
Anul LI 2006

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

1

Redacţia: 3400 Cluj-Napoca, str. M. Kogălniceanu nr. 1 Telefon 405300

SUMAR – CONTENTS – SOMMAIRE

R. Stoean, D. Dumitrescu, C. Stoean, Nonlinear Evolutionary Support Vector
Machines. Application to Classification ... 3

A. Fanea, S. Motogna, L. Dioşan, Automata-based Component Composition
Analysis ... 13

G. Şerban, I.-G. Czibula, A. Câmpan, A Programming Interface For Medical
Diagnosis Prediction .. 21

A. Câmpan, G. Şerban, A. Marcus, Relational Association Rules and Error
Detection .. 31

A. Sterca, F. Boian, D. Bufnea, C. Cobârzan, Supporting Multimedia Streaming
Applications inside the Network ... 37

M. Antal, G. Toderean, Broad Phonetic Classes Expressing Speaker Individuality….. 49

K. D. Tarkalanov, Prefix-free Languages, Simple Grammars Representing a
Group Element, Languages of Partial Order in a Group ... 59

G. Şerban, G. S. Moldovan, A Comparison of Clustering Techniques in Aspect
Mining... 69

J. M. Bruel, I. Ober, Components Modeling in UML 2 ... 79

V. Niculescu, A Uniform Analysis of Lists Based on a General
Non-recursive Definition ... 91

C. Costa, A Framework Proposal for Fine Grained Access Control 99

RECENZII – REVIEWS – ANALYSES

Z. Kasa, Csőrnyei Zoltán, Fordíitóprogramok (Compilers - in Hungarian),
Typotex Budapest, 2006, pp 326, ISBN 963-9548-83-9.. 109

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 1, 2006

NONLINEAR EVOLUTIONARY SUPPORT VECTOR
MACHINES. APPLICATION TO CLASSIFICATION

RUXANDRA STOEAN, D. DUMITRESCU, AND CATALIN STOEAN

Abstract. Support vector machines are a modern and very efficient learning

heuristic. However, their internal engine relies on not very easy or common

mathematical concepts. The paper presents a newly developed simpler de-

sign of the engine, built through the means of evolutionary computation, in

the context of nonlinear support vector machines. Experiments are carried

on fictitious 2-dimensional points data sets and demonstrate once again the

promise of the new approach.

Keywords:support vector machines, nonlinear hyperplane, evolution-

ary algorithms, polynomial classifier, radial decision function, 2-dimensional

points data sets

1. Introduction

Support vector machines (SVMs) are a type of learning machines [9]. Ac-
cording to [6], ”support vector machines are a system for efficiently training linear
learning machines in kernel-induced feature spaces, while respecting the insights
of generalization theory and exploiting optimization theory”.

As all learning machines, SVMs act in two stages. In the training stage, the
correspondence between every input vector and given output is internally discov-
ered and learnt. In the test step, prediction of the output for previously unknown
input vectors is performed according to what has been learnt.

SVMs have been successfully applied to a wide range of pattern recognition
problems. Interest in present paper is shown however only in what concerns clas-
sification.

Received by the editors: December 1, 2005.

2000 Mathematics Subject Classification. 68T05, 68T20, 92D10.
1998 CR Categories and Descriptors. I.2.6 [Learning]: Subtopic – Concept Learning; I.2.8

[Problem Solving, Control Methods, and Search]: Subtopic – Heuristic methods; J.3 [Life

and Medical Sciences]: Subtopic – Biology and Genetics.

3

4 RUXANDRA STOEAN, D. DUMITRESCU, AND CATALIN STOEAN

The task for SVMs here is then to achieve an optimal separation of data into
classes. By resorting to evolutionary algorithms, authors propose a simpler alter-
native to the standard approach of SVMs to solving this optimization problem.

Initially, SVMs were developed for linearly separable data and were later im-
proved to handle nonseparable cases as well. Consequently, the new technique,
called evolutionary support vector machines (ESVMs), has followed the same steps.
Linear separating hyperplanes for separable and nonseparable data were detected
through evolutionary computation in [11, 12]. The last and most difficult step, i.e.
the discovery of the optimal nonlinear hyperplane to deal with nonseparable data,
is treated in present paper. The data sets that experiments are conducted on are
fictitious 2-dimensional points sets.

The paper is structured as follows. Section 2 presents an overview of support
vector machines for classification. Section 3 outlines the idea and structure of evo-
lutionary support vector machines; values for parameters of both the evolutionary
algorithm and the support vector machine are appointed and conducted experi-
mental results are illustrated. Finally, some conclusions are reached and ideas for
future work are discussed.

2. Principles of support vector machines

In standard manner, support vector machines deal with binary classifica-
tion problems. They have, however, been extended to handle multi-class catego-
rization. The new evolutionary support vector machines are built according to the
classical binary situation; in the future, ESVMs will also be broadened to cover
the multi-class circumstances. Consequently, in what follows, the concepts within
SVMs will be explained on binary labelled data [3, 10].

Suppose the training data is of the following form:

(1) {(xi, yi)}i=1,2,...,m

where every xi ∈ Rn represents an input vector and each yi an output (label).
Let us first suppose that the two subsets of input vectors labelled with +1 and

−1, respectively, are linearly separable. The positive and negative training vectors
are then separated by the hyperplane:

(2) 〈w, x〉 − b = 0,

where w ∈ Rn is the normal to the hyperplane, b ∈ R and |b|
‖w‖ is the distance

from the origin to the hyperplane.

NONLINEAR EVOLUTIONARY SUPPORT VECTOR MACHINES FOR CLASSIFICATION 5

Accordingly, two data subsets are linearly separable iff there exist w ∈ Rn and
b ∈ R such that:

(3)

{
〈w, xi〉 − b > 0, yi = 1,

〈w, xi〉 − b < 0, yi = −1, i = 1, 2, ..., m.

According to [1], two data subsets are linearly separable iff there exist w ∈ Rn

and b ∈ R such that:

(4)

{
〈w, xi〉 − b > 1, yi = 1,

〈w, xi〉 − b < −1, yi = −1, i = 1, 2, ..., m.

Consequently, the separating hyperplane lies in the middle of the parallel support-
ing hyperplanes of the two classes.

Following the structural risk minimization principle [13, 14, 15], i.e. one gets
that, in order to generalize well, the support vector machine must provide a hy-
perplane that separates the training data with as few errors as possible and, at
the same time, with a maximal margin of separation. One subsequently obtains
the optimization problem (P1):

(5)

{
find w and b as to minimize ‖w‖2

2 ,

subject to yi(〈w, xi〉 − b) ≥ 1, i = 1, 2, ..., m.

where 2
‖w‖ is the value of the margin.

Given a training data set that is nonseparable, it is obviously not possible to
build a separating hyperplane without any classification errors. However, construc-
tion of an optimal hyperplane that minimizes misclassification would be of interest
[8]. Previous ideas can be extended to handle this new situation by relaxing the
constraints in (4). This can be achieved by bringing in some positive variables,
called slack variables [4]. The introducing of these new variables relies on the fact
that any training data point has a deviation from its supporting hyperplane, i.e.
from the ideal condition of data separability, of ±ξi

‖w‖ . This affects the separation
condition, which then becomes [4]:

(6) yi(〈w, xi〉 − b) ≥ 1− ξi, i = 1, 2, ..., m

where ξi ≥ 0. Thus, for a training data point to be erroneously classified, its
corresponding ξi must exceed unity.

6 RUXANDRA STOEAN, D. DUMITRESCU, AND CATALIN STOEAN

Simultaneously with (6), sum of misclassifications must be minimized. As a
consequence, (P1) changes to (P2):

(7)

find w and b as to minimize ‖w‖2
2 + C

∑m
i=1 ξi,

subject to yi(〈w, xi〉 − b) ≥ 1− ξi,

ξi ≥ 0, i = 1, 2, ..., m.

where C corresponds to assigning higher penalties for errors.
The concepts can be extended even further to the construction of a nonlinear

separating hyperplane for nonseparable data. Based on [5], the training data can
be nonlinearly mapped into a high enough dimensional space and linearly separated
there.

Suppose an input vector is mapped into some Euclidean space, H, through a
mapping Φ : Rn 7→ H. It can be easily seen that within (P2) vectors in Rn appear
only as part of dot products. Vectors in H should appear as part of dot products
in its formulation, as well. Therefore, the equation of the separating hyperplane
in H becomes:

(8) 〈Φ(w), Φ(xi)〉 − b = 0

where Φ(w) is the normal to the hyperplane.
The squared norm

(9) ‖w‖2 = 〈w, w〉
changes to

(10) 〈Φ(w), Φ(w)〉.
Now, if there were a kernel function K such that:

(11) K(x, y) = 〈Φ(x),Φ(y)〉
where x, y ∈ Rn, one would use K in the training algorithm and would never

need to explicitly even know what Φ is.
At this moment, the question is what kernel functions meet (11). The answer

is given by Mercer’s theorem from functional analysis [2]. The problem is that
it may not be easy to check whether Mercer’s condition is satisfied in every case
of a new kernel. There are, however, a couple of classical kernels that had been
demonstrated to meet Mercer’s condition [2]:

• Polynomial classifier of degree p: K(x, y) = 〈x, y〉p
• Radial basis function classifier: K(x, y) = e

‖x−y‖2
σ

NONLINEAR EVOLUTIONARY SUPPORT VECTOR MACHINES FOR CLASSIFICATION 7

Consequently, the optimization problem (P2) will now change to (P3):

(12)

find w and b as to minimize K(w,w)
2 + C

∑m
i=1 ξi,

subject to yi(K(w, xi)− b) ≥ 1− ξi,

ξi ≥ 0, i = 1, 2, ...,m.

3. Design of nonlinear evolutionary support vector machines

The optimization problem in support vector machines is standardly solved using
concepts of convexity and resorting to an extension of the well-known method of
Lagrange multipliers. The mathematics of the method can be found to be difficult.

Authors have brought the ESVM alternative to this technique, which is very
easy to understand and apply. Standard evolutionary algorithms are used in this
respect.

In present work, nonlinear ESVMs are outlined only. Linear ESVMs for sepa-
rable and nonseparable data are particular situations of proposed algorithm; how-
ever, they can be found in [11, 12], respectively.

The way in which components of the evolutionary algorithm are considered with
respect to nonlinear support vector machines is outlined. Experimental results are
reached and illustration of the separation is given for different fictitious 2D points
data sets appointed in order to obtain three nonlinear separating hyperplanes, i.e
odd or even polynomial and radial classifiers.

3.1. Components of the evolutionary algorithm. Components regard repre-
sentation, initialization of the population, expression of the fitness function, the
selection and variation operators.

Representation
A chromosome has the following structure of w, b and ξ:

(13) c = (w1, ..., wn, b, ξ1,, ξm)

Proposed evolutionary algorithm thus includes the training errors in the struc-
ture of the chromosome. In the end of the algorithm, the training points that
are correctly placed will have the corresponding ξis less than unity, while those
erroneously placed will have their ξis exceed it.

Initial population
Chromosomes are randomly generated following a uniform distribution, such

that wi ∈ [−1, 1], i = 1, 2, ..., n, b ∈ [−1, 1] and ξj ∈ [0, 1], j = 1, 2, ..., m.

8 RUXANDRA STOEAN, D. DUMITRESCU, AND CATALIN STOEAN

Fitness evaluation
The expression of the fitness function is considered as follows:

(14)

f(c) = f(w1, ..., wn, b, ξ1, ..., ξm) = K(w, w)+C

m∑

i=1

ξi+
m∑

i=1

[t(yi(K(w, xi)−b)−1+ξi)]2,

where

(15) t(a) =

{
a, a < 0,

0, otherwise.

One is led to minimize(f(c), c).

Genetic operators
Tournament selection is used. Intermediate crossover and mutation with nor-

mal perturbation are considered. Mutation is restricted only for errors, preventing
the ξis from taking negative values.

Stop condition
The algorithm stops after a predefined number of generations. In the end, it

obtains the equation of the hyperplane, i.e. w and b. Errors on training set also
result from the algorithm, i.e. those corresponding to ξi > 1, i = 1, 2, ..., m

3.2. Experimental results. Three fictitious 2-dimensional points data sets were
built in order to allow construction of an even polynomial classifier, an odd one and
a radial decision function. Illustration of their configurations and of the obtained
nonlinear hyperplanes is given in Figures 1, 2 and 3.

Values for the specific parameters of every chosen kernel are given in turn in
Table 1. The parameters of the support vector machine and of the evolutionary
algorithm that are common to all kernels had the same values in all three cases
and are outlined in Table 2. Some abbreviations are used therein, i.e. ps stands
for population size, ng for number of generations, cp for crossover probability, mp
for mutation probability, ms for mutation strength.

Degree odd polynomial 15
Degree even polynomial 14

Sigma 500
Table 1. Values for parameters of the chosen kernels
C ps ng cp mp mp - ξis ms ms - ξis
1 200 1000 0.3 0.5 0.5 0.1 0.1

NONLINEAR EVOLUTIONARY SUPPORT VECTOR MACHINES FOR CLASSIFICATION 9

Figure 1. An odd polynomial classifier

Table 2. Values for parameters of the support vector machine and of the
evolutionary algorithm

4. Conclusions and future work

From the discussion above, there arise various advantages in using evolutionary
support vector machines instead of the classical architecture:

1. The evolutionary approach is much easier for both the developer and the
end user.

2. The evolutionary solving of the optimization problem leads to the obtaining
of w and b directly, while in the classical approach the equation of the optimal
hyperplane is determined after Lagrange multipliers are found.

3. Moreover, in the case of the classical technique, when using kernels in which
Φ cannot be explicitly obtained, it is not possible to determine w and b at all - it
can only predict the class for a test vector.

4. The evolutionary method can also provide which training data cannot be
correctly classified, as errors are included in the structure of the chromosomes; the
evolutionary support vector machines self-determine their training error.

10 RUXANDRA STOEAN, D. DUMITRESCU, AND CATALIN STOEAN

Figure 2. An even polynomial classifier

Future work envisages application and validation of proposed ESVMs to real-
world problems. Also, the design of evolutionary multi-class support vector ma-
chines, based on classical SVM approaches to classification with more than two
categories, is desired.

NONLINEAR EVOLUTIONARY SUPPORT VECTOR MACHINES FOR CLASSIFICATION 11

Figure 3. A radial polynomial classifier

References

[1] R.A. Bosch, J.A. Smith, Separating Hyperplanes and the Authorship of the Disputed Feder-

alist Papers, American Mathematical Monthly, Volume 105, Number 7, pp. 601-608, 1998

[2] B. E. Boser, I. M. Guyon and V. Vapnik, A Training Algorithm for Optimal Margin Classi-

fiers, In D. Haussler, editor, Proceedings of the 5th Annual ACM Workshop on Computational

Learning Theory, pp. 11-152, Pittsburgh, PA, ACM Press, 1992

[3] C.J.C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining

and Knowledge Discovery 2, 121-167, 1998

[4] C. Cortes, V. Vapnik, Support Vector Networks, Machine Learning, 20:273-297, 1995

[5] T. M. Cover, Geometrical and Statistical Properties of Systems of Linear Inequalities with

Applications in Pattern Recognition, IEEE Transactions on Electronic Computers, vol. EC-14,

pp. 326-334, 1965

[6] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge

University Press, 2000

[7] D. Dumitrescu, B. Lazzerini, L.C. Jain, A. Dumitrescu, Evolutionary Computation, CRC

Press, Boca Raton, Florida, 2000

[8] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, New Jersey, 1999

[9] R. Lothian, Introduction to Support Vector Machines, Talk, 2003

[10] B. Scholkopf, Support Vector Learning, Dissertation, Berlin, 1997

[11] R. Stoean, D. Dumitrescu, Linear Evolutionary Support Vector Machines for Separable

Training Data, Annals of the University of Craiova, Seria Matematica-Informatica, submitted

for publication, 2005

12 RUXANDRA STOEAN, D. DUMITRESCU, AND CATALIN STOEAN

[12] R. Stoean, D. Dumitrescu, Evolutionary Support Vector Machines - a New Learning Par-

adigm. The Linear Non-separable Case, Proceedings of the Symposium ”Colocviul Academic

Clujean de Informatica”, accepted for publication, 2005

[13] V. Vapnik, Inductive Principles of Statistics and Learning Theory, In Smolensky, Mozer

and Rumelhart (Eds.), Mathematical Perspectives on Neural Networks, Lawrence Erlbaum,

Mahwah, NJ, 1995

[14] V. Vapnik, The Nature of Statistical Learning Theory, Springer Verlag, New York, 1995

[15] V. Vapnik, Statistical Learning Theory, Wiley, New York, 1998

Faculty of Mathematics and Computer Science, Department of Computer Science,

University of Craiova, Craiova Romania

E-mail address: ruxandra.stoean@inf.ucv.ro

Faculty of Mathematics and Computer Science, Department of Computer Science,

Babes-Bolyai University, Cluj - Napoca Romania

E-mail address: ddumitr@cs.ubbcluj.ro

Faculty of Mathematics and Computer Science, Department of Computer Science,

University of Craiova, Craiova Romania

E-mail address: catalin.stoean@inf.ucv.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 1, 2006

AUTOMATA-BASED COMPONENT COMPOSITION ANALYSIS

ANDREEA FANEA, SIMONA MOTOGNA AND LAURA DIOŞAN

Abstract. Formal specification of software components enables automatic

composition and checking of component-based systems. The component sys-
tem is modeled as a finite automaton. We propose an algorithm that builds

all syntactically correct finite automata-based models of a component-based

system. The result systems are checked against the properties: lost data and
number of provider/inport.

1. Introduction

Component-based software engineering (CBSE) is the emerging discipline of the
development of software components and the development of systems incorporating
such components. In order to construct a correct system, these components should
be assembled in an unified model and we would like to be able to obtain properties
of the model that could contribute to its correctness.

A formal model for component-based software is of critical importance because
it provides a basis for the understanding of the underlying concepts of compo-
nent models, component certification techniques, component testing. The general
definition of a software component is given in [5].

There are two issues which need to be addressed [1], [6] where a software system
is to be constructed from a collection of components:

• Component integration - the mechanical process of wiring components
together. There has to be a way to connect the components together.

• (Behaviour) Component composition - we have to get the components
to do what we want. We need to ensure that the assembled system does
what is required. Component integration is taken one step further to
ensure that assemblies can be used as components in larger assemblies.

To achieve integration, syntactical composition is studied. It offers the necessary
tool to meet for the requirements for wiring components together. Component
integration is a more complex process which will need to assign also semantic

Received by the editors: 9.01.2006.
2000 Mathematics Subject Classification. 68N30, 68Q45.
1998 CR Categories and Descriptors. code I.6.4 [Simulation and modeling]: – Model

Validation and Analysis; code I.6.5 [Model Development]: – Modeling methodologies.

13

14 ANDREEA FANEA, SIMONA MOTOGNA AND LAURA DIOŞAN

information regarding behaviour to the syntactic entities. This will be the next
step in our study and it is not treated here.

We have developed in [2] an algorithm that computes all the possibilities of
constructing a system from a given set of components, checking only the syntactical
part when wiring together the components. This computation is the first step
from the construction of a component-based system. The next step consist of the
behaviour composition of components.

In [4] a model of a component-based software system is proposed, which uses a
finite automata-based method, enabling compositional reachability analysis. The
following checks were performed:

• the system is consistent: starting from a given input, all components can
be added to the model and the execution eventually terminates;

• there are no potential deadlocks in the model.

This paper proposes a new algorithm to construct all the component-based soft-
ware systems as finite automata-based models. The resulting models are syntacti-
cally correct. By syntactically correct model we mean no semantic involvement in
the models, but just the way to connect the components together, the mechanical
process of “wiring” components together (component integration).

A syntactically correct model has the following properties:

• all inputs are provided for a component to be executed; a component
is added into the model if and only if all its necessary input data are
provided;

• there are no cyclic dependencies;
• no duplicate components.

The algorithm checks model consistency during its construction from a given
set of components. The result systems are checked against the properties: if the
execution of the component system is terminated and even if the system behaves
properly, there is some lost data, and a component is not allowed to receive the
value for an inport from more than one component - one provider/inport. A
comparison analysis of three solutions (with different properties) are presented
and some examples are given.

2. Previous results

In [4] the component system is modeled as a finite automaton, where compo-
nents are represented as states and information flows as transitions.

Definition 1. A source component, i.e. a component without inports, is a com-
ponent that generates data provided as outports in order to be processed by other
components.

AUTOMATA-BASED COMPONENT COMPOSITION ANALYSIS 15

Definition 2. A destination component, i.e. a component without outports, is a
component that receives data from the system as its inports and usually displays
it, but it does not produce any output.

Definition 3. A system of components is defined as a finite automaton A =
(Q,Σ, δ, q0, F), where:

• Q is the set of states, each q ∈ Q representing a component;
• Σ is the input alphabet; in the proposed model, Σ is the union of the

outports (of the components) already included in the models, in fact, the
data set;

• δ : Q × Σ → P (Q) is the transition function; δ members have the form
((C1, d) → C2), where C1,C2 ∈ Q and d ∈ outports(C1)

⋂
inports(C2);

• q0 ∈ Q is the initial state - the source component in the component
system;

• F ⊂ Q is the set of final states - the destination components from the
component system.

In [4] the MakeModel algorithm has as input a component system specification
and builds the model, a nondeterministic finite automaton. The algorithm gen-
erates such a model from a given component system specification, checking the
following properties:

• all inputs are provided for the tasks of the C component to be executed,
i.e. inports(C) ∈ Σ;

• there are no “cyclic” component dependencies: C1 expects data d1 as
inport and provides d2 as outport, and component C2 needs d2 as inport
and provides d1 as outport.

In [4] the procedure Search(compList, cond, component, flag) searches into the
list of components compList for the first component satisfying a given condition
cond. The output parameter flag is set to true if the search is successful. In this
case, the component is also provided. If no component matching cond is found
then flag is set to false. Because of the “first” criterion, only one nondeterministic
finite automaton is constructed.

In [3] the following definition was introduced:

Definition 4. a. A component C is reachable iff there exists a path from the source
component to C. We say that C ′ is reachable from C through d if δ(C, d) = C ′;
b. A data d is live iff for a reachable component C there exists a component C‘
reachable from C through d: d ∈ outports(C) ∩ inports(C ′).

We have modified the algorithm [4] in order to generate all the nondeterministic
finite automata. Also, the final constructed system have only live data. This prop-
erty is checked after building the consistent system (starting from a given input,
all components are added to the model and the execution eventually terminates).
The construction of the model is described in the following section.

16 ANDREEA FANEA, SIMONA MOTOGNA AND LAURA DIOŞAN

3. Model building

We must first establish our entities involved in the component system definition:

• domain D - a set that does not contain the null element;
• set of attributes A - an infinite fixed and arbitrary set; the atributes

signify variables or fields;
• type of an attribute x ∈ A : Type(x) ∈ D represents the set of possible

values for the attribute x.

