
si H.F. Pop), ı̂n ROSE’95 Proceedings, Politechnical University Bu-
curesti, 1995, pp. 66-74.

(42) Folosirea calculatorului personal ı̂n predarea geometriei, (̂ın colab.cu
M.Frentiu si Z.Kasa) ı̂n lucrarile conferintei: ”Informatizarea ı̂nvatamântului”,
Balti, Republica Moldova, oct. 1995, pp. 66-71

(43) Comunicarea prin e-mail si iesirea ı̂n Internet, ı̂n lucrarile conferintei:
Informatizarea ı̂nvatamântului, Balti, Republica Moldova, oct. 1995,
pp. 74-77

(44) An Efficient Topology for the ”Babes-Bolyai” computer network: UBB-
NET, (̂ın colab.cu C. Ciplea, G. Ciplea, L. Lazar, A. Moldovan), ı̂n
Studia Univ. Babes-Bolyai, Mathematica, XXXXI, 1996.

(45) UBBNET: Computer Network at Babes-Bolyai University, (̂ın colab.cu
C. Ciplea, G. Ciplea, L. Lazar, A. Moldovan), ı̂n Proceedings of EU-
NIS97: European Cooperation ı̂n Higher Education Information Sys-
tems, Grenoble, France, September 1997.
http://www.lmcp.jussieu.fr/eunis/congres/second en.html

(46) A Surveillance Authentication Protocol for UBBNET, to appear in
INFORMATICA, Vilnius, Lithuania, (̂ın colab.cu A. Vancea si M.
Vancea).

(47) An Intranet Information System over UBBNET, (̂ın colab.cu L. Lazar).
Proceedings EUNIS’98, Prague, Czech Republic, ISBN 80-213-0420-0,
1998, pp. 159-162.

(48) Internet: a science, an information technology tool, a fashion, or all of
these? ı̂n ”Babes-Bolyai” University, Faculty of Mathematics, Seminar
on Computer Science, Preprint no. 2/1997 pp. 31-34.

(49) Distributed Application based on Java, HTML and CGI at ”Babes-
Bolyai” University: Case Studies, ı̂n Advanced Educational Technol-
ogy Conference Proceedings, ISBN 973-98726-8-9, Tg. Mures, 1998.
Ed. Petru Maior University, 1999, pp 31-53

(50) On the Exactness of a Data Dependence Analysis Method, (̂ın colab.cu
A. Vancea), ı̂n Studia Univ. ”Babes-Bolyai”, Informatica, XLIII, 1,
1998, pp. 13-24.

(51) Half synchronized transition systems, (̂ın colab.cu C. Ferdean), ı̂n Stu-
dia Univ. ”Babes-Bolyai”, Informatica, XLIV, 2, 1999, pp. 77-86.

(52) Nonsequential Program paradigms with Java Platform Applications,
ı̂n Advanced Educational Technology Conference Proceedings, ISBN
973-8083-33-4, Cluj-Napoca, 2000. Ed. Petru Maior University, 2000,
pp 5-43.

10 L. ŢÂMBULEA AND M. FRENŢIU

(53) Improving Distance Education in Computer Science at the Babes-
Bolyai University (̂ın colab.cu Z.Kasa si C.Ferdean) ı̂n Internet as a Ve-
hicle for Teaching, Romanian Internet Learning Workshop, Miercurea-
Ciuc, 11-20 Aug. 2001, pp. 125-129.

(54) Properties and implementation of the half-synchronized transition sys-
tems (̂ın colab.cu C. Ferdean), ı̂n ”Babes-Bolyai” University, Faculty
of Mathematics, Seminar on Computer Science, Preprint, 2000, pp.
65-74.

(55) New Interaction Mechanisms between Java Distributed Objects, (̂ın
colab.cu C. Ferdean), ı̂n Studia Univ. ”Babes-Bolyai”, Informatica,
XLV, 1, 2000, pp. 89-100.

(56) Properties and application framework for half-synchronized transition
model, (̂ın colab.cu C. Ferdean), in ”International Journal of Computer
& Information Sciences”, Ain Shams University, Cairo, Egypt,.1, 1, Jul
2001 pp. 58-67.

(57) Advanced collaboration techniques between Java objects distributed
on clusters (̂ın colab.cu C. Ferdean), ı̂n ”Advanced Environments,
Tools, and Applications for Cluster Computing. Lecture Notes in
Computer Science 2326, Springer Verlag, (International Workshop on
Cluster Computing proceed., NATO Advanced Research Workshop,
Mangalia, Romania, 2001), pp. 259-270.

(58) An Efficiency Comparison of Different Java Technologies, ı̂n Studia
Univ. ”Babes-Bolyai”, Informatica, XLVI, 2, 2001, pp. 29-39.

(59) Enterprise JavaBeans, ı̂n Advanced Educational Technology Confer-
ence Proceedings, ISBN 973-8084-60-1, Târgu Mures, 2001. Ed. Petru
Maior 2001, pp 59-128.

(60) Life In The JavaSpace (̂ın colaborare cu C. Duda) Proceedings of the
symposium ”Zilele Academice Clujene” Cluj, 2002, pp. 25-34.

(61) Using EJB to develop enterprise applications (̂ın colaborare. cu A.
Sterca) Proceedings of the symposium ”Zilele Academice Clujene”
Cluj, 2002, pp. 41-51.

(62) Advanced Features in JDBC (Java Database Connectivity) Technology
(̂ın colaborare cu A. Câmpan) Proceedings of the symposium ”Zilele
Academice Clujene” Cluj, 2002, pp. 34-41.

(63) Filters, a new powerful feature of Java Servlets (̂ın colaborare cu D.
Bufnea) Proceedings of the symposium ”Zilele Academice Clujene”
Cluj, 2002, pp. 19-25.

(64) Challenges in today network routing (̂ın colaborare cu D. Bufnea),
Proceedings of the symposium ”Zilele Academice Clujene” Cluj, 2003,
pp. 19-25.

PROFESSOR FLORIAN MIRCEA BOIAN AT HIS SIXTIES 11

(65) Using the RMI with activation technology in distributed applications
Proceedings of the symposium ”Zilele Academice Clujene” Cluj, 2003,
pp. 13-19.

(66) Active Queue Management for Multimedia Streams (̂ın colab.cu A.
Sterca, D. Bufnea, C. Cobârzan) In Proceedings of the Symposium
Colocviul Academic Clujean de Informatica, 2004, pp. 117-122.

(67) Some Analisys of the Bbehavior for TCP Connections sharring a com-
mon subpath (̂ın colab.cu D. Bufnea, A. Sterca, C. Cobârzan) ı̂n the
4-th International Conference on Applied Mathematics, Baia Mare,
2004, vol 20, no 2, pp. 149-154.

(68) RMI versus CORBA: A Message Transfer Speed Comparison (̂ın co-
lab.cu R. Boian ı̂n Studia Univ. ”Babes-Bolyai”, Informatica, XLIX,
1, 2004, pp. 83-91.

(69) Half-synchronized Mechanisms in Distributed Business Applications
(̂ın colab.cu R. Boian) ”4-th International ROEDUNET Conference,
Sovata, aprilie 2005.

(70) Continuations for remote objects control (̂ın colab.cu E. Todoran, C.
Melenti, N. Papaspyrou), ı̂n Studia Univ. ”Babes-Bolyai”, Informat-
ica, L, 1, 2005, pp. 21-37.

(71) AMS: An Assignment Management System for Professors and Stu-
dents (̂ın colab.cu R. Boian, A. Vancea) Proceedings of the Symposium
”Colocviul Academic Clujean de Informatica” Cluj, 2006, pp. 137-142.

(72) A Model for Efficient Session Object Management in Web Applica-
tions (̂ın colab.cu D. Bufnea, A. Vancea, A. Sterca, D. Cojocar, R.
Boian) Proceedings of the Symposium ”Colocviul Academic Clujean
de Informatica” Cluj, 2006, pp. 131-136.

(73) Shared Bottleck Detection from Receiver Point of Viev (̂ın colab.cu D.
Bufnea, A. Vancea) Proceedings of the Symposium ”Colocviul Aca-
demic Clujean de Informatica” Cluj, 2006, pp. 125-130.

(74) Supporting multimedia streaming applications inside the network (̂ın
colab.cu A. Sterca, D. Bufnea, C. Cobârzan) ı̂n Studia Univ. ”Babes-
Bolyai”, Informatica, LI, 2006, pp. 37-48.

(75) Evaluating Dynamic Client-Driven Adaptation Decision Support in
Multimedia Proxy-Caches(̂ın colab.cu A. Sterca, D. Bufnea, C. Cobârzan),
KEPT 2007 Knowledge Engineering Principles and Techniques, Cluj
University Press 2007 ISBN978-973-610-556-2, pp. 298-306.

(76) Some Formal Approaches for Dynamic Life Session Management (̂ın
colab.cu D. Bufnea, A. Vancea, A. Sterca, D. Cojocar, R. Boian),
KEPT 2007 Knowledge Engineering Principles and Techniques, Cluj
University Press 2007 ISBN978-973-610-556-2, pp. 227-235.

12 L. ŢÂMBULEA AND M. FRENŢIU

(77) Distance Learning and Supporting Tools at Babes-Bolyai University
(̂ın colab.cu R. Boian, A. Vancea, H.F.Pop), IEEII - Informatics Edu-
cation inEurope, 29-30 November, 2007, Thesaloniki, Greece (accepted
- to appear).

Babeş-Bolyai University, Faculty of Mathematics and Computer Science,
Department of Computer Science, 1 M. Kogălniceanu St., 400084 Cluj-Napoca,
Romania

E-mail address: leon,mfrentiu@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LII, Number 2, 2007

WEB SOURCE CODE POST-PROCESSING: A NEW
APPROACH BASED ON CLASSIC MODELS AND

METHODS

FLORIAN BOIAN

Abstract. The majority of today’s technologies for distributed and web
application development adopted programming languages from the C fam-
ily. To increase the application security, popular such languages like Java,
C#, and PHP have been designed without features for direct memory
manipulation such as pointers, pointer arithmetic, or memory buffer cast-
ing to primitive types similar to the C union construct. The lack of these
features makes much easier the implementation of pre-processing and post-
processing models for source code simplification, verification and testing.
In this paper, a formal approach post-processing mechanism for the web
languages is describe. At the moment, the web developing languages has
not use the post-processing techniques.

Keywords: source to source transformation, abstract programming
schemes, formal methods of source code representation, web applications.

1. Introduction

Source to source code transformation is a wide-spread research direction
[1, 11] that studies methods of source code improvement and optimization
through automatic manipulation. Source code optimization through refactor-
ing [1, 6] and elimination of redundant control structures are such source to
source methods. For instance, sequences like the one in the left side of the
table below, can be automatically transformed in the equivalent form on the
right, provided that the a and t code segments are independently.

13

14 FLORIAN BOIAN

This optimization method can also be applied to sequences of assignments
as shown in the table below. In our example the transformation is conditioned
by the independence between e and b*c [15].

More recent research directions are focused on automatic parallelization
of source code [8]. For example, the code sequence in the left side of the table
below can be transformed in the sequence on the right, provided that a(i) and
b(i) are independent except for the presence of variable i. In the new form,
the two FOR loops in the sequence on the right can be parallelized.

The LOOP-EXIT and LOOP-EXIT-CYCLE [13, 2, 5] schemes revolution-
ized the automatic source to source transformation techniques. Source code
structured using these schemes can be represented easier with formal abstract
constructs and thus it is easier to process automatically. These schemes will
be addressed in more detail in the following sections.

The transformations presented above are implemented in most of today’s
compilers.

Today’s technologies for development of distributed and web application
are based on C-like programming languages without the C features that usu-
ally make the code vulnerable. Thus, popular programming languages such
as Java [7, 12], C# [14], and PHP [10] have been designed without features
for direct memory manipulation such as pointers, pointer arithmetic, or mem-
ory buffer casting to primitive types similar to the C union construct. Under
these circumstances, many of the problems faced by the source to source trans-
formation methods [1, 11] are no longer possible. Consequently, it becomes
much simpler to implement and apply source to source translation for code
improvement, optimization, validation, and testing.

In the following sections we will present and discuss source to source trans-
formations using as abstract concept the LOOP-EXIT schemes. The examples
will be written in one of the C-like programming languages presented above.
The scope of these transformations is to process server side code and detect at

WEB SOURCE CODE POST-PROCESSING 15

an abstract level incoherent code and suggest improvements to the developer.
These transformations can be also used to provide information to support
server side code execution and logging.

2. LOOP-EXIT Schemes, Branches, and Sections

For the purpose of this paper, we consider the LOOP-EXIT schemes as
they are defined in [5]. We denote by A the set of the assignment symbols,
and with T the set of the test symbols.

To each LOOP-EXIT scheme S, a language L(S) can be associated. The
context-free grammar of scheme S is:

G(S) = (N, Σ, P, ∆)
Here N is the set of non-terminals, ∆ is the axiom of grammar G(S). For

each IFk from S there is a nonterminal Ik in N. For each LOOPk there are two
nonterminals Lk and Bk. Σ is the terminal symbol set. Each symbol from A
appears in Σ. For each symbol t from T, the symbols t+ (for true) and t- (for
false), appear in Σ. The product rules are detailed in [5,6,8]. In this section
we will avoid presenting how the products are formal constructed, but rather
will give a practical example in the next section.

In a LOOP-EXIT scheme S, we can define special complete execution
paths. A section from S is a maximal sequence in Σ* where the order of the
symbols is the same as in the static text of S.

More exactly, a word z from Σ* is a section iff exists a word w from L(S)
so that :

(1) w = z, or
(2) w = xz and the last symbol from x appears in the text of S after the

first symbol from z, or
(3) w = zy and the last symbol from z appears in the text of S after the

first symbol from y, or
(4) w = xzy and conditions 2 and 3 are true.
We denote by SECT(S) the set of the sections. A branch in S is a word in

SEC(S) so that only conditions 1 or 2 above are true.
We denote by BRAN(S) the set of the branches from S. The sets SECT(S)

and BRAN(S) can be generated as regular and finite language with prod-
ucts constructed starting with G(S). The complete construction algorithm is
presented in [8].

3. A post-processing example of branch calculation

The following PHP function replaces in the input string special HTML
characters and non-ASCII characters with their corresponding HTML codes.

16 FLORIAN BOIAN

The function returns the ASCII string resulted from processing. The arrays
of special character and their corresponding HTML codes are:

$sa = array(” ” ,”&” ,”\”” ,”<” ,”>” ,”|” , ...);

$sc = array(” ”,”&”,”"”,”<”,”>”,”&brvar;”, ...);

Translating function receives as arguments the input string, and the two
arrays above. The PHP code of the function is:

The transformation is executed using the list of variables and constants
that appear in the source code.

V = {$s, $si, $so, ””, $i, $j, $p, false}

The assignments statements will be grouped in set A and will be denoted
by a1, a2, ..., an. The test statements will form the set T and will be referred
to as t1, t2, ..., tn.

The PHP code above will be first translated in abstract code using LOOP-
EXIT-CYCLE constructs [13,5]. The result of the transformation is in the
following table, the left part.

In the abstract code above, we use EXIT for exiting the inner-most cycle,
and CYCLE for jumping to the beginning of the inner-most cycle.

According to theory, a LOOP-EXIT-CYCLE scheme can be automatically
transformed in LOOP-EXIT scheme by adding additional LOOP-ENDLOOP
statements. The code resulting after these transformations is presented in the
following table, the right part. To simplify the code, we replaced the real
statements with abstract ones.

WEB SOURCE CODE POST-PROCESSING 17

According to [5], the productions of the grammar associated to scheme S
above are:

∆ − > L1
L1 -> I1 a2 L2 a8 L1 | t1+ | a2 B2 a8
B1 -> I1 a2 L2 a8 B1 | ε
I1 -> t1-
L2 -> I2 a3 L3 a7 L2 | t2+
B2 -> I2 a3 L3 a7 B2 | ε
I2 -> t2-
L3 -> L4 L3 | B4 t3+ | I3a4I4 t5+ a5
B3 -> L4 B3 | ε

18 FLORIAN BOIAN

L4 -> I3 a4 I4 I5 a6 L4 | I3 a4 t4+
I3 -> t3-
I4 -> t4-
I5 -> t5-
The language generated by this grammar is:
L(S) = t1+a1 | t1-a2(t2+ | t2-a3(t3+ |(a4t4+ | (a4t4-t5+a5 | a4t4-t5-)*

a7)*)a8)*
The branch set of scheme S is:
BRAN(S) = {t1+a1, t1-a2t2+a8, t1-a2t2-a3t3+a7, t1-a2t2-a3t3-a4t4+,

t1-a2t2-a3t3-a4t4-t5+a5, t1-a2t2-a3t3-a4t4-t5-a6}
The section set of the scheme S is:
SECT(S) = BRAN(S) ∪ {a2t2+a8, a2t2-a3t3+a7, a2t2-a3t3-a4t4+, a2t2-

a3t3-a4t4-t5+a5, a2t2-a3t3-a4t4-t5-a6, t3+a7, t3-a4t4+, t3-a4t4-t5+a5, t3-
a4t4-t5-a6}

4. Conclusions

The example presented in the section above, shows that post-processing
is easily to implement in programming languages lacking direct memory ma-
nipulation features such as PHP. Server side applications are usually written
in Java, C#, or PHP all of which make post-processing simple. Further opti-
mizations of post-processing can be done on syntactically correct source code.
For instance, the post-processing can skip verifying matching parentheses or
brackets, or checking for correct statement closing with ”;”, thus reducing pro-
cessing work. Post-processing is also simplified by the existence of reserved
keywords and variable declaration.

What are the benefits of post-processing? In our view, post-processing in
the sense presented above, can assist the developer, in the following ways:

• A tool that can provide the code flow branches can aid the developer
visualize the code and place proper logging messages in relevant places.
• According to [9], it is possible to perform an automatic analysis of

branches to detect un-initialized variables. Java and C# are able to
signal such cases at compile time, while PHP signals such cases only
at runtime.
• The branch analysis can help the developer take a series of code refac-

toring decisions, that remove redundant operations and simplify the
flow.
• The representation of the real code into an equivalent abstract code

can give the developer a different perspective of the code, which can
lead to positive changes in the code.

WEB SOURCE CODE POST-PROCESSING 19

• Server applications are inherently difficult to debug. Post-processing
can help restructure the code in manners making it clearer and easier
to analyze, leading to less runtime errors.
• Large scale web applications (such as the one presented in [3]) raise

problems more complex than smaller applications. Branch analysis is
mandatory to reduce the problems experienced by the large number of
users accessing the application, and avoid high maintenance costs.
• Web applications working under high load must be optimize the usage

of the resources. The section extraction done by post-processing assist
the developer to organize the information to be saved in the HTTP
session objects [4].

As a future work, we will implement a post-processing mechanism, for the
web languages as PHP, C#, and Java.

References

[1] Arsac J. J., Syntactic Source to Source Transformation and Program Manipulation.
Comm. ACM, 22, no 1, 1979, pp. 43-53.

[2] Baker B.S., Kosaraju S.R., A Comparision of Multilevel Break and Next Statements.
Journal ACM, 26, no 3, 1979, pp 555-566.

[3] Boian F.M. et.al., Distance Learning and Supporting Tools at Babes-Bolyai University
IEEII - Informatics Education inEurope, 29-30 November 2007, Thesaloniki, Greece
(accepted - to appear).

[4] Boian F.M. et.al., Some Formal Approaches for Dynamic Life Session Management
KEPT 2007 Knowledge Engineering Principles and Techniques, Cluj University Press
2007 ISBN978-973-610-556-2, pp. 227-235.

[5] Boian F.M., Loop - Exit Schemes and Grammars; Properties, Flowchartablies. Studia
UBB, Mathematica, XXXI, 3, 1986, pp. 52-57.

[6] Boian F.M., Reducing the Loop - Exit Schemes. Mathematica (Cluj) 28(51), no 1,
1986, pp. 1-7.

[7] Boian F.M., Boian R.F., Tehnologii fundamentale Java pentru aplicaii Web, Editura
Albastr - grupul Microinformatica, Cluj, 2004.

[8] Boian F.M., Frentiu M. Kasa Z., Parallel Execution in Loop - Exit Schemes. UBB,
Faculty of Mathematics and Physics, Research Seminaries, Seminar on Computer Sci-
ence, Preprint no. 9, 1988, pp. 3-16.

[9] Boian F.M., Frentiu M., Program Testing in Loop - Exit Schemes. Studia UBB,
Mathematica, XXXVII, 3, 1992, pp. 21-30.

[10] Converse T. et. al., PHP5 and MySQL Bible. Wiley, 2004.
[11] Greibach S. The Theory of Program Structures: Scheemes, Semantics, Verification.

Springer Verlag, LNCS 1975, 36,1.
[12] Jendrock E. et.al., The JavaTM EE 5 Tutorial, Third Edition: For Sun Java System

Application Server Platform Edition Addison Wesley, 2006.
[13] Moss C.D.S., Structured Programming With LOOP Statements. SIGPLAN Not. 15,

no 1, 1980, pp. 86-94.
[14] Turtschi et.al., C# .NET Web Developer’s Guide. Syngress, 2002.

20 FLORIAN BOIAN

[15] Vancea A., Boian F.M., On the Exactness of a Data Dependence Analysis Method.
Studia UBB, Mathematica, XLIII, 1, 1998, pp. 13-24.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science,
Department of Computer Science, 1 M. Kogălniceanu St., 400084 Cluj-Napoca,
Romania

E-mail address: florin@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LII, Number 2, 2007

COMPONENT-BASED ANT SYSTEM FOR

A BIOBJECTIVE ASSIGNMENT PROBLEM

CAMELIA-M. PINTEA AND ANDREEA VESCAN

Abstract. The paper proposes a component-based approach for a partic-
ular biobjective assignment problem: the Airport Gate Assignment Prob-
lem (AGAP). ACS-QAP [2] is the starting point for the proposed ACS
model for solving an over-constrained version of AGAP, seeking feasible
flight-to-gate assignments so that total passenger connection time, as prox-
ied by walking distances, is minimized.

1. Introduction

Since the late 90’s Component Based Development (CBD) is a very active
area of research and development. CBSE covers both component development
and system development with components [6]. There is a slight difference in
the requirements and business ideas in the two cases and different approaches
are necessary. Of course, when developing components, other components can
be (and often must be) incorporated and the main emphasis is on reusability.
Development using components is focused on the identification of reusable
entities and relations between them, starting from the system requirements.

The complex biobjective problem modeled for an ant system algorithm
using components is the over-constrained Airport Gate Assignment Problem
(AGAP). The problem has two objectives. The first one to minimize the
number of flights assigned to the apron, when the number of flights exceeds
the number of gates. The second objective is to minimize the total distance
walk of the passengers in the airport.

The preliminary sections of the paper show the specifications of AGAP
and the techniques used to solve the specified problem. The main sections of
the paper show the component-based solution of the ant system algorithm for
solving AGAP including the control flow and data flow.

Received by the editors: 30.08.2007.
2000 Mathematics Subject Classification. 68N30, 68T20.
1998 CR Categories and Descriptors. code I.6.5 [Simulation and modeling]: Subtopic

– Model Development ; code I.2.8 [Artificial intelligence]: Subtopic – Problem Solving,
Control Methods, and Search .

21

22 CAMELIA-M. PINTEA AND ANDREEA VESCAN

2. The Biobjective Assignment Problem

A particular case of a Quadratic Assignment Problem (QAP) it is consid-
ered: the Airport Gate Assignment Problem (AGAP).

There were several attempts to solve AGAP. We are mentioning a Tabu
Search metaheuristic by Xu and Bailey [17]. Another algorithm for solving
AGAP was proposed by Ding et al. [7] with a greedy algorithm minimizing
ungated flights while providing initial feasible solutions followed by a new
neighborhood search technique.

The gate assignment problem has the objective of minimizing distance
costs of the over constrained gate assignment problem, minimizing the number
of ungated aircrafts and the total walking distances.

We consider the notations as in [7]:
N : set of flights arriving at the airport and/or departing from the airport;
M : set of gates available at the airport;
n: total number of flights, i.e., |N |, where |N | denotes the cardinality of N ;
m: total number of gates, i.e., |M |;
ai: arrival time of flight i;
di: departure time of flight i;
wkl: walking distance for passengers between the gates k and l;
fij: the number of passengers transferring between two flights i and j;

Two dummy gates are used: gate 0 the entrance or exit of the airport and
gate m + 1 the apron where flights arrive at when no gates are available. yi,k

denotes that flight i is assigned to gate k if yi,k = 1 and otherwise yi,k = 0,
where (0 < k < m + 1).

wk,0 is the walking distance between gate k and the airport entrance or
exit. f0,i is the number of originating departure passengers of flight i. fi,0

is the number of the disembarking arrival passengers of flight i. The walking
distance between the apron and gate k is wm+1,k.

The mathematical model of the biobjective problem: The Airport Gate
Assignment Problem is following.

1. Minimize the number of flights assigned to the apron:

n∑

i=1

yi,m+1 → min,

2. Minimize the total walking distance:

n∑

i=1

n∑

j=1

m+1∑

k=1

m+1∑

l=1

fi,jwk,lyi,kyj,l+

COMPONENT-BASED ANT SYSTEM FOR A BIOBJECTIVE ASSIGNMENT PROBLEM23

+

n∑

i=1

m+1∑

l=1

f0,iw0,l +

n∑

i=1

m+1∑

l=1

fi,0wl,0 → min,

The constraints of AGAP are following.

(1)

m+1∑

k=1

yi,k = 1(∀i, 1 ≤ i ≤ n)

These constraints ensure that every flight must be assigned to one and only
one gate or assigned to the apron.

(2) ai < di(∀i, 1 ≤ i ≤ n)

Constraint (2) specifies that each flight’s departure time is later than its arrival
time.

(3) yi,kyj,k(dj − ai)(di − aj) ≤ 0(∀i, j, 1 ≤ i, j ≤ n, k 6= m + 1)

Constraint (3) says that two flights schedule cannot overlap if they are assigned
to the same gate.

(4) yi,k ∈ {0, 1}(∀i, 1 ≤ i ≤ n,∀k, 1 ≤ k ≤ m + 1)

The condition (4) disallows any two flights to be scheduled to the same gate
simultaneously except if they are scheduled to the apron.

2.1. The over-constrained approach. For the over-constrained AGAP, the
first step is to minimize the number of flights that need be assigned to the
apron. The minimal number of flights can be computed by a greedy algorithm
described in [7].

First of all the flights are sorted by the departure time and after that
flights are assigned one by one to the gates. A flight is assigned to an available
gate with latest departure time. If there are no gates available, the flight will
be assigned to the apron.

The solution of the greedy algorithm is the optimal number of flights that
can be scheduled in gates and it is used to provide initial feasible solutions for
the ACS-based algorithm.

3. Ant System for Airport Gate Assignment Problem

The algorithm proposed is an improved version of Ant Colony System
(ACS) for Quadratic Assignment Problem (QAP) [2]. The new algorithm is
called Reinforcing Ant System-QAP (RAS-QAP) where the trail intensity is
locally updated using the inner rule [14] (local update pheromone trails()).

The problem of the Airport Gate Assignment is about finding the feasible
flight-to-gate assignments so that total passenger connection time is mini-
mized. The function we have to minimize is using the distances from check-in

24 CAMELIA-M. PINTEA AND ANDREEA VESCAN

to gates in the case of embarking or originating passengers, from gates to
check-out in the case of disembarking or destination passengers and from gate
to gate in the case of transfer or connecting passengers.

When the number of aircraft exceeds the number of available gates, in the
over-constrained case, the distance from the apron to the terminal for aircraft
assigned to these areas is also considered.

First are computed the distance potentials and flow potentials as in [17, 7].
Each edge (i, j), at moment t, is labeled by a trail intensity τij(t).

Algorithm 1 RAS-QAP

1: assign initial pheromone levels();
2: compute distance potentials();
3: compute flow potentials();
4: place ants on locations();
5: for (t = 1) to tmax do

6: for (k = 0) to num ants − 1 do

7: build solution for ant(k);
8: local update pheromone trails();
9: compute cost solution for ant(k) based on constraints (1)-(4);

10: if ants[k].cost solution < Best solution.cost solution then

11: Best solution=ants[k].cost solution;
12: Best solution t=t;
13: end if

14: end for

15: update pheromone trails();
16: write experimental results(t);
17: end for

Initially the ants are randomly placed in the graph nodes. At each iteration
an ant moves to a new node. When an ant decides which node is the next
move it does so with a probability based on the distance to that node and the
amount of trail intensity on the connecting edge. Evaporation takes place, at
each step, to stop the intensity trails increasing unbounded.

Two tabu lists are used. The first tabu list stores the ants visited locations,
so that they never visit them again. The second tabu list stores the activities
that have been mapped to the visited locations.

To favour the selection of an edge that has a high pheromone value and
high visibility value, a probability is considered. Compute cost solution for
ant k and update the best solution. The global update rule is applied to the
edges belonging to the best tour-solution.

