

EDITORIAL BOARD OF

STUDIA UNIVERSITATIS BABEŞ-BOLYAI INFORMATICA

EDITORIAL OFFICE OF INFORMATICA: M. Kogălniceanu no. 1, 400084 Cluj-Napoca ♦

Phone: 0264-40.53.00

EDITOR-IN-CHIEF:

Prof. dr. Militon FRENłIU, "Babeş-Bolyai" University of Cluj, Romania

EDITORIAL BOARD:

Prof. dr. Osei ADJEI, University of Luton, Great Britain

Prof. dr. Petru BLAGA, "Babeş-Bolyai" University of Cluj, Romania

Prof. dr. Florian M. BOIAN, "Babeş-Bolyai" University of Cluj, Romania

Conf. dr. Sergiu CATARANCIUC, Universitatea de Stat din Moldova, Chişinău

Prof. dr. Dan DUMITRESCU, "Babeş-Bolyai" University of Cluj, Romania

Prof. dr. Farshad FOTOUHI, Wayne State University, Detroit, S.U.A.

Prof. dr. Zoltán KÁSA, "Babeş-Bolyai" University of Cluj, Romania

Acad. Solomon MARCUS, Institutul de Matematică al Academiei Române

Prof. dr. Grigor MOLDOVAN, "Babeş-Bolyai" University of Cluj, Romania

Prof. dr. Roberto PAIANO, University of Lecce, Italy

Prof. dr. Bazil PÂRV, "Babeş-Bolyai" University of Cluj, Romania

Prof. dr. Horia F. POP, "Babeş-Bolyai" University of Cluj, Romania

Prof. dr. Abdel-Badeeh M. SALEM, Ain Shams University, Cairo, Egypt

Prof. dr. Doina TĂTAR, "Babeş-Bolyai" University of Cluj, Romania

Prof. dr. Leon łÂMBULEA, "Babeş-Bolyai" University of Cluj, Romania

EXECUTIVE EDITOR:

Prof. dr. Horia F. POP, "Babeş-Bolyai" University of Cluj, Romania

Anul LI 2006

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

2

Redacţia: 3400 Cluj-Napoca, str. M. Kogălniceanu nr. 1 Telefon 405300

SUMAR – CONTENTS – SOMMAIRE

G. Şerban, G. S. Moldovan, A Graph Algorithm for Identification of Crosscutting
Concerns .. 3

L. Samuelis, Cs. Szabó, Notes on the Role of the Incrementality in Software
Engineering .. 11

A. Câmpan, T. M. Truţă, Extended p-Sensitive k-Anonymity 19

D. Tătar, M. Frenţiu, Recognizing Textual Entailment by Theorem Proving
Approach ... 31

Z. Kátai, Dynamic Programming and d-Graphs ... 41

G. S. Moldovan, G. Şerban, A Study on Distance Metrics for Partitioning Based
Aspect Mining ... 53

N. E. Mouhoub, H. Belouadah, A. Boubetra, Algorithme de Construction d'un
Graphe Pert a Partir d'un Graphe des Potentiels Donne ... 61

A. Sabău, Indexing Mobile Objects Using BrickR Structures................................... 71

A. Tarţa, S. Motogna, Operational Semantics of Task Models.................................. 81

M. Lupea, Sequent Calculus in Computing Default Extensions 93

I. Lazăr, D. Cojocar, On Model-Driven Development for Web Applications 101

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 2, 2006

A GRAPH ALGORITHM FOR IDENTIFICATION OF
CROSSCUTTING CONCERNS

GABRIELA ŞERBAN AND GRIGORETA SOFIA MOLDOVAN

Abstract. The purpose of this paper is to present a new graph-based ap-
proach in aspect mining. We define the problem of identifying the crosscutting
concerns as a search problem in a graph and we introduce GAAM algorithm
(Graph Algorithm in Aspect Mining) for solving this problem. We evaluate
the results obtained by applying GAAM algorithm from the aspect mining
point of view, based on a set of quality measure that we have previously de-
fined in [3]. The proposed approach is compared with a clustering approach
in aspect mining ([4]) and a case study is also reported.

Keywords: graph, algorithm, aspect mining.

1. Introduction

1.1. Aspect Mining. The Aspect Oriented Programming (AOP) is a new para-
digm that is used to design and implement crosscutting concerns [2]. A crosscut-
ting concern is a feature of a software system that is spread all over it, and whose
implementation is tangled with other features’ implementation. A well known
example of crosscutting concern is logging. In order to design and implement a
crosscutting concern, AOP introduces a new modularization unit called aspect.
Better modularization, and higher productivity are some of the advantages that
AOP brings to software engineering.

Aspect mining is a relatively new research direction that tries to identify cross-
cutting concerns in already developed software systems, without using AOP. The
goal is to identify them and then to refactor them to aspects, to achieve a system
that can be easily understood, maintained and modified.

1.2. Related Work. Several approaches have been considered for aspect mining
until now. One approach was to develop tools that would help the user to navigate
and to analyze the source code in order to find crosscutting concerns. Some of them

Received by the editors: September, 30, 2006.
2000 Mathematics Subject Classification. 68N99, 68R10.
1998 CR Categories and Descriptors. D.2.7 [Software Engineering]: Distribution,

Maintenance, and Enhancement –Restructuring, reverse engineering, and reengineering; G.2.2
[Mathematics of Computing]: Discrete Mathematics – Graph Theory.

3

4 GABRIELA ŞERBAN AND GRIGORETA SOFIA MOLDOVAN

rely on lexical analysis, and some also include a type-based search ([1], [15], [16],
[17]). Other approach uses clone detection techniques to identify duplicate code,
that might indicate the presence of crosscutting concerns ([13], [18], [19]). These
are all static approaches that analyze the source code for crosscutting concerns.
There are also two dynamic approaches: one that analyzes the event traces ([12]),
and one that uses formal concept analysis to analyze the execution traces ([21]).
In [20] formal concept analysis is used again, but in a static manner. A comparison
of three different approaches can be found in [14].

There is also a clustering approach that constructs the clusters based on the
methods’ names ([7]). The user can then navigate among the clusters, visualize
the source code of the methods and identify the crosscutting concerns.

There are just a few aspect mining techniques proposed in the literature that
use clustering in order to identify crosscutting concerns ([4], [5], [6], [7]).

In [5] a vector space model based clustering approach in aspect mining is pro-
posed. This approach is improved in [4], by defining a new k-means based cluster-
ing algorithm in aspect mining (kAM).

In [3], a part of a formal model for clustering in aspect mining is introduced
and a set of quality measures for evaluating the results of clustering based aspect
mining techniques is presented.

In this paper we propose a new graph-based approach, as an alternative to the
clustering approach in aspect mining. Such an approach has not been reported,
in the literature, so far.

The paper is structured as follows. A theoretical model on which we base our
approach is introduced in Section 2. Section 3 presents our approach. An experi-
mental evaluation of our approach, based on some quality measures, is presented in
Section 4. The obtained results are compared with the ones obtained by applying
kAM algorithm ([4]). Some conclusions and further work are outlined in Section
5.

2. Theoretical Model

In this section we present the problem of identifying crosscutting concerns as a
problem of identifying a partition of a software system.

Let M = {m1,m2, ..., mn} be the software system, where mi, 1 ≤ i ≤ n is a
method of the system.

We consider a crosscutting concern as a set C = {c1, c2, ..., ccn} with C ⊂ M , of
methods that implement this concern. The number of methods in the crosscutting
concern C is cn = |C|. Let CCC = {C1, C2, ..., Cq} be the set of all crosscutting
concerns that exist in the system M .

Definition 1. Partition of a software system M .
The set K = {K1,K2, ...,Kp} is called a partition of the system M = {m1,m2, . . .

A GRAPH ALGORITHM FOR IDENTIFICATION OF CROSSCUTTING CONCERNS 5

,mn} iff 1 ≤ p ≤ n, Ki ⊆ M, Ki 6= ∅,∀1 ≤ i ≤ p, M =
p⋃

i=1

Ki and Ki ∩ Kj =

∅, ∀i, j, 1 ≤ i, j ≤ p, i 6= j.

In the following we will refer to Ki as the i-th cluster of K.
In fact, the problem of aspect mining can be viewed as the problem of finding a

partition K of the system M such that CCC ⊂ K. So, in Definition 2 we introduce
the notion of partitioning aspect mining technique, that will be used in our
approach.

Definition 2. Partitioning aspect mining technique.
Let T be an aspect mining technique and M a software system to be mined. We
say that T is a partitioning aspect mining technique if the result obtained by
T is a partition (Definition 1) K of M .

For a software system, we propose the following steps for identifying the cross-
cutting concerns that have the scattered code symptom:

• Computation - Computation of the set of methods in the selected
source code, and computation of the attribute set values, for each method
in the set.

• Filtering - Methods belonging to some data structures classes like Ar-
rayList, Vector are eliminated. We also eliminate the methods belonging
to some built-in classes like String, StringBuffer, StringBuilder, in a Java
program etc.

• Grouping - The remaining set of methods is grouped in order to obtain
a partition of the software system M (in our approach GAAM).

• Analysis - A part of the obtained clusters are analyzed in order to dis-
cover which clusters contain methods belonging to crosscutting concerns.

We mention that at the Grouping step, a partition of the software system can
be obtained using a clustering algorithm ([4]) in aspect mining, or using GAAM
algorithm, that will be introduced in the next section.

3. Our Approach

In this section we present the problem of obtaining a partition (Definition 1) of
a software system as a search problem in a graph.

This graph based approach is, in fact, a method to identify the clusters in the
system and can be viewed as an alternative to a clustering algorithm in aspect
mining ([4]).

In our approach, the objects to be grouped (clustered) are the methods from the
software system: m1,m2, . . . ,mn. The methods belong to the application classes
or are called from the application classes.

Based on the vector space model, we will consider each method as a l -dimensional
vector: mi = (mi1, . . . ,mil).

6 GABRIELA ŞERBAN AND GRIGORETA SOFIA MOLDOVAN

Crosscutting concerns in non AO systems have two symptoms: code scattering
and code tangling. Code scattering means that the code that implements a cross-
cutting concern is spread across the system, and code tangling means that the
code that implements some concern is mixed with code from other (crosscutting)
concerns.

We have considered two vector-space models that illustrate only the scattered
code symptom. Future development will also consider the code tangling symptom.

• The vector associated with the method m is {FIV, CC}, where FIV is
the fan-in value ([8]) of m (the number of methods that call m) and CC
is the number of calling classes for m. We denote this model by M1.

• The vector associated with the method m is {FIV, B1, B2, ...Bl−1},
where FIV is the fan-in value of m and Bi (1 ≤ i ≤ l − 1) is 1, if
the method m is called from a method belonging to the application class
Ci, and 0, otherwise. We denote this model by M2.

As in a vector space model based clustering ([22]), we consider the distance
between methods as a measure of dissimilarity between them.

In our approach we will consider that the distance between two methods mi

and mj is expressed using the Euclidian distance, as:

(1) dE(mi,mj) =

√√√√
l∑

k=1

(mik −mjk)2.

After a partition of the software system is determined using a partitioning
aspect mining technique, the clusters are sorted by the average distance from
the point 0l in descending order, where 0l is the l dimensional vector with each
component 0 (l is the dimension of the vector space model). Then, we analyze the
clusters whose distance from 0l point is greater than a given threshold.

3.1. The Methods Graph. In this section we introduce the concept of methods
graph and auxiliary definitions needed to define our search problem.

We mention that the idea of constructing the methods graph is specific to aspect
mining and will be explained later.

Definition 3. Let M = {m1,m2, . . . , mn} be a software system and dE (Equation
1) the metric between methods in a multidimensional space. The methods graph
corresponding to the software system M , MGM , is an undirected graph defined as
follows: MGM = (V, E), where:

• The set V of vertices is the set of methods from the software system, i.e.,
V{m1,m2, . . . , mn}.

A GRAPH ALGORITHM FOR IDENTIFICATION OF CROSSCUTTING CONCERNS 7

• The set E of edges is E =
n⋃

i=1

{(mi,mj) | 1 ≤ j ≤ n, j 6= i, dE(mi,mj) =

min{dE(mi, mk), 1 ≤ k ≤ n, k 6= i, (mi,mk) /∈ E} ∧ dE(mi,mk) ≤
distMin}, where distMin is a given threshold.

We have chosen the value 1 for the threshold distMin. The reason for choosing
this value is the following: if the distance between two methods mi and mj is less
or equal to 1, we consider that they are similar enough to be placed in the same
(crosscutting) concern. We mention that, from the aspect mining point of view,
using Euclidian distance as metric and the vector space models proposed above,
the value 1 for distMin makes the difference between a crosscutting concern and
a non-crosscutting one.

In Definition 4 below we will define the problem of computing a partition of the
software system M .

Definition 4. Let M = {m1,m2, . . . ,mn} be a software system, dE (Equation
1) the metric between methods in a multidimensional space and MGM the cor-
responding methods graph (Definition 3). We define the problem of computing
a partition K = {K1,K2, ..., Kp} of M as the problem of computing the connex
components of MGM .

3.2. GAAM Algorithm. In this subsection we briefly describe GAAM algo-
rithm for determining a partition K of a software system M . This algorithm
will be used in the Grouping step (Section 2) for identification of crosscutting
concerns.

Let us consider a software system M = {m1,m2, . . . ,mn} and the metric dE

(Equation 1) between methods in a multidimensional space.
The main steps of GAAM algorithm are:

(i) Create the methods graph, MGM , as shown in Definition 3. We mention
that the threshold distMin used for creating the edges in the graph is
chosen to be 1. The reason for this choice was explained above.

(ii) Determine the connex components of MGM . These components give a
partition K of the software system M .

4. Experimental Evaluation

In order to evaluate the results of GAAM algorithm from the aspect mining
point of view, we use three quality measures defined in [3]: DIV, PAM and PREC.

These measures will be applied on a case study (Subsection 4.1). The obtained
results will be reported in Subsection 4.1. Based on the obtained results, GAAM
algorithm will be compared with kAM algorithm proposed in [4].

In order to compare two partitions of a software system M from the aspect
mining point of view, we introduce the Definition 5. The definition is based on
the properties of the quality measures defined above ([3]).

8 GABRIELA ŞERBAN AND GRIGORETA SOFIA MOLDOVAN

Definition 5. If K1 and K2 are two partitions of the software system M , CCC
is the set of crosscutting concerns in M and T is a partitioning aspect mining
technique, then K1 is better than K2 from the aspect mining point of view
iff the following inequalities hold:

DIV (CCC,K1) ≥ DIV (CCC,K2), PREC(CCC,K1, T) ≥ PREC(CCC,K2, T),

PAM(CCC,K1) ≤ PAM(CCC,K2).

Remark 1. If at least one of the inequalities from Definition 5 are not satisfied,
we cannot decide which of the partitions K1 or K2 is better.

4.1. Results. In order to evaluate the results of GAAM algorithm, we consider
as case study JHotDraw, version 5.2 ([9]).

This case study is a Java GUI framework for technical and structured graphics,
developed by Erich Gamma and Thomas Eggenschwiler, as a design exercise for
using design patterns. It consists in 190 classes and 1963 methods.

In this subsection we present the results obtained after applying GAAM algo-
rithm described in Subsection 3.2, for the vector space models presented in Section
3, with respect to the quality measures, for the case study presented above.

The results obtained by GAAM are compared with the results obtained by
kAM algorithm proposed in ([4]).

In Table 1 we present the comparative results.

Algorithm Model DIV PREC PAM
GAAM M1 0.844 0.875 0.073
kAM M1 0.842 0.875 0.073

GAAM M2 0.993 0.875 0.073
kAM M2 0.993 0.875 0.081

Table 1. The values of the quality measures for JHotDraw case study.

From Table 1 we observe, based on Definition 5, that GAAM algorithm provides
better results from the aspect mining point of view, than kAM algorithm, for both
vector space models M1 and M2.

Moreover, GAAM with vector space model M2 provides the best results.
We can conclude that vector space model M2 is more appropriate, from the

aspect mining point of view.

5. Conclusions and Future Work

We have presented in this paper a new graph-based approach in aspect mining.
For this purpose we have proposed GAAM algorithm, that identifies a partition
of a software system. This partition will be analyzed in order to identify the
crosscutting concerns from the system.

A GRAPH ALGORITHM FOR IDENTIFICATION OF CROSSCUTTING CONCERNS 9

In order to evaluate the obtained results from the aspect mining point of view,
we have used a set of quality measures.

We have given a definition in order to compare two partitions from the aspect
mining point of view. Based on this definition, we showed that GAAM algorithm
provides better partitions than kAM algorithm (previously introduced in [4]).

Further work can be done in the following directions:

• To apply this approach for other case studies like JEdit ([11]).
• To compare the results provided by GAAM with the results of other

approaches in aspect mining.
• To identify a choice for the threshold distMin that will lead to better

results.
• To improve the results obtained by GAAM, by improving the vector

space model used.
• To determine the distance metric used that will provide better results

from the aspect mining point of view (Minkowski, Manhattan, Hamming,
etc).

• To identify the heuristics for constructing the methods graph that will
lead to better results from the aspect mining point of view.

References

[1] Robillard, M.P., Murphy, G.C., “Concern graphs: finding and describing concerns using
structural program dependencies”, In: Proceedings of the 24th International Conference on
Software Engineering . Orlando, Florida, 2002, pp. 406–416.

[2] Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.,
“Aspect-Oriented Programming”, In: Proceedings European Conference on Object-Oriented
Programming. Volume 1241. Springer-Verlag, 1997, pp. 220–242.

[3] Moldovan, G.S., Serban, G., “Quality Measures for Evaluating the Results of Clustering
Based Aspect Mining Techniques”, In: Proceedings of Towards Evaluation of Aspect Min-
ing(TEAM), ECOOP, 2006, pp. 13–16.

[4] Serban, G., Moldovan, G.S., “A new k-means based clustering algorithm in aspect min-
ing”, In: 8th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC’06), 2006, pp. 60–64.

[5] Moldovan, G.S., Serban, G., “Aspect Mining using a Vector-Space Model Based Clustering
Approach”, In: Proceedings of Linking Aspect Technology and Evolution (LATE) Work-
shop, 2006, to be published.

[6] He, L., Bai, H., “Aspect Mining using Clustering and Association Rule Method” Interna-
tional Journal of Computer Science and Network Security 6, 2006, pp. 247–251.

[7] Shepherd, D., Pollock, L., “Interfaces, Aspects, and Views” In: Proceedings of Linking
Aspect Technology and Evolution (LATE) Workshop, 2005.

[8] Marin, M., van, A., Deursen, Moonen, L., “Identifying Aspects Using Fan-in Analysis” In:
Proceedings of the 11th Working Conference on Reverse Engineering (WCRE2004), IEEE
Computer Society, 2004, pp. 132–141.

[9] JHotDraw Project, http://sourceforge.net/projects/jhotdraw, 1997.
[10] Mancoridis, S., Mitchell, B.S., Chen, Y., Gansner, E.R., “Bunch: A Clustering Tool for

the Recovery and Maintenance of Software System Structures”, In: ICSM ’99: Proceedings

10 GABRIELA ŞERBAN AND GRIGORETA SOFIA MOLDOVAN

of the IEEE International Conference on Software Maintenance, IEEE Computer Society,
1999, pp. 50–59.

[11] jEdit Programmer’s Text Editor: http://www.jedit.org, 2002.
[12] Breu, S., Krinke, J., “Aspect Mining using Event Traces”, In: Proceedings of International

Conference on Automated Software Engineering, 2004, pp. 310–315.
[13] Bruntink, M., van Deursen, A., van Engelen, R., Tourwé, T., “An Evaluation of Clone

Detection Techniques for Identifying Crosscutting Concerns”, In: Proceedings International
Conference on Software Maintenance(ICSM 2004), IEEE Computer Society, 2004.

[14] Ceccato, M., Marin, M., Mens, K., Moonen, L., Tonella, P., Tourwé, T., “A Qualitative
Comparison of Three Aspect Mining Techniques”, In: IWPC ’05, Proceedings of the 13th
International Workshop on Program Comprehension, IEEE Computer Society, 2005, pp.
13–22.

[15] Griswold, W.G., Kato, Y., Yuan, J.J., “AspectBrowser: Tool Support for Managing Dis-
persed Aspects”, Technical Report CS1999-0640, UCSD, 3, 2000.

[16] Hannemann, J., Kiczales, G., “Overcoming the Prevalent Decomposition of Legacy Code”,
In: Advanced Separation of Concerns Workshop,at the International Conference on Soft-
ware Engineering. (ICSE), 2001.

[17] Zhang, C., Gao, G., Jacobsen, H., “Multi Visualizer”,
http://www.eecg.utoronto.ca/ czhang/amtex/.

[18] Sheperd, D., Gibson, E., Pollock, L., “Design and Evaluation of an Automated Apect Mining
Tool”, In: Proceedings of Mid-Atlantic Student Workshop on Programming Languages and
Systems, 2004.

[19] Morales, O.A.M., “Aspect Mining Using Clone Detection”, Master’s thesis, Delft University
of Technology, The Netherlands, 2004.

[20] Tourwé, T., Mens, K., “Mining Aspectual Views using Formal Concept Analysis”, In: Proc.
IEEE International Workshop on Source Code Analysis and Manipulation, 2004.

[21] Tonella, P., Ceccato, M., “Aspect Mining through the Formal Concept Analysis of Execution
Traces”, In: Proceedings of the IEEE Eleventh Working Conference on Reverse Engineering
(WCRE 2004), 2004, pp. 112–121.

[22] Jain, A., Dubes, R., “Algorithms for Clustering Data”, Prentice Hall, Englewood Cliffs,
New Jersey, 1998.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: gabis@cs.ubbcluj.ro

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: grigo@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 2, 2006

NOTES ON THE ROLE OF THE INCREMENTALITY
IN SOFTWARE ENGINEERING

LADISLAV SAMUELIS AND CSABA SZABÓ

Abstract. The incrementality principle appears in various contexts in the
relatively short history of software engineering. This fact seems natural be-
cause the processes like software comprehension, design, refinement and im-
plementation are done incrementally in practice. Due to this common fact
the incrementality principle is interpreted often superficially in the software
engineering literature. The aim of this paper is to highlight the ubiquity of
the incrementality utility in software engineering literature and to clarify the
concepts behind its role in various contexts.

1. Background and motivation

The notion of incrementality is being applied simultaneously both in the field
of artificial intelligence (e.g. in the field of machine learning) and software engi-
neering.

While reading the software engineering literature we observe that the incre-
mentality principle is mentioned and utilized frequently in various contexts in its
relatively short history (see in the next paragraph). This ubiquitous presence
of the incrementality principle, almost in every software development paradigm,
motivated the investigation towards unrevealing the similarities and differences
between its interpretations in various contexts. Another source of the motivation
is the challenge to condense the knowledge about the incrementality principle used
in contemporary experimental software engineering practices. The aim of this pa-
per is to pave the route towards the understanding and reuse of this notion in the
future contexts. In order to achieve this goal, we will investigate the utilization of
the incrementality utility in several selected software development approaches.

Received by the editors: September 13, 2006.
2000 Mathematics Subject Classification. 68N19, 68N30.
1998 CR Categories and Descriptors. D.1.2 [Software]: Programming Techniques – Au-

tomatic Programming; D.2.2 [Software]: Software Engineering – Design Tools and Techniques.

11

12 LADISLAV SAMUELIS AND CSABA SZABÓ

2. The ubiquity of incremental tasks

The following selective sample of works (not exhaustive) shows the wide range
of the usage of the incrementality utility. A brief historical overview of the ”in-
cremental and iterative development” is presented in the work of C. Larman and
V. Basili [11]. This work summarizes the role of the iterative and incremental
software development through significant software projects since the mid-1950s.
It focuses on the incrementality utility, applied in the software engineering pro-
cesses, from the managerial point of view. Describes the driving thoughts and
misbeliefs, which were behind the practices applied in the past decades in the field
of software engineering.

The incrementality concept is stressed and dealt also in the field of program
comprehension, which is already a matured topic with standalone conferences [8].
It is not a trivial task to understand the architecture of object-oriented pro-
grams [22]. It is obvious, that to enhance the functionality or to add new features
requires to comprehend the task in more detail. As software engineering topics
evolved, the incremental comprehension of programs came into focus. In other
words it means that without the thorough analysis it is impossible to make effec-
tive reform or re-engineering. Remarkable is the statement of K. Nygaard [5] who
said: ”to program is to understand”. We accept in general that comprehension is
also a continuous iterative and incremental process. The fact that problem solving
does not progress in a linear manner from one activity to the next is highlighted as
the conjecture: ”empirically based models mature from understanding to explain-
ing and predicting capability”. This conjecture is explained in the handbook of
authors A. Endres and D. Rombach [6, chap. 12], which is devoted to the empirical
aspects of software engineering.

The recent work of C. Larman [10] stresses the role of the incrementality against
the waterfall model in the software development. In addition, the work stresses
its crucial role in the history of the software engineering and considers it as a
fundamental revolutionary change against the waterfall model of the software de-
velopment. Authors R. E. Fairley and M. J. Wilshire [7] exhaustively identify the
nature of the iterative rework. They point to the fuzziness between the avoidable
and unavoidable rework and the incrementality issue is dealt from this point of
view.

The field of software design also uses the notion of iteration and incrementality,
e.g. Arlow and Neustadt characterize iterations, in association with the Unified
Process [3], as ”mini projects, which are easier to manage and complete than the
original large SW development project”.

Machine learning differentiates between nonincremental and incremental learn-
ing (e.g. in [14]). The same terms are marked in [17] as revolutionary and evolu-
tionary learning strategies. In essence, the difference between these two definitions

NOTES ON THE ROLE OF THE INCREMENTALITY IN SW ENGINEERING 13

lies in the fact that the non-incremental (revolutionary) approach is based on one-
shot experience and the incremental (evolutionary) learning allows the learning
process to take place over time in a continuous and progressive way, taking into
consideration also the history of the training sets at building the inferred rules.

Incremental change plays important role in practical software engineering. At
the present time the incremental change in object-oriented programs are in the
focus (see for instance [20]). These activities investigate the impact of adding
new functionalities into the code and finding the relevant program dependencies.
Incrementality is of importance to software visualization too [9]. The aim is to get a
better comprehension of the software behavior by representing complex structures
graphically.

We may conclude the above mentioned remarks by the statement of E. W. Di-
jkstra: ”the only available technique for effective ordering of one’s thoughts is by
separation of concerns”. This approach leads to the observation of new facts and
in ths way to improve incrementally the previous knowledge. In summary, the
incrementality utility is a broad term and is in the focus of software engineers
from various aspects. In the next sections we narrow the focus towards revealing
the principles behind these experiences and endeavours.

3. Iteration and incrementality

The objective of the software development is to model a certain aspect or ab-
straction of the reality [16]. Software engineering, as every engineering discipline,
is characterized by trials and errors, which are necessary steps for clarifying the
comprehension of the requirements, design and implementation. It consists of
many small steps and it is necessary to take into account plenty of details. Soft-
ware systems are becoming more and more complex over time. They are changing
and modified; the complexity arises and we need more time to comprehend them.
The maintenance of the final code and other software artifacts consumes more
time too.

As noted in Section 2, there are many approaches that present some aspects
of the incrementality utility and are used under names like incremental learning,
evolutionary and revolutionary rework, program synthesis and incremental build-
ing. Therefore, a clear definition of the ”iteration” and the ”incrementality” turns
out to be vital. Here are the definitions:

• We define that ”iteration” refers to repeating an activity, e.g. phases,
in the software development process. Iteration is applied e.g. in refac-
toring when developers perform semantics-preserving structural trans-
formations usually in small steps. Motivation for the improvement may
be focused towards the enhancement of the efficiency of the code with
respect to the time or space complexity or towards the improvement the
structure so that developers can more easily understand, modify, evolve

14 LADISLAV SAMUELIS AND CSABA SZABÓ

and test it. The research domain that addresses this problem is referred
also as restructuring.