Consider the component system CS = {C1, C2, ..., Cn}, in which every compo-
nent Ck is specified as: Ck = (compIDk, inportsk, outportsk, functsk), where:

• compIDk is the component identifier, unique;
• inportsk ⊆ A the set of input ports;
• outportsk ⊆ A the set of output ports;
• functsk the set of tasks the Ck component performs.

3.1. Algorithm specification. The specification of the MakeAllModels algo-
rithm is as follows:
Begin

Input : the component system CS;
Output : all the nondeterministic finite automata A = (Q, Σ, δ, q0, F).

End.

3.2. Algorithm description. We use a recursive backtracking algorithm to gen-
erate all the component-systems from the existing specified components.

The first component that is used from the component system is a source com-
ponent. A component is added to solution (the intern conditions, specified in
valid(i)) if the component was not already used before and all the inputs of the
component are provided for the tasks to be executed. A component-based system
is found (the conditions for the complete solution, specified in solution(i)) when
the last component added to solution is a destination component.

The lost data property is checked only after a solution is generated, because
when integrating a component into the systems we do not check if all the out-
puts are consumed (only some outputs are used for the transition to the current
component). It is obvious that for a component in the solution all the inputs
are consumed, because we used the condition that all the inputs are available.
The property checks if all the outputs of all the components involved into the
computation are consumed.

The necessity to provide all inputs of the component to be executed generates
another condition to be checked after a solution is generated: the inputs of a com-
ponent could be provided by more than one component and the choice is made
in the algorithm. The following situation is not desired: the current component

AUTOMATA-BASED COMPONENT COMPOSITION ANALYSIS 17

Algorithm 1 BuildingAllModels Algorithm

1: for each component in the system do
2: add the component to the solution on position i;
3: mark the new set of available inputs;
4: if valid(i) then
5: for each mC ∈ CS do
6: for each d ∈ inports(Componenti) do
7: if d ∈ outports(mC) then
8: δ := δ

⋃
{(mC, d) → Componenti};

9: end if
10: end for
11: end for
12: if not solution(i) then
13: BuildingAllModels(i+1,...)
14: else
15: WriteSolution(i,...);
16: end if
17: end if
18: end for

receives the value for one of its inports from two different components. The al-
gorithm will check at the end if a solution contains such situations. More precise
explanations are presented in the next section.

4. Examples and result analysis

4.1. Example 1. Consider the following general set of components:
C1 = (C1, ∅, {d1, d2}, {read});
C2 = (C2, {d1, d3}, {d5, d6}, {task1, task2, task3});
C3 = (C3, {d2}, {d3, d7}, {task4});
C4 = (C4, {d5, d7}, {d8}, {task5});
C5 = (C5, {d6, d8}, ∅, {write});
C6 = (C6, {d1, d3}, {d4, d5, d6}, {task1, task2, task3});
C7 = (C7, {d1, d5}, {d3}, {task1, task2, task3});
C8 = (C8, {d2, d3}, {d4}, {task4});
C9 = (C9, {d4}, {d5, d6}, {task5});
C10 = (C10, {d6}, ∅, {write});

The results of building the models from existing components are presented
in Table 1: the number of all the consistent solutions, the number of solutions
without lost data and the number of solutions with only one provider/input for
all involved components and the number of final solutions. The percentage shows

18 ANDREEA FANEA, SIMONA MOTOGNA AND LAURA DIOŞAN

that only a small part of the solutions should be taken into consideration based
on the efficiency criterion.

Table 1. The number of solutions for the components set from
example 1

Algorithm
MakeAllModels

All Solu-
tions

Solutions
without
Lost Data

Solutions one
provider/input

Final Solu-
tions

Number 1323 40 64 1
Percent 100% 3.02% 4.83% 0.07%

The presented solution from Figure 1.a has lost data. The C6 component has
two outports that are not “consumed”.

The solution is A = (Q,Σ, δ, q0, F), where:
• Q={C1,C3,C2,C4,C6,C5}
• Σ ={d1,d2,d3,d7,d5,d6,d8,d4}
• δ={(C1,d2) → C3,(C1,d1)→ C2,(C3,d3)→ C2, (C2,d5) → C4,(C3,d7)→

C4,(C1,d1)→ C6,(C3,d3)→ C6, (C2,d6)→ C5, (C4,d8)→ C5,(C6,d6)→
C5}

• q0={C1}
• F={C5}

Figure 1. The nondeterministic finite automaton for the consis-
tent solution a) with lost data d4 and d5 b) the correct model.

As Figure 1.a shows, component C6 outport contains data d4 and d5 which
are lost (no other component from the system is using it). So we will split this
component into two new components C61 and C62, clone its inports, data d2 and
data d3, and then isolate the area containing component C62 and data d2, d3.
The resulting model, as presented in Figure 1.b, is correct.

The presented solution is not included in the solution set with one provider/inport
because the are two transitions to the same component C5 with the label d6 as in
Figure 2. The input d6 of the C5 component must have only one provider on an

AUTOMATA-BASED COMPONENT COMPOSITION ANALYSIS 19

execution. The “reverse” propagation of data (the output data of a component
is propagated to two or more components) is allowed. Component C3 distributes
the data d3 to C2 and C6 component as in Figure 2.a. In Figure 2.b the final
solution is presented: the solution is consistent, no lost data and each inport for
each component has just one provider.

4.2. Example 2. Consider the following general set of components:
C1 = (C1, ∅, {d1, d2, d3}, {read});
C2 = (C2, {d3}, {d1}, {task1, task2, task3});
C3 = (C3, {d3, d4}, {d5}, {task4});
C4 = (C4, {d2}, {d4}, {task5});
C5 = (C5, {d5}, ∅, {write});
C6 = (C6, {d1}, {d3}, {task1, task2, task3});

Figure 2. The finite automaton a) with more than one
provider/inport; b) the corresponding final consistent solution.

The results of building the models from existing components are presented in
Table 2.

Table 2. The number of solutions for the component set of Ex-
ample 2

Algorithm
MakeAllModels

All Solu-
tions

Solutions
without
Lost Data

Solutions one
provider/input

Final Solu-
tions

Number 19 5 5 0
Percent 100% 26.31% 26.31% 0%

Figure 3 presents two solutions, one from the solution set without lost data
figure 3a) and the other from the one provider/input solution set figure 3b). The
consistent system CS = {C1, C4, C6, C3, C5} from the 1a) side contains an output
that is not “consumed”: the data d3 is lost. On the right hand side there is a
consistent system that has a component with more than one provider for an input:
component C3 receives the data d3 from component C1 and from C6.

20 ANDREEA FANEA, SIMONA MOTOGNA AND LAURA DIOŞAN

Figure 3. A finite automaton for the consistent solution a) with-
out lost data; b) with more than one provider/inport.

5. Conclusions and future work

In this paper we proposed a new algorithm for computing all the component-
based systems as automata-based models from a set of specified components. We
analyse the final models from distinctive perspective, checking the existence of the
properties lost data and one provider/port.

Using the same component model we intend to extend the algorithm and to
address the following topics in the future: checking if the model supports a given
sequence of tasks and building a component-based system that contains a given
sequence of tasks. Also checking the behaviour of components (to ensure that the
assembled system does what is required) after syntactic composition is intended
to be studied.

References

[1] Ivica Crnkovic and Magnus Larsson, Building Reliable Component-Based Software Sys-

tems, Artech House publisher, 2002
[2] A. Fanea, S. Motogna, A Formal Model for Component Composition, Proceedings of the

Symposium “Zilele Academice Clujene”, 2004, pp. 160-167

[3] S. Motogna, B. Parv, D. Petrascu, Finding Errors in a Component Model Using Automata
Techniques, 5th Joint Conference on Mathematics and Computer Science, Debrecen, Hun-
gary, 2004, pp. 69

[4] B. Parv, S. Motogna, D. Petrascu, Component System Checking Using Compositional

Analysis, Proceedings of the International Conference on Computers and Communications,
2004, Baile Felix Spa-Oradea, Romania, 2004, pp. 325-329

[5] Szyperski C. et al., Component Software, Beyond Object-Oriented Programming, 2nd ed.,

ACM Press, Addison-Wesley, NJ, 2002.

[6] Robert John Walters, A Graphically based language for constructing, executing and
analysing models of software systems, University of Southampton, Faculty of Engineer-

ing and Applied Science Electronics and Computer Science, PhD Thesis, 2002

Department of Computer Science, Faculty of Mathematics and Computer Science,

Babeş-Bolyai University, Cluj-Napoca, Romania
E-mail address: {afanea, motogna, lauras}@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 1, 2006

A PROGRAMMING INTERFACE FOR MEDICAL DIAGNOSIS
PREDICTION

GABRIELA ŞERBAN, ISTVAN-GERGELY CZIBULA, AND ALINA CÂMPAN

Abstract. The aim of this paper is to present a programming interface
that can be used for assisting physicians in medical diagnosis. The interface
provides an original diagnosis technique based on relational association rules
and a supervised learning method. Using the designed interface, we made an
experiment for cancer diagnosis; the precision of the diagnosis on our testing
data was 90%. The main advantage of the proposed interface is that can be
use in diagnosis for every disease, and, much more, can be simply extended,
by adding new symptom types and new relations between symptoms for the
given disease.

Keywords: Relational association rules, Programming, Interface, Super-
vised Learning.

1. Introduction

The purpose of this paper is to propose a technique for assisting medical di-
agnosis using relational association rules and to present a programming interface
for medical diagnosis, using the proposed technique. The interface is meant to
facilitate the development of software for identifying the probability of illness in a
certain disease.

Much more, this interface can be simply extended by adding new symptom types
for the given disease, and by defining new relations between these symptoms.

In our model, we have a set of patients identified by a set of symptoms of a
certain disease. The symptoms types and values are unimportant in our approach,
the user of the interface can simply define concrete symptoms for the current
diagnosis task.

For this issue, the patients, their symptoms types, and the relations between
their symptoms can be designed and implemented separately and then intercon-
nected relatively easily in a standard, uniform fashion.

Received by the editors: March, 1, 2006.
2000 Mathematics Subject Classification. 68P15, 68T05, 68N19.
1998 CR Categories and Descriptors. H.2.8[Computing Methodologies]: Database

Applications – Data Mining; I.2.6[Computing Methodologies]: Artificial Intelligence – Learn-
ing; D.1.5[Software]: Programming Techniques – Object-Oriented Programming;

21

22 GABRIELA ŞERBAN, ISTVAN-GERGELY CZIBULA, AND ALINA CÂMPAN

2. Relational Association Rules

We extend the definition of ordinal association rules ([3]) towards relational
association rules.

Definition 1. Let R = {r1, r2, . . . , rn} be a set of entities (records in the rela-
tional model), where each record is a set of m attributes, (a1, . . . , am). We denote
by Φ(rj , ai) the value of attribute ai for the entity rj. Each attribute ai takes
values from a domain Di, which contains ε (empty value, null). Between two
domains Di and Dj can be defined partial relations, such as: less or equal (≤),
equal (=), greater or equal (≥), etc. We denote by M the set of all relations de-
fined. An expression (ai1 , ai2 , ai3 , . . . , ai`

) ⇒ (ai1 µ1 ai2 µ2 ai3 . . . µ`−1 ai`
), where

{ai1 , ai2 , ai3 , . . . , ai`
} ⊆ A = {a1, . . . , am}, aij

6= aik
, j, k = 1..`, j 6= k and

µi ∈M is a relation over Dij
×Dij+1 , is an relational association rule if:

a) ai1 , ai2 , ai3 , . . . , ai`
occur together (are non-empty) in s% of the n records

; we call s the support of the rule,
and

b) we denote by R′ ⊆ R the set of records where ai1 , ai2 , ai3 , . . . , ai`
occur

together and Φ(rj , ai1) µ1 Φ(rj , ai2) µ2 Φ(rj , ai3) . . . µ`−1 Φ(rj , ai`
) is

true for each record rj din R′; then we call c = |R′|/|R| the confidence
of the rule.

The users usually need to uncover interesting relational association rules that
hold in a data set; they are interested in relational rules which hold between a min-
imum number of records, that is rules with support at least smin, and confidence
at least cmin (smin and cmin are user-provided thresholds).

Definition 2. We call a relational association rule in R interesting if its sup-
port s is greater than or equal to a user-specified minimum support, smin, and its
confidence c is greater than or equal to a user-specified minimum confidence, cmin.

In [3] is given a discovery algorithm for binary ordinal association rules (rules
between two attributes). We developed in [4] an algorithm, called DOAR (Dis-
covery of Ordinal Association Rules), that efficiently finds all ordinal association
rules, of any length, that hold over a data set. We have proved that the proposed
algorithm is correct and complete. This algorithm can be used for finding rela-
tional association rules, as well. For implementing the main functionality of our
interface we have used the DOAR algorithm.

3. Medical Diagnosis using Relational Association Rules

In this section we propose a supervised learning technique, based on finding
relational association rules, called MDRAR (Medical Diagnosis using Relational

A PROGRAMMING INTERFACE FOR MEDICAL DIAGNOSIS PREDICTION 23

Association Rules). MDRAR determines the probability that a patient character-
ized by a set of symptoms suffers from a certain disease. The method works as
follows.

Let us consider that our focus is a certain disease, denoted by D. For an
appropriate diagnosis in the disease D, we consider a set of n relevant symptoms,
S. Each symptom is an attribute ai and has values from a domain Di. In order
to predict the probable diagnosis we perform a training step using two knowledge
bases: a knowledge base containing the patients that suffer from the disease D
(the ill patients), and a knowledge base containing the healthy patients. In both
knowledge bases, each patient is characterized by a vector with components the
values of all the symptoms from S. The knowledge bases of ill and healthy patients
are the training data and are used in the training step of the algorithm (see Figure
1).

Let us assume that a n-dimensional vector describing the symptoms from S
observed at a patient P is given as input to our algorithm. MDRAR determines
the probability that the patient P suffers from the disease D, using the model
learned in the training step. This is the prediction step of the algorithm (see
Figure 1).

The main steps of our diagnosis technique are given in Figure 1:

Figure 1. The MDRAR technique.
(1) TRAINING STEP:

(a) determine from the knowledge base with ill patients the set of as-
sociation rules (R1) having a minimum support and confidence;

(b) determine from the knowledge base with healthy patients the set of
association rules (R2) having a minimum support and confidence;

(2) PREDICTION STEP: for each patient P for which we intend to
predict the diagnosis, calculate the probability that P suffers from the
disease D as the percentage of rules from R1 verified by P and rules
from R2 not verified by P .

4. The programming interface

In this section we propose an API that allows a simple development of applica-
tions for medical diagnosis based on finding relational association rules. The API
provides an uniform development for all these applications.

The main advantage of the interface is that the user can simply define, depend-
ing on the current disease, new types of symptoms and new types of relations
between the symptoms, and the diagnosis prediction process remains unchanged.
The interface is realized in JDK 1.5, and is meant to facilitate software develop-
ment for assisting medical diagnosis.

24 GABRIELA ŞERBAN, ISTVAN-GERGELY CZIBULA, AND ALINA CÂMPAN

There are seven basic entities (classes): Patient (defines a patient), Symptom
(characterizes the patients), SymptomType (represents the type of a symptom),
Relation (defines a partial relation between symptoms), AssociationRule (de-
scribes relational association rules between symptoms), AssociationRuleGenerator
(responsible with generating relational association rules from the set of patients,
based on their symptoms values and relations already defined) and Diagnosis
(responsible with predicting the diagnosis for a given patient, using the MDRAR
algorithm).

For designing the interface, we made an abstraction of the mechanisms for gen-
erating relational association rules, in order the interface to be useful for any kind
of disease, symptoms and relations between symptoms. Much more, the patient
entities are completely separated from the symptoms that characterize them (a
Patient has to know nothing about its Symptoms, it has to know only about
their behavior). Thus, we can easily change and add Symptoms characterizing
the Patients, and Relations between Symptoms, without affecting the general
diagnosis prediction process.

The AssociationRuleGenerator class is the main class of the interface and
manages the process of finding relational association rules in the given set of
Patients with respect to the given Symptoms. This class provides an opera-
tion that finds relational association rules in data, by implementing the DOAR
algorithm (section 2).

The interface also provides:

• the class Patients that models a set of patients (the data set from which
we want to extract relational association rules);

• the class AssociationRules that models a set of relational association
rules;

• the class (Relations) that manages the set of relations between the
symptoms (this class allows to manage dynamically the set of relations
defined between symptoms).

For using the interface in a specific diagnosis prediction task, the user has only
to:

• define specialized classes for the concrete symptom types (for example
a class SymptomInt that extends the abstract class SymptomType if the
symptoms are quantified by integer values);

• define specialized classes for the concrete relations between symptoms
(for example a class IntIntEqual that extends the abstract class Relation
if we want to describe the equality relation between two integer valued
symptoms);

• construct the concrete set of patients.

All other mechanisms needed for generating the rules and predicting the diag-
nosis are provided by the classes from the interface.

A PROGRAMMING INTERFACE FOR MEDICAL DIAGNOSIS PREDICTION 25

In the following we present the skeleton of a diagnosis application. Let us
assume that symptoms have integer values, and the only relation needed between
Symptoms is “=”.

• First, the user implements the class that defines the concrete symptom
type.
public class SymptomInt extends Symptom{...}.

• Second, the user implements the class that defines the concrete relation
between the symptoms already defined.
public class IntIntEqual extends Relation{...}.

In the same manner as above, the user can define as many symptom types and
relations as are needed in the current diagnosis prediction task.

In the application class the user has to define a method that reads the data
(patients) from an external device (file, database) and returns a set of patients
(an instance of the Patients class) and to add (register) the concrete relations
defined above to the set of relations Relations.

public class Application {

public Application(){

// The manager of relations adds a new concrete relation to its set of

// relations

RelationSet.addRelation(new IntIntEqual());

// The application provides a method that constructs the set of ill patients

Patients ill = readData();

// An instance of an object AssociationRuleGenerator is created from the

// Patient set created above

AssociationRuleGenerator arg = new AssociationRuleGenerator(ill);

// The association rule generator generates the set of association rules

// having a minimum support and confidence

double minimumSupport = 0.9;

double minimumConfidence = 0.65;

AssociationRuleSet illRules = arj.genAssociationRules(minimumConfidence);

// The application provides a method that constructs the set of healthy

// patients

Patients healthy = readData();

// An instance of an object AssociationRuleGenerator is created from the

// Patient set created above

arg = new AssociationRuleGenerator(healthy);

// The association rule generator generates the set of association rules

// having a minimum support and confidence

AssociationRuleSet healthyRules=arj.genAssociationRules(minimumConfidence,

minimumSupport);

// An instance of a Diagnosis class is now created

26 GABRIELA ŞERBAN, ISTVAN-GERGELY CZIBULA, AND ALINA CÂMPAN

Diagnosis d = new Diagnosis(healthyRulles, illRules);

// Now the object d can be used to predict the diagnosis a given patient

}

}

Figure 2 shows a simplified UML diagram ([6]) of the interface, illustrating the
hierarchy of classes. The figure illustrates the core of the interface and what is
outside the core are the concrete classes that the user has to define, by extending
the classes provided by the interface, in order to develop a diagnosis prediction
application for a given disease. It is important to mention that all the core classes
provided by the interface remain unchanged in all applications.

Figure 2. The diagram of the programming interface

5. The Design of the Interface

The classes used for realizing the interface are the following:
• SymptomType is ABSTRACT.

Models an abstract symptom type, identified by the symptom type
name. The class has operations for returning and modifying the symp-
tom type name, a method for verifying the equality of two symptom
types and an abstract method that creates a symptom value from a
string. The concrete symptom types defined by the user of the interface,
will extend the abstract SymptomType, managing their concrete type
and overwriting the abstract methods from the abstract SymptomType;

A PROGRAMMING INTERFACE FOR MEDICAL DIAGNOSIS PREDICTION 27

• Symptom.
Models a symptom characterizing the patients, and is characterized

by a name, a symptom type (an instance of the SymptomType class) and
a value (that is an object).

• Patient.
Models a patient from the data set, which consists in a list of symp-

toms. The class has operations for managing the symptoms: adding,
removing and returning symptoms from a given position, searching a
symptom with a given name and symptom type.

• Patients.
Models a set of patients, which consists in a list of Patient objects.

The class has operations for managing the set of patients: adding, re-
moving, searching patients and a method that returns an iterator on the
set.

• Relation is ABSTRACT.
Models an abstract relation between two symptom types Type1 and

Type2. The class has abstract operations for: returning Type1 and
Type2, returning the name of the relation, verifying if two Symptoms
are in the given relation and for returning the converse of the relation.

• AssociationRule.
Models a relational association rule, which consists in a set of ab-

stract symptoms, a set of abstract relations, and characterized by its
support and confidence. The main methods of this class are for: man-
aging the symptoms and the relations from the association rule, setting
and returning the support and the confidence of the rule.

• AssociationRuleSet.
Models the structure of a set of relational association rules, which

consists in a list of AssociationRule objects. The class has operations
for managing the set of relational association rules: adding, removing,
searching rules and a method that returns an iterator on the set.

• Relations.
In our design this class models a repository (set) of relations, that al-

lows the user to dynamically add relations between newly defined Symp-
tom types. The user can dynamically add new defined relations in this
list, using a method addRelation. This class has methods for obtaining
the relations for a given Symptom, for verifying if there exists a given
Relation between two Symptoms.

• AssociationRuleGenerator.
Is the class that implements the process of finding relational asso-

ciation rules in a set of patients. The main method of the class is gen-
erateAssociationRules, that generates from the data set the relational

28 GABRIELA ŞERBAN, ISTVAN-GERGELY CZIBULA, AND ALINA CÂMPAN

association rules having a minimum given support and confidence, and
returns an instance of the AssociationRuleSet class.

• Diagnosis.
Is the main class of the interface, that predicts a diagnosis for a

given patient, based on the technique described in section 3. It repre-
sents the heart of the interface, the uniform usage that all patients, with
their particular symptoms and relations, are meant to conform to. An
instance of the Diagnosis class is associated with two instances of the
AssociationRuleSet class.

As it can be seen on Figure 2, there is a dependency relationship between
the AssociationRuleGenerator and Relations, that allows the association rule
generator to dynamically manage the relations added by the user, without affecting
the main process of detecting rules.

6. Experimental Evaluation

The file for this experiment was obtained from the website at ”http://www.corma-
ctech.com/neunet”.

In order to test the above defined interface, we considered a HealthCare exper-
iment for predicting the cancer disease.

The entities in this experiment are patients: each patient is identified by 9
Symptoms [1]. Each Symptom represents the value of a symptom in the cancer
disease, and has integer values between 1 and 10. Each instance has one of 2 pos-
sible classes: benign or malignant. In this experiment are 457 patients (entities).

The attribute information used in the ”cancer” experiment is shown in Table
1.