COMPONENT-BASED ANT SYSTEM FOR A BIOBJECTIVE ASSIGNMENT PROBLEM25

The solution of the algorithm is the tour with the minimal cost. A solution
is a vector with the potentially best distances, called distance potentials, and
potentially best flows, called flow potentials. The algorithm runs for a given
number of iteration tmax.

4. Component elements

A system can be designed and implemented by assembling components,
customizing or extending them as needed; and publishing components in a
form that can be applied to design and construct others, based purely on
interface specifications.

One of the most popular definitions of a component was offered by a work-
ing group at ECOOP (European Conference on Object-Oriented Program-
ming).

Definition 1. A software component is a unit of composition with contrac-
tually specified interfaces and explicit context dependencies only. A software
component can be deployed independently and it is subject to composition by
third parties. [15]

Clemens Szyperski and David Messerschmitt [15] give the following five cri-
teria for what a software component shall be to fulfill the definition: multiple-
use; non-context-specific; composable with other components; encapsulated
i.e., non - investigable through its interfaces and a unit of independent deploy-
ment and versioning.

We must first establish our entities involved in the component system def-
inition before describing our component-based approach for modeling AGAP.

Considering X a component over the set A of attributes, we will use the
following notations: inports(X) ∈ A - represents the set of input ports (at-
tributes) of the component X; outports(X) ∈ A - represents the set of output
ports (attributes) of the component X; attributes(X) ∈ A - represents the set
of attributes of the component X.

We can view components from a different perspective [10] as simple com-
ponents and compound components with the following characteristics:

• Simple Component - over A is a 5-tuple SC of the form

(inports, outports, attributes, function,≺SC), where :

– inports is a n-tuple (in1, ..., inn) of attributes;
– outports is a m-tuple (out1, ..., outm) of attributes and

(out1, ..., outm) /∈ inports(SC);
– function is an n-ary function

Type(in1) × Type(in2) × ... × Type(inn) →
Type(out1) × Type(out2) × ... × Type(outm).

26 CAMELIA-M. PINTEA AND ANDREEA VESCAN

– attributes is defined to be the set of attributes consisting of the
inports and the outports;

– the binary relation
≺SC⊆ (inports(SC)× outports(SC)) × outports(SC).

• Compound component - over A is a group of connected compo-
nents, in which the output of a component is used as input by another
component from this group.

A graphical representation of our view of components is given in Figure 1.

SC
(left side
of component)

in1
in2
in3

Inports

out1

out2

outports

(right side
of component)

Simple Component

SSC
Source Component

out1
out2
out3

in1

in2

Destination Component

DSC

SSC

SC1

CC1

DSC

SC2

Compound Component

i3

o1

i2

i1

o2

o3

o4

Figure 1. Components graphical representation. The com-
pound component contains two simple components SC1 and
SC2 and one compound component CC1

Two particular components are the source component 1 and the destination
component 2. The source component represents the ”read“ component and the
destination component represents the ”write“ component, components that
should exists in any software system. In our approach every assembly system
(and subsystem) has only one source component and only one destination
component.

4.1. Component construction and execution elements. The wiring of
components in order to construct a component-based system is made using
a connection between the output of a component and the input of another
component.

A connection K is made of an origin - output of a component, and a
destination - input of another component:

K = (origin, destination),

1source component has no inports and generates data provided as outports in order to be
processed by other components

2destination component has no outports and receives data from its inports and usually
displays it, but it does not produce any output

COMPONENT-BASED ANT SYSTEM FOR A BIOBJECTIVE ASSIGNMENT PROBLEM27

where origin is an outport of a component; destination is an inport of a com-
ponent.

The composition result is also a component, a compose component using
[10] notation. The resulted system is called BlackBox and is specified as
follows:

BlackBox = ({in}, {out}, {component}, {connection}),

where in represent the inputs for the blackbox; out represent the output of the
blackbox; component represent the components involved in the composition
and connection represent all the connections between the involved components.

The execution of the BlackBox component is composed of sequences of the
form:

(Op0, C0), (Op1, C1), (Op2, C2), ...

where for each i ≥ 0, Opi is a subset of possible operations and Ci is a subset
of components ready for execution.

The possible operations are:

• propagation - this rule moves values that have been generated by a
component along connections from the component’s outport to other
components;

• evaluation - the component function is evaluated and the result is
passed to the output of the component.

State of execution. At a given time of execution, the state is presented
as follows:

State = ({operation}, {componentForEval}),

where operation = {C− >,C =};

• C− > - propagation operation from component C;
• C = - evaluation operation of component C.

componentForEval - a component ready for evaluation.
If at a given time, both types of operation can be performed, the propaga-

tion operation is chosen. Between many evaluation operations, one component
is chosen randomly.

4.2. Component assembly construction process. A top-down approach
is used when reasoning about the way to solve a problem (from the system
requirements develop the needed modules to accomplish the requirements of
the system under development) and a bottom-up approach when assembling
the pieces in order to build the desired final system [16].

The components composition is accomplished using a bottom-up approach:
starting from a given set of components (stored in a repository) there are two
main steps to obtain the final system:

28 CAMELIA-M. PINTEA AND ANDREEA VESCAN

(1) newly obtained components (if necessary) by assembling given compo-
nents (simple components and/or compound components);

(2) compose the final system from the new set of available components.

Reasoning in a top-down approach we refer to the second step (from the
bottom-up approach) as the first hierarchical level of the final system(s) and
to the first step (which may contain many inside steps to develop new compo-
nents) as intermediary hierarchical levels of the system.

5. Component-based Ant System for Airport Gate Assignment

Problem

This section presents the architecture of the component-based approach
for the AGAP, the control flow and the data flow model. At the end of this
section we show how the computation steps are successively executed.

5.1. AGAP architecture. In section 3 we have presented the ant system
solution for the Airport Gate Assignment Problem. Based on the pseudocode
algorithm we can describe the solution using components as in Figure 2 as
a first level of design: initialization, computation and printing the obtained
results. The next two levels (decompositions) are also presented.

Init Computation PrintRez

DataGen
GreedyAlg

DistFlow
Potential

AntSystem
Algorithm

Cost sol
comp
all ants
constr.
(1)-(4)

Best sol
comp

Build sol
all ants

Update
global

Level I

Level II

Level III

Figure 2. Architectural levels

The second level contains the data generation for the greedy algorithm,
the computation of the distance flow potentials and the ant system algorithm.

The third level contains a more detail view of the ant system algorithm
computation: build solution (for all ants), then cost solution computation (for

COMPONENT-BASED ANT SYSTEM FOR A BIOBJECTIVE ASSIGNMENT PROBLEM29

all ants) based on the constraints, best solution computation (for all ants) and
the update global rule computation.

All these computations are performed for tmax steps/times. The build so-
lution computation, cost solution and best solution computation are all com-
puted for all ants, thus the loop is executed until the number ants num ants
(see algorithm 1 for details) is reached.

5.2. Control flow AGAP model. Figure 3 shows the overview of the system
and the control flow.

The

Init

PrintRez

DataGen
GreedyAlg

DistFlow
Potential

Update
Global

Update
Local

Build
Sol

Cost
Sol

Diff
Cost

Best
Sol

Figure 3. Control flow component-based RAS-QAP system

5.3. Data flow AGAP model. Figure 4 shows the overview of the system
with all the components from all the architecture levels - the data flow. Com-
ponent DataGenGreedyAlg corresponds to the first statement in algorithm
1, component DistF lowPotential to the second, third and fourth statements
and component AntSystemAlgorithm to the rest of the statements.

Init
PrintRezDataGen

GreedyAlg

DistFlow
Potential

AntSystem
Algorithm

N

M
n
m flight[]

L
+

sums

a_i

d_i

w_kl
f_ij

Figure 4. Data flow component-based RAS-QAP system

30 CAMELIA-M. PINTEA AND ANDREEA VESCAN

The data transmitted from the init to the greedy algorithm is that from
the problem description: N - set of flights arriving at (and/or departing from)
the airport, M - set of gates available at the airport, n - total number of flights
and m - total number of gates.

The greedy algorithm gives the optimal number of flights that can be
scheduled in gates.

The DistF lowPotential computes the sums based on the number of pas-
sengers fij and the walking distance from gate k to gate l, wkl.

The AntSystem computes L+, thus minimizing the total walking distance.

5.4. General and internal computation steps. The steps of the computa-
tion of the ant colony component model for AGAP are described successively.

We denote each component from the architecture (see figure 2 and figure 3
for details) with the following acronyms in order to be more easier to read: Init
component with I; DataGenGreedyAlg with DGGA; DistF lowPotential
with DFP ; BuildSol and UpdateLocal with BSUL; CostSol with CS; DiffCost
and BestSol with DCBS; UpdateGlobal with UG and PrintRez with PR.

General computation steps for the representation from figure 4:
• state0 = ({I ≡}, {I});
-N,M,n,m receives the initial values.
• state1 = ({I →}, {});
-data is propagated through the connections to the DGGA component:

N,M,n,m.
• state2 = ({DGGA ≡}, {DGGA});
-the data are generated in the corresponding intervals for ai, di, wkl and

fij. -the greedy algorithm minimizes the number of flights assigned to the
apron and returns the flights array.

• state3 = ({DGGA →}, {});
-DGGA → : data is propagated through the connections to the DFP

component.
• state4 = ({DFP ≡}, {DFP});
-DFP ≡: computes the sums based on the number of passengers fij and

the walking distance wkl from the gate k to gate l.
• state5 = ({DFP →}, {});
-DFP → data is propagated through the connection to the input of the

ASA component.
• state6 = ({ASA ≡}, {ASA});
-ASA ≡ minimizes the total walking distance.
• state7 = ({ASA →}, {});
-ASA → data is propagated through the connection to input of the PR

component.

COMPONENT-BASED ANT SYSTEM FOR A BIOBJECTIVE ASSIGNMENT PROBLEM31

• state8 = ({PR ≡}, {PR});
-PR ≡ prints the obtained result.
• state9 = ({}, {}).
-There are no more possibilities of applying either propagation or evalua-

tion.
-The execution of the components involved in the system is finished.
The execution states for the representation from figure 3 (only Level III)

are described in the following. The execution of the components starts from
state6 from the general computation from above.

• state61
= ({BSUL ≡}, {BSUL}); state6

1′
= ({BSUL →}, {});

• state62
= ({CS ≡}, {CS}); state6

2′
= ({CS →}, {});

• state63
= ({DCBS ≡}, {DCBS}); state6

3′
= ({DCBS →}, {});

-if the previous steps were not executed for each ant then the state 61 is
following, else state 64.

• state64
= ({UG ≡}, {UG}); state6

4′
= ({UG →}, {}).

-if the maximum tmax number of iterations are not reached then the state
6 is following, else state 7.

6. Conclusions

Ant algorithms are based on the real world phenomena that ants are able to
find their way to a food source and back to their nest, using the shortest route.
A component based Ant System for the Airport Gate Assignment Problem is
introduced. The way of using the components is shown: the control flow and
the data flow. The model execution steps are also illustrated.

References

[1] O. Babic, D. Teodorovic, V. Tosic, Aircraft stand assignment to minimize walking,
Journal of Transportation Engineering, 110, pp. 55-66, 1984.

[2] A. Barton, A simplified Ant Colony System applied to the Quadratic Assignment Prob-
lem, Technical Report National Research Council of Canada no.47446, 2005.

[3] J. Braaksma, J. Shortreed, Improving airport gate usage with critical path method,
Transportation Engineering Journal of ASCE 97, pp. 187-203, 1971.

[4] Y. Cheng, Network-based simulation of aircraft at gates in airport terminals, Journal
of Transportation Engineering, pp. 188-196, 1998.

[5] Y. Cheng, A rule-based reactive model for the simulation of aircraft on airport gates,
Knowledge-based Systems, 10, pp. 225-236, 1998.

[6] I. Crnkovic, Component-based Software Engineering - New Challenges in Software De-
velopment, Software Focus, 2001.

[7] H. Ding, A. Lim, B. Rodrigues, Y. Zhu, The airport gate assignment problem, hicss,
p.30074b, Proceedings of the 37th Hawaii International Conference on System Sciences
(HICSS’04), pp. 74-81, Track 3, 2004.

[8] M. Dorigo and L. M. Gambardella, Ant Colony System: A cooperative learning ap-
proach to the Traveling Salesman Problem, IEEE Trans. Evol. Comp., 1:5366, 1997.

32 CAMELIA-M. PINTEA AND ANDREEA VESCAN

[9] M. Dorigo, Optimization, Learning and Natural Algorithms (in Italian). Ph.D thesis,
Dipartamento di Elettronica, Politecnico di Milano, Italy, pp.140, 1992.

[10] A. Fanea, S. Motogna, A Formal Model for Component Composition, Proceedings of
the Symposium Zilele Academice Clujene, pp. 160-167, 2004.

[11] A. Haghani, M. Ching Chen, Optimizing gate assignments at airport terminals, Trans-
portation Research, 32(6), pp. 437-454, 1998.

[12] T. Obata, The quadratic assignment problem: Evaluation of exact and heuristic al-
gorithms, Tech. Report TRS-7901, Rensselaer Polytechnic Institute, Troy, New York,
1979.

[13] V. Maniezzo, A. Colorni, M. Dorigo, The Ant System applied to the Quadratic As-
signment Problem, Technical report 94/28, IRIDIA, Université de Bruxelles, Belgium,
1994.

[14] C-M. Pintea, D.Dumitrescu, Improving ant systems using a local updating rule, Proc.
7-th Int. Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
IEEE C.S.Press, pp. 295-299, 2005.

[15] C. Szypersky, Component Software: Beyond Object-Oriented Programming, Addison-
Wesley, 1998.

[16] A. Vescan, S. Motogna, Syntactic automata-based component composition, The 32nd
EUROMICRO Software Engineering and Advanced Applications (SEAA), Proceeding
of the Work in Progress session, ISBN 3-902457-11-2, 2006.

[17] J. Xu, G. Baile, The Airport Gate Assignment Problem: Mathematical Model and
a Tabu Search Algorithm, HICSS, 34th Annual Hawaii International Conference on
System Sciences, Vol.3, 2001.

[18] S. Yan, C.-M. Chang, A network model for gate assignment, Journal of Advanced
Transportation, 32(2), pp. 176-189, 1998.

Department of Computer Science, Faculty of Mathematics and Computer

Science, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: {cmpintea, avescan}@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LII, Number 2, 2007

TOWARD A SIMPLE PHONEME BASED SPEECH
RECOGNITION SYSTEM

MARGIT ANTAL

Abstract. This paper presents a simple speech recognition system using

Gaussian mixtures as phoneme models. The proposed architecture does

not follow the integrated search strategy. Instead we use a modular design.

We propose two modifications to the Viterbi decoding algorithm in order

to be applicable to our phoneme models. Both strategies have been imple-

mented and tested on two corpora. Experiments have proved our phoneme

recognition system reliability and its good recognition performance.

1. Introduction

The purpose of this paper is to present our findings during the construction
and evaluation of our phoneme based speech recognition system. Despite the
fact that good software packages already exist for solving this problem, we
decided to develop our own software. The main objective was to use state
of the art techniques, but only those which do not contradict human speech
recognition. A secondary objective was to simplify the architecture of such a
system to the extent of not decreasing the system performance and its usability.
Nowadays it is important to create constrained speech recognition systems,
which work reasonably in a low resource environment.

State of the art automatic speech recognition (ASR) is based on modelling
the phonemes with hidden Markov models (HMM), using the well known three
state left to right topology for each phoneme. This model incorporates an in-
herent phoneme duration, modeled by the state transition probabilities. Sev-
eral papers [5, 8, 10, 11] noticed the negligible effect of these state transition
probabilities on the recognition rate in HMM based ASR, and hence it is usual

Received by the editors: June 2007.

2000 Mathematics Subject Classification. 68T10, 62H30.

1998 CR Categories and Descriptors. I.5.2 [Pattern Recognition]: Design

Methodology– Classifier Design and Evaluation ; I.5.4 [Computer Systems Organiza-

tion]: Special-purpose and Application-based Systems – Signal Processing Systems .

33

34 MARGIT ANTAL

to ignore them or use the same value for each transition probability. Due to
this observation we modeled every phoneme with a one state HMM, which can
be considered as a Gaussian mixture (GMM).

Phoneme duration is an important problem for speech comprehension,
especially in languages like Hungarian, in which most of the phonemes has
both a short and long form. These durations are so important that even the
written language uses different letters for each vowel, one for the short and one
for the long form of the same phoneme. In the case of consonants there are no
different written forms, but the letter is doubled. Good duration modelling can
therefore be a major issue in these languages, not only for speech recognition
but for speech synthesis too.

As a first step we performed some phoneme classification experiments in
order to evaluate our phoneme models. These GMM phoneme models per-
formed so well that we could go further to the problem of phoneme recog-
nition. In this step we had to modify the classic Viterbi decoding algorithm
(given by formula (13)) in order to make it suitable for GMM phoneme models.
We should mention that the classic Viterbi algorithm without state transition
probabilities (omitting the state transition matrix aij from formula (13)) made
a huge number of insertion errors. In order to overcome this, our first attempt
was to introduce explicit phoneme durations computed from speech corpora
into the decoding process. The idea was taken from [9], but we simplified
it. Levinson used statistical models for phoneme duration modelling (Gamma
distributions), we used only the minimum and maximum duration for each
phoneme. We went even further in simplifying this duration modelling by
using the same fixed durational minimum and maximum for each phoneme.
As this increased the decoding algorithm complexity by a factor D, which is
the maximum duration of phonemes, we tried to find a cheaper solution for
decoding.

In the second attempt we made another adaptation of the Viterbi algo-
rithm for monophone one-state models, which introduces an empirical constant
in order to be able to control the insertion errors. As we prove experimentally,
this constant incorporates the average phoneme duration implicitly. This was
our conclusion after we have tuned this parameter for two corpora: TIMIT the
well-known English corpus and OASIS, a small Hungarian corpus for isolated
word recognition.

Several measurements were carried out in order to demonstrate the vi-
ability of this simplified strategy. Whenever it was possible, we compared

TOWARD A SIMPLE PHONEME BASED SPEECH RECOGNITION SYSTEM 35

our results with other results obtained on the same corpora, eventually us-
ing different phoneme modelling techniques. However, the purpose was not to
outperform state of the art technologies, but the construction of such a system
that is simple and efficient for some constrained speech recognition tasks.

This paper is organized as follows. Section 2 presents the architecture
of our system, the feature extraction module, the acoustic-phonetic module,
which is a standard GMM and the decoding module in which we propose
modifications to the Viterbi algorithm. In section 3, we present the corpora
used for experiments and the evaluations of the proposed decoding methods.
We end with discussion and conclusions.

2. The recognition system

Our speech recognition system has a very simple modular architecture.
The first module of the system is the feature extraction module. The extrac-
tion of Mel-frequency cepstral coefficients (MFCC) is presented in subsection
2.1. In this module only standard methods were used as recommended in
[3, 5, 12].

The second module is the acoustic-phonetic module. We used Gaussian
mixture models for training the phonemes based on phonetically segmented
and annotated corpora. Once this stage is completed we can evaluate the
phoneme models. As we have stated already, we used context independent
phonemes modeled by Gaussian mixtures.

The third module is the phonetic decoding module containing two modified
versions of the Viterbi decoding algorithm.

2.1. Feature extraction module. The extraction of reliable features is a
very important issue in speech recognition. There are a large number of fea-
tures we can use. Among others we can use is the speech waveform itself.
However this has two main shortcomings. The first one is the dimension of
this feature, and the second one is that time domain features are much less
accurate than frequency-domain features. In the following we present the ex-
traction of Mel-frequency cepstrum coefficients used in our system. This was
implemented based on [5].

In our system the acoustic analysis of the speech signal was done by short-
time spectrum analysis with 20 ms frames and 10 ms overlap between consec-
utive frames. For a frame length of 20 ms it can be assumed that the speech
signal is stationary, allowing the computation of short-time Fourier spectrum.

36 MARGIT ANTAL

Let us denote by x[n], n = 0, 1, . . . , N − 1 the samples from a frame. For this
input signal we compute the Discrete Fourier Transform (DFT):

(1) X[k] =
N−1∑

n=0

x[n]e−j(2π/N)kn, k = 0, 1, . . . , N − 1

In order to reduce the dimension of the feature vector a filterbank com-
posed of M triangular filters was used. The equation of the mth triangular
filter is the following.

(2) Hm[k] =

0 k < f [m− 1]
k−f [m−1]

f [m]−f [m−1] f [m− 1] ≤ k ≤ f [m]
f [m+1]−k

f [m+1]−f [m] f [m] ≤ k ≤ f [m + 1]
0 k > f [m + 1]

Such filters compute the average spectrum around each center frequency
with increasing bandwidths.

Let us denote by fl and fh the lowest and the highest frequencies of the
filterbank in Hz, Fs the sampling frequency in Hz, M the number of filters,
and N the size of DFT.

The filterbank’s boundary points f [m] are uniformly spaced in the mel-
scale:

(3) f [m] =
N

Fs
B−1(B(fl) + m

B(fh)−B(fl)
M + 1

)

where the mel-scale B is given by

(4) B(f) = 1125ln(1 + f/700)

and B−1 is its inverse

(5) B−1(b) = 700(e
1

1125 − 1)

The next step is the computation of log-energy at the output of each filter

(6) S[m] = ln(
N−1∑

k=0

|X[k]|2Hm[k]), 1 ≤ m ≤ M

The Mel-frequency cepstrum is then the discrete cosine transform of the
M filter outputs:

TOWARD A SIMPLE PHONEME BASED SPEECH RECOGNITION SYSTEM 37

(7) c[n] =
M−1∑

m=0

S[m]cos(
πn

M
(m− 1

2
)) 0 ≤ n < M

For speech recognition applications it is typical to use a number of filters
M between 24 and 40 and to evaluate only the first 13 coefficients given by
equation (7). In our experiments we used M = 28 filters.

Temporal changes in spectra play an important role in human perception.
One way to capture this information is to use delta coefficients that measure
the change in coefficients over time. Delta features were obtained by evaluating
the first and the second order delta cepstral coefficients given by the following
equations

(8) ∆ck =
2(ck+2 − ck−2) + (ck+1 − ck−1)

10

(9) ∆∆ck =
2(∆ck+2 −∆ck−2) + (∆ck+1 −∆ck−1)

10
where ck represents the feature vector containing the first 13 MFCC coef-

ficients obtained using formula (7) for the kth time frame.
The combined cepstral, first and second order delta cepstral vectors form

a set of 39-parameter feature vector (observation vector) ok =

ck

∆ck

∆∆ck

,

which were used in all the experiments described in this paper.

2.2. The Acoustic-Phonetic module. Observation densities in phonemes
are modeled by mixtures of multivariate Gaussians. The proper number of
Gaussians can be estimated separately for every phoneme or can be fixed the
same value for every phoneme. We used the latter approach. Let us denote
by M the number of Gaussian densities. In this case the observation density
function for phoneme i, bi(−→ot) has the form

(10) bi(−→ot) =
M∑

j=1

wij .
1

(2π)D/2|Σij |1/2
· e− 1

2
(−→ot−−→µij)

T Σ−1
ij (−→ot−−→µij))

where D represents the dimensionality of the −→ot observation (feature vector),
−→µij and Σij are the mean vector and the covariance matrix for the jth mixture

38 MARGIT ANTAL

component. For every phoneme the mixture weights sum to unity (
∑M

j=1 wij =
1) in order to have a true probability function.

The complete model thus consists of the set of n phonemes, the ith phoneme
being modeled by a GMM with the parameters (wij ,

−→µij , Σij), 1 ≤ j ≤ M . −→µij

is a mean vector composed by D real numbers. We used diagonal covariance
matrix, hence it can be represented by D real numbers. The complete model
can be represented using n∗M ∗ (1+D +D) = n∗M ∗ (2D +1) real numbers.

2.3. Phonetic decoding module. Let us denote by O = {−→o1 ,
−→o2 , . . .−→oT }

the acoustic observation sequence, which has to be decoded into a phoneme
sequence. The set of all phoneme sequences will be denoted by F . Essentially
the task here is to find f̂ ∈ F defined by

(11) f̂ = arg max
f∈F

P (f |O) = arg max
f∈F

P (O|f) · P (f)
P (O)

where P (f) is known as the phonetic language model. Assuming that any
observation sequence is equally likely, equation (11) becomes

(12) f̂ = arg max
f∈F

P (O|f) · P (f)

Equation (12) expresses that we face a search problem. Phonetic tran-
scription reduces to the task of finding the most likely phoneme sequence for
the input sequence of acoustic vectors.

For HMM phoneme models Viterbi algorithm [5] solves the problem of
finding the most probable state sequence.

We review the classic Viterbi algorithm, which will be adapted to our
phoneme models in the following section. Let αt(j) denote the maximum
likelihood of −→o1 ,

−→o2 , . . .−→ot over all state sequences terminating in state j.
This quantity can be evaluated recursively according to

(13) αt(j) = max
1≤i≤n

[αt−1(i) · aij] · bj(−→ot)

where aij represents the state transition probability between state i and state
j, bj(−→ot) is the observation probability of −→ot in state j

At every time instance we retain Bt(j) =arg max1≤i≤n [αt−1(i) · aij], 1 ≤
j ≤ n in order to be able to back trace the optimal path through the trellis.

The Viterbi algorithm presented previously is based on dynamic program-
ming technique. Essentially it is a planar search algorithm through a lattice,
where the lattice consists of points representing phoneme likelihoods for each

TOWARD A SIMPLE PHONEME BASED SPEECH RECOGNITION SYSTEM 39

−60

−50

−40

−30

−20

−10

0

10 20 30 40 50 60 70 80 90
~
−
−:
+
O
A
E
e:

i
i:
o
o:
2
2:
u
u:
h
r
j
J
l
l:

m
n

’d’
’k
’t

’ts
s
v
z

Frame log−probabilities

Time

P
ho

ne
s

~ E + ’d’ ~

Figure 1. Search space

time instance. This search space is shown for the digit one (”egy” in Hungar-
ian) in figure 1.

2.3.1. Explicit usage of durations. According to paper [14] it can be useful for
the recognition stage to set a minimum number of frames, which can constitute
a phoneme. This setting will help the decoder to decrease the number of
insertion errors.

Instead of using complicated durational models we propose a simple mod-
ification of equation (13), which can be expressed as

(14) αt(j) = max
1≤i≤n

{
max

τmin≤τ≤τmax

{
αt−τ (i) · aij ·

τ−1∏

Θ=0

bj(−−→ot−Θ)

}}

for 1 ≤ j ≤ n, 1 ≤ t ≤ T , where τmin and τmax are the minimum and
maximum allowable durations for any phonetic unit. It is supposed that ob-
servations are independent then

∏τ−1
Θ=0 bj(−−→ot−Θ) computes the probability of

the observation sequence −−−−→ot−τ+1,
−−−−→ot−τ+2, . . .

−→ot in the state j. Esentially we
compute this probability for every allowed length τ , where τmin ≤ τ ≤ τmax.
Retaining at each stage of the recursion the values i and τ that maximize (14),
makes possible back tracing through αt(j) in order to obtain the best state
and duration sequences.

40 MARGIT ANTAL

In our system every phoneme is modeled by a one-state HMM so we could
not use state transition probabilities, instead we used the following formula:

(15) aij =
{

1, phonej is allowed to follow phonei

0, otherwise

which can be seen as a very simple language model. Using (15) reduces sub-
stantially the search space.

We computed the minimum τmin(j) and maximum duration τmax(j) of
every phoneme j = 1 . . . n, which were incorporated in formula (14) resulting
in

(16) αt(j) = max
1≤i≤n

{
max

τmin(j)≤τ≤τmax(j)

{
αt−τ (i) · aij ·

τ−1∏

Θ=0

bj(−−→ot−Θ)

}}

Section 3 presents experiments using both formulae: (14), (16).

2.3.2. Implicit duration modelling. Another approach to phoneme decoding is
to use the Viterbi algorithm directly for the context independent phoneme
models. In this case the state transition probabilities do not exist and we
should omit in equation (13). Omitting state transition probabilities resulted
in a huge number of insertion errors, which should be somehow overcome.

Firstly, we used the logarithmic form of Viterbi approximation as shown
in the following formula:

(17) log αt(j) = max
1≤i≤n

{log αt−1(i) + log aij}+ log bj(−→ot)

Instead of omitting the term log aij , we propose replacing it by Iij , which
is given as

(18) Iij =
{

β, if i = j

0, otherwise

with β > 0, and the final formula for Viterbi approximation became:

(19) log αt(j) = max
1≤i≤n

{log αt−1(i) + Iij}+ log bj(−→ot)

Because larger β values will result in larger phoneme durations in the decoded
phoneme sequence, this decoding process incorporates implicitly the average
phoneme duration. It can be proved experimentally that the optimal value
of the β parameter and the average phoneme duration for a given language

TOWARD A SIMPLE PHONEME BASED SPEECH RECOGNITION SYSTEM 41

are directly proportionals. We should note that our method proposed for
decoding is very similar to that proposed by Robinson in [13]. Robinson used
a recurrent neural network for phoneme classification and for the decoding
process he used a dynamic programming approach. In the decoding formula it
was introduced a transitional cost, similar to the state transition probability
in HMM. He worked with distances instead of probabilities, but the ideas are
very similar. Moreover, he tried to introduce duration information and bigram
probabilities into the transition function and observed that these additional
information did not increased significantly the recognition accuracy.