• On the other hand ”incrementality” refers to the process of adding new
functionalities through successive implementations. This is a significant
and essential difference to the iteration and deserves much more atten-
tion. First of all the incrementality principle has its mathematical roots
and is explained in the theory of inductive inference [2]. This approach
to problem solving is also called generalization and will be explained
in more detail in Section 4. Incremental software development is some-
times called build a little, test a little. We may observe the similarity
between building concepts and models in software engineering and build-
ing hypotheses in mathematics. This process is very clearly highlighted
in Polya’s classic work, ”How to Solve It” [19].

The empirical evidence from the real-world software suggests that learning or
incremental program development is possible only when the data are presented
incrementally. For instance programming languages dispose with constructs, which
help to postpone solving some issues. As an example is the exception mechanism
in the object-oriented programming. This process makes, of course, the software
more complex and drifts away from the original design. These facts may lower
the quality of the software but it is the task of the validation and verification to
ensure the formal quality software.

To sum up, the incrementality principle is ubiquitous in the literature devoted to
the software engineering. After every step we discover new requirements, analyze
them, plan, implement and test. Every iteration adds new insights and the system
grows in this way, or logically clarifies. In other words, software programs are too
complex to try to get the details of any one artifact entirely correct without some
amount of experimentation. Software developers’ ideas are evolving as they work
and the steps are associated with the progress, this is evidence.

4. Incrementality in the software development

In the next sections we will focus on the application of the incrementality prin-
ciple in software engineering paradigms, which are aimed at program synthesis.
The selected paradigms are as follows:

(1) Programming by examples,
(2) Automatic program synthesis from specifications,
(3) Test driven programming,
(4) Programming by sketching.

4.1. Programming by examples. Programming by examples (positive or neg-
ative) seems popular and recurrent topic to the software research community, but
often is neglected the fact that this approach has very limited usage actually and
it is not generally applicable [21]. Let us analyze it in more detail. The principle of

NOTES ON THE ROLE OF THE INCREMENTALITY IN SW ENGINEERING 15

Programming By Example (PBE), or Programming By Demonstration (PBD) or
doing by watching, was investigated intensively around the eighties and a survey
is available in the work of H. Lieberman [12].

We have to be aware that the paradigm of programming by example has the-
oretical background in the theory of inductive inference, as we mentioned in Sec-
tion 3. Thought provoking is again the work of G. Polya [19], who declares the
fundamental role of the mathematical induction in the problem-solving domain.

First attempts to synthesize programs by examples were done in the field of
the automata theory. The task was to synthesize finite automata from a set of
examples. The examples were defined by set of pairs (state and transition). The
work of A. W. Biermann [4], e.g., describes practical results from experiences with
implemented incremental algorithms.

Programming by example is recently also mentioned as an exciting new tech-
nology in the work of H. Lieberman and C. Fry: Will Software Ever Work? [13].
But in reality this approach is old and characterized in the work of A. Endres and
D. Rombach: A Handbook of Software and Systems Engineering. They state that
in fact the code generated from test cases will satisfy all test cases but we will
always need one more test case because the generalization delivers a model which
need not cover all test cases [6, p. 89].

What is the definition of the incremental algorithm? An algorithm is incremen-
tal if, for any given training example e1 . . . en, it produces a sequence of hypotheses
h0, h1, . . . , hn, such that hi+1 depends only on hi and the current example ei. Now
we may substitute various software artifacts, e.g. components, for hi, which may
appear in various contexts of the software development cycle (see Figure 1).

In other words it means that the hypothesis built by inductive inference will be
compatible only with the current set of the proposed examples and nothing more.
E.g., when we construct a cycle, we widen the scope of the algorithm in inductive
way. This is the inherent feature of the inductive inference that newly generated
hypothesis need not follow the intended functionality.

e1

eihi+1

build the
1st hypothesis

build a new hypothesis
from the example

invent an example
by observation

Figure 1. The principle of the incremental algorithm.

16 LADISLAV SAMUELIS AND CSABA SZABÓ

4.2. Automatic program synthesis from specifications. Synthesis of pro-
grams from specifications is a methodology, which allows to construct the program
code automatically from the specification. The essence of these methods lies in the
transformations, which could be used for the modification of the specifications and
in order to reach the final code. The final code is constructed by the application
of transformation rules to the specifications. Such a program is verified against
the specification and that is why it is not necessary to prove the correctness of the
program additionally. Recent review can be found in [18]. The problem with this
approach is that it is an illusion to expect that perfect requirements can be for-
mulated ahead of time. Both developers and users may need some feedback. They
require a (learning cycle). This is cited again from the Handbook of Software and
Systems Engineering [6, p. 15]. The role of the incrementality is hidden behind
the phrase learning cycle. In other words, we cannot predict the correctness of our
abstraction with the reality. This approach is suitable only for trivial tasks.

4.3. Test driven programming. Incrementality principle may be observed both
in the specification and in the implementation phases of the software development.
The following simple figure illustrates the idea.

hiSpecification Implementation

Figure 2. Location of the model hi.

On the specification (left hand) side we may consider the examples ei as test
cases ti against which the requirements are clarified and in this way hi is continu-
ously modified. If we consider hi as a fixed artifact (e.g. program) and we intend
to test the program (approaching the picture from the right hand side) then we
may consider the tests ti as examples ei, which have to be accepted or ejected by
the hi. Of course, testing shows only the presence of bugs and not the absence of
errors (Dijkstra’s law [5]). This simple picture shows the relativity of the concepts
as ”example” and ”test”. Both concepts’ interpretations depends on the context.
To sum up, the interpretation of the examples and the tests depends only on the
actual agreement whether hi is fixed or not. We stress again, that the principle
behind building hi is the incremental principle as mentioned in Section 4.1. If
a new example has to be embedded into the actual model then the incremental
algorithm has to modify (including the regression) the already prepared model. In
each case the final model has to comply with the new set of examples.

NOTES ON THE ROLE OF THE INCREMENTALITY IN SW ENGINEERING 17

4.4. Programming by sketching. Programming by sketching is motivated by
the fact that programmers may acquire powerful help during the software de-
velopment. In fact this approach helps in the software development with the
visualization of available components. The group led by R. Bodik [15] recently
experiments with this approach in practice. This approach argues that the final
work of coding has to be done by computer and also the computer has to ease
developers’ work by provision of efficient support, or data retrieval, in order to
create the final code more efficiently. Programming by sketching relies on the fact
that programmers are sketching actually the skeletons (e.g. applying patterns or
components off the shelf) of programs and the coding is done automatically. This
approach is also part of the agile programming [1]. Following our definition of the
incremental algorithm in Section 4.1, we may observe that in this case the artifact
of the incrementality paradigm is the code segment or component.

5. Conclusion

The aim of this paper was to show and discuss the role of the incrementality
principle in selected software development paradigms, which do not fit together at
the first sight and in this way to provoke thinking. We have tried to synthesize
the scattered fragments of the applied incrementality principle in the software
engineering literature in order to create a more condensed foresight. We know that
we did not invent a new solution to an existing problem, we dug out rather old
ideas and observed them in new contexts. There is no doubt that new paradigms
will emerge in the future. It is the task of the informatics to show the role of the
principles in the emerging fashionable ideas.

References

[1] Scott W. Ambler. The Object Primer 3rd Edition, Agile Model Driven Development with
UML 2. Cambridge University Press, 2002. ISBN: 0-521-54018-6.

[2] D. Angluin and C. H. Smith. Inductive Inference: Theory and Methods. Computing Surveys,
15(3):238–269, September 1983.

[3] Jim Arlow and Ila Neustadt. UML 2 and the Unified Process: Practical Object-Oriented
Analysis and Design. Addison-Wesley, second edition, June 2005. ISBN: 0-321-32127-8.

[4] Alan W. Biermann. Automatic programming. In Stuart C. Shapiro, editor, Encyclopedia of
Artificial Intelligence. John Wiley and Sons, January 1992.

[5] L. Böszörményi, S. Podlipnig (with contributions of Manfred Broy, Tove Dahl, and Marius
Nygaard). People behind Informatics (In memory of Ole-Johann Dahl, Edsger W. Dijkstra,
Kristen Nygaard). Institute of Information Technology, University of Klagenfurt, 2003.

[6] A. Endres and S. Rombach. A Handbook of Software and Systems Engineering; Empirical
observations, laws and theories. Pearson, Addison Wesley, May 2003.

[7] Richard E. Fairley and Mary Jane Wilshire. Iterative rework: The good, the bad and the
ugly. IEEE Computer, 38(9):34–41, September 2005.

[8] http://www.ieee-iwpc.org, International Conferences on Program Comprehension.

18 LADISLAV SAMUELIS AND CSABA SZABÓ

[9] C. Knight and M. Munro. Visual Information: Amplifying and Foraging, Proceedings of
SPIE, San Jose, USA, volume 4032. International Society for Optical Engineering, January
2001. ISBN: 0-8194-3980-0.

[10] C. Larman. History and evidence of evolutionary versus waterfall methods. http://it.sun.
com/eventi/jc05/pdf/02_Larman.pdf. Java Conference 05, 22–23 June 2005, Milan, Italy.

[11] C. Larman and V. R. Basili. Iterative and incremental development: A brief history. IEEE
Computer, 36(6):46–57, June 2003.

[12] H. Liebermann, editor. Your Wish is My Command: Programming by Example. Morgan
Kaufmann, San Francisco, February 2001.

[13] H. Liebermann and C. Fry. Will software ever work? Communications of the ACM,
44(3):122–124, March 2001.

[14] K. Machová. Machine learning. Faculty of electrical engineering and informatics, Technical
University of Košice, elfa, 2002.

[15] David Mandelin, Lin Xu, and Rastislav Bod́ık. Jungloid Mining: Helping to Navigate the
API Jungle. ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI05), pages 48–61, 2005. ISSN: 0362-1340.

[16] B. Meyer. Reality: A cousin twice removed. IEEE Computer, 29(7):96–97, July 1996.
[17] R. Michalski. Knowledge repair mechanisms: Evolution vs. revolution. Technical report,

Department of Computer Science, University of Illinois, February 1985. Reports of the
Intelligent Systems Group, ISG 85-11, UIUCDCS-F-85-941.

[18] Alberto Pettorossi and Maurizio Proietti. Rules and strategies for transforming functional
and logic programs. ACM Computing Surveys, 28(2):360–414, June 1996.

[19] G. Polya. How to solve it: A New Aspect of Mathematical Method. Princeton University
Press, 2nd edition, 1957.

[20] V. Rajlich. Incremental change in object-oriented programming. IEEE Software, 21(2):62–
69, July/August 2004. ISSN:.

[21] Ladislav Samuelis. Synthesis of programs by examples. Technical report, Budapest Univer-
sity of Technology, May 1990. PhD thesis,(in Hungarian).

[22] N. Wilde and B. Huitt. Maintenance support for object-oriented programs. IEEE Transac-
tions on Software Engineering, 18(12):1038–1044, 1992.

Acknowledgements

The research was supported by the following grants:
• Mathematical Theory of Programming and its Application in the Meth-

ods of Stochastic Programming. Scientific grant agency project (VEGA)
No. 1/2181/05

• Technologies for Agent-based and Component-based Distributed Sys-
tems Lifecycle Support. Scientific grant agency project (VEGA) No.
1/2176/05

• Evaluation of operational parameters in broadband communicational in-
frastructures: research of supporting platforms. Scientific grant agency
project (VEGA) No. 1/2175/05

Department of Computers and Informatics, Technical University of Košice, Letná 9,
042 00 Košice, Slovakia

E-mail address: Ladislav.Samuelis@tuke.sk, Csaba.Szabo@tuke.sk

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 2, 2006

EXTENDED P-SENSITIVE K -ANONYMITY

ALINA CÂMPAN AND TRAIAN MARIUS TRUŢĂ

Abstract. In this paper we introduce a new privacy protection property,

called extended p-sensitive k-anonymity, which is an extension of the p-

sensitive k -anonymity property [16]. The new property is aware of confiden-

tial attributes hierarchies and of the existence of protected not ground-level

confidential attributes values, situation not considered by previous work done

in this direction. We describe our model and indicate an algorithm for en-

forcing extended p-sensitive k -anonymity to masked microdata.

Keywords: privacy protection, anonymity, generalization.

1. Introduction

To protect the privacy of individuals in the present digitized world became an
increasingly difficult task. Large amounts of microdata (datasets where each tuple
belongs to an individual entity) are collected by different agencies. Some of these
microdata need to be released, for various purposes, to other parties. Obviously,
direct identifying information such as SSN, Name is eliminated from the micro-
data before releasing it, for privacy protection. But even modified this way, the
datasets could still present vulnerabilities that can be exploited by intruders, i.e.
persons whose goals are to identify specific individuals and to use the confiden-
tial information they discover for malicious purposes. More elaborated techniques
are needed in order to ensure a reliable and controlled privacy protection when
microdata are released.

In recent years, the use and the disclosure of confidential information was sub-
ject to privacy regulations promulgated in different domains [4, 8, 7]. All these
regulations, together with the necessity of collecting personal information, have
fed the interest in privacy research.

Techniques to avoid the disclosure of confidential information exist in the lit-
erature [1, 17]. Among them, the k -anonymity property required for the released

Received by the editors: September 20, 2006.

2000 Mathematics Subject Classification. 68P15.
1998 CR Categories and Descriptors. 68P15 [Computer science]: Theory of data –

Database theory.

19

20 ALINA CÂMPAN AND TRAIAN MARIUS TRUŢĂ

microdata (a.k.a. masked microdata) was recently introduced [13, 14] and exten-
sively studied [3, 5, 10, 16]. This property requires that in the released microdata
every tuple will be indistinguishable from at least (k -1) other tuples with respect
to a subset of attributes called quasi-identifier attributes or key attributes.

Recent results have showed that k -anonymity fails to protect the privacy of in-
dividuals in all situations [16]. Two similar models called p-sensitive k -anonymity
[16] and l -diversity [11] were proposed in the literature in order to deal with the
problems of the k -anonymity model. The p-sensitive k -anonymity property re-
quires, in addition to k -anonymity, that for each group of tuples with the identical
combination of quasi-identifier attributes values, the number of distinct values for
each confidential attribute (attribute which values must be protected) must be at
least p within the same group.

However, depending on the nature of the confidential attributes, even the p-
sensitivity property still permits the information to be disclosed. We identify,
in this paper, situations when p-sensitivity property is not enough for privacy
protection and we propose a solution to overcome the identified problem: the
extended p-sensitive k -anonymity model and an algorithm to enforce this property.

2. Concepts and Notations

Let IM be the initial microdata and IM be the released (a.k.a. masked) mi-
crodata. IM consists in a set of tuples over an attribute set. The attributes
characterizing microdata are classified into the following three categories:

• I1, I2, . . . , Im are identifier attributes such as Name and SSN that can
be used to identify a record. These attributes are present only in the
initial microdata because they express information which can lead to a
specific entity.

• K1,K2, . . . , Kn are key or quasi-identifier attributes such as ZipCode
and Age that may be known by an intruder. Quasi-identifier attributes
are present in the masked microdata as well as in the initial microdata.

• S1, S2, . . . , Sr are sensitive or confidential attributes such as Principal-
Diagnosis and ICD9Code that are assumed to be unknown to an in-
truder. Confidential attributes are present in the masked microdata as
well as in the initial microdata.

While the identifier attributes are removed from the released microdata, the
quasi-identifier and confidential attributes are usually kept in the masked micro-
data and released to the researchers.

A general assumption, as noted, is that the values for the confidential attributes
are not available from any external source. This assumption guarantees that an
intruder can not use the confidential attributes values to increase his/her chances

EXTENDED P-SENSITIVE K -ANONYMITY FOR PRIVACY PROTECTION 21

of disclosure. Unfortunately, an intruder may use record linkage techniques [18]
between quasi-identifier attributes and external available information to glean the
identity of individuals from the masked microdata. To avoid this possibility of dis-
closure, one frequently used solution is to modify the initial microdata, more specif-
ically the quasi-identifier attributes values, in order to enforce the k -anonymity
property.

Definition 1. (k-anonymity property): The k-anonymity property for a
masked microdata (MM) is satisfied if every combination of quasi-identifier at-
tribute values in MM occurs k or more times.

Based on this definition, in a masked microdata that satisfy k -anonymity prop-
erty, the probability to correctly identify an individual is at most 1/k. By in-
creasing k the level of protection increases, along with the changes to the initial
microdata.

To achieve k -anonymity, existing k -anonymization algorithms generally proceed
by using generalization and suppression [13, 15]. Generalization of the quasi-
identifier attributes is used widely for k -anonymization. It consists in replacing
the actual value of an attribute with a less specific, more general value that is
faithful to the original [15]. Generalization is either based on predefined (static)
domain and value generalization hierarchies [15], or is conducted using a hierarchy-
free model [10].

The k -anonymity property ensures protection against identity disclosure, i.e.
the identification of an entity (person, institution). However, as we will show
next, it does not protect the data against attribute disclosure, which occurs when
the intruder finds something new about a target entity. The two disclosure types
are independent. None of them does imply the other.

Consider the masked microdata example below, where the set of quasi-identifier
attributes is composed of Age, ZipCode and Gender, and Illness is the sensitive
attribute:

Table 1. Patient masked microdata satisfying 2-anonymity

Tuples Age ZipCode Gender Illness

r1 50-60 43102 Male Colon Cancer

r2 30-40 43102 Female Breast Cancer

r3 30-40 43102 Female HIV

r4 20-30 43102 Male Diabetes

r5 20-30 43102 Male Diabetes

r1 50-60 43102 Male Heart Disease

22 ALINA CÂMPAN AND TRAIAN MARIUS TRUŢĂ

Identity disclosure does not happen in this masked microdata, as its construc-
tion guarantees that for every existing combination of values for Age, ZipCode
and Gender there are at least two tuples that have the respective combination of
values. However, assuming that external information in Table 2 below is available,
attribute disclosure can take place. If the intruder knows that in the masked mi-
crodata the Age attribute was generalized to multiples of 10, he can deduce that
both Sam and Eric have Diabetes, even he doesn’t know which tuple, r4 or r5,
corresponds to what person. This example shows that k -anonymity fails to protect
sometimes against attribute disclosure, even if it protects from identity disclosure.

Table 2. External information for Patient example

Name Age Gender ZipCode

Sam 29 Male 43102

Gloria 38 Female 43102

Adam 51 Male 43102

Eric 29 Male 43102

Dana 34 Female 43102

Don 51 Male 43102

For dealing with this flaw in privacy, another model, called p-sensitive k -
anonymity was introduced in [16]. A similar privacy model, called l -diversity,
is described in [11].

Definition 2. (p-sensitive k-anonymity property): The masked microdata
(MM) satisfies p-sensitive k-anonymity property if it satisfies k -anonymity
and for each group of tuples with the identical combination of key attribute values
that exists in MM , the number of distinct attributes for each confidential attribute
is at least p within the same group.

Sometimes, similar to the quasi-identifier attributes, the domain of the sensitive
attributes, especially the categorical ones, can also be organized according to some
hierarchies. For example, in medical datasets, the Illness attribute has values as
specified by the ICD9 codes (see Figure 2). The different types of diseases are
organized in a tree hierarchy of values. The attribute values are very specific, for
example they can represent different types of cancer, which are all descendants
of cancer value. The initial microdata contain as values for the Illness attribute
values from the lowest level of the hierarchy (i.e. from the leaf nodes). In these
conditions, the data owner can be interested in protecting not only these most
specific values, but also information found at higher levels. For example, the
information that a person has cancer needs to be protected, regardless of the

EXTENDED P-SENSITIVE K -ANONYMITY FOR PRIVACY PROTECTION 23

cancer type she has. If p-sensitive k -anonymity property is enforced for masked
microdata, it is possible that in a group with p distinct Illness attribute values,
all of them to be descendants of the cancer node in the corresponding hierarchy.
To avoid such situations, we introduce the concept of extended p-sensitive k -
anonymity, which is aware of the existence of protected values not only at the
ground level.

3. Extended p-sensitive k-anonymity Property

Let S be a categorical confidential attribute we want to protect against attribute
disclosure. S has associated predefined (static) domain and value generalization
hierarchies [15]. HDS is the domain generalization hierarchy of attribute S. The
values from different domains of this hierarchy HDS are represented in a tree
HVS called value generalization hierarchy. We illustrate domain and value gen-
eralization hierarchy in Figure 1 for attributes ZipCode and Gender, which are
quasi-identifier attributes.

Figure 1. Examples of domain and value generalization hierarchies

Figure 2 shows a part of the ICD9 value generalization hierarchy.
Some zones of a value generalization hierarchy HVS , associated to the sensitive

attribute S, need to be protected.
Unlike the quasi-identifier attributes, the values of a sensitive attribute cannot

be generalized in the masked microdata for protection, because this would affect
the quality of the released data w.r.t. subsequent tasks that will be performed on
it, such as data mining tasks.

The protection will be achieved by enforcing k -anonymity (for identity disclo-
sure protection) while ensuring the extended p-sensitivity (for attribute disclosure
protection). The heterogeneity of the confidential attributes values in each of the

24 ALINA CÂMPAN AND TRAIAN MARIUS TRUŢĂ

Figure 2. ICD9 disease hierarchy and codes

groups formed by k -anonymizing the data is to be achieved not only at the ground
values level, but for all the values declared protected in HVS . The data owner
has to mark (declare) which are the protected ”zones” in a confidential attribute
hierarchy. In Figure 2, the protected values in the value generalization hierarchy of
attribute Illness are bordered. We require that all the descendants of a protected
value to also be protected. In other words, if an internal node of a value general-
ization hierarchy is protected, the entire subtree rooted in that node needs to be
protected. All values at the ground level are considered to be protected. The se-
mantics of a node (its value) being protected is as follows: if extended p-sensitivity
is enforced for a microdata w.r.t. the confidential attribute S, this means that each
group of tuples with the identical combination of quasi-identifier attributes values
contains at least p distinct values for S that respect the condition that, any two
of them are not descendants of a common protected value (i.e. any two of these
values do not have a common protected ancestor). For example, if Neoplasms is a
protected value, no group will contain only descendant values of Neoplasms, even
if there are p distinct such values in that group. So, every group containing descen-
dant values of Neoplasms will also contain at least p - 1 different values that are
not descendants of Neoplasms. Of course, for these values also functions the same
condition. We will refer to the property enounced here informally as extended

EXTENDED P-SENSITIVE K -ANONYMITY FOR PRIVACY PROTECTION 25

p-sensitive k -anonymity. To define the extended p-sensitive k -anonymity property
we need to introduce several other concepts.

Requirements: Let S be a confidential attribute and HVS its value generalization
hierarchy. The following two requirements must be met by the protected values in
HVS :

• All ground values in HVS are protected.
• All the descendants of a protected internal value in HVS are protected.

Definition 3. A protected value in the value generalization hierarchy HVS of a
confidential attribute S is called strong if none of its ascendants (including the
root) is protected.

Property 1. A protected value is strong if its parent is not protected.

This property results from the definition of strong values and the first require-
ment imposed to HVS .

Definition 4. We call protected subtree of a hierarchy HVS a subtree in HVS

that has as root a strong protected value.

Definition 5. (extended p-sensitive k-anonymity property): The masked
microdata (MM) satisfies extended p-sensitive k-anonymity property if it
satisfies k -anonymity and for each group of tuples with the identical combination
of key attribute values that exists in MM , the values of each confidential attribute
S within that group belong to at least p different protected subtrees in HVS .

Extended p-sensitive k -anonymity can not be enforced for any microdata set.
We give next several necessary conditions that must be satisfied by a microdata set
in order to be possible to enforce extended p-sensitive k -anonymity for it. These
conditions are adapted from [16], where they were enounced w.r.t. the basic p-
sensitive k -anonymity property.

Condition 1. p must be less than or equal to k (i.e. p ≤ k).

Justification: In a group of k tuples there can not be more than k different
values for a confidential attribute S.

Condition 2. The value generalization hierarchy HVS of every confidential at-
tribute S must contain at least p different protected subtrees.

We use the following notations for a microdata IM :

• n - the number of tuples in IM ;
• q - the number of confidential attributes in IM ;

26 ALINA CÂMPAN AND TRAIAN MARIUS TRUŢĂ

• sj - the number of distinct strong protected values in HVSj
that are

ascendants of all the values that the confidential attribute Sj has in IM ,
1 ≤ j ≤ q;

• f j
i - the descending ordered frequency set for the confidential attribute

Sj , 1 ≤ i ≤ sj , 1 ≤ j ≤ q. The frequency set is computed after the con-
fidential values in the microdata are generalized to their corresponding
strong protected values;

• cf j
i - the cumulative descending ordered frequency set for the confidential

attribute Sj , 1 ≤ j ≤ q. The frequency set is computed after the con-
fidential values in the microdata are generalized to their corresponding
strong protected values;

• cfi = maxj=1,q(cf
j
i), 1 ≤ i ≤ minj=1,q(sj).

Condition 3. The maximum allowed number of combinations of quasi-identifier
attribute values in the masked microdata MM is mini=1,p−1

n−cfp−i

i .

The proof of this property for basic p-sensitive k -anonymity can be found in [16].
For extended p-sensitivity, the confidential attributes values are first generalized
in the initial microdata, to their strong ancestors, and then the property for basic
p-sensitivity is true for the resulted dataset.

4. Enforcing Extended p-sensitive k-anonymity Property to

Microdata

At a closer look, extended p-sensitive k -anonymity for a microdata is equiv-
alent to p-sensitive k -anonymity for the same microdata where the confidential
attributes values are generalized to their first protected ancestor, starting from
the hierarchy root (their strong ancestor). Consequently, in order to enforce ex-
tended p-sensitive k -anonymity to a dataset, the following two-steps procedure
can be applied:

• Each value of a confidential attribute is generalized (only temporarily) to
its first protected ancestor (including itself), starting from the hierarchy
root, i.e. to its strong ancestor.

• Any algorithm which can be used for p-sensitive k -anonymization is ap-
plied to the modified dataset. Such an algorithm is indicated in [16].
In the resulted masked microdata the original values of the confidential
attributes are restored.

The dataset obtained following these steps respects the extended p-sensitive
k -anonymity property.

EXTENDED P-SENSITIVE K -ANONYMITY FOR PRIVACY PROTECTION 27

5. Experimental Results

We performed a set of experiments to test how the existing k -anonymizing
algorithms break the p-sensitivity and extended p-sensitivity properties. These
experiments show that attribute disclosure can happen when only k -anonymity
is enforced for microdata and, therefore, emphasize the need to protect the data
against disclosure, beyond the k -anonymity.

In our experiments we used data based on the Adult database from the UC
Irvine Machine Learning Repository [12]. This database has become the bench-
mark in data privacy field, being used by many researchers [10]. We considered
Age, Marital Status, Race and Sex from adult data as being the set of quasi-
identifier attributes. The confidential attributes are Pay, Capital Gain, Capi-
tal Loss and Tax Amount. The Pay attribute is considered to have two distinct
values, ≤50K, >50K, and describes whether a person makes or not over 50K a year.
The Capital Gain attribute can have three distinct values (1000, 2000, 3000), Cap-
ital Loss has four distinct values (1000, 2000, 3000, 4000), and Tax Amount has
ten distinct values (100, 200, . . . , 1000). The Tax Amount attribute is the only
confidential attribute that has an associated generalization hierarchy with more
than one level. The value generalization hierarchy is depicted in Figure 3, and the
protected values are bordered, the strong protected values are bold bordered.