Table 1. Attribute information in the ”cancer” experiment

Attribute Domain
1. Clump Thickness 1 - 10
2. Uniformity of Cell Size 1 - 10
3. Uniformity of Cell Shape 1 - 10
4. Marginal Adhesion 1 - 10
5. Single Epithelial Cell Size 1 - 10
6. Bare Nuclei 1 - 10
7. Bland Chromatin 1 - 10
8. Normal Nucleoli 1 - 10
9. Mitoses 1 - 10

For this experiment, we have defined:
• SymptomInt, defining the integer Symptom representing a patient’s symp-

tom in the cancer disease;

A PROGRAMMING INTERFACE FOR MEDICAL DIAGNOSIS PREDICTION 29

• IntIntEqual, IntIntLess and IntIntGreater, defining the possible
relations between two integer symptoms (=, ≤, ≥);

• a mechanism that reads the data (for each patient, it reads the values of
the symptoms) and creates a Patients object.

We executed the medical diagnosis algorithm with minimum support threshold
of 0.9 and minimum confidence threshold of 0.65. The training data consists in
147 ill patients and 260 healthy patients. The prediction step was made for 60
patients (30 ill patients and 30 healthy patients). We have obtained a precision of
90%.

As a conclusion of our experiments, we have to mention, from a programmer
point of view, the advantages of using the interface proposed in this paper:

• is very simple to use;
• the effort for developing a diagnosis application based on relational as-

sociation rule detection is reduced - we need to define only a few classes,
the rest is provided by the interface;

• the user of the interface has to know nothing about the method of finding
relational association rules or about the prediction method, because they
are provided by the interface;

• we can add new symptom types and relations between symptoms, while
the interface remains unchanged.

7. Conclusions and Further Work

As a conclusion, we have developed a small framework that will help program-
mers to build, dynamically, their own applications for diagnosis prediction in dif-
ferent kind of diseases, without dealing with the internal mechanism (that remains
unchanged and is provided by the interface) and having the possibility to define
their own types of symptoms and relations between symptoms. So, the program-
mer’s effort for developing an application is small.

Further work can be done in the following directions:
• to test the accuracy of our technique on practical diagnosis. We think

that increasing the number of data in the training step the accuracy of
the prediction will grow;

• to study, for certain diseases, how can other symptoms and other rela-
tions between symptoms be added in order to assure better results in
diagnosis.

References

[1] Wolberg, W., Mangasarian, O.L.: “Multisurface method of pattern separation for medical
diagnosis applied to breast cytology”, Proceedings of the National Academy of Sciences,
U.S.A., Volume 87, December 1990, pp 9193–9196.

[2] http://www.cormactech.com/neunet, “Discover the Patterns in Your Data”, CorMac
Technologies Inc, Canada.

30 GABRIELA ŞERBAN, ISTVAN-GERGELY CZIBULA, AND ALINA CÂMPAN

[3] Marcus, A., Maletic, J. I., Lin, K.-I., “Ordinal Association Rules for Error Identification
in Data Sets”, CIKM 2001, 2001, pp. 589–591.

[4] Campan, A., Serban, G., Truta, T. M., Marcus, A., “An Algorithm for the Discovery of
Arbitrary Length Ordinal Association Rules”, submitted to DMIN’06.

[5] Han, J., Kamber, M., “Data Mining: Concepts and Techniques”, The Morgan Kaufmann
Series in Data Management Systems, 2001.

[6] http://www.omg.org/technology/documents/formal/uml.htm.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: gabis@cs.ubbcluj.ro

“InfoWorld”, Cluj-Napoca
E-mail address: czibula.istvan@infoworld.ro

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: alina@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 1, 2006

RELATIONAL ASSOCIATION RULES AND
ERROR DETECTION

ALINA CÂMPAN, GABRIELA ŞERBAN, AND ANDRIAN MARCUS

Abstract. In this paper we introduce a new kind of association rules, rela-

tional association rules, which are an extension of ordinal association rules

([1]). The relational association rules can express various kinds of relation-

ships between record attributes, not only partial ordering relations. We use

the discovery of relational association rules for detecting errors in data sets.

We report a case study for a real data set which validates this data cleaning

approach and shows the utility of relational rules.

Keywords: Data Mining, Relational Association Rules, Data Cleaning.

1. Introduction

Association rule mining techniques are used to search attribute-value pairs that
occur frequently together in a data set ([4], [5]).

Ordinal association rules ([1]) are a particular type of association rules. Given a
set of records described by a set of attributes, the ordinal association rules specify
ordinal relationships between record attributes that hold for a certain percentage
of the records. However, in real world data sets, attributes with different domains
and relationships between them, other than ordinal, exist. In such situations,
ordinal association rules are not powerful enough to describe data regularities.
Consequently, we define relational association rules in order to be able to capture
various kinds of relationships between record attributes.

Discovering the ordinal rules that hold in a data set was already used for iden-
tifying possible errors in that data set ([1]). We apply relational association rules
discovery to the same purpose. We provide an example that illustrates the utility

Received by the editors: March, 1, 2006.

2000 Mathematics Subject Classification. 68P15, 68U35.
1998 CR Categories and Descriptors. H.2.8[Computing Methodologies]: Database

Applications – Data Mining; H.4.2[Information Systems]:Information Systems Applications

– Types of systems;

31

32 ALINA CÂMPAN, GABRIELA ŞERBAN, AND ANDRIAN MARCUS

of discovering relational rules in data. By using ordinal rules discovery not all
types of errors that have been discovered using relational rules can be detected.

2. Relational Association Rules

We extend the definition of ordinal association rules ([1]) towards relational
association rules.

Let R = {r1, r2, . . . , rn} be a set of entities (records in the relational model),
where each record is a set of m attributes, (a1, . . . , am). We denote by Φ(rj , ai)
the value of attribute ai for the entity rj . Each attribute ai takes values from a
domain Di, which contains ε (empty value, null). Between two domains Di and
Dj can be defined relations, such as: less or equal (≤), equal (=), greater or equal
(≥), etc. We denote by M the set of all relations defined.

Definition 1. A relational association rule is an expression (ai1 , ai2 , ai3 , . . . , ai`
) ⇒

(ai1 µ1 ai2 µ2 ai3 . . . µ`−1 ai`
), where {ai1 , ai2 , ai3 , . . . , ai`

} ⊆ A = {a1, . . . , am},
aij 6= aik

, j, k = 1..`, j 6= k and µi ∈ M is a relation over Dij ×Dij+1 , Dij is the
domain of the attribute aij

. If:

a) ai1 , ai2 , ai3 , . . . , ai`
occur together (are non-empty) in s% of the n records,

then we call s the support of the rule,
and

b) we denote by R′ ⊆ R the set of records where ai1 , ai2 , ai3 , . . . , ai`
occur

together and Φ(rj , ai1) µ1 Φ(rj , ai2) µ2 Φ(rj , ai3) . . . µ`−1 Φ(rj , ai`
) is

true for each record rj din R′; then we call c = |R′|/|R| the confidence
of the rule.

We call the length of a relational association rule the number of attributes in
the rule. The length of a relational association rule can be at most equal to the
number of the attributes describing the data.

The users usually need to uncover interesting relational association rules that
hold in a data set; they are interested in relational rules which hold between a min-
imum number of records, that is rules with support at least smin, and confidence
at least cmin (smin and cmin are user-provided thresholds).

Definition 2. We call a relational association rule in R interesting if its support
s is greater than or equal to a user-specified minimum support, smin, and its
confidence c is greater than or equal to a user-specified minimum confidence, cmin.

We developed in [2] an algorithm, called DOAR (Discovery of Ordinal Associ-
ation Rules), that efficiently finds all interesting ordinal association rules, of any

RELATIONAL ASSOCIATION RULES AND ERROR DETECTION 33

length, that hold over a data set. This algorithm can be used for finding interesting
relational association rules, as well.

3. Data Cleaning

Real-world data tend to be incomplete, noisy and inconsistent. Data cleaning
refers to detect and correct or remove corrupt or inaccurate records (inconsis-
tencies) from a record set, to fill in missing values or to smooth out noise while
identifying outliers ([4]).

We aim to detect and report (not correct) record values that represent poten-
tial error in the analyzed data. We proceed in the same manner as for ordinal
association rules discovery ([1]):

• We detect all the interesting binary relational rules (rules between two
attributes), with respect to the user-provided support and confidence
thresholds). Even if the DOAR algorithm can be used to discover all the
relational rules, of any length, in a data set, we used it to discover only
the binary rules. Binary rules are sufficient in order to detect errors in
data sets.

• We detect and mark each record value that brokes any of the discovered
binary relational rules.

• We report as potential errors those record values marked as possible
errors more times than the average.

4. Case Study

For conducting our case study, we used a programming interface, presented
in [3] and designed for the discovery of interesting relational association rules.
This interface implements the DOAR algorithm. Based upon this interface, we
developed an error detection application, following the steps described in section
3.

The data set we used in our case study consists in records containing information
about students in a university department. There are 2012 records in the data
set. Each record is described by the following attributes: StudentID - number,
FirstName - text, LastName - text, CNP (Numerical Personal Code) - 13 digits
number, BirthDate - date, RegistrationDate - date.

Between these attributes the following semantic relationships must hold: the
CNP value must contain the BirthDate value and the BirthDate value must be
earlier than the RegistrationDate value for every student record. We want to
discover what are the erroneous records in the data set and which attribute value
is most likely to be inconsistent with the rest of the record.

34 ALINA CÂMPAN, GABRIELA ŞERBAN, AND ANDRIAN MARCUS

There are such data sets for which the semantic of some of the relationships
between attributes describing the data are known. Exceptions from these known
rules can be easily detected, but is more difficult, when other external information
are not available, to establish which of the conflictual data are real errors. When
other unknown regularities also exist in the data set, relational rule discovery, used
as described in this paper, can help to estimate where an error resides.

We executed the DOAR algorithm with minimum support threshold of 0.95 and
minimum confidence threshold of 0.93. The algorithm discovered that two binary
interesting relational rules hold in the data set, as we expected:

CNP ‘‘=’’ BirthDate (support=0.970, confidence=0.937)

BirthDate ≤ RegistrationDate (support=0.970, confidence=0.967)

The difference between the support and confidence values of these two rules
indicate that there are small irregularities in data, which represent potential errors.
The average rules broken by the record values, as reported by our application, is
1.014. So, every record value that brokes both rules is reported as a potential
error.

As the two binary rules discovered in data have only one common attribute,
only this attribute values are reported as possible errors. Usually, when there are
more relational rules having more common attributes, it is possible that errors to
be detected at record values of different attributes.

We report below the potential errors found by our application.

s34 (1790521311822, May 24 1979, Jan 01 1978) : 2 errors at BirthDate

Cnp(1790521311822) ‘‘=’’ BirthDate(May 24 1979);

BirthDate(May 24 1979) ≤ RegistrationDate(Jan 01 1978);

s34 (1790521311822, May 24 1979, Jan 01 1978) : 2 errors at BirthDate

Cnp(1790521311822) ‘‘=’’ BirthDate(May 24 1979);

BirthDate(May 24 1979) ≤ RegistrationDate(Jan 01 1978);

s2572 (1771103062952, Nov 03 1997, Jan 01 1996) : 2 errors at BirthDate

Cnp(1771103062952) ‘‘=’’ BirthDate(Nov 03 1997);

BirthDate(Nov 03 1997) ≤ RegistrationDate(Jan 01 1996);

s2572 (1771103062952, Nov 03 1997, Jan 01 1996) : 2 errors at BirthDate

Cnp(1771103062952) ‘‘=’’ BirthDate(Nov 03 1997);

BirthDate(Nov 03 1997) ≤ RegistrationDate(Jan 01 1996);

RELATIONAL ASSOCIATION RULES AND ERROR DETECTION 35

5. Conclusions and Further Work

The concept of relational association rules, introduced in this paper, is a gen-
eralization of ordinal association rules. Relational rules discovery has a larger
applicability, in different application domains where ordinal rules are not powerful
enough to express all existing relationships between data attributes.

Further work can be done in the following directions:

• Defining relational association rules that contain repeating attributes;
developing a technique similar to DOAR for the discovery of such inter-
esting rules.

• Applying discovery of relational association rules in other application
domains, such as medical diagnosis.

• Using relational association rules of arbitrary length together with other
data mining techniques such as classification or regression to increase
the accuracy of the predictive models ([6]). Binary association rules are
currently used in building predictive models in e-banking services ([7]).

References

[1] Marcus, A., Maletic, J. I., Lin, K.-I., “Ordinal Association Rules for Error Identification

in Data Sets”, CIKM 2001, 2001, pp. 589–591.

[2] Campan, A., Serban, G., Truta, T. M., Marcus, A., “An Algorithm for the Discovery of

Arbitrary Length Ordinal Association Rules”, submitted to DMIN’06.

[3] Serban, G., Campan, A., Czibula, I.G. , “A Programming Interface For Finding Relational

Association Rules”, submitted to ICCCC 2006.

[4] Han, J., Kamber, M., “Data Mining: Concepts and Techniques”, The Morgan Kaufmann

Series in Data Management Systems, 2001.

[5] Tan, P.-N., Steinbach, M., Kumar, V., “Introduction to Data Mining”, Addison Wesley,

cap. 8,9, 2005.

[6] Hong, S. and Weiss, S., “Advances in predicitve model generation for data mining”, IBM

Research Report RC-21570.

[7] Aggellis, V., and Christodoulakis, D., “Association Rules and Predictive Models for e-

Banking Services”, in Proceedings of 1st Balkan Conference in Informatics, Tessaloniki,

Greece, 2003.

36 ALINA CÂMPAN, GABRIELA ŞERBAN, AND ANDRIAN MARCUS

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,

Romania

E-mail address: alina@cs.ubbcluj.ro

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,

Romania

E-mail address: gabis@cs.ubbcluj.ro

Department of Computer Science, Wayne State University, USA

E-mail address: amarcus@wayne.edu

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 1, 2006

SUPPORTING MULTIMEDIA STREAMING APPLICATIONS
INSIDE THE NETWORK

ADRIAN STERCA, FLORIAN BOIAN, DARIUS BUFNEA, CLAUDIU COBÂRZAN

Abstract. There are many reasons for quality degradation of multimedia
streams inside the network. Two of the most important ones are related to
the UDP protocol and the Random-Drop policy implemented inside most of
the routers currently deployed on the Internet. We intend to discuss, in this
paper, some of multimedia streaming applications’ problems centered around
the UDP protocol and Random-Drop policy. We also present some mech-
anisms to alleviate these problems. More specifically, we present a queue
management algorithm PDQMAMS (Priority-Drop Queue Management Al-
gorithm for Multimedia Streams) for supporting the quality of multimedia
streams inside the network.

1. Introduction

As multimedia encoding standards like MPEG and H.264/AVC become more ef-
ficient and as new digital video processing tools are developed, multimedia stream-
ing applications gain a more important percent of the data transferred over the
Internet. However, the current Internet does not support the high bandwidth and
low latency demands of multimedia applications. Hence, communicating partners
need to adapt to rapidly changing connection parameters and also to provide the
best use of the scarce bandwidth of nowadays networks. Because of the latter
reason, most of multimedia streaming applications choose to use UDP instead of
TCP as the transport protocol, trading speed over reliability.

UDP offers several advantages over TCP, the most important being its speed.
But the speed of UDP comes with a cost: it is unreliable and not responsive to
congestions. Because UDP is unresponsive to congestion, it can cause the occur-
rence of congestion and can lead to unfairness against TCP-friendly flows. Most
of the routers in the Internet use a Random Drop policy for freeing up space when
congestion occurs and the queue is full. This policy gives multimedia packets an

Received by the editors: April 2, 2006.
2000 Mathematics Subject Classification. 90B18, 68M20.
1998 CR Categories and Descriptors. 90B18 [Operations research, mathematical

programming]: Operations research and management science – Communication networks;
68M20 [Computer science]: Computer system organization – Performance evaluation; queue-
ing; scheduling;

37

38 ADRIAN STERCA, FLORIAN BOIAN, DARIUS BUFNEA, CLAUDIU COBÂRZAN

uniform importance although multimedia encoding schemes regard them as having
different levels of priorities. This way of things is very bad for multimedia stream-
ing applications. Because most of the encoding standards use layered/predictive
encoding to achieve a good compression rate (i.e. some video frames are encoded
as the difference between the current frame and the previous and/or the next one),
dropping an independent frame in a router makes the other frames dependent on
this one useless on the end-user’s system even if they survive the ride through the
Internet.

This paper presents a queue management algorithm for routers that tries to
alleviate the aforementioned problems. It maintains a state for each multimedia
flow and uses a priority-driven dropping scheme when the buffer overflows. Also,
it is fair to each flow when packet drops are imperative and smart enough to drop
packets belonging to less important frames, if congestion occurs. The rest of the
paper is structured as follows: section 2 presents the main problems faced by mul-
timedia streams inside the network and the causes of these problems; section 3
presents the AMSP protocol (Adaptation-aware Multimedia Streaming Protocol)
whom our solution is based on and our own Priority-Drop Queue Management
Algorithm for Multimedia Streams (PDQMAMS); in section 4 we perform exper-
iments for proving PDQMAMS’s qualities; section 5 presents some improvements
of the algorithm we have in mind; then, in section 6 we refer to related work and
the paper ends with conclusions and future work in section 7.

2. Problems of multimedia streams inside the network

Multimedia streaming application have huge requirements related to the net-
work. One of the most important and hard to satisfy requirements is the high
bandwidth that multimedia streaming applications need. For example, the MPEG-
1 compression standard [1] demands a bandwidth of up to 1.5 Mbit/s, while
the MPEG-2 standard [1] supports data rates of up to 4 Mbit/s. Besides huge
bandwidth amounts, there are other requirements related to the timeliness of
the transmission of multimedia streams. For an optimal quality of the multi-
media data, real-time multimedia streaming often demands that communication
be isochronous. This implies very short delays and also small values for jitter, but
also good continuous throughput. If the delay between packets is too high, the
video will periodically freeze at the receiver, waiting for the following frames to
arrive. Jitter is equally important: a jitter too great means high fluctuations of
the delay and this can lead to buffer underrun or overrun at the receiver, causing
degradations of the video. These requirements are hard to satisfy in a best-effort
network like the Internet.

The major problem of a best-effort network with respect to multimedia ap-
plications is that no QoS guarantees can be given. In a network with variable
delays and different levels of congestion, communicating partners need to adapt

MULTIMEDIA STREAMING ADAPTATION 39

to rapidly changing connection parameters (e.g. reducing the quality of the mul-
timedia stream, adapting the video or audio material). Multimedia streaming
applications often choose UDP as the transport layer protocol, instead of TCP,
trading low delay and high throughput over reliable delivery. More specifically,
multimedia streaming applications choose UDP over TCP to avoid TCP’s start-
up delay, to avoid the overhead of maintaining a state for each connection (like
TCP does) and to favour timeliness characteristics (e.g., delay, jitter, etc.) at the
cost of reliability (e.g., retransmission timeouts, in-order delivery, etc.). The speed
advantage of UDP over TCP comes with a drawback: it is unresponsive to conges-
tion. This is a major pitfall of multimedia streaming applications, as multimedia
streams, which are basically UDP flows, are not fair to TCP-friendly flows (i.e. a
flow whose sending rate does not surpass the sending rate of a TCP connection in
the same circumstances [2]) and also they are not fair to each other. Depending
on each connection’s parameters, one UDP flow can eat up a lot more downstream
bandwidth than the other flows that pass through the same router, especially if
these are TCP-friendly flows. In steady-state, when a TCP flow notices conges-
tion (a packet drop or ECN packet [3]) it backs-off, reducing its sending rate by
half. In contrast, a UDP flow does not sense congestion because it is stateless
and not connection-oriented like TCP. If packets are dropped, UDP flows continue
to send packets at the same rate and, in the worse case, they can even increase
their sending rate. This way, they can lead to starvation of other TCP-friendly
flows [4] or even to congestion collapse [5]. A remedy for the congestion and un-
fairness problems of UDP flows can be considered from two perspectives. First,
congestion avoidance and fairness with respect to other flows can be achieved if
multimedia streams implement some form of end-to-end congestion control similar
to the AIMD mechanism of TCP - this could be implemented either to the trans-
port level (DCCP [6]) or to the application level -, so that the multimedia flow
decreases its rate in response to congestion notification from the network. Second,
the problems of congestion control and fairness between flows can be tackled inside
the routers using active queue management like RED (Random Early Detection)
[4, 8] or fair scheduling mechanisms like SFQ (Stochastic Fairness Queuing) [9] and
WFQ (Weighted Fair Queuing) [10]. Active queue management algorithms try to
avoid congestion and achieve fairness by managing the length of the queue and
dropping packets from the queue when necessary or appropriate. On the other
hand, scheduling algorithms decide which packet to send next and they mainly
provide fair allocations rather than congestion avoidance.

The drop policy of most routers currently deployed on the Internet is the
Random-Drop Policy. We refer with the term of ”Random-Drop Policy” to all
dropping policies that don’t take into consideration the differences between pack-
ets when taking a dropping decision and the drop is made only when the queue
overflows (e.g. Head-Drop, Tail-Drop, Random-Drop). The Random-Drop Policy

40 ADRIAN STERCA, FLORIAN BOIAN, DARIUS BUFNEA, CLAUDIU COBÂRZAN

is disastrous for multimedia streaming applications. The majority of multime-
dia encoding standards (e.g., MPEG, H.264/AVC, etc.) use a layered/predictive
encoding scheme in order to achieve a good compression ratio, i.e., some of the
frames depend on other base frames in the encoding process. In this encoding
process, a basic layer is first encoded normally and any other enhancement lay-
ers are encoded as the difference between the base layer and the desired quality
layer. For example, the MPEG-family of standards [11] uses four types of frames in
the encoding process: I-frames (Intra-coded frames), P-frames (Predictive-coded
frames), B-frames (Bi-directionally predictive-coded frames) and D-frames (DC-
coded frames).

The Random-Drop Policy gives multimedia packets an uniform importance al-
though multimedia encoding schemes regard them as having different levels of
priorities. Dropping a packet belonging to a base layer (e.g. I-frame) makes sub-
sequent packets/frames that depend on this one useless at the receiver, because
it can not decode the enhancement layer (B- or P-frames) without the base layer
(depending I-frame). A possible solution for this problem assumes assigning some
sort of priorities (the priorities should be assigned either by the router or by the
streaming protocol) to packets and drop them accordingly. In other words, we
would rather drop an insignificant packet - one whose missing is tolerable by the
receiver - than throw away indispensable data.