3. Experiments

For measurements we used our software written in C++ language, which
has a modular design being composed by a signal processing module for MFCC
feature extraction, a Gaussian mixture module and a decoder module. The
signal processing and the Gaussian mixture modules were successfully used for
speaker identification systems too[1].

3.1. Evaluation. The standard evaluation metric for phoneme recognition
systems is the phoneme error rate (PER). The PER measures the difference
between the phoneme string returned by the recognizer and the correct refer-
ence transcription. The distance between the two phoneme strings is computed
by the classical minimum edit distance algorithm [5]. The result of compu-
tation will be the minimum number of phoneme substitutions, insertions and
deletions necessary to map between the correct and hypothesized strings. This
can be expressed by the formula

(20) PER = 100 · I + S + D

N

where N represents the number of phonemes in the correct transcription, I, S

and D represent the number of insertions, substitutions and deletions. Recog-
nition accuracy is computed as

(21) A = 100− PER

Another performance measure could be the number of correct phonemes
returned by the recogniser, which can be computed by the minimum distance
algorithm. This will be denoted by C.

42 MARGIT ANTAL

3.2. Corpora. We used two corpora for the experiments, the first one was
TIMIT, a well known American English corpus, and the second one was OASIS
Numbers, a small Hungarian corpus designed for number recognition. Because
TIMIT is well known, we describe shortly only the Hungarian corpus.

The OASIS corpus is a small isolated -number corpus being developed at
the Research Group on Artificial Intelligence of the Hungarian Academy of
Sciences. The segmented part of the corpus contains speech from 26 speakers:
1 child, 9 female and 16 male voices. Each speaker reads the same 26 words
twice. Any Hungarian number can be formed by concatenation from this set
of 26 numbers. Each word is manually segmented and labelled phonetically.
Twenty speakers were used for training and six speakers for testing. The
corpus contains 31 phonemes, annotated using SAMPA symbols. The only
modification was made for the notation of stop symbols, where instead of using
one symbol, the closure part and the burst part were annotated separately.
For the voiceless closure part it is used the symbol /− / while for the voiced
closure part the symbol / + /. For example instead of the symbol /t/ it were
used two symbols:/ − /and /′t/. Further information on this corpus can be
found in [6, 7, 15]. Table 1 presents the exact content of the corpus used for
training and test.

For the TIMIT corpus the phoneme models consist of 61∗32∗(2∗39+1) =
154208 real numbers and for the OASIS corpus 31 ∗ 16 ∗ (2 ∗ 39 + 1) = 39184
real numbers.

3.2.1. Explicit usage of durations. Our first attempt to phoneme duration
modelling was a data driven approach. The minimum, maximum and the av-
erage phoneme durations were determined based on corpora. Figure 2 shows
these values for the OASIS corpus.

In the first three experiments we used the same minimum and maximum
duration for every phoneme and in the fourth experiment we introduced those
shown in figure 2. Results are reported in table 2.

3.2.2. Implicit duration modelling. Using the second approach, firstly we present
the phoneme recognition experiments for the TIMIT corpus. We used all the
61 phonemes of the corpus without grouping allophones. This will serve as a
baseline for further system improvements. The first step was to determine the
optimal value for β parameter introduced to the Viterbi decoding algorithm.

For training we used the whole training part of the corpus. For evaluation
we used two sets, a smaller timit test core and a larger one timit test, both had

TOWARD A SIMPLE PHONEME BASED SPEECH RECOGNITION SYSTEM 43

Phoneme Training Test Phoneme Training Test
- 519 156 i: 40 12
-: 40 12 j 80 24
’d’ 118 36 J 80 24
’k 200 60 l 200 60
’t 399 120 l: 40 12
’ts 200 60 m 120 36
+ 120 36 n 559 168
˜ 2080 624 O 240 72
2 80 24 o 160 48
:2 40 12 o: 40 12
A: 120 36 r 160 48
E 600 180 s 160 48
e: 160 48 u 80 24
h 306 96 u: 40 12
i 240 72 v 240 72

z 240 72
Table 1. Phoneme frequencies in training and test part of the corpus

’d’ ’k ’t ’ts + − −: 2 2: A: E J O e: h i i: j l l: m n o o: r s u u: v z ~
0

50

100

150

200

250

300

350

400

450

500
Minimum, maximum and average phoneme durations

OASIS phonemes

D
ur

at
io

n
 [

m
s]

Figure 2. OASIS-Minimum, maximum and average phoneme durations

44 MARGIT ANTAL

Dur. D I S A C
1..50 0.04% 73.10% 2.54% 24.30% 97.40%
2..50 0.17% 27.72% 3.45% 68.65% 96.37%
3..50 0.69% 17.09% 4.66% 77.54% 96.64%

τmin..τmax 1.12% 15.71% 6.21% 76.94% 92.65%
Table 2. Phoneme recognition -OASIS - explicit phoneme durations

Evaluation β D I S A C
timit test core 11 7.41% 7.68% 37.76% 47.14% 54.81%
7525 phonemes 13 9.75% 4.81% 36.37% 49.06% 53.87%
TR: 61 models 15 12.14% 3.21% 34.79% 49.84% 53.06%
TE: 61 models 17 14.35% 2.19% 33.27% 50.17% 52.37%

20 18% 1.26% 30.88% 49.86% 51.12%
timit test 11 6.79% 7.39% 34.54% 51.27% 58.66%
65825 phonemes 13 9.13% 4.76% 33.12% 52.98% 57.74%
TR: 61 models 15 11.42% 3.24% 31.66% 53.67% 56.91%
TE: 61 models 17 13.7% 2.21% 30.18% 53.90% 56.11%

20 17.16% 1.31% 28.12% 53.40% 54.71%
timit test 11 7.03% 7.63% 25.68% 59.65% 67.28%
65825 phonemes 13 9.35% 4.97% 24.48% 61.18% 66.16%
TR: 61 models 15 11.55% 3.37% 23.38% 61.68% 65.05%
TE: 39 models 17 13.81% 2.32% 22.16% 61.70% 64.00%

20 17.22% 1.37% 20.45% 60.95% 62.32%
Table 3. Phoneme recognition - TIMIT

been proposed by the creators of the corpus. While the smaller set contains
192 sentences, the larger one is formed by 1680 sentences. Table 3 shows
the recognition accuracies together with the three type of errors for various
values of the β parameter. As phoneme models 32 Gaussians models were
used with diagonal covariance matrices. The first evaluation set timit test core
contains 7525 phones, while timit test contains 65825 phones. These results
were obtained without using language model, which means that it was allowed
for every phoneme to follow every other phoneme.

In the third part of the table 3 we present the results obtained by the same
experiments with a modification in the interpretation of the decoding process.

TOWARD A SIMPLE PHONEME BASED SPEECH RECOGNITION SYSTEM 45

Paper Method LM TR TE ACC. CORR.
Ostendorf[4] SSM+CI bigram 61 39 64.20% 70.00%
This paper GMM+CI 0gram 61 39 61.70% 64.00%

Robinson[13] REPN+CD 0gram 61 61 61.70% 69.10%
Robinson[13] REPN+CD bigram 61 61 63.50% 70.00%
Robinson[13] REPN+CD bigram 61 39 69.80% 76.50%
Table 4. TIMIT - Phoneme recognition. LM - Language
Model, TR - Number of phoneme models trained, TE - Num-
ber of phoneme models for decoding, ACC -Accuracy, CORR
-Correct, SSM - Stochastic Segment Model, REPN - Recur-
rent Error Propagation Network, CI - Context Independent
phoneme models, CD - Context Dependent phoneme models

We used 61 phoneme models for decoding, but before applying the minimum
distance algorithm, we converted the 61 phonemes to the 39 phoneme groups,
as suggested by the creators of the corpus. This step reduced substantially the
substitution errors, which suggests us that the phoneme grouping influences
mainly the substitution errors.

Table 4 presents comparative results obtained on TIMIT. It can be seen
that the best results were obtained by the neural network modelling, how-
ever this model is not fully comparable to the other two papers because this
represents a context dependent modelling of the phonemes.

In the following we present results obtained for the Hungarian corpus. In
this case, due to the limited amount of training data we used as phoneme
models mixtures of 16 Gaussians.

Table 5 presents the recognition results obtained for various values of the
β parameter. Figure 3 shows β parameter tuning for both corpora.

Our results compare favorably with those published in [15] on this cor-
pus. They reported 82.05% recognition accuracy, using a hybrid ANN-HMM
framework.

4. Discussion and conclusions

One of the most important finding of this work is that we achieved very
good phoneme recognition accuracy with a very simple phoneme modelling
and an even simpler phonetic decoding strategy. The second decoding strat-
egy, in which we introduced the parameter β performed better than the first

46 MARGIT ANTAL

β D I S A C
11 0.52% 27.93% 5.18% 66.36% 94.30%
13 0.82% 21.80% 5.53% 71.85% 93.65%
15 1.42% 17.35% 5.65% 75.56% 92.91%
17 1.68% 14.35% 5.95% 78.02% 92.05%
20 2.37% 11.27% 6.00% 80.35% 91.62%
23 3.49% 9.15% 5.82% 81.51% 90.67%
25 4.06% 7.77% 5.78% 82.38% 90.15%
27 4.83% 7.08% 5.83% 82.25% 89.33%
30 6.43% 5.82% 5.70% 82.03% 87.86%

Table 5. Phoneme recognition - OASIS - implicit duration modelling

11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60
TIMIT − Recognition accuracies vs. beta

beta

[%
]

Deletion

Substitution

Insertion

Accuracy
Correct

10 12 14 16 18 20 22 24 26 28 30
0

10

20

30

40

50

60

70

80

90

100
OASIS −Recogniton accuracies vs. beta

beta

[%
]

Deletion

Insertion

Substitution

Accuracy

Correct

Figure 3. Phoneme recognition vs. β parameter

one, which considers different phoneme durations. Not only the recognition
accuracy is better in the second approach, but the algorithm itself is a very
efficient one.

Most of the papers working with the TIMIT corpus report phoneme recog-
nition results for the reduced phoneme set. In order to produce comparable
results, before computing the minimum edit distance between the recognised
phoneme string and the original one, we converted the phonemes to their
phoneme groups. This yields a better recognition accuracy, decreasing espe-
cially the substitution errors. In this way working with the reduced phoneme
set increased approximately with 8% the recognition accuracy. For the 39
phoneme groups we obtained 61.70% recognition accuracy without using any
phoneme level language model. The first decoding approach was not used for

TOWARD A SIMPLE PHONEME BASED SPEECH RECOGNITION SYSTEM 47

TIMIT as this algorithm is a very inefficient one and has increased the time
for decoding.

For the OASIS corpus both the proposed decoding techniques were evalu-
ated. For the first decoding technique we have found that imposing a minimum
phoneme duration (3 frames in our case) yields the same good result as using
the phoneme specific minimum and maximum durations. This could be due
to the limited amount of training data in this corpus. We should note that
3 frames roughly corresponds to the average of minimum durations over the
whole phoneme set. The second decoding technique has shown its superiority
over the first one. With the parameter β tuned for maximum accuracy we
obtained 82.38% recognition accuracy, which compares favorably to 82.05%
found in [15].

We believe that the most important finding is that we obtained these re-
sults by using only models and algorithms which do not contradict in their
functionality human speech recognition. Despite the fact that phoneme recog-
nition accuracy was not increased, our simple phoneme recognition system
warrants stable and reliable behaviour with a good recognition performance.

References

[1] Antal, M., Toderean, G., Speaker Recognition and Broad Phonetic Groups, Proc. 24th

IASTED International Multi-Conference on Signal Processing, Pattern Recognition and

Applications, Febr. 15-17, Innsbruck, Austria, pp. 155-158, 2006.

[2] Bourlard, H., Hermansky, H., Morgan., N., Towards Increasing Speech Recognition

Error Rates, Speech Communication, Vol. 18., pp. 205-231, 1996.

[3] Deller, J.R., Hansen, J. H. L., Proakis, J. G., Discrete-Time Signal Processing of Speech

Signals, John Wiley & Sons, 2000.

[4] Digalakis V., Ostendorf M., Rohlicek, J. R., Fast Search Algorithms for Connected

Phone Recognition Using the Stochastic Segment Model, IEEE Trans. on Signal Pro-

cessing, December, pp. 173-178, 1992.

[5] Huang, X., Acero, A., Hon, H-W., Spoken Language Processing, A Guide to Theory,

Algorithm and System Development, Prentice Hall, 2001.

[6] Kocsor, A., Kuba, A. Jr., Toth, L., An Overview of the OASIS Speech Recognition

Project, Proceedings of the 4th International Conference on Applied Informatics, Au-

gust 30 - September 3, Eger-Noszvaj, Hungary, pp. 94-102, 1999.

[7] Kocsor, A., Toth, L., Kuba, A., Kovacs, K., Jelasity, M., Gyimothy, T., Csirik J., A

Comparative Study of Several Feature Transformation and Learning Methods, Interna-

tional Journal of Speech Technology, pp. Vol. 3, Nr 3/4, pp. 253-262, 2000.

[8] Lee, K-F., Hon, H-W., Speaker-independent Phone Recognition Using Hidden Markov

Models, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No.

11, 1989.

48 MARGIT ANTAL

[9] Levinson, S. E., Ljolje, A., Miller, L. G., Continuous Recognition from Phonetic Tran-

scription, Proceedings of a workshop on Speech and Natural Language, Pennsylvania,

U.S., pp. 190-199, 1990.

[10] Mari, J. F., Fohr, D., Junqua, J-C., A second order HMM for high performance word and

phoneme-based speech recognition, IEEE Transactions on Speech and Audio Processing,

vol. 23, no. 2, pp. 435-438, 1996.

[11] Pylkkonnen, J., Phone Duration Modeling Techniques in Continuous Speech Recogni-

tion, Master thesis Helsinki University of Technology, 2004.

[12] Rabiner, L., R., Juang, B.H., Fundamentals of Speech Recognition, Prentice-Hall, En-

glewood Cliffs, NJ, 1993.

[13] Robinson, T., Fallside, F., A Recurrent Error Propagation Network Speech Recognition

System, Computer Speech and Language, vol. 5, no. 3, pp. 259-274, 1991.

[14] Toth, L., Kocsor, A.: Explicit Duration Modelling in HMM/ANN Hybrids, Matousek

et al. (eds.): Proceedings of TSD 2005, LNAI 3658, pp. 310-317, Springer, 2005.

[15] Toth, L., Kocsor, A., Csirik, J., On naive Bayes in Speech Recognition, In. J. Appl.

Math. Comput. Sci., Vol. 15, No. 2, pp. 287-294, 2005.

Sapientia - Hungarian University of Transylvania,Faculty of Technological

and Human Sciences, 540053 Tg.-Mures,540485, Soseaua Sighisoarei 1C, Romania

E-mail address: manyi@ms.sapientia.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LII, Number 2, 2007

KNOWLEDGESENSE: ENCYCLOPEDIC SYSTEM BASED ON
SEMANTIC SEARCH THROUGH NLP

PAUL-VALENTIN BORZA, DANIEL GHIŢĂ, MIHAI NADĂŞ, OVIDIU SABOU,

AND SIMONA MOTOGNA

Abstract. The article presents the solution that won the Imagine Cup

2007 National Finals and represented Romania at the Imagine Cup 2007

Software Design Invitational Worldwide Finals in Seoul, Korea August 5-

11, 2007. In 2007, the Imagine Cup Theme was ”Imagine a world where

technology enables a better education for all“. We created a unique solu-

tion that enables styles of natural interaction with a smart omnipresent hu-

manlike entity, as it exploits human thinking within the education domain

on an instant question answering based type of learning - self-education:

KnowledgeSense. The solution takes advantage of intelligent devices and

technologies that increasingly pervade modern environments - humans in-

teract and learn intuitively while having a rich and complete experience

with a virtual human person - Anna - that recognizes speech and gestures.

Plus, it is also reachable through widely used communication channels

like phones - SMS messages, VoIP or PSTN calls - and instant messaging

networks. This approach emphasizes natural behavior by providing the

opportunity to adapt to human needs and not reverse.

1. Introduction

Information is usually defined as ”organized data“, ”data endowed with
relevance and purpose“ or ”interpreted data“ etc.; these definitions point to
the fact that information includes human participation in the purposeful or-
ganization of raw data. Knowledge can only reside in one’s mind and is the
result of human experience and reflection based on a set of beliefs that are at
the same time individual and collective; for instance, Nonaka and Takeuchi

Received by the editors: September 15, 2007.

2000 Mathematics Subject Classification. 68N01, 68T50.

1998 CR Categories and Descriptors. H.3.1 [Information storage and retrieval]:

Content Analysis and Indexing – Dictionaries, Indexing methods, linguistic processing ; H.3.3

[Information storage and retrieval]: Information Search and Retrieval – retrievel model,

search process; H.4.m [Information System Applications]: Miscellaneous – .

49

50 BORZA, GHIŢĂ, NADĂŞ, SABOU, AND MOTOGNA

define knowledge as ”true and justified belief“. The key difference between
knowledge compared to information can be summarized by the role played by
human beings. In the case of knowledge, as simple as it may seem, individuals
play a prominent role as creators, carriers, conveyors and users; in contrast,
in the case of information, these same functions can happen outside humans
and without their direct influence.

KnowledgeSense uses the human knowledge that is continuously published
on safe information sources through the Internet - Wikipedia, Encarta, Britan-
nica and The World FactBook etc. - ensuring the trustworthy property of the
vast content that the system is prepared to process. Finding answers through
keywords - an approach that is often used in search engines like Windows Live
and Google etc. - is extremely unintuitive; sometimes, choosing the right key-
words becomes a time consuming challenge even to the most experienced user.
People have always asked questions to quickly solve their misunderstandings,
so the most natural way of solving the ”international system units smallest
prefix“ puzzle, is to ask ”What’s the smallest metric prefix unit¿‘ - The answer
is ”yocto“.

2. Architecture

Take a look at the architecture level of abstraction of the Enterprise So-
lution Patterns [5] - KnowledgeSense Pattern Frame from figure 1. From
the application viewpoint, as Figure 2 shows, KnowledgeSense is an Object-
Oriented Application that is logically structured as a Three-Layered Services
Application. From the database viewpoint, the application is based on the
OLTP processing model. From the infrastructure viewpoint, the hardware
and network architecture are based on Four-Tiered Distribution (see figure 3),
which calls for separate physical tiers for Web server and application server
functionality. And finally, from the deployment viewpoint, we have created
a Deployment Plan to map components to servers, based on a Smart Client
Application.

Running on Windows Vista, the desktop application was designed and
built upon Windows Presentation Foundation to offer a modern GUI and
Experience. With the clear separation between the logic and the look of the
program, WPF enabled quick development of a good looking interface that
remains intuitive and serves its purpose - show information in a fast and
convenient way - while maintaining the Windows Vista UX guidelines.

KNOWLEDGESENSE: ENCYCLOPEDIC SYSTEM 51

Figure 1. Enterprise Solution Pattern Frame

Figure 2. Enterprise Solution Pattern Frame

In addition to the classical way of presenting information (text, images,
video etc.), a new dimension was introduced, bringing interactivity innovation

52 BORZA, GHIŢĂ, NADĂŞ, SABOU, AND MOTOGNA

Figure 3. Four-Tiered Distribution

in electronic encyclopedias. A virtual assistant and a virtual world were in-
tegrated using OpenSceneGraph[2] - a 3D toolkit that enables advanced 3D
graphics techniques, already used in many well known 3D graphics solutions
like flight simulators and CAD products - achieving a completely new experi-
ence.

Gesture recognition data is gathered using a Nintendo Wii Remote Con-
troller[3] (a $40 value) that provides six degrees of freedom through the use
of an analog accelerometer device and an optical sensor, and then processed
through the Hidden Markov Models[4] with the Forward-backward, Viterbi
and Baum-Welch algorithms that recognizes gesture patterns and executes
the associated actions. In addition to the sensors, the solution uses the other
unique functionalities of the remote: rumble, speaker, direction pad etc.

The VoIP component establishes connections over the TCP implementa-
tion of the Session Initiation Protocol. Running on a standard protocol, a
multitude of SIP-enabled softphones and hardphones can dial the Windows
Workflow Foundation based application that runs inside Speech Server 2007
Beta. Unlike voice services that use the PSTN - with low audio quality - the
voice recognizer and synthesizer are able to perform their tasks much better,

KNOWLEDGESENSE: ENCYCLOPEDIC SYSTEM 53

as they receive and produce high quality sound. PSTN phone calls are han-
dled by the Cantata Technology TR1000 for MSS Speech - telephony and voice
processing board.

The DotMSN Messaging Library[6] is used as a wrapper over the Windows
Live Messenger network protocol, being able to trigger all instant messaging
events required to chat with a person; the user might not even know it is
talking with a machine.

The full product grid that provides a non-detailed, yet comprehensive
snapshot of used technologies is presented in Appendix A.

3. Hibride Search Algorithm

KnowledgeSense is integrating a hybrid search mechanism , as in figure
4 that enables high accuracy in the process of getting the right answer for
a certain question. We are combining traditional search technologies like the
Microsoft SQL Server’s Full Text Search feature and the Windows Live Search,
with our custom build artificial intelligence driven natural language processing
engine.

Figure 4. QA Flow

Our system uses a database in which the relevant encyclopedic information
is stored. But as the system relies on the knowledge gathered on the Internet
to provide users with answers, we need an intelligent process responsible for
acquiring data from all the trusted sources assigned to our application.

54 BORZA, GHIŢĂ, NADĂŞ, SABOU, AND MOTOGNA

From a technological point of view, our algorithm is capable of solving
three different question answering situations. All of these situations start
with the same procedure of breaking up the question into relevant keywords.
For example if a user asks What is painting?” the engine will process the
question and it will generate the keywords is painting”. From this point on,
the algorithm works differently for the mentioned situations.

The first case in when the database does not contain a relevant article for
the keywords generated by the engine. We know if a set of keywords match
an article by using the database’s Full Text Search feature that returns for
each article stored a match accuracy, which tells us if the article is relevant
or not. And because we said above that in this case the database will not
contain relevant articles for the given question, the algorithm continues the
search on the next level, searching the Internet. The algorithm uses Windows
Live Search to search the trusted data sources present on the Internet (e.g.
Wikipedia) in order to retrieve articles that match the search criteria. Once
this process is over, the engine parses the text of the articles thus creating a
semantic tree of the information present in the article and after this is done all
the data is stored into the database providing information for further queries.
When the parsing process is over, the engine uses the semantic trees from each
relevant article and retrieves the answer for the given question (e.g. ”Painting
is the process of applying color to a surface“).

The second case is when the database already contains the semantic tree
for the article relevant to the given question. In this case the semantic tree
associated with the article is sent back to the engine, where it extracts the
relevant answers for the given question. And to assure that our information is
updated permanently, we run a comparing test between the information of the
source and the article that is present in our database. If there are differences,
the article is reparsed in order to deliver the most relevant answers. The third
case is possibly the easiest of all. After the system delivers an answer for a
question, the answer is stored into the database for a better performance the
next time that exact question is asked. Thus, if the asked question is already
answered, the system will return the answer without analyzing the semantic
tree or searching for new articles on the Internet.

The engine that processes natural language identifies each question and
parses the input to construct a tree with word relations[8] ; the WH-part -
who, what, how etc. - and statement segment are extracted to classify the
input accordingly. Keywords are generated and matched on articles where the

KNOWLEDGESENSE: ENCYCLOPEDIC SYSTEM 55

system looks for possible answers; the highest rated answer is rephrased with
the additional available information and provided back to the user in human
language[9].

4. Anna, the 3D animated assistant

The humanoid assistant from our application had to be as realistic as
possible. In order to achieve this, we had to use the best real time rendering
technologies available to us at that time. Since we already had some experience
with OpenGL and OpenSceneGraph, we chose these technologies for rendering
Anna and the objects in the virtual environment.

The first major problem we encountered when developing KnowledgeSense
World (the desktop client application) was the integration between WPF
(Windows Presentation Foundation) and a 3D graphics API. Although WPF
provides some support for rendering 3D objects, it wasn’t enough for us. We
had to render tens of thousands of polygons at interactive frame rates with the
assistant’s 3D model included. WPF isn’t suitable for this because it doesn’t
provide a low level way of specifying geometric data and it also doesn’t provide
hardware skinning support (for animating the character directly on the video
card).

In order to render data with OpenGL, a special type of window has to
be created. Since access to the operating system and hardware resources is
better handled with C++, and OpenSceneGraph is a C++ toolkit, we needed
something that could glue together the C# part (user interface and the logic
of the application) and the C++ part (for rendering the scene). C++/CLI is
a language designed for creating systems that interact with .NET and native
components at the same time. The rendering part, which was implemented in
native C++, was wrapped by a thin C++/CLI module that provided a simple
.NET API for controlling the objects within the virtual world (with features
like changing the position and rotation of objects, animating the character,
changing the camera properties, etc.).

The realism of the scene was improved by adding static shadows (baked
with 3D Studio Max) at high resolutions. It wasn’t a problem because the
environment was supposed to be changed rarely so the static approach for
lighting the virtual world was enough (the resulting images had very high
quality).

Throughout the development process, three models were used as the vir-
tual body of Anna. The first two models were custom models made by

56 BORZA, GHIŢĂ, NADĂŞ, SABOU, AND MOTOGNA

us, while the third model was professionally built. For character anima-
tion, we used the most popular open source library, named Cal3D, which
is available at http://cal3d.sourceforge.net. We have acquired a license to
use the third model (named Masha) from Turbosquid.com and integrated
it into our scene after it was rigged (rigging is the process of attaching a
skeleton to a mesh) by a professional Blender artist. Because the Cal3d ex-
porter for Blender was the only one that worked for us (the 3Dsmax version
was out of date), Blender was the main tool for manipulating the 3d con-
tent related to the virtual assistant. The final rendering of the character was
done using osgCal, an OpenSceneGraph plug-in that renders Cal3d models.
The development of the models and theirs transformations can be seen at
http://www.borza.ro/demo/knowledgesense.

Table 1: Technologies

Technology Name and Knowledge-

Sense Component

Core Message Phone IE

Add-In

Robot World Team

W

Microsoft Windows

• Windows Vista Business Edition X X X

• Windows Internet Explorer 7.0 X

• Windows Live Messenger 8.1 X

• Windows Mobile 5.1 Pocket PC

Phone Edition

X X X

Microsoft Servers

• Windows Server 2003 R2 Stan-

dard Edition

X X X X

• Internet Information Services 6 X X X

• Windows SharePoint Services 2 X

• SQL Server 2005 Standard Edi-

tion

X X

• Database Engine X

• Speech Server 2004 R2 X

• Office Communications Server

2007 Speech Server

X

• Visual Studio 2005 Team Foun-

dation Server

X

Microsoft Developer Tools

• Visual Studio 2005 Team Suite X X X X X X X

• Visual C# X X X X X

• Visual C++ X

• Expression Blend X

Additional Developer Tools

• Autodesk 3ds Max 9 X

• Blender 2.43 X

• Counterpath X-Lite 3.0 X

Microsoft Frameworks, APIs and SDKs

• .NET Framework 2.0 X X X X

• ADO.NET X

• ASP.NET X

• .NET Compact Framework 2.0 X

• .NET Framework 3.0 X X

KNOWLEDGESENSE: ENCYCLOPEDIC SYSTEM 57

• Windows Presentation Founda-

tion

X

• Speech API 5.3 X

• Windows Workflow Foundation X

• Windows Mobile 5.0 for Pocket

PC SDK

X

• Windows Live Search API 1.1 X

Additional APIs and SDKs

• Xih Solutions DotMSN API 2.0.2 X

• Princeton WordNet API 3.0 X

• Proxem Antelope API 0.7.1 X

• Stanford Parser API 1.5.1 X

• Wii Remote Controller API 1.1 X

• OpenSceneGraph SDK 1.2 X

Devices

• Cantata Technology TR1000 for

MSS

X

• HP iPAQ hw6915 X

• MSI Star Key 2.0 Long Range

Bluetooth Dongle

X

• Nintendo Wii Remote Controller X

5. Conclusion

The solution delivers trustworthy educational knowledge in an intuitive
manner that enables questions to be stated in natural language; subjects are
presented in an interactive graphical environment. A complete set of platforms
are available for application use.