Figure 3. Value generalization hierarchy for Tax Amount

We k -anonymized 400 records randomly chosen from adult database, for k=3
and k=5, using: the anonymization algorithm based on clustering which is de-
scribed in [6]; the binary search algorithm presented in [13]. The quasi-identifier
attributes were generalized w.r.t. the generalizations outlined in Table 3.

The produced masked microdata respect of course the requirements imposed
by the k -anonymity property, but it contains several records that contradict the
conditions in p-sensitive k -anonymity and in extended p-sensitive k -anonymity.
Table 4 summarizes the results of our experiments: the number of tuples and
the number of groups of tuples sharing common values for the quasi-identifier
attributes that contradict the two properties. So, this experiment shows that

28 ALINA CÂMPAN AND TRAIAN MARIUS TRUŢĂ

Table 3. Adult database quasi-identifier attributes generalization

Attribute First Generalization Second Generalization Third Generalization

Age 10-years range ≤50 and >50 groups One group

Marital Status Single or Married One group -

Race White, Black or Other White or Other One group

Sex One group - -

for microdata masked to satisfy the k -anonymity property, disclosure channels
still exist so that confidential attributes values can be inferred. P -sensitive k -
anonymity property, basic or extended, need to be enforced to the microdata
in order to avoid such disclosure situations. We used for k -anonymization two
different algorithms, reported in [13], and respectively in [6].

Table 4. Attribute disclosures for a masked microdata set with
k -anonymity property

k-anonymity with [13] algorithm No of attribute disclosures w.r.t. p-sensitivity

2-anonymity 6

3-anonymity 2

k-anonymity Pay Capital Gain Capital Loss Tax Paid

with [6] algorithm

2-sensitivity disclosures

3-anonymity Tuples Groups Tuples Groups Tuples Groups Tuples Groups

38 12 36 12 15 5 0 0

3-sensitivity disclosures

5-anonymity Tuples Groups Tuples Groups Tuples Groups Tuples Groups

- - 164 31 30 6 11 2

k-anonymity with [6] algorithm Tax Paid extended p-sensitivity disclosures

extended 2-sensitivity disclosures

3-anonymity Tuples Groups

3 1

extended 3-sensitivity disclosures

5-anonymity Tuples Groups

11 2

EXTENDED P-SENSITIVE K -ANONYMITY FOR PRIVACY PROTECTION 29

6. Conclusions and Future Work

In this paper, we introduced a new privacy protection property, called extended
p-sensitive k -anonymity, which is an extension of the p-sensitive k -anonymity prop-
erty. Next, we presented three necessary conditions a masked microdata must
satisfy in order to have extended p-sensitive k -anonymity property. Last, we indi-
cated how an algorithm that generates k -anonymous microdata can be modified
to enforce extended p-sensitive k -anonymity property. Our experiments showed
that p-sensitive k -anonymity property, basic or extended, need to be enforced to
the masked microdata in order to avoid attribute disclosure situations.

In future work, we will create masked microdata that satisfy extended p-
sensitive k -anonymity using the existing algorithms for k -anonymity with the ad-
dition of the three necessary conditions, and we will compare the running time
of these modified algorithms against the existing algorithms that search for k -
anonymity only.

References

[1] Adam N. R., Wortmann J. C. (1989), “Security Control Methods for Statistical Databases:

A Comparative Study.” ACM Computing Surveys, Vol. 21, No. 4, 515–556.

[2] Aggarwal G., Feder T., Kenthapadi K., Khuller S., Panigrahy R., Thomas D., and Zhu

A. (2006), “Anonymizing Tables”, Proceedings of the ACM PODS Conference, 153–162.

[3] Aggarwal G., Feder T., Kenthapadi K., Motwani R., Panigrahy R., Thomas D., and Zhu

A. (2005), “Achieving Anonymity via Clustering”, Proceedings of the 10th International

Conference on Database Theory.

[4] Agrawal R., Kiernan J., Srikant R., Xu Y. (2002), “Hippocratic Databases”, Proceedings

of the 20th International Conference on Very Large Databases (VLDB), Hong Kong, 143–

154.

[5] Bayardo R.J, Agrawal R. (2005), “Data Privacy through Optimal k-Anonymization”,

Proceedings of the IEEE International Conference of Data Engineering, 217–228.

[6] Byun J.W., Kamra A., Bertino E, Li N. (2006), “Efficient k-Anonymity using Clustering

Technique”, CERIAS Tech Report 2006-10.

[7] GLB (1999), “Gramm-Leach-Bliley Financial Services Modernization Act”, Available on-

line at http://banking.senate.gov/conf/.

[8] HIPAA (2002), “Health Insurance Portability and Accountability Act”, Available online

at http://www.hhs.gov/ocr/hipaa.

[9] LeFevre K., DeWitt D., Ramakrishnan R. (2005), “Incognito: Efficient Full-Domain K-

Anonymity”, Proceedings of the ACM SIGMOD, Baltimore, Maryland, 49–60.

[10] LeFevre K., DeWitt D., Ramakrishnan R. (2006), “Mondrian Multidimensional K-

Anonymity”, Proceedings of the IEEE International Conference of Data Engineering,

Atlanta, Georgia.

[11] Machanavajjhala A., Gehrke J., Kifer D. (2006), “l-diversity: privacy beyond k-

anonymity”, Proceedings of the 22nd IEEE International Conference on Data Engineering.

[12] Newman D.J., Hettich S., Blake C.L., Merz C.J. (1998), “UCI Repository of Machine

Learning Databases”, available at www.ics.uci.edu/ mlearn/MLRepository.html, Univer-

sity of California, Irvine, 1998.

30 ALINA CÂMPAN AND TRAIAN MARIUS TRUŢĂ

[13] Samarati P. (2001), “Protecting Respondents Identities in Microdata Release”, IEEE

Transactions on Knowledge and Data Engineering, Vol. 13, No. 6, 1010–1027.

[14] Sweeney L., (2002), “k-Anonymity: A Model for Protecting Privacy”, International Jour-

nal on Uncertainty, Fuzziness, and Knowledge-based Systems, Vol. 10, No. 5, 557–570.

[15] Sweeney L., (2002), “Achieving k-Anonymity Privacy Protection Using Generalization

and Suppression”, International Journal on Uncertainty, Fuzziness, and Knowledge-based

Systems, Vol. 10, No. 5, 571–588.

[16] Truta T.M., Bindu V. (2006), “Privacy Protection: P-Sensitive K-Anonymity Property”,

Proceedings of the Workshop on Privacy Data Management, In Conjunction with 22th

IEEE International Conference of Data Engineering (ICDE), Atlanta, Georgia.

[17] Willemborg L., Waal T. (ed) (2001), “Elements of Statistical Disclosure Control”, Springer

Verlag.

[18] Winkler W.E. (1994), “Advanced Methods for Record Linkage”, Proceedings of the Sec-

tion on Survey Research Methods, American Statistical Society, 467–472.

Babeş Bolyai University, Cluj Napoca, Romania

E-mail address: alina@cs.ubbcluj.ro

Northern Kentucky University, Highland Heights, USA

E-mail address: trutat1@nku.edu

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 2, 2006

RECOGNIZING TEXTUAL ENTAILMENT BY THEOREM
PROVING APPROACH

DOINA TĂTAR AND MILITON FRENŢIU

Abstract. We present two original methods for recognizing textual infer-

ence. First, is a modified resolution method, used in theorem proving, such

that some linguistic considerations are introduced in unification of two atoms.

Some recent methods of transforming texts in logic forms are used. Second, is

based on semantic relations in text, as presented in WordNet. Both methods

provide comparable results.

1. Introduction

The recognition of textual inference is one of the most complex task in Natural
Language Understanding. Thus, a very important problem in some computational
linguistic applications (as Question Answering, summarization, segmentation of
discourse, coherence and cohesion of a discourse and others) is to establish if a
sentence follows from a text. That means in many applications it is important to
establish if some sentences which are not existing in text are logicaly implied (can
be inferred) by this text. The importance of text inference in computational lin-
guistic is proved by the fact that in TREC (Text REtrieval Conference) conference
(http://trec.nist.gov/) and in RTE conference (Recognizing Textual Entailment,
http:// www.pascal-network.org/ Challenges/ RTE/) a permanent task is to es-
tablish the textual entailment relation. The RTE contest data set includes 1367
English T, H pairs (567 for training stage in learning methods and 800 for test) .
Here the task is to determine if the meaning of one text (the entailed hypothesis,
H) can be inferred from the meaning of the other text (the entailing text, T).

On the other hand is well known that a linguistic text can be represented
by a set of logical formulas, called logic forms. Various method were given for
associating a logical formula with a text: [5, 12, 15, 2]. From logical point of view,
if each sentence is represented as a formula, proving a textual inference consists

Received by the editors: September 1, 2006.

2000 Mathematics Subject Classification. 68T27, 68T30.
1998 CR Categories and Descriptors. I.2.3 Deduction and Theorem Proving, I.2.7 Natural

Language Processing.

31

32 DOINA TĂTAR AND MILITON FRENŢIU

in showing that a logical formula is deducible from a set of others formulas. The
problem is a classical (semidecidable) problem. In last years, when text mining is
very important in many AI applications, text inference from both point of view,
theorem proving and from linguistics perspective, is a very active field of research.
In [13] is presented a system participating in the RTE competition, using some
world knowledge axioms and a theorem proving tool. The logic method proposed
by us in this paper suppose the modification of classical theorem proving task such
that it contains a lexical-chain component.

Let us denote entailment relation between a text T and a sentence or a group
of sentences H as T ⇒ H.

In this paper we propose two methods to solve the problem of establishing if
T ⇒ H : first is obtained from the classical resolution refutation method, com-
pleting the unification of two atoms with some linguistic considerations (Lexical
Resolution Method or LRM). Our method differs of [11] by the fact that it does not
need learning stage and it does not need a graph representation and evaluation.
The weight (cost) of a deduction is obtained only from the weights (costs) of each
resolution steps. At his turn, the cost of a step of resolution is obtained by similar-
ity considerations using some linguistic tools as WordNet [4] and Word::Similarity
[8]. No background knowledge [2] is needed.

The second method is based on lexical chains (paths) for entailment spanning
the text T and the text H (Lexical-chains Based Method or LBM). A system of
rules for construction of lexical rules corresponding to entailment is established.
We claim that LRM and LBM produce similar results.

In section 2 we will define our modified unification of two atoms method, our
resolution rule and lexical resolution method (LRM).

In section 3 we will describe LBM method and we will propose another definition
for text inference based on the cohesion of texts.

2. Text inference as theorem proving.

Consider a knowledge base formed by a set of natural language sentences, K.
Let define a set of inferences rules which is sound, in the sense that it derive
true new sentences when the initial sentences in K are true. It is a long debate
about formalisms to represent knowledge such that above desiderata be fulfilled
[15]. We will use here the method proposed by [12] of obtaining logical forms
(in fact, logical formulas) from sentences expressed in natural language. In this
method each open word in a sentence (that means noun, verb, adjective, adverb)
is transformed in a logic predicate (atom). We consider, additionally, that the
constants are denoted by the names of words they represent (they are real lexical
units). For these atoms we propose a new algorithm for unification which modifies
the classical Robinson unification algorithm by adding some lexical relaxations.

RECOGNIZING TEXTUAL ENTAILMENT BY THEOREM PROVING APPROACH 33

The semantic information is used in the way we define unification between two
atoms, as described in the following section.

2.1. Unification lexical method for two atoms. Unification lexical method
of two atoms supposes that we have a lexical knowledge base where the similar-
ity between two words is quantified. Such a lexical knowledge base is WordNet
[4], a lexical resource which, from its construction in 1998 at Princeton Univer-
sity, is largely used in many linguistic applications. Moreover, some connected
resources are constructed (also free) which make use of WordNet easier. For exam-
ple, Word::similarity is an on-line interface which calculates the similarity between
two words using some different similarity measures, all these starting from Word-
Net facilities [9, 10] It offers the possibility to calculate similarity between two
words, two words annotated with POS, or even two words annotated with POS
and sense (in WordNet notation). Measures used to calculate similarity could be
nine, the most well known are Path lenght, Leacok and Chodorow, Wu and Palmer
and Resnik [4]. Of course, a maximal similarity is between words belonging to the
same synset (concept).

In the following algorithm we consider that each word of a natural language
sentence is transformed in atom as in [12]. See our section 2.3. The classical unifi-
cation of atoms is replaced by lexical unification, which depends on the similarity
in the dictionary WordNet. In the following algorithm we consider that sim(p, p′)
between two words p, p′ is that obtained by the Word::similarity interface.

INPUT: Two atoms a = p(t1, ..., tn) and a′ = p′(t′1, ..., t
′
m), n ≤ m, threshold

τ , threshold for a step τ ′ . The names p and p′ are also words in a lexical knowledge
base.

OUTPUT: Decision: The atoms are lexical unifiable with a calculated score
W and the unificator is σ, OR they are not unifiable (the score W of unification
is less than τ). The steps of the algorithm are:

Step 1. σ = empty substitution, W=0.
Step 2. If p ≡ p′ (similarity is maximal) or sim(p, p′) ≥ τ ′

then W := W + sim(p, p′) ; go to Step 3
else Print : ” a and a′ are not lexical unifiable”; STOP

Step 3. If (for each ti, i = 1, ..., n exists t′j in {t′1, ..., t′m} such that ti
and t′j are lexical unifiable and the composition of all unificators is σ′ OR for each
t′j , i = 1, ..., m exists ti in {t1, ..., tn} such that ti and t′j are lexical unifiable) , the
composition of all unificators is σ′, the score is greater than threshold τ

then

34 DOINA TĂTAR AND MILITON FRENŢIU

Print: ” a and a′ are lexical unifiable and σ := σ composed with σ′”
else
Print: ” a and a’ are not lexical unifiable”

STOP

Let us observe that the two terms ti and t′j are unifiable in the following two
cases.

1. First one refers to the regular cases in FOPC:

• terms are equal constants;
• one is a variable, the other is a constant;
• both are variables.

2. In the second case, if ti and t′j are two different constants, as they are words
in KB, then they are unifiable if sim(ti, t′j) ≥ τ ′. In the method of obtaining
logic form, on which we are based, the arguments of predicate are only variable or
constants.

3. Additionally, the similarity sim(p, p′) is maximal when p, p′ are from the
same synset in Wordnet.

The similarity between two words is used to calculate a score for unifiability
of two atoms. The test in this case is that the score is larger than a threshold
τ . The ”assumption cost model” presented in [6] uses a similarity measure for
some dependency graphs matching. The difference with our method is that they
calculate all unificators and choose the best one (which minimizes a given cost).
For the resolution method, we need to obtain the empty clause once. The ”cost” of
resolution is restricted to be low, while the condition of step threshold is applied.

2.2. Modified resolution or lexical resolution method. The modified reso-
lution, called also lexical resolution method, LRM , consists in considering of lexical
unification of two atoms as replacing regular unification:

Definition
Two (disjunctive) clauses ci and cj provide by lexical resolution the (disjunctive)

clause ck with the weight τ , written as

ci, cj |=lexical resolution ck or , shortly, ci, cj |=lr ck

RECOGNIZING TEXTUAL ENTAILMENT BY THEOREM PROVING APPROACH 35

if ci = l ∨ c′i, cj = ¬l′ ∨ c′j , l and l′ are lexical unifiable with the weight τ and the
unificator σ. The resulting clause is ck = σ(c′i) ∨ σ(c′j).

Remark: by disjunctive clause we mean a disjunction of literals (negated or
not negated atoms).

The following theorem is a translation of Robinson’s theorem of resolution
method:

Theorem
A set of disjunctive clauses C (obtained from formulas associated to sentences

of a text) is contradictory if the empty clause [] is obtained from the set of formulas
C by the modified resolution:

C |=∗lr []

Definition
A set of disjunctive clauses C obtained from formulas associated to sentences of

a text is contradictory with the weight τ if the empty clause [] is obtained from the
set of formulas C by the modified resolution, and the sum of all steps of resolution
is τ .

Definition
A set C of clauses which are proved contradictory when modified resolution is

used will be denoted as lexical contradictory.
Let us resume the steps of demonstrating by lexical resolution method that a

text T entails the sentence H with the weight τ , property denoted by T ⇒LRM,τ H

:
• Translate T in a set of logical formulas T ′ and H in H ′ (as in the following

subsection).
• Consider the set of formulas T ′ ∪ neg(H ′), where by neg(H ′) we mean

the logical negation of formula H ′

• Find the set C of disjunctive clauses of the set of formulas T ′ and neg(H ′)
• Verify if the set C is lexical contradictory with the weight τ . In this case

T ⇒LRM,τ H

2.3. Logical form derivation from sentences. We will use the method es-
tablished by [12] which is applied to texts which are part of speech tagged and
syntactic analyzed.

The method is the following:
• A predicate is generated for every noun, verb, adjective and adverb (pos-

sibly even for prepositions and conjunctions). The name of a predicate
is obtained from the morpheme of word.

36 DOINA TĂTAR AND MILITON FRENŢIU

• If the word is a noun, then the corresponding predicate will have as
argument a variable, as individual object. Ex: person(x2).

• If the word is a verb, then the corresponding predicate will have as
first argument an argument for the event (or action denoted by the
verb). Moreover, if the verb is intransitive it will have as arguments
two variables: one for the event and one for the subject argument. If
the verb is transitive it will have as arguments three variables: one for
the event, one for the subject and one for the direct complement. If
the verb is ditransitive it will have as arguments four variables: two for
the event and the subject and two for the direct complement and the
indirect complement.

• The arguments of verb predicates are always in the order: event, subject,
direct object, indirect object (the condition is not necessary for modified
unification).

• If the word is an adjective (adverb) it will introduce a predicate with the
same argument as the predicate introduced for modified noun (verb).

Example: man-made object is translated as: object(x1) AND man-
made(x1)

• If the word is a preposition or a conjunction it will introduce a predicate
with the same argument as the modified word.

Some transformation rules that create predicates and assign them arguments are
presented in [12]. These are obtained from the set of rules of the syntactic analyzer.
For example, the rule for introduction of noun predicate is ART NOUN −→
noun(x1). The rule for introduction of adverb predicate is: V ERB ADV ERB −→
verb(e1, x1, x2) AND adverb(e1).

Let us consider the following example from [13]:

T: John and his son, George, emigrated with Mike, John’s uncle, to US in 1969
H: George and his relative, Mike, came to America

The logical form obtained for T is:

John(x1) ∧ son(x2) ∧George(x2) ∧ emigrated(e1) ∧Agent(x1, e1)

∧Agent(x2, e1) ∧Mike(x3) ∧ uncle(x1, x3) ∧ Location(e1, x4)

∧US(x4) ∧ Time(e1, x5) ∧ 1969(x5)
The logical form obtained for H is:

George(x1) ∧ relative(x2) ∧Mike(x2) ∧ came(e1) ∧Agent(x1, e1)

∧Agent(x2, e1) ∧America(x3) ∧ Location(e1, x3)

RECOGNIZING TEXTUAL ENTAILMENT BY THEOREM PROVING APPROACH 37

Applying the unification lexical method for two atoms and modified resolution
for the obtained disjunctive clauses, we obtain empty clause, as follows.

First, the set of clauses for neg(H)) is formed by only one disjunctive clause:

¬George(x1) ∨ ¬relative(x2) ∨ ¬Mike(x2) ∨ ¬came(e1) ∨ ¬Agent(x1, e1)

∨¬Agent(x2, e1) ∨ ¬America(x3) ∨ ¬Location(e1, x2)

Then, if we apply modified unification between the following pairs of atoms, the
empty clause is obtained:

relative(x2), uncle(x1, x3)
America(x3), US(x4),
emigrated(e1), came(e1).

The similarities for the pair relative, uncle, for the pair America, US and for
the pair emigrated, came are calculated with Word::similarity. So T ⇒LRM,τ H

where the weight τ is the sum of these similarities.
Let us remark that in [13] the result is obtained using additionally 6 axioms.

3. Entailment on linguistic bases

In this section we will introduce another definition for entailment between a
text T and a sentence H. This definition is based on the concept of lexical paths
and on the semantical relations presented on WordNet.

In the huge knowledge base which is WordNet there are many semantic relations
which are defined between synsets of nouns, verbs, adverbs and of adjectives.
Synsets in WordNet (or concepts) are set of words which are:

a) with the same POS and
b) are similar as meaning (or synonyms).
The most well known semantical relation is the relation IS-A between synsets of

nouns (or of verbs). The relations ENTAIL and CAUSE-TO defined only between
synsets of verbs, are the most suited for purposes of entailment study.

We will define a lexical path for entailment between two words w1 and w2,
denoted by LPE(w1, w2), a path of the form:

LPE(w1, w2) = c1r1c2r2......rk−1ck

where w1 is from the synset c1, w2 is from the synset ck and each relation rj is a
semantical WordNet relation of the form IS-A or ENTAIL or CAUSE-TO between
synsets cj and cj+1. A lexical path for entailment, LPE(w1, w2), can be described
as a regular expression of the form:

38 DOINA TĂTAR AND MILITON FRENŢIU

c1r1c2r2......rk−1ck ∈ ((< concept > (IS − A))∗(< concept > (ENTAIL))∗ |
((< concept > (IS −A))∗(< concept > (CAUSE − TO)∗)∗ < concept >

The relations IS-A, ENTAIL and CAUSE-TO are transitive and no simetric.
Thus the paths LPE(w1, w2) and all the concepts defined using them have an
orientation from w1 to w2.

Definition
T ⇒LPE,τ H if card({LPE(w1, w2) | w1 ∈ T, w2 ∈ H}) is greater than a given

threshold τ .
A method to construct a path LPE(w1, w2) is to apply the following rules:

• From c1 IS −A c2 and c2 IS −A c3 it results c1 IS −A c3

• From c1 IS −A c2 and c2 ENTAIL c3 it results c1 ENTAIL c3

• From c1 ENTAIL c2 and c2 IS −A c3 it results c1 ENTAIL c3

• From c1 ENTAIL c2 and c2 ENTAIL c3 it results c1 ENTAIL c3

• From c1 IS−A c2 and c2 CAUSE−TO c3 it results c1 CAUSE−TO c3

• From c1 CAUSE−TO c2 and c2 IS−A c3 it results c1 CAUSE−TO c3

• From c1 CAUSE−TO c2 and c2 CAUSE−TO c3 it results c1 CAUSE−
TO c3

• From c1 CAUSE−TO c2 and c2 ENTAIL c3 it results c1 ENTAIL c3

• From c1 ENTAIL c2 and c2 CAUSE−TO c3 it results c1 ENTAIL c3

We claim that the following theorem holds:

Theorem
For each given threshold τ there exists a threshold τ ′ such that the relation

T ⇒LPE,τ H holds iff T ⇒LRM,τ ′ H holds.

Also, we can introduce another frame for text inference which is very promising
to use: the coherence of a text.

Let define a lexical path LP (w1, w2) as a path

LP (w1, w2) = c1r1c2r2......rk−1ck

were all semantical relations in WordNet are permitted as ri [3] and ci are synsets.
The semantical relations in WordNet are:

• hypernymy and his reverse hyponymy,
• meronymy and his reverse holonymy,
• entailment, cause-to and reverse of they,
• antonimy.

Definition

RECOGNIZING TEXTUAL ENTAILMENT BY THEOREM PROVING APPROACH 39

The coherence coh(TE) of a text TE is equal to the number of lexical paths
which link two different words from text TE.

In the case of entailment of H from T , the coherence of text T + H (the text
H and the text T considered as a single text) is larger than the sum of coherences
of the separate texts T, H. In other words, we claim that the following theorem
holds:

Theorem
T ⇒ H iff coh(T) + coh(H) ≤ coh(T + H).

4. Conclusions and further work

In this paper we presented two methods for recognizing textual inference: one is
from the logic resolution area, using a modified unification algorithm, the second
is a pure semantic lexical method and uses the big facilities offered by the huge se-
mantical dictionary WordNet. We consider that the meaning of these methods has
common roots: the similarity between two atoms in unification algorithm and the
lexical path for entailment are calculated considering semantical relations which
exist between concepts (synsets) in WordNet. A study of the relation between τ ,
τ ′ is in our attention.

The combined methods in Artificial Intelligence between approaches so different,
as Logic and Linguistics, are very largely developed in the last time. The present
paper belongs to this category of combined methods.

References

[1] J.Allen: ”Natural language understanding”, Benjamin/Cummings Publ., 2nd ed., 1995.

[2] J.Bos, K. Markert: ”Recognising Textual Entailment with logical inference”, Proceedings

of HLT/EMNLP. Vancouver, October 2005, pages 628-635.

[3] G. Miller: ”WordNet: a lexical database for english”, Communications of the ACM,

38(11), pages 39-41 1995

[4] ed. C. Fellbaum: ”WordNet: an electronic lexical database”, MIT Press, 1998.

[5] S. Harabagiu, D.Moldovan: ”A parallel system for Textual Inference”, IEEE Transactions

parallel and distributed systems, vol 10, no 11, nov 1999 pages 254-270.

[6] A. Haghighi, A. Ng, C. Manning: ”Robust textual Inference via graph matching”, Pro-

ceedings of HLT/EMNLP. Vancouver, October 2005, pages 387-394.

[7] G. Morrill: ”Type LogicalGrammar.Categorial Logic of Signs”, Kluwer Academic Pub-

lishers, 1994.

[8] T. Pedersen, S. Patwardhan, J. Michelizzi: ”WordNet::Similarity - Measuring the Re-

latedness of Concepts”, Proceedings of the Nineteenth National Conference on Artificial

Intelligence (AAAI-04), July 25-29, 2004, San Jose, CA (Intelligent Systems Demonstra-

tion)

[9] T. Pedersen, A. Kulkarni: ”Identifying Similar Words and Contexts in Natural Language

with SenseClusters”, Proceedings of the Twentieth National Conference on Artificial In-

telligence, Pittsburgh, 2005. (Intelligent Systems Demonstration)

40 DOINA TĂTAR AND MILITON FRENŢIU

[10] http://www.d.umn.edu/ tpederse/similarity.html.

[11] R. Raina, A. Ng, C. Manning: ”Robust textual inference via learning and abductive

reasoning”, AAAI, 2005, http:www.aaai.org.

[12] V. Rus: ”Logic form transformation for WordNet glosses and its applications”. PhD

Thesis, Southern Methodist University, CS and Engineering Department, March 2001.

[13] M.Tatu, D. Moldovan: ”A semantic approach to recognizing Textual Entailment”, Pro-

ceedings of HLT/EMNLP, Vancouver, October 2005, pg 371-378.

[14] D. Tatar: ”Unification Grammars in Natural Language Processing”, in ”Recent topics

in mathematical and computational linguistic”, ed. C. Martin-Vide, G. Paun, Editura

Academiei, 2000, pg 289-300

[15] A. Thayse (editor): ”From natural language processing to logic for expert systems”, John

Wiley and Sons, 1990.

E-mail address: dtatar@cs.ubbcluj.ro

E-mail address: mfrentiu@cs.ubbcluj.ro

Department of Computer Science, Babes-Bolyai University, Cluj-Napoca, Romania

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 2, 2006

DYNAMIC PROGRAMMING AND d-GRAPHS

KÁTAI ZOLTÁN

Abstract. In this paper we are going to introduce a special graph, which we
have called d-graph, in order to provide a special tool for such an optimum
problem’s analysis which breaks down into two or more subproblems by every
decision.

1. Introduction

The dynamic programming as a method for resolution of optimizing problems
was worked out by Richard Bellman. His first book about dynamic programming
was published in 1957 [1]. Since then until his death in 1982 he wrote several books
and articles in this area. In 1962 Bellman together with Dreyfus published the book
Applied Dynamic Programming [2]. In this publication they drew attention to the
fact that dynamic programming can be formulated as a graph search problem.
Later this subject was largely analyzed in some papers. For example Georgescu
and Ionescu introduced the PD-tree notion [3]. In this paper we are going to
introduce a special graph, which we have called d-graph (from division-graph),
in order to provide a special tool for such an optimum problem’s analysis which
breaks down into two or more subproblems by every decision (see later).