3. Priority-Drop Queue Management Algorithm for Multimedia
Streams (PDQMAMS)

We argue that providing a real support for multimedia streams inside the net-
work, at router level, requires some form of help from multimedia streaming pro-
tocols (priority schemes, feedback, etc.). The router algorithm, whether queue
management algorithm or packet scheduling algorithm, can not do this job on its
own. Following this direction, we present a router-queue management algorithm
that uses knowledge from the multimedia streaming protocol (knowledge inserted
in protocol’s header inside packets) for preferentially dropping packets and, thus,
for providing support for multimedia streams. We chose to use the AMSP proto-
col [12] instead of RTP [7], which is widely used for multimedia communication,
because it conveys scaling information together with multimedia data as opposed
to RTP which offers limited support for scaling. This is exactly what we need if
we want to alleviate the impact of congestion on multimedia streams inside the
network. More specifically, by assigning priorities to multimedia packets, AMSP
conveys ”intelligence” to network routers which would help them in taking better
dropping decisions. AMSP also offers better QoS feedback support than RTP.

3.1. The AMSP protocol. The Adaptation-aware Multimedia Streaming Pro-
tocol is a streaming protocol similar to RTP. It conveys time sensitive information
like multimedia data together with scaling information, so that multimedia streams

MULTIMEDIA STREAMING ADAPTATION 41

can be adapted inside the network to the rapid changing parameters of the net-
work. The scaling information can be used by common core routers to perform
packet-level adaptation of multimedia streams (i.e. drop less important packets) or
it can be used by scaling proxies that can perform complex media transformations
inside the network (e.g. color reduction, temporal reduction, transcoding, etc.).
The central concept of AMSP is the channel concept. Each channel is identified by
an 8-bit field in the AMSP header called the ChannelID field. This field encapsu-
lates the channel number, the priority of the channel and the dropping capability
(whether packets belonging to this channel can be dropped). There a several types
of channels AMSP supports: control channel, media channels, metadata channels,
scaling control channels, retransmission channels, feedback channels and auxiliary
channels. A multimedia stream is mapped onto one or more media channels, and
thus, its packets get the priority of the respective channel(s). The idea of using
channels to convey data with different levels of importance comes from the fact
that multimedia streams are based on related layers with different levels of im-
portance. AMSP offers elaborate feedback support including acknowledgements,
non-acknowledgements, number of received/discarded/duplicated packets, round-
trip time, jitter, bandwidth, buffer size, etc.

By assigning different levels of importance to multimedia packets, an AMSP-
aware router could break this uniform treatment of packets when a dropping de-
cision must be taken, which could only be beneficial to multimedia streams. By
dropping less important packets (e.g. packets belonging to a B-frame or a P-frame,
instead of an I-frame), an AMSP-aware router can achieve greater performance for
multimedia traffic in case of congestion.

3.2. The PDQMAMS algorithm. The Priority-Drop Queue Management Al-
gorithm for Multimedia Streams is essentially a queue management algorithm for a
stateful AMSP-aware router that achieves fairness between AMSP-flows. Our goal
in this paper was to develop a router algorithm that supports multimedia traffic
inside the network. We could achieve a good result in this direction by implement-
ing a simple queue management AMSP-aware algorithm that preferentially drops
packets according to AMSP channel priorities when congestion occurs. We don’t
want to use for this purpose a queue scheduling algorithm since this would induce
higher delays for packets inside routers; we want to use plain FIFO discipline.
However, a simple AMSP-aware algorithm for queue management would have a
major drawback: it would lack fairness among flows. An AMSP session (flow)
will be identified by a pair of (server IP, client IP) together with a pair of (source
port, destination port). Because the number of channels and the priority levels a
multimedia stream should use is left to the application’s choice, multiple AMSP
sessions use different numbers of priority levels. Hence, if we have multiple AMSP
sessions competing for bandwidth and these sessions have different numbers of
priority levels (depending on each one’s number of elementary streams) it is very

42 ADRIAN STERCA, FLORIAN BOIAN, DARIUS BUFNEA, CLAUDIU COBÂRZAN

likely that the router always selects the packet with the lowest priority from the
same set of streams (belonging to a constant AMSP session). But this won’t be
fair to AMSP flows since the algorithm will show bias for a constant AMSP flow
when a dropping decision has to be made (this flow is the AMSP flow that owns
the channel with the lowest priority from all the channels of all AMSP flows). It
is clear that a simple stateless AMSP-aware router will not be able to achieve fair-
ness when drops have to be done. Consequently, our queue management algorithm
must be stateful, i.e. it must maintain a state for each flow.

We consider two kinds of flows: (1) the AMSP flows and (2) one flow that
contains all other non-AMSP packets (called the other flow), and although we
have a single physical queue of packets, each flow will have its own virtual queue.
As we said before, the granularity of AMSP flows will be a pair of (IP,port) binoms
(one for source and one for destination). In order to keep the state maintained
at the router small, we use a hash bucket with a limited number of slots for flows
differentiation. When a packet arrives at the router it is first classified: if it is an
AMSP packet, the packet is assigned to a slot from the hash bucket by applying
the hash function on a value composed by an aggregate of source IP, destination
IP, source port, destination port and transport protocol value. If the packet does
not belong to an AMSP flow, it is assigned to the other flow. Once a packet
gets assigned to an AMSP slot/flow, it is further added to the specific channel
this packet belongs to in the respective AMSP flow. The number of channel is
determined from the ChannelID field of the AMSP header of the packet. Each flow
has a number of linked lists for every channel it has. A graphical representation
of PDQMAMS’s architecture is shown in Fig. 1.

Hash bucket
(flow classifier)

slot 1 (AMSP)

slot 2 (AMSP)

slot n (AMSP)

 incoming packets

CC channel

CC channel

CC channel

Aux. channel

Aux. channel

Aux. channel

Media channels

Media channels

Media channels

slot other flow

Figure 1. The PDQMAMS router architecture

An AMSP packet is placed on two linked lists: the global list with all packets
from the queue and the list of the channel it belongs to, inside the AMSP flow.
A non-AMSP packet is also placed on two linked lists: the global list and the list

MULTIMEDIA STREAMING ADAPTATION 43

of packets belonging to other flows. To be noted that due to the number of slots
available for the hash function, it is possible that an AMSP packet gets placed on
the same slot with other AMSP packets not belonging to the same AMSP flow.
To minimize the number of collisions inside a slot, the hash function is perturbed
every 10 seconds. We now detail each operation PDQMAMS performs.

I. Packet enqueuing. If the queue is not full, the packet is enqueued normally.
The classifier first determines if this is an AMSP packet or not. If not, the packet
is added to the other flow. If this is an AMSP packet, based on the hash value for
this packet, it is attached to an AMSP slot/flow and inside the flow is assigned to
the corresponding AMSP channel. The packet is also added to the main queue. If
the queue is already full when the packet arrives, one or more packets are chosen
for dropping (using a sort of weighted fair dropping algorithm, see subsection III,
Packet dropping) and the new packet is added to the queue the same way as shown
above. This way, newer packets are favoured, as for old enqueued packets, there is
a good chance they will be useless at the receiver (because their presentation time
has expired).

II. Packet dequeuing. Packets are dequeued for sending using a simple FIFO
strategy. This strategy is very light, easy to implement and minimizes the maxi-
mum delay of a packet in the router’s queue.

III. Packet dropping When the queue is full, a dropping decision has to
be made in order to accommodate a new packet. The dropping decision has to
subscribe to two guidelines: it must be as fair as possible to all flows and it must
protect multimedia streams. For achieving fairness, the dropping choice must be
influenced by the number of packets each flow has in the queue. For the second
goal, the router must always select for dropping the lowest priority packet. In
order to decide which flow to drop from, all the flows (their packets) are linearly
mapped on a list with the length QLen, so that all the packets of each flow are
placed consecutively on this list and QLen is the number of queued packets in the
router (see Fig. 2). A random integer number between 1 and QLen is generated.
Let this number be k. The flow chosen for dropping is the flow that the k-th packet
from the list belongs to. After the flow for dropping is chosen, we must decide
which packet(s) from that flow will be dropped. If the flow is an AMSP one, we
always choose for dropping the packet(s) with the lowest priority(es). If multiple
packets apply, we drop the oldest one. In the case of a non-AMSP flow, we apply
a tail-drop discipline. This way, a flow that has a greater number of packets in
the queue, has a higher probability to be selected for dropping. This is somewhat
dangerous for the other flow because all non-AMSP packets are assigned to this
flow, thus, the length of the other flow can significantly surpass the length of
AMPS flows, making it very vulnerable to selection when drops have to be done.
This is why, we do not map all the packets from the other flow on the linear list,
but we map only a limited number of packets from this flow (the number of all
non-AMSP packets divided by a certain weight).

44 ADRIAN STERCA, FLORIAN BOIAN, DARIUS BUFNEA, CLAUDIU COBÂRZAN

Flow no. 5 has a higher probability to be picked
for dropping than Flow no. 2 because it has
more packets in the
queue.

Flow no. 1

Flow no. 2

Flow no. 3

Flow no. 4

Flow no. 5

Flow no. 6

Flow no. 5 has a higher probability to be picked
for dropping than Flow no. 2 because it has
more packets in the
queue.

Flow no. 1

Flow no. 2

Flow no. 3

Flow no. 4

Flow no. 5

Flow no. 6

Figure 2. Packet dropping in PDQMAMS

Note that the degree of fairness depends on the number of slots in the hash
bucket. If the number of slots is great, then the number of collisions will be small
and there is a bigger chance that all the packets from a slot belong to the same flow,
hence, dropping fairness is increased. Conversely, if the number of slots is small,
there are more collisions in the slots and packets from different flows are mixed
with a higher probability. This problem is somewhat alleviated by perturbing the
hash function each 10 seconds.

4. Experimental results

To evaluate our algorithm, we have implemented PDQMAMS as a queue dis-
cipline under the Linux kernel version 2.4.24. We used for our tests the logical
network topology depicted in Fig. 3. The connection between the router R1 and
router R2 was limited using the Linux traffic control framework [13] and the code
corresponding to the AMSP client and AMSP server was taken from the AMSPLi-
brary [12]. PDQMAMS was deployed on the router R1. All the links except the
R1 - R2 link have capacities higher than the bandwidths requested by our AMSP
sessions, so that the only congested link is R1 - R2.

S1

S2

C1

C2

R1 R2

 bottleneck link

Figure 3. The net topology used in experiments

In the first experiment, we wanted to see how PDQMAMS supports multimedia
streams by dropping lower priority packets when the queue overflows. We started
one AMSP server on S1 and one AMSP client on C1 and let them run for 300
seconds. The server was sending a synthetic 512kbit/s stream with 30 fps to the
client C1. The size of the frames were chosen so that I-, P- and B-frames with
priority 2 fit into an AMSP packet. All other frames are larger than the MTU
and are fragmented by the application. The synthetic multimedia stream was
encoded using a pattern of one I-frame followed by 5 P-B-B-B-B sequences, which
is common for MPEG streams. The outgoing link from the PDQMAMS router to

MULTIMEDIA STREAMING ADAPTATION 45

the router R2 was limited to 64kbit/s. As you can see from Fig. 4 the percent
of frames received is proportional to the frame priority. Hence, the frame type
that has the highest percent of arrived frames is the I-frame which has the highest
priority (zero). It is followed by P-frames which have priority 1 and then B-frames
with priorities running from 2 to 6. Hence, by dropping less important packets
(B-frames with priorities of 6, 5, 4 and 3), PDQMAMS increases the perceived
quality of multimedia streams.

0 20 40 60 80 100

percent of frames received

I-Frame, prio 0

P-Frame, prio 1

B-Frame, prio 2

B-Frame, prio 3

B-Frame, prio 4

B-Frame, prio 5

B-Frame, prio 6

Figure 4. bandwidth=64kbit/s, one flow, duration=5 min.

0
20
40
60
80

100
120
140

I-F
ra
m
es

P-
Fr

am
es

B-
Fr

am
es

I-F
ra
m
es

P-
Fr

am
es

B-
Fr

am
es

flows

fr
a

m
e

s
 r

e
c

e
iv

e
d

(a) bandwidth=64kbit/s, time=2 min.

0

50

100

150

200

250

300

350

400

I-Frames P-Frames B-Frames I-Frames P-FramesB-Frames

flows

fr
a
m

e
s
 r

e
c
e
iv

e
d

(b) bandwidth=128kbit/s, time=2 min.

Figure 5. Experiments with two flows (blue & green)

In the second and the third experiment we wanted to prove that PDQMAMS
is fair to flows when drops are imperative. These experiments differ only in the
bandwidth limitation applied to the link R1 - R2. In the experiment no. 2 this link
had a capacity of 64kbit/s and in the experiment no. 3 the capacity is 128 kbit/s.
Both experiments were run for 120 seconds. For both experiments two AMSP
flows pass through the PDQMAMS router R1 and both flows have a bandwidth

46 ADRIAN STERCA, FLORIAN BOIAN, DARIUS BUFNEA, CLAUDIU COBÂRZAN

demand greater than the one provided by the network (64kbit/s for experiment 2
and 128kbit/s for experiment 3). We started two AMSP-server process on machine
S1 and S2 and two clients, one on machine C1 and the other one on machine C2.
The first AMSP server sends a synthetic multimedia stream to client running on
C1 and the second AMSP server sends the same synthetic multimedia stream to
client running on C2. The synthetic multimedia stream was the same as the one
used for the first experiment. As you can see from Fig. 5(a) and Fig. 5(b) the
PDQMAMS-router does a satisfactory job in achieving fairness between the two
AMSP flows, while complying to the lowest priority drop scheme for supporting the
quality of multimedia streams. The reason we have more P-frames received than
I-frames for some AMSP flows is because in the multimedia streams, the number
of I-frames is much smaller than the number of P-frames (this is compliant with
the MPEG standards for achieving a better compression ratio) since the encoding
pattern of the stream was one I-frame and then 5 P-B-B-B-B sequences.

5. Improvements of the algorithm

The PDQMAMS algorithm presented above, as we have seen, does a good
job in supporting/protecting multimedia streams (by employing a priority-based
dropping scheme) and also achieving a good degree of fairness between flows. The
quality of multimedia streams is surely increased at the receiver side. However, this
algorithm does not directly address the problem of congestion or, more exactly,
congestion avoidance. In order to pro-actively avoid congestion inside the router
while still providing fairness between flows and support for multimedia streams,
the PDQMAMS algorithm needs to incorporate probabilistic dropping schemes
before the queue is full like the ones employed by RED [8]. This leads us to a
modified version of PDQMAMS that is still AMSP-aware and stateful, but drops
are made early, before the queue overflows and the dropping scheme is slightly
different.

We could, try on a first approach to apply a RED [8] or an Adaptive RED [14]
test on the global queue. This would improve congestion avoidance and prevent
buffer overflows. However, RED was mainly designed for avoiding congestion inside
routers by controlling the sending rate of TCP conformant flows. So it assumes
the link is utilized mostly by TCP flows (Adaptive RED relaxes to some degree
this restrictions). Our improved PDQMAMS can not impose such conditions, as
one of its goals is to protect multimedia streams. But a RED/Adaptive RED test
can still be applied to the other flow where the majority of packets will belong
to TCP-friendly flows. On the other hand, an AMSP flow can be subject to a
RED-like test based on the average length of the flow’s virtual queue and a special
threshold specific for multimedia streams. This threshold should specify an upper
limit for an AMSP flow’s queue length, above which the packets won’t be of any
good at the receiver side because the delay experienced by the packet is too high
(and the presentation time at the receiver had already expired before this packet

MULTIMEDIA STREAMING ADAPTATION 47

would have left the queue). This threshold value can be considered as a kind of
staleness threshold. If the average length of the virtual queue of an AMSP flow
is greater than this staleness threshold, the lowest priority packet from this flow
should be dropped.

The improved PDQMAMS algorithm outlined above will have a great chance
in providing fairness for all flows, support for multimedia streams and pro-active
congestion avoidance.

6. Related work

Our queue management algorithm drops lower priority packets when the router’s
queue becomes full. There is another approach to this prioritized treatment of
packets inside a router’s queue. Incoming lower priority packets can be dropped,
before the queue is full, to make room for incoming higher priority packets. In
this approach, an incoming lower priority packet is dropped if the number of lower
priority packets from the queue is above a threshold value. This approach of man-
aging prioritized packets inside a router’s queue has the advantage of avoiding the
complexity of searching the queue for a low priority packet to drop, which is done
in our approach. This approach is the basis for the algorithm presented in [15].
The disadvantage of such algorithms is that they are less accurate (because they
use thresholds for taking drop decisions) and they often lead to underutilisations
of the queue. In [15], a version of such threshold-based algorithm which tries to
alleviate this accuracy problem by using dynamic thresholds is presented. This
algorithm uses not one threshold, but several different threshold values for each
type of low priority frames from a multimedia stream. These thresholds are chosen
in a dynamic way based on how the queue’s fill level will be in the future (i.e., after
several more frames are received, the lookahead buffer). In this algorithm, when
a packet belonging to a low priority frame arrives at the router and the threshold
for this kind of frame is surpassed (meaning that accepting this packet makes the
lookahead buffer drop a future incoming high priority frame packet) this packet is
dropped. This algorithm relies on the source sending in advance information about
future incoming frames, to intermediate routers and on the fact that intermediate
routers know in advance the arriving frame pattern from one second GOP.

Although our PDQMAMS does not use threshold values and drops a packet
only when it’s absolutely necessary (i.e., when the queue is full), thus being more
accurate, complexity is added only when a packet is enqueued (like is depicted in
figure 1) and, in our opinion, this complexity is comparable with the complexity
of the algorithm presented in [15] when threshold values must be computed every
time a packet arrives at the router. Also, the algorithm presented in [15] assumes
it manages only a single multimedia flow and that available bandwidth changes
on coarse-granularity time intervals, while our PDQMAMS handles several multi-
media flows and achieves fairness between them.

48 ADRIAN STERCA, FLORIAN BOIAN, DARIUS BUFNEA, CLAUDIU COBÂRZAN

7. Conclusions and future work

We have presented a queue management algorithm, namely Priority-Drop Queue
Management Algorithm for Multimedia Streams (PDQMAMS) for helping multi-
media streams inside the network. We showed that this queue management algo-
rithm indeed provides support for multimedia streams while achieving a good de-
gree of fairness among flows. We also sketched an improved version of PDQMAMS
that tries to maintain the above qualities and also provide pro-active congestion
avoidance mechanisms (mainly based on RED). As future plans we intend to im-
plement and test this improved version of PDQMAMS under various conditions
and prove its advantages.

References

[1] R. Steinmetz, K. Nahrstedt, Multimedia: Computing, Communications and Applications,
Prentice Hall PTR, 1995.

[2] S.Floyd, K. Fall, Promoting the Use of End-To-End congestion control in the Internet,
IEEE/ACM Transactions on Networking, August 1999.

[3] K. Ramakrishnan, S. Floyd, A Proposal to add Explicit Congestion Notification (ECN) to
IP, RFC 2481, January 1999.

[4] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G.
Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, L. Zhang,
Recommendations on Queue Management and Congestion Avoidance in the Internet, RFC
2309, April 1998.

[5] Nagle, J., Congestion Control in IP/TCP, RFC 896, January 1984.
[6] E. Kohler, M. Handley, S. Floyd, Datagram Congestion Control Protocol (DCCP), Internet

Draft, February 2004, http://www.icir.org/kohler/dcp/draft-ietf-dccp-spec-06.txt.
[7] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, RTP: A Transport Protocol for

Real-Time Applications, RFC 3550, July 2003.
[8] S. Floyd, V. Jacobson, Random Early Detection Gateways for Congestion Avoidance,

IEEE/ACM Transactions on Networking, Vol. 1, No. 4, pp. 397-413, August 1993.
[9] P. E. McKenney, Stochastic Fairness Queuing, Internetworking: Research and Experience,

Vol. 2, pp. 113-131, 1991.
[10] A. Demers, S. Keshaw, S. Shenker, Analysis and Simulation of a Fair Queuing Algorithm,

Journal of Internetworking: Research and Experience, 1, 1990, pp. 3-26.
[11] MPEG Standards, http://www.chiariglione.org/mpeg/index.htm.
[12] M. Ohlenroth, Network-based Adaptation of Multimedia Content, PhD thesis, Klagenfurt

University, Austria, September 2003.
[13] B. Hubert, T. Graf, G. Maxwell, R. van Mook, M. van Oosterhout, P. B. Schroeder, J.

Spaans and P. Larroy, Linux Advanced Routing and Traffic Control, August 2003, available
at http://lartc.org/howto.

[14] S. Floyd, R. Gummadi, S. Shenker, Adaptive RED: An Algorithm for Increasing the Ro-
bustness of RED’s Active Queue Management, august, 2001.

[15] A. Awad, M.W. McKinnon and R. Sivakumar, MPFD: A Lookahead Based Buffer Man-
agement Scheme for MPEG-2 Video traffic, Proceedings of the 8th IEEE International
Symposium on Computers and Communication, 2003, (ISCC 2003).

Faculty of Mathematics and Computer Science, Babes-Bolyai University, Cluj-Napoca
E-mail address: {forest, florin, bufny, claudiu}@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 1, 2006

BROAD PHONETIC CLASSES EXPRESSING SPEAKER
INDIVIDUALITY

MARGIT ANTAL, GAVRIL TODEREAN

Abstract. Vector quantisation and Gaussian mixture modelling methods
are very popular methods for automatic speaker identification. First we give
a concise overview of these methods, then present some measurements com-
paring them on behalf of the TIMIT corpus. The aim of this paper is to study
the influence of the speech material on performances of such methods. For
this purpose pure phonetic speaker models were created containing speech
data from a single broad phonetic class. The speaker discriminative prop-
erty of these pure phonetic speaker models had been investigated. Among
the broad phonetic classes nasals and vowels were found to be particularly
speaker specific.

Key Words: Speaker Identification, Gaussian Mixture Models, Pure
phonetic speaker models

1. Introduction

A variety of signals and measurements have been proposed and investigated for
use in biometric recognition systems. Among the most popular measurements are
fingerprint, face and voice. There are two main reasons for using voice instead
of other measurements. First, there is a well-developed infrastructure for speech
signal transmission which can be accessed almost everywhere using a cell phone.
Second, speech is the most natural way of communication, therefore is not intrusive
for users to provide speech sample for authentication.

Speaker recognition is the process of recognising the speaker on the basis of
information obtained from speech waves. Speaker recognition can be divided into
speaker identification and speaker verification. While speaker identification is a
classification problem performed on a closed set of speakers, speaker verification
is a binary decision, determining whether an unknown voice is from a particular
enrolled speaker. If the speaker is recognised based on unconstrained speech, the
system is called text-independent. However, text constrains can greatly improve
the accuracy of a system. A great overview of speaker recognition systems can be
found in [10].

Received by the editors: July 28, 2005.
2000 Mathematics Subject Classification. 68T10, 62H30.
1998 CR Categories and Descriptors. I.5.2 [Pattern Recognition]: Design

Methodology– Classifier Design and Evaluation; I.5.4 [Computer Systems Organization]:
Special-purpose and Application-based Systems – Signal Processing Systems .