References

[1] Dion Hinchcliffe: Patterns for High-Integrity Data Consumption and Composi-

tion - The Architecture Journal, Data by Design, http://msdn2.microsoft.com/en-

us/arcjournal/bb245676.aspx

[2] Robert Osfield and Don Burns: OpenSceneGraph, http://www.openscenegraph.org/

[3] Brian Peek: Managed Library for Nintendo’s Wiimote - MSDN Coding4Fun,

http://blogs.msdn.com/coding4fun/archive/2007/03/14/1879033.aspx

[4] Lawrence R. Rabiner: A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition - Proceeding of the IEEE, February 1989

http://www.caip.rutgers.edu/∼lrr/Reprints/tutorial on hmm and applications.pdf

[5] David Trowbridge, Dave Mancini, Dave Quick, Gregor Hohpe, James Newkirk and

David Lavigne: Enterprise Solution Patterns Using Microsoft .NET - MSDN Patterns

and Practices, http://msdn2.microsoft.com/en-us/library/ms998469.aspx

[6] *** Xih Solutions: DotMSN, http://www.xihsolutions.net/dotmsn/

[7] *** National Institute of Standards and Technology: Question Answering Collections,

http://trec.nist.gov/data/qa.html

[8] *** Princeton University Cognitive Science Laboratory: WordNet,

http://wordnet.princeton.edu/

58 BORZA, GHIŢĂ, NADĂŞ, SABOU, AND MOTOGNA

[9] *** Proxem: Advanced Natural Language Object-oriented Processing Environment,

http://www.proxem.com/Antelope/tabid/55/Default.aspx

[10] *** Stanford Natural Language Processing Group: Stanford Parser,

http://nlp.stanford.edu/software/lex-parser.shtml

Department of Computer Science, Faculty of Mathematics and Computer

Science, Babeş-Bolyai University, 1 M. Kogălniceanu St., 400084 Cluj-Napoca,

Romania

E-mail address: bp20416,gd20439,nm20474,so20492@scs.ubbcluj.ro, motogna@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LII, Number 2, 2007

COMDEVALCO — A FRAMEWORK FOR SOFTWARE
COMPONENT DEFINITION, VALIDATION, AND

COMPOSITION

BAZIL PÂRV, SIMONA MOTOGNA, IOAN LAZĂR, ISTVAN CZIBULA,

AND LUCIAN LAZĂR

Abstract. This paper introduces ComDeValCo - a framework for Soft-
ware Component Definition, Validation, and Composition. This is the
first paper in a series describing current and further developments of this
framework, which includes a modeling language, a component repository
and a set of tools. The object-oriented modeling language contains fine-
grained constructions, aimed to give a precise description of software com-
ponents. Component repository is storing valid components, ready to be
composed in order to build more complex components or systems. The
toolset contains tools dedicated to component definition, validation, and
composition, as well as the management of component repository.

1. INTRODUCTION

Software systems become more and more complex. In most situations,
where the complexity of the problem to be solved is an important issue, the
decomposition is used - the initial problem is splitted into small sub-problems,
then each sub-problem is solved independently (or their solutions are iden-
tified), and finally the target system is built by composing the solutions of
sub-problems. The evolution of software systems development include the
use of several paradigms: procedural, modular, object-based and oriented,
and component-based; most authors consider component-based development
as the paradigm of the third millenium. The drivers of this evolution were at
least the following:

• the increased complexity of the problems to be solved (and conse-
quently of the systems to be built);

Received by the editors: November 10, 2007.
2000 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.4 [SOFTWARE ENGINEER-

ING]: Software/Program Verification – Formal methods, Model checking, Validation;
D.2.13 [SOFTWARE ENGINEERING]: Reusable Software – Reuse models; I.6.5
[SIMULATION AND MODELING]: Model Development – Modeling methodologies .

59

60 PÂRV, MOTOGNA, LAZĂR, CZIBULA, AND LAZĂR

• the need for performance (w.r.t. time, money, and throughput): pro-
ducing new state-of-the-art systems in short time, and with less money.

One of the drivers of this evolution was reuse. Early forms of software
reuse are collectively known as code reuse. Nowadays, software reuse covers
also design reuse. Successful design fragments are collected into catalog form
and collectively known as design patterns; they represent not complete de-
signs, but partial solutions, ready to be reused into new designs or contexts.
Also, class libraries evolved into frameworks, which represent complete system
architectures. They are an incarnation of inversion of control design princi-
ple, being a set of cooperating classes that make up a reusable design from a
specific application domain.

The paper is organized as follows: after this introductory section, the sec-
ond one is discussing component-based development process, and the current
status of research and industry efforts in the field. Third section presents
the proposed solution, ComDeValCo framework, detailing its components:
modeling language, component repository and the toolset. The last section
contains some conclusions and plans further efforts.

2. THE PROBLEM

2.1. The problem: component-based software development. The pro-
cess of component-based software development (or CBD for short) has two sub-
processes more or less independent: component development process and sys-
tem development process. Naturally, the requirements on components are de-
rived from system requirements; the absence of a relationship, such as causal,
may produce severe difficulties in both sub-processes mentioned above.

The system construction by assembling software components [CL02] has
several steps: component specification, component evaluation, component
testing, and component integration. The system development sub-process
focuses on identifying reusable entities and selecting the components fulfilling
the requirements, while in the component development sub-process the em-
phasis is on component reuse: from the beginning, components are designed as
reusable entities. Component’s degree of reuse depends on its generality, while
the easiness in identification, understanding, and use is affected by the compo-
nent specification. The sole communication channel with the environment is
the component’s interface(s). In other words, the client components of a com-
ponent can only rely on the contracts specified in the interfaces implemented
by the component. Thus, it is obvious that component development must
be interface-driven. One of major CBD challenges is to design appropriate
interfaces.

In our opinion, the main CBD challenge is to provide a general, flexible
and extensible model, for both components and software systems. This model

COMDEVALCO 61

should be language-independent, as well as programming-paradigm indepen-
dent, allowing the reuse at design level.

2.2. CBD design process models. The design process of a component-
based system [HW00] follows the same steps as in the classical methods: the
design of architecture, which depicts the structure of the system (which are
its parts) and the design of behavior (how these parts interact in order to
fulfill the requirements). The structural description establishes component
interconnections, while behavioral description states the ways in which each
component uses the services provided by interconnected components in order
to fulfill its tasks.

The main idea of CBD is to build the target system from existing com-
ponents; this has several consequences on the target system’s life-cycle. First,
the system development sub-process [HW00] is separated from the component
development sub-process. Second, a new sub-process arises: component iden-
tification and evaluation. Third, the activities in both sub-processes differ
from the traditional methods: the focus is on component identification and
verification (for system development), and on component reuse (in the case of
component development).

The paper [CL02] describes a software systems development model which
can be used in component-based development. The classical waterfall life-cycle
model was upgraded such that it contains component-centric activities: re-
quirements analysis and design - specific to the waterfall model - are combined
with component identification and selection - specific to the component-based
development. The design stage includes architectural design and activities
related to component identification, selection, and adaptation.

Another viewpoint, given in [WR02], considers the following steps in build-
ing a software system from components: a) connecting the components such
that they match; b) understanding the interconnections between components,
and c) examining the behavior of the whole target system with respect to the
requirements.

2.3. Component and system models. There are many ways to deal with
component-based software development. The simplest one is to add to the
contract (interface) of the component all requirements w.r.t. its use (the mean-
ingful interconnections to other components). Unfortunately, this supplement
to the component specification is a time and effort-consuming activity. For
every newly-created component, one must identify all compatible components,
and after that the contracts of these components must be updated in order to
include this new component.

An alternative solution, given in [WR02], is to think the behavior of the
target system as a separate activity, which is performed without accessing

62 PÂRV, MOTOGNA, LAZĂR, CZIBULA, AND LAZĂR

the target system under construction. Unfortunately, this activity is very
complex, but there are models which can help. These models do not reproduce
the behavior of the whole system; they will cover only particular aspects of
the system which are of interest at a specific time. This approach neglects
insignificant details, thus reducing the complexity of the resulting model, total
effort and time for building the model.

Building and testing a real target system is more difficult and takes a
greater volume of resources than the corresponding model evaluation. This
is because the models do not address complexity of the system and the sub-
tleties of its environment. Other potential benefit of using models is their
controllability, i.e. their evaluation before the target system is designed. In
this case, the models are analyzed, simulated, and evaluated using software
tools. The system developer builds a model which is taken by the evalua-
tion tool. The comparison of the model behavior with respect to the system
requirements is made by using either the modeling language or some other
specialized languages.

In order to be evaluated, the models need to be precise, complete, and
consistent. Generally speaking, if the degree of model (i.e. modeling language)
formality is low, the model is a good candidate for inconsistencies, because
some modeling constructs do not have a unique interpretation. When the
model is used to assist the process of designing interactions between different
components / parts of a system, or to assess the correctness of the system,
preciseness, completeness and consistency are a must.

The success of using models (formal or not) is influenced in part by the
availability and the degree of acceptance of modeling tools and techniques
developed by the software development community. Those who build models
need to perceive the usefulness of the models [HW99], need to find a tradeoff
between model complexity and its ease of use. It is convenient to build simple
models, without great investments in time and intellectual effort. More im-
portant, the resulting models need to be accessible, easy to understand and
analyze, and to have a reasonable degree of formality.

It is recognized that modeling is not used today in the software devel-
opment process at its full strength. Usually, models are only simple design
notes, thrown away after the coding is completed. However, model-based ap-
proach (or model-driven approach in software development, MDA) gains more
adepts. In MDA, the model of the system is the center of software develop-
ment process. At least four modeling notations are currently used: finite state
machines ([EG03], [LL00], [WR00]), statecharts ([GM95]), Petri nets ([AW],
[PJ02]) and role-activity diagrams ([HW00], [HHW01], [HWC04], [WR02]).

An important direction concerning the use of models in the CBD process
is represented by the Object Management Group consortium (OMG) efforts,

COMDEVALCO 63

known collectively as executable UML. For example, [OMG05a] describes the
semantics of some simple UML constructions, intended to be used in model
validation and simulation. Model-level testing and debugging is covered in
more detail by [OMG05b], while [OMG05c] contains specifications belonging
to different application domains. Also, [OMG], which refers to current OMG
technology adoption processes, contains more references regarding model val-
idation and simulation.

Business process modeling comes from another perspective, but has the
same final goal as our problem. For example, [Liu04] uses abstract logic trees
to represent UML activity diagrams, allowing the study of their properties
using graph algorithms. Also, [Hol04] and [Gru07] compare structured pro-
gramming primitives with UML activity diagrams, studying graphical ways of
representing structured processes.

Another industry initiative related to model specification, validation, and
simulation is AGEDIS - Automated Generation and Execution of Test Suites
for DIstributed Component-based Software [AGEDIS], a project ended in
2004.

3. THE SOLUTION: ComDeValCo

The proposed solution is ComDeValCo - a conceptual framework for
Software Components Definition, Validation, and Composition. Its con-
stituents are meant to cover both sub-processes discussed in 2.1: component
development and component-based system development. This paper should be
seen as a presentation of a solution for these two interconnected sub-processes
and as a plan for the further developments of the framework.

The sub-process of component development starts with its definition, us-
ing an object-oriented modeling language, and graphical tools. The model-
ing language provides the necessary precision and consistency, and the use of
graphical tools simplifies developer’s work, which doesn’t need to know the no-
tations of modeling language. Once defined, component models are passed to
a V & V (verification and validation) process, which is indended to check their
correctness and to evaluate their performances. When a component passes V
& V step, it is stored in a component repository, for later (re)use.

The sub-process of component-based system development takes the compo-
nents already stored in repository and uses graphical tools, intended to: select
components fulfilling a specific requirement, perform consistency checks re-
garding component assembly and include a component in the already existing
architecture of the target system. When the assembly process is completed,
and the target system is built, other tools will perform V & V, as well as
performance evaluation operations on it.

64 PÂRV, MOTOGNA, LAZĂR, CZIBULA, AND LAZĂR

Constituents of the conceptual framework are: the modeling language,
the component repository and the toolset. Any model of a software compo-
nent is described by means of a modeling language, programming language-
independent, in which all modeling elements are objects. The component
repository represents the persistent part of the framework and its goal is to
store and retrieve valid component models. The toolset is aimed to help de-
velopers to define, check, and validate software components and systems, as
well as to provide maintenance operations for the component repository.

The rest of this section gives a short description of the above constituents,
illustrating their current status and intended further developments. More
detalied descriptions will be given in separate papers.

3.1. Modeling language. The software component model is described by
an object-oriented modeling language, all modeling elements being objects.
The modeling language is independent from any object-oriented programming
language and has the following features:

• all language elements (constructs) are objects, instances of classes de-
fined at logical level, with no relationship to a concrete object-oriented
programming language;

• language constructs cover both categories of software component dis-
cussed - the target software system - Program (the only executable)
and proper software components (not executable by themselves, but
ready to be assembled into a software system) - Procedure, Function,
Module, Class, Interface, Connector, Component;

• there is a 1:1 relationship between the internal representation of the
component model - seen as aggregated object - and its external repre-
sentation on a persistent media, using various formats: XML, object
serialization, etc.

A software component is fully defined, i.e. its model contains both com-
ponent specification and component implementation. For example, Program
components have three main constituents: the name, the state and the body.
Procedure components, which are a specialization of Program,have as specific
constituents their in, out, and in-out parameters (seen as lists). Component
state contains all declared variables (names and values), while its body is a
CompoundStatement (modeling construct defined using the Composite design
pattern). Figure 1 is a UML class diagram showing some of the modeling
elements already in place and their relationships. These elements constitute a
UML metamodel, and can be used to build new UML profiles, in order to use
existing CASE tools to build component models.

Statement subclasses are SimpleStatement and CompoundStatement,with
SimpleStatement subclasses covering all control statements in an imperative

COMDEVALCO 65

Figure 1. Class diagram (procedural paradigm, proof of concept)

programming language: AssignmentStatement, CallStatement, InputStatement,
OutputStatement, LoopStatement,and BranchStatement.

The current version of the modeling language contains constructs belong-
ing to the procedural paradigm, and is described in more detail in [Parv08].

3.2. Component repository. Component repository represents the persis-
tent part of the framework, containing the models of all full validated com-
ponents. Its development include the design of its data model, establishing
indexing and searching criteria, as well as the format of representation. The
ways of describing, indexing and searching considered will exploit XML-based
protocols used to describe and discover Web services (WSDL and UDDI).

3.3. The toolset. The toolset is intended to automate many tasks and to
assist developers in performing component definition and V & V tasks, main-
tenance of component repository, and component assembly. The tools are:

• DEFCOMP - component definition;
• VALCOMP - component V & V;
• REPCOMP - component repository management;
• DEFSYS, VALSYS - software system definition by component assem-

bly, respectively V & V;
• SIMCOMP, SIMSYS - component and software system simulation;
• GENEXE - automatic generation of executable software systems.

From another perspective, the toolset will include some existing CASE
tools, covering in part or in whole some of the functions above.

66 PÂRV, MOTOGNA, LAZĂR, CZIBULA, AND LAZĂR

3.4. Features of the proposed solution. The proposed solution brings
original elements in at least the following directions:
- the object model is precise and fine-grained, because all objects are
rigorously defined, and the component behavior is described at statement
level. The UML metamodel has no correspondent for modeling constructs
more fine-grained than Program, Procedure and Function;
- the models are executable, verifiable, and evaluable because each
component can be executed; moreover, one can use tools for checking validity
and evaluating complexity;
- the models are independent of a specific (object-oriented) programming
language and programming paradigm;
- modeling language is flexible and extensible; the dimensions of extensibility
are: statement set, component definition, data type definition, and the
component family;
- the statement set is extensible, by simply considering new (possible)
primitive statements; as Figure 1 suggests, inheritance and composition are
the main code reuse mechanisms used to define new statements;
- the component definition is extensible (we started with the simplest
implementation of the component, using simple data types and expressions;
next steps will include component specification, which needs more elaborate
data types and expressions);
- data type definitions are also extensible (we started with simple data types;
next steps will add structured types to the model, then object types -
Classand Interface);
- the component family is extensible (we started with procedural paradigm
components - Program , Procedure and Function;next steps will add:
modular components - Module - object-oriented ones - Class and
Interface,and, finally - Component);
- modeling language allows automatic code generation for components in a
concrete programming language, according to Model Driven Architecture
(MDA) specifications. One can define mappings from the modeling elements
to specific constructs in a concrete programming language in a declarative
way.

4. CONCLUSIONS AND FURTHER WORK

From methodological viewpoint, the main issue is to completely model all
theoretical aspects in concrete objects - elements of modeling language. The
modeling process is a gradual one, in order to keep its complexity under con-
trol. The main principle to be followed is to perform small steps; a step means
here either implementing a new concept (transforming the concept into an
object), or extending either a model element, a tool, or component repository

COMDEVALCO 67

(by adding new features). One starts with simple objects and check after each
step that things work.

Each modeling step include both theoretical/analytical activities - the ab-
stract model of the concept - and practical/applicative ones - coding, testing
and integrating it in the framework.

The intended use of the conceptual framework covers research, education,
and industry applications. The competitive advantages are as follows:

• full compliance to the principles and methods of component-based soft-
ware development, by covering both sub-processes - component and
system development;

• high level of abstraction, assured by the independence of a specific
programming language;

• ease of use: the model complexity is hidden behind a set of diagrams
(model views), easy to define, understand, and manipulate;

• focus on reuse: the framework favors the definition and use of reusable
software components by its constituent: component repository.

Other developments will include: maintenance of component repository by
including new components, publishing the access interface to the component
repository as a Web service, modeling at higher levels of abstraction, like
workflows, business processes, application domain frameworks.

5. ACKNOWLEDGEMENTS

This work was supported by the grant ID 546, sponsored by NURC -
Romanian National University Research Council (CNCSIS).

6. REFERENCES

[AGEDIS] AGEDIS, Automated Generation and Execution of Test Suites for DIs-
tributed Component-based Software, http://www.agedis.de/index.shtml/.

[AW] W.van der Aalst, PetriNets, tutorial http://is.tm.tue.nl/staff/wvdaalst/petri nets.htm.
[CL02] Crnkovic, I., Larsson, M., Building Reliable Component-Based Software

Sistems, Prentice Hall International, Artech House Publishers, ISBN 1-58053-327-2,
Available July 2002. http://www.idt.mdh.se/cbse-book/

[EG03] Eleftherakis, G., Formal Verification of X-machine Models: Towards For-
mal Development of Computer-Based Sistems, PhD, 2003.

[GM95] Glinz, M., An Integrated Formal Model of Scenarios Based on State-
charts. In Schfer, W. and Botella, P. (eds.): Software Engineering - ESEC’95. Berlin:
Springer, 254-271.

[Gru07] Gruhn, V., Laue, R., What business process modelers can learn from
programmers, Science of Computer Programming, 16 (2007), No. 1, 4-13.

[Hol04] Holl A., Valentin G., Structured Business Process Modeling (SBPM), In-
formation Systems Research in Scandinavia (IRIS 27), 2004.

68 PÂRV, MOTOGNA, LAZĂR, CZIBULA, AND LAZĂR

[HHW01] Henderson, P., Howard Y., Walters, R.J., A tool for evaluation of the
Software Development Process, Journal of Systems and Software, Vol 59, No 3, pp
355-362 (2001).

[HW99] Henderson, P., Walters, R.J., System Design Validation Using Formal
Models, 10th IEEE International Workshop in Rapid System Prototyping, June 99,
Clearwater, USA.

[HW00] Henderson, P., Walters, R.J., Behavioural Analysis of Component-Based
Sistems, Declarative Sistems and Software Engineering Research Group, Department
of Electronics and Computer Science, University of Southampton, Southampton, UK,
06 June 2000.

[HWC04] Henderson, P., Walters, R.J., Crouch, S., Implementing Hierarchical
Features in a Graphically Based Formal Modelling Language, 28th Annual Interna-
tional Computer Software and Applications Conference (COMPSAC 2004), Hong
Kong, 2004.

[Liu04] Ying Liu et al., Business Process Modeling in Abstract Logic Tree, IBM
Research Report RC23444 (C0411-006) November 19, 2004.

[LL00] Jie Liu, Edward A. L., Component-Based Hierarchical Modeling of Sys-
tems with Continuous and Discrete Dynamics, Proc. of the 2000 IEEE International
Symposium on Computer-Aided Control System Design Anchorage, Alaska, USA,
September 25-27, 2000, pp 95-100.

[OMG] OMG, Current OMG Technology Adoption Processes Under Way. Pend-
ing Requests for Proposals, http://www.omg.org/public schedule/.

[OMG05a] OMG, Semantics of a Foundational Subset for Executable UML Models
RFP, http://www.omg.org/cgi-bin/doc?ad/2005-4-2/.

[OMG05b] OMG, Model-level Testing and Debugging, http://www.omg.org/cgi-
bin/doc?ptc/2007-05-14/.

[OMG05c] OMG, Catalog of OMG Domain Specifications, http://www.omg.org/cgi-
bin/doc?ad/2005-4-2/.

[Parv08] Pârv, B., Lazăr, I., Motogna, S., ComDeValCo framework - the mod-
eling language for procedural paradigm, to be published in International Journal of
Computers, Communications, and Control (IJCCC), vol. III, 2008.

[PJ02] Padberg, J., Petri Net Modules, Journal on Integrated Design and Process
Technology vol. 6(4), pp. 121-137, 2002.

[WR02] Walters R. J., A Graphically based language for constructing, executing
and analysing models of software sistems, PhD, 2002.

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş-Bolyai University, 1, M. Kogălniceanu, Cluj-Napoca 400084, Ro-
mania

E-mail address: bparv,motogna,ilazar,czibula@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LII, Number 2, 2007

GENERALIZED CYLINDERS SURFACES

L. ŢÂMBULEA AND I. GÂNSCA

Abstract. A generalized cylinder surface is generated by moving a 2D
continuous curve along a 3D regular spine curve; the generating curve could
be scaled and rotated around the spine curve. The shape of generalized
cylinder surface induced by the scale functions and the angular velocity of
rotation as well as some integral properties are discussed.

Keywords: Generalized cylinders; Generalized cylinder surfaces; Shape;
Cusp; Rotation; Angular velocity; Integral properties

1. Motivation

Many industrial and artistic objects can be modelled with the aid of gen-
eralized cylinder surfaces. Theoretical and practical investigations in this area
have been done by Lee and Requicha [7], Shani and Ballard [9], Bronsvoort
and Warts [1], van der Helm, Ebell and Bronsvoort [6], Maekawa, Patrikalakis,
Sakkalis and Yu [8], Gansca, Bronsvoort, Coman and Ţâmbulea [5] and oth-
ers. The paper has the following structure. In Section 2 we recall the vector
equation of a generalized cylinder surface. The shape of a generalized cylinder
surface induced by the shapes of the scale functions is revealed in Section 3.
Section 4 contains generalized cylinder surfaces generated by a scaled curve
which makes rotations around the spine curve. Some integral properties of
these twisted generalized cylinder surfaces and twisted generalized cylinders
(objects) are given in Section 5.

2. Vector equation of a generalized cylinder surface

A generalized cylinder surface is generated by a continuous 2D curve which
moves along a 3D regular spine (guide) curve, the plane of curve being per-
pendicular to the spine curve. The generating curve is referred to the local
coordinate system X, Y , situated on the unit principal normal and binomial,
respectively, vectors of the spine curve, see Fig.1.

Let us consider that the vector position of an arbitrary point of the spine
curve is C(u), u ∈ [a, b] and the vector position of an arbitrary point of

Received by the editors: October 1, 2007.
2000 Mathematics Subject Classification. 65D18, 68U05, 68U07.
1998 CR Categories and Descriptors. J.6 [Computer Applications]: Computer-Aided

Engineering – Computer-aided design.

69

70 L. ŢÂMBULEA AND I. GÂNSCA

y

z

x

C(u)

n

b
γ(v)
t

X

Y

Figure 1. A generalized cylinder surface with an intermediary
position of the generating curve γ(v).

the generating curve, with respect to the X, Y coordinate system, is γ(v) =
(ϕ(v), ψ(v))T , v ∈ [c, d]. If the generating curve γ(v) is scaled into the di-
rections of n(u) and b(u) with the aid of the positive and continuous scalar
functions s1(u) and s2(u), respectively, u ∈ [a, b], then, from Fig.1, one deduces
the following vector equation of the generalized cylinder surface

Γ(u, v) = C(u) + s1(u)ϕ(v)n(u) + s2(u)ψ(v)b(u), (u, v) ∈ D,(1)

where D = [a, b]× [c, d].
The unit vectors t(u),n(u) and b(u) form the Frenet trihedrom and are

given by the formulas

t(u) =
C′(u)
|C′(u)| , b(u) =

C′(u)×C′′(u)
|C′(u)×C′′(u)| , and n(u) = b(u)× t(u).(2)

Remark 1. From (2) results that the vector function C(u) must be of
the second order continuity class.

In what follows we will firstly focus on the Γ(u, v) surface shape control
with the aid of scale functions s1(u) and s2(u). Next we will deduce the vector
equation of the generalized cylinder surface resulted by rotation of the scaled
generating curve γs(v; u) = (s1(u)ϕ(v), s2(u)ψ(v))T around the spine curve
C(u), with a variable angular velocity.

GENERALIZED CYLINDERS SURFACES 71

3. Shape of Γ(u, v) induced by the shapes of s1(u) and s2(u)

Information about the shape of Γ(u, v) one obtains analysing its coordinate
lines Γ(u = const, v), v ∈ [c, d] and Γ(u, v = const), u ∈ [a, b], respectively.
From the vector equation (1) we observe that the coordinate line Γ(u, v =
const), u ∈ [a, b] is, in fact, the scalled generating curve γs(v; u), u = const
relative to the xOyz coordinate system.

Important information about the shape of coordinate line Γ(u, v =const),
u ∈ [a, b] results from its tangent vector Γu(u, v). From (1), taking into account
the Frenet-Serret formulas,

t′(u) = K(u)|C′(u)|n(u),
n′(u) = |C′(u)|[−K(u)t(u) + T (u)b(u)],
b′(u) = −T (u)|C′(u)|n(u),

one obtains

Γu(u, v) = |C′(u)| [1−K(u)s1(u)ϕ(v)] t(u)+
+

[
s
′
1(u)ϕ(v)− T (u)s2(u)|C′(u)|ψ(v)

]
n(u)+

+
[
s
′
2(u)ψ(v) + T (u)s1(u)|C′(u)|ϕ(v)

]
b(u),

(3)

where K(u) > 0 and T (u) are the curvature and torsion, respectively, of the
spine curve C(u), and are given by the formulas

K(u) =
|C′(u)×C′′(u)|

|C′(u)|3 and T (u) =
(C′(u)×C′′(u))C′′′(u)

|C′(u)×C′′(u)|2 .

Next we recall
Definition. An interior point of a curve g(t), t ∈ I, I ⊂ <, say g(t0), is

called a cusp of g(t) if

lim
t→t−0

g′(t) = − lim
t→t+0

g′(t).(4)

Remark 2. In the special case when g(t) = (t, f(t))T , t ∈ I, the interior
point g(t0) is a cusp of g(t) if and only if

lim
t→t−0

f(t) = − lim
t→t+0

f(t) = ∞, (or −∞).(5)

With other words, the interior point t0 ∈ I is a cusp of the scalar function
f(t), if and only if (5) holds.

Regarding to an arbitrary coordinate line Γ(u, v0), v0 ∈ [c, d] we will prove
the following

72 L. ŢÂMBULEA AND I. GÂNSCA

Proposition 1. If s1(u) and s2(u) have cusps for u = u0 and

lim
u→u0

=
s
′
1(u)

s
′
2(u)

= m,(6)

then the coordinate line Γ(u, v0) does have cusp for u = u0 in the direction of
the vector

ϕ(v0)n(u0) + mψ(v0)b(u0),(7)

provided that |γ(v0)| 6= 0.
Proof. Let us consider a vicinity of u0, say V0, such that s

′
1(u) 6= 0, if

u ∈ V0. Similar reasoning one does if s
′
2(u) 6= 0, u ∈ V0. From (3), if u ∈ V0,

we can write

Γu(u, v0) = s
′
1(u)

{
ϕ(v0)n(u) + s

′
2(u)

s
′
1(u)

ψ(v0)b(u)+

+ |C′ (u)|
s
′
1(u)

[(1−K(u)s1(u)ψ(v0)) t(u)− T (u)s2(u)ψ(v0)n(u)+

+ T (u)s1(u)ϕ(v0)b(u)]} .

If the scalar functions s1 and s2 do have cusps in u0, then, taking into
account Remark 2, (5) and (6) results

lim
u→u−0

Γu(u, v0) = − lim
u→u+

0

Γu(u, v0),

and the direction of Γu(u, v0), when u → u0, approaches to the direction of
vector given at (7).

Remark 3. If ϕ(v0) = 0 and ψ(v0) 6= 0, then from (7) results that the cusp
of coordinate line Γ(u, v0), in u = u0, is in the direction of b(u0). Analogously,
if ϕ(v0) 6= 0 and ψ(v0) = 0, then the cusp of Γ(u, v0), in u = u0, is in the
direction of n(u0).