2. Optimizing problems

The efficient solving of numerous programming problems implies their optimal
breaking down into subproblems. In the present paper we are dealing with such
optimizing problems where the following conditions are true:

• There is a target function which has to be optimized.
• The optimizing of the target function implies to break down the problem

into subproblems.
• This involves a sequence of decisions.

Received by the editors: May 20, 2006.
2000 Mathematics Subject Classification. D.1.0 [Programming Techniques]: General, G.22.

[Discrete Mathematics]: Graph Theory - Graph Algorithms, Path and Circuit Problems, Trees.
1998 CR Categories and Descriptors. code [Topic]: Subtopic – Detail ; code [Topic]:

Subtopic – Detail .

41

42 KÁTAI ZOLTÁN

• Concerning the division into subproblems, with each decision (cut) the
problem is reduced to one (I. type optimizing problems) similar, but
smaller size subproblem, or breaks into two or more (II. type optimizing
problems) similar, but smaller size subproblems.

• The target function is defined on the set of the problem’s subproblems.
• The principle of optimality is valid for the problem, according to which

the optimal solution of the problem can be built from the optimal solu-
tions of its subproblems (the optimal value of the target function refer-
ring to the problem can be determined from the optimal values referring
to the subproblems).

• Out of the different possibilities of breaking down the problem, we con-
sider optimal that one (or that sequence of decisions) which - in ac-
cordance with the basic principle of optimality - involves the optimal
construction of the solution of the problem.

• We call a subproblem trivial when the value of the target function refer-
ring to it is given by the input data of the problem in a trivial way.

Such an optimizing problem is solved efficiently with the so called dynamic
programming technique.

Example 1. Let’s calculate the result of the product of matrixes A1×A2×· · ·×An

(the dimensions of the matrixes are: d0 × d1, d1 × d2, . . . , dn−1 × dn). Due to
the associativity of the multiplication, we can perform this in several ways. Let’s
determine such a parenthesis of the product (its breaking down into subproblems)
where the corresponding order of the multiplication of matrixes involves a minimal
number of basic multiplications (the target function).

For example, if

n = 4, A1(1× 10), A2(10× 1), A3(1× 10), A4(10× 1)

The optimal breaking down into subproblems: (A1×A2)×(A3×A4), which in-
volves 21 basic multiplications. A worst solution would imply 210 multiplications:
((A1)× (A2 ×A3))× (A4).

The structure of an optimizing problem can be described by a d-graph (division
graph) , defined in the followings.

3. d-graphs

Definition 1. We call the connected weighted digraph Gd(V, E, C) a d-graph if
the following conditions are fulfilled:

(1) V = Vp ∪ Vd and E = Ep ∪ Ed

(2) Vp - the set of the p type nodes of the graph (p-nodes).
Vp = {p1, p2, . . . , pnr p}, nr p - number of p-nodes.

(3) Exactly one element of the set Vp is a source node (f).

DYNAMIC PROGRAMMING AND d-GRAPHS 43

(4) We assign the set of p type sink nodes of Gd with S(Gd) (nr s marks
the number of sink nodes).

(5) Vd - the set of the graph’s d type nodes (d-nodes); nr d - number of
d-nodes.

(6) All the neighbours of the d-nodes are p type and inversely, all the neigh-
bours of the p-nodes are of d type. Each d-node has exactly one in-
neighbour of p type, which we call p-father. The out-neighbours of the
p-nodes are called d-sons. Each d-node has at least one p type out-
neighbour and we are going to refer to these as p-sons.

(7) The d-nodes are identified with two indexes: For example the notation
dik refers to the d-son identified as the kth d-sons of the p-node pi.

(8) Ep - the set of p type arcs of the graph (p-arcs).
Ep = {(pi, dik)/pi ∈ Vp, dik ∈ Vd}.

(9) Ed - the set of d type arcs of the graph (d-arcs).
Ed = {(dik, pj)/dik ∈ Vd, pj ∈ Vp, i < j}. We should notice that the

p type descendent of any p-node have bigger indexes. So in case of any
d-graph the source is the 1 node.

(10) The C : Ep → R function associates a cost to every p-arc. We consider
the d-arcs of zero cost.

Theorem 1. Every d-graph is acyclic.

Proof. Let’s assume that an oriented cycle exists in one of the d-graphs. Ac-
cording to the sixth item of the definition the p and d type nodes alternate on the
cycle. Should the cycle consist of one p-node and one d-node, then the p-node is
the p-father and also the p-son of node d in the same time. But this contradicts
the ninth item of the definition according to which the p-sons of a d-node have
always bigger indexes than its p-father. In case there are at least two nodes of
both types, then let’s consider pi and pj two consecutive p-nodes of the cycle. As
pi is the ancestor and in the same time the descendent of pj - also according to
the ninth item of the definition - i should be smaller and also bigger than j, which
is obviously impossible. So every d-graph is acyclic.

Conclusion 1. The p-nodes of any d-graph can be arranged in topological order.

The following picture presents such a d-graph where each d-node has exactly
two p-sons.

Definition 2. We call the d-graph gd(v, e, c) the d-subgraph of the d-graph Gd(V,E, C),
if

• vp ⊆ Vp, vd ⊆ Vd, ep ⊆ Ep, ed ⊆ Ed and S(gd) ⊆ S(Gd)
• c : ep → R and c(x) = C(x) for any x ∈ ep

• the set of the d, respectively p type sons of any p, respectively d type node
of gd are similar in the gd and Gd d-graphs.

44 KÁTAI ZOLTÁN

- p-nodes (the black one is source, the light grey one is sink)

- d-nodes

- oriented p-arcs

- oriented d-arcs

(we haven’t drawn the directions of the arcs explicitely in order to

avoid making the picture too packed. They indicate always from top

to bottom.)

11 12 13
14

15

1098
7

4
5

6

32

1

1,1 1,2 1,3 1,4

2,1 2,2 2,3 3,1 3,2 3,3

6,1

6,2

7,1
8,1 9,1

Figure 1. d-graph

It results from the above definition that every p-node of a d-graph unequivocally
identifies the d-subgraph for which the respective node is its source.

Definition 3. We call d-tree the d-graph where every p-node (except the sinks)
has exactly one son. The source of a d-tree is called d-root and its sinks are called
d-leaves. The set of leaves of the Td d-tree are marked with L(Td).

Definition 4. We call the d-tree td(vt, et, c) the d-subtree of the d-tree Td(V t, Et, C)
if

• vtp ⊆ V tp, vtd ⊆ V td, etp ⊆ Etp, etd ⊆ Etd and L(td) ⊆ L(Td)
• c : etp → R and c(x) = C(x) for any x ∈ etp
• the set of p-sons of any d-node of td corresponds in the td and Td d-trees.

Definition 5. We call a d-tree Td(V t, Et, c) the d-subtree of the d-graph Gd(V,E, C)
if

DYNAMIC PROGRAMMING AND d-GRAPHS 45

• V tp ⊆ Vp, V td ⊆ Vd, Etp ⊆ Ep, Etd ⊆ Ed and L(Td) ⊆ S(Gd)
• c : Etp → R and c(x) = C(x) for any x ∈ Etp
• the set of p-sons of any d-node of Td corresponds in the d-tree Td and

the d-graph Gd.

If the root of Td corresponds to the source of Gd, then we can speak about a
spanning d-subtree.

Definition 6. By the costs of a d-tree we mean the total costs of its p-arcs.

Definition 7. We call the spanning d-subtree of a d-graph with the lowest costs
minimal cost spanning d-subtree.

Definition 8. (the basic principle of optimality): We say that a d-graph has an
optimal structure if every d-subtree of its optimal (having minimal costs) spanning
d-subtree is itself an optimal spanning d-subtree of the d-subgraph determined by
its root.

4. Optimal Structure d-graphs

Let Gd(V, E, C) be a d-graph. In the followings we are going to define a function
C of p-arc-costs where every d-graph will be of optimal structure. Before doing
that we are defining the node-weighing functions wp and wd. We mark the set of
d-sons of the p-node pi with d son set(pi) and the set of p-sons of the d-node dik

with p son set(dik).
The weight-function wp :

wp : Vp → R
for every pi, i = 1 . . . nrp p-node corresponds

wp(pi) = optimum {wd(dik)}, if pi 6∈ S(Gd)
dik ∈ d son set(pi)

wp(pi) = hr, if pi is the rth sink of the d-graph
where {h1, h2, . . . hnr s} ⊂ R is an input set which characterizes
the Gd d-graph

The wp weight of every p-node (except the sinks) is equal to the wd weight of
its ”optimal d-son”.

The weight function wd :
wd : Vd → R
for every dik d-node corresponds

wd(dik) = ϕ({wp(pj)/pj ∈ p son set (dik)})
The function ϕ describes mathematically how the wd weight of a d-node can

be calculated from the wp weights of its p-sons. The function ϕ also characterizes
the Gd d-graph

After having introduced the above weight functions, we define the cost function
C∗ in the following way:

C∗ : Ep → R, C∗((pi, dik)) = |wp(pi)− wd(dik)|

46 KÁTAI ZOLTÁN

Theorem 2. Every d-graph Gd(V, E,C∗) has optimal structure.

Proof. As we have chosen the weight of the optimal d-sons as the weight of
the p-nodes, every p-node is adjacent to at least one zero cost p-arc. It derives
from this that the minimal cost spanning d-subtree and its every d-subtree will
have zero costs. As C∗, by its definition, assigns positive costs to the p-arcs, it
is natural that every d-subtree of the minimal cost spanning d-subtree will be
a minimal cost spanning d-subtree of the d-subgraph which has a corresponding
source of its root.

5. Determination of the optimal spanning d-subtree with the
implementation of the basic principle of optimality

Let Gd(V, E,C∗) be an optimal structure d-graph. According to the basic
principle of optimality, the optimal spanning d-subtree of any gd d-subgraph of Gd

can be determined from the optimal spanning d-subtrees of the son-d-subgraphs
of gd. Consequently we are going to determine the optimal spanning d-subtrees
belonging to the nodes pi ∈ Vp(i = 1 . . . nr p) in a reversed topological order. This
order can be ensured if at the depth-traversing, we deal with the certain nodes at
the moment we are leaving them.

We use the arrays WP [1 . . . nr p] and WD[1 . . . nr d] in order to store the
weights of the p, respectively d type nodes of the d-graph Gd. At the begin-
ning we fill up the elements of array WP corresponding to the sinks with their
hi(i = 1 . . . nr s) weights, the other elements with the value NIL. For the storage
of the optimal spanning d-subtree we take array ODS[1 . . . nr p], which stores the
optimal d-sons of the p-nodes. We initialize this array with the value NIL. The
initialization procedure, depending on the nature of the optimum to be calcu-
lated, gives a suitable starting value to the array-element WP [pi] received as a
parameter. The function is better analysis whether the first parameter is better
than the second one, according to the nature of the optimum.

optimal division(pi)
initialization(WP[pi])
for all dik ∈ d son set (pi) do

for all pj ∈ p son set (dik) do
if WP [pj] = NIL then optimal division(pj)
endif

endfor
WD[dik] = ϕ({WP [pj]/pj ∈ p son set (dik)})
if is better(WD[dik],WP [pi]) then

WP [pi] = WD[dik]
ODS[pi] = dik

endif
endfor

DYNAMIC PROGRAMMING AND d-GRAPHS 47

end optimal division
Of course we call the optimal division procedure for the source node, pre-

suming that it is not a sink in the same time. The OSD values of the sinks remain
NIL. The following recursive procedure, based on the ODS array prints the p-arcs
of the optimal spanning d-subtree in a preorder order.

optimal tree (pi)
write (pi, ODS[pi])
for all pj ∈ p son set (ODS[pi]) do

if ODS[pj] 6∈ NIL then optimal tree (pj)
endif

endfor
end optimal tree

6. The optimizing problems and the d-graphs

A d-graph can be associated to any optimizing problem described in the intro-
duction.

• The p-nodes represent the different subproblems given by the breaking
down of the problem. The source represents the original problem, the
sinks the trivial ones.

• The numbering of the p-nodes and the acyclicity given by this go hand
in hand with the fact that, in the course of the breaking down, we reduce
the problem to simpler and simpler subproblems.

• A p-node will have as many d-sons as the number of possibilities in which
the subproblem represented by it can be broken down to its subproblems,
by the respective decision. These decision possibilities are represented
by the p-arcs.

• The d-nodes represent the way the respective subproblem breaks down
into its subproblems with the choices given by the different decisions.

• A d-node will have as many p-sons, as the number of subproblems re-
sulted after the disintegration - with the occasion of the decision repre-
sented by it - of the subproblem described by its p-father. This breaking
down into subproblems is described by the d-arcs.

• If different sequences of decisions taken at the breaking down of a prob-
lem lead to the same subproblem, then the respective p-node will have
identical p-descendents on different descent branches.

• The d-subgraphs of a d-graph express the way in which the subproblems
represented by its sources can be broken down onto further, smaller
subproblems.

• A certain subtree of a d-graph describes one of the breaking downs onto
subproblems of the subproblem represented by its root. The spanning

48 KÁTAI ZOLTÁN

subtrees of a d-graph represent the possibilities of breaking down the
original problem onto its subproblems.

• The optimal structure of the d-graphs expresses the fact that the opti-
mal solution of the problem is built from the optimal solutions of the
subproblems. In other words, the corresponding subsequences of the
optimal sequence of the decisions are also optimal.

• The optimal spanning d-subtree represents the optimal breaking down
of the problem into subproblems (its every p-arc represents one of the
decisions of the optimal sequence of decisions.).

• The wp function is nothing else but the returning of the target function
to be optimized to the Gd d-graph.

• h1, h2, . . . , hnr s real values are the optimal values referring to the trivial
subproblems of the target function, represented by the sinks.

• The nature of the optimum function is directly given by the target func-
tion of the problem and is often one of the minimum or maximum func-
tions.

• The function ϕ is determined by the structure of the problem, the general
rule according to which the solution of a subproblem is built from the
solutions of its subproblems.

Hereby, an optimizing problem can be regarded as the determination of the
weight of the source of a d-graph (the optimal value of the target function concern-
ing the original problem) and of its optimal spanning d-subtree (optimal sequence
of decisions, respectively optimal breaking down into subproblems).

We call the procedure optimal division, which implements the basic principle
of optimality, dynamic programming.

7. Solving a problem given as an example

Compression: A bit-sequence of n elements is given. We also have m other
”shorter” sequences of bits, where there are sequences containing only one bit of
0 respectively of 1, too. Let’s replace the first bit-sequences with the minimal
number of short bit-sequences.
Example:

Let the first sequence of bits be 01011.
Further the short sequences are: 1:0, 2:1, 3:11, 4:010, 5:101. We can see that

the original sequence of bits can be broken down to the given short sequences in
several ways:

(0)(1)(0)(1)(1), (0)(1)(0)(11), (010)(11), (0)(101)(1), (010)(1)(1)

The optimal solution is of course represented by the third version, whose com-
pressed code is 43.

How can the problem be broken down into its subproblems? In so far as the
original bit-sequence is not one of the given short sequences, we cut it in two, thus

DYNAMIC PROGRAMMING AND d-GRAPHS 49

reducing its optimal compression to the compression of the sub-sequences of bits
gained at the left and right side of the cut. We continue this until we get sequences
of bits which appear in the given short sequences (trivial subproblems replaceable
one short sequence’s code).

The general subproblem is represented by the optimal compression of the sub-
sequence i . . . j of the original sequence of bits. These indexes will identify the
p-nodes of the d-graph which can be assigned to this problem. The source of the
problem given as an example is the p-node 15 (read one-five). The role of the
WP array is played by the part of a bidimensional array a[1 . . . n, 1 . . . n] situated
on and above its diagonal. This part of the array can be interpreted as the im-
plicit representation of the d-graph of the problem. The p-nodes are represented
by the corresponding array-elements and we can consider as their wp weight the
length of the code of the optimal compression. The ij p-node -in so far as it
is not a sink (the sequence i . . . j is not part of the given short sequences)- will
have a number of (j − i + 1) d-sons, whose p-son-pairs will be the p-node-pairs
(ik, (k+1)j)(k = i . . . j−1). So the d-nodes, respectively the p and d type arcs are
only implicitly present in this representation of the d-graph. Of course this also
implies that we do not use a WD array. This is not necessary, as the weighing of
the d-nodes of the d-graphs can be avoided by merging formulas (1) and (2) (the
weight of any p-node which is not a sink can be determined from the weight of its
direct p-descendents):

wp(pi) = optimum {ϕ({wp(pk)/pk ∈ p son set(dj)})}, if pi 6∈ S(Gd)
dj ∈ d son set (pi)

In the role of the ODS array the part of the bidimensional array situated above
the diagonal can be used. The array-element a[j, i](i < j) implicitly represents the
optimal d-son of the p-node ij by the storage of the optimal k value belonging to
the optimal cut of the sequence of bits i . . . j. If the p-node ij(i < j) is a sink, then
the element a[j, i] will get the value zero. The p-nodes ii(i = 1 . . . n) are obviously
all sinks.

The following picture (see Figure 2.) represents the d-graph of the sample prob-
lem, as it is hidden in the array a storing the optimal values of the subproblems.
We have highlighted the optimal spanning d-subtree of every d-subgraph with the
source ij.

With such a representation of the d-graph the traversing of the non-sink p-
nodes in a reversed topological order can be achieved by the simple traversing
of the array-elements situated above the main diagonal (for example row by row
from below upwards left to right). As the optimal code of any sequence of bits is
the concatenation of the optimal codes of the subsequences given by its optimal
cut, the function ϕ is a simple additive function. As we are looking for the com-
pression with the shortest code, the function optimum will calculate a minimum.
The input data is stored by the variables n, m, b[1 . . . n] and sequence[1 . . .m]. The

50 KÁTAI ZOLTÁN

a 1 2 3 4 5

1

1(1) 2(12) 1(4) 2(15) 2(43)

2 1

1(2) 2(21) 1(5) 2(52)

3 0 2

1(1) 2(12) 2(13)

4 3 0 3

1(2) 1(3)

5 3 2 4 0

1(2)

Figure 2. The d-graph stored in an implicit way in the array a

function nr sequence (i, j) checks whether the sequence of bits b[i . . . j] is present
in the given short sequences. If yes, then it returns its code (its index from the
array sequences), if no, it returns zero. In parallel with the filling up of the ar-
ray a we store the optimal codes themselves, too, in an array COD[1 . . . n, 1 . . . n]
(in the above picture we have represented them in brackets). The function con-
cate(cod1,cod2) concatenates the codes received as parameters.

for i=1,n,1 do
a[i,i]=1
COD[i,i]=nr sequence(i,i)

endfor

DYNAMIC PROGRAMMING AND d-GRAPHS 51

for i=n-1,1,-1 do
for j=i+1,n,1 do

cod=nr sequence(i,j)
if cod>0 then

a[i,j]=1
COD[i,j]=cod
a[j,i]=0

else
a[i,j]=0
for k=i,j-1,1 do

if a[i,k]+a[k+1,j]>a[i,j] then
a[i,j]=a[i,k]+a[k+1,j]
COD[i,j]=concate(COD[i,k],COD[k+1,j])
a[j,i]=k

endif
endfor

endif
endfor

endfor

The optimal code of the original sequence of bits gets into the array COD[1,n].
In case we would also like the optimal parenthesis of the bit-sequence, we can
obtain this by traversing in depth the optimal spanning d-subtree of the d-graph
based on array a.

depthfirst(i,j)
write ’(’
if i=j OR a[j,i]=0 then

for k=i,j,1 do
write b[k]

endfor
else

depthfirst(i,a[j,i])
depthfirst(a[j,i]+1,j)

endif
write ’)’

end depthfirst

8. Conclusions

First of all it is interesting to remark that in case of the I. type optimizing
problems the attached d-graphs can be reduced to a ”normal graphs” (since every
d-node has an unique p-son they can be left out from the graph by matching their

52 KÁTAI ZOLTÁN

p-father directly with their unique p-son). In this special situation the optimal
solution will be represented by the optimal root-leaf path of the graph. By intro-
ducing the d-graphs, the consistent discussion of several optimizing problems has
become possible, and also the theoretical basis of the dynamic strategies related
to them. The relation is similar to the one between the greedy algorithm and the
theory of matroids.

References

[1] R. Bellman, Dynamic Programming, Princeton University Press, New Jersey, 1957.
[2] R. Bellman, S. Dreyfus, Applied Dynamic Programming, Princeton University Press, New

Jersey, 1962.
[3] H. Georgescu, C. Ionescu, The Dynamic Programming Method, a New Approach, STUDIA

Universitatis Babes-Bolyai, Cluj, 43, 1999, pp. 23-38.

E-mail address: katai zoltan@ms.sapientia.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 2, 2006

A STUDY ON DISTANCE METRICS FOR PARTITIONING
BASED ASPECT MINING

GRIGORETA SOFIA MOLDOVAN AND GABRIELA ŞERBAN

Abstract. The aim of this paper is to make a study on the influence of
distance metrics for partitioning based aspect mining. For this purpose, we
comparatively present, from the aspect mining point of view, the results of
three algorithms in Aspect Mining, kAM ([3]), HAM ([6]) and GAAM ([5]),
for different distance metrics. The evaluation is based on a set of quality
measure that we have previously defined in [1] and [2], and a case study is
also reported. We introduce three different criteria on which our study is
based.

Keywords: aspect mining, distance metrics, clustering.

1. Introduction

1.1. Aspect Mining. Separation of concerns ([13]) is a very important principle
of software engineering that, in its most general form, refers to the ability to
identify, encapsulate and manipulate those parts of software that are relevant to
a particular concept, goal, or purpose. Some of the benefits of a good separation
of concerns are reduced software complexity, improved comprehensibility, limited
impact of change, easy evolution and reuse.

Aspect Oriented Programming (AOP) ([10]) provides means to encapsulate con-
cerns which cannot be modularized using traditional programming techniques.
These concerns are called crosscutting concerns. Logging and exception handling
are well known examples of crosscutting concerns. Aspect oriented paradigm of-
fers a powerful technology for supporting the separation of crosscutting concerns.
Such a concern is explicitly specified as an aspect. Aspects encapsulate the im-
plementation of a crosscutting concern. A special tool, called weaver, integrates a
number of aspects to obtain the final software system.

In order to apply AOP principles to legacy software systems, it is necessary
to analyze the existing implementation to discover the crosscutting concerns and

Received by the editors: November 5, 2006.
2000 Mathematics Subject Classification. 68N99, 62H30.
1998 CR Categories and Descriptors. D.2.7 [Software Engineering]: Distribution,

Maintenance, and Enhancement –Restructuring, reverse engineering, and reengineering; I.5.3
[Computing Methodologies]: Pattern Recognition – Clustering.

53

54 GRIGORETA SOFIA MOLDOVAN AND GABRIELA ŞERBAN

refactor them into aspects. The research on aspect mining refers to the identifi-
cation and analysis of non-localized crosscutting concerns throughout an existing
legacy software system ([9]). The goal of aspect mining is to support aspect-
oriented refactoring to improve software comprehensibility, reusability and main-
tainability.

1.2. Related Work. In [4] a vector space model based clustering approach in
aspect mining is proposed. This approach is improved in [3], by defining a new
k-means based clustering algorithm in aspect mining (kAM).

In [1], a part of a formal model for clustering in aspect mining is introduced
and a set of quality measures for evaluating the results of clustering based aspect
mining techniques is presented. This model is extended in [2].

A Hierarchical clustering algorithm in Aspect Mining (HAM) is introduced in
[6]. In [5], the problem of identifying crosscutting concerns is defined as a search
problem in a graph and GAAM algorithm (Graph Algorithm in Aspect Mining) is
introduced for this purpose.

Each of kAM, HAM and GAAM algorithms make use of distance metrics be-
tween multi-dimensional vectors in order to determine the distance (dissimilarity)
between the methods from a software system to be mined.

In this paper we study the influence of distance metrics on the results obtained
by the above mentioned algorithms. We intend to identify the most suitable dis-
tance metric between methods. The comparison of the results is from the aspect
mining point of view and is made based on some quality measures that were pre-
viously introduced in [1] and [2].

The paper is structured as follows. A theoretical model for the problem of
crosscutting concerns identification is given in Section 2. Section 3 presents a vec-
tor space model based partitioning approach in aspect mining. The comparative
results for different distance metrics, based on some quality measures, is presented
in Section 4. Some conclusions and further work are given in Section 5.

2. Background

In [5] the problem of identifying crosscutting concerns is defined as a problem
of identifying a partition of a software system.

Let S = {s1, s2, . . . , sn} be a software system, where si, 1 ≤ i ≤ n, is an element
from the system. An element can be a statement, a method, a class, a module,
etc. We denote by n (|S|) the number of elements of the system.

In the following, we will consider a crosscutting concern as a set of elements
C ⊂ S, C = {c1, c2, ..., ccn}, elements that implement this concern. Let CCC =
{C1, C2, ..., Cq} be the set of all crosscutting concerns that exist in the system
S. The number of crosscutting concerns in the system S is q = |CCC|. Let

A STUDY ON DISTANCE METRICS FOR PARTITIONING BASED ASPECT MINING 55

NCCC = S − (
q⋃

i=1

Ci) be the set of elements from the system S, elements that

are not used to implement any crosscutting concerns.

Definition 1. ([2]) Partition of a system S.
The set K = {K1, K2, ..., Kp} is called a partition of the system S iff 1 ≤ p ≤ n,

Ki ⊆ S, Ki 6= ∅, ∀ i, 1 ≤ i ≤ p, S =
p⋃

i=1

Ki and Ki ∩Kj = ∅, ∀ i, j, 1 ≤ i, j ≤ p, i 6=
j.

In the following we will refer to Ki as the i-th cluster of K.
In fact, the problem of aspect mining can be viewed as the problem of finding

a partition K of the system S such that CCC ⊂ K. Definition 2 introduces the
notion of partitioning aspect mining technique, that is used in this paper.

Definition 2. ([5]) Partitioning aspect mining technique.
Let T be an aspect mining technique and S a software system to be mined. We
say that T is a partitioning aspect mining technique if the result obtained by
T is a partition (Definition 1) K of S.

We mention that kAM, HAM and GAAM algorithms determine partitions of a
software system, but using different approaches, and are used in the partitioning
aspect mining techniques introduced in [3], [6] and [5], The first two algorithms use
clustering ([11]) approaches and the last algorithm uses a graph based approach.

3. Vector Space Model based Partitioning in Aspect Mining

Let us consider a software system S to be mined.
In approaches [3], [5] and [6], the software system S is composed of a set of

methods m1,m2, . . . , mn, so the objects to be grouped (partitioned) are the meth-
ods from S . The methods belong to the application classes or are called from the
application classes.

Based on the vector space model, each method is considered as an l -dimensional
vector: mi = (mi1, . . . ,mil).

Crosscutting concerns in non AO systems have two symptoms: code scattering
and code tangling. Code scattering means that the code that implements a cross-
cutting concern is spread across the system, and code tangling means that the
code that implements some concern is mixed with code from other (crosscutting)
concerns.

We have considered a vector-space model that illustrate only the scattered code
symptom. Future development will also consider the code tangling symptom.

The vector associated with a method m is {FIV, B1 B2, ...Bl−1}, where FIV
is the fan-in value ([12]) of m and Bi (1 ≤ i ≤ l−1) is 1, if the method m is called
from a method belonging to the application class ACi, and 0, otherwise.

56 GRIGORETA SOFIA MOLDOVAN AND GABRIELA ŞERBAN

As in a vector space model based clustering ([11]), we consider the distance
between two methods mi and mj as a measure of dissimilarity between them.