49

50 MARGIT ANTAL, GAVRIL TODEREAN

The special recognition task addressed in commercial systems is that of veri-
fication rather than identification. In spite of that, for this project, we chose to
confine our experiment to the task of closed-set identification rather than speaker
verification. The motivation for doing so was to measure the classification capa-
bility of the system without having to consider the effect of different background
model normalisation schemes required for the verification task.

The majority of research papers focuses on feature extraction and selection
methods or classifier combinations for obtaining higher identification rates rather
than on analysing the content of speaker models. Flanagan’s group in [9] selectively
used the speech spectrum for speaker identification and found that the higher
portion of the speech spectrum contains more reliable idiosyncratic information
on the speaker.

The aim of this paper is to investigate the discriminative properties of several
broad phonetic classes in this special pattern classification problem, the speaker
identification. Previous works in this field using other speaker models were done
in [8, 4]. While in [4] a well-known French speech database was used, in [8] the
authors worked on a private English database. No similar results were reported
on TIMIT database.

Section 2 briefly presents the speaker modelling techniques. In Section 3 we
review the main characteristics of the broad phonetic classes. Section 4 presents
experiments on speaker identification using different types of features and models
trained with broad phonetic classes. Section 5 presents statistical analysis of the
content of a VQ based speaker model. Finally, in Section 6 we discuss the results
and draw the main conclusions of our paper.

2. Speaker models

Over the past several years, Gaussian mixture models have become the domi-
nant approach for modelling in text-independent speaker recognition applications
[19]. However, in special cases, simpler speaker models could perform similarly
well or even better. One simpler model is the vector quantisation (VQ) model,
which was investigated in several papers [5, 20]. Other papers compare the GMM
and VQ models drawing conclusions based on measurements on different speech
databases [21, 16]. Recently the two methods have been successfully combined
resulting in the VQGMM method [9].

According to Jain et al. [11], CA (Clustering Algorithm) is the organisation
of a collection of patterns, represented as multidimensional feature vectors, into
clusters based on similarity. Patterns within a valid cluster are more similar to
each other than they are to a pattern belonging to a different cluster. Vector
Quantisation is not so much interested in finding the clusters, but in representing
the data by a reduced number of elements that approximate the original data set
as well as possible. We can say that in many cases CA and VQ are practically
equivalent, grouping the data into a certain number of groups, so that an error
function is minimised.

2.1. Vector Quantisation - VQ. The objective of VQ is the representation of
a set of feature vectors X = {x1, x2, . . . , xN} ⊆ RD by a set Y = {y1, y2, . . . , yM},

BROAD PHONETIC CLASSES EXPRESSING SPEAKER INDIVIDUALITY 51

of M reference vectors in RD. Y is called codebook and its elements codewords.
VQ can be represented as a function q : X → Y. The function q permits us to
obtain a partition S of X constituted by M subsets Si, where each cell Si has the
form

(1) Si = {x ∈ X : q(x) = yi}, i = 1, . . . , M.

We measure the goodness of partitioning by the means of quantisation er-
ror(MQE), which can be defined as follows

(2) MQE =
1
M

M∑

i=1

Di, where Di =
∑

xj∈Sj

d(xj , yi)

where d is the Euclidean distance defined in RD.
V Q can be done using different quantisation algorithms. The simplest one is

the LBG algorithm [15], which was recently enhanced into ELBG in [17]. All
variants of LVQ introduced by [14] can be applied equally well. All the clustering
algorithms developed by Artificial Intelligence researchers might work as well. A
comparison of several clustering algorithms used in speaker identification was done
in [13, 2].

2.2. Gaussian Mixture Models - GMM. Finite mixture is a flexible and pow-
erful probabilistic tool. Mixtures can also be seen as a class of models that are
able to represent arbitrarily complex probability density functions.

For a D−dimensional feature vector, x, the mixture density used for the likeli-
hood function is defined as

(3) p(x|λ) =
M∑

i=1

wipi(x)

The density is a weighted linear combination of M unimodal Gaussian densities,
pi(x), each parameterised by a mean vector µi, and a covariance matrix, Σi

(4) pi(x) =
1

(2π)D/2|Σi|1/2
e−

(x−µi)
T Σ−1

i
(x−µi)

2

The mixture weights, wi, satisfy the constraint
∑M

i=1 wi = 1. A GMM model
can be denoted as

(5) λ = {wi, µi, Σi}, i = 1, . . . ,M.

Given a collection of training vectors, the expectation-maximisation (EM) [7] al-
gorithm can be used to estimate the model parameters. This algorithm iteratively
refines the GMM parameters in order to monotonically increase the likelihood of
the estimated model for the observed feature vectors.

A new parameter estimation method was proposed in paper [9]. The paper
proposes to cluster the whole acoustic space into several subspaces. Within a
subspace, the feature vectors are relatively more homogeneous. Each subspace is
then characterised by a number of Gaussian mixture models whose parameters are

52 MARGIT ANTAL, GAVRIL TODEREAN

Table 1. Corpus division

Dataset Utterances Length
training 2 SA, 3 SX, 3 SI 24.5s
test 2 SX 6.06s

determined using only those relevant acoustic features belonging to the subspace.
This means that feature vectors far from the subspace are not used to estimate
model parameters for that subspace.

3. Phonetic classes

The basic theoretical unit for describing how speech conveys linguistic meanings
is called a phoneme. Each phoneme can be considered to be a code that consists
of a unique set of articulatory gestures. These articulatory gestures include the
type and location of sound excitation, as well as the position of movement of the
vocal tract articulators. There are some phonetic alphabets in use. European
phoneticians developed the International Phonetic Alphabet (IPA), which is ap-
propriate for handwritten transcription but its main drawback is that it cannot
be typed on a conventional typewriter or a computer keyboard. Therefore, a more
recent phonetic alphabet was developed by the United States Advanced Research
Projects Agency (ARPA), and is accordingly called ARPAbet.

There are a variety of methods for classifying phonemes. Phonemes can be
grouped based on properties related to the time waveform or frequency character-
istics. A phoneme is continuant if the speech sound is produced by a steady-state
vocal-tract configuration. A phoneme is non continuant if a change in the vocal-
tract configuration is required during production of the speech sound. Vowels,
fricatives, affricates, and nasals are all continuant sounds. Diphthongs, liquids,
glides, and stops all require a vocal-tract reconfiguration during production. An
exhaustive study of these classes can be found in the following books [18, 6]. In
our study liquids and stops are grouped together forming the semivowels group.

Experiments were performed on the TIMIT corpus, which is phonetically seg-
mented and annotated using the ARPAbet symbols. For broad phonetic classes we
used those recommended in TIMIT corpus documentation, which are the follow-
ing: Vowels, Semivowels, Nasals, Stops, Fricatives, Affricates, Silence+Closures.
The speech corpus consists of 10 spoken utterances from 630 speakers covering
the 8 major dialect regions of the United States. Table 1 shows the speech corpus
division in training and test utterances and table 2 shows the average length of
speech material for each broad phonetic class. There is no point of making speaker
models from silence and we could not use the affricates, their average length were
not enough to train the models.

4. Speaker Identification Experiments

All the experiments were conducted on the TIMIT speech corpus, using all 630
speakers for speaker identification.

BROAD PHONETIC CLASSES EXPRESSING SPEAKER INDIVIDUALITY 53

Table 2. Broad phonetic classes and their training and test length

Phonetic class Phonemes Training length Test length
Vowels iy,ih,eh,ey,ae,aa,aw 9.66s 2.27s

ay,ah,ao, oy,ow,uh,uw
ux,er,ax,ix,axr,ax-h

Semivowels l,r,w,y,hh,hv,el 2.38s 0.47s
Nasals m,n,ng,em,en,eng,nx 1.34s 0.38s
Fricatives s,sh,z,zh,f,th,v,dh 3.28s 0.95s
Stops b,d,g,p,t,k,dx,q 1.43s 0.35s
Affricates jh,ch 0.20s 0.09s
Silence+Closures pau,epi,h# 6.28s 1.55s

bcl,dcl,gcl,pcl,tck,kcl,dcl,tcl

Before segmenting the signal into frames, a filter was applied to enhance the
high frequencies of the spectrum. We used the following filter:

xp(t) = x(t)− a ∗ x(t− 1)

where a = 0.97.
The analysis of speech signal was done locally by the application of a window

whose duration in time is shorter than the whole signal. This window is first
applied to the beginning of the signal, then moved further and so on until the
end of the signal is reached. For the length of the window we used 32ms with
22ms of overlapping between consecutive frames. Each frame was multiplied by
a Hamming window in order to taper the original signal on the sides and thus
reduce the side effect. After these steps we extracted cepstral parameters from
each frame. In the following experiments we used two types of cepstral features,
MFCC and LPCC. The detailed description of these features can be found in [3]

4.1. VQ and GMM comparison. For these speaker identification experiments
we used LPCC features, which performed slightly better than the MFCC ones.
Both VQ and GMM models were trained with 32 components. For VQ we used
the LBG algorithm and the GMM models were initialized by the mean vectors
provided by the LBG algorithm. The weights were set to be equal. We used
diagonal covariance matrices initialised with the identity matrix. The standard
ML estimation of the parameters was used with 10 iterations.

The results are summarised in Table 3. We used the training-test division
presented in Table 1.

Similar results were reported for the case of GMM in [19] and for VQ in [12] ,
all measured on the same speech corpus and using cepstral features.

4.2. Phonetic pure GMM. The aim of these experiments is to determine the
speaker discriminative phonetic broad classes. Table 4 summarises the identifi-
cation rates obtained for the phonetic broad classes. The amount of data used
for training and test is presented in Table 2. In these experiments we used 12
MFCC parameters. The number of mixture’s density components were selected

54 MARGIT ANTAL, GAVRIL TODEREAN

Table 3. Speaker identification results using all the 630 speakers
from TIMIT

Features VQ-LBG GMM
LPCC-12 97.40% 98.26%
LPCC-16 99.05% 99.05%
LPCC-20 99.30% 99.70%
LPCC-24 100.% 99.85%

Table 4. Speaker identification rates for 630 speakers using pure
phonetic GMMs

Phoneme class Training Test Mixtures Id. rate
Vowels 9.65s 2.27s 8 95.39%
Nasals 1.34s 0.38s 1 70.31%
Fricatives 3.27s 0.95s 4 44.60%
Semivowels 2.38s 0.47s 4 41.74%
Stops 1.43s 0.35s 4 10.47%
All 24.55s 6.06s 32 96.20%

carefully, running several times the classification for different number of mixtures
and selecting the one, which gives the best result.

The result obtained for the vowels is amazing. This means that using homoge-
neous data, which represents only 40% of the whole training data, we could almost
reach the performance of the models using all training data. Another impressive
result was produced by the nasals group, which represents approximately 5-6% of
the whole speech data.

The results summarised in Table 4 are representative for the TIMIT database
but are not comparable due to the variety of training and test time. For a correct
ranking of the discriminative effects of the broad phonetic classes on speaker iden-
tification, we limited all training data to 1.5s and the test data to 0.5s for every
speaker. For every classification we used a GMM with two density components.
Table 5 ranks the identification rates obtained in similar training and test condi-
tions for broad phoneme classes. We included for comparison a similar test using
all phonetic classes, 1.5s training and 0.5s test data. We can see that limiting the
training and test material seriously affected vowels and fricatives.

5. Phonetic content of speaker models

In this section we are going to analyse the phonetic content of V Q based speaker
model. This model consists of a set of clusters. Eeach cluster is represented by
its centroid, which is chosen as a prototype of its cluster. Our goal is to verify
how well the broad phonetic classes are separated in this type of speaker model.
We selected several speakers and made a statistical analysis of the content of their
models. Our analysis has the following steps:

BROAD PHONETIC CLASSES EXPRESSING SPEAKER INDIVIDUALITY 55

Table 5. Identification rates for 630 speakers using in average
1.5s training and 0.5s test data and a GMM model with 2 density
components

Phonetic class Id. rate
Nasals 64.92%
Vowels 20.31%
Semivowels 19.73%
Fricatives 11.42%
Stops 10.15%
All 12.38%

(1) First, we obtained the feature vectors from all audio data belonging to
the selected speaker. We excluded the feature vectors for silence, because
these vectors do not contain speaker specific data. Let us denote this set
by X = {x1, x2, . . . , xT }, where xi ∈ RDand D is the dimensionality of
the feature space.

(2) In the second step we labeled each feature vector with its broad phonetic
class label. Let us denote by Y = {(xi, fi) | i = 1, 2, . . . T} the resulted
set, where fi ∈ F. F = {A, F, S, W, V, N} is the set of broad phonetic
class labels. Label A denotes the affricates, F is for fricatives, S is the
symbol for stop phonemes, W and V denote the semivowels and vowels
and N stands for nasals.

(3) Using these labeled feature vectors we applied the V Q algorithm and
obtained the M clusters, whose content we analysed statistically.

Figure 1 shows the distribution of broad phonetic classes in the M = {2, 3, 4, 5, 6}
clusters created by the clustering algorithm. We repeated the clustering using up
to 6 clusters in order to be able to capture the broad phonetic classes separation
tendency. We stopped at 6, because there are altogether 6 broad phonetic classes.

The left top figure shows that if we use only two clusters, the first one will
be populated by affricates, fricatives and stops and the second one by vowels,
semivowels and nasals. This clustering tendency is explainable by the acoustical
similarities between these broad phonetic groups. The affricates group is the least
numerous one, and these phonemes are always situated in the same cluster together
with the vast majority of fricatives and a representative part of the stop broad
phonetic group.

Analysing the last figure, in which we used exactly six clusters, we can see that
the vast majority of affricates, fricatives and nasals are concentrated in one cluster
and only a small amount are spread among other clusters. Because we used all
frames from phonemes, some of these frames are situated at the boundaries of
phonemes, not being very representative for any broad phonetic class.

This experiment shows that a speaker model does not separate perfectly the
broad phonetic classes. It is also true that every broad phonetic group has its own
specific clusters. The bigger the acoustic variety inside a broad phonetic group
the more clusters are spread among the feature vectors belonging to these groups.

56 MARGIT ANTAL, GAVRIL TODEREAN

A F S W V N
0

100

200

300

400

500

600

700

800

900

1000
Broad phonetic groups distribution in clusters

Broad phonetic groups

N
um

be
r

of
 fe

at
ur

e
ve

ct
or

s

CLUSTER 1
CLUSTER 2

A F S W V N
0

100

200

300

400

500

600

700

800

900

1000

Broad phonetic groups

N
um

be
r

of
 fe

at
ur

e
ve

ct
or

s

Broad phonetic groups distribution in clusters

CLUSTER1
CLUSTER2
CLUSTER3

A F S W V N
0

100

200

300

400

500

600

700

800

900

1000

Broad phonetic groups

N
um

be
r

of
 fe

at
ur

e
ve

ct
or

s

Broad phonetic groups distribution in clusters

CLUSTER1
CLUSTER2
CLUSTER3
CLUSTER4

A F S W V N
0

100

200

300

400

500

600

700

800

900

1000
Broad phonetic groups distribution in clusters

Broad phonetic groups

N
um

be
r

of
 fe

at
ur

e
ve

ct
or

s

CLUSTER1
CLUSTER2
CLUSTER3
CLUSTER4
CLUSTER5

A F S W V N
0

100

200

300

400

500

600

700

800

900

1000

Broad phonetic groups

N
um

be
r

of
 fe

at
ur

e
ve

ct
or

s

Broad phonetic groups distribution in clusters

CLUSTER1
CLUSTER2
CLUSTER3
CLUSTER4
CLUSTER5
CLUSTER6

Figure 1. Broad phonetic classes distribution in clusters

BROAD PHONETIC CLASSES EXPRESSING SPEAKER INDIVIDUALITY 57

Broad phonetic class Variance
Affricates 23.22
Fricatives 47.35
Stops 37.85
Semivowels 46.76
Vowels 41.33
Nasals 20.53

Table 6. Variances of broad phonetic classes

The acoustic variety of a broad phonetic group can be characterized by the
variance of the group. The higher this variance the more powerful the separating
tendency of the group. We computed for each speaker model the variances of
the broad phonetic classes. For this experiment we used the training part of the
TIMIT speech corpus (462 speakers). Table 6 shows the average values of these
variances. The higher the speaker discriminating ability of a broad phonetic group,
the lower the variance of this class in a speaker model.

6. Conclusions

The main purpose of this paper was to compare the relative speaker discriminat-
ing properties of broad phonetic classes. For this purpose pure phonetic speaker
models were created. We found that the pure phonetic speaker models using
exclusively vowels, almost reached the performance of models using the whole
speech data from a speaker. We should mention that the vowels represent 40% of
the whole corpus. We also found that when pure phonetic speaker models were
trained using the same amount of training data, the nasals produced the best iden-
tification rate. We can conclude that for a very good speaker model one should
use speech materials which contain as much nasals as possible. Another conclu-
sion is that the phonetic content of the training speech material is more important
than its quantity. We have also studied the distribution of broad phonetic classes
in the components of speaker models. We showed that the clusters of a speaker
model are not phonetically pure. However, every broad phonetic class has its spe-
cific components. We showed experimentally that nasals have the best speaker
discriminating ability and also the lowest variance per speaker.

Part of this work was published in [1].

References

[1] Antal, M., Toderean, G., Speaker Recognition and Broad Phonetic Groups, Proceedings of
the 3rd IASTED International Conference on Signal Processing, Pattern Recognition, and
Applications, February 15-17, Innsbruck, Austria, 2006, 155-159.

[2] Antal, M., A Comparison of Parametric Clustering Techniques used in Speaker Identifica-
tion, Proc. of the 1st International Conference on Intelligent Knowledge Systems, Assos,
Turkey, 2004, 19-25.

58 MARGIT ANTAL, GAVRIL TODEREAN

[3] Bimbot, F., Bonastre, J-F, Fredouille, C., Gravier, G., Margin-Chagnolleau, I., Meignier,
S., Merlin, T., Ortega-Gracia, J., Petrovska-Delacretaz, D., Reynolds, D. A., A Tutorial on
Text-Independent Speaker Verification, EURASIP Journal on Applied Signal Processing, 4,
2004, 430-451.

[4] Chagnolleau,I.M., Bonastre, J-F., Bimbot, F., Effect of utterance duration and phonetic
content on speaker identification using second order statistical methods, Proc. Eurospeech,
Madrid, Spain, 1995, 337-340.

[5] Campbell, J. P., Speaker Recognition: A Tutorial, Proc. of the IEEE, vol. 85(9), 1997,
1437-1462.

[6] Deller, J.R., Hansen, J. H.L., Proakis, J. G., Discrete-Time Processing of Speech Signal(
IEEE Press, 2000).

[7] Dempster, A., Laird, N., Rubin, D., Maximum likelihood from incomplete data via the EM
algorithm, Journal of the Royal Statistical Society, 39(1), 1977, 1-38.

[8] Eatock, J.P., Mason, J. S., A quantitative assessment of the relative speaker discriminating
properties of phonemes, Proc. International Conference on Acoustics, Speech, and Signal
Processing, Adelaide, Australia, 1994, 333-336.

[9] Lin, Q., Jan, E-E.,Che, C., Yuk, D-S, Flanagan, J., Selective use of the speech spectrum
and a VQGMM method for speaker identification, Proc. 4th International Conference on
Spoken Language Processing, Atlanta, USA, 1996,1321-1324.

[10] Furui, S., An overview of speaker recognition technology, in C-H. Lee, F.K. Soong, K.K. Pali-
wal (Eds.) Automatic Speech and Speaker Recognition, Advanced Topics, (Kluwer Academic
Publisher, 1996) 31-56.

[11] Jain, A.K., Murty, M.N., Flynn, P.J., Data clustering: A review, ACM Computing Surveys,
31(3), 1999, 264-323.

[12] Kinnunen, T., Karpov, E., Franti, P., Real-Time Speaker Identification, Proc. of 8th Int.
Conference on Spoken Language Processing, 2004, 1805-1808.

[13] Kinnunen, T., Kilpelainen, T., Franti, O., Comparison of clustering algorithms in speaker
identification, Proc. 4th IASTED International Conference on Signal Processing and Com-
munications, Marbella, Spain, 2000, 222-227.

[14] Kohonen, T., Self Organizing Maps (Berlin, Springer, 2001).
[15] Linde, Y., Buzo, A., Gray, R. M., An algorithm for vector quantizer design, IEEE Transac-

tions on Communications, 28(1), 1980, 84-94.
[16] Matsui, T., Furui, S., Comparison of text-independent speaker recognition methods using

VQ-distortion and discrete/continuous HMMs, Proc. ICASSP, San-Francisco, California,
1992, 157-160.

[17] Patene, G., Russo, M., The enhanced LBG algorithm, Neural Networks, 14(9), 2001, 1219-
1237.

[18] Rabiner,L.R., Juang, B. H., Fundamentals of speech Recognition(Englewood Cliffs NJ:
Prentice-Hall, 1993).

[19] Reynolds, D.A., Speaker identification and verification using Gaussian mixture speaker mod-
els, Speech Communications 17(1-2), 1995, 91-108.

[20] Soong,R. K., Rosenberg, A. E. , Juang, B. H., Rabiner, L. R., A Vector Quantization
Approach To Speaker Recognition, AT&T Technical Journal, 66 (6), pp. 14-26, 1987.

[21] Stapert, R., Mason, J.S., Speaker Recognition and the Acoustic Speech Space, Proc. Odyssey
Speaker Recognition Workshop, Crete, Greece, 2001, 195-199.

Sapientia - Hungarian University of Transylvania,Faculty of Technological and
Human Sciences, 540053 Tg.-Mures, Romania, Technical University of Cluj-Napoca,
Faculty of Electronics and Telecommunications, Romania

E-mail address: manyi@ms.sapientia.ro, toderean@com.utcluj.ro

STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume LI, Number 1, 2006

PREFIX-FREE LANGUAGES, SIMPLE GRAMMARS
REPRESENTING A GROUP ELEMENT, LANGUAGES OF

PARTIAL ORDER IN A GROUP

KRASSIMIR D. TARKALANOV

Abstract. We show each word in the Kleene closure of a pre�x-free language
over an arbitrary alphabet has only one presentation as a concatenation of
its words. It follows this language is the largest pre�x-free one in the closure
and both of them are simultaneously recursive or not recursive. We note if a
complete simple grammar generates words only from a pre�x-free language,
the generated language exhausts it entirely. Such particular results only for
word- and reduced word problem languages of a group can be found in [1,
4]. Using appropriate parts of the repeated in [4] construction from [1] we
construct entire simple grammars whose terminal set is the monoid generating
set of a group. The start symbol can be indexed by any element of the group
and then the corresponding grammar will generate only representatives of
this element. If all of them contain in its pre�x-free part, their set exhausts
this part according to the note above. Following [4] the reduced word problem
language must be a such part of the word problem language for a group with
�nite irreducible word problem and the simple grammar there. The answer
to the �nal question 5.3. [4] is absolutely analogous and simply follows the
proof from [1]. We give necessary and su�cient conditions which a language
must satisfy together with these [4] for a word problem language in order the
�rst one to assign a partial order in the group of the second one.