Figures 2 (a), (b) and Figure 3 illustrate this theoretical part. The gener-
alized cylinder surface from Figure 3 has the spine curve

C(u, a∗) = (u, a∗u2, 0)T , u ∈ [−5, 5], a∗ = 0.05,

and the generating curve with

ϕ(v) = cos(v), ψ(v) = sin(v),

s1(u) = s((u + 5)/10, 0.1, 1, 0.1, 2, 0.5, 20, 3,
π

2
),

s2(u) = s((u + 5)/10, 0.4, 1, 0.2, 0.1, 2,−0.3, 10, 1.4,
π

2
), u ∈ [−5, 5],

GENERALIZED CYLINDERS SURFACES 73

0

0.5

1

1.5

2

2.5

3

–4 –2 2 4 0

0.5

1

1.5

2

2.5

3

–4 –2 2 4

(a) (b)

Figure 2. Cusps of s1(u) and s2(u).

where s(t, u0, a, b, c, d, e, p, q, r) =

a, t ∈ [0, u0 − b],
a + d− d

b

√
b2 − (t− u0 + b)2, t ∈ (u0 − b, u0],

a + d− d
c

√
c2 − (t− u0 − c)2, t ∈ (u0, u0 + c],

a + e · cos(p(t− u0 − c)q + r), t ∈ (u0 + c, 1].

Figures 2 (a) and (b) present the cusps of s1(u) and s2(u) respectively,
which determine the cusps to the coordinate lines Γ(u, v = const), shown in
Figure 3.

4. Rotation of the scaled generating curve

In what follows we consider that the scaled generating curve

γs(v; u) = (s1(u)ϕ(v), s2(u)ψ(v))T , v ∈ [c, d],

makes rotations around the spine curve C(u), with angular velocity ω =
ω(u), u ∈ [a, b], while it moves along C(u).

The angle of rotation between the initial and an intermediary position of
γs(v;u), if ω(u) ≥ 0 (or ω(u) ≤ 0) is

α(u) =
∫ u

a
ω(t)dt.(8)

74 L. ŢÂMBULEA AND I. GÂNSCA

Figure 3. Cusps of coordinate lines Γ(u, v = const).

The twisted generalized cylinder surface, in this case, is represented by the
following vector equation

Γ1(u, v) = C(u)+
+ [s1(u)ϕ(v)cos(α(u) + α0) + s2(u)ψ(v)sin(α(u) + α0)]n(u)+
+ [−s1(u)ϕ(v)sin(α(u) + α0) + s2(u)ψ(v)cos(α(u) + α0)]b(u),

(9)

(u, v) ∈ D; α0 is the angle of γs(v, u)-rotation around C(u), before the starting
generation of Γ1(u, v).

The number of rotations, if ω(u) ≥ 0 (or ω ≤ 0), when u ∈ [0, u∗] is

n∗ =
|α(u∗)|

2π
,(10)

where α(u∗) is given by the formula (8).
For example, if the angular velocity ω = k|u − u0|β, u ∈ [0, 1], where the

parameter u0 ∈ [0, 1] and α, β are real and positive numbers, using formula
(10), one obtains

α(u) =

k
β+1

[
uβ+1

0 − (u0 − u)β+1
]
, 0 ≤ u ≤ u0,

k
β+1

[
uβ+1

0 + (u− u0)
β+1

]
, u0 ≤ u ≤ 1.

(11)

Denoting by ν the rotations number of curve γs(v; u) around the spine
curve C(u), when u ∈ [0, 1] then, using formulas (10) and (11), results

ν =
k

2(β + 1)π

[
uβ+1

0 + (1− u0)
β+1

]
.

GENERALIZED CYLINDERS SURFACES 75

Therefore, if one wants ν rotations then, the angular velocity must be

ω(u) =
2πν(β + 1)

uβ+1
0 + (1− u0)

β+1
|u− u0|β, u ∈ [0, 1].(12)

Corresponding to this angular velocity, the angle of rotation is

α(u) =

2πν

uβ+1
0 +(1−u0)β+1

[
uβ+1

0 − (u0 − u)β+1
]
, 0 ≤ u ≤ u0,

2πν

uβ+1
0 +(1−u0)β+1

[
uβ+1

0 + (u− u0)
β+1

]
, u0 ≤ u ≤ 1.

(13)

In Figs. 4 and 5 are presented two particular twisted cylinder surfaces
Γ1(u, v) of equation (9), for which

C(u) =
6∑

i=0

biB
6
i (u), u ∈ [0, 1],(14)

where B6
i (u) =

(
6
i

)
(1 − u)6−iui, b0 = (3, 0, 9), b1 = (8, 1, 5), b2 = (11, 9, 2),

b3 = (13, 25, 0), b4 = (7, 29, 2), b5 = (3, 26, 6), b6 = (0, 23, 11) and the angle
of rotation is of the form (13). Fig.4 corresponds to

ϕ(v) = cos(v), ψ(v) = sin(v), v ∈ [0, 2π],
s1(u) = 1 + 0.5sin(12u), s2(u) = 1/s1(u), u ∈ [0, 1],
ν = 1.5, β = 0.01, u0 = 0.1

(15)

and the defining elements of Fig.5 are

ϕ(v) = 4cos3(v), ψ(v) = 4sin3(v), v ∈ [0, 2π],
s1(u) = s2(u) = 1, u ∈ [0, 1],
ν = 0.5, β = 0.2, u0 = 0.3.

(16)

5. Some integral properties

Firstly we recall that a generalized cylinder (solid) is the body bounded
by a generalized cylinder surface and two planes perpendicular to the spline
curve in its initial and final points. Next we will give some formulas regarding
twisted generalized cylinder surfaces and twisted generalized cylinder, without
self-intersections.

Throughout this section we will make use of the
Remark 4. Rotations and other maps, characterized by orthonormal

matrices, leave lengths, areas and angles unchanged (Farin, 1990).

76 L. ŢÂMBULEA AND I. GÂNSCA

Figure 4. Twisted generalized cylinder surface Γ1(u, v) cor-
responding to (14) and (15).

Figure 5. Twisted generalized cylinder surface Γ1(u, v) cor-
responding to (14) and (16).

5.1. Gravity center line and area of Γ1(u, v). Gravity center line of Γ1(u, v)
is evidently the locus of the gravity centers of the generating curve

γr(v; u) = (x(v; u), y(v;u))T ,

GENERALIZED CYLINDERS SURFACES 77

where
x(v;u) = s1(u)ϕ(v)cos(α(u) + α0) + s2(u)ψ(v)sin(α(u) + α0),
y(v; u) = −s1(u)ϕ(v)sin(α(u) + α0) + s2(u)ψ(v)cos(α(u) + α0), v ∈ [c, d].

Let G (Xg(u), Yg(u)) be the gravity center of the curve

γs(v;u) = (s1(u)ϕ(v), s2(u)ψ(v))T .

The coordinates Xg(u) and Yg(u) are given in our paper [5], by formulas
(13) and (17). Denoting by Gr

(
Xr

g (u), Y r
g (u)

)
the gravity centre of the curve

γr(v; u), in virtue of the Remark 4 we have,

Xr
g (u) = Xg(u)cos (α(u) + α0) + Ygsin (α(u) + α0) ,

Y r
g (u) = −Xg(u)sin (α(u) + α0) + Ygcos (α(u) + α0) ,

(17)

Locating Gr with respect to the xOyz coordinate system we have

Gr(u) = C(u) + Xr
g (u)n(u) + Y r

g (u)b(u); u ∈ [a, b].(18)

If C(u) = (x(u), y(u), z(u))T , n(u) = (a1(u), a2(u), a3(u)) and b(u) =
(b1(u), b2(u), b3(u)), then, from (18) results

Gr(u) =

xr
g(u)

yr
g(u)

zr
g(u)

 =

x(u) + Xr
g (u)a1(u) + Y r

g (u)a2(u)
y(u) + Xr

g (u)b1(u) + Y r
g (u)b2(u)

z(u) + Xr
g (u)c1(u) + Y r

g (u)c2(u)

 ;(19)

where u ∈ [a, b], Xr
g (u) and Y r

g (u) being given by (17).
Denoting by CGr the locus of Gr(u), when u ∈ [a, b] results
Proposition 2. The gravity center line CGr of the surface Γ1(u, v) has

the parametric equations (19).
If S1 is the area of Γ1(u, v), then, in virtue of the Remark 4 and formula

(23) from our paper (2002) results

S1 =
∫

CGr

L(u)ds =
∫ b

a

√(
xr

g(u)
)′2 +

(
yr

g(u)
)′2 +

(
zr
g(u)

)′2
du.(20)

Next we denote by V1 the twisted generalized cylinder bounded by Γ1(u, v)
and the perpendicular planes to the spine curve in its initial and final points.

5.2. Gravity center line and volume of V1. In our paper [5] we have
established (formulas (23) and (24)) that if G0

(
X0

G, Y 0
G

)
is the gravity cen-

tre of the domain bounded by the closed curve γ(v) = (ϕ(v), ψ(v))T , v ∈
[c, d],γ(c) = γ(d), then the gravity centre of the domain bounded by the
curve γs(v; u) = (s1(u)ϕ(v), s2(u)ψ(v))T , v ∈ [c, d] is G∗ (X∗

G, Y ∗
G), where

X∗
g (u) = s1(u)X0

G,
Y ∗

g (u) = s2(u)Y 0
G.

(21)

78 L. ŢÂMBULEA AND I. GÂNSCA

Now, if γs(v; u) makes rotations around the spine curve, with the angular
velocity ω(u), then its gravity centre becomes G∗

r (X∗
r , Y ∗

r), where

X∗
r (u) = s1(u)X0

Gcos (α(u) + α0) + s2(u)Y 0
Gsin (α(u) + α0) ,

Y ∗
r (u) = −s1(u)X0

Gsin (α(u) + α0) + s2(u)Y 0
Gcos (α(u) + α0) ,

(22)

where α(u) is given by the formula (8).
Denoting by CG∗

r the locus of G∗
r (X∗

r (u), Y ∗
r (u)) when u ∈ [a, b] and pro-

ceedings as before, we can state
Proposition 3. The gravity center line CGr of the generalized cylinder

V1 has the following parametric equations

G∗
r(u) =

(
x∗r(u)
y∗r (u)
z∗r (u)

)
=

(
x(u) + X∗

r (u)a1(u) + Y ∗
r (u)a2(u)

y(u) + X∗
r (u)b1(u) + Y ∗

r (u)b2(u)
z(u) + Xr(∗u)c1(u) + Y ∗

r (u)c2(u)

)
;(23)

where u ∈ [a, b].
With regard to the volume of V1, similary to the formula (26) from our

paper [5], we have

V1 =
∫
CG∗r

A(u)du =

= A0

∫ b
a s1(u)s2(u)

√
(x∗r(u))

′2 + (y∗r (u))
′2 + (z∗r (u))

′2du.
(24)

References

[1] Bronsvoort W. F. and Waarts J.J. (1992), A method for converting the surface of a
generalized cylinder into a B-spline surface. Computers & Graphics, 16(2), 175–178.

[2] Bronsvoort W. F. (1992), A surface-scanning algorithm for displaying generalized cylin-
ders. Visual Computer, 8(3), 162–170.

[3] de Voogt E., van der Helm A., Bronsvoort W. F. (2000), Ray tracing deformed gener-
alized cylinders. Visual Computers, 16, 197–207.

[4] Farin G. (1990), Curves and Surfaces for Computer Aided Geometric Design. Academic
Press, New York, Second Edition.

[5] Gansca I., Bronsvoort W. F., Coman Gh., Tambulea L. (2002), Self-intersection avoid-
ance and integral properties of generalized cylinders. Computer Aided Geometric De-
sign, 19, 695–707.

[6] van der Helm A., Ebell P. and Bronsvoort W. F. (1998), Modelling mollusc shells with
generalized cylinders. Computers & Graphics 22(4), 505–513.

[7] Lee Y.T., Requicha A.A.G. (1982), Algorithms for computing the volume and other
integral properties of solids. I. Known methods and open issues. Communications of the
ACM 25(9), 635–641.

[8] Maekawa T., Patrikalakis N. M., Sakkalis T. and Yu G. (1998), Analysis and applications
of pipe surfaces. Computer Aided Geometric Design, 15(5), 437–458.

[9] Shani U., Ballard D.H. (1984), Splines as embeddings for generalized cylinders. Com-
puters Vision, Graphics and Image Processing, 27, 129–156.

Babes-Bolyai University, Faculty of Mathematics and Computer Science, 1
M. Kogălniceanu St., 400084 Cluj-Napoca, Romania

E-mail address: leon@cs.ubbcluj.ro

16/4 Muscel St., Cluj-Napoca, Romania

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LII, Number 2, 2007

INDEXING THE EVOLUTION OF MOVING OBJECTS
WITHIN A 2D SPACE USING THE BRICKR STRUCTURES

ANDREEA SABAU

Abstract. A growing number of applications manage mobile objects.
The storage and the organization within databases of data describing the
evolution of these objects is an open challenge. Data must be managed
in efficient structures with respect to both the storage space consumed
and the data access through these structures. An indexing method that
organizes the evolutions of spatial objects within a 2D space is proposed
in this paper. The Dynamic-BrickR access method uses two structures:
an underlying permanent R*-Tree structure, and an in-memory dynamic
space grid structure, that it used for building the terminal nodes to feed
the R*-Tree. Experiments show significant improvements of the Dynamic-
BrickR method over the R*-Tree index, regarding the dead space and the
overlapping volumes. The Dynamic-BrickR inherits from the R*-Tree the
capability to be used in answering spatial, temporal and spatio-temporal
queries.

1. Introduction

The organization and management of spatio-temporal objects required
lately a lot of attention. The growing interest in this area is justified by
the proliferation of a large range of applications that can benefit of efficient
management methods for spatio-temporal data. Communication and localiza-
tion in mobile objects networks is one such application domain.

The spatio-temporal data represents the evolution of spatial objects in
time. A spatial attribute with discretely or continuously evolving values may
represent the shape and / or the location of an object. For example, land
parcels positions and extents evolve discretely in time; while the cars on a
road are continuously changing their position, but not the shape. The most

Received by the editors: November 1, 2007.
2000 Mathematics Subject Classification. 68P05, 68P20.
1998 CR Categories and Descriptors. H.2.2 [Information Systems]: Database Man-

agement – Physical Design; H.2.4 [Information Systems]: Database Management – Sys-
tems; H.2.8 [Information Systems]: Database Management – Database Applications .

79

80 ANDREEA SABAU

significant challenge in the management of spatio-temporal objects is to ef-
ficiently organize information about the continuous change in time of their
spatial features values

The extended version of the Dynamic-BrickR access method for indexing
3D spatio-temporal data is presented in this paper. The described method is
based on the previous work presented in [9, 10]. Dynamic-BrickR organizes
the continuous evolutions of spatial objects within a 2D spatial domain. These
objects shape is not relevant and they are represented as points (or no extent)
objects. A real-world example of such objects is that of the cars on a network
of roads that are moving with different speeds, in any way.

Related Work. Many researchers have worked on organizing spatio-tem-
poral objects in index structures. These structures may be classified as struc-
tures that index: past data, present and past data or data about present and
future.

Several index structures, such as STR-Tree [7] and SETI [4] organize
past information. The STR-Tree is an R-Tree like structure that attempts
to achieve trajectory preservation for each object by storing its trajectory seg-
ments in the same tree node. SETI divides the spatial domain into a static
partition and the data corresponding to one cell of the partition are organized
into an R-Tree.

There are many spatio-temporal access methods that manage present (and
past) data. The 2-3 TR-Tree [1] is an index structure that contains two R-
Trees: one tree for points that represent present data and another R-Tree for
the trajectories from the past; the search might have to consult one or both
R-Trees. The MR-Tree [13] and the HR+-Tree [11] are overlapping R-Trees,
where a node may have one or more parents. The LUR-Tree [5] indexes only
current positions of objects, so historical queries are not supported.

PR-Tree [3], STAR-Tree [8], and TPR*-Tree [12] belong to a class of spatio-
temporal access methods, which manage present data and data for prediction
of future movement.

The paper is organized as follows. The Dynamic-BrickR access method,
its extended structures and the management of spatio-temporal data are de-
scribed in Section 2. Section 3 presents the comparative results for Dynamic-
BrickR, BrickR and R*-Tree [2] methods in organizing and querying spatio-
temporal data. The paper ends with conclusions and future work.

2. The 2D Dynamic-BrickR Spatio-Temporal Access Method

This section presents the structures and the involved management opera-
tions corresponding to the Dynamic-BrickR access method. These structures

INDEXING THE EVOLUTION OF MOVING OBJECTS WITHIN A 2D SPACE 81

represent the upgrade applied on the 1D Dynamic BrickR [9, 10] access method
in order to index the continuous evolutions of mobile objects within a 2D space.

The Dynamic-BrickR access method uses a temporary structure and a
permanent structure in order to index efficiently the recently received and past
data. The permanent physical structure is designed as an R*-Tree and it is
called DBR-Tree. The temporary structure, called DBR-Grid, is an in-memory
space grid, that it used for building terminal tree nodes to feed the R*-Tree.
The dimensionality of the grid corresponds to the space dimensionality of the
indexed objects. In the particular studied case, the grid is 2D. The grid has a
dynamic evolution, as the strips it is composed of are split or merged to best
adjust to the objects evolution in time. The name of the Dynamic-BrickR
access method originates in the visual aspect the grid gives to the indexed
space, which resembles a brick wall; it also reflects the grid dynamic behavior
and the fact it uses an R*-Tree permanent structure.

As it was mentioned before, the structures of the Dynamic-BrickR indexing
method organizes data corresponding to the spatial evolutions of objects in
time. It is considered that the objects shape is not relevant (it is not changing
in time and it is not significant). Therefore, the objects are modeled as points
within the 2D spatial domain.

The spatial domain is considered to be (relatively) constant in time, with-
out affecting the organization rules and the generality of the indexing method.
If a set of objects moved beyond the initially spatial domain borders, the work-
ing space would be extended in a straightforward fashion. In order to facilitate
the generation and the visualization of data, the spatial domain is considered
to be [0, L] × [0, L]. The temporal domain is considered to be isomorphic
to the set of real numbers. Therefore, the temporal domain is treated as an
auxiliary domain to the spatial one.

Regarding the indexed spatio-temporal data, usually the mobile objects are
moving within the spatial domain with a variable speed. In order to facilitate
the representation of their trajectories, the speed of an object is considered to
be constant during a certain time interval. Therefore, the trajectory on that
time interval is approximated by a linear function of time and it is represented
geometrically as a 3D line segment (also called trajectory segment). The set of
trajectory segments corresponding to a mobile object represents the trajectory
of that object, or its spatial evolution in time.

Theoretically, there is no restriction on the manner the mobile objects are
sending the data to the system. The mobile objects can be equipped with some
GPS devices and can send the positioning information with regularity or when
the value of some parameter of movement (the direction and / or the speed)
is changed. Furthermore, the received information can be a spatio-temporal
point (the new position at a certain time instant) or a spatio-temporal line

82 ANDREEA SABAU

segment (the trajectory segment corresponding to a certain time interval).
However, at physical level, the received information is stored as linear functions
of time (as 3D spatio-temporal line segments).

The Dynamic-BrickR access method contains two sub-structures [9, 10]:

• A temporary structure,
• A persistent structure.

The permanent structure in the Dynamic-BrickR method, called the DBR-
Tree, is essentially an R*-Tree structure used to index spatio-temporal data
(3D trajectory segments) from the remote past. It is assumed to be stored in
secondary memory; therefore the paginated storage of the nodes is facilitated.

The temporary structure, called the DBR-Grid, is a grid structure that
indexes the newest spatio-temporal data received by the system. This struc-
ture is stored in the main memory, having the advantage of a short data access
time and efficient operations.

Regarding the receiving of data, it is natural to consider that data about an
object trajectory arrives in ascending order of the timestamps of the trajectory
segments end points.

As it was described in [9, 10], the temporary structure is designed to
create an extra ”thinking” moment of how to group trajectory segments into
MBRs. The main idea is not to insert a segment into the main R*-Tree
structure as soon as it is received by the system. The most recent segments are
kept in memory and clustered in in-memory tree nodes, which will be entirely
inserted in the tree afterwards. This way, there are almost void chances to get
overlapping areas between the resulting leaf nodes MBRs and this conducts
to smaller overlapping at superior levels.

As in the 1D Dynamic-BrickR structures [9, 10], the DBR-Grid is obtained
by partitioning the 3D spatio-temporal domain using two sets of hyper-planes
parallel with the temporal axis (Ot). One set’s hyper-planes are also parallel
to the Oy axis, and perpendicular on the Ox axis, and the hyper-planes of the
other set are parallel with the Ox axis, and perpendicular on the Oy axis. The
initial number of hyper-planes and their positions are set at the beginning of
the grid’s construction. The partitioning of the spatial domain is accomplished
by using (initially) equidistant hyper-planes on each of the two spatial axes.
The pieces of the DBR-Grid are 3D orthogonal polyedra and, as in the case
of 1D Dynamic-BrickR structures, these elements are called strips.

It is also initially considered that the number of hyper-planes on the Ox
axis (nbx) is equal to the number of divisions on the Oy axis (nby). This
number is noted here nb. Therefore, the initial number of grid strips is nb2. Let
the DBR-Grid obtained in this manner be built by the strips Bij , i, j:=1..nb.
The length of the spatial projection of a strip on the Ox and Oy axis is initially

INDEXING THE EVOLUTION OF MOVING OBJECTS WITHIN A 2D SPACE 83

∆b = lS/nb. The coordinates of the partitioning hyper-planes are given by
the two arrays XD = (xd0, xd1, ..., xdnb), and YD = (yd0, yd1, ..., ydnb),
respectively, where xdk = k ∗ ∆b and ydk = k ∗ ∆b, k:=0..nb. Let nSegm ij
be the number of trajectory segments contained within a grid strip Bij , and
SBij

k the segments included in Bij , i, j:=1..nb, k:=1..nSegm ij. The initial
configuration of the DBR-Grid is considered in Fig. 1.

According to these observations, the partitioning hyper-planes initially
determine on the spatial domain (xOy) a 2D rectangular regular grid (see
the initial partitioning of the spatial domain xOy in Fig. 1). Because of
the grid’s dynamicity, the spatial partitioning may become non-regular by
performing some division and / or merge operations (see the Examples 1 and
2). Furthermore, the numbers of partitioning hyper-planes on the two spatial
axes may differ in time (nbx 6= nby).

As in the 1D case, the trajectory segments are first inserted in the DBR-
Grid. One segment may be clipped according to the grid strips it intersects,
and then the resulted sub-segments are inserted in the corresponding strips
of the DBR-Grid. In other words, if a segment intersects two or more strips,
it is divided into pieces, each piece being totally enclosed within a strip. Fig.
1 shows the result of a fragmentation operation performed on a trajectory
segment, having as result three sub-segments.

The MBR of a 3D strip Bij is given by the points (xMBR
1 , yMBR

1 , tMBR
1)

and (xMBR
2 , yMBR

2 , tMBR
2), where xMBR

1 = xdi−1, xMBR
2 = xdi, yMBR

1 =
ydj−1, yMBR

2 = ydj , tMBR
1 = min{SBij

k .t1| k:=1..nSegm ij}, and tMBR
2 =

max{SBij
k .t2| k:=1..nSegm ij}.

The modification of the Insert segment and Cut MBR algorithms corre-
sponding to the 2D DBR-Grid so that to manage 3D trajectory segments is
straightforward. The major difference between the 2D DBR-Grid and the 3D
DBR-Grid is found at operational level (the management of the partitioning
hyper-planes, the division and merge operations). Furthermore, an object B
of type Strip [10] is characterized by its spatial borders, given by B.xmin,
B.xmax, B.ymin, B.ymax, and an object g of type DBR-Grid is a 2D array
with elements of type Strip. The structure of g is determined by the XD and
YD arrays: nbx is the number of rows of g, nby gives the number of columns
of g, and g[i][j] represents the strip that contains a set of SO segments, so
that SO.x1, SO.x2 ∈ [xdi−1, xdi) and SO.y1, SO.y2 ∈ [ydj−1, ydj), i:=0..nbx,
j:=0..nby.

It can be observed that the partioning determined by the object g on the
spatial domain does not concur with the physical delimitation of the strips.
Therefore, it have to be mentioned that g determines a virtual partitioning
of the spatial domain, and the borders of the strips (the hyper-planes of XD

84 ANDREEA SABAU

and YD of which coordinates are found within the strips member data xmin,
xmax, ymin, ymax) determine the physical partitioning of the spatial domain.

Figure 1. The fragmentation of the trajectory segments
within the strips of the DBR-Grid. The graphical represen-
tation shows the inserted segment, its projection on the xOy
plane, and the spatial projections of the obtained three sub-
segments.

Two aspects have to be mentioned in order to understand the division
algorithm that is performed on a 3D strip:

(1) The division is performed on a single spatial dimension.
(2) The division is physically affecting a single strip.
The second observation is related to the fact that choosing a new partition-

ing hyper-plane h div for a strip B’ virtually affects all the strips intersected
by it, unlike the division of a 2D strip. But it is unlikely that another strip
than B’ needs to be divided in that moment. Therefore, only the strip B’ is
physically affected by the division by h div. If another strip B” needs later
to be divided and h div intersects B”, then the hyper-plan h div is considered
as candidate in performing the division of B”. The algorithm by which the
partitioning hyper-plan is chosen is described next (ChooseDivision).

ChooseDivision(B, D, h div)
// Input:
// B - the strip of the DBR-grid which has to be divided

INDEXING THE EVOLUTION OF MOVING OBJECTS WITHIN A 2D SPACE 85

// Output:
// D - the spatial dimension on which the division will
// be performed
// h div - the partitioning hyper-plane on D dimension

// The ChooseDivision routine determines the dimension D
// on which the division will be performed and the
// position of the partitioning hyper-plane h div

Let R be the projection of B on the spatial domain
Let dx and dy the projections of R on the Ox, and Oy,
respectively
If dx ≤ dy then D := Ox
Else D := Oy
End if
If D = Ox then

If ∃xdi ∈ XD such as B.xmin < xdi < B.xmax then
h div := xd∗i, where xd∗i ∈ XD, B.xmin < xd∗i < B.xmax,

|xd∗i − (B.xmin + B.xmax)/2| =
min{xdi − (B.xmin + B.xmax)/2|xdi ∈ XD}

// If there exists at least one hyper-plan in XD
// that intersects B, then h div is chosen so that
// to be the closest to the median of R on Ox

Else
Choose x division(b, h div)
// The routine is similar to the Choose x division
// algorithm presented in [10]

End if
Else // D = Oy

Choose h div on the Oy axis as it was chosen in the
first case

End if
End ChooseDivision

The following two examples show the updates on the DBR Grid object (g)
during the division and merge operations. The notation B = (g[i][j]| i:=1..nbx,
j:=1..nby) is used in order to specify all the g’s elements that refer the strip
B.

Example 1. Let L = 100, nbx = nby = 4, XD = YD = (0, 25, 50, 75,
100) be the initial configuration data of the DBR-Grid g. The initial virtual
partitioning concure with the physical partitioning (see Fig. 2(a)). Let x div
= 35 be the position of the division hyper-plane used to divide the strip B =
(g[2][2]) (the marked cell).

86 ANDREEA SABAU

Fig. 2(b) shows the configuration of the spatial projections of the strips,
the physical and the virtual partitioning, after the strip has been divided. It
can be noticed that the strips that are intersected by x div are not physically
divided; they preserve the position and the content, but they are referred by
two elements of the virtual grid. For example, the strip B’ = (g[2][1]) (see Fig.
2(a)) is given next by B’ = (g[2][1], g[3][1]). The virtual partitioning lines that
are not part of the physical partitioning are represented by dotted lines.

Later, the coordinate of a new partitioning hyper-plan y div = 60 on Oy
axis is determined in order to divide the strip B = (g[4][3]). After updating
the object g, it can be observed that all the strips referred by elements on the
4th row (with the exception of g[4][3]) are now referred by one more element
(see Fig. 2(c)). For example, the strip B’ = (g[2][3], g[3][3]) from Fig. 2(b) is
now referred as B’ = (g[2][3], g[3][3], g[2][4], g[3][4]). Fig. 2(d) represents the
configurations of the physical and virtual partitions after a division by x div
= 65 have been performed. It can be observed that the shape of the spatial
projections of the grid’s strips does not depend on the position, dimension or
the order in which the divisions are performed; their shape is continuously
rectangular.

Corresponding to the definition of neighbor strips given in [10], two 3D
strips, B1 and B2, are considered to be neighbors if

(B1.xmax = B2.xmin or B1.xmin = B2.xmax) or
(B1.xmax = B2.xmin or B1.ymin = B2.ymax).