In our approach we will consider three possible distance metrics between meth-
ods:

• Euclidian Distance. The distance between mi and mj is expressed as:

(1) dE(mi,mj) =

√√√√
l∑

k=1

(mik −mjk)2

• Hamming Distance. The distance between mi and mj is expressed as:

(2) dH(mi,mj) = |{k|1 ≤ k ≤ l, mik 6= mjk}|
• Manhattan Distance. The distance between mi and mj is expressed as:

(3) dM (mi, mj) =
l∑

k=1

|mik −mjk|

4. Experimental Evaluation

In order to evaluate the results of kAM, HAM and GAAM algorithms for
different distance metrics, from the aspect mining point of view, we use four quality
measure defined in [1] (DISP, DIV, PREC and PAM) and two quality measures
defined in [2] (ACTE and PANE). We mention that the last two measures are
considered for the case in which the software system consists of a set of methods.

These measures are applied on a case study and the comparative results are
reported in Subsection 4.1.

We make the comparison of the obtained results based on three criteria:

(1) Partitioning criterion. The degree to which each crosscutting concern
is well placed in the partition. For this criterion we use measures DISP
and DIV ([1]).

(2) Selection criterion. How well the clusters to be analyzed are chosen.
For this criterion we use measures PREC and ACTE ([1, 2]).

(3) Ordering criterion. How relevant is the order in which the clusters are
analyzed. For this criterion we use measures PAM and PANE ([1, 2]).

In order to compare two partitions of a software system S from the above
defined criteria, we introduce Definitions 3, 4 and 5. The definitions are based on
the properties of the quality measures defined in [1] and [2].

A STUDY ON DISTANCE METRICS FOR PARTITIONING BASED ASPECT MINING 57

Definition 3. If K1 and K2 are two partitions of the software system S, CCC is
the set of crosscutting concerns in S, then K1 is better than K2 from the parti-
tioning criterion point of view iff the following inequalities hold:

DISP (CCC,K1) ≥ DISP (CCC,K2), DIV (CCC,K1) ≥ DIV (CCC,K2).

Definition 4. If K1 and K2 are two partitions of the software system S, CCC
is the set of crosscutting concerns in S and T is a partitioning aspect mining
technique, then K1 is better than K2 from the selection criterion point of view
iff the following inequalities hold:

PREC(CCC,K1, T) ≥ PREC(CCC,K2, T),

ACTE(CCC,K1, T) ≥ ACTE(CCC,K2, T).

Definition 5. If K1 and K2 are two partitions of the software system S, CCC
is the set of crosscutting concerns in S and T is a partitioning aspect mining
technique, then K1 is better than K2 from the ordering criterion point of view
iff the following inequalities hold:

PAM(CCC,K1) ≤ PAM(CCC,K2), PANE(CCC,K1) ≤ PANE(CCC,K2).

Remark 1. If at least one of the inequalities from Definitions 3, 4 and 5 is not
satisfied, we cannot decide which of the partitions K1 or K2 is better related to its
corresponding criterion.

4.1. Results. In order to evaluate the results of the algorithms presented in [3], [6]
and [5] we have considered as case study Carla Laffra’s implementation of Dijkstra
algorithm ([8]).

This case study is a Java applet that implements Dijkstra algorithm in order
to determine the shortest path in a graph. It was developed by Carla Laffra and
consists of 6 classes and 153 methods.

In this subsection we comparatively present the results obtained after applying
the selected algorithms, for the vector space model and distance metrics defined
in Section 3, with respect to the quality measures, for the case study presented
above.

We mention that in the analysis step ([3], [5], [6]) for identifying the crosscutting
concerns from a software system only a part of the obtained clusters are analyzed,
i.e., the clusters whose distance from 0l point is greater than a given threshold, α.
Because α depends on the distance metric used for partitioning, in Table 1 we give
the values for this threshold and in Table 2 we present the comparative results.

The reasons for choosing the values from Table 1 for the threshold α, from the
aspect mining point of view, are as follows:

• For the Euclidian distance metric we analyze only the methods that are
called from at least two different contexts.

58 GRIGORETA SOFIA MOLDOVAN AND GABRIELA ŞERBAN

Distance metric α
dE 2
dH 3
dM 3

Table 1. The values of the threshold α for the distance metrics.

• For the Manhattan distance metric the inequality (4) holds:

(4) dM (m, 0l) ≥ 3
2
ḋE(m, 0l), ∀m ∈ S

• For the Hamming distance metric we analyze only the methods that are
called from at least two different classes.

Algorithm Distance metric DISP DIV PAM PREC ACTE PANE
kAM dE 0.75 0.8854 0.1486 1 0.6667 0.2009
kAM dH 0.75 0.8910 0.3316 0.25 0.25 0.6846
kAM dM 0.75 0.8854 0.1633 1 0.66 0.2058
HAM dE 0.75 0.8981 0.4199 0.5 0.5 0.4493
HAM dH 0.75 0.8988 0.3545 0.25 0.25 0.6944
HAM dM 0.75 0.8981 0.4183 0.5 0.5 0.4673

GAAM dE 0.75 0.8333 0.4133 0.5 0.5 0.4493
GAAM dH 0.75 0.8583 0.6111 0.25 0.25 0.6601
GAAM dM 0.75 0.8333 0.4117 0.5 0.5 0.4477

Table 2. The values of the quality measures for LaffraGraph case study.

From Table 2, based on Definitions 3, 4 and 5 we observe the following:
• For kAM algorithm we conclude that:

– Partitioning criterion. Better results are obtained for Hamming
distance, followed by Euclidian distance and Manhattan distance
(the last two metrics provide the same results).

– Selection criterion. Better results are obtained for Euclidian dis-
tance and Manhattan distance, followed by Hamming distance (the
first two metrics provide the same results).

– Ordering criterion. Better results are obtained for Euclidian dis-
tance, followed by Manhattan distance, and then by Hamming dis-
tance.

• For HAM algorithm we conclude that:
– Partitioning criterion. Better results are obtained for Hamming

distance, followed by Euclidian distance and Manhattan distance
(the last two metrics provide the same results).

A STUDY ON DISTANCE METRICS FOR PARTITIONING BASED ASPECT MINING 59

– Selection criterion. Better results are obtained for Euclidian dis-
tance and Manhattan distance, followed by Hamming distance (the
first two metrics provide the same results).

– Ordering criterion. We cannot decide which of the distance met-
rics provide better results, because not all the inequalities from
Definition 5 are simultaneously satisfied. This lack of decidability,
in our opinion, may be determined by the vector space model and
the method chosen for ordering the clusters.

• For GAAM algorithm we conclude that:
– Partitioning criterion. Better results are obtained for Hamming

distance, followed by Euclidian distance and Manhattan distance
(the last two metrics provide the same results).

– Selection criterion. Better results are obtained for Euclidian dis-
tance and Manhattan distance, followed by Hamming distance (the
first two metrics provide the same results).

– Ordering criterion. Better results are obtained for Manhattan
distance, followed by Euclidian distance, and then by Hamming
distance.

We observe that, for the partitioning and selection criteria, the classification of
distance metrics is the same for all algorithms. But, for the ordering criterion a
general classification cannot be decided.

In order to solve the lack of decidability for the ordering criterion, we intend:
• To improve the vector space model by taking into account the code tan-

gling symptom.
• To find a better order for the clusters analysis.

5. Conclusions and Future Work

In this paper we have comparatively present the results obtained by three al-
gorithms in aspect mining (kAM ([3]), HAM ([6]) and GAAM ([5])) for different
distance metrics.

In order to evaluate the obtained results from the aspect mining point of view,
we have used a set of quality measures defined in [1] and [2].

We have also given definitions in order to compare two partitions from the
aspect mining point of view, based on three different criteria. Based on these
definitions, we have comparatively analyzed the influence of distance metrics on
the results obtained by the selected partitioning aspect mining techniques.

Further work can be done in the following directions:
• To improve the vector space model by also considering the code tangling

symptom.
• To identify the most suitable values for the threshold α and the proper

order for analyzing the clusters in a partition.

60 GRIGORETA SOFIA MOLDOVAN AND GABRIELA ŞERBAN

• To identify new distance metrics suitable in aspect mining, considering
weighted attributes, too.

References

[1] Moldovan, G.S., Serban, G., “Quality Measures for Evaluating the Results of Clustering
Based Aspect Mining Techniques”, In: Proceedings of Towards Evaluation of Aspect Min-
ing(TEAM), ECOOP, 2006, pp. 13–16.

[2] Moldovan, G.S, Serban, G., “Clustering Based Aspect Mining Formalized”, WSEAS Trans-
actions on Computers, Issue 2, Vol.6, 2007, pp. 199–206

[3] Serban, G., Moldovan, G.S., “A new k-means based clustering algorithm in aspect min-
ing”, In: 8th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC’06), 2006, pp. 60–64.

[4] Moldovan, G.S., Serban, G., “Aspect Mining using a Vector-Space Model Based Clustering
Approach”, In: Proceedings of Linking Aspect Technology and Evolution (LATE) Work-
shop, 2006, pp. 36-40.

[5] Serban, G., Moldovan, G.S., “A graph algorithm for identification of croscutting concerns”,
Studia Universitatis “Babes-Bolyai”, Informatica, LI(2), 2006, to appear.

[6] Serban, G., Moldovan, G.S., “A New Hierarchical Agglomerative Clustering Algorithm in
Aspect Mining”, The 24th International Symposium on Theoretical Aspects of Computer
Science, Aachen, Germany, 2007, submitted.

[7] Marin, M., van, A., Deursen, Moonen, L., “Identifying Aspects Using Fan-in Analysis”, In:
Proceedings of the 11th Working Conference on Reverse Engineering (WCRE2004), IEEE
Computer Society, 2004, pp. 132–141.

[8] Laffra, C.: “Dijkstra’s Shortest Path Algorithm”, http://carbon.cudenver.edu/∼hgreenbe
/courses/dijkstra/DijkstraApplet.html, 1996.

[9] Magiel Bruntink, Arie van Deursen, Remco van Engelen, and Tom Tourwe. On the Use of
Clone Detection for Identifying Crosscutting Concern Code. IEEE Transactions on Software
Engineering, 31(10), 2005, pp. 804–818.

[10] Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin, J.,
“Aspect-Oriented Programming”, In Proceedings European Conference on Object-Oriented
Programming, volume 1241, Springer-Verlag, 1997, pp. 220–242.

[11] Jain, A., Murty, M.N., Flynn, P., “Data clustering: A review”, ACM Computing Surveys,
31(3), 1999, pp. 264–323.

[12] Marin, M., van Deursen, A., Moonen, L., “Identifying Aspects Using Fan-in Analysis”, In
Proceedings of the 11th Working Conference on Reverse Engineering (WCRE2004), IEEE
Computer Society, 2004, pp. 132–141.

[13] David. L. Parnas. On The Criteria To Be Used in Decomposing Systems Into Modules.
Communications of the ACM, 15(12), 1972, pp. 1053–1058.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: grigo@cs.ubbcluj.ro

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: gabis@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 2, 2006

ALGORITHME DE CONSTRUCTION D’UN GRAPHE PERT À
PARTIR D’UN GRAPHE DES POTENTIELS DONNE

NASSER EDDINE MOUHOUB, HOCINE BELOUADAH, AND ABDELHAK BOUBETRA

Résumé : On présente dans ce papier, dans les problèmes d’ordonnancement de
projet, un algorithme original de construction d’un graphe PERT à partir d’un graphe
des potentiels donné en utilisant les notions de graphes adjoints de graphes.

Mots clés : Graphe adjoint de graphe, ordonnancement, méthode des potentiels,

méthode PERT, méthode de construction de graphes.

1 Introduction [KEY 61] [CRA 97] [DAL 01] [ESQ 99]

Les problèmes d’ordonnancement sont définis par la donnée d’un certain nombre
d’opérations (les tâches) et des contraintes de succession entre ces tâches, ainsi que
les durées de ces tâches.
Plusieurs méthodes de modélisation existent actuellement. On peut citer entre
autres: le diagramme de Gantt , la méthode des potentiels et la méthode PERT.Ces
deux dernières utilisent comme moyen de modélisation la théorie des graphes ; et
plus particulièrement le réseau.
Dans le graphe des potentiels (appelé également graphe potentiels tâches), les
tâches sont symbolisées par des sommets auxquels on donne le même code, 2
sommets u et v sont reliés par un arc de u vers v si et seulement si la tâche u
précède la tâche v.

Figure 1. La tâche u, de durée t (u), précède la tâche v

Dans le graphe PERT alors, appelé graphe potentiels-étapes, une tâche est
représentée par un arc auquel on donne le même code, deux arcs u et v tels que
T(u) = I(v) si et seulement si la tâche u précède la tâche v. Les extrémités
initiale et terminale d’un arc sont respectivement les évènements début de tâche

Received by the editors: March 22, 2006.

61

62 MOUHOUB, BELOUADAH, AND BOUBETRA

et fin de tâche, elles sont appelées étape. Les durées sont portées sur les arcs
correspondants.

Figure 2. La tâche u précède la tâche v dans le graphe PERT.

Si le graphe de la méthode des potentiels et celui de la méthode PERT sont
très proches, ce n’est pas toujours le cas. La construction du graphe PERT pose
des problèmes qui amènent à ajouter des arcs fictifs (virtuels ou artificiels) qui ne
correspondent à aucune tâche [ROY 70]. L’introduction des tâches fictives permet
de solutionner certaines situations et de lever des ambigutés. Elles ne mettent en
jeu aucun moyen matériel ou financier.

2 Liens entre graphe des potentiels et graphe PERT

Tenant compte de la simplicité de dessin du graphe des potentiels qui est
unique, on est amené à étudier la construction d’un graphe PERT à partir du
graphe des potentiels. L’opportunité de cette idée réside dans le fait que les prati-
ciens préfèrent travailler avec le graphe PERT qui est plus clair (chaque tâche est
représentée par un arc), alors que le graphe des potentiels est encombrant vu le
nombre important des arcs.
Le problème de passage du graphe des potentiels au graphe PERT a été large-
ment étudié citons entre autres, A.C FISHER [FIS 68], M.HAYES en 1969 et
F.STERBOUL [STE 81] qui se sont basés sur la notion de graphe arc-dual.
Nous présenterons alors, une nouvelle méthode pour la construction du PERT à
partir du graphe des potentiels, qui est basée sur le principe de graphes adjoints
des graphes.

3 Le graphe adjoint de graphe

Soit G=(X, U) un graphe orienté simple ou multiple. On construit à partir
de G un graphe ou ’line graphe’ noté L(G), appelé graphe adjoint (ou graphe
représentatif des arcs) de G comme suit : Les sommets de L(G) sont en correspon-
dance biunivoque avec les arcs de G. Pour des raisons de simplicité, on donne le
même nom aux arcs de G et aux sommets correspondants de L(G).
2 sommets u et v de L(G) sont reliés par un arc de u vers v si et seulement si les
arcs u et v de G sont tels que l’extrémité terminale de u coincide avec l’extrémité
initiale de v c.à.d. T(u)= I(v) [AIG 67] .
Par la définition, tout graphe G admet un graphe adjoint L(G) unique. Par contre,
deux graphes non isomorphes peuvent avoir le même graphe adjoint.

ALGORITHME DE CONSTRUCTION D’UN GRAPHE PERT 63

Figure 3. Un graphe G et son graphe adjoint L(G)

3.1 Le problème inverse : [MOU 02]
On pose le problème inverse suivant:
Etant donné un graphe H, est-il le graphe adjoint d’un graphe? Autrement dit,
existe-t-il un graphe G tel que L(G) soit isomorphe à H, où H = L(G)? Avant de
répondre à cette question, donnons la définition d’une configuration ” Z ”.

Figure 4. La configuration”Z”

3.1.1 Définition : G admet une configuration ”Z” (qui est un sous graphe de
G) si G contient 4 sommets a,b,c et d tels que si (a,c), (b,c) et (b,d) sont des arcs
de G, alors (a,d) n’est pas un arc de G.
Dans le seul but de simplicité, on donnera le nom de barre du ”Z” l’arc (b,c). La
configuration ”Z” apparâıt lorsque 2 sommets ont des successeurs communs et des
successeurs non communs ou par symétrie lorsque 2 sommets ont des prédécesseurs
communs et des prédécesseurs non communs.

3.2 Quelques caractérisations des graphes adjoints : [AIG 67] [BER
73] [MOU 02]
Les graphes adjoints ont été très étudiés mais nous ne donnons dans cet article
que les résultats qui nous intéressent.
1. H est le graphe adjoint d’un graphe si et seulement si H ne contient aucune
configuration ’Z’.
2. H est le graphe adjoint d’un graphe G si et seulement si les arcs de H peuvent

64 MOUHOUB, BELOUADAH, AND BOUBETRA

être partitionnés en bipartis complets Bi=(Xi,Yi) , i=1.., m, tels que

(1) Xi ∩Xj = ∅ et Y i ∩ Y j = ∅, ∀i 6= j

Les bipartis Bi de H sont alors en bijection avec les sommets notés aussi Bi qui ne
sont ni sources ni puits.
Deux sommets Bi et Bj de G étant reliés par un arc de Bi vers Bj si et seulement
si les bipartis complets Bi et Bj de H sont tels que Yi∩ Xj=∅

Figure 5. Un biparti complet B de H et l’étoile de G associée à B

Exemple:

Figure 6. un graphe H et la partition de ses arcs en bipartis
complets. Les arcs de chaque couleur représentent un biparti com-
plet.

Supposons que le graphe H est le graphe adjoint d’un graphe G qu’on doit
chercher. Pour cela, particionnons les arcs de H en bipartis complets (figure6) et
qui sont :
B1 = { (a), (b) } B2 = { (c), (a,d)}
B3 = { (d), (e) } B4 = { (e,g), (f)}
B5 = {(b,f),(c,h)} B6 = { (h), (g)}

ALGORITHME DE CONSTRUCTION D’UN GRAPHE PERT 65

Le graphe G résultant tel que H=L(G) est: (Figure7).

Figure 7. Le graphe G tel que H = L(G)

3. H est le graphe adjoint d’un graphe sans boucles si et seulement si H ne contient
aucune configuration ” Z ”.
4. H est le graphe adjoint d’un graphe si et seulement si toute paire de sommets
ayant des successeurs communs ont tous leurs successeurs communs.
5. H est le graphe adjoint d’un graphe si et seulement si toute paire de sommets
ayant des prédécesseurs communs ont tous leurs prédécesseurs communs.

Ainsi H n’est le graphe adjoint d’aucun graphe si est seulement s’il existe une
paire de sommets ayant des successeurs communs et des successeurs non communs
ou des prédécesseurs communs et des prédécesseurs non communs (présence de Z).

4 Passage du graphe des potentiels au graphe PERT

A cause de la facilité d’utiliser le graphe PERT, on doit se concentrer sur l’étude
de la possibilité de transformer le graphe des potentiels (nombre d’arcs important)
au graphe PERT (nombre d’arcs réduit). On se pose alors le problème de savoir
comment transformer H (qui est le graphe des potentiels) pour en faire un nouveau
graphe qui est le graphe G (graphe PERT).
Le problème qui se pose, est ce que H contient des configurations Z ou non ?
S’il ne contient pas des Z il est alors adjoint et la transformation est immédiate.
Mais s’il contient des Z on est amené à éliminer la barre de chaque Z préservant
naturellement les contraintes de succession. Etudions chaque cas à part :

4.1 Le graphe des potentiels est un graphe adjoint :
Construisons le graphe PERT à partir du graphe des potentiels dans le cas où
celui-ci est un graphe adjoint (absence des Z).
En vertu des résultats du paragraphe 3.2., on procède comme suit : On partitionne

66 MOUHOUB, BELOUADAH, AND BOUBETRA

les arcs du graphe des potentiels en bipartis complets Bi = (Xi, Yi). Dans le graphe
PERT que l’on veut construire, chaque Bi est représenté par un sommet encore
noté Bi et sera le centre de l’étoile (voir exemple et figures 6,7.).

4.2 Le graphe des potentiels n’est pas un graphe adjoint
La construction du graphe PERT est cependant plus complexe dans le cas général
où le graphe des potentiels n’est pas un graphe adjoint : il n’admet pas de par-
tition des arcs en bipartis complets (à cause de la présence des Z). C’est dans ce
cas qu’on doit le modifier afin de le transformer en graphe adjoint en préservant
les contraintes d’antériorités.
Supposons que les tâches a1,..,am précèdent les tâches b1,..,bn .
Dans le graphe des potentiels,ces contraintes d’antériorité sont représentées par
un biparti complet. Dans le graphe PERT, elles sont représentées par une étoile.

Figure 8. Correspondance entre un biparti complet du graphe
des potentiels et une étoile du graphe PERT.

Revenons au problème de tâche fictive dans le graphe PERT. Si on a par exemple
4 tâches a,b,c et d avec les contraintes d’antériorité suivantes : a et b précèdent
c, mais d est précédée par b uniquement. Dans le graphe des potentiels, il n’y a
aucun problème pour la représentation de ces tâches. Elle est faite comme dans la
figure 9 [CAR 88] . Or, pour le passage du graphe des potentiels (qui est considéré
comme le graphe adjoint H), on est obligé à éliminer toutes les configurations ” Z
”. On introduit alors, dans le graphe des potentiels une tâche fictive f dans tout
Z :

L’introduction des tâches fictives vise donc à éliminer toutes les configurations
” Z ” du graphe des potentiels, les contraintes restant inchangées. Il faut rappeler
que les tâches fictives ne sont nullement nécessaires dans le graphe des potentiels
mais ne sont introduites que pour construire le graphe PERT.
Une technique simple d’élimination consiste à remplacer la barre (b,c) de tout ”
Z ” par deux arcs (b,f) et (f,c), selon la figure 9. f étant un sommet fictif.

ALGORITHME DE CONSTRUCTION D’UN GRAPHE PERT 67

Figure 9. Représentation de Z et sa transformation en bipartis
complets dans le graphe des potentiels.

5 Algorithme

Soit Gv un graphe des potentiels qui doit être orienté, valué, connexe et sans
circuit. Gv étant un graphe conjonctif, organisé en niveaux. On veut construire
le graphe PERT correspondant qui est appelé Ge.

Figure 10

L’algorithme se termine puisque la boucle pour n’est exécutée que dans le cas
de présence de Z et le nombre de Z dans Gv est fini il ne peut en aucun cas être
infini. L’élimination d’un Z est immédiate et elle est faite en une seule étape . Il
suffit de repérer la barre de Z et la remplacer par deux arcs.

68 MOUHOUB, BELOUADAH, AND BOUBETRA

Les trois étapes suivantes ne traitent que la réorganisation des arcs et des sommets
en bipartis, ensuite les transformer en étoiles comme on l’a vu précédemment (voir
section 4.2).
Pour la complexité de l’algorithme, cela dépend de la structure de données pro-
posée au départ pour la représentation du graphe ainsi que la structure de donnée
qui héberge le graphe PERT.

6 Exemple

Considérons le tableau des contraintes suivant et le graphe des potentiels associé,
les durées n’étant pas représentées:
Ayant repéré les ” Z ” dans le graphe des potentiels, on introduit les tâches fictives

Figure 11. Table des antériorités T et Le graphe des potentiels

selon la figure 12, puis l’on réorganise le graphe modifié en niveaux: Cherchons
les bipartis complets du graphe des potentiels :
B1 =({ }, {A, B}), B2 =({B}, {E, f1}), B3 = ({A,f1},{C,D}),
B4 =({C }, {F}), B5 = ({D,E},{G,H}), B6 =({F}, { f2, I}),
B7 =({G,H},{f3,K}), B8 = ({f2,f3},{J}), B9 = ({I,J,K}, {w}),

7 Conclusion

Ce travail vient d’élaborer un algorithme original qui introduit les graphes ad-
joints dans les problèmes d’ordonnancement de projet avec ou sans la présence des
” Z ” dans le graphe de potentiels et ceci pour la construction d’un graphe PERT.
Il ouvre la voie à des perspectives, telles que l’optimisation de l’algorithme proposé

ALGORITHME DE CONSTRUCTION D’UN GRAPHE PERT 69

Figure 12. Le graphe des potentiels modifié par l’introduction
des tâches fictives fi.

Figure 13. Le graphe des potentiels modifié avec réorganisation
des tâches en niveaux et partition des arcs en bipartis complets.

pour réduire le nombre de tâches fictives, le traitement des contraintes de local-
isation temporelle (appelées également contraintes de durée) et l’algorithme de
recherche du graphe PERT minimal en nombre de tâches fictives et/ou en nombre
de sommets.

Bibliographie

[AIG 67] M. AIGNER, On the linegraph of a directed graphs, 1967.
[BER 73] C. BERGE, Graphes et hypergraphes, DUNOD, Paris, 1973.

70 MOUHOUB, BELOUADAH, AND BOUBETRA

Figure 14. Construction du graphe PERT à partir du graphe
des potentiels potentiels.

[CAR 88] J. CARLIER et P. CHRETIENNE, Problèmes d’ordonnancement Modélisation,
Complexité, Algorithmes, MASSON, Paris, 1988.
[CRA 97] Y. CRAMA, L. DUPONT, G. FINKE, Recherche opérationnelle et ges-
tion de la production, Nouvelles de la science et des technologies, 1997.
[DAL 01] J. M. DALBARADE et B. PETIT-JEAN, Ordonnancement et gestion
des projets, 2001.
[ESQ 99] P. ESQUIROL et P. LOPEZ, L’ordonnancement, ECONOMICA, Paris,
1999.
[FIS 68] A.C. FISHER, J.S. LIEBMAN et G.L. NEMHAUSER, Computer con-
struction of project networks, Communications of ACM, volume 11, N 7, juillet
1969.
[KEY 61] J. E.KELLEY, Critical-path planning and scheduling mathematical ba-
sis, 1961.
[MOU 02] N. MOUHOUB, Vers le graphe PERT minimal, thèse de Magister,
Université de Sétif, 2002
[ROY 70] B. ROY, Algèbre moderne et théorie des graphes, tome 2, fascicule 3,
Problèmes d’ordonnancement et ensembles de potentiels sur un graphe, DUNOD,
Paris, 1970.
[STE 81] F.STERBOUL, et D.WERTHEIMER, Comment construire un graphe
PERTminimal, RAIRO, 1981.

Institut d’Informatique, Centre Universitaire de Bordj Bou Arréridj, ALGERIE
E-mail address: n mouhoub@yahoo.fr

Département d’Informatique, Université Med BOUDIAF M’sila, ALGERIE

Institut d’Informatique, Centre Universitaire de Bordj Bou Arréridj, ALGERIE

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 2, 2006

INDEXING MOBILE OBJECTS USING BRICKR STRUCTURES

ANDREEA SABĂU

Abstract. A growing number of applications manage mobile objects. The

storage and the organization of data within databases is an open challenge.
A new indexing method is proposed in this paper. The BrickR structure

organizes continuously evolving objects with no extent using two structures:

a temporary structure that manages recent data and a permanent structure
that stores data belonging to the past. This access method treats identically

the spatial and temporal dimensions, thus allowing spatial, temporal and

spatio-temporal queries to be answered.

1. Introduction

There is a tendency today to study systems for management of objects with
spatial evolution in time, particularly for management of mobile objects. These
objects are also known as spatio-temporal objects.

The spatial attributes of which values have evolution in time can represent the
shape and / or the location of objects, and these evolutions may be discrete or
continuous. For example: land parcels have a discrete evolution in time of the
positions and extents; the cars on a road are continuously changing their position,
but not the shape. The most significant challenge is to store data about continu-
ous changing.

A new spatio-temporal access method called BrickR is proposed in this paper.
The spatial objects that BrickR is organizing are point objects (objects with no
extent) with continuous spatial evolution. Such kind of object is a car on the road.
This car might move with a variable speed and along the both senses.