1. Necessary Preliminary Concepts
We will use concepts from [1,4] in sections 2 and 3, and in addition from [2] in

section 4. Our supplement is their concrete setting in an order, their connecting,
and some formulations. A de�nition 1.1. for entire simple grammar is added
below. We have corrected here the principle for a right inverse element as it is
in [4] with the principle for a left inverse element because the requirement for a
right one leads to another situation [3]. We note a generalization of the used in

Received by the editors: April 1, 2006.
2000 Mathematics Subject Classi�cation. 03D03, 06F15, 20F10, 20M05, 68Q45, 68Q70,

68R15.
1998 CR Categories and Descriptors. F.4.2 [Grammars and Other Rewriting Sys-

tems]: Decision problems, Grammar types, Thue systems; F.4.3 [Formal Languages]: Al-
gebraic language theory, Classes de�ned by grammars or automata, Operations on languages;
G.2.1 [Combinatorics]: Combinatorial algorithms.

59

60 KRASSIMIR D. TARKALANOV

[4] syntactic congruence was used by us much earlier in [5], [6] for demonstration
a pure subsemigroup of a group can not be covered by a regular language and for
obtaining �nite homomorphic images of some semigroups.

For Reading Section 2. For any set Σ let Σ∗ denotes the set of all �nite words
in the elements of Σ, i.e. Σ∗ is the set of all �nite strings of these elements (Λ is
the empty word). The number of the symbols in a such word is its length. The
expression s ≡ t means s and t are identical as strings of symbols. The word st
is a concatenation of the word t after the word s. Any subset of Σ∗ is a language
in it. If L is a language, then its Kleene closure L∗ in Σ∗ is the language which
consists exactly of all �nite concatenations of the words from L. If t ≡ us, then u
is said to be a pre�x of t. It is a proper pre�x if it is nonempty and ends before
the end of t. Given a language L the notation MIN(L) denotes the set of all
words in L each one of which has no proper pre�x in L. A language L is said to
be pre�x-free if MIN(L) = L. MIN(L) is a pre�x-free language. Analogically,
about su�x-free languages.

A grammar is a four-tuple Γ = (N, Σ, P, S) where N is the set of its non-
terminal symbols, Σ is its set of terminal symbols all di�erent from non-terminal
ones, S is a non-terminal symbol of N called start symbol, and P is its set of
productions. Each production has the form α → β in which α and β are words
from (N ∪ Σ)∗ and α contains at least one non-terminal symbol. The word α1βα2

is directly derived from the word α1αα2 by this production. Each sequence of direct
derivations gives a derivation of its last word from the �rst one. The language
L(Γ) generated by the grammar Γ = (N, Σ, P, S) is the set of all words over the
terminal alphabet Σ which can be derived from the start symbol S. A grammar
Γ = (N, Σ, P, S) is context-free if each production has the form A → β where A
is a non-terminal symbol. The generated by context-free grammars languages are
context-free languages. Every such language can be generated by a grammar in
Greibach normal form. A context-free grammar is in Greibach normal form if it
contains no non-terminal symbols which do not participate in a derivation of some
terminal word and if each production has one of the forms

A → aB1B2...Bn,
A → a, or
S → Λ.
Here A is a non-terminal symbol, each Bi too and other than S, and a is a

terminal symbol. A grammar in Greibach normal form is simple if for each non-
terminal symbol and each terminal symbol no more than one production of the
indicated form is allowed, i.e. if A → aα and A → aβ are productions, then
α ≡ β and if S → Λ is a production, then it is only one. A language is simple
if it can be generated by a simple grammar. In [1], lemma 2. it is proven a
simple language is pre�x-free. The author uses only leftmost derivations at each
step of which the leftmost participation of a non-terminal symbol is separated: if
α1Aα2 → α1βα2 is a step in a leftmost derivation made by using the production
A → β, then α1 is a terminal word, i.e. it contains only terminal symbols. The

LANGUAGES OF PARTIAL ORDER IN A GROUP 61

author shows every word in a context-free language has a leftmost derivation which
can be obtained simply by changing the order in which productions are used in an
arbitrary derivation.

De�nition 1.1. A simple grammar is entire if for each non-terminal and each
terminal symbols it contains a production of the indicated above forms. Then it
contains only one production of the indicated forms for each pair of non-terminal
and terminal symbols. Some of the above concepts will be used for reading the
next section.

Other Concepts for Reading Section 3. In this section Σ will be a double
alphabet Σ = {x1, x2, . . . , xn; x1, x2, . . . , xn}. If ai is xi, then ai is xi; if ai is xi,
then ai is xi (i = 1, 2, . . . , n). For each word u ≡ ai1ai2 . . . aik

in Σ its inverse
word u is u ≡ aik

. . . ai2 ai1 in which the symbols are inverse and set in the inverse
order. Let G be a �nitely generated group with a monoid generating �nite set Σ (or
with a group generating set Σ+ = {x1, x2, . . . , xn} or Σ− = {x1, x2, . . . , xn}) and
with a �nite set of de�ning relators. Each element of the group G is presented by
words from Σ∗. The natural correspondence ϕ depicts each generator ai into the
element ϕ(ai) of G which contains ai. This correspondence is extended inductively
for each word and so we receive the natural homomorpphism ϕ of Σ∗ over G.
The word problem language of this group is the full prototype ϕ−1(1) of the unite
element 1 in G. The reduced word problem language is its part of all words each
one of which does not have a proper pre�x in it. If we denote the word problem
language with E (E = ϕ−1(1)) and the reduced word problem language with R,
then R = MIN(E) according to the above notation of the function MIN . The
irreducible word problem language is the set of all words from the (reduced) word
problem language which have no proper subwords from the word problem language.
It is not especially necessary to note these languages are shortly correspondingly
named word problem, reduced word problem, and irreducible word problem only
in [1, 4]. We prefer the terms with an added word "language" because they are
language interpretations related to the word problem in the theory of groups.

Additional Concepts for Reading Section 4. A group is partially ordered if
there is a partial order ≥ in it which is concerted with the group operation. That
means if a ≥ b in the group, then ax ≥ bx and xa ≥ xb in it. The multiplication
preserves the strong inequequality. The set of all strongly positive elements (i.e. of
the elements which are strongly bigger than the unite element) is called a strongly
positive cone of the partially ordered group and it is a pure subsemigroup of this
group. That means it is an invariant subsemigroup which does not contain the
unite element. Conversely, each pure subsemigroup assigns a partial order in the
corresponding group.

62 KRASSIMIR D. TARKALANOV

2. Kleene Closures of Prefix-Free Languages in an Arbitrary
Alphabet and Entire Simple Grammars

In this section the alphabet Σ is arbitrary. The general properties of the pre�x-
free languages below are induced by the properties of word problem and reduced
word problem languages.

Proposition 2.1. Let R be a pre�x-free language in Σ∗ and R∗ is its Kleene
closure. Then

(1) Each word from R∗ has only one presentation as a concatenation of words
from R;

(2) MIN(R∗) = R;
This property can be expressed in an equivalent form:
(2') R is the largest pre�x-free language in R∗ (i.e. there exists no a pre�x-free

extension of R in R∗). R∗ by itself is not pre�x-free of course.
Proof. (1) If the word w from R∗ is empty (w ≡ Λ), there is nothing to prove.

Let w is a nonempty word from R∗ and it has two presentations as concatenations
of nonempty words from R:

w ≡ v1v2...vk, where v1, v2, ..., vk ∈ R, and
w ≡ w1w2...wl, where w1, w2, ..., wl ∈ R.
We have to prove k = l and v1 ≡ w1, v2 ≡ w2, ..., vk ≡ wk. The proof is

inductive with respect to the sum k + l of the numbers of the factors in these
presentations. Its minimal value is 2. Then w ≡ v1 ≡ w1 and the statement is
obvious. Let it be true for all natural numbers whose sum is less than k+l. The �rst
factors v1 and w1 from the pre�x-free language R in the indicated presentations
of w coincide because each one of them can't be a proper pre�x of the other one.
Therefore we have the presentations w′ ≡ v2...vk ≡ w2...wl of the remaining part
w′ of the word w after v1 (v1 ≡ w1). The sum of the numbers of the factors in
these presentations is k + l − 2. According to the inductive conjecture we receive
k − 1 = l − 1 and v2 ≡ w2, ..., vk ≡ wk for the all next factors.

(2) MIN(R∗) is the subset of all words in R∗ which one of which has no proper
pre�x in it (R∗). Each word in R has no proper pre�x in itself. It follows from this
each such word can not have a proper pre�x in R∗ because every word in R∗ is a
concatenation of words from R and, then, it would follow its �rst factor from R
would be a proper pre�x of a word in R. This is impossible because R is a pre�x-
free language. Therefore R v MIN(R∗). Conversely, each word in MIN(R∗) can
not have more than one factor in its presentation as a concatenation of R-words
because, in the opposite case, its �rst factor would be a proper pre�x of its in R∗.
Therefore MIN(R∗) v R and MIN(R∗) = R.

Our idea for the Kleene closure of an arbitrary pre�x-free language comes from
[1,4] where the authors prove statements for word problem and reduced word
problem languages in a double alphabet only:

Proposition 3.1. [4] The word problem of a group with respect to a monoid
generating set is the Kleene closure of its reduced word problem with respect to that
generating set.

LANGUAGES OF PARTIAL ORDER IN A GROUP 63

Proposition 3.2. [4] If W is the word problem of a group with respect to a
monoid generating set and R is the reduced word problem with respect to this set,
then R = MIN(W)∩ X+.

Lemma 4. [1] If π is a �nitely generated group presentation and L is pre�x-free
language such that WP0(π) v L ⊂ WP (π), then L = WP0(π). In the notations
of the author there WP (π) is the word problem (language) of π and WP0(π) is
its reduced word problem (language).

The property (1) is nowhere else indicated and obviously it is very important at
all due to the universal only one presentation. It has an application for the proof of
the simultaneous recursiveness below. Property (2) (indicated in [4], proposition
3.2, for reduced word problem and word problem languages only) is important due
to an uni�cation of di�erent requirements to the pre�xes in the de�nitions and,
in addition, then it is not necessary to show its equivalent form (2') as a property
which is separated from the presentation, as this is done above in [1], lemma 4.

Corollary 2.2. If R is a pre�x-free language in Σ∗ and R∗ is its Kleene
closure, then both of them are simultaneously recursive or not recursive.

The proof is practically the same as in [4], theorem 3.5., where the formulation
and the proof are again for reduced word problem and word problem languages
in a double alphabet only, but using the previous proposition of ours here and
without passing through the recursive enumerating of R.

Let R be recursive in Σ∗, i.e. there exists an e�ective procedure A for recogniz-
ing whether a word is from R or not. We will show then there exists an e�ective
procedure B for recognizing belonging of any word to R∗ without passing through
the recursive enumerating of R as it is in [4]. Let w is an arbitrary word from
Σ∗. We apply the algorithm A to its beginning. If A stops at some pre�x of w
showing this pre�x is from R, we denote it with v1, i.e. w ≡ v1w1, where v1 ∈ R.
In the opposite case if A passes the entire word w with an answer it does not
belong to R, then the algorithm B answers w does not belong to R∗ because every
word from R∗ is a concatenation of words from R. In the �rst case if w1 is empty
(w1 ≡ Λ) the algorithm B answers w ≡ v1 belongs to R and therefore it belongs
to R∗. If w1 is not empty, we apply the algorithm A to w1 for which we will have
two analogous cases. In the �rst one w ≡ v1v2w2 where v1 and v2 belong to R
(v1, v2 ∈ R). In the opposite one if A passes the entire word w1 with an answer
it does not belong to R, then the algorithm B answers w does not belong to R∗

because every word from R∗ is a concatenation of words from R.
This inductive process is �nite because every next applying the algorithm A is

to a shorter word. A very important note is this applying is in only one way which
is determined by the property (1) from proposition 1. above: each word from R∗

has only one presentation as a concatenation of words from R.
We will receive in this way �nally a single presentation w ≡ v1v2 . . . vkwk

(where v1, v2, . . . , vk belong to R, i.e. v1, v2, . . . , vk ∈ R) for which a next
applying the algorithm A can not separate a pre�x from R in wk. Therefore wk

is empty (wk ≡ Λ) in the �rst case or wk does not belong to R in the opposite

64 KRASSIMIR D. TARKALANOV

second case when A passes it entirely with an answer it is not from R. In the
�rst case the algorithm B gives an answer the word w ≡ v1v2 . . . vk belongs to
R∗. In the second one its answer is the word w ≡ v1v2 . . . vkwk does not belong
to R∗ because every word from R∗ is a concatenation of words from R and there
isn't a way to receive a such concatenation for w due to its only one presentation
as a possible such concatenation according to the property (1). Therefore B is an
e�ective procedure for recognizing belonging of any word from Σ∗ to R∗, i.e. if R
is recursive, then R∗ is recursive too.

Conversely, let R∗ is recursive. The proof R is recursive is the same as in [4]
but based on the property (2) from proposition 1.: MIN(R∗) = R. We have an
algorithm for recognizing membership of R∗. We test a given word and all its
proper pre�xes for this membership. According to the de�nition of the function
MIN and the indicated property this word is from R if and only if when it belongs
to R∗ but no proper pre�x of its belong to R∗. So R is recursive.

Lemma 2.3. Let Γ = (N, Σ, P, S) be a complete simple grammar which gen-
erates only words from the pre�x-free language R in Σ∗. Then the generated by it
language L(Γ) covers the entire R, i.e. L(Γ) = R.

Proof. Let w is an arbitrary word from R. We have to prove it can be generated
by Γ. Due to the completeness of Γ (De�nition 1.1) there are enough productions
in P to continue a leftmost derivation of w. We will show no one derivation can
end before or after the end of w. If a derivation ends before the last letter of w,
then the derived proper pre�x of its belongs to R which is in a contradiction with
the given fact R is a pre�x-free language. If a derivation ends after the last letter
of w, then w from R would be a proper pre�x of the derived word again from R
which is again impossible. Therefore each derivation in Γ, which starts from the
�rst letter of w, ends immediately after its last letter and therefore w ∈ L(Γ).

A particular case of this statement is practically proved in [1], lemmas 5-8, but
in a very long way and again for reduced word problem language of a group only.
Probably this way has been a reason the proof to be repeated in the second part
of the proof of lemma 5.1. [4] , but brie�y inductively with respect to the length
of the word and again for this particular language only. We will note we don't
need here the property the generated by a simple grammar (simple) language is
pre�x-free in an arbitrary alphabet which is proved in [1], lemma 2. The above
lemma 2.3. can be formulated in the following more expressive form:

Lemma 2.3'. No one complete simple grammar can generate an absolute part
of a pre�x-free language.

3. Entire Simple Grammars Generating Only Representatives of Any
Fixed Element of a Group

In this section Σ is a double alphabet Σ = {x1, x2, . . . , xn;x1, x2, . . . , xn}. Let
G be a �nitely generated group with a monoid generating �nite set Σ and with a
�nite set of de�ning relators. Let a be either one of the generators xi or xi (a ≡ xi

or a ≡ xi, i = 1, 2, . . . , n), but a is the element of G whose a representative is

LANGUAGES OF PARTIAL ORDER IN A GROUP 65

a (the symbol a is from Σ, the element a is from G). We will construct many
complete simple grammars with one and the same set Σ of terminal symbols, with
di�erent sets of non-terminal symbols, di�erent initial symbols, and di�erent sets
of productions which will be assigned in one and the same way. The initial idea
comes from [1], lemma 15, it was used in the same way in [4], lemma 5.1. Our
modi�cations will be shown after the next proposition.

The basic part of the non-terminal symbols will be the set {..., na, na−1 , ...} of
2n symbols which correspond to the 2n elements a and a−1 of the group with
representatives the generators a and a. We add to them a set {ng′} of symbols ng′

which correspond to at one's own choosing chosen �nite number other elements g′

of this group. The set N{g} of the non-terminal symbols will be their union, i.e.
N{g} = {..., na, na−1 , ...} ∪ {ng′} = {ng}.
We construct an obviously complete system P of simple productions in the

following way: for every ng ∈ N{g} and every a ∈ Σ

ng → a is a production if g = a;
ng → a na−1g is a production if g 6= a and na−1g ∈ N{g};

If n1 (g = 1) is a terminal symbol, all productions
of the form
n1 → ana−1

are among them because a 6= 1
and na−1.1 = na−1 ∈ N{g}.
ng → a na−1ng is a production if g 6= a and na−1g /∈ N{g}.

The initial start symbol S of a such complete simple grammar Γ = (N{g}, Σ, P, S)
can be any non-terminal symbol ng0 , i.e. S = ng0 (g0 is one of all participating
elements g of the group G).

Proposition 3.1. All words derived from each non-terminal symbol ng of the
just constructed complete simple grammar Γ = (N{g}, Σ, P, S) are representatives
of the element g in the group G with which ng is indexed.

The proof is by induction with respect to the length of the derivation and
repeats the �rst part of the proof of lemma 5.1 [4] and this of lemma 15 [1] but for
more general grammars. Any derivation of length one in Γ is of the type ng → a
and by de�nition if g = a only (a is a representative of g, i.e. a ∈ g). Let us
assume the statement is true for all derivations of lengths no more than m, m ≥ 1,
starting from any non-terminal symbol. Any derivation from ng of length m + 1
can start with one of the productions:

ng → a na−1g (if g 6= a and na−1g ∈ N{g}) or
ng → ana−1ng (if g 6= a and na−1g /∈ N{g}).
The lengths of the derivations which continue after those productions are no

more than m and we can apply the inductive conjecture to them. So, in the �rst
case the non-terminal na−1g on the right hand side derives a word u which belongs
to a−1g. The word au which will be derived from ng will belong to the element
aa−1g = g of G, i.e. au ∈ g.

66 KRASSIMIR D. TARKALANOV

In the second case na−1 on the right hand side derives a word s which is from
a−1 in G. The other non-terminal symbol ng there derives a word t which is from
g. (The sum of the lengths of both last derivations is m.) The word ast which will
be derived from ng will belong to aa−1g in G, i.e. ast ∈ aa−1g = g.

This completes the inductive proof of the proposition.
MIN(g) is the set of all pre�x free words from the element g of the group G,

i.e. the set of all words from g which one of which has no proper pre�x in it. The
grammar from proposition 1. above is simple and complete. Therefore according
to lemma 2.3. from section 2. this proposition has the following

Corollary 3.2. For each element g0 of the group G such that ng0 is a start
symbol of the complete simple grammar Γ = (N{g}, Σ, P, S = ng0) if the generated
by this grammar representatives of g0 contain in MIN(g0), then L(Γ) coincides
with the set MIN(g0) of all words from g0 which have no proper pre�x in it, i.e.
L(Γ) = MIN(g0); brie�y: if L(Γ) v MIN(g0), then L(Γ) = MIN(g0).

In particular, if g0 = 1 (then the start symbol is S = n1), all words derivable
by Γ = (N{g}, Σ, P, S = n1) are from the word problem language of the group G.
The simple grammars from lemma 15 [1] and lemma 5.1 [4] for theorem 5.2 [4]
are constructed over a �nite irreducible word problem language. They satisfy the
conditions from corollary 3.2. here and we would have the proved there property
from the indicated lemmas as a

Corollary 3.3. (Theorem 5.2. [4]) If a �nitely generated group has �nite
irreducible word problem language, then it has simple reduced word problem lan-
guage.

NOTE: We will show some of the modi�cations which we promised in the be-
ginning of this section. First one is separating the elements a and a−1 of the
group whose representatives are the inverse generators a and a. It is not neces-
sary to prove especially a and a have inverse words, the corresponding products
with which are from the irreducible word problem language of the group. That is
correct simply because each one of them is obviously inverse to the other one and
the words aa and aa are obviously irreducible. We can add arbitrary elements of
the group to them and the same proof for generating only the indicated represen-
tatives goes. So, these modi�cations are signi�cant because they lead to the just
pointed freedom.

Statement 3.4. Each group with a simple reduced word problem language
with respect to some monoid generating set has a �nite irreducible word problem
language with respect to this generating set.

This statement is an answer to question 5.3. with which the paper [4] ends. For
its proof the notations of the type u−1 in lemmas 9. and 10. from [1] must simply
be substituted by notations of the type u where the word u is the inverse word of
u in a double alphabet.

LANGUAGES OF PARTIAL ORDER IN A GROUP 67

4. Languages of Partial Order in a Group
Let G be a (monoid) �nitely generated group with a generating set the double

alphabet Σ as in the previous section. Let the partial order in G be presented by
its positive cone P = P+ ∪{1}. Here P+ is the pure subsemigroup of the strongly
positive elements, i.e. it is an invariant subsemigroup of the group which does not
contain the unit element 1. Let P and P+ be the full prototypes of P and P+

correspondingly at the natural homomorphism ϕ of Σ∗ over G, i. e. ϕ−1(P) = P
and ϕ−1(P+) = P+. Let E = P∩P. Then ϕ−1(1) = E (i.e. E is the word problem
language of the group G). We can name P a language of the positive cone in G
or a positive cone language.

The word problem language E in Σ∗ satis�es two conditions from
Proposition 3.3. [4] Let E be a subset of Σ∗; then E is the word problem of

a group if and only if it satis�es the following conditions:
(1) if α ∈ Σ∗, then there exists β ∈ Σ∗ such that βα ∈ E (αβ ∈ E stays here

incorrectly in [4]);
(2) if α ∈ E and uαv ∈ E, then uv ∈ E.
We denote here the word problem language by E instead by W as it is in [4].

The reason for the marked correction is indicated in the section for the preliminary
concepts.

Theorem 4.1. Let G be a �nitely generated group with a monoid generating set
Σ and E be its word problem language which satis�es the indicated above conditions
(1) and (2). If P+ is the cone of the strongly positive elements of some partial
order in G, then its full prototype P+ = ϕ−1(P+) at the natural homomorphism
ϕ satis�es the following conditions:

(3) if uv ∈ P = P+ ∪ E and α ∈ P, then uαv ∈ P;
(4) if α ∈ P+, then every β from (1), for which βα ∈ E, does not belong to

P+.
Conversely, if some language P+ in Σ∗ for which P+ ∩ E = ∅ satis�es the

conditions (3) and (4), then it assigns a partial order in the group G with a word
problem language E.

Proof. Let G be a partially ordered group with generators Σ and with a cone P
of the positive elements. Then the corresponding language of the positive cone in
Σ∗ is P = ϕ−1(P). The language E = P∩ P is exactly the word problem language
of the group G and it satis�es the conditions (1) and (2). Let uv ∈ P and α ∈ P.
Then ϕ(uv) = ϕ (u)ϕ (v) = uv ∈ P , i.e. uv ≥ 1 and ϕ(α) = a ∈ P . From a ≥ 1
we receive uav ≥ uv and therefore uav ≥ 1. The last one means uav ∈ P because
ϕ(uav) = uav with which the condition (3) is proved. The product of two strongly
positive elements is again strongly positive from which it follows no one of the
factors (in (4), where we suppose the opposite) can be inverse to the other one.
This proves the last condition.