Also similar to the measure of density defined in [10], the density of seg-
ments within an object R (strip or MBR of a tree node) is given by

C(R) = nSegm ∗ dx ∗ dy/dt,

where M denotes the maximum capacity of a tree node.
The merging technique is related to the manner in which the virtual par-

titioning was managed during the division operations. Another condition that
must be fulfilled by two neighbor strips, B1 and B2, is that their spatial pro-
jections on the dimension complementary to the dimension on which the strips
are neighbors to concur (for example, if the dimension on which the two strips
are neighbors is Oy, then B1.xmin = B2.xmin and B1.xmax = B2.xmax).
Then, among all the candidate neighbor strips, it is selected the pair of strips
which minimizes the sum of their densities of segments. For example, it is con-
sidered the configuration represented in Fig. 2(d): let B1 = (g[5][4]) and B2

= (g[6][3], g[6][4]) be two neighbor strips; these two strips cannot be merged
because their spatial projections on the Oy axis does not concur ([60, 75) 6=
[50, 75)).

INDEXING THE EVOLUTION OF MOVING OBJECTS WITHIN A 2D SPACE 87

Figure 2. The updates performed on the DBR-Grid during
the division operations presented in Example 1.

The manner in which the merge of two neighbor strips is performed is
presented by Example 2.

Example 2. It is considered the configuration represented in Fig. 2(d).
The first merge operation is performed on the strips B1 = (g[1][1]) and B2 =
(g[1][2]). Because the hyper-plan x div = 25 physically delimits other strips,

88 ANDREEA SABAU

the reunion affects only the B1 and B2 strips, and does not affect the vir-
tual partitioning. A single physical strip B = (g[1][1], g[1][2]) results after
performing the merge operation (see Fig. 3(a)).

Next, the reunion of strips B1 = (g[1][3], g[1][4]) and B2 = (g[2][3], g[3][3],
g[2][4], g[3][4]) is considered. The result of the reunion is given by the strip
B = (g[1][3], g[2][3], g[3][3], g[1][4], g[2][4], g[3][4]) (see Fig. 3(b)). Fig. 3(c)
depicts the spatial configuration obtained by merging the strips B1 = (g[2][2])
and B2 = (g[3][2]). Because the hyper-plane x div = 35 does no delimit two
physical strips, the last merge operation also affects the structure of the virtual
grid by eliminating this hyper-plane.

3. Experimental Results

This section presents the comparative results obtained for three access
methods: R*-Tree method, BrickR method - similar to Dynamic-BrickR, does
not perform strips merging and the Dynamic-BrickR method. These three
methods are evaluated in respect to the quality of data organization and the
efficiency of answering queries using the corresponding built indexes.

Tests have been run on three synthetic data sets of 3D trajectory seg-
ments, which were constructed using sets of points associated to the mobile
objects. Each test data set numbers 10000 trajectory segments, recorded for
100 mobile objects. The coordinates (x, y, t) of the data points belong to a
well-determined spatio-temporal working interval: the temporal domain was
[1, 50000], and the spatial domain was [1..1000] × [1..1000]. The three test
data sets were constructed from: points randomly generated (with uniform
distribution), points following a Gaussian distribution and points following a
Poisson distribution. For each of the three methods, the capacity of a tree
node was set to 25 - considering the size of a disk page equal to 512B. The
minimum occupancy of a tree node was set to 40

Regarding the data organization, the measures evaluated on the permanent
structures built by the three compared access methods are: the degree of tree
nodes occupation, the sum of nodes MBRs areas, the sum of nodes MBRs
volumes and the total value of the overlapping volumes between the nodes on
the same tree level.

Even if the number of indexed segments by the Dynamic-BrickR perma-
nent structure is greater than the initial number of segments, due to the clip-
ping method, the tests show a better node occupation than in the case of
R*-Tree: on the average, the node occupancy in the R*-Tree is 54.15% and in
the BrickR and Dynamic-BrickR is 95.27% and 92.76% respectively.

Fig. 4(a) and Fig. 4(b) comparatively present for each sort of data sets
the sums of the MBRs area and the sums of the MBRs volumes, and Fig.

INDEXING THE EVOLUTION OF MOVING OBJECTS WITHIN A 2D SPACE 89

Figure 3. The updates performed on the DBR-Grid during
the merge operations presented in Example 2.

5 shows the obtained results regarding the overlapping volumes between the
nodes on the same tree level. It can be noticed that with only one exception
in the case of data sets with Gaussian distribution in evaluating the MBRs
areas, the obtained results were better (smaller) for the BrickR methods than
for the R*-Tree method.

90 ANDREEA SABAU

Figure 4. (a) The sum of MBRs areas and (b) the sum of
MBRs volumes, for the R* Tree, BrickR and Dynamic BrickR
methods

Figure 5. Overlapping volumes between the MBRs of nodes
on the same tree levels, for all tree nodes, for the R* Tree,
BrickR and Dynamic BrickR methods

The queries performed on spatio-temporal data may be classified as: spa-
tial queries, temporal queries and spatio-temporal queries. The types of
queries for which tests have been performed consist of combinations of spatial
and / or temporal, point and / or window queries, denoted by:

• S-P T-P query: spatial-point temporal-point query;
• S-W query: spatial-window query;
• T-W query: temporal-window query;
• S-W T-W query: spatial-window temporal-window query;
• S-W T-P query: spatial-window temporal-point query;

INDEXING THE EVOLUTION OF MOVING OBJECTS WITHIN A 2D SPACE 91

• S-P T-W query spatial-point temporal-window query.
It can be observed that the S-P T-P, S-W T-P, and S-P T-W types of

queries are particular cases of the S-W T-W queries.
The data within query sets follow a uniform distribution on the spatio-

temporal working space, and cover the whole working space. On the other
hand, two sorts of query sets have been used in the case of window or point-
window queries, in accordance with the maximum length of generated inter-
vals: the spatial and temporal length of the query windows represent maximum
25

In all experiments, the average number of tree nodes visited for answer-
ing the query was measured. BrickR and Dynamic-BrickR methods obtained
better results on uniformly distributed data sets, except in the case of T-W
queries. The execution of the T-W queries showed a better performance for
the R*-Tree. In the other cases the obtained results for the three compared
access methods were relatively closed.

4. Conclusions and Future Work

The Dynamic-BrickR access method that indexes 3D spatio-temporal data
preserves the advantages of the previous version of it:

• The trajectory segments are grouped within the grid structure and sent
as a node (completely built) in the tree structure. Thus, the number
of performed I/O operations is reduced.
• The chances to obtain overlapping volumes between the MBRs of

DBR-Tree’s terminal nodes are minimized.;
• The inserted terminal nodes are almost fully occupied.

The proposed future work includes the development of a BrickR-like struc-
ture for organizing the continuous evolutions of objects with shape. On the
other side, the re-organization of the BrickR permanent structure is proposed
as future work, so that to limit the number of tree levels by temporal frag-
menting of the node set. This way, the enlargement of the indexed data set
does not affect in a major way the performance of the structure.

References

[1] M. Abdelguerfi, J. Givaudan, K. Shaw, R. Ladner, The 2-3 TR-tree, A Trajectory-
Oriented Index Structure for Fully Evolving Valid-time Spatio-temporal Datasets, In
Proc. of the ACM Workshop on Adv. in Geographic Information Systems, ACM
GIS, 29-34, 2002.

[2] N. Beckmann, H. P. Kriegel, R. Schneider, B. Seeger, The R*-tree: An Efficient
and Robust Access Method for Points and Rectangles, In Proc. of the Intl. Conf. on
Management of Data, SIGMOD, 322-331, 1990.

92 ANDREEA SABAU

[3] M. Cai, P. Revesz, Parametric R-Tree: An Index Structure for Moving Objects, In
Proc. of the Intl. Conf. on Management of Data, COMAD, 57-64, 2000.

[4] V. P. Chakka, A. Everspaugh, J. M. Patel, Indexing Large Trajectory Data with
SETI, In Proc. of the Conf. on Innovative Data Systems Research, CIDR, 164-175,
2003.

[5] D. Kwon, Sj. Lee, S. Lee, Indexing the Current Positions of Moving Objects Using
the Lazy Update R-tree, In Mobile Data Management, MDM, 113-120, 2002.

[6] M. A. Nascimento, J. R. O. Silva, Y. Theodoridis, Evaluation of Access Structures
for Discretely Moving Points, In Proc. of the Intl. Workshop on Spatio-Temporal
Database Management, STDBM, 171-188, 1999.

[7] D. Pfoser, C. S. Jensen, Y. Theodoridis, Novel Approaches in Query Processing for
Moving Object Trajectories, In Proc. of the Intl. Conf. on Very Large Data Bases,
VLDB, 395-406, 2000.

[8] C. M. Procopiuc, P. K. Agarwal, S. Har-Peled, STAR-Tree: An Efficient Self-
Adjusting Index for Moving Objects, In Proc. of the Workshop on Alg. Eng. and
Experimentation, ALENEX, 178-193, 2002.

[9] A. Sabau, Indexing Mobile Objects Using BrickR Structures, In Studia Universitatis
Babes-Bolyai, Informatica, Vol. LI(2), 71-80, 2006.

[10] A. Sabau, A. Campan, BrickR: The Dynamic-BrickR Access Method for Mobile
Objects, Proc. of the 22nd International Symposium on Computer and Information
Sciences, Turkey, 2007.

[11] Y. Tao, D. Papadias, Efficient Historical R-trees, In Proc. of the Intl. Conf. On
Scientific and Statistical Database Management, SSDBM, 223-232, 2001.

[12] Y. Tao, D. Papadias, J. Sun, The TPR*-Tree: An Optimized Spatio-temporal Access
Method for Predictive Queries, In Proc. of the Intl. Conf. on Very Large Data Bases,
VLDB, 790-801, 2003.

[13] X. Xu, J. Han, W. Lu, RT-Tree: An Improved R-Tree Indexing Structure for Tem-
poral Spatial Databases, In Proc. of the Intl. Symp. on Spatial Data Handling, SDH,
1040-1049, 1990.

Faculty of Mathematics and Computer Science, Babes-Bolyai University,
Cluj-Napoca, Romania

E-mail address: deiush@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LII, Number 2, 2007

A STUDY ON CLUSTERING BASED RESTRUCTURING OF
OBJECT-ORIENTED SOFTWARE SYSTEMS

ISTVÁN GERGELY CZIBULA AND GABRIELA SERBAN

Abstract. The structure of a software system has a major impact on its
maintainability. Refactoring is an activity performed through the entire
lifecycle of a software system in order to keep the software structure clean
and easy to maintain. We have previously introduced in [3] a clustering
approach for identifying refactorings in order to improve the structure of
software systems. The aim of this paper is to make a comparative analysis
on several clustering algorithms (developed based on the approach from [3])
which can be used in order to recondition the class structure of a software
system. Based on this analysis, we highlight the advantages of determining
refactorings of object-oriented software systems using clustering.

1. Introduction

The structure of a software system has a major impact on the maintain-
ability of the system. This structure is the subject of many changes during the
systems lifecycle. Improper implementations of these changes imply structure
degradation that leads to costly maintenance.

A continuous improvement of the software systems structure can be made
using refactoring, that assures a clean and easy to maintain software structure.

In [6] Fowler defines refactoring as “the process of changing a software
system in such a way that it does not alter the external behavior of the code
yet improves its internal structure. It is a disciplined way to clean up code
that minimizes the chances of introducing bugs”. Refactoring is viewed as a
way to improve the design of the code after it has been written. Software
developers have to identify parts of code having a negative impact on the
system’s maintainability, and to apply appropriate refactorings in order to
remove the so called “bad-smells” [1].

Received by the editors: October 20, 2007.
2000 Mathematics Subject Classification. 68N99, 62H30.
1998 CR Categories and Descriptors. D.2.7 [Software Engineering]: Distribution,

Maintenance, and Enhancement –Restructuring, reverse engineering, and reengineering ;
I.5.3 [Computing Methodologies]: Pattern Recognition – Clustering .

93

94 ISTVÁN GERGELY CZIBULA AND GABRIELA SERBAN

We have previously introduced in [3] a clustering approach for identifying
refactorings in order to improve the structure of software systems. For this pur-
pose, a clustering algorithm named kRED was introduced. To our knowledge,
there is no approach in the literature that uses clustering in order to improve
the class structure of a software system, excepting the approach introduced in
[3]. The existing clustering approaches handle methods decomposition ([15])
or system decomposition into subsystems [10].

We have improved the approach from [3] by developing several clustering
algorithms that can be used to identify the refactorings needed in order to
recondition the class structure of an object-oriented software system: HAC
[14], PAMRED [11], HARED [2], HARS [12] and PARS [13]. These algorithms
are based on the on the idea of partitional and hierarchical clustering.

The rest of the paper is structured as follows. The main aspects related
to clustering, to the approach for determining refactorings using clustering [3]
and to the clustering algorithms previously developed are presented in Section
2. The comparative study between the clustering algorithms for identifying
refactorings of object-oriented software systems is made in Section 3. An ex-
periment on a real software system is reported in Section 4. Some conclusions
and further work are given in Section 5.

2. Background

2.1. Clustering. Clustering [8], also known as unsupervised classification, is
a data mining activity that aims to differentiate groups (classes or clusters)
inside a given set of objects, O. The measure used for discriminating objects
can be any metric or semi-metric function d : O × O −→ <, called distance.
A large collection of clustering algorithms is available in the literature ([8]).
Most clustering algorithms are based on two popular techniques known as
partitional and hierarchical clustering.

2.2. A Clustering Approach for Refactorings Determination - CARD.
In this subsection we briefly describe the clustering approach (CARD) that
was previously introduced in [3] in order to find adequate refactorings to im-
prove the structure of software systems. CARD approach consists of three
steps:

• Data collection - The existing software system is analyzed in order
to extract from it the relevant entities: classes, methods, attributes
and the existing relationships between them.
• Grouping - The set of entities extracted at the previous step are re-

grouped in clusters using a clustering algorithm. The goal of this step
is to obtain an improved structure of the existing software system.

A STUDY ON CLUSTERING BASED RESTRUCTURING OF SOFTWARE SYSTEMS 95

• Refactorings extraction - The newly obtained software structure is
compared with the original software structure in order to provide a list
of refactorings which transform the original structure into an improved
one.

As described above, at the Grouping step of CARD, the software sys-
tem S has to be re-grouped. This re-grouping can be viewed as a parti-
tion of S. We mention that a software system S is viewed in [3] as a set
S = {s1, s2, ..., sn}, where si, 1 ≤ i ≤ n is an entity from the system (it can be
an application class, a method from a class or an attribute from a class). In
our clustering approach, the objects to be clustered are the entities from the
software system S. Our focus is to group similar entities from S in order to
obtain high cohesive groups (clusters).

2.3. Clustering Algorithms for Refactorings Determination. We have
developed several clustering algorithms that can be used in the Grouping step
of CARD in order to find an improved structure of a software system: kRED
[3], HAC [14], PAMRED [11], HARED [2], HARS [12] and PARS [13].

In order to apply a clustering method for refactorings extraction, a distance
function between the entities from a software system has to be defined. This
distance has to express the idea of cohesion between the entities from the
software system.

We have defined in [3] a modality to compute the dissimilarity degree diss
between any two entities from the software system S. diss is a semi-metric
and expresses the distance between the entities from the software system and
emphasizes the idea of cohesion. The dissimilarity degree diss highlights the
concept of cohesion, i.e., entities with low distances are cohesive, whereas
entities with higher distances are less cohesive.

In developing our clustering algorithms, we have used two approaches:

• The first approach is to use a vector space model based clustering.
We have defined a vector space that characterizes the entities from
S and, based on diss, we have used distance metrics (Euclidian dis-
tance, Manhattan distance, Hamming distance) in order to express the
dissimilarity between the entities from the software system. In this
direction we have introduced two vector space model based clustering
algorithms kRED and HAC that can be used in the Grouping step of
CARD in order to obtain an improved structure of a software system.
• The second approach is to use only the distance between the entities

from S given by the semi-metric diss. In this direction we have in-
troduced four clustering algorithms PAMRED, HARED, HARS, and
PARS that can be used in the Grouping step of CARD in order to
obtain an improved structure of a software system.

96 ISTVÁN GERGELY CZIBULA AND GABRIELA SERBAN

Another classification of the developed algorithms is based on the cluster-
ing method used:

• kRED, PAMRED, and PARS are partitional clustering algorithms;
• HAC, HARED and HARS are hierarchical clustering algorithms.

3. Comparative analysis

In order to comparatively analyze the proposed clustering algorithms, we
consider as case study the open source software JHotDraw, version 5.1 ([7]).
It is a Java GUI framework for technical and structured graphics, developed
by Erich Gamma and Thomas Eggenschwiler, as a design exercise for using
design patterns. It consists of 173 classes, 1375 methods and 475 attributes.
The reason for choosing JHotDraw as a case study is that it is well-known as
a good example for the use of design patterns and as a good design.

Our focus is to test the accuracy of our approach on JHotDraw, i.e., how
accurate are the results obtained after applying the algorithms in comparison
with the current design of JHotDraw.

For evaluation, we use two measures:
• Accuracy of classes recovery - ACC. ACC defines the degree to

which the partition obtained by the clustering algorithm is similar to
the initial structure of the analyzed software system.
• Precision of entities discovery - PREC. PREC defines the per-

centage of entities (methods and attributes) from the software system
that were correctly (in comparison with the current design of the sys-
tem) discovered in the partition reported by a clustering algorithm.

The evaluation of the results obtained by applying the above defined algo-
rithms on JHotDraw case study are made using the following characteristics:

• ACC measure that has to be maximized;
• PREC measure that has to maximized;
• the running time of the algorithm that has to minimized.

All these algorithms provide better results than the approaches existing in
the literature in the field of refactoring. Table 1 gives the comparative results.

A graphical representation of the results illustrated in Table 1 is given in
Figure 1.

Based on the results presented in Table 1 and Figure 1, we can conclude
that PARS algorithm provides the best results.

4. Case Study

As shown in Section 3, from the analyzed clustering algorithms for iden-
tifying refactorings, PARS algorithm provides the best results. That is why

A STUDY ON CLUSTERING BASED RESTRUCTURING OF SOFTWARE SYSTEMS 97

Algorithm ACC PREC Running time (min.)
kRED 0.9829 0.9966 5
HAC 0.9899 0.9945 6

PAMRED 0.9939 0.9994 1.5
HARED 0.974 0.9978 3.5
HARS 0.974 0.9978 3.68
PARS 1 1 1.5

Table 1. Comparative results.

Figure 1. The comparative results.

in this section we present a real software system as a case study for evaluat-
ing PARS algorithm. It is DICOM (Digital Imaging and Communications in
Medicine) [5] and HL7 (Health Level 7) [9] compliant PACS (Picture Archiving
and Communications System) system, facilitating the medical images manage-
ment, offering quick access to radiological images, and making the diagnosing
process easier.

The analyzed application is a large distributed system, consisting of sev-
eral subsystems in form of stand-alone and web-based applications. We have
applied PARS algorithm on one of the subsystems from this application.

98 ISTVÁN GERGELY CZIBULA AND GABRIELA SERBAN

The analyzed subsystem is a stand-alone Java application used by physi-
cians in order to interpret radiological images. The application fetch clinical
images from an image server (using DICOM protocol), display them, and offer
various tools to manage radiological images.

Even if the application is currently used, it also continuously evolves in
order to satisfy change requirements and to provide better user experience
based on feedback. That is why, the developers are often faced with the need
of structural and conceptual changes.

The analyzed application consists of 1015 classes, 8639 methods and
4457 attributes.

After applying PARS algorithm, a total of 90 refactorings have been sug-
gested: 10 Move Attribute refactorings, 78 Move Method refactorings, and 2
Inline Class refactoring.

The obtained results have been analyzed by the developers of the applica-
tion and the following conclusions were made:

• 28.8% from the refactorings identified by PARS were accepted by the
developers as useful in order to improve the system.
• 21.1% from the refactorings were acceptable for the developers, but

they concluded that these refactorings are not necessary in the current
stage of the project.
• 50.1% from the refactorings were strongly rejected by the developers.

Analyzing the obtained results, based on the feedback provided by the
developers, we have concluded the following:

• PARS successfully identified smart GUI anti-patterns (parts of soft-
ware were the presentation layer contains bussiness logic), misplaced
constants (constants used only on a subtree of a class hierarchy, but
defined in some base class). These kind of weaknesses can be dis-
covered only if the developer manually inspects all the classes, or if
a bug (related to the misplaced bussiness logic) arises. That is why
automatic detection by PARS of these kind of weaknesses can prevent
system failure or other kind of bugs and also save a lot of manual work.
• A large number of miss-identified refactorings are due to technical

issues: the use of Java anonymous inner classes, introspection, the use
of dynamic proxies. These kind of technical aspects appear frequently
in projects developed in Java. In order to correctly deal with these
aspects, we have to improve only the Data collection step of our
approach, without modifying the PARS algorithm.
• Another cause of miss-identified refactorings is due to the fact that

the distance used for discriminating entities in the clustering process
take into account only two aspects of a good design: low coupling and

A STUDY ON CLUSTERING BASED RESTRUCTURING OF SOFTWARE SYSTEMS 99

high cohesion. It would be also important to consider other principles
related to an improved design, like: Single Responsibility Principle,
Open-Closed Principle, Interface Segregation Principle, Common Clo-
sure Principle [4], etc.
• Our approach is currently implemented as a stand-alone application:

the user provides the .jar files containing the classes of the analyzed
software system and our application displays the suggested refactor-
ings. The developers have suggested that it would be preferable to
integrate our tool existing IDE (as a plugin), instead of a stand-alone
application.

5. Conclusions and Future Work

We have presented in this paper a comparative analysis of several cluster-
ing algorithms that we have previously developed, algorithms which can be
used in order to recondition the class structure of a software system. As a
conclusion, the advantages of our approach for determining refactorings using
clustering are:

• it can deal with various types of refactorings;
• it can be applied for large software systems;
• it can offer support to software developers for identifying ill-structured

software modules.
Further work can be done in the following directions:
• To study the applicability of other learning techniques in order to

improve software systems design.
• To use other search based approaches in order to determine refactorings

that improve the design of a software system.
• To develop a tool (as a plugin for Eclipse) that is based on CARD.
• To apply our approach in order to transform non object-oriented soft-

ware into object-oriented systems.

References

[1] William J. Brown, Raphael C. Malveau, III Hays W. McCormick, and Thomas J. Mow-
bray, Antipatterns: refactoring software, architectures, and projects in crisis, John Wiley
& Sons, Inc., New York, NY, USA, 1998.

[2] I.G. Czibula and Gabriela Serban, A Hierarchical Clustering Algorithm for Software
Systems Design Improvement, KEPT 2007: Proccedings of the First International Con-
ference on Knowledge Engineering: Principles and Techniques, 2007, pp. 316–323.

[3] Istvan G. Czibula and Gabriela Serban, Improving Systems Design using a Clustering
Approach, IJCSNS International Journal of Computer Science and Network Security 6
(2006), no. 12, 40–49.

100 ISTVÁN GERGELY CZIBULA AND GABRIELA SERBAN

[4] Tom DeMarco, Structured analysis and system specification, Addison-Wesley Longman
Publishing Co., Inc., Prentice Hall, 1979.

[5] Digital Imaging and COmmunications in Medicine. at Web: http://medical.nema.org/.
[6] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 1999.
[7] E. Gamma, JHotDraw Project. http://sourceforge.net/projects/jhotdraw.
[8] Jiawei Han, Data mining: Concepts and techniques, Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 2005.
[9] Health Level 7. at Web: www.hl7.org/.
[10] Chung-Horng Lung, Software Architecture Recovery and Restructuring through Cluster-

ing Techniques, ISAW ’98: Proceedings of the Third International Workshop on Software
Architecture, 1998, pp. 101–104.

[11] Gabriela Serban and Istvan G. Czibula, A New Clustering Approach for Systems De-
signs Improvement, SETP-07: Proceedings of the International Conference on Software
Engineering Theory and Practice, 2007, pp. 47–54.

[12] Istvan G. Czibula and Gabriela Serban, Hierarchical Clustering for Software Systems
Restructuring, INFOCOMP Journal of Computer Science, Brasil (2007), to be published.

[13] Gabriela Serban and Istvan G. Czibula, Restructuring software systems using cluster-
ing, ISCIS 2007: Proceedings of the 22nd International Symposium on Computer and
Information Sciences, 2007, pp. to be published.

[14] Istvan G. Czibula and Gabriela Serban, Software systems design improvement using
hierarchical clustering, SERP 2007: Proceedings of SERP ’07, 2007, pp. 229–235.

[15] Xia Xu, Chung-Horng Lung, Marzia Zaman, and Anand Srinivasan, Program Restruc-
turing through Clustering Techniques, SCAM ’04: Proceedings of the Source Code Anal-
ysis and Manipulation, Fourth IEEE International Workshop, 2004, pp. 75–84.

Department of Computer Science, Babeş-Bolyai University, 1 M. Kogălniceanu
Street, 400084 Cluj-Napoca, Romania

E-mail address: istvanc@cs.ubbcluj.ro

Department of Computer Science, Babeş-Bolyai University, 1 M. Kogălniceanu
Street, 400084 Cluj-Napoca, Romania

E-mail address: gabis@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LII, Number 2, 2007

AN AGILE MDA APPROACH FOR EXECUTABLE UML
STRUCTURED ACTIVITIES

I. LAZĂR, B. PÂRV, S. MOTOGNA, I.-G. CZIBULA, AND C.-L. LAZĂR

Abstract. Agile processes allow developers to construct, run and test ex-
ecutable models in short, incremental, iterative cycles. However, the agile
development processes tend to minimize the modeling phase and the usage
of UML models, because UML is a “unified” (too general) language with a
lot of semantic variation points. The current version of UML together with
its Action Semantics provide the foundation for building object-oriented
executable models. But, constructing executable models using the existing
tools and the current standard notations is a tedious task or an impossible
one because of the UML semantic variation points. Agile MDA processes
try to apply agile principles in the context of executable models. This
paper presents a procedural action language for UML structured activi-
ties that allows developers to apply agile principles for executable models
that contains structured activities. New graphical notations for structured
activities are also introduced for rapid creation of tests and procedures.

1. Introduction

UML 2 [16] is the de-facto standard for modeling software systems. How-
ever, most commonly, UML models are used as blueprints that are fill in with
code, and the current agile development processes (e.g. agile model-driven
development [2], test-driven development [3]) tend to minimize the modeling
phase and the usage of UML models.

MDA framework [10] provides an approach for specifying systems indepen-
dently of a particular platform and for transforming the system specification
into one for a particular platform. But development processes based on MDA
are not widely used today because they are viewed as heavy-weight processes
- they cannot deliver (incrementally) small slices of code as soon as possible.

Received by the editors: November 19, 2007.
2000 Mathematics Subject Classification. 68N15, 68N30.
1998 CR Categories and Descriptors. D.2.2 [Software Engineering]: Design Tools

and Techniques – Computer-aided software engineering, Flow charts, Object-oriented design
methods; D.2.4 [Software Engineering]: Software/Program Verification – Programming
by contract, Assertion checkers; D.2.5 [Software Engineering]: Testing and Debugging –
Debugging aids, Testing tools;

101

102 I. LAZĂR, B. PÂRV, S. MOTOGNA, I.-G. CZIBULA, AND C.-L. LAZĂR

In this context, executing UML models became a necessity for development
processes based on extensive modeling. For such processes models must act just
like code [18]. UML 2 and its Action Semantics [16] provide the foundation to
construct executable models. In order to make a model executable, the model
must contain a complete and precise behavior description. But, creating a
model that have a complete and precise behavior description is a tedious task
or an impossible one because of many UML semantic variation points.

Executable UML [19] means an execution semantics for a subset of actions
sufficient for computational completeness. Two basic elements are required for
such subsets: an action language and an operational semantics. The action
language specifies the elements that can be used and the operational semantics
establishes how the elements can be placed in a model, and how the model
can be interpreted.

Several tools [5, 24, 1, 7] have defined non-standard subsets of actions
that make UML a computational-complete specification language. The oper-
ational semantics of a standard subset of actions sufficient for computational
completeness is still in the process of standardization [12].

Debugging and testing executable models early in the development process
help to validate parts of the model and to improve it. Model-level Testing and
Debugging Specification [15] and UML Testing Profile [13] define a standard
infrastructure for testing and debugging at the PIM (Platform Independent
Model), PSM (Platform Specific Model), and implementation levels. The
above specifications allow glass box and black box testing of application based
on models.

1.1. The Problem and Motivation. As identified above, a framework for
executing UML structured activities should be based on the following elements:

• An agile MDA process that allows developers to construct, run and
test executable models in short, incremental, iterative cycles. Glass
box and black box testing must also be provided.

• A small subset of actions sufficient for computational completeness
together with simple graphical and textual notations for representing
the action language elements.

• Model management operations for model transformation and valida-
tion.

Agile MDA processes. An agile MDA process [18] applies the main Agile Al-
liance principles (e.g. testing first, imediate execution [2, 3]) into a classical
MDA process [10, 8].