Two sub-structures work together so as to manage efficiently the recently re-
ceived and past data: a permanent physical structure designed as an R*-tree [2]
and a temporary structure designed as a grid which evolves in time like a brick
wall.

Received by the editors: November 10, 2006.

2000 Mathematics Subject Classification. 68P05, 68P20.
1998 CR Categories and Descriptors. H.2.2 [Information Systems]: Database Man-

agement – Physical Design; H.2.4 [Information Systems]: Database Management – Systems;

H.2.8 [Information Systems]: Database Management – Database Applications .

71

72 ANDREEA SABĂU

The paper is organized as follows: Section 2 is an overview of some spatio-
temporal access methods. Characteristics of spatio-temporal data referenced in
this paper are presented in Section 3. Section 4 presents the structures of BrickR,
the manner in which data received by the system is managed. In Section 5 some
experimental results are provided. There are also conclusions and proposed ideas
as future work in Section 6.

2. Related Work

A lot of work has been done on organizing spatio-temporal objects in index
structures. These structures may be classified as structures which index past
data, store data about present and past or index data about present and future
(predictions) [8].

Some index structures which organize past information are the following:
STR-tree, TB-tree [10] - are R-tree like structures, with the main characteristic
that they attempt to achieve trajectory preservation for the same object by storing
trajectory segments of the same object in the same tree node. One advantage is
in answering object-oriented queries, like ”Which was the object’s X trajectory?”.
On the other hand, spatial window queries are not efficiently solved due to the
fact that even if some trajectory segments belonging to two different objects are
spatially closed, they are stored in different tree nodes.
SETI [4] - divides the spatial domain into a static partition and the data corre-
sponding to one cell of partition are organized into an R-tree; one segment which
intersects two cells is divided and the resulting pieces are stored into the cor-
responding cells; one major drawback is the lack of efficiency solving temporal
queries, because all the cells tree must be searched.

There are spatio-temporal access methods that manage present (and past) data:
2+3 R-tree [9], 2-3 TR-tree [1] - are index structures that contain two R-trees: one
tree for points that represent present data and another R-tree for the trajectories
from the past; the search is possible to be done in both R-trees.
LUR-tree [7] - indexes only current positions of objects, which means that histor-
ical queries are not supported; this is a structure adapted to frequent updates.
Hashing [13] - stores only current data; the space is partitioned into zones that
may be overlapped; an object belongs to one zone and its accurate position is
acquired using an auxiliary layer.

The following structures belong to the third class of spatio-temporal access
methods, which manage present data and data for prediction of future movement.
Duality transformation [6] - transforms a line segment from the time-space do-
main into a 2D point (an equation xt = at + b is represented by the point (a,
b)); indexing some trajectory segments spatially closed is not a guarantee that the
representative points are closely stored in tree nodes.
TPR-tree [12], PR-tree [3], STAR-tree [11], TPR*-tree [14] - are included into a

INDEXING MOBILE OBJECTS USING BRICKR STRUCTURES 73

new category of STAM; these structures index the original time-space domain us-
ing parametric bounding rectangles; this means that the rectangles are functions
of time and are built to enclose moving objects trajectories; these access methods
employ different optimization strategies of the parametric boxes.

3. Spatio-Temporal Data

As it was mentioned earlier in this paper, a new indexing method for one-
dimensional objects with continuous evolution in time is proposed. A mobile
object of which extent is not for interest is represented as point. In order to facil-
itate the representation and implementation of the system the movement of these
objects in one-dimensional space is considered. The extension to the movement in
Rn space, n ≥ 2, is straightforward, and the indexing of objects with shape (for
example polygonal shape) is proposed as future work.

The motion of a spatio-temporal object in 1D space is continuous in time: the
objects cannot disappear or be teleported. It is natural for that object to travel
with variable speed during different time intervals. Therefore the movement on
a time interval is represented as a function of time defined and continuous on
that interval, and the trajectory of a mobile object is built using these functions
of time. Graphically representing these functions, we obtain a set of connected
segments (the end of a line is the start of the next trajectory line), except the sit-
uation when, during a time interval, the information about the object’s motion is
unknown. The trajectory segments of an object do not intersect (an object cannot
travel back in time and cannot exist simultaneous in two different locations). The
only common points are the end points of the two temporal consecutive segments.

Therefore, an essential feature of a spatio-temporal object is the arbitrary move-
ment in spatial domain, but only the chronological travel in the temporal domain.
In this paper we consider that the object’s speed stays invariably on a certain time
interval, so that the time function representing a trajectory segment is linear.

It is not imposed a certain unique manner of receiving the spatio-temporal data
sent by the mobile objects. The objects may possess GPS equipment and may send
positioning data regularly or after the change of the motion parameters (speed,
direction), or they may have a local implementation of a process unit of data and
send to the server the trajectory segments. In any of these situations, the input
data for BrickR structure are linear functions of time, and each of them is defined
on a certain time interval and represented as line segment. The temporal feature
of motion is the foundation of the design of BrickR structure (see section 4.2).

4. BrickR Structure

The permanent structure of the BrickR-tree is based on the R-tree design,
therefore in the next section the R-tree family access methods are presented.

74 ANDREEA SABĂU

4.1. R-Trees. The R-trees [5, 2] are index structures for point objects and spatial
objects with extent in Rd, d=2. These spatial access methods are based on the
division of space depending on data adapting to the position of objects in space.
The inclusion relation is used to establish the hierarchy between tree nodes [5, 2].

The objects stored in the R-tree nodes are called Minimum Bounding Rect-
angles (MBR). An MBR is the smallest d-dimensional rectangle including one or
more given objects. The leaf nodes contain pointers to objects stored in the data-
base, but represented inside the index by its MBR. The internal nodes of the tree
contain pointers to child nodes and the smallest rectangles that include all the
entries of those child nodes. Generally, a record stored within an R-tree node has
the structure (P, MBR). If the node is a leaf node, P is a pointer to an object and
MBR is the MBR of that object. Otherwise, P points to a child node and MBR
is the minimum rectangle that encloses the child node’s entries.

Two parameters of an R-tree are the maximum and the minimum number of
entries within a node. These are noted here by M and m respectively. Their values
are chosen by taking into account the size of the page that stores a node, and on
the request of minimizing the number of nodes accessed within a query. Usually
m =

[
M
2

]
, but it can be even smaller. The only exception is the root node, which

can contain a minimum of one entry.
The well-known structures of the R-tree family are the R-tree, R*-tree and R+-

tree. The main difference between the R-tree, R*-tree and R+-tree is the insertion
algorithm of a new object into the tree. In the case of R-tree and R*-tree, the first
step is the selection of the leaf node into which the new object will be inserted,
based on some heuristic. If necessary, the MBR of that node will be enlarged, to
enclose the whole object. The insertion into R+-tree is done using the clipping
method: an object is divided intro pieces regarding the leaf nodes that intersect
the object to be inserted. Therefore, comparing to R-tree, the R+-tree has the
advantage that between leaf nodes are no overlapping areas, but the main dis-
advantage is that there are indexed more objects because of the clipping method
(there may be more pieces for a single object).

In the case of R-tree and R*-tree, the nodes of the same level can overlap, so
that the division of space cannot be necessary a disjunctive one. An MBR can
intersect or be included within the MBR of more nodes, but it is associated with
only one node. On the other side, on the same level in an R+-tree, the MBRs of
nodes define disjunctive partitions of space.

The R*-tree is actually an optimized R-tree, mainly by the insertion and dele-
tion algorithms [2], therefore the structure used for BrickR-tree is the R*-tree.

4.2. Structures of BrickR. One of the drawbacks of using an R-tree as a STAM
[1, 9] is the possible extension of an MBR because of a trajectory segment too
long. It is known that a MBR having large margin and area may cause large
overlapping areas among tree nodes and dead space within nodes, which decreases

INDEXING MOBILE OBJECTS USING BRICKR STRUCTURES 75

the performances solving queries.
The BrickR structures are mainly designed to minimize the overlapping in the

tree structure. More then overlapping area, the experimental results (see Section
5) prove a better value of the sum of perimeters and areas of the tree nodes MBRs.

The design of the BrickR structures had as start ideas the following facts:

(1) the forced enlargement of an MBR because of a too long trajectory
segment;

(2) the objects random movement within the spatial domain;
(3) the strictly chronological evolution on the temporal domain.

BrickR is an index structure and is composed of two structures:

• the permanent structure: an R*-tree type structure used to index spatio-
temporal data from the remote past; it is assumed to be stored in sec-
ondary memory, therefore the paginated storage of the nodes is facili-
tated;

• the temporary structure: a grid structure which indexes the newest ST
data received by the system; this structure is stored in main memory,
having the advantage of a short time accessing data and performing
operations.

The Temporary Structure
The temporary structure is designed to offer an extra ”thinking” moment of

how to group objects into MBRs. The main idea is not to insert an object into
the main structure as soon as the data is received by the system. Storing more
recent objects allows a better clustering of these, having almost void chances to
get overlapping areas between the resulting MBRs.

The grouping of objects is accomplished with the help of one grid-type layer
on the spatial domain. This grid is obtained by dividing the n-dimensional space
using (n-1)-dimensional hyper-planes parallel with the Ot axis. As it was earlier
mentioned, this paper discus the indexing of 1D data, but the extrapolation in
a space of a greater dimension is straightforward. Therefore, in order to index
one-dimensional ST objects, the 2-dimensional space is divided using a set of lines
parallel with the temporal axis.

In this case, this grid is composed by a set of strips. The setting of the dividing
lines (the margins of strips) may take into account the spatial distribution and the
density of mobile objects or these lines may be equally distanced.

As data is arriving into BrickR system, each segment data is inserted into in-
tersecting grid strips, using the clipping method. That means that if a segment
intersects two or more strips, it is divided into pieces, each piece being totally en-
closed within a strip. These segments are later grouped into rectangular bounding
boxes and then such a MBR is sent to the permanent structure to be inserted.

The construction operation of a new MBR occurs when a strip satisfies the

76 ANDREEA SABĂU

adequacy criterion, meaning the number of segments stored in that strip. The
adequacy criterion can vary, in accordance with the density of objects or their tra-
jectories. In most of the tests, it was checked whether the strip contains at least
fan-out-T * stripOccupancy segments, where fan-out-T is defined as the maximum
capacity of a node of BrickR-T structure and stripOccupancy is equal to 3. It has
been considered that a greater value than 3 may have as effect the management
of a too big number of segments within a strip. On the other side, based on test
results, it has been found out that the value 3 is large enough not to get overlap-
ping areas between the MBRs cut out from the grid strips.

he value of the stripOccupancy parameter and the division of grid can be set
according to the known or predicted movement of objects. This stripOccupancy’s
value is seen as a compromise between the number of trajectory segments stored
within a strip and the chance that some overlapping areas may appear.

It can be noticed in figure 1(a) that, when stripOccupancy = 1, overlapping
areas are obtained even within the temporary structure (the shadowed areas). In
the situation when a greater value for stripOccupancy parameter is used (eg. 2),
the segments are clipped and no overlapping area is obtained (see figure 1(b)).

The algorithm for the MBR shaping operation is based on the clipping method,
as well as the insert operation. To get a new MBR from a strip, the algorithm tries
to find a 1D line perpendicular on Ot axis, or a (d-1)-dimensional hyper-plane in
Rd space, which cuts the strip so that the new rectangle to contain at most fan-
out-T segments. Each line segment from the current strip is clipped if the cutting
line intersects it: one piece is stored in the new MBR and the rest of it remains in
the strip.

An observation has to be made about the flexibility of the grid structure. Let
consider tStart(S) to be the smallest timestamp of a start point segment by the
strip S. It may happen that the number of the alive objects at time tStart(S) to
be greater than fan-out-T. This means that a new MBR cannot be obtained by
cutting the strip with a line perpendicular on Ot axis. In such a case, the strip
is divided using a hyper-plane parallel to Ot axis, resulting two narrower strips
(see figure 1(b)). The division operation may continue until a new MBR can be
built. The reverse operation of joining two neighbor strips may be included in
the management algorithms of the grid structure, depending on implementation
or input data.

The Permanent Structure
The permanent structure has the architecture of an R*-tree [2], but the nodes

are organized into two different sub-structures. The terminal nodes containing
the segment data are stored into BrickR-T and are organized into linked lists. A
linked list corresponds to a strip from the temporary structure. The other struc-
ture called BrickR-I stores the internal nodes and follow the organization of an

INDEXING MOBILE OBJECTS USING BRICKR STRUCTURES 77

Figure 1. The construction of MBRs cut out from a grid strip,
if fan-out-T = 4; the segment data is arriving in chronological
order. (a) stripOccupancy = 1: the shadowed surface represents
overlapping areas between MBRs (b) stripOccupancy = 2: no
overlapping area is obtained.

R*-tree. Therefore, the insert operation into the permanent structure has two
steps: the addition of the node containing segment data at the end of a linked list
and the insertion of the node’s MBR into the R*-tree like structure. In this way,
the insertion of the terminal node is simplified.

The main advantages of the two structures of BrickR are emphasized:

• it does not have to insert separately each segment into the physical
structure (many I/O operations are skipped), but the already grouped
segments are sent as a node to the BrickR-T structure; the next step
is the insertion of the new node’s MBR into the upper structure (the
BrickR-I)

78 ANDREEA SABĂU

• the odds to result overlapping areas between the MBRs sent to the per-
manent structure are minimized.

5. Experimental Results

A Delphi 2005 application using tables and stored procedures on a MS-SQL
server has been developed to manage spatio-temporal data using 2D R*-tree, re-
spectively BrickR. Tests has been run on two sets of data, containing different
number of objects and using a fan-out of nodes of value 10 and a minimum occu-
pied space of 40%. A record does not use a lot of space, therefore a paginated node
stores usually more records than the fan-out considered. Some trial tests using
a greater fan-out have showed an improvement of the BrickR efficiency and this
demonstrates that the structure presented in this paper works well for realistic
values of fan-out.

Figure 2. The comparisons between the sums of MBRs margins,
the sums of the total areas, and the sums of the overlapping areas
of the R*-tree and BrickR structures.

INDEXING MOBILE OBJECTS USING BRICKR STRUCTURES 79

The point data signifying the end points of the trajectory segments have been
randomly generated. Their coordinates (x, t) belong to a well-determined interval
and the lengths of the resulting segments are not greater than some threshold (4%,
8.5%, 13% and 17% by the working space).

The parameters evaluated for the two tested access methods are the number
of indexed objects, the number of nodes included into permanent structure, the
sum of nodes MBR margin, the sum of nodes MBR area and the total value of the
overlapping area between the nodes on the same tree level.

It was mentioned earlier that the clipping method has as consequence the growth
of indexed objects number. This fact is pointed out by the tests: the amount
of indexed objects during all tests within BrickR-I and BrickR-T structures is
greater than the number of objects indexed using the R*-tree by approximately
45%. Nevertheless, the number of nodes occupied within BrickR structure is less
than the number of nodes within R*-tree. This proves a much better usage of
space occupied by BrickR structure: on the average, the node occupancy in the
R*-tree is 58.61% and in the BrickR is 90.1%.

Figure 2 shows a lower value for the sums of MBRs margins and the overlapping
area between the MBRs of BrickR structure’s nodes, than the values obtained for
R*-tree.

Another result noticed during tests is a substantial improvement of insertion
operations running time: BrickR structure works 9 times faster than the R*-tree.

6. Conclusions and Future Work

The arguments and the experimental results show that the presented spatio-
temporal indexing structure outperforms other ST index structures. Some im-
provements can be made for the insertion algorithm in BrickR. The optimization
of temporal queries and the adjustment of the BrickR structure to allow mobile
objects with shape to be indexed are proposed as future work.

References

[1] M. Abdelguerfi, J. Givaudan, K. Shaw, R. Ladner, The 2-3 TR-tree, A Trajectory-

Oriented Index Structure for Fully Evolving Valid-time Spatio-temporal Datasets,

In Proc. of the ACM Workshop on Adv. in Geographic Information Systems, ACM
GIS, 29-34, 2002.

[2] N. Beckmann, H. P. Kriegel, R. Schneider, B. Seeger, The R*-tree: An Efficient

and Robust Access Method for Points and Rectangles, In Proc. of the Intl. Conf.
on Management of Data, SIGMOD, 322-331, 1990.

[3] M. Cai, P. Revesz, Parametric R-Tree: An Index Structure for Moving Objects,

In Proc. of the Intl. Conf. on Management of Data, COMAD, 57-64, 2000.
[4] V. P. Chakka, A. Everspaugh, J. M. Patel, Indexing Large Trajectory Data with

SETI, In Proc. of the Conf. on Innovative Data Systems Research, CIDR, 164-175,

2003.
[5] A. Guttman, R-Trees: A Dynamic Index Structure for Spatial Searching, In Proc.

of the ACM Intl. Conf. on Management of Data, SIGMOD, 47-57, 1984.

80 ANDREEA SABĂU

[6] G. Kollios, D. Gunopoulos, V. J. Tsotras, On Indexing Mobile Objects, In Proc.

of the ACM Symp. on Principles of Database Systems, PODS, 261-272, 1999.
[7] D. Kwon, Sj. Lee, S. Lee, Indexing the Current Positions of Moving Objects Using

the Lazy Update R-tree, In Mobile Data Management, MDM, 113-120, 2002.

[8] M. F. Mokbel, T. M. Ghanem, W. G. Aref, Spatio-temporal Access Methods, IEEE
Data Eng. Bull., 26(2), 40-49, 2003.

[9] M. A. Nascimento, J. R. O. Silva, Y. Theodoridis, Evaluation of Access Structures

for Discretely Moving Points, In Proc. of the Intl. Workshop on Spatio-Temporal
Database Management, STDBM, 171-188, 1999.

[10] D. Pfoser, C. S. Jensen, Y. Theodoridis, Novel Approaches in Query Processing

for Moving Object Trajectories, In Proc. of the Intl. Conf. on Very Large Data
Bases, VLDB, 395-406, 2000.

[11] C. M. Procopiuc, P. K. Agarwal, S, Har-Peled, STAR-Tree: An Efficient Self-
Adjusting Index for Moving Objects, In Proc. of the Workshop on Alg. Eng. and

Experimentation, ALENEX, 178-193, 2002.

[12] S. Saltenis, C. S. Jensen, S. T. Leutenegger, M. A. Lopez, Indexing the Positions
of Continuously Moving Objects, In Proc. of the ACM Intl. Conf. on Management

of Data, SIGMOD, 331, 342, 2000.

[13] Z. Song, N. Roussopoulos, Hashing Moving Objects, In Mobile Data Management,
161-172, 2001.

[14] Y. Tao, D. Papadias, J. Sun, The TPR*-Tree: An Optimized Spatio-temporal

Access Method for Predictive Queries, In Proc. of the Intl. Conf. on Very Large
Data Bases, VLDB, 790-801, 2003.

Faculty of Mathematics and Computer Science, Babes-Bolyai University, Cluj-Napoca,

Romania
E-mail address: deiush@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 2, 2006

OPERATIONAL SEMANTICS OF TASK MODELS

ADRIANA TARŢA AND SIMONA MOTOGNA

Abstract. This paper proposes an operational semantic approach for the

task models. Task models are used in the process of user centered software
design to represent the work structure and the sequence of steps needed to

reach a goal. The goal of our approach is to develop inference rules which

will reflect the changes on the presentation aspects of an application when
a certain temporal operator occurs. By using the proposed inferece rule we

will show that when the deductive process is ended the enabled task sets are

determined.

1. Introduction

Today, computers are used in almost every domain of our life. The success or
failure of a software system is given by the support the system gives to its user in
performing their tasks efficiently and with satisfaction. These features of a software
systems are components of a software quality measure, called usability. In order to
obtain a high usability level, a user centered approach in the design of interactive
system should be used. In this paper we will discuss a method used in the design
of interactive system called task-based design. The task-based design relies on
the analysis of the tasks the users perform. The result of the task analysis is
represented by task models. In this paper we will present a formal approach of task
models based on operational semantics [10]. The paper is structured as follows:
Section 2 presents the basic elements of task-based design, Section 3 presents some
introductory notions about operational semantics followed by the presentation
of our approach in describing task models using operational semantics, Section
4 presents few examples of applying operational semantics on some task trees
and Section 5 presents the conclusions of our research and further work on our
approach.

Received by the editors: November 28, 2006.
2000 Mathematics Subject Classification. 68-xx, 68Qxx.
1998 CR Categories and Descriptors. [F.4.1]: Theory of Computation – Mathematical

Logic; [H.5.2 [Information Systems]: Information Interfaces and Presentation – User Interfaces.

81

82 ADRIANA TARŢA AND SIMONA MOTOGNA

2. Task-based design

The first step in task based design of interactive systems is task analysis. Task
analysis is the process of gathering data about tasks people perform and acquiring
a deep understanding of it. The process of structuring data and gaining insight
into the data is called task modeling [14]. Work structure is one of the most
important aspects in task analysis. The design of an interactive system usually
means restructuring the work and removing or adding tasks. Work structure can
be captured in a task decomposition tree [15]. The tree forms a hierarchy where
the high level tasks are found at the top of the tree and the most basic tasks are
at the leaf nodes. In the representations proposed over time ([14], [7]), the tree
are enhanced constructors that indicate time relationship between tasks. In the
work structure model, the root of the tree is a goal with possibly some subgoals.
Connected to goals are tasks and tasks can be connected on the same level by
temporal operators. When designing for usability, the work structure is important
for developing the most appropriate interaction structure and functionality.

Many task analysis methods have been developed and used in the design of
software systems: HTA [1], GOMS [3], TAG [9], MAD [11], most of them using a
textual formal notation. For complex systems, these methods were impossible to
be used. In 1996, a new approach in task based design has been developed, con-
sisting in a method for analysing the groupware work globally, not individually.
This new method has been called GTA (Groupware Task Analysis) [13] and based
on GTA a design method called DUTCH (Designing for Users and Tasks from
Concepts to Handles) [16] has been developed. The task models (trees) developed
using GTA used constructors to specify the time relationships between tasks. For
the average usage, the following time relationships have proved sufficient: Con-
current, Choice, AnyOrder, Succesive and * (iteration) [14]. These constructors
were: SUCC for sequential tasks, PAR for concurrent tasks, CHOICE for alter-
nate task, * for iterative tasks and ANY for independent order tasks [14]. CTT
(ConcurTaskTrees), another approach in task modeling, uses a more formal time
relationship specification using LOTOS (Language Of Temporal Ordering Specifi-
cation) operators [5]. The operators taken from LOTOS are: enabling, disabling,
parallel composition (interleaving and full synchronization), choice, order inde-
pendence and iteration. In the following, we will present the definition of each of
the operators mentioned above. The original definitions are expressed in terms of
processes [2]. For the subject of our paper, we will use the term task instead of
using the term process.

The choice operator - denoted by [] - is defined as follows: if T1 and T2 are
two tasks, then T1[]T2 denotes a task which behaves like T1 or T2.

The interleaving operator - denoted by ||| - if T1 and T2 are two tasks ready
for an action (t1 and t2), then both action orderings (t1 after t2 ot t2 after t1)
are possible.

OPERATIONAL SEMANTICS OF TASK MODELS 83

The synchronization operator - denoted by || - T1 and T2 have to synchronize
on some actions in order to exchange information.

The sequential composition (enabling) operator - denoted by - � - T1 � T2 -
if T1 terminates successfully, then the execution of T2 is enabled.

The disabling operator - denoted by [> - T1 [>T2 - if T2 is started, then T1 is
never performed.

The iteration operator - denoted by ∗ - T1∗ - means that task T1 is iterative.
In the following subsection we will use operational semantics in order to system-

atically derive the actions (subtasks) that a task may perform from the structure
of expression itself. The goal of this approach is to determine the Enabled Task
Sets (ETS) [4], which will lead us to a presentation model of the user interface of
an interactive systems.

3. Operational semantics for temporal operators

Operational semantics has been successfully used in specifying different pro-
gramming languages. The principles can be applied with a few modifications for
our goals.

We will denote the set of temporal operators by O = {[], >>, [>, ||, |||, | = |, ∗}.
The prority order among operators is: choice operator > parallel composition op-
erators (interleaving, synchronization) > disabling operator > order independence
operator> enabling operator [8].

Our aim is that starting from a task tree to obtain in a rigourous way the enabled
tasks sets (tasks which are enabled at the same time) that will correspond to the
user interface of an interactive system. Having the enabled tasks sets, we will able
to determine the widgets of the user interface based on task types. Tasks types can
be: editing, monitoring, selection of a single choice or selection of multiple choices
and control [14]. In the following we will describe our approach in identifying the
enabled tasks sets based on the operational semantics.

We will give the definition of a task tree starting from the definition of the tree
concept [6]. A task tree has a root node (representing the goal of the task perfor-
mance). Each node is either a leaf (a unit task) or an internal node (representing
a subtask). An internal node has one or more children nodes and is called the
parent of its child nodes. All children of the same node are siblings. Every two
siblings are related by a temporal operator belonging to the set O.

We will use Haskell-like data definitions to define abstract syntax formally:

Op=[](ST,ST) | ||(ST,ST)| [> (ST,ST)| >> (ST,ST)| ||| (ST,ST)| *(ST)

A task sequence may be defined as
ST → T op T | T op ST | T
T → task
op →� | [] | ‖ | 9 | [> |∗.

84 ADRIANA TARŢA AND SIMONA MOTOGNA

The state of the abstract machine for task trees has a stack of tasks and an
enabled task sets (ETS) collection denoted by E where the enabled tasks sets
generated by the execution of the abstract machine are saved.

The structured operators semantics for task models defines a relation ”_” which
means ”is transformed by a single execution step into” [12]. We define this relation
by means of inference rules. An expression like ”Jt1KE _ JskipKE” can be read
as ”execution of task t1 with the enabled task sets E means execution of skip (no
action) with the enabled task sets E”. An expression like ”Jt1KE _ Jt′1KE ′” can
be read as ”execution of task t1 with the enabled task sets E means execution of
subtask t′1 with the enabled task sets E ′”.

3.1. Enable operator semantics. When two tasks are related by the enabling
operator it means that after the completion of the first task, the second task will
start. This means that the two tasks will belong to different enabled tasks sets.
This aspect will be described by the changes that will affect the enabled task sets
E . In the following we will describe the inference rules for the enable operator:

Jt1KE _ Jt′1KE
(ER1)

Jt1 � t2KE _ Jt′1; t2K E

The first rule refers to the situation when the task t1 is evaluated to one of its
subtasks t′1. In this case, the expression Jt1 � t2KE is evaluated to the expression
Jt′1; t2K E . In this case the ETS remains unchanged, because further processing
must be done.

Jt1KE _ JskipKE + {t1}
(ER2)

Jt1 � t2KE _ Jskip; t2K E + {t1}

The second rule handles the situation when the enabling task t1 is already
accomplished (the next step in its performance is skip (no action)). In this
case, the expression Jt1 � t2KE is evaluated to the sequential execution of skip
followed by the execution of the enabled task t2. The ETS will be enriched with
the accomplished task t1.

(ER3)
Jskip � t2KE _ Jt2K E

The third rule describes the way the expression Jskip � t2KE is evaluated. In
this situation, only task t2 must be executed and the ETS remains unchanged.

(ER4)
Jt1 � skipKE _ Jt1K E

OPERATIONAL SEMANTICS OF TASK MODELS 85

The fourth rule describes the situation when the enabling task is a final task (it
is the last child of a node). In this case the expression Jt1 � skipK is evaluated
to the execution of the enabling task.