Conversely, suppose the language P+(P+ ∩ E = ∅) in Σ∗ together with E
satis�es the conditions (3) and (4). We construct a group G whose word problem
language is E according to the indicated proposition from [4]. We will show the

68 KRASSIMIR D. TARKALANOV

image P+ = ϕ(P \ E) of P+ is a pure subsemigroup in G, i.e. P+ assigns a partial
order in it. We note before that the used in this proposition from [4] syntactic
congruence

α1 ∼ α2 ⇔ (ua1v ∈ E ⇐⇒ uα2v ∈ E for arbitrary u, v ∈ Σ∗) could be found
in the cited in [5], [6] paper by Rabin M.D. and D. Scott and monograph by S.
Ginsburg. It was shown in the section with preliminaries why a generalization of
its was introduced and used by us. in them.

Two corollaries from the property (3) are valid: (3a) if α, β ∈ P, then αβ ∈ P
and (3b) for every u ∈ Σ∗ and every α ∈ P the conjugate word uαu ∈ P. Really,
(3a): For the empty word Λ and β the word Λβ ∈ P. Then Λαβ ≡ αβ ∈ P; (3b)
uu ∈ E and α ∈ P. Then uu ∈ P and uαu ∈ P after (3).

Our goal is to prove P+ = ϕ(P+) is a pure subsemigroup in the already con-
structed group G. Let a, b ∈ P+. Then there exist prototypes α ∈ P+, β ∈ P+ of
theirs and αβ ∈ P due to (3a). It (αβ) can't be from E due to the condition (4).

We will show P+ = ϕ(P+) is invariant. Let a is an arbitrary element of P+

and u is an arbitrary element of the entire group G. Let α ∈ P+ is a prototype of
a and u ∈ Σ∗ is a prototype of u. Then uu ∈ E and from uu ∈ P and α ∈ P we
receive uαu ∈ P. Therefore u−1au = ϕ(uαu) ∈ P . It remains to prove u−1au 6= 1.
Really, if u−1au = 1, then a = 1 which contravenes a ∈ P+.

The theorem is proved. We would like to pay attention to the condition (3).
Obviously it is reversed to the condition (2) cited from [4] where it is proved
(as a consequence of its) a word problem language satis�es (3) too. It would be
interesting to prove or to disprove a

Conjecture 4.2. The condition (2) is a consequence from the condition (3) in
E.

section*References
[1] Haring-Smith, R.H. Groups and Simple Languages, Trans. Amer. Math. Soc.

1983, 279. 337-356.
[2] L. Fucks, Partially Ordered Algebraic Systems, �Mir�, Moscow 1965 (Translation

into Russian).
[3] M. Hall, Jr., The Theory of groups, The Macmillan Company, NY, 1959.
[4] Parkes, D.W. and Thomas, R.M. Groups with Context-Free Reduced Word Problem,

Communications in Algebra 2002, 30(7). 3143-3156.
[5] Tarkalanov K., The Context-free Languages and some Questions from Semigroup

and Group Theory, Annals Union of the Scienti�c Workers in Bulgaria, Br. Plovdiv, A
Scienti�c Session of the young Scienti�c Workers, 1979(1980). 131-142 (in Bulgarian).

[6] Tarkalanov K.D., Connecting Algorithmic Problems in Semigroups with the Theo-
ries of Languages and Automata, Studia Univ. �Babesh-Bolyai�, Mathematica, v. XLIV,
No 1, March 1999, 95-100.

Quincy College, 34 Coddington Street,Greater Boston, Quincy, MA 02169, USA
E-mail address: Ktarkalanov@hotmail.com

STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume LI, Number 1, 2006

A COMPARISON OF CLUSTERING TECHNIQUES IN ASPECT
MINING

GABRIELA �ERBAN AND GRIGORETA SOFIA MOLDOVAN

Abstract. This paper aims at presenting and comparing three clustering
algorithms in aspect mining: k-means (KM), fuzzy c-means (FCM) and hi-
erarchical agglomerative clustering (HAC). Clustering is used in order to
identify crosscutting concerns. We propose some quality measures in order
to evaluate the results and we comparatively analyze the obtained results on
two case studies.

Keywords: clustering, aspect mining.

1. Introduction
1.1. Clustering. Clustering is a division of data into groups of similar objects.

Clustering can be considered the most important unsupervised learning prob-
lem: so, as every other problem of this kind, it deals with �nding a structure in a
collection of unlabeled data.

Unsupervised classi�cation, or clustering, aims to di�erentiate groups (classes
or clusters) inside a given set of objects, with respect to a set of relevant charac-
teristics or attributes of the analyzed objects. A cluster is, therefore, a collection
of objects, which are similar between them and dissimilar to the objects belonging
to other clusters.

Let X = {O1, O2, . . . , On} be the set of objects to be clustered. Using the
vector-space model, each object is measured with respect to a set of l initial at-
tributes A1, A2, ..., Al (a set of relevant characteristics of the analyzed objects) and
is therefore described by a l-dimensional vector Oi = (Oi1, . . . , Oil), Oik ∈ <, 1 ≤
i ≤ n, 1 ≤ k ≤ l.

Received by the editors: May 24, 2006.
2000 Mathematics Subject Classi�cation. 62H30, 68N99.
1998 CR Categories and Descriptors. I.5.3[Computing Methodologies]: Pattern

Recognition � Clustering; D.2.7 [Software Engineering]: Distribution, Maintenance, and En-
hancement �Restructuring, reverse engineering, and reengineering.

69

70 GABRIELA �ERBAN AND GRIGORETA SOFIA MOLDOVAN

The measure used for discriminating objects can be any metric or semimetric
function (d). In our approach we have used the Euclidian distance:

d(Oi, Oj) = dE(Oi, Oj) =

√√√√
l∑

k=1

(Oik −Ojk)2

The similarity between two objects Oi and Oj is de�ned as

sim(Oi, Oj) =
1

d(Oi, Oj)

Many clustering techniques are available in the literature. Most clustering algo-
rithms are based on two popular techniques known as partitional and hierarchical
clustering ([4], [6] and [7]).

1.2. Aspect Mining. The Aspect Oriented Programming (AOP) is a new para-
digm that is used to design and implement crosscutting concerns [9]. A crosscutting
concern is a feature of a software system that is spread all over the system, and
whose implementation is tangled with other features' implementation. Logging,
persistence, and connection pooling are well-known examples of crosscutting con-
cerns. In order to design and implement a crosscutting concern, AOP introduces
a new modularization unit called aspect. At compile time, the aspect is woven to
generate the �nal system, using a special tool called weaver. Some of the bene�ts
that the use of AOP brings to software engineering are: better modularization,
higher productivity, software systems that are easier to maintain and evolve.

Aspect mining is a relatively new research direction that tries to identify cross-
cutting concerns in already developed software systems, without using AOP. The
goal is to identify them and then to refactor them to aspects, in order to achieve
a system that can be easily understood, maintained and modi�ed.

Crosscutting concerns in non AO systems have two symptoms: code scattering
and code tangling. Code scattering means that the code that implements a cross-
cutting concern is spread across the system, and code tangling means that the
code that implements some concern is mixed with code from other (crosscutting)
concerns.

1.3. Related Work. Many aspect mining techniques have been proposed so far
([2], [5], [12], [13], [15], [16], [17]). [5], [13] and [16] use clustering for identifying
crosscutting concerns, but in di�erent contexts.

In [13] we have proposed a clustering approach in aspect mining based on k-
means and hierarchical agglomerative clustering. We have also de�ned in [14] a
set of new quality measures in order to evaluate the results of clustering based
aspect mining techniques. Based on the approach proposed in [13], this paper
presents a comparison of three clustering algorithms: k-means, fuzzy c-means and

A COMPARISON OF CLUSTERING TECHNIQUES IN ASPECT MINING 71

hierarchical agglomerative, both from the aspect mining and clustering points of
view.

The paper is structured as follows. Section 2 presents the context in which clus-
tering is used in aspect mining. The clustering algorithms used in our comparison
are described in Section 3. A comparative analysis of the results obtained on two
case studies, based on some quality measures, is reported in Section 4. Section 5
presents some conclusions and further work.

2. Clustering approach in the context of aspect mining
In this section we present the problem of identifying crosscutting concerns as a

clustering problem.

2.1. Formal model. Let M = {m1,m2, ..., mn} be the software system, where
mi, 1 ≤ i ≤ n is a method of the system. We denote by n (|M |) the number of
methods in the system.

We consider a crosscutting concern as a set of methods C = {c1, c2, ..., ccn},
methods that implement this concern. The number of methods in the crosscutting
concern C is cn = |C|. Let CCC = {C1, C2, ..., Cq} be the set of all crosscutting
concerns that exist in the system M . The number of crosscutting concerns in the
system M is q = |CCC|.
Partition of a system M .
The set K = {K1,K2, ..., Kp} is called a partition of the system M i� 1 ≤ p ≤
n, Ki ⊆ M,Ki 6= ∅,∀i ∈ {1, 2, ..., p}, M =

p⋃

i=1

Ki and Ki ∩ Kj = ∅, ∀i, j ∈

{1, 2, ..., p}, i 6= j.
In the following we will refer Ki as the i-th cluster of K and K as a set of

clusters.
In fact, the problem of aspect mining can be viewed as the problem of �nding

a partition K of the system M .

2.2. Identi�cation of crosscutting concerns. The steps for identifying the
crosscutting concerns are as follows:

• Computation -Computation of the set of methods in the selected source
code, and computation of the attributes set values, for each method in
the set.

• Filtering - Methods belonging to some data structures classes like Ar-
rayList, Vector are eliminated. We also eliminate the methods belonging
to some built-in classes like String, StringBu�er, StringBuilder, etc.

• Grouping - The remaining set of methods is grouped into clusters using
a clustering algorithm (KM, FCM or HAC, in this paper). The clusters

72 GABRIELA �ERBAN AND GRIGORETA SOFIA MOLDOVAN

are sorted by the average distance from the point 0l in descending order,
where 0l is the l dimensional vector with each component 0.

• Analysis - The clusters obtained are analyzed to discover which clusters
contain methods belonging to crosscutting concerns. We analyze the
clusters whose distance from 0l point is greater than a threshold (eg.
two).

3. Clustering Algorithms in Aspect Mining
In this section we brie�y describe three clustering algorithms that we will use

in the grouping step described in subsection 2.2, in order to identify a partition
K of a system M .

In our approach, the objects to be clustered are the methods from the system
M = {m1,m2, ...mn}. The methods belong to the application classes or are called
from the application classes.

We will consider each method as a l -dimensional vector: mi = (mi1, . . . , mil).
In our approach we have considered two vector-space models:

• The vector associated with the method m is {FIV,CC}, where FIV is
the fan-in value and CC is the number of calling classes. We denote this
model by M1.

• The vector associated with the method m is {FIV,B1, B2, ...Bl−1},
where FIV is the fan-in value and Bi is the value of the attribute corre-
sponding to the application class Ci. The value of Bi is 1, if the method
M is called from a method belonging to Ci, and 0, otherwise. We denote
this model by M2.

3.1. Hard k-means clustering (KM). Hard k-means clustering is also known as
c-means clustering. The k-means algorithm partitions the collection of n methods
of the system M into k distinct and non-empty clusters. The partitioning process
is iterative; it stops when a partition that minimizes the squared sum error (SSE)
is achieved. The SSE of a partition K is de�ned as:

(1) SSE(K) =
p∑

j=1

∑

mj
i∈Kj

d2(mj
i , fj)

where the cluster Kj is a set of methods {mj
1,m

j
2, ..., m

j
nj
} and fj is the centroid

(mean) of Kj :

fj =

nj∑
k=1

mj
k1

nj
, . . . ,

nj∑
k=1

mj
kl

nj

Hence, the k-means algorithm minimizes the intra-cluster distance. The al-
gorithm starts with k initial centroids, then iteratively recalculates the clusters

A COMPARISON OF CLUSTERING TECHNIQUES IN ASPECT MINING 73

(each object is assigned to the closest cluster - centroid) and their centroids until
convergence is achieved.

The main disadvantages of k-means are:
• The performance of the algorithm depends on the initial centroids. So

the algorithm gives no guarantee for an optimal solution, corresponding
to the global objective function minimum.

• The user needs to specify the number of clusters in advance.
In order to avoid these two main disadvantages of k-means, based on the ap-

proach presented in [13], we propose a new heuristic for choosing the number
of clusters and the initial centroids. This heuristic will provide a good enough
selection for the initial centroids.

We use the following heuristic for choosing the number of clusters and the initial
centroids:

(i) The initial number k of clusters is n (the number of methods from the
system).

(ii) The method chosen as the �rst centroid is the most �distant� method (the
method that maximizes the sum of distances from the other methods).

(iii) The next centroid is chosen as the method that is the most distant
from the nearest centroid already chosen, and this distance is strictly
positive. If such a method does not exist, the number k of clusters will
be decreased.

(iv) The step (iii) will be repeatedly performed, until k centroids will be
reached.

3.2. Fuzzy C-means Clustering (FCM). Fuzzy c-means clustering ([1], [6]),
also known as Fuzzy ISODATA, is a clustering technique which is separated from
hard k-means that employs hard partitioning. FCM employs fuzzy partitioning
such that a data point (method) can belong to all groups with di�erent membership
degrees between 0 and 1.

FCM is representative for the method of overlapping clustering. It uses fuzzy
sets to cluster data, so each point may belong to two or more clusters with di�erent
degrees of membership. In this case, data will be associated to an appropriate
membership value.

We will denote by k the number of clusters that we want to obtain in the data
set, that was determined by applying KM. A membership matrix U is used, so
that the equality below holds.

k∑

i=1

Uij = 1, ∀j ∈ {1, 2, ..., n}

In the above equation, Uij (i ∈ {1, , 2..., k}, j ∈ {1, , 2..., n}) represents the
membership degree of method j to cluster i.

74 GABRIELA �ERBAN AND GRIGORETA SOFIA MOLDOVAN

By iteratively updating the cluster centers and the membership degrees for
each method [1], FCM iteratively moves the cluster centers to the �right� location
within the data set.

FCM does not ensure that it converges to an optimal solution, because the
initial centroids (the initial values for matrix U) are randomly initialized.

FCM reports the �nal values for the matrix U. We propose the following equa-
tion:

Ki = {j | j ∈ {1, 2, ..., n} and Uij > Urj ,∀r ∈ {1, 2, ..., n}, r 6= j},
in order to identify the clusters in data, after FCM was applied.

We mention that the number of clusters reported by FCM is less or equal to k
(there is a possibility to obtain empty clusters).

3.3. Hierarchical Agglomerative Clustering (HAC). The agglomerative
(bottom-up) clustering methods begin with n singletons (sets with one element),
merging them until a single cluster is obtained. At each step, the most similar two
clusters are chosen for merging.

With the optimal number of clusters k determined after applying KM, we have
applied a modi�ed version of the traditional HAC algorithm in order to determine
k clusters in data (the agglomerative algorithm stops when k clusters are reached).

4. Experimental Evaluation
In order to evaluate the results of the proposed clustering algorithms, we con-

sider two case studies that are brie�y described in Subsection 4.2. The obtained
results are evaluated using three quality measures that are de�ned in Subsection
4.1.

4.1. Quality Measures. In this section we propose quality measures for evalu-
ating the results of clustering based aspect mining techniques. The �rst measure
(SSE) evaluates a partition from the clustering point of view, and the last two
measures (PAM, ACC) evaluate a partition from the aspect mining point of view.
In the following, we denote by |A| the cardinality of the set A.
Squared Sum Error of a partition - SSE. The squared sum error of a partition
K, denoted by SSE(K), is de�ned as in equation (1).

From the point of view of a clustering technique, smaller values for SSE indicate
better partitions, meaning that SSE has to be minimized.
Percentage of analyzed methods for a partition - PAM [14].

Let us consider that the partition K is analyzed in the following order:
K1,K2, ..., Kp.

A COMPARISON OF CLUSTERING TECHNIQUES IN ASPECT MINING 75

The percentage of analyzed methods for a partition K with respect to the set
CCC, denoted by PAM(CCC,K), is de�ned as:

PAM(CCC,K) =

q∑

i=1

pam(Ci,K)

q
.

pam(C,K) is the minimum percentage of the methods that need to be analyzed
in the partition K to discover the crosscutting concern C and is de�ned as:

pam(C,K) =

i∑

j=1

|Kj |

|M |
where i = min{t | 1 ≤ t ≤ p and Kt ∩ C 6= ∅} is the index of the �rst cluster in
the partition K that contains methods from C.

PAM(CCC,K) de�nes the percentage of the minimum number of methods that
need to be analyzed in the partition in order to discover all crosscutting concern
that are in the system M . We consider that a crosscutting concern was discovered
the �rst time a method that implements it was analyzed.

Based on the de�nition, PAM(CCC,K) ∈ (0, 1]. If each C ∈ CCC has one
method in the �rst analyzed cluster K1 of the partition K, then PAM(CCC,K) =
|K1|
|M | , otherwise PAM(CCC,K) > |K1|

|M | .
Smaller values for PAM indicate short time for analysis, meaning that PAM

has to be minimized.
Accuracy of a clustering based aspect mining technique - ACC. Let T
be a clustering based aspect mining technique.

The accuracy of T with respect to a partition K and the set CCC, denoted by
ACC(CCC,K, T), is de�ned as:

ACC(CCC,K, T) =

q∑

i=1

acc(Ci,K, T)

q
.

acc(C,K, T) =

|C ∩Kj |
|C| , if Kj is the �rst cluster in which C was discovered

by T
0 , otherwise

is the accuracy of T with respect to the crosscutting concern C. For a given cross-
cutting concern C ∈ CCC, acc(C,K, T) de�nes the proportion of methods from
C that appear in the �rst cluster where C was discovered.

In all clustering based aspect mining techniques, only a part of the clusters are
analyzed, meaning that some crosscutting concerns may be missed.

76 GABRIELA �ERBAN AND GRIGORETA SOFIA MOLDOVAN

Based on the above de�nition, ACC(CCC,K, T) ∈ [0, 1]. ACC(CCC,K, T) =
1 i� acc(C,K, T) = 1, ∀ C ∈ CCC. In all other situations, ACC(CCC,K, T) < 1.

Larger values for ACC indicate better partitions with respect to CCC, meaning
that ACC has to be maximized.
4.2. Case Studies. In order to evaluate the results, we consider two case studies:
Carla La�ra's implementation of Dijkstra algorithm [10] and JHotDraw, version
5.2 [8].

The �rst case study is a Java applet that implements Dijkstra algorithm in
order to determine the shortest path in a graph. It was developed by Carla La�ra
and consists in 6 classes and 153 methods.

The second case study is a Java GUI framework for technical and structured
graphics, developed by Erich Gamma and Thomas Eggenschwiler, as a design
exercise for using design patterns. It consists in 190 classes and 1963 methods.
4.3. Comparative Analysis of the Results. In this section we comparatively
present the results obtained after applying the clustering methods described in
Section 3 with respect to the quality measure described above, for the case studies
presented in this section.

Case study Clustering Model No. of PAM ACC SSE
algorithm clusters

La�ra KM M1 13 0.0964 0.6666 0
La�ra KM M2 22 0.1029 0.6666 0
La�ra FCM M1 11 0.0947 0.6666 2.9148
La�ra FCM M2 19 0.0996 0.6666 7.0921
La�ra HAC M1 13 0.1241 0.5000 18.8685
La�ra HAC M2 22 0.1307 0.5000 16.7567

JHotDraw KM M1 93 0.0736 0.2782 0
JHotDraw KM M2 586 0.0770 0.2782 0
JHotDraw FCM M1 89 0.0735 0.2782 10.9971
JHotDraw FCM M2 26 0.0342 0.7812 64084.92
JHotDraw HAC M1 93 0.0718 0.3095 267.3225
JHotDraw HAC M2 586 0.0811 0.2782 119.6836
Table 1. The values of the quality measures for the two case studies.

Table 1 presents the results obtained by applying the three clustering algo-
rithms, for the two vector space models.

As presented in Subsection 4.1, the partitions that minimize the squared sum
error (SSE) are better from the clustering point of view.

The conclusions reached after analyzing the obtained results from the aspect
mining point of view, are presented below.

A COMPARISON OF CLUSTERING TECHNIQUES IN ASPECT MINING 77

The analysis of the results based on the clustering algorithm used:
La�ra case study
• For all algorithms, vector space model M1 has provided better re-

sults.
• The best results were obtained using FCM.

JHotDraw case study
• Vector space model M1 has provided better results for KM and
HAC, and vector space model M2 for FCM.

• The best results were obtained using FCM.

The analysis of the results based on the vector space model used:
La�ra case study
• For both vector space models, FCM has provided better results.

JHotDraw case study
• For vector space model M1, HAC has provided better results, and

for vector space model M2, FCM has provided better results.
After analyzing the obtained results, we can conclude that the vector space

models used in the proposed clustering based aspect mining technique should be
improved. This can also be the cause of the lack of correlation between the results
from the aspect mining point of view and from the clustering point of view.

5. Conclusions and Future Work
In this paper we have comparatively presented the results of applying three

clustering algorithms in aspect mining. The comparison was made mostly from
the aspect mining point of view, using a set of quality measures (SSE, PAM, ACC).

Further work can be done in the following directions:
• To improve the vector-space models used in this clustering based aspect

mining approach. In our opinion, the vector space models have signi�-
cantly in�uenced the obtained partitions.

• To compare, from the aspect mining point of view, the results obtained
by the clustering algorithms proposed in this paper with other cluster-
ing approaches that were proposed in the literature (such as variable
selection for hierarchical clustering [3], search based clustering [11]).

• To apply this approach for other case studies like PetStore and JEdit.

References
[1] S. Albayrak and F. Amasyali. Fuzzy c-means clustering on medical diagnostic systems. In

Turkish Symposium on Arti�cial Intelligence and Neural Networks - TAINN, 2003.
[2] S. Breu and J. Krinke. Aspect Mining Using Event Traces. In Proc. International Conference

on Automated Software Engineering (ASE), pages 310�315, 2004.
[3] E. B. Fowlkes, G. Gnanadesikan, and J. R. Kettering. Design, Data, and Analysis: By Some

Friends of Cuthbert Daniel. Wiley, New York, NY, 1987.

78 GABRIELA �ERBAN AND GRIGORETA SOFIA MOLDOVAN

[4] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann Pub-
lishers, 2001.

[5] L. He and H. Bai. Aspect Mining using Clustering and Association Rule Method. Interna-
tional Journal of Computer Science and Network Security, 6(2A):247�251, February 2006.

[6] A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall, Englewood Cli�s,
New Jersey, 1998.