AN AGILE MDA APPROACH FOR EXECUTABLE UML STRUCTURED ACTIVITIES103

Some of the existing tools provide glass box and black box testing using
non-standard infrastructures, but these techniques must be alligned today
with the standard specifications for debugging and testing [15, 13].

Subsets of actions sufficient for computational completeness. As noted before,
the standardization efforts for defining a subset of actions sufficient for compu-
tational completeness are in progress [12], while existing tools provide several
action languages.

As described in [9] the ideas behind existing proprietary tools are quite sim-
ilar. The process of creating executable models can be generalized as follows:
(a) the system is decomposed as a set of components, (b) each component is
detailed using class diagrams, (c) the behavior of each class is detailed using
state machines, and (d) the actions used in state diagrams are specified using
a proprietary action language.

There are action languages [5, 24, 1] whose elements are translatable into
the basic concepts defined by the UML 2 Action Semantics, and action lan-
guages based on OCL [21] which extends OCL query expressions and adds side-
efects capability to OCL. However, all these languages provide only concrete
syntaxes and do not provide simple graphical notations for activity diagrams.

Model management operations. Meta-Object Facility [11] is a metamodeling
language that provides core facilities for defining new modeling languages
including model transformation languages. Another well-known and widely
used framework for implementing model management is the Eclipse Modelling
Framework (EMF) [6].

There are several defined languages for model transformation and valida-
tion. The Epsilon Object Language (EOL) [17] is a metamodel independent
language built on top of OCL [14]. Kermeta [7] is a metamodelling language,
compliant with the EMOF component of MOF 2.0, which provides an action
language for specifying behaviour. Kermeta is intended to be an imperative
language for implementing executable metamodels [7].

1.2. The Solution. The proposed solution is a framework for constructing
and executing UML structured activities. The framework refers only to UML
structured activities because our first objective is to allow model transforma-
tion from PIM to procedural constructs of imperative languages. This frame-
work for structured activities is part of ComDeValCo - Component Definition,
Validation, and Composition framework [23].

As part of this framework we define a procedural action language (PAL),
that is a concrete syntax for UML structured activities, and graphical nota-
tions for some UML structured activity actions.

104 I. LAZĂR, B. PÂRV, S. MOTOGNA, I.-G. CZIBULA, AND C.-L. LAZĂR

Figure 1. Assignment: q := s + 1

One of the main idea for simplifying the construction of UML structured
activities is to use the pull data flow for expression trees. The pull model means
that actions requiring data initiate other actions that provide it. Figure 1-(d)
shows the push model for evaluating the expression s+1 and adding the result
to an activity variable q. As shown in [4], when modeling expressions using
the push data flow the control arrives at leaves of the expression tree, then
the data cascades through the root, producing the final result. But modeling
expression trees using the push model is a tedious task.

The proposed framework uses the pull model for expression trees. Figures
1-(a) and 1-(b) shows the graphical and textual notations for the assignment q
:= s + 1. Both notations can be compiled to the same UML repository model
presented Figure in 1-(c).

We also propose new graphical notations for conditionals and loops. The
graphical notations do not follow Nassi-Schneiderman notations [22] for struc-
tured programming. For simplicity we propose the classical flowchart graphical
notations.

The framework also includes an Agile MDA approach for constructing,
running and testing models. Debugging and testing techniques are also in-
cluded according to the new released standards [15, 13].

In order to be able to exchange executable models with other tools, a UML
profile is also defined. The profile defines the mapping between PAL and UML
constructs and is similar to the profile defined for AOP executable models [9].

The paper is organized as follows: after this introductory section, the
next one presents our agile MDA approach. The third section presents the

AN AGILE MDA APPROACH FOR EXECUTABLE UML STRUCTURED ACTIVITIES105

Procedural Action Language. The last section contains some conclusions and
future work.

2. Our Agile MDA Approach

Our approach is illustrated using an example program that computes the
integer square root (isqrt) of a positive integer. isqrt(s) is the positive integer
r which is the greatest integer less than or equal to the square root of s.

In order to develop a program we construct a UML model that contains
functional model elements and test case model elements. Functional model
elements correspond to the program and its operations and are represented as
UML activities. Test case model elements are also UML activities and they
represent automated tests written for some selected functional model elements.

For instance, our model for the above example contains the following ele-
ments: an isqrtProgram activity for program, an isqrt activity for computing
the integer square root, and a testIsqrt activity which is a test case for isqrt
activity. The creation order of these model elements is as follows.

1: First we create the test case model (i.e. testIsqrt activity for isqrt
operation) starting from the above informal specification. At this
stage we try to understand the requirements by writing test scenarios
using UML structured activity constructs.

2: Formal pre and post conditions of isqrt are written after the test case
is created. We can return at step 1 to complete the test scenarios
based on the defined formal specification.

3: Finally, we define isqrt and isqrtProgram activities using UML struc-
tured activity nodes. To allow glass box testing we can mark the func-
tional model elements according to UML Model-level Testing and De-
bugging Specification.

The examples presented in this section contain PAL graphical and textual
notations that will be described in the next section.

2.1. Test-first Design Steps. Our proposed agile MDA process includes the
test-first design steps [3] as follows. For each new feature of the system we
apply the bellow steps.

Add a test. The first step is to quickly add a test. Figure 2 shows a test
case for isqrt, expressed using (a) a graphical notation and (b) a textual no-
tation. Figure 2-(a) contains an activity diagram that shows testIsqrt activity
stereotyped with testCase defined by UML Testing Profile [13]. The assert
stereotype defined by our profile is used to make assertions and can be applied
for UML 2 CallBehaviorActions. Figure 2-(b) presents the concrete syntax of
PAL corresponding to testIsqrt activity.

106 I. LAZĂR, B. PÂRV, S. MOTOGNA, I.-G. CZIBULA, AND C.-L. LAZĂR

Figure 2. Isqrt Test Case

Developers can write the tests using the graphical or the textual nota-
tions. Both notations are compiled into the same UML repository model as
shown in Figure 2-(c), where a snapshot is presented without pin and param-
eter objects. For easy of use the framework allows developers to write inline
expressions when they construct activities. Inline expressions are represented
and evaluated according to the pull model for actions.

Run the tests. The second step is to run all the tests to ensure that the new
test fails. In order to run the tests the model is verified and the missing
elements are reported - in this example isqrt operation. The framework helps
developers to generate the missing elements as Figure 3 shows.

Figure 3. Automatically Generated isqrt Operation

At this stage developers can write pre and post conditions expressed as
OCL expressions [14]. The syntax of PAL includes pre and post constructs as
Figure 3-(b) shows. The expressions specified in pre and post sections will be
used when the system is run - see section 2.2.

AN AGILE MDA APPROACH FOR EXECUTABLE UML STRUCTURED ACTIVITIES107

Figure 4. Isqrt Operation Definition

Add production code. The third step is to update the functional code to make
it pass the new test. Figure 4 shows the definition of isqrt operation, without
showing the stereotypes in order to save space.

As for writing test cases, developers can use either the graphical notation or
the concrete syntax of PAL. Figure 4-(b) contains statements that corresponds
to an assertion based language [25]. The framework allows and encourages
developers to apply design by contract principles [20]. The assert statement
corresponds to data assertions - conditions that must hold at a particular
location in the code, as defined in [25]. The loopInvariant statement can be
used inside loops and it is a particular data assertion that states what must
hold in each repetition of a loop. The loopVariant statement introduces a
strictly monotonic decreasing function used for loop termination. All these
constructs can be used when the program is run - see section 2.2.

Run the tests. The fourth step is to run the tests again. Once the tests pass
the next step is to start over implementing a new system feature.

2.2. Debugging Techniques. How to enter input data for executable models
and how to start the execution represent two requirements for executable
models [12]. Programs represent in our framework the entry points for model
execution. Like operations, programs are also modeled as UML activities.
PAL contains input and output statements that allow developers to enter data

108 I. LAZĂR, B. PÂRV, S. MOTOGNA, I.-G. CZIBULA, AND C.-L. LAZĂR

before model execution and to view the program results. In this context
running a model means starting the execution from an activity stereotyped
with program.

Figure 5 shows a program that reads an integer, computes the integer
square root of that value, and writes the result. When the program is run
the user is prompted to enter an integer value and the results are sent to a
console.

Figure 5. Isqrt Program

The debugging techniques are defined according to Model-level Testing
and Debugging Specification [15]. Figure 6 presents an extract of the in-
frastructure of our framework. All classes except ModelEditor and Debugger
classes, belong to the Test Instrumentation Interface (TII) metamodel from
[15]. In our context, the system under test (SUT) contains only a Deployed-
Component which is a program. Breakpoint represents a location or incident
within the program that is of interest. IncidentBreakpoints can be set on
any named element within a model and ActionSemanticBreakpoints can be
set only on actions. Incident and action breakpoints can be set manually on

Figure 6. Debugging Infrastructure

model elements when the model is constructed (using the ModelEditor). After
Debugger is started, it notifies the editor when incident and action breakpoints
are encountered.

AN AGILE MDA APPROACH FOR EXECUTABLE UML STRUCTURED ACTIVITIES109

Another option is to inspect the program execution regarding the built-
in assertion based constructs (pre, post, assert, loopVariant, loopInvariant).
The Debugger component can automatically generate incident breakpoints (a)
when encountering assertions, loop invariants, and loop variants, (b) before
entering a method - breakpoint set on precondition, and (c) before returning
from an operation - breakpoint set on postcondition.

When the debugger is paused developers can inspect the program state,
evaluate expressions that use program elements, including the expressions of
assertion based constructs.

3. Procedural Action Language

The Procedural Action Language (PAL) is introduced to simplify the con-
struction of UML structured activities. PAL defines a concrete syntax for rep-
resenting UML structured activity nodes for loops, sequences of actions and
conditionals. The PAL syntax is also used for writing assignment statements
and expressions in structured activity nodes. PAL also includes assertion
based constructs as described in the previous section. For these expressions,
PAL uses OCL expressions.

Figure 7. Snapshot PAL Abstract Syntax

Figure 7 presents a snapshot of the core part of the abstract syntax of the
language. The missing parts of the abstract syntax refer to expressions and
assertion based statements. A PAL profile (see Figure 8) is defined in order
to be able to exchange models with other UML 2 compliant tools.

3.1. Operations and Program. As the examples from Figure 5 and 4 show,
the programs and procedures corresponds to UML activities. A UML Activity

110 I. LAZĂR, B. PÂRV, S. MOTOGNA, I.-G. CZIBULA, AND C.-L. LAZĂR

Figure 8. PAL UML Profile

has parameters, local variables, preconditions and postconditions, so we have
a direct mapping from PAL Program and Procedure meta classes to the UML
Activity meta class.

Figure 9. Statement Blocks and UML Sequence Nodes

3.2. Statement Blocks and UML Sequence Nodes. An UML sequence
node is a basic structured node that executes a series of actions in order.
The PAL statement blocks correspond to UML sequence nodes. The UML 2
standard does not indicate a standard graphical notation for sequence nodes.
Our proposed graphical notations for sequence nodes are presented in Figure
9-(a) and (b).

3.3. Variable Definition and Assignment Statements. The PAL vari-
able definition statements can be placed inside statement blocks and can also
have expressions for initializing their values. The PAL variables are mapped

AN AGILE MDA APPROACH FOR EXECUTABLE UML STRUCTURED ACTIVITIES111

to UML Activity or StructuredActivityNode variables. For instance the vari-
able p defined in line 10 of Figure 4-(b) belongs to the UML loop node that
contains the variable definition, while the local variables q defined in line 5 of
Figure 4-(b) belongs to isqrt activity.

The UML AddVariableValueActions correspond to PAL assignment state-
ments because the left hand side of a PAL assignment is restricted to be a
variable. As noted in section 1 we add the constraint for using the pull action
model for evaluating the right hand side expression - which is represented and
evaluated as a CallBehaviorAction.

3.4. If Statement and UML Conditional Node. The PAL IfStatements
correspond to UML ConditionalNodes. In case the else part is missing, the cor-
responding UML ConditionalNode has only one Clause, otherwise two Clauses.
For simplicity we restrict the body of UML clauses to be sequence nodes. The
proposed graphical notations for if statements are presented in Figure 10-(a)
and (b) (UML 2 standard does not indicate a standard graphical notation for
sequence nodes).

Figure 10. If Statement and UML Sequence Nodes

3.5. While Statement and UML Loop Node. Pre tested UML LoopN-
odes correspond to PAL while statements. Similar to conditional nodes we
restrict the body part loop nodes to be sequence nodes.

3.6. Other Statements. The PAL input statements correspond to UML Ad-
dVariableValueActions. The grahical notation must only indicate the variable
- the right hand side must be undefined.

The output, return, and loop variant statements are CallBehaviorActions,
that is all indicate an expression to be printed, returned, respectively checked.

112 I. LAZĂR, B. PÂRV, S. MOTOGNA, I.-G. CZIBULA, AND C.-L. LAZĂR

Figure 11. While Statement and UML Loop Node

The assertion based statements, assert and loop invariant, are mapped to
UML Constraints or CallBehaviorActions. The loop invariant statement is
restricted to be applied only inside loop nodes.

4. Conclusions and Future Work

In order to obtain an agile MDA framework for UML structured activities,
this paper has introduced a Procedural Action Language and a corresponding
UML profile. A concrete syntax and new graphical notations for structured
activities have also been defined for this language. The introduced textual and
graphical notations can be used to easily construct, run and test executable
models according to Agile Alliance principles. Models based on the introduced
profile can be constructed with any UML tool, or can run in any UML tool
with execution capabilities.

As future work we intend to extend the language with object oriented
constructs. Such a language should also support mappings to general UML
2 activities. Additionally, model transformation capabilities must also be ex-
tended.

We also intend to add refactoring techniques to the presented Agile MDA
approach in order to become a test-driven development method for executable
models.

ACKNOWLEDGEMENTS

This work was supported by the grant ID 546, sponsored by NURC -
Romanian National University Research Council (CNCSIS).

AN AGILE MDA APPROACH FOR EXECUTABLE UML STRUCTURED ACTIVITIES113

References

[1] Telelogic AB. UML 2.0 Action Semantics and Telelogic TAU/Architect and
TAU/Developer Action Language, Version 1.0. 2004.

[2] Scott W. Ambler. Agile Model Driven Development (AMDD).
http://www.agilemodeling.com/essays/amdd.htm, 2007.

[3] Kent Beck. Test-Driven Development By Example. Addison Wesley, 2002.
[4] Conrad Bock. Uml 2 activity and action models, part 6: Structured activities. Journal

of Object Technology, 4(4):43–66, 2005.
[5] Kennedy Carter. The Action Specification Language Reference Manual.

http://www.kc.com/, 2002.
[6] Eclipse.org. Eclipse Modelling Framework. http://www.eclipse.org/emf.
[7] Pierre-Alain Muller et al. On executable meta-languages applied to model transforma-

tions. In Model Transformations In Practice Workshop, Montego Bay, Jamaica, 2005.
[8] Susumu Hayashi et al. Test driven development of uml models with smart modeling

system. In Lecture Notes in Computer Science, volume 3273, pages 395–409, 2004.
[9] Lidia Fuentes and Pablo Sánchez. Designing and weaving aspect-oriented executable

uml models. Journal of Object Technology, 6(7):109–136, 2007.
[10] Object Management Group. MDA Guide Version 1.0.1.

http://www.omg.org/docs/omg/03-06-01.pdf, 2003.
[11] Object Management Group. Meta Object Facility (MOF) 2.0, Core Specification.

http://www.omg.org/cgi-bin/doc?ptc/04-10-15/, 2004.
[12] Object Management Group. Semantics of a Foundational Subset for Executable UML

Models RFP. http://www.omg.org/cgi-bin/apps/doc?ad/05-04-02.pdf, 2005.
[13] Object Management Group. UML 2.0 Testing Profile Specification.

http://www.omg.org/cgi-bin/apps/doc?formal/05-07-07.pdf, 2005.
[14] Object Management Group. Object Constraint Language Specification, version 2.0.

http://www.omg.org/cgi-bin/apps/doc?formal/06-05-01.pdf, 2006.
[15] Object Management Group. Model-level Testing and Debugging.

http://www.omg.org/cgi-bin/doc?ptc/2007-05-14/, 2007.
[16] Object Management Group. UML 2.1.1 Superstructure Specification.

http://www.omg.org/cgi-bin/doc?ptc/07-02-03/, 2007.
[17] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. The epsilon object

language (eol). In Proc. of European Conference in Model Driven Architecture (EC-
MDA), pages 128–142, Bilbao, Spain, 2006.

[18] Stephen J. Mellor. Agile mda. Technical report, Project Technology, Inc., 2005.
[19] Stephen J. Mellor and Marc J. Balcer. Executable UML: A Foundation for Model-Driven

Architecture. Addison Wesley, 2002.
[20] Bertrand Meyer. Applying design by contract. Computer, 25(10):40–51, 1992.
[21] P.-A. Muller, P. Studer, F. Fondement, and J. Bzivin. Platform independent web

application modeling and development with netsilon. Software and System Modeling,
4(4):424–442, 2005.

[22] I. Nassi and B. Schneiderman. Flowchart techniques for structured programming. ACM
Sigplan Notices, 8(8):12–26, 1973.

[23] Bazil Parv, Simona Motogna, Ioan Lazar, Istvan-Gergely Czibula, and Codrut-Lucian
Lazar. Comdevalco - a framework for software component definition, validation, and
composition. Studia Univ. Babes-Bolyai, LII(2), 2007.

[24] Inc ProjTech AL: Project Technology. Object Action Language. 2002.

114 I. LAZĂR, B. PÂRV, S. MOTOGNA, I.-G. CZIBULA, AND C.-L. LAZĂR

[25] Herbert Toth. On theory and practice of assertion based software development. Journal
of Object Technology, 4(2):109–129, 2005.

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş-Bolyai University, 1 M. Kogălniceanu, Cluj-Napoca 400084, Ro-
mania

E-mail address: {ilazar,bparv,motogna,czibula}@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LII, Number 2, 2007

EVOLUTIONARY COALITION FORMATION
IN COMPLEX NETWORKS

LAURA DIOŞAN, DUMITRU DUMITRESCU

Abstract. An optimal clusterization model is introduced and studied -
an approach that combines an evolutionary algorithm by the principles of
the physical spin systems. The method is used to investigate the process
of coalition formation that appears in complex systems. The numerical
experiments show that the proposed hybrid model is able to detect the
optimal clusterization in small and large systems by a reasonable cost of
complexity (seen in terms of time and physical computational resources).

1. Introduction

Almost all interesting processes in nature are highly cross-linked. In many
systems, however, we can identify the elements that interact to form com-
pound structures or functions. The interconnected simple elements can form
a complex system if they, together, exhibit a high degree of complexity from
which emerges a higher order behaviour. Examples of complex systems include
ant-hills, ants themselves, human economies, climate, nervous systems, cells
and living things, including human beings, the brain, the immune system, the
metabolic networks, the economic markets, and the human social networks,
as well as modern energy or telecommunication infrastructures, the Internet
and World Wide Web. Therefore, a complex system is any system featuring a
large number of interacting components, whose aggregate activity is nonlinear
and typically exhibits hierarchical self-organization under selective pressures.

More formally, a complex system is any system featuring a large number
of interacting components (agents, processes, etc.) whose aggregate activity
is nonlinear (not derivable from the summations of the activity of individual
components) and typically exhibits hierarchical self-organization under selec-
tive pressures [20].

Received by the editors: October 9, 2007.
2000 Mathematics Subject Classification. 82B20, 68T20.
1998 CR Categories and Descriptors. code C.4 [Performance of systems]: – Modeling

techniques; code I.6.1 [Simulation Theory]: – Systems theory .

115

116 LAURA DIOŞAN, DUMITRU DUMITRESCU

An interesting problem that appears in such complex systems is the pro-
cess of coalition formation. The optimization of several models proposed for
studying the coalition formation in complex system (politics, economics or so-
ciological systems) are based on simulated annealing [18, 16, 8] or on extremal
optimization [4, 6] methods. Both optimization techniques are rather time-
consuming and the necessary computational time increases strongly with the
system size. The evolutionary techniques could overtake this weakness. It will
be shown, in this paper, that the evolutionary methods can simulate very well
the true dynamic of such complex systems and they allow analysing the phase
transition from the viewpoint of the much-discussed social percolation [24],
where the emergence of a giant cluster is observed in many social phenomena.

Physical concepts might prove useful in describing collective social phe-
nomena. Indeed models inspired by statistical physics are now appearing in
scientific literature [22]. The process of aggregation among a set of actors
seems to be a good candidate for a statistical physics like model [21]. These
actors might be countries, which ally into international coalitions, companies
that adopt common standards, parties that make alliances, individuals that
form different interest groups, and so on. Given a set of actors, there always
exists an associated distribution of bilateral propensities towards either co-
operation or conflict. The question then arises as to: How to satisfy such
opposing constraints simultaneously?. In other words, what kind of alliances,
if any, will optimize all actor bilateral trends to respectively conflict or coop-
eration?

It turns out that a similar problem does exist in spin glasses (as Ising
or Potts models [11, 12, 14]). For these systems, the magnetic exchanges
are distributed randomly between the ferro and anti-ferromagnetic couplings.
Indeed such an analogy has been used in the past in a few models [21].

The aim of this paper is to provide a new hybrid model in order to inves-
tigate the process of coalition formation that can appear in a complex system.
Coalition setting among a set of actors is studied using concepts from the
theory of spin glasses and from the theory of evolution. Those of evolutionary
computation combine the principles of the Potts model. Unlike other solutions
proposed until now in order to study the dynamic of such complex system (sim-
ulated annealing or Monte Carlo methods), the proposed model is able to deal
with large systems and helps us to investigate different phenomena that ap-
pear in such systems. The numerical results indicate that the hybrid approach
is able to identify the characteristics of the coalition formation process.

The rest of the paper in organised as follows. A short description of the
coalition formation problem (and its real implications) is given in Section 2.
The Potts model is briefly described in Section 3. Section 4 proposes the

EVOLUTIONARY COALITION FORMATION IN COMPLEX NETWORKS 117

hybrid evolutionary approach for investigating the process of coalition forma-
tion. Several numerical experiments are presented and discussed in Section 5.
Finally, the last section concludes the paper.

2. Problem formulation

Often-cited examples of complex systems in nature and society include
the gene networks, the immune networks that preserve the identity of organ-
isms, the social insect colonies, the neural networks in the brain that produce
intelligence and consciousness, the ecological networks, the social networks
comprised of transportation, utilities, and telecommunication systems, as well
as the economies [20].

The field of complex systems seeks to explain and uncover common laws for
the emergent, self-organizing behaviour seen in complex systems across disci-
plines. Many scientists also believe that the discovery of such general principles
will be essential for creating artificial life and artificial intelligence [20]. Com-
plex systems, as their name implies, are typically hard to understand. Tradi-
tionally the more mathematically oriented sciences such as physics, chemistry,
and mathematical biology have concentrated on simpler model systems that
are more tractable via mathematics. The rise of interest in understanding
general properties of complex systems has paralleled the rise of the computer,
because the computer has made it possible for the first time in history to make
models of complex systems in nature that are more accurate.

In recent years, there has been a strong upsurge in the study of networks
in many disciplines, ranging from computer science and communications to
sociology and epidemiology. Some of the areas can profit from the application
of complex systems modelling research and development: computational biol-
ogy (DNA sequencing, micro-array data analysis, genetic regulatory networks,
models of genetic regulatory processes), social systems (social networks, de-
cision processes and knowledge structures of multi-agent systems, economic
and financial markets modelling, homeland defence and intelligence commu-
nity), distributed knowledge systems(information retrieval, web technology
and digital libraries, knowledge integration), optimization, local search meth-
ods, extremal optimization, combinatorial optimization in biology, evolution-
ary systems (evolutionary algorithms, cellular automata and artificial life).

A network (or graph) is simply a collection of nodes (vertices) and links
(edges) between nodes. The links can be directed or undirected, and weighted
or un-weighted. Many natural phenomena can be usefully described in network
terms.

118 LAURA DIOŞAN, DUMITRU DUMITRESCU

Recent work [28, 3] have emphasized the importance of “network think-
ing” in dealing with complex systems in the real world. The purpose of char-
acterizing networks according to degree distribution, clustering coefficient and
average path length, is both to better understand networks from a scientific
point of view and to develop better technologies for designing and managing
networks in desired ways.

Another important application of network analysis is the problem of find-
ing clusters, or community structures, in a given network. This is the problem
of finding sub-networks (“communities”) that contain dense interconnections,
meaning that nodes in a given community are much more likely to be related
to nodes in that same community than to nodes in other parts of the network.
Finding such communities is related to the problem of graph partitioning in
computer science, and to the problem of hierarchical clustering in sociology.

A complex system can be reduced to a full-connected graph this time in
order to investigate the clusterization phenomena that appear in these systems.
The following clusterization problem is considered: we have a complete graph
on n vertices (items), where each edge (u, v) is labelled either + or− depending
on whether u and v have been deemed to be “similar” or “different”. The
notion of similarity of two vertices could be understood as a propensity for
cooperation or as a relation of sympathy or agreement between the two nodes.
The goal is to produce a partition of the vertices (a clustering) that agrees as
much as possible with the edge labels: a clustering that maximises the number
of nodes that collaborate within clusters and that minimises, at the same time,
the number of nodes that have antipathy relations

3. The Potts model

Understanding human thinking and learning has always been a great chal-
lenge for all the scientists and not only. The challenge has taken another
dimension as scientists are trying to simulate the learning and thinking pro-
cesses by using the computers and other devices. The nature inspired and
Physics models have been of great help.

Even though very simple, the Ising model and its generalization, the Potts
model, have been applied successfully in several computational problems. In
its original form, the Ising model describes the evolution of a grid of up and
down spins over time. Each spin can change its orientation in time, according
to the external temperature and the values of its orthogonal neighbours [1].
The Potts system involves similar dynamics for the spins, but each spin can
have more than two (up and down) orientations.

A simple version of a spin glass [19] consists of a d-dimensional hyper-cubic
lattice with a spin variable σi ∈ {−1, 1} placed on each site i, 1 ≤ i ≤ n. A

EVOLUTIONARY COALITION FORMATION IN COMPLEX NETWORKS 119

spin is connected to each of its neighbours j via a bond variable Ji,j drawn
from some distribution P (J) with zero mean and unit variance [21].

The infinite-range p-state Potts glass is usually defined by the Hamilton-
ian: H(σ) = −p

∑
i

∑
j Jijδσiσj , where the σ(i) Potts states can take the

0, 1, 2, . . . , p − 1 values. The sum is extended over all N(N − 1)/2 pairs and
δmn = 1 if m = n and δmn = 0 otherwise. The Jij bonds are randomly dis-
tributed quenched variables with J0/N mean, and the variance is presumed
to scale as N−1. The system is non-trivially frustrated and computing the
thermodynamic parameters is a complex task. The above model has been
extensively studied by many authors through different methods [11, 14]. The
main idea of these models is to find the “ground states”, i.e., the lowest energy
configuration Smin of the Hamiltonian.

Neda et al. have considered a model resembling the infinite-range Potts
glass [21], which can be useful for considering the optimal clusterization prob-
lem or for understanding the coalition formation phenomena in sociological
systems. A difference to the Potts glass is that now the variance of the Jij

bonds scales as N−2. The authors [21] have considered an unrestricted number
of Potts states (p = N), and limit the study on the ground state (T = 0).

Therefore, this non-trivial optimization problem can be mathematically
formulated resembling a zero-temperature Potts glass type model. To prove
this, a cost-function, K, (a kind of energy of the system) has been defined.
This function has been increased by SiSj |Zij | whenever two conflicting actors
(i and j) are in the same coalition or two actors which have a tendency towards
collaboration are in different coalition. The cost-function is zero, when no
propensity is in conflict with the formed coalitions. The number of possible
coalitions is unrestricted (the maximal possible number is N), and the coalition
in which actor i is denoted by σ(i) [21]. The cost function then writes as

(1) K = −
∑

i<j

δσ(i)σ(j)ZijSiSj +
1
2

∑

i<j

(ZijSiSj + |ZijSiSj |)

The order parameter considered by Neda et al. in [21] has been the relative
size r of the largest cluster:

(2) r =

〈
maxi

{
Cx(i)

N

}〉

x

,

where Cx(i) stands for the number of elements in state i for an x realization
of the system [21].

120 LAURA DIOŞAN, DUMITRU DUMITRESCU

4. The evolutionary-based coalition model

Evolutionary algorithms (EAs) have been successfully applied in various
domains: mathematics, engineering, chemistry, physics, medicine, etc. The
great advantage consists of their ability to obtain more solutions in a single
run due to their capacity to deal with a population of solutions.