3.2. Choice operator semantics. If two tasks t1 and t2 are related by the choice
operator, the performance of the task depends on users option. That is why we
have added o in the middle of the operator’s notation, representing the users’
option. We make the convention that if o evaluates to the constant 1, then the
first task is selected for execution (see ChR1). If o evaluates to 2, then the second
task will be selected for execution (see ChR3). In order to be able to select one
of two options, both tasks should be available at the same time. This aspect is
reflected on the updates which affect the store by adding both tasks to the ETS.
In the following we will present the inference rules for the choice operator:

JoKE _ 1 E Jt1KE _ JskipKE ′
(ChR1)

Jt1 [o] t2KE _ JskipK E ′ + {t1, t2}

JoKE _ 1 E Jt1KE _ Jt′1KE ′
(ChR2)

Jt1 [o] t2KE _ Jt′1K E ′ + {t′1, t2}

JoKE _ 2 E Jt2KE _ JskipKE ′
(ChR3)

Jt1 [o] t2KE _ JskipK E ′ + {t1, t2}

JoKE _ 2 E Jt2KE _ Jt′2KE ′
(ChR4)

Jt1 [o] t2KE _ Jt′2K E ′ + {t1, t′2}

3.3. Disable operator semantics. If t1 and t2 are two tasks and t2 is a disabling
task, this means that when t2 performance starts t1 is disabled no matter which is
the execution state of t1 (i.e. t2 is able to suspend the execution of any subtask of
t1). That is why the rule does not have an hypothesis part of the inference rule.
This means that t2 must belong to every enabled tasks set generated by t1. We
have described this fact by updating the ETS E by adding the disabling task to
each set of the ETS:

(DR)
Jt1 [> t2K E _ Jskip; t2K E ′

where E ′ = {{l1, . . . , ln, t2}}, ∀{l1, . . . , ln} ⊂ E.

86 ADRIANA TARŢA AND SIMONA MOTOGNA

3.4. Parallel composition operator semantics - Pure interleaving. The
pure interleaving operator relating the task T1 and T2 expresses nothing but any
interleaving of the actions of T1 with the actions of T2:

(ConcR1)
Jskip 9 skipK E _ JskipK E

The first rule expresses the fact that by interleaving no actions (skip), the result
will be also skip.

Jt1KE _ Jt′1KE ′
(ConcR2)

Jt1 9 skipK M _ Jt′1K E ′

Jt2KE _ Jt′2KE ′
(ConcR3)

Jskip 9 t2K M _ Jt′2K E ′

The rules ConcR2 and ConcR3 describe the situation when one of the inter-
leaving tasks is evaluated to one of its children and the ETS is changed to E ′, then
interleaving the task with skip (no action), the result will be the execution of the
child task and the ETS will be E ′.

Jt1KE _ Jt′1KE ′
(ConcR4)

Jt1 9 t2K E _ Jt′1 9 t2K E ′

Jt2KE _ Jt′2KE ′
(ConcR5)

Jt1 9 t2K E _ Jt1 9 t′2K E ′

Jt1KE _ Jt′1KE ′

Jt2KE _ Jt′2KE ′′
(ConcR6)

Jt1 9 t2K E _ Jt′1 9 t′2K ER

where ER is the enabled tasks set formed as follows: ∀{X} ⊂ E ′,∀{Y } ⊂ E ′′, ER =
{{X, Y }}

The last three rules ConcR4, ConcR5 and ConcR6 describe the situation when
the execution of one (or both) of the interleaving tasks is evaluated to the execution
of one of its children with changes on the ETS (E ′)(i.e. Jt1KE _ Jt′1KE ′). In
this case, the result of the evaluation of interleaving of the two tasks will be
evaluated to the interleaving of the child task(s) with implications on the ETS
(i.e. Jt1 9 t2K E _ Jt′1 9 t2K E ′).

OPERATIONAL SEMANTICS OF TASK MODELS 87

3.5. Parallel composition operator semantics - Full Synchronization. The
rules for the parallel composition operator are very similar to those for the inter-
leaving operator and will be presented in the following:

(SyncR1)
Jsync t1 || sync t2K E _ Jt1 || t2K E

Jt2KE _ Jt′2KE ′
(SyncR2)

Jskip || sync t2K E _ Jt2K E ′

Jt1KE _ Jt′1KE ′
(SyncR3)

Jsync t1 || skipK E _ Jt1K E ′

Jt1KE _ Jt′1KE ′
(SyncR4)

Jt1 || sync t2K E _ Jt′1 || sync t2K E ′

Jt2KE _ Jt′2KE ′
(SyncR5)

Jsync t1 || t2K E _ Jsync t1 || t′2K E ′

Jt1KE _ Jt′1KE ′

Jt2KE _ Jt′2KE ′′
(SyncR6)

Jsync t1 || sync t2K E _ Jt′1 || t′2K ER

where ER is the enabled tasks set formed as follows: ∀{X} ⊂ E ′,∀{Y } ⊂ E ′′, ER =
{{X, Y }}

3.6. Order independence operator semantics. The expression t1 | = | t2
means that t1 and t2 can be executed in any order, but both tasks must be executed
(for example filling in the user name and the password in a login form). In terms
of enabled task sets, both tasks will belong to the same enabled tasks set, fact
illustrated by adding both tasks to the same enabled tasks set of ETS. The rules
will be presented in the following:

Jt1KE _ Jt′1KE
(OIR1)

Jt1 | = | t2K E _ Jt′1; t2K E + {t1, t2}

Jt2KE _ Jt′2K E
(OIR2)

Jt1 | = | t2KE _ Jt1; t′2K E + {t2, t1}
The first two rules describe the situation when one of the two tasks is evaluated
to the execution of one of its children (let’s say t1 is evaluated to the execution
of t′1). In this case, the expression Jt1 | = | t2K E is evaluated to the expression

88 ADRIANA TARŢA AND SIMONA MOTOGNA

Jt′1; t2K E + {t1, t2} which means the execution of t′1 followed by the execution of
t2.

The following rules (OIR3 and OIR4) regard the situation when one of the
tasks is skip and the other is evaluated to the execution of one of its subtasks. In
this case the expression evaluates to the execution of the subtask and the ETS is
updated by adding the parent task.

Jt2KE _ Jt′2K E
(OIR3)

Jskip | = | t2KE _ Jt′2K E + {t2}

Jt1KE _ Jt′1K E
(OIR4)

Jt1 | = | skipKE _ Jt′1K E + {t1}

3.7. Iteration operator semantics. The iteration operator associated to a task
means that the task is iterative (after completing an execution, the task can start
its execution again).

The first inference rule say that if a task execution is accomplished (Jt1KE _
JskipKE) then task’s iteration is evaluated to skip and the ETS is updated by
adding a new set containing the iterative task:

Jt1KE _ JskipKE
(ItR1)

Jt∗1K E _ JskipK E + {t1}

If the iterative task is not accomplished (one of its subtasks is running), then
the iteration of the task is evaluated to the iteration of its child and the ETS is
updated by adding the parent task.

Jt1KE _ Jt′1KE + {t1}
(ItR2)

Jt∗1K E _ Jt′∗1 K E + {t1}

3.8. Complementary rules. In addition to the rules associated to each operator
we will need some rules for sequential execution. The need for these rules appears
when composed temporal operators should be handled. The evaluation of such
kind of expressions is reduced to the evaluation of some sequential tasks. The
rules are presented in the following:

(SR1)
Jskip; tK E _ JtK E

The rule SR1 says that skip (no action) followed by the execution of the task t
is evaluated to the execution of task t and the ETS is not affected.

OPERATIONAL SEMANTICS OF TASK MODELS 89

Jt1KE _ Jt′1KE ′
(SR2)

Jt1; t2K E _ Jt′1; t2K E ′

If the task t1 is evaluated to the execution of one of its children t′1, the expres-
sion Jt1; t2K E is evaluated to the execution of the child task (t′1) followed by the
execution of t2. The ETS is updated with the changes introduced by the execution
of t′1.

t1 _ skip
(ExR1)

Jt1K E _ JskipK E + {t1}

The rule ExR1 is used when t1 is a leaf in the task tree and its execution is
completed (is transformed in skip). In this case the expression Jt1K E where E is
the ETS is evaluated to skip and the ETS is updated with a new task (t1).

4. Examples

In the following we will present some examples of generating enabled tasks sets
using the operational semantics. The first example is related to a task tree using
the enabling operator. The task tree is presented in Figure 1. We have to evaluate
the expression JB � D � EKE which is the frontier of the tree. Using the rule

Figure 1. Task tree with enabling operators

ER2 we will make the first step in our deduction as follows.

JBKE _ JskipKE + {B}
JB � D � EKE _ Jskip; D � EK E + {B}

Let us denote E ′ = E + {B}. By applying the rule SR1 we will evaluate
Jskip; D � EKE ′.

Jskip; D � EK E ′ _ JD � EK E ′

Now, using ER2 we have:

90 ADRIANA TARŢA AND SIMONA MOTOGNA

Figure 2. Task tree with choice operator

JDKE ′ _ JskipKE ′ + {D}
JD � EKE ′ _ Jskip; EK E ′ + {D}

Let us denote E ′′ = E ′ + {D}. Using The rule SR1, Jskip;EKE ′′ is evaluated to
JEK E ′′.

Jskip;EKE ′′ _ JEK E ′′

Now, we will apply ExR1 to evaluate JEK E ′′ and we will obtain:

E _ skip

JEKE ′′ _ JskipK E ′′ + {E}
At the end of the deduction process the final content of the store will be com-

posed by three enabled tasks sets: {B}, {D}, and {E}.
The second example handles a task tree using the choice operator. We will

consider that the user selects the first option from the available ones (see Figure
2). We have to evaluate the expression JB � E[o]F � DKE . Using ER2 for the
task B we will obtain:

JBKE _ JskipK E + {B}
JB � E [o] F � DKE _ Jskip; E [o] F � DK E + {B}

Let us denote E ′ = E + {B}. Applying ChR1 and ER2we will obtain:

JoKE ′ _ 1 E ′ E _ skip

JE [o] F KE ′ _ JskipKE ′ + {E,F}
JE [o] F � DKE ′ _ Jskip;DKE ′ + {E,F}

Let us denote E ′′ = E ′ + {E,F}. We will apply SR1 and the next step in the
deductive process will be:

Jskip;DKE ′′ _ JDKE ′′

Applying ExR1 we will obtain:
D _ skip

JDKE ′′ _ JskipKE ′′ + {D}

OPERATIONAL SEMANTICS OF TASK MODELS 91

At the end of the deductive process the content of the ETS is E ′′ + {D} which
means {E,F}, {D}, {B}.

The following example illustrates the process of building ETS when the task
model contains parallel (interleaving) tasks. The expression we must evaluate is
D � E[]F 9 G[]H(see Figure 3).

Figure 3. Task tree using the pure interleaving operator

JDKE _ JskipKE + {D}
JD � E [o1] F 9 G [o2] HKE _ Jskip; E [o1] F 9 G [o2] HK E + {D}

Let us denote E ′ = E + {D}. We will evaluate Jskip; E [o1] F 9 G [o2] HK E ′

using SR1.

Jskip; E [o1] F 9 G [o2] HKE ′ _ JE [o1] F 9 G [o2] HK E ′

Applying SR1 and ChR1 we will obtain:

Jo1K E ′ E _ skip

JE [o1] F K E ′ _ JskipKE ′ + {E,F}
JE [o1] F 9 G [o2] HK E ′ _ Jskip 9 G [o2] HK E ′ + {E,F}

Let us denote E ′′ = E ′ + {E,F}. Using ConcR3 and ChR2 the result will be:

Jo2K E ′′ _ 2 E ′′ + {G, H} G _ skip

JG [o2] HKE ′′ _ JskipKE ′′ + {G, H}
Jskip 9 G [o2] HK E ′′ _ Jskip 9 skipK ER

The final ETS will be ER = {{D,G, H}, {E,F,G,H}.

5. Conclusions and further work

In this article we have presented a new approach of task models based on
operational semantics. We have given a definition of task trees and we have written
inference rules for the temporal operators used to describe task models. We have
captured on the inference rules aspects regarding the updates that take place at

92 ADRIANA TARŢA AND SIMONA MOTOGNA

the enabled tasks sets collection (E). The process of building the presentation
model will be based on the obtained ETS collection.

As future research directions our goals are: to build the presentation model
based on the enabled tasks sets obtained using operational semantics and to extend
our approach in order to build a dialog model also (transitions between states)
starting from task models.

References

[1] J. Annett and K.D. Duncan. Task analysis and training design. Journal of Occupational

Psychology, 41:211–221, 1967.
[2] T. Bolognesi and E. Brinksma. Introduction to the iso specification language lotos. Comput.

Netw. ISDN Syst., 14(1):25–59, 1987.

[3] S. Card, T. Moran, and A. Newell. The Psychology of Human-Computer Interaction.
Cariere. Lawrence Erlbaum Associates, 1983.

[4] L. Marucci, F. Paterno, and C. Santoro. Multiple and Cross-Platform User Interfaces: En-
gineering and Application Frameworks, chapter Supporting Interactions with Heterogeneous

Platforms Through User and Task Models, pages 217–238. H. Javahery and A. Seffah (eds.),

2003.
[5] G. Mori, F. Paternò, and C. Santoro. CTTE: Support for developing and analyzing task

models for interactive system design. IEEE Transactions on Software Engineering, 28(9):1–

17, 2002.
[6] NIST. National institute for standardization and technology.

http://www.nist.gov/dads/HTML/tree.html.

[7] F. Paternò. Model-based tools for pervasive usability. Interacting with Computers, 2004.
[8] F. Paternò, C. Mancini, and S. Meniconi. ConcurTaskTrees: A diagrammatic notation for

specifying task models. In INTERACT ’97: Proceedings of the IFIP TC13 Interantional

Conference on Human-Computer Interaction, pages 362–369. Chapman & Hall, Ltd., 1997.
[9] S.J. Payne. Task Action Grammar. In Bullinger H. J. and Shackel B., editors, Proceedings

INTERACT’84, pages 139–144, North-Holland, 1984.

[10] G. D. Plotkin. A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19, University of Aarhus, 1981.

[11] D. Scapin and C. Pierret-Golbreich. Towards a method for task description: MAD. Work
with Display Units, 89:371–380, 1989.

[12] B. Sufrin and R. Bornat. Animating Operational Semantics with JAPE. cite-

seer.ist.psu.edu/485702.html.
[13] R. van Loo, G. van der Veer, and M. van Welie. Groupware Task Analysis in practice:

a scientific approach meets security problems. In 7th European Conference on Cognitive
Science Approaches to Process Control, 1999.

[14] M. van Welie. Task-based User Interface Design. PhD thesis, Vrije Universiteit Amsterdam,
2001.

[15] M. van Welie, G. van der Veer, and A. Koster. Integrated representations for task modeling.
In Tenth European Conference on Cognitive Ergonomics, pages 129–138, 21-23 August 2000.

[16] M. van Welie and G.C. van der Veer. Structured methods and creativity: a happy Dutch
marriage. In Co-Designing 2000, 2000.

Department of Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: adriana, motogna@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 2, 2006

SEQUENT CALCULUS IN COMPUTING DEFAULT
EXTENSIONS

MIHAIELA LUPEA

Abstract. Justified and constrained default logics are the versions of default
logic that have the property of semi-monotonicity. Based on this property, in
this paper we present an iterative approach of the problem of computing the
justified and constrained extensions of a propositional default theory. The
sequent calculus and its complementary system, the antisequent calculus, are
used to check the cautious applicability condition for defaults.

Keywords: default logic, nonmonotonic reasoning, theorem proving.

1. Introduction

The nonmonotonic reasoning is an important part of human reasoning and rep-
resents the process of drawing conclusions from incomplete information. Adding
new facts may later invalidate these conclusions which are only plausible, not nec-
essarily true. Default logics (classical, justified, constrained, rational) formalize
default reasoning, a special case of nonmonotonic reasoning. These logical systems
overcome the lack of information by making default assumption about a situation.
The defaults are nonmonotonic inference rules used to model laws which are true
with a few exceptions.

A default theory ([8]) ∆ = (D,W) consists of a set W (the facts) of consistent
formulas of first order logic and a set D of default rules. W represents absolute
(sometimes incomplete) knowledge about the world while D represents defeasible
knowledge.

A default has the form d = α:β1,...,βm

γ , where: α is called prerequisite, β1, . . . , βm

are called justifications and γ is called consequent.
A default d = α:β1,...,βm

γ can be applied and thus derive γ if α is deductible
(derivable) and it is consistent to assume β1, . . . , βm (meaning that ¬β1, . . . ,¬βm

can not be derived).
Default extensions contain all the formulas obtained from the set of facts using

the classical inference rules and the defaults. The elements of extensions are called

Received by the editors: November 10, 2006.
2000 Mathematics Subject Classification. 03B79, 68T15, 68T27, 68T20.
1998 CR Categories and Descriptors. I.2[Artificial Intelligence]: Logic in artificial

intelligence – default logics, nonmonotonic reasoning, theorem proving;

93

94 MIHAIELA LUPEA

nonmonotonic theorems (beliefs). The set of defaults used in the construction of
an extension is called the generating default set for the considered extension.

The versions (classical([8]), justified ([4]), constrained([9]), rational([7]) of de-
fault logic, by different applicability conditions, try to provide an appropriate def-
inition of consistency condition for the justifications of the defaults, and thus to
obtain many interesting and useful properties for these logics: existence of exten-
sions, semi-monotonicity, commitment to assumptions, cumulativity, regularity.

In the literature there were developed several methods to solve the problem of
computing extensions of the versions of default logic, using different approaches.

In the paper [3], a relaxed stratification of a default theory is the primary search-
space pruning technique for computing the classical extensions. The semantic
tableaux method is adapted to be used as a general or local prover.

Exten([1]) is a system that computes classical, justified and constrained exten-
sions, based on an operational approach and uses pruning techniques for search
tree.

Semantic tableaux method is used in [11] to compute classical extensions for
a decidable subset of default logic. An uniform approach, based on a modified
version of propositional semantic tableaux method, of computing constrained and
rational default is presented in [5].

In paper [10], default reasoning is integrated into existing model elimination in
order to solve the query-answering problem for constrained and cumulative default
logics.

Based on the semi-monotonicity property of justified and constrained default
logics, and their relationship, in this paper we propose an iterative approach for
generating these two types of default extensions. The sequent calculus and an-
tisequent calculus, as proof systems, are used to check the cautious applicability
condition for defaults.

The paper is structured as follows. In section 2 two complementary proof
systems for propositional logic, sequent calculus and anti-sequent calculus, are
described. Section 3 presents the main aspects of justified and constrained default
logics. Section 4 explains our approach, introducing the theoretical model for
computing justified and constrained extensions. Conclusions and future work are
outlined in Section 5.

2. Sequent calculus and anti-sequent calculus in propositional
logic

This section presents two complementary systems: the sequent calculus and
the anti-sequent calculus, used to check the derivability and non-derivability in
propositional logic.

The sequent calculus method, as an improvement of Gentzen natural deduction
system, is a direct and syntactic proof method.

SEQUENT CALCULUS IN COMPUTING DEFAULT EXTENSIONS 95

A sequent has the form: U ⇒ V , where U and V are finite sets of propositional
formulas. U is called antecedent and V is called succedent.

A basic sequent contains the same formula, A, in both antecedent and succedent:
U,A ⇒ V, A;

Semantics: The sequent U ⇒ V is true if each model of U is also a model for
at least one of the formulas of V . All basic sequents are true, therefore they are
the axioms of sequent calculus.

The inference rules of sequent calculus are presented in TABLE 1.
This proof method consists in reducing an initial sequent, by successive appli-

cations of sequent inference rules, in order to obtain basic sequents.

Table 1. Sequent rules

connective Introduction into Introduction into
antecedent succedent

¬ (¬l) U⇒V,A
U,¬A⇒V (¬r) U,A⇒V

U⇒V,¬A

∧ (∧l) U,A,B⇒V
U,A∧B,⇒V (∧r) U⇒A,V U⇒B,V

U⇒A∧B,V

∨ (∨l) U,A⇒V U,B⇒V
U,A∨B,⇒V (∨r) U⇒A,B,V

U⇒A∨B,V

→ (→l) U⇒A,V U,B⇒V
U,A→B⇒V (→r) U,A⇒B,V

U⇒A→B,V

The derivability from propositional logic is expressed in sequent calculus as
follows: U1, U2, . . . , Un 7−→ V 1 ∨ V 2 ∨ . . . ∨ V m if and only if the sequent
U1, U2, . . . , Un ⇒ V 1, V 2, . . . , V m is true, meaning that from the conjunction
of hypothesis at least one of the formulas from succedent can be proved.

The anti-sequent calculus for propositional logic was introduced in [2] as the
complementary system of sequent calculus.

An anti-sequent has the form U 6 ⇒V , where U, V are finite sets of propositional
formulas.

Semantics: U 6 ⇒V is true if there is a model M of U in which all the formulas
of V are false, and M is an anti-model for this anti-sequent.

An anti-sequent U 6 ⇒V is called a basic anti-sequent if all the formulas of U
and V are atomic formulas and U ∩ V = ∅. The basic anti-sequents are true and
represent the axioms of this system.

The non-derivability from propositional logic is expressed in anti-sequent calcu-
lus as follows: U1, U2, . . . , Un 67−→ V 1∧V 2∧. . .∧V m if and only if the anti-sequent
U1, U2, . . . , Un ⇒ V 1, V 2, . . . , V m is true, meaning that from the conjunction of
hypothesis none of the formulas from succedent can be proved.

96 MIHAIELA LUPEA

TABLE 2 contains the inference rules of anti-sequent calculus, used to reduce
an initial anti-sequent to an axiom that represents a partial anti-model for the
initial anti-sequent.

Table 2. Anti-sequent rules

Introduction into antecedent Introduction into consequent
(¬c

l) U 6⇒V,A
U,¬A 6⇒V (¬c

r) U,A 6⇒V
U 6⇒V,¬A

(∧c
l) U,A,B 6⇒V

U,A∧B, 6⇒V (∧c
r1) U 6⇒A,V

U 6⇒A∧B,V (∧c
r2) U 6⇒B,V

U 6⇒A∧B,V

(∨c
l1) U,A6⇒V

U,A∨B 6⇒V (∨c
l2) U,B 6⇒V

U,A∨B 6⇒V (∨c
r) U 6⇒A,B,V

U 6⇒A∨B,V

(→c
l1) U 6⇒A,V

U,A→B 6⇒V (→c
l2) U,B 6⇒V

U,A→B 6⇒V (→c
r) U,A 6⇒B,V

U 6⇒A→B,V

We remark that the difference between TABLE 1 and TABLE 2 consists in
splitting the rules with two premisses from sequent calculus into pairs of rules
in anti-sequent calculus. Thus the exhaustive search in sequent calculus becomes
nondeterminism in anti-sequent calculus and the reduction process is a linear one.

The following theorem shows the complementarity of these two proof systems:

Theorem 2.1 ([2])
The anti-sequent U 6 ⇒V is true if and only if the sequent U ⇒ V is not true.

3. Justified and Constrained default logics

Justified default logic was introduced by Lukaszewicz ([4]). This version of
default logic solves the problem of inconsistencies consequents-justifications us-
ing a support set, but the inconsistencies justifications-justifications are still not
detected. The existence of justified extensions is guaranted and the property of
semi-monotonicity is satisfied.

In constrained default logic ([9]), the assumptions (stored in a set of constraints)
from the reasoning process are used to express a global consistency condition for
justifications. This logic is strongly regular, semi-monotonic, commits to assump-
tions and guarantees the existence of constrained extensions.

The results from [6] show that default theories can be represented by unitary
theories (all the defaults have only one justification, d = α:β

γ) in such a way that
extensions (classical, justified, constrained, rational) are preserved. In this paper
we will use only unitary default theories and the following notations:

Prereq(d) = α, Justif(d) = β, Conseq(d) = γ, Prereq(D) =
⋃

d∈D Prereq(d),
Justif(D) =

⋃
d∈D Justif(d), Conseq(D) =

⋃
d∈D Conseq(d),

Th(X) = {A|X ` A} the classical deductive closure of the set X of formulas.

SEQUENT CALCULUS IN COMPUTING DEFAULT EXTENSIONS 97

All versions of default logics were introduced using fixed-point operators. The
definitions below are the original ones for justified and constrained default logics.

Definition 3.1([4])
Let ∆ = (D,W) be a default theory. For any pair (S, U) of sets of formulas, let

Γ1(S, U) and Γ2(S,U) be the smallest sets of formulas which satisfy:
a) W ⊆ Γ1(S, U);
b) Γ1(S, U) = Th(Γ1(S,U));
c) For any α:β

γ , if α ∈ Γ1(S, U) and ∀η ∈ U ∪ {β}, S ∪ {γ} 67−→ ¬η then
γ ∈ Γ1(S, U) and β ∈ Γ2(S, U).

A pair (E, J) of sets of formulas is a justified extension of ∆ if and only if
E = Γ1(E, J) and J = Γ2(E, J).

E is the actual extension and J is the support set. The applicatibility con-
dition c) permits the detection of inconsistencies consequents-justifications, but
the support set may be inconsistent, meaning that defaults with contradictory
justifications were applied.

Definition 3.2([9])
Let ∆ = (D,W) be a default theory. For any set T of formulas, let Υ(T) be

the pair of the smallest sets (S′, T ′) of formulas which satisfy:
a) W ⊆ S′ ⊆ T ′;
b) S′ = Th(S′) and T ′ = Th(T ′);
c) For any α:β

γ , if α ∈ S′ and T ∪ {γ} 67−→ ¬β then γ ∈ S′ and β, γ ∈ T ′.
A pair (E, C) of sets of formulas is a constrained extension of ∆ if and only if

Υ(C) = (E,C).

The actual extension (E) is embedded in a consistent context (C) containing
the facts, the consequents and all the justifications assumed to be true in the
construction of E.

These definitions are difficult to be used in the process of constructing extensions
and thus equivalent characterizations of extensions were proposed.

The semi-monotonicity property is defined as follows:

Definition 3.3
Let ∆ = (D,W) be a default theory and D′ be a set of defaults such that

D ⊆ D′. If (E, C) is a default extension of ∆, then there is a default extension
(E′, C ′) of the theory (D′,W), with E ⊆ E′ and C ⊆ C ′.

Justified and constrained default logics are both semi-monotonic ([9]), mean-
ing that new defaults can augment but never destroy previous extensions. The
nonmonotonicity in this two versions of default logic is caused by addition of new
facts which can invalidate formulas already derived.

98 MIHAIELA LUPEA

The semi-monotonicity property guarantees the existence of justified and con-
strained extensions. In the worst case (Th(W), ∅) is the only justified extension and
(Th(W), Th(W)) is the only constrained extension of the default theory (D,W).

Another advantage of this property is from a computational point of view.
These two types of default extensions are constructible in a truly iterative way by
applying one applicable default rule after another.

The relationship between justified and constrained logics is expressed by the
following results from ([5]):

- A constrained extension is a justified extension, satisfying the property that
all justifications of the applied defaults are consistent with the actual extension.

- Each constrained extension is included in at least one justified extension.

4. Computing justified and constrained default extensions

This section presents an uniform operational approach for computing justified
and constrained extensions. It is inspired from the operational semantics ([5])
which characterizes these two types of extensions. Due to the smi-monotonicity
we define the problem of computing the justified and constrained extension as an
iterative process, applying the applicable defaults one by one.

Definition 4.1
Let ∆ = (D,W) be a default theory.

• A triple of the form 〈Ep, Jp, Dp〉 is called a j-structure if Dp ⊆ D, Ep =
W ∪ Conseq(Dp), and Jp = Justif(Dp).

• A triple of the form 〈Ep, Cp, Dp〉 is called a c-structure if Dp ⊆ D,
Ep = W ∪ Conseq(Dp), and Cp = W ∪ Conseq(Dp) ∪ Justif(Dp).

The applicability conditions for defaults in justified and constrained default
logics can be expressed by the following definition:

Definition 4.2
• The default d = α:β

γ is j-applicable with respect to 〈Ep, Jp, Dp〉 if:
– the sequent Ep ⇒ α is true;
– ∀η ∈ Jp ∪ {β} the anti-sequent Ep, γ 6⇒ ¬η is true.

• The default d is c-applicable with respect to 〈Ep, Cp, Dp〉 if:
– the sequent Ep ⇒ α is true;
– the anti-sequent Cp, γ 6⇒ ¬β is true.

The sequent calculus is used to express the derivability of the prerequisite, while
the fact that the justification is believed (its negation is not derivable) is expressed
using the anti-sequent calculus.

Definition 4.3
To a default d = α:β

γ we assign a mapping dj from the set of j-structures into
the set of j-structures as follows:

SEQUENT CALCULUS IN COMPUTING DEFAULT EXTENSIONS 99

• dj(〈Ep, Jp, Dp〉) = 〈Ep ∪ {γ} , Jp ∪ {β} , Dp ∪ {d}〉 if d is j-applicable wrt
〈Ep, Jp, Dp〉;

• dj(〈Ep, Jp, Dp〉) = 〈Ep, Jp, Dp〉 otherwise.

To a default d = α:β
γ we assign a mapping dc from the set of c-structures into

the set of c-structures as follows:

• dj(〈Ep, Cp, Dp〉) = 〈Ep ∪ {γ} , Cp ∪ {β, γ} , Dp ∪ {d}〉 if d is c-applicable
wrt 〈Ep, Jp, Dp〉;

• dj(〈Ep, Cp, Dp〉) = 〈Ep, Cp, Dp〉 otherwise.

These mappings model a caution application of the defaults, meaning that once
a default is applied it can not lead to inconsistency further in the process of building
an extension.

Definition 4.4
Let 〈Ep, Jp, Dp〉 be a j-structure, 〈Ep, Cp, Dp〉 be a c-structure and D be a set

of defaults.

• 〈Ep, Jp, Dp〉 is j-stable wrt D if dj(〈Ep, Jp, Dp〉) = 〈Ep, Jp, Dp〉 ,∀d ∈ D
• 〈Ep, Cp, Dp〉 is c-stable wrt D if dc(〈Ep, Cp, Dp〉) = 〈Ep, Cp, Dp〉 , ∀d ∈ D

A stable structure characterizes the end of the reasoning process in which were
used all the applicable defaults.

Definition 4.5
A j-structure

〈
En

p , Jn
p , Dn

p

〉
is j-accesible from the j-structure

〈
E0

p , J0
p , D0

p

〉
if

there is a sequence of defaults (d1, d2, . . . , dn) and a sequence o j-structures
(
〈
E0

p , J0
p , D0

p

〉
,
〈
E1

p , J1
p , D1

p

〉
, . . . ,

〈
En

p , Jn
p , Dn

p

〉
) such that dj

i (
〈
Ei−1

p , J i−1
p , Di−1

p

〉
)

=
〈
Ei

p, J
i
p, D

i
p

〉
, for i = 1, . . . , n.

Definition 4.6
A c-structure

〈
En

p , Cn
p , Dn

p

〉
is c-accesible from the c-structure

〈
E0

p , C0
p , D0

p

〉
if there is a sequence of defaults (d1, d2, . . . , dn) and a sequence o c-structures
(
〈
E0

p , C0
p , D0

p

〉
,
〈
E1

p , C1
p , D1

p

〉
, . . . ,

〈
En

p , Cn
p , Dn

p

〉
) such that dj

i (
〈
Ei−1

p , Ci−1
p , Di−1

p

〉
)

=
〈
Ei

p, C
i
p, D

i
p

〉
, for i = 1, . . . , n.

If a j-structure 〈Ep, Jp, Dp〉 is j-accessible from (W, ∅, ∅) then it corresponds
to a partial justified extension. If a c-structure 〈Ep, Cp, Dp〉 is c-accessible from
(W,W, ∅) then it corresponds to a partial constrained extension.

Theorem 4.1
Let ∆ = (D,W) be a default theory. The j-structure 〈Ep, Jp, Dp〉 corresponds

to the justified extension (Th(Ep), Jp) of ∆, with Dp as generating default set
if and only if 〈Ep, Jp, Dp〉 is j-stable wrt D and 〈Ep, Jp, Dp〉 is j-accesible from
(W, ∅, ∅).

100 MIHAIELA LUPEA

Theorem 4.2
Let ∆ = (D,W) be a default theory. The c-structure 〈Ep, Cp, Dp〉 corresponds

to the constrained extension (Th(Ep), Th(Cp)) of ∆, with Dp as generating default
set if and only if 〈Ep, Cp, Dp〉 is c-stable wrt D and 〈Ep, Cp, Dp〉 is c-accesible from
(W,W, ∅).

For lack of space we will not give the proofs of the above theorems.

5. Conclusions and further work

In this paper we defined the problem of computing the justified and constrained
extension as an iterative process. Due to the semi-monotonicity property of these
two versions of default logics, the applicable defaults have been applied one by
one in order to build an extension. The sequent calculus and anti-sequent calculus
proof systems were used to check the applicability conditions for defaults.

As further work we will implement an algorithm based on this approach, using
a top-down techinque and pruning for efficiency, in order to generate all justified
and constrained extensions of a propositional default theory.

References

[1] Antoniou, G., Courtney, A.P., Ernst, J., Williams, M.A., “A System for Computing
Constrained Default logic Extensions”, Logics in Artificial Intelligence, Lecture Notes in
Artificial Intelligence, Vol. 1126, 1996, pp. 237–250.

[2] Bonatti, P., Olivetti, N., “Sequent Calculi for Propositional Nonmonotonic Logics”, ACM
Trans. Comput. Log., 2002, pp. 226–278.

[3] Cholewinski, P., Marek, W., Truszczynski, M., “Default reasoning system DeReS”, Pro-
ceedings of KR-96, Morgan Kaufmann, 1996, pp. 518–528.

[4] Lukasiewicz, W., “Considerations on default logic - an alternative approach”, Computa-
tional Intelligence 4, 1988, pp. 1–16.

[5] Lupea, M. “Nonmonotonic reasoning using default logics”, Ph.D. Thesis, “Babes-Bolyai”
University, Cluj-Napoca, 2002.

[6] Marek, W., Truszczynski, M., “Normal form results for default logics”, Non-monotonic
and Inductive logic, LNAI Vol. 659, Springer Verlag, 1993, pp. 153–174.

[7] Mikitiuk, A., Truszczynski, M., “Rational default logic and disjunctive logic program-
ming”, Logic programming and non-monotonic reasoning, MIT Press, 1993, pp. 283–299.

[8] Reiter, R., “A Logic for Default reasoning”, Artificial Intelligence 13, 1980, pp. 81–132.
[9] Schaub, T.H., “Considerations on default logics”, Ph.D. Thesis, Technischen Hochschule

Darmstadt, Germany, 1992.
[10] Schaub, T.H., “XRay system: An implementation platform for local query-answering

in default logics”, Applications of Uncertainty Formalisms, Lecture Notes in Computer
Science, Vol. 1455, Springer Verlag, 1998, pp. 254–378.

[11] Schwind, C., “A tableaux-based theorem prover for a decidable subset of default logic”,
Proceedings CADE, Springer Verlag, 1990.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: lupea@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 2, 2006

ON MODEL-DRIVEN DEVELOPMENT FOR WEB
APPLICATIONS

IOAN LAZĂR AND DAN COJOCAR

Abstract. The importance of requirements engineering for web systems is
increasing today. Only few methodologies provides a systematic approach for
the specification of web systems through requirements models. New results
that address model transformation from requirements to web system design
were recently obtained in the context of using QVT language.

In this paper we propose an approach for deriving web system design
from requirements models in the context of a model-driven development pro-
cess. We propose an extension of AndroMDA basic development process that
can be suitable also for other model-driven processes. We also extend the
AndroMDA presentation profile for modeling conversational flows for web
applications.

1. Introduction

Current trends in software development focus on the specification of models and
model transformations. Model-driven development is a successful methodology for
model transformations based on Model Driven Architecture [8]. Model-driven de-
velopment starts at the computational independent level (CIM) with a business
model that capture system requirements. Then the initial CIM model is refined
and a platform independent model (PIM) is obtained. Finally, the code is gener-
ated by transforming the PIM model into a platform specific model (PSM).

In this paper we focus on early steps of model-driven development: obtaining a
PIM model from business requirements. Model transformations from requirements
to web system designs were recently investigated by Koch et al [16]. In order to
capture web process models they used activity diagrams and introduced an UML
profile based on requirements metamodels introduced in [4]. Our approach is
different because we focus on using UML 2.0 state machines to express the process
models in web applications. In this paper we propose to use standard UML and

Received by the editors: November 20, 2006.
2000 Mathematics Subject Classification. 68U07, 68U35.
1998 CR Categories and Descriptors. D.2.1 [Requirements/Specification]: Method-

ologies; D.2.2 [Design Tools and Techniques]: Computer-aided software engineering (CASE),
Object-oriented design methods, State diagrams; D.2.11 [Software Architectures]: Domain-
specific architectures.

101

102 IOAN LAZĂR AND DAN COJOCAR

the extension mechanism provided through stereotypes [10]. The intent is to allow
the modeling process to be performed using any modeling tool that conforms to
UML 2.0 and UML extension mechanism.

State machine models were also used by AndroMDA organization1 which devel-
oped several profiles and transformation modules called cartridges. AndroMDA
provides also transformation cartridges for Struts [5] (see [2]) and Java Server
Faces. We also introduce a new profile that extends AndroMDA profile for pre-
sentation layer. This profile allows to model conversational flows in web appli-
cations. Moreover the profile is designed such that to allow transformations for
other frameworks, such as Spring MVC [1] and Spring WebFlow [3].

The remainder of this paper is structured as follows. Section 2 introduces a new
model-driven development process for web applications. A new UML profile for
presentation layer is defined in Section 3. Section 4 discusses how the profile and
the model-driven development process can be used together. Finally, in Section 5
some conclusions and future work are outlined.

2. Model-Driven Development for Web Applications

The basic idea of model-driven development is to build platform independent
designs and to generate code for specific platforms. Recently Koch et al [16, 4]
introduced a model-driven approach for web systems. Their approach are struc-
tured around OO-H method [7, 14] and UWE [12, 11, 13, 15]. The PIM models
used by the authors are:

• Process model – defines business processes/workflows using UML activ-
ities. This is the main model from which the content and navigation
models can be derived using Query/View/Transformation [9].

• Content model – contains objects needed for the construction of web
pages content. The classes of this model can be generated from the
process model.

• Navigation model – defines page flow navigation and menus organization.
Also this model can be generated from the process model using QVT
transformations.

• Presentation model – represents pages layout and design.
The basic idea in [16, 4] is to use activity diagrams for describing web business

processes and then to derive other PIM artifacts using QVT transformation rules.
Our approach is to use state machine diagrams instead of activity diagrams. UML
state machine semantic is more suitable for modeling web user interface than UML
activity diagrams. Other differences between our approach and the approach from
[16, 4] are: (a) the Content model will be derived from signal properties associated
with transitions between states; (b) our approach is suitable for processes that
produces web systems having the modern layer architecture presented in Figure 1.

1http://www.andromda.org/

ON MODEL-DRIVEN DEVELOPMENT FOR WEB APPLICATIONS 103

Figure 1. Web Application Architecture

The presentation package from Figure 1 corresponds to the presentation layer
and includes web pages, required form models, and controllers. The service pack-
age corresponds to the business layer and contains business services. The domain
package will include entities and business objects. The value object package in-
cludes coarse grained objects used to transfer data between domain and presenta-
tion. As Figure 1 shows, presentation will use only services and value objects.

In this paper we refine the basic MDA process steps presented in Figure 2 (A).
This process was introduced by AndroMDA organization as its basic development
approach. It is a model-driven, agile, test-driven, and iterative development pro-
cess. Each iteration starts with modeling the current iteration scenarios (as PIM)
– agile and iterative approach. Then automatic generation of entities and services
(PSM) follows – model-driven approach. Then, writing unit tests for services
(before implementing the service logic) – test-driven approach, implementing the
service logic, and running units tests follows. Implementing the front-end is the
last step in this development process.

The focus of this paper is on web requirements engineering, that is on the
first step of the model-driven process from Figure 2 (A) – model current iteration
scenarios. This step indicates what is needed to be build for the current iteration.
Emphasizes on this step was also considered in [16]. Figure 2 (B) presents our
extension to the basic model-driven approach from Figure 2 (A). Figure 2 (B)
shows an activity diagram that refines the first step from Figure 2 (A).

Short descriptions of these tasks and their relationships with OpenUP [6] dis-
ciplines are given below:

• Model use cases. The primary focus is to obtain a detailed use case model
for the current iteration scenarios. This step belongs to the OpenUP

104 IOAN LAZĂR AND DAN COJOCAR

Figure 2. A model-driven development process

requirements discipline. The remaining steps that follows below belongs
to the OpenUP analysis and design discipline.

• Model domain. In this step we identify the elements (classes, subsystems,
etc) that collaborate together to provide the required behavior. The
artifact produced after this step is a conceptual/domain model.

• Model web processes. In this step we determine how elements collaborate
to realize the scenarios at high level. In order to do that we define web
user interface flows by attaching state machine diagrams to use cases.
This is an analysis step and not a design step. So, at this stage the
state machines do not capture actions needed to be performed in order
to obtain information from the system. The state diagrams express only
views and flows between them.

• Refine web processes. The scope of this step is to detail how elements
collaborate to realize the scenarios – that is, a design step. Major de-
sign decisions are made in this stage. Ideally the following steps are
performed, sequentially:

– Model actions. For each use case a controller class is attached. Now
the state machines are refined by adding action states that captures
the required system operations to be performed. The action states

ON MODEL-DRIVEN DEVELOPMENT FOR WEB APPLICATIONS 105

will defer execution to controller operations. The controller opera-
tions will be manually implemented by developers.

– Model content. Presentation form model must be discovered at this
step, that is what data need to be presented in view states. In or-
der to keep things simple and independent of specific frameworks we
follow the basic idea from [2], that is, we do not model explicitly pre-
sentation form models. Instead we model data propagation between
action states and view states within our state machine diagrams.
At this stage we introduce value objects that will carry data from
domain to presentation. Data propagation between action and view
states are modeled as parameters assigned to the transition events.
PIM to PSM transformation processes need to generate the required
presentation form models from data propagation between states.

– Model navigation. Web pages navigation will be directly gener-
ated from transitions between states. Special considerations require
global transitions and menus.

– Model presentation. This refinement step refers to marking event
parameters sent between action and view states so that the gener-
ated code includes the required page layout and controls.

• Model services and entities. The connection between presentation layer
and service layer is designed at this stage. The required services are
designed and the relationships between each controller and required ser-
vices are established. Moreover, the refinement of domain entities occurs
also.

3. A New Presentation Profile for Conversational Flows

We extend AndroMDA profiles for modeling web applications [2] by adding the
concept of a conversational scope to support the execution of use cases that span
multiple use cases [17, Chapter 11]. Many web applications have use cases that do
not normally fit into the request, session, and application scopes defined by the
Java servlet specification. Such applications have use cases that span more than
one page but do not require the longevity of the session.

Spring Web Flow framework [3] treats conversational flows as first level citi-
zens. In this section we introduce new UML stereotypes for modeling conversa-
tional flows in UML. The UML models marked with these stereotypes will allow
transformation tools to extract flow information for specific target platforms like
[3]. These new stereotypes are presented below.

ConversationalFlow: This stereotype can be applied on state machines
and indicates that the contained front end view states represents a single
user conversation. During this user conversation the front end views can

106 IOAN LAZĂR AND DAN COJOCAR

Figure 3. A new profile for conversational flow

share some information. The flowObject tag can be used to indicate a
class that encapsulate the conversation shared information.

FlowObject: This stereotype is used to mark classes that represents in-
formation used in conversational flows. When transforming the PIM
model into PSM models the dependency relationships between flow ob-
ject classes and front end controllers classes can be used to generate
convenient methods to access flow object properties within controller
classes.

ActionState: This stereotype can be used to mark server side actions that
belongs to conversational flows. AndroMDA profiles do not provide a
stereotype for server side actions, by default a state not marked with
FrontEndView stereotype being considered a server side action state.

SubflowState: The submachine states within a ConversationalFlow state
machine that span a subflow that is part of the conversation will be
marked using SubflowState.

The other stereotypes presented in Figure 3 comes from AndroMDA profiles
– ValueObject stereotype being part of the common profile and the remaining
stereotypes being part of the presentation profile. The next section refers almost
all these stereotypes.

ON MODEL-DRIVEN DEVELOPMENT FOR WEB APPLICATIONS 107

Figure 4. Partial use case diagram of Amazon web application

4. Modeling Example

In this section we outline the steps presented in Figure 2 (B) on Amazon2

running example (also used as case study in [13]). The following actors interact
with the application: (a) non registered user – search and select products; add
products to the shopping cart, and login (b) customer - inherits from the non
registered user and it is allowed (after logged-in) to start the checkout proces.

The subsections of this section correspond to the tasks presented in Figure 2
(B). Content, navigation, and presentation modeling tasks will not be discussed
below, these tasks being well documented in [2]. We consider that all requirements
outlined above are allocated for the iteration described in the subsections that
follow. Each task includes several marking steps that indicate how to build the
model in order to transform later the model into a PSM model.

4.1. Model use cases task. The purpose of this task is to detail the current
iteration requirements, and the result is a use case model. This task includes the
following marking steps [2]:

Step 1: Mark with FrontEndView stereotype those use cases that require
user interaction.

Step 2: Mark with FrontEndApplication a single use case that will repre-
sent the application entry point.

Figure 4 presents a use case model for our example and the given requirements
above. Search product items, View cart, and Check out use cases are marked with
FrontEndView, and Search product items is also marked with FrontEndApplication
stereotype.

2http://www.amazon.com

108 IOAN LAZĂR AND DAN COJOCAR

Figure 5. Domain model

4.2. Model domain task. The primary purpose of this task is to identify the
concepts used to provide the required behavior. At this stage we produce a concep-
tual model presented in Figure 5. This is a common feature in most web modeling
approaches including UWE and OO-H. The marking step of this task is [2]:

Step 3: Apply the Entity stereotype to all domain persistent objects.

When transforming the PIM model, the UML entities will be mapped to entities
of specific object relational mapping frameworks.

4.3. Model web processes. The primary purpose of this task is to describe at
high level the web business processes using UML 2.0 state machines. At this level
of abstraction the state machines will include only the view state. The marking
steps of this task are:

Step 4: For each FrontEndUseCase attach a state machine that describes
the required views (web pages) and the navigation between them.

Step 5: Use UML submachine states in order to model navigation between
use cases.

Step 6: Mark state machines with ConversationalFlow stereotype where
appropriate. Mark where appropriate the submachine states of a Con-
versationalFlow with SubflowState stereotype.

This task is not indicated in [2]. In fact this is an intermediary step, that is, a
requirements analysis step. The resulting state machine diagrams will be refined
during the next design task.

Figure 6 and 7 presents the result of applying the steps 4–6 described above.
Checkout web process is defined as conversational flow, that is all contained views
will share some information (e.g. payment information is used when the invoice is
submitted). Note different types of navigation between Search product items web
process and: (a) Show cart state machine attached to the use case View cart, and
(b) Checkout conversational flow.

ON MODEL-DRIVEN DEVELOPMENT FOR WEB APPLICATIONS 109

Figure 6. Search product items and View cart web processes

Figure 7. Checkout web process

Instead on relying on submachines for navigation, the reference documentation
of AndroMDA for Struts [2] indicates the usage of labels attached to the ingoing
transitions of final states.

4.4. Refine Web processes.

Model actions task. The purpose of this task is to determine the system opera-
tions. In order to do that we refine the web processes by adding action states corre-
sponding to server-side action needed to be executed. Because current server-side
frameworks do not follow a standard defined architecture we follow the guideline

110 IOAN LAZĂR AND DAN COJOCAR

from [2] and the actions will be encapsulated in front-end controllers. The re-
lationships between front-end controllers and session/conversational flow objects
will be generated according to the targetted platform.

Step 7: For each FrontEndUseCase attach a controller through a tag de-
fined by this stereotype.

Step 8: Optionally, mark each state that represents server-side actions
with ActionState stereotype.

Step 9: Indicate the actions that need to be executed when entering action
state using deferrable trigger property of a UML state. The triggers
should refer a UML CallEvent pointing to a controller operation.

Step 10: For each transition between action and view states use signal
parameters to indicate the data flow between those states. At this step
usually we introduce classes that captures data extracts from domain –
those classes will be marked with ValueObject stereotype.

Step 11: Define session objects and mark their classes with FrontEnd-
Session. Add dependency relationships between controllers and session
object classes.

Step 12: Define objects with conversational scope and link them with con-
versational state machine using the tag flowObject (see Figure 3).

The steps 7–11 are standard steps indicated in [2]. Only the last step is new and
this is needed only for the new introduced conversational flows.

5. Conclusions

The extension of AndroMDA model-driven development process with empha-
sizes on requirements engineering provides a simple approach close to traditional
requirements engineering for desktop applications. The main advantage of using
such a process consist in the ability to perform requirements engineering tasks at
a high level of abstraction, independent of specific platform.

Currently we are analyzing the possibilities to extend AndroMDA profile in
order to support full mapping to other frameworks such as SpringMVC, and Spring
Web Flow.

References

[1] ***. Spring framework reference documentation. Technical report, 2006.
http://static.springframework.org/spring/docs/2.0.x/spring-reference.pdf (06/07/06).

[2] AndroMDA. Business Process Management for Struts Cartridge. 2006.
http://galaxy.andromda.org/docs/andromda-bpm4struts-cartridge/index.html.

[3] Keith Donald and Ervin Vervaet. Spring WebFlow Reference Documentation. 2006.
http://static.springframework.org/spring-webflow/docs/1.0.x/spring-webflow-reference.pdf
(06/07/06).

[4] Maŕıa Josè Escalona and Nora Koch. Metamodeling the requirements of web systems. In
Proc. of the 2nd Int. Conf. on Web Information Systems and Technologies, Setubal, Por-
tugal, April 2006.

ON MODEL-DRIVEN DEVELOPMENT FOR WEB APPLICATIONS 111

Figure 8. Detailed web process - action and view states

[5] Apache Foundation. Struts Framework, Version 1.3.5. 2006.
http://struts.apache.org/1.3.5/index.html.

[6] Eclipse Process Framework. OpenUP/Basic. 2006. http://www.eclipse.org/epf/ (06/07/06).
[7] Jaime Gomez and Cristina Cachero. Oo-h method: Extending uml to model web interfaces.

In Information Modeling for Internet Applicaions, pages 144–173. Idea Group Publishing,
2002.

[8] Object Management Group. MDA Guide Version 1.0.1. 2003.
http://www.omg.org/docs/omg/03-06-01.pdf (06/07/06).

[9] Object Management Group. MOF 2.0 Query/Views/Transformations RFP. 2004.
http://www.omg.org/cgi-bin/apps/doc?ad/02-04-10.pdf (06/07/06).

[10] Object Management Group. UML 2.0 Superstructure. 2004. http://www.omg.org/cgi-
bin/apps/doc?formal/05-07-04.pdf (06/07/06).

[11] Alexander Knapp, Nora Koch, and Gefei Zhang. Modeling the behavior of web applications
with argouwe. In Lecture Notes in Computer Science, pages 624–626. Springer Verlag, 2005.

[12] Nora Koch and Andreas Kraus. The expressive power of uml-based web engineering. In
Second Int. Workshop on Web-oriented Software Technology, 2002.

[13] Nora Koch and Andreas Kraus. Integration of business processes in web application models.
Journal of Web Engineering, 1(1):22–49, 2002.

[14] Nora Koch and Andreas Kraus. Modeling web business processes with oo-h and uwe. In
Third Int. Workshop on Web Oiented Software Technology, 2003.

[15] Nora Koch and Andreas Kraus. Towards a common metamodel for the development of
web applications. In Second Int. Conference on Web Engineering, pages 497–506. Springer
Verlag, 2003.

112 IOAN LAZĂR AND DAN COJOCAR

[16] Nora Koch, Gefei Zhang, and Mar’ia Jos‘e Escalona. Model transformations from require-
ments to web system design. In Proc. of the 6th Int. Conf. on Web Engineering, pages
281–288. ACM Press, 2006.

[17] Seth Ladd and Keith Donald. Expert Spring MVC and Web Flows. Apress, 2006.

E-mail address: ilazar@cs.ubbcluj.ro

E-mail address: dan@cs.ubbcluj.ro

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, 400084 M.
Kogalniceanu 1, Cluj-Napoca, Romania

În cel de al LI-lea an (2006) STUDIA UNIVERSITATIS BABEŞ-BOLYAI apare
în următoarele serii:
 dramatica (semestrial)
matematică (trimestrial)
informatică (semestrial)
fizică (trimestrial)
chimie (semestrial)
geologie (trimestrial)
geografie (semestrial)
biologie (semestrial)
filosofie (semestrial)
sociologie (semestrial)
politică (anual)
efemeride (semestrial)
studii europene (trei apariŃii pe an)

business (semestrial)
psihologie-pedagogie (anual)
ştiinŃe economice (semestrial)
ştiinŃe juridice (trimestrial)
istorie (trei apariŃii pe an)
filologie (trimestrial)
teologie ortodoxă (semestrial)
teologie catolică (trei apariŃii pe an)
teologie greco-catolică - Oradea (semestrial)
teologie catolică - Latina (anual)
teologie reformată (semestrial)
educaŃie fizică (semestrial)

In the LI-th year of its publication (2006) STUDIA UNIVERSITATIS BABEŞ-
BOLYAI is issued in the following series:

mathematics (quarterly)
computer science (semesterily)
physics (quarterly)
chemistry (semesterily)
geology (quarterly)
geography (semesterily)
biology (semesterily)
philosophy (semesterily)
sociology (semesterily)
politics (yearly)
ephemerides (semesterily)
European studies (three issues / year)
business (semesterily)

dramatica (semestrial)
psychology - pedagogy (yearly)
economic sciences (semesterily)
juridical sciences (quarterly)
history (three issues / year)
philology (quarterly)
orthodox theology (semesterily)
catholic theology (three issues / year)
greek-catholic theology - Varadiensis

(semesterily)
catholic theology - Latina (yearly)
reformed theology (semesterily)
physical training (semesterily)

Dans sa LI-ème année (2006) STUDIA UNIVERSITATIS BABEŞ-BOLYAI paraît
dans les séries suivantes:

mathématiques (trimestriellement)
informatiques (semestriellement)
physique (trimestriellement)
chimie (semestriellement)
géologie (trimestriellement)
géographie (semestriellement)
biologie (semestriellement)
philosophie (semestriellement)
sociologie (semestriellement)
politique (annuellement)
éphémérides (semestriellement)
études européennes (trois apparitions /
année)

dramatica (semestrial)
affaires (semestriellement)
psychologie - pédagogie (annuellement)
études économiques (semestriellement)
études juridiques (trimestriellement)
histoire (trois apparitions / année)
philologie (trimestriellement)
théologie orthodoxe (semestriellement)
théologie catholique (trois apparitions / année)
théologie greco-catholique - Varadiensis

 (semestriellement)
théologie catholique - Latina (annuellement)
théologie réformée - (semestriellement)
éducation physique (semestriellement)

web: http://www.studia.ubbcluj.ro e-mail: office@studia.ubbcluj.ro

	00_cop1
	00_cop2
	01-SerbanMoldovan
	02-SamuelisSzabo
	03-CampanTruta
	04-TatarFrentiu
	05-Katai
	06-MoldovanSerban
	07-Mouhoub
	08-Sabau
	09-TartaMotogna
	10-Lupea
	11-Lazar
	2006_2