These algorithms have been introduced in 1965 by John Holland [15].
Many surveys in EAs and their applications can be found [7, 9, 13]. The
EAs use a population of feasible solutions. The population is randomly gen-
erated initially over the search space, which is the definition domain. These
solutions (called also chromosome, individuals) are improved by applying ge-
netic operators (like selection, mutation, crossover, etc.). Each individual from
the population is evaluated based on its fitness function. The best individuals
are selected at each generation by using this quality function. Many selection
mechanisms have been implemented [2, 13]. The chosen individuals are mod-
ified by applying the crossover and/or mutation operator. Various forms of
these operators can be found [10, 23, 25, 26]. New solutions are obtained in
this way. Some of these new solutions can be better than the existing ones.
There are many modalities to accept the new solutions (also called offspring)
in population. Some algorithms accept the new solution only if this solution
is better than his parent (or parents).

4.1. Motivation. Evolutionary Computation (EC) methods allow a quickly
and non-restrictive optimization, which is so useful in order to model the
complex systems. Why? Because the nature solved many problems, so any
algorithm showing the same behaviour might be good. EC can also handle
non-linear, high dimensional problems without requiring differentiability or
explicit knowledge of the problem structure. In addition, the evolutionary
algorithms (EAs) are very robust to time-varying behaviour, even though they
may exhibit low speed of convergence.

All these strengths of the EAs allow investigating the process of coalition
formation in complex systems: the appearance of social percolation and the
emergence of a giant cluster that is observed in many social phenomena.

For implementing a realistic dynamics for coalition formation one should
also take into account that coalitions are not formed instantaneously and si-
multaneously. Once an agent is assigned to a coalition, it can (and probably
will) change its propensities towards other agents. Agents will adjust their
propensities according to the already formed coalitions and this feedback pre-
sumably reduces the frustration in the system.

4.2. Representation. A hybrid model that uses the GAs in order to evolve
the realizations σ(i) of a network configuration who’s energy reaches a minimal

EVOLUTIONARY COALITION FORMATION IN COMPLEX NETWORKS 121

value is proposed. Actually, each GA individual is a fixed-length string of
genes. The length of a chromosome is equal to the number of nodes from the
network. Thus, a GA chromosome represents a possible clusterization of the
network nodes in order to form an optimal coalition. Because the maximal
number of coalitions (or clusters) is equal to the number of network’s nodes,
each gene is associated to the index of such a cluster. Therefore, each gene is
an integer number from {1, 2, . . . , N} set (where N represents the number of
nodes from the network). Or, in terms of the Potts model, each gene gi from
a GA chromosome is associated to a Potts state σ(i).

For instance, for a network with N = 5 nodes (actors, elements) two
possible chromosomes could be:

a) C1 = (1, 2, 3, 4, 5) - this chromosome encodes a clusterization where
each group contains just an actor: gi 6= gj or σ(i) 6= σ(j), i = 1, 2, . . . N
(see Figure 1(a));

b) C2 = (1, 1, 3, 1, 5) - this chromosome encodes a coalition with 3 clusters
(see Figure 1(b));

1

2

34

5

(a)

1

3

5

1

1

(b)

Figure 1. Two possible configurations of the network in
which: (a) each group is only formed by an element (it corre-
sponds to the chromosome C1); (b) one group contains 3 nodes
(n1, n2, n4) and the other two groups contain 2 nodes each (n3

and n5, respectively) – it corresponds to the chromosome C2.
A dashed edge between two nodes i and j means that there
is no sympathy (no tendency for cooperation) between these
nodes and a solid edge means that the nodes i and j tend to
collaborate. The value associated to each node represents the
index of the cluster where that node is placed.

4.3. Initialisation. Regarding the chromosome initialization each gene of a
chromosome is initialized with a random value from the {1, 2, . . ., N} set; in
this case two or more nodes could take part to the same coalition from the
start of the search process (like in the previous example from Figure 1(b)).

122 LAURA DIOŞAN, DUMITRU DUMITRESCU

4.4. Fitness assignment. The array of integers encoded into a GA chromo-
some represents the structure of a coalition. In order to compute the quality
of a coalition, the cost function proposed by Neda et al. [21] has been used.
The simple case when Si = Sj = 1 and Zij = +1 with a probability q and −1
with a probability 1− q has been considered:

(3) f = −
N∑

i,j=1

Zij × δgi,gj , where: Zij = ±1, and δgi,gj =

{
1, if gi = gj

0, if gi 6= gj

A lower value of this function indicates a better quality. Therefore, the
GA has to solve a minimization problem.

For instance, the chromosome C2 (Figue 1(b)) is better than the chromo-
some C1 (Figure 1(a)) because:

• Fitness(C1) = 0 (because all Zij are -1 and all δgi,gj are 0);
• Fitness(C2) = −3.

4.5. Search operators. The search operators mainly used within the GA
are the crossover and mutation. Note that the action of the genetic operators
does not change the structure of the network (the interactions between the
actors). The crossover and the mutation change the coalitions only, which are
formed in the system.

4.5.1. Crossover. By crossover, two selected parents are recombined. For in-
stance, within the cutting-point recombination, two possible coalitions (one
from each parent) exchange the elements placed between the cutting-points.
A cutting point is considered within the following two parent chromosomes
after the third gene. The offspring provided by the recombination operation
are:

P1 = (1, 2, 3,|4, 5) O1 = (1, 2, 3, 2, 4)

P2 = (3, 2, 1,|2, 4) O2 = (3, 2, 1, 4, 5)

In Figure 2 is presented the network-based visualization of this crossover
operation.

4.5.2. Mutation. By mutation, some information inside a chromosome could
be changed. In other words, some of the network actors could change their
group affiliation. Therefore, by mutation, a gene change its value into another
one (off course, from the same discrete domain {1, 2, . . . , N}).

EVOLUTIONARY COALITION FORMATION IN COMPLEX NETWORKS 123

Figure 2. Network-based crossover. Remark that the
crossover operation does not change the tendency for coop-
eration of the nodes from the network. The cluster affiliation
of some nodes is only modified.

3

2

14

5

1

2

32

4

3

2

12

4

1

2

34

5

P1

O1

P2

O2

Figure 3. Network-based mutation. Note again that the net-
work structure is not changed.

2

2

34

1

2

34

5 4

4.6. The algorithm. A GA [13] is used in order to evolve the coalition for-
mation. The steady-state evolutionary model [27] is used as an underlying
mechanism for the GA implementation. The algorithm starts by creating a
random population of individuals. The following steps are repeated until a
given number of generations is reached: two parents are selected by using a
binary tournament selection procedure. The parents are recombined in order
to obtain two offspring by performing a one cutting-point crossover. The off-
spring are considered for mutation. The best offspring O replaces the worst
individual W in the current population if O is better than W .

5. Numerical experiments

In this experiment the dynamic of the coalition formation through the
order r parameter (like in [21]) is studied in full connected networks (there is
a positive connection - a sympathy - or a negative connection - an antipathy -

124 LAURA DIOŞAN, DUMITRU DUMITRESCU

between every 2 nodes of the network). In addition to this study, the results
are compared to those computed by using Monte Carlo methods for small
systems (up to N ≤ 10). Several numerical results are presented also for
larger systems (e.g. N = 100 or N = 150).

5.1. Experiment 1. The GAs are used in order to obtain the optimal coali-
tion formation for small systems in which an exact enumeration is possible.
The exact enumeration means that one can computationally map the whole
phase-space (all σ(i) realizations) for a generated Zij configuration and de-
termine the minimum energy state. The order parameter considered is the
relative size r of the largest cluster.

Moreover, for N ≤ 7 it was also possible to map all the Zij configurations
as well. The results from [21] up to N ≤ 7 are thus exact. In the 7 < N ≤ 10
interval, although the minimum energy states are exactly found, due to greatly
increased computational time and memory needed, it was possible to generate
only a reasonable ensemble averaged for Zij (5000 configurations) [21]. The
results obtained by the evolutionary approach proposed in this paper up to
N ≤ 10 are averaged over the same reasonable ensemble of 5000 network
configurations.

Note that for each structure of the network Zij , i, j ∈ {1, 2, . . . , N} a GA
is run in order to find the optimal coalition formation. Therefore, the results
presented here are the corresponding r values for the best solutions found
by the evolutionary algorithm in the last generation. Moreover, in order to
obtain a realistic approach, the results are averaged over all 5000 network
configurations.

In this experiment, the GA works by 100 chromosomes that are evolved
during 100 generations. The crossover and the mutation operators are applied
by pc = 0.8 and pm = 0.1, respectively, probabilities.

The comparison exact enumeration is performed of two purposes. First,
the trends of the r(q) curves as a function of increasing system size is checked.
Secondly, these results offer a good ”standard” for the proposed optimisation
method, used for larger system sizes (in the next experiment). As the results
in Figure 4 show, the r(q) curves have a similar trend as those suggested by
Neda et al. in [21], i.e., as the system size increases, the slopes for r(q) are
increased around a non-trivial q value.

The GA results are in perfect agreement with the ones from exact enumer-
ations [21], giving confidence in to use evolutionary optimisation methods. In
addition, the complexity of the proposed approach is smaller than the complex-
ity of the traditional methods, which have been applied in order to investigate
the coalition formation process. Therefore, the time that is needed in order
to identify the optimal clusterization of the “actors” in such system by the

EVOLUTIONARY COALITION FORMATION IN COMPLEX NETWORKS 125

Figure 4. Results of the dependence of the order parameter
as a function of q for different sizes of the network (N). For
comparison purposes on (a) the exact enumeration results are
shown and on (b) the GA optimisation results.

b)a)

evolutionary methods is reduced. Another, and maybe the most important
advantage of the proposed hybrid approach is the given by its ability of han-
dle non-linear, high dimensional problems without requiring differentiability
or explicit knowledge of the problem structure. This characteristic is very im-
portant and it favours a new direction in studying the phenomena that appear
in very large complex systems.

5.2. Experiment 2. In [21] the authors have considered two Monte Carlo
optimisation methods: the classical simulated annealing [17] and the recently
proposed extremal optimization method [4, 5]. Both approaches are rather
time-consuming and the necessary computational time increases sharply with
system size. The computational resources allowed the authors to study only
the systems by sizes up to N ≤ 60.

The evolutionary approach proposed in this paper is time-consuming also,
but the computational resources allow investigating the coalition formation in
systems by larger size. Therefore, the evolution of the order parameter r(q) is
analysed in four large systems: N = 25, N = 50, N = 75 and N = 100 with
a statistic of 100 realisations.

The GA parameters used in these experiments are presented in Table 1.
Even if, for the large systems, large populations are evolved during more gen-
erations than those used for small systems, the computational time that is
needed in order to obtain good solutions is reasonable.

126 LAURA DIOŞAN, DUMITRU DUMITRESCU

Table 1. GA parameters

N #Generations Population Size
25 100 100
50 100 200
75 2000 500

100 5000 5000

Figure 5. Results of the dependence of the order parameter
as a function of q for large systems. The optimal values of the
order parameter r are obtained by the evolutionary approach.

0

0.25

0.5

0.75

1

0 0.2 0.4 0.6 0.8 1
q

r

N=25

N=50

N=75

N=100

The relationship of the order parameter as a function of probability q are
presented in Figure 5. From the numerical results presented in Figure 5 several
aspects can be remarked:

• when in the system there are more relations of collaboration than the
conflict ones (r → 1), usually the nodes tend to form a single cluster
in order to satisfy the conflicting interactions.

• when the tendency for collaboration is the same with that of conflict,
the order parameter is changing strongly with small variations of q.
Therefore, in this case, the process of coalition formation is sensitive
to the structure of relations within the network.

• when in the system there are more relations of conflict than the collab-
oration ones (r → 0), usually the nodes tend to form a large number
of clusters. For very small values of q (for very few relations of collab-
orations), the nodes tend to form the one’s own cluster (the number of
clusters tends to be equal to the number of elements from the network).

EVOLUTIONARY COALITION FORMATION IN COMPLEX NETWORKS 127

6. Conclusions

A hybrid evolutionary framework has been proposed in this paper in order
to study the process of coalition formation that appears in complex systems.
Two types of full connected networks have been investigated: small networks
(up to 10 nodes) and large networks (from 10 up to 100 nodes), which are closer
to the real systems than the smaller ones. The numerical results obtained in
both cases indicate the relationship between the number of coalitions and the
structure of the network.

Future works will be focused on the study of the coalition formation in full
connected networks in which the relations (of collaboration or conflict) between
the elements are weighted (instead to have only +1 or −1 links between 2
nodes, some fuzzy relations will be defined on [−1, 1] range). The optimal
clusterization will be also investigated in networks that are more sophisticated:
random networks, small world networks, and scale-free networks.

Acknowledgements

The present study was supported by the National Research Grant “Devel-
oping and optimisation of hybrid methods based on evolutionary techniques.
Applications for NP-complete optimisation problems” – CNCSIS, Romania.
We also thank to prof. Zoltan Neda for his interesting discussion.

References

[1] Bak, P. How nature works: The science of self-organized criticality. Springer-Verlag,
1996.

[2] Baker, J. E. Adaptive selection methods for genetic algorithms. In Proceedings of the
First International Conference on Genetic Algorithms and their Applications (ICGA’85)
(1985), J. J. Grefenstette, Ed., Lawrence Erlbaum Associates, pp. 101–111.

[3] Barabási, A. L. Linked: The New Science of Networks. Perseus, 2002.
[4] Boettcher, S., and Percus, A. Nature’s way of optimizing. Artificial Intelligence

119, 1–2 (2000), 275–286.
[5] Boettcher, S., and Percus, A. G. Extremal optimization for graph partitioning.

CoRR cond-mat/0104214 (2001).
[6] Boettcher, S., and Percus, A. G. Optimization with extremal dynamics. Physical

Review Letters, 86 (2001), 5211–5214.
[7] BOX, G. E. P. Evolutionary operation: a method for increasing industrial productivity.

Appl. Statist. 6, 2 (1957), 81–101.
[8] Cerny, V. A thermodynamical approach to the travelling salesman problem: an effi-

cient simulation algorithm. Journal of Optimization Theory and Applications, 45 (1985),
41–51.

[9] Davis, L. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.
[10] Eshelman, L. J., Caruna, R. A., and Schaffer, J. D. Biases in the crossover

landscape. In Proc. of the Third Int. Conf. on Genetic Algorithms (1989), J. D. Schaffer,
Ed., Morgan Kaufmann, pp. 10–19.

128 LAURA DIOŞAN, DUMITRU DUMITRESCU

[11] et al, A. E. The infinite-ranged potts spin glass model. J. Phys. C: Solid State Phys.,
16 (1983), 555–560.

[12] et al, D. E. The curious case of the potts spin glass. J. Phys. C: Solid State Phys., 16
(1983), 497–503.

[13] Goldberg, D. E. Genetic algorithms in search, optimization and machine learning.
Addison Wesley, 1989.

[14] Gross, D. J., Kanter, I., and Sompolinsky, H. Mean-field theory of the potts glass.
Phys. Rev. Lett. 55, 3 (1985), 304–307.

[15] Holland, J. H. Adaptation in Natural and Artificial Systems. University of Michigan
Press, 1975.

[16] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Optimization by simulated
annealing. Science, Number 4598, 13 May 1983 220, 4598 (1983), 671–680.

[17] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Optimization by simulated
annealing. Science 220, 4598 (1983), 671–680.

[18] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller,
E. Equations of state calculations by fast computing machines. Journal of Chemical
Physics 6, 21 (1953), 1087–1092.

[19] Mézard, M., Parisi, G., and Virasoro, M. A. Spin Glass Theory and Beyond.
World Scientific, 1987.

[20] Mitchell, M. Complex systems: Network thinking. Artif. Intell 170, 18 (2006), 1194–
1212.

[21] Néda, Z., Florian, R., Ravasz, M., Libál, A., and Györgyi, G. Phase transition
in an optimal clusterization model. Physica A Statistical Mechanics and its Applications
362 (2006), 357–368.

[22] S. Moss de Oliveira, P. d. O., and Stauffer, D. Evolution, Money, War, and
ComputersNon-Traditional Applications of Computational Statistical Physics. Teubner,
1999.

[23] Schaffer, J. D., and Morishima, A. An adaptive crossover distribution mechanism
for genetic algorithms. In Genetic Algorithms and their Applications: Proceedings of
the Second International Conference on Genetic Algorithms (1987), Lawrence Erlbaum,
pp. 36–40.

[24] Solomon, S., Weisbucha, G., de Arcangelisc, L., Janc, N., and Stauffer, D.
Complex systems: Network thinking. Physica A: Statistical Mechanics and its Applica-
tions 277, 1-2 (2000), 239–247.

[25] Spears, W. M., and Jong, K. A. D. On the virtues of parameterised uniform
crossover. In Proceedings of the 4th International Conference on Genetic Algorithms
(ICGA) (1991), R. K. Belew and L. B. Booker, Eds., Morgan Kaufmann, pp. 230–236.

[26] Syswerda, G. Uniform crossover in genetic algorithms. In Proceedings of the third
international conference on Genetic algorithms (1989), Morgan Kaufmann, pp. 2–9.

[27] Syswerda, G. A study of reproduction in generational and steady state genetic algo-
rithms. In Proceedings of Foundations of Genetic Algorithms Conference (1991), G. J. E.
Rawlins, Ed., Morgan Kaufmann, pp. 94–101.

[28] Watts, D. J. Six Degrees: The Science of a Connected Age. W. W. Norton, New York,
2003.

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: lauras,ddumitru@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LII, Number 2, 2007

TOWARDS AN UTILITY-BASED TCP-FRIENDLY RATE
CONTROL

STERCA ADRIAN

Abstract. We present a method for constructing TCP-friendly rate con-
trols that are at the same time media-friendly. These types of rate controls
are more suitable for multimedia streaming application than the classical
TCP rate control. The method is developed by combining the notion of
TCP-friendliness with a general optimization framework for bandwidth
sharing in computer networks.

1. TCP-Friendliness

During the years 1980 when the Internet (Arpanet) grew from tens of
computers to thousand of computers, Internet researchers noticed that In-
ternet’s core transport protocol, namely TCP, can not handle in an efficient
manner the growing number of connections. Because the process of sharing
bandwidth amoung users was not strongly regularized at the TCP level, the
phenomenon of congestion collapse occured, reducing drastically the utility of
the network. To avoid the occurence of congestion collapse, TCP incorporated
Jacobson’s AIMD (Additive Increase Multiplicative Decrease) congestion con-
trol algorithm [9] which increases the send rate by one packet per RTT in the
absence of congestion indications and decreases the send rate by half when
congestion does occur. Chiu and Jain proved in [1] that a simple AIMD con-
gestion control algorithm like the one employed by TCP converges to a fair
and efficient equilibrium state when the congestion feedback is received at the
same time by all flows sharing the network and all flows react to it together
synchronously. The fairness criterion towards which an AIMD algorithm con-
verges, in the aforementioned conditions, is max-min fairness [4]. However, in
real world conditions, different flows don’t react to congestion synchronously
and don’t receive network feedback in the same time. Consequently, TCP

Received by the editors: October 20, 2007.
2000 Mathematics Subject Classification. 90B18, 68M20.
1998 CR Categories and Descriptors. 90B18 [Operations research, mathematical

programming]: Operations research and management science – Communic ation networks ;
68M20 [Computer science]: Computer system organization – Performance evaluation;
queueing; scheduling ;

129

130 STERCA ADRIAN

doesn’t reach maximum efficiency in practice and is approximately fair only
across flows having the same RTT and the same congestion measure which
doesn’t happen in the real world.

Another significant characteristic of TCP is that it treats flows having the
same RTT and sharing the same bottleneck link identically because it aims
at max-min fairness. TCP does not distinct between elastic applications (i.e.
applications which can tolerate bandwidth fluctuations, e.g. file transfer appli-
cations) and inelastic applications (i.e. applications having strict bandwidth
requirements because of real-time constraints, e.g. multimedia streaming ap-
plications). There are several characteristics of TCP that makes it rather
unsuitable for multimedia streaming applications. First of all, by implement-
ing congestion control and guaranteed retransmission, TCP trades timeliness
over reliability: it is more important the data arrives safely and in-order than
it is to arrive in time (i.e., bandwidth is sacrificed for retransmissions). This
philosophy is counterproductive for multimedia streams, for which timeliness
is more important than reliability. Secondly, TCP’s congestion control algo-
rithm determines a steep variation in the sending bitrate, a variation that
is not well coped with by current codecs. Steep degradations in the send-
ing bitrate of a multimedia stream has very bad consequences on the quality
perceived by the final receiver.

In an effort to steer the development of a congestion control mechanism
for multimedia streaming, the scientific community has advertised the notion
of TCP-friendly flow [6] as a flow which receives, on average, approximately
the same bandwidth as a TCP flow under the same network traffic conditions.
When the packet loss rate, p, is smaller than 0.3, the transmission rate of such
a TCP-friendly flow should approximately be [6]

(1) X =
1.5 ∗

√
2
3

RTT ∗ √p
packets/second

where RTT is the round-trip time and p is the packet loss rate this flow sees.
[7] presents an equation which characterizes more accurately the throughput of
a TCP flow, because it takes into account retransmission timeouts and doesn’t
restrict p to values smaller than 0.3. However we do not use this equation in
our study because it is difficult to invert it.

2. Rate pricing

A different approach in sharing bandwidth among competing applications
is taken in [2,3,4] where each application has a bandwidth utility function and
bandwidth sharing is done in such a way that it maximizes the sum of all users’

TOWARDS AN UTILITY-BASED TCP-FRIENDLY RATE CONTROL 131

utility functions. The problem of bandwidth allocation among flows reduces
to finding the solution to the following concave optimization problem:

(2)

maxx>0
∑

s∈S Us(xs) x = (x1, ..., xn), S = {s1, ..., sn}

subject to:
∑

s∈s(l) xs ≤ cl ∀l ∈ L

In this model the network is abstracted as a set of links l ∈ L and each link
l has the capacity cl. The network is shared by sources s ∈ S and each source
s transmits data at rate xs. When the source s sends data at rate xs, it gets a
utility Us(xs) which is assumed to be a concave function twice differentiable.
Also, let S(l) denote the set of sources which use link l ∈ L and L(s) the set
of links that source s uses.

Problem (2) is hard to solve in a decentralized way because of the coupling
of transmit rates of sources at links in the inequality constraints of the problem.
Instead of looking at this problem, the dual problem is considerred. Let the
Lagrangian for problem (2) be [3]

L(x, p) =
∑

s∈S

Us(xs)−
∑

l∈L

pl

 ∑

s∈S(l)

xs − cl

=
∑

s∈S

Us(xs)− xs

∑

l∈L(s)

pl

 +

∑

l∈L

plcl

where p is the Lagrange multiplier associated with the inequality constraints
of problem (2). p is a vector of prices pl, one for each link l, where pl is
interpreted as the price per unit bandwidth at link l ∈ L. Because the first
term in the Lagrangian is separable in xs, so we have

max
xs>0

∑

s∈S

Us(xs)− xs

∑

l∈L(s)

pl

 =

∑

s∈S

max
xs>0

Us(xs)− xs

∑

l∈L(s)

pl

the objective function of the dual problem is [3]:

(3) D(p) = max
xs>0

L(x, p) =
∑

s∈S

Bs(ps) +
∑

l∈L

plcl

where Bs(ps) = maxxs>0(Us(xs)− xsp
s)

ps =
∑

l∈L(s) pl

Applying the Karush-Kuhn-Tucker theorem to find xs which maximizes
the Lagrangian L(x, p), the solution is [3]:

(4) xs(ps) = U
′−1
s (ps)

132 STERCA ADRIAN

where U
′−1 is the inverse of U

′
s . For xs from (4) to be the unique maximizer

that solves problem (2), p must be a Lagrange multiplier that satisfies the com-
plementary slackness condition [5, prop. 3.3.4]. In practice, we use as ps the
loss event rate of TCP which satisfies with approximation the complementary
slackness condition.

3. Mixing TCP-Friendliness with Rate pricing

We present in this section a method for finding a congestion control algo-
rithm suitable for multimedia streaming applications by combining the TCP-
friendly model with the Rate pricing model. More specifically, we first a)
derive the utility function of the system which is maximized by
the solution of the TCP-friendly equation (1), then we b) modify
this utility function we have obtained to be more media specific (or
media-friendly) and then we c) compute backwards using relation (4)
the solution to the new optimization system. In the rest of our calculus
we will use equation (1) for characterization of TCP-friendliness and not the
equation proposed by [7] because it is very difficult to invert the latter. To get
an ideea of the dificulties involved in inverting TCP’s equation from [7] please
see [8].

In order to derive the utility function of the optimization system for which
the TCP-friendly equation is a solution, we equalize the TCP-friendly equation
(1) with the equation of the optimization system’s solution, i.e. equation (4),

xs(p) =
1.5 ∗

√
2
3

RTT ∗ √p
= U

′−1
s (ps)

By inverting the function from the right-hand side of the equation, we get

U
′
s(xs) =

1.52 ∗ 2
3

RTT 2 ∗ x2
s

and then

(5) Us(xs) =
∫

1.52 ∗ 2
3

RTT 2 ∗ x2
s

dx = −

1.5 ∗

√
2
3

RTT

2

∗ 1
xs

+ k ,k is a constant

is TCP’s utility function. By maximizing the utility function presented above
we obtain weighted minimum potential delay fairness [4].

In the second step of our method, we modify TCP’s original utility func-
tion obtained in (5) to be more media specific. We consider two versions of

TOWARDS AN UTILITY-BASED TCP-FRIENDLY RATE CONTROL 133

media specific utility function based on (5):

(6) Us(xs) = − b

bavg
∗

1.5 ∗

√
2
3

RTT

2

∗ 1
xs

(7) Us(xs) = −

1.5 ∗

√
2
3

RTT

2

∗
√

x

xs

where b is the multimedia stream’s bitrate in the last second and bavg is the
multimedia stream’s average bitrate.

If we solve using equation (4) the new optimization systems corresponding
to the two utility functions depicted above, we get the following solutions:

(8) xs(p) =
b

bavg
∗

1.5 ∗
√

2
3

RTT ∗ √p

and

(9) xs(p) = 3

√
1.52 ∗ 2

3

4 ∗RTT 2 ∗ p2

The utility function from (6) is media-friendly because it takes into account
the bitrate demands of the stream (i.e. when the instant bitrate is above the
average bitrate the application has a higher utility of bandwidth xs) and the
utility function from (7) is also useful for multimedia streaming applications
because it tries to reduce fluctuations on the transmision rate xs.

4. Conclusions and Future work

In this paper we have developed a method for obtaining rate controls that
are TCP-friendly and in the same time media-friendly. We exemplified this
method by two such rate control algorithms (equations (8) and (9)) which
maximize an application-specific utility function. As future work we intend to
test the two rate controls we developed here in varying network environments
and to find more appropriate utility-functions for multimedia specific applica-
tions and use them to develop improved TCP-friendly and media-friendly rate
controls.

134 STERCA ADRIAN

References

[1] Chiu, D. M., Jain, R., Analysis of the Increase and Decrease Algorithms for Congestion
Avoidance in Computer Networks, Computer Networks and ISDN Systems 17, North-
Holland, 1989.

[2] Kelly, F., Maulloo, A., Tan, D., Rate control in communication networks: shadow
prices, proportional fairness and stability, Journal of the Operational Research Society
49 (1998), pp. 237-252.

[3] Low, S., Lapsley, D. E., Optimization Flow Control I: Basic Algorithm and Convergence,
IEEE/ACM Transactions on Networking, Vol. 7, No. 6, Dec. 1999.

[4] Srikant, R., The Mathematics of Internet Congestion Control, Birkhauser, 2004.
[5] Bertsekas, D., Nonlinear Programming, Athena Scientific, 1995.
[6] Floyd, S., Fall, K., Promoting the Use of End-to-End Congestion Control in the Internet,

IEEE/ACM Transactions on Networking, August 1999.
[7] Padhye, J., Firoiu, V., Towsley, D., Kurose, J., Modeling TCP Throughput: A Simple

Model and its Empirical Validation, ACM SIGCOMM 1998, Vancouver.
[8] Sterca, A., Finding TCP’s utility function, Technical Report, 2007 (available at

http://cs.ubbcluj.ro/ forest/phd/Technical%20Reports).
[9] Jacobson, V., Congestion Avoidance and Control, SIGCOMM Symposium on Commu-

nications Architectures and Protocols, pp. 314-329, 1988.

Babes-Bolyai University, Faculty of Mathematics and Computer Science,
Department of Computer Science, Cluj-Napoca

E-mail address: forest@cs.ubbcluj.ro

	01-TambuleaFrentiu
	02-Boian
	03-PinteaVescan
	04-Antal
	05-Motogna
	06-Parv
	07-Leon
	08-Sabau
	09-CzibulaSerban
	10-Lazar
	11-Diosan
	1. Introduction
	2. Problem formulation
	3. The Potts model
	4. The evolutionary-based coalition model
	4.1. Motivation
	4.2. Representation
	4.3. Initialisation
	4.4. Fitness assignment
	4.5. Search operators
	4.6. The algorithm

	5. Numerical experiments
	5.1. Experiment 1
	5.2. Experiment 2

	6. Conclusions
	Acknowledgements
	References

	12-Sterca