[7] A. Jain, M. N. Murty, and P. Flynn. Data clustering: A review. ACM Computing Surveys,
31(3):264�323, 1999.

[8] JHotDraw Project. http://sourceforge.net/projects/jhotdraw.
[9] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin.

Aspect-Oriented Programming. In Proceedings European Conference on Object-Oriented
Programming, volume 1241, pages 220�242. Springer-Verlag, 1997.

[10] C. La�ra. Dijkstra's Shortest Path Algorithm. http://carbon.cudenver.edu/ hgreenbe/
courses/dijkstra/DijkstraApplet.html.

[11] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. Bunch: A Clustering Tool for
the Recovery and Maintenance of Software System Structures. In ICSM '99: Proceedings of
the IEEE International Conference on Software Maintenance, pages 50�59. IEEE Computer
Society, 1999.

[12] M. Marin, A. van, Deursen, and L. Moonen. Identifying Aspects Using Fan-in Analysis. In
Proceedings of the 11th Working Conference on Reverse Engineering (WCRE2004), pages
132�141. IEEE Computer Society, 2004.

[13] G. S. Moldovan and G. Serban. Aspect Mining using a Vector-Space Model Based Clustering
Approach. In Proceedings of Linking Aspect Technology and Evolution Workshop(LATE
2006), Bonn, Germany, March 2006.

[14] G. S. Moldovan and G. Serban. Quality Measures for Evaluating the Results of Clustering
Based Aspect Mining Techniques. In Proceedings of Towards Evaluation of Aspect Min-
ing(TEAM), ECOOP, 2006, to be published.

[15] Orlando Alejo Mendez Morales. Aspect Mining Using Clone Detection. Master's thesis, Delft
University of Technology, The Netherlands, August 2004.

[16] D. Shepherd and L. Pollock. Interfaces, Aspects, and Views. In Proceedings of Linking Aspect
Technology and Evolution Workshop(LATE 2005), March 2005.

[17] P. Tonella and M. Ceccato. Aspect Mining through the Formal Concept Analysis of Exe-
cution Traces. In Proceedings of the IEEE Eleventh Working Conference on Reverse Engi-
neering (WCRE 2004), pages 112�121, November 2004.

Babe³-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-
Napoca, Romania

E-mail address: gabis@cs.ubbcluj.ro

Babe³-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-
Napoca, Romania

E-mail address: grigo@cs.ubbcluj.ro

STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume LI, Number 1, 2006

COMPONENTS MODELING IN UML 2

JEAN-MICHEL BRUEL AND ILEANA OBER

Abstract. The Object Management Group (OMG) has recently recom-
mended for adoption the proposal that will be the basis for the new version
of the Uni�ed Modeling Language � UML. In this version 2.0 of UML, the
component model has been completely modi�ed. The �rst goal of this paper
is to describe this new model. The second goal is to study if it is really more
than a notation improvement. We go through the requirements for a general
component modeling language, the existing e�orts in this area, and the new
UML 2.0 model itself.

1. Introduction
Nowadays, even the simplest software systems are complex. Generalization of

the client/server architecture, importance of the notion of services, distributed in
di�erent nodes of the system, and distantly available, real-time and critical aspects
more and more involved, are some of the reasons for such a complexity. As a matter
of fact there is a big issue in the use of reusable pieces of software components. But
when it comes with components and composition, there are two complementary
problems to solve [12]: �[. . .] how to meet requirements using component-based
designs and how to design components that work well together.�

Components and composition have been an active research topic for a long time
now. But it is undoubtable that there is no such a usage of software components
as in hardware for example. One of the reason advocated by international surveys
is the lack of support for composition description and evaluation [24]. Not so long
ago, when you typed �Component Modeling Language� in a web-search engine,
not only you did not �nd so many links, but you found among the �rst ones a link
to the Rational Rose web page. Looking through this page, and also through the
recently adopted U2-partners proposal for the upcoming 2.0 version of the UML,
it seems that UML 2.0 aims to be, among other things, a component modeling
language [23].

Received by the editors: June 10, 2006.
2000 Mathematics Subject Classi�cation. 68N99.
1998 CR Categories and Descriptors. D2.2 [Software Engineering]: Design Tools and

Techniques � Object-oriented design methods.

79

80 JEAN-MICHEL BRUEL AND ILEANA OBER

We do not aim here to fully explore the requirements for a potential component
modeling language (see e.g., [19, 2] for such requirements), but we intend to give
a critical overview of the new UML support for components using the following
organization: in section 2 we will describe composition models and languages; in
section 3 we will describe the UML 2.0 component model; in section 4, we will
present ongoing e�orts that aim at providing good support for composition; in
section 5 we discuss this model from a critical point of view; and we will conclude
in section 6.

2. Composition models and languages
Component based development o�ers a means to deal with the increasing soft-

ware complexity. We do not start with the rather philosophical and surely con-
troversial question on what it is a component. Instead we will focus on the main
issues related to components.

According to various authors [18, 25] components are characterized by their
interfaces, which specify their possible interaction with their environment and
o�er a basis for establishing the compatibility between two or several components.
The provided interfaces specify how a component can be used and summarize what
it o�ers to the outside world. Besides the provided interfaces, a component should
specify what the deployed environment should provide in order for the component
to be able to o�er the functionality speci�ed in the provided interface [20]. These
context dependencies are speci�ed using required interfaces.

For a good component speci�cation, the structural speci�cation of components
done in terms of provided and required interfaces should be complemented with
a component contract [6, 17]. Specifying required interfaces is a �rst step in this
direction, however it only covers the structural/signature level. More advanced
techniques for component speci�cation include invariants, pre- and post-conditions
of the services o�ered/required by the interfaces, various kinds of logics, automata-
like speci�cation techniques for component abstractions, etc. The nature of the
component contract, and of the contract speci�cation technique varies depending
on whether the component is viewed as a unit with state (as argued in [18]), or a
stateless unit (as argued in [25]).

The component contract can be speci�ed at various levels of abstraction and
can address various needs.

[6] de�nes a four level contract framework, where each level corresponds to a
class of contracts (from the �rst to the forth): syntactic, behavioral � described in
terms of pre- and post-conditions and invariants, synchronization, and quality of
service. In this framework, contracts corresponding to the �rst two levels can be
checked statically (provided that enough veri�cation theoretical background exists
), while the last two levels are basically focused on dynamic behavior and on the
integration of the component on the execution platform.

COMPONENTS MODELING IN UML 2 81

One important and much studied issue in this context is the component com-
position: gathering together various components into a working system. Related
to this, lots of e�orts address the impact of composition on the properties of the
composed components. A thorough analysis of the composition, formalizing it as
an operation that considers the components and their integration constraints can
be found in [14]. The paper also proposes a framework for component composition.

In what follows we present a list of expected features needed for a good com-
ponents model. This list is established independently of UML, and will serve as
as a basis for discussing the properties of the component model o�ered by UML.

Precise modeling concepts. Since the component modeling o�ers an abstract
view of the system under modeling, it is crucial to have unambiguous de�nitions
and a precise semantics of the basic modeling concepts.

Expressive power. For this the parts that need to be covered [15] are: (i) in-
terface speci�cation: it should be possible to associate sets of interfaces to a
component speci�cation and to specify their relationship with the component,
i.e. whether they are required or o�ered; (ii) semantic speci�cation: de�ne and
document semantic information about the component's operations; (iii) extra-
functional properties speci�cation: such as quality of service (QoS) and timing.

Modeling features. [9] de�nes several key requirements for a component model.
Among the most general we mention: (i) encapsulation and identity; (ii) compo-
sition: the model should not only support dynamic composition, but also support
di�erent semantics of composition; (iii) life-cycle: a general model should support
di�erent forms of components throughout the entire development life-cycle.

3. UML 2.0 component model
Backwards compatibility and the possibility to include architecture represen-

tation into UML models have been the key concerns in the de�nition of the new
UML version. The component model itself has been improved, the overall concept
of composition has been integrated, even at class level. We will �rst introduce the
concepts and then discuss their pluses and minuses.

3.1. New concepts and improvements. Justifying the drawbacks in the UML
1.5 version in terms of composition is out of the scope of this paper. For an intro-
ductory illustration of some major di�culties in using the UML 1.5 composition
model, see [7]. UML 2.0 [23] provides support for decomposition through the new
notion of structured classi�ers1. A structured classi�er is a classi�er that can be in-
ternally decomposed (Classes, Collaboration, and Components). New constructs
to support decomposition have been introduced: Part, Connectors, and Ports. Note
that Part is a new name, but not a new concept. UML 2.0 allows the speci�cation of

1In this paper, we use Sans Serif font to highlight the new UML 2.0 concepts.

82 JEAN-MICHEL BRUEL AND ILEANA OBER

physical components such as in UML 1.5, of logical components, i.e. speci�cation
level components (e.g., business components, process components) as well as de-
ployed components (such as artifacts and nodes). A component is viewed as a "self
contained unit that encapsulates state + behavior of a set of classi�ers". It may
have its own behavior speci�cation and speci�es a contract of provided/required
services, through the de�nition of ports. It is hence a substitutable unit that can
be replaced as long as port de�nitions do not change. Notice that the notion of
"change" here is not de�ned and has to be taken at a syntactic level only. Notice
also that ports are not reserved to components, but are available for any structured
classi�er.

Three new constructs are part of the component model. Note that those con-
structs can be used together with any composite diagram. These new concepts
are:

Part: something that is internal to a composite structure. This is not much
di�erent from UML 1.5 except that aggregation applies to properties as
well as association ends. This is due to the uni�cation of attributes and
associations. Notice that instances (of a class) and parts have similar
notations, which might be confusing. The part names are not objects
identi�er, but role names. Parts have to be seen as roles, and instances
as the realization that satisfy these roles.

Connector: expresses the relationship between parts and between ports. It is a link
(an instance of association) that enables communication between two or
more instances, in addition to everything that ordinary links enable (e.g.,
navigating to a neighboring object to retrieve a property from it, modify
it, destroy it, etc.). It may be realized by pointer, network connection,
etc.

Port: a kind of part, but mainly used to represent the connection point via
which messages are sent to/received by a component (or a class). Ports
have a type which is given by a set of interfaces (provided and required)
and can be described with a state machine. UML 2.0 has introduced a
speci�c kind of state machines (that describes usage protocols of parts
of the system): protocol state machines, and hence renamed the previous
state machine (for describing the behavior of some entities): behavioral
state machine.

The interface represents a signature given in terms of a set of public features
(operations, attributes, signals). Interface attributes as well as association between
interfaces is new in UML 2.0. The interface use has been extended from UML 1.5: a
classi�er or a port may implement or require an interface, in addition to providing
an interface. Interfaces can be attached to ports. A required interface attached
to a port characterizes the behavioral features that the owning classi�er expects
from its environment via the given port, while a provided interface attached to a

COMPONENTS MODELING IN UML 2 83

port characterizes the behavioral features o�ered by the owning classi�er via the
given port. Note the distinction between a port and an interface: an interface
speci�es a service o�ered/required by a classi�er, while a port speci�es the services
o�ered/ required by the classi�er via that particular interaction point (port). It is
possible to attach to a port or to an interface, a protocol state machine that allows
the de�nition of a more precise external view by making dynamic constraints on
the sequence of operation calls and signal exchanges explicit. The protocol state
machine of a port (if present) shall be compatible with the protocol state machines
of all interfaces attached to it. However, this �compatibility" notion is not de�ned
in the proposal.

3.2. Component Diagrams. In UML 1.5, component diagrams were support
for physical components only. In UML 2.0, extends component diagrams from
addressing physical components to logical ones. Also it allows component-based
software engineering CBSE as it is now possible to trace from logical to physical
components.

There is two possible views for components models: (i) an external one (�black
box" view), where the focus is on contracts linking the component to its clients in
terms of provided services; (ii) an internal view (�white box" view), hidden from
the clients, where the focus is on how the component is organized in terms of parts,
sub-components, connectors, etc.

There is two speci�c connectors for components: (i) an assembly connector is
the link between a required (socket) and a provided (lollipop) interface of the
same time; (ii) a delegation connector connects a port on the container to/from an
internal port/part that has a compatible interface of the same kind (both provided
or both required). An arrow indicate the delegation direction. To be more precise,
connectors are between parts/ports that have compatible interfaces of di�erent
kinds (one provided, one required). It is one way to wire components together
(the other way is to use dependencies as in UML 1.5 version, but these do not
have an instance level counterpart).

3.3. Support for composition. New constructs and new approaches have been
introduced in UML 2.0 with direct impact on the support for composition. To
describe the links between a composite and its sub-components, UML 2.0 uses
several notions of components. BasicComponents and PackagingComponents are
capabilities of components modeled in separate packages for convenience of imple-
mentation. PackagingComponents are an extension of BasicComponents to de�ne
the grouping aspects of packaging components. A basic component inside a pack-
aging component is informally called a nested component. Note that this notion
is di�erent from the one of a part, which is not speci�c to components, and which
de�ne an element of an internal structure. As we have shown, the internal struc-
ture of a component can be described by a component diagram. In fact, despite
the added/modi�ed notations for components constructs, the main change, or the

84 JEAN-MICHEL BRUEL AND ILEANA OBER

one to most impact the ongoing research (such as ours [3]) is the introduction of
the StructuredClass �rst class element, and, at a lower level, the new distinction of
required interface. Components communicate together via messages going through
their ports, using the same idea as processes in SDL [11] or capsules in ROOM
[22]. Note that components can also communicate directly point to point, using
the same schema as in the Corba Component Model (CCM [10]). Nevertheless it
has to be conclude that components add only a little to structured classes as far
as composition is concerned.

4. Existing efforts
Several working directions projects address the issue of UML components. We

can classify them into the following categories:
• commercial tools - the various existing commercial UML tools o�er sup-

port for compositional modeling in UML to various extents, most often
on the model editing level. Few tools, such as Rhapsody,Telelogic Tau 2,
etc. o�er support for more advanced component related treatment such
as component speci�c code generation, veri�cations, symbolic execution,
etc.

• standardization - related e�orts: EDOC and SPT.
• research projects ACCORD, AIT-WOODDES, OMEGA, CML etc.

In what follows we give some more details on the e�orts mentioned at the previous
last two points.

The EDOC (Enterprise Distributed Object Computing) [21] has a standard
pro�le for UML, which introduces the notion of Component Collaboration Ar-
chitecture (CCA), where some concepts such as process components, ports and
connections are de�ned.

The UML Pro�le for Schedulability, Performance and Time (SPT) [22] o�ers
no particular treatment to components, although it is implied that the compo-
nent approach is suitable for the real-time domain. When describing concurrency,
components are mentioned as one of the di�erent kinds of concurrent units.

ACCORD is a French project aiming to de�ne a Platform Independent com-
ponent model, based on UML [27]. The proposed model uses the extension mecha-
nisms of UML 1.5 to support concepts such as components, ports and connectors.
In this model, component operations are attached to ports and the architectural
constraints are expressed in the means of OCL meta-level constraints. One of the
main contributions of this project is that to illustrate the derivation of a general
model towards Platform Speci�c Models (PSMs) such as CCM or EJB.

Related to ACCORD, the AIT-WOODDES project focused on the speci�ca-
tion of embedded real-time systems. One of the results of the project is a speci�c
component model [26] using concepts developed in ACCORD project with speci�c
real-time aspects.

COMPONENTS MODELING IN UML 2 85

The IST project OMEGA aimed to develop a methodology for modeling real-
time and embedded systems in UML, with the aid of formal techniques. In this
context, the e�orts go towards both �nding the best theoretical framework for
veri�cation in this precise context, and towards implementing them into tool sets
developed on the top of UML commercial tools. In this context, a particular
attention is given to the use of an appropriate component model, important for
enforcing property-preserving re�nement and for enabling e�cient validation. The
OMEGA component model is based inspired from the UML 2.0 component model,
however the tool sets was built upon UML 1.5 tools, for commercial tool availability
reasons.

The CML project [8] is an ongoing project aiming at the de�nition of a general
purpose component model, based on the UML notation, and on a formal frame-
work based on the Whole-Part Relationship (WPR). Two notions of composability
are used: horizontal composability - component binding and cooperation in dis-
tributed systems and vertical composability - whole (container) components pro-
cess requests of client components. Part components are fully encapsulated (into
whole components) and are not units of deployment in this particular context,
they provide implementations for the components that they belong to by means
of delegation. This approach [4] proposes to extend the semantic properties of the
whole-part relationship [3] by adapting its formal base to software composition.

5. UML 2.0 components analyzed from different perspectives
5.1. Critical point of view on the new UML 2.0 artifacts. UML 2.0 pro-
vides useful notation artifacts that were missing in UML 1.5 [7]. We believe those
improvements are not enough. This is why we have developed our own approach
of composition using UML 2.0 [4], and why certainly others will do the same in
the near future. Our theoretical framework is based on an adaptation to CBSE
of a formalization of the whole-part relationship (WPR) [3]. We have extended
the semantic properties of the WPR by adapting its formal base to software com-
position. We have determined which properties apply to component composition
and de�ned formally these properties. We ground our approach on metamodeling
and assertions in order to constrain the speci�cation of composition relationships.
Constraints are added to components at implementation time via generated con-
tracts. In our approach, the notion of Whole component can be linked to the one
of PackagingComponent and the Part components to the BasicComponent one. The
bene�ts of our approach is the well de�nition of precise properties to characterize
composition. For details and illustration of our approach, see [4, 5].

5.2. Support for composition. The requirements of the OMG RFP were ex-
plicit in terms of CBSE support: support for component assembly and plug-
substitutability, support for the speci�cation of common interaction patterns that
might occur between components, support for modeling of component execution

86 JEAN-MICHEL BRUEL AND ILEANA OBER

contexts (e.g., EJB and CCM containers), and support for pro�les de�nitions for
speci�c component architectures models (such as EJB, CORBA, and COM+).
The e�ort of the proposal to address these requirements is undoubtable as we
have described in section 3. Most of the construct needed for CBSE support have
been introduced. A set of recommendation had been produced based on the several
UML 2.0 RFI responses. In terms of composition, they were mainly: (i) improve
the semantics and notation to support component-based development, (ii) better
support for interfaces, and (iii) usage protocol for interfaces formalization. As we
have mentioned before, the �rst point have been missed, in our opinion, in the
sense that there is no semantic provided for the added constructs.

To summarize the pluses of the new UML 2.0 constructs we could say that it
provides: means to express architecture, means to express component contracts,
and more expressive communication description. And in terms of the minuses,
we could say that: there is too many overlapping constructs, relationship between
the various constructs are not clear, and the semantics has too many traps (e.g.,
misuse of new concepts) and lacks (e.g., of explanation and illustration of the usage
of new concepts, informal assumptions, . . .).

5.3. Support for Agile Modeling. As an illustration of the concrete use of the
improvements brought by the new version, let us mention some of those made by
Scott Ambler in its overall Agile Modeling approach [1]. Here are some examples of
his proposal. In the Component Diagram, Ambler suggests that the ports should
be linked to one interface only. This seems to be only informally assumed in some
of the UML 2 spec, but there is no explicit restriction of the number of interfaces
on a port. This simpli�es the delegation mechanisms (internal structure). Three
di�erent relationships between ports and parts have been identi�ed: (i) delegates,
which is the usual relationship between a port and a part in UML 2.0. (ii) stereo-
typed delegates, which speci�c notation comes in replacement of the previous in
order to prevent confusion with the unidirectional association, which has the very
same drawing. (iii) realizes, which indicates that it is the realization of a port.
Ports are viewed in this case as logical modeling constructs realized by physical
constructs such as classes.

Another example is the use of class to systematically implements ports (using
the Façade design pattern [13]). These classes implement the public operations
required by the interfaces.

The main conclusion of the use of UML 2.0 from an agile point of view is the
fact that it eases the application of the heuristics that were already de�ned in
terms of good practices by supplying new and useful constructs (di�erentiation
between application, infrastructure and domain components, de�nition of compo-
nent contracts, etc.).

5.4. Expressive power of the architecture description. [16] presents a deep
analysis of UML 1.5's expressive power for modeling software architecture, in a way

COMPONENTS MODELING IN UML 2 87

natural to the way this is done in traditional architecture description languages.
In the followings we start from the results of this analysis, and try to see how
they are a�ected by the changes made in UML 2.0, and to what extent UML 2.0
answers or not the speci�c needs of software architecture modeling.

In [16], Medvidovic et al. identify a minimum set of requirements for evaluating
the ability of UML to be used in software architecture modeling e�ciently. In order
to do this the authors apply two approaches for supporting architectural concerns
within UML: the �rst is based on using UML "as it is", and the other on using
standard UML extension mechanisms. The results of this study are that UML can
be used to address architectural concerns, although this requires some extra-e�orts
and its it has some drawbacks when compared to the use of classical ADL for the
same purpose.

The general conclusion is that the extensible design of UML renders it applicable
to system architecture modeling. However, as the language was not primarily
designed for this, there are some drawbacks in using UML for this purpose. Some
architecture modeling speci�c concepts are missing, and they need to be added
in UML, e.g. using extension mechanisms. As a result, the rules of architectural
style (present in ADLs and maintained by ADL supporting tools) have to be
managed and applied by the modeler and need to be documented in addition to
the system/architecture modeling. This makes the design more di�cult to manage
and to maintain.

Another conclusion regards the modeling of behavior and interactions in the
architecture modelled using UML 1.5. This is possible using sequence diagrams,
collaboration diagrams, or state machine diagrams. However it is hard to establish
the relationship between the speci�ed behavior and the architectural elements, and
it is hard to ensure that the intended behavior is correctly modelled in UML.

Apart of the general points mentioned before, we extract here those that seemed
to us among the most noteworthy with respect to UML 1.5 suitability for archi-
tecture modeling:

(1) For UML 1.5 classes it is only possible to specify the list of events it can
receive, not of those that can be sent. This is di�erent from the common
practice when using ADLs;

(2) As UML was primarily designed to address various kinds of concerns,
although it can handle architecture speci�c needs, architecture modelers
�nd the support for these aspects partially su�cient;

(3) Some of the software architecture-speci�c concepts are conceptually dif-
ferent of those existing in UML (and more generally in object-oriented
design). It is the case for example of connectors. They can indeed be
abstracted by a UML class (e.g., by using stereotypes), however some of
the properties ADL connector's properties need to be explicitly modelled
in UML. This is the case of some ADL, where connector interfaces are

88 JEAN-MICHEL BRUEL AND ILEANA OBER

context re�ective. In UML this needs to be explicitly modelled, which
makes the use of connectors in UML 1.5 heavier.

(4) The UML tool support do o�er (as far as the authors of the cited paper
and ourselves are aware) some of the features regularly o�ered by ADL
supporting tools. In particular, the part concerning the infrastructure
of the systems modelled (that enforces the desired topology, interface
and interactions between system components) is not covered by general
UML tools, and not o�ered by other UML supporting tools.

In the study above mentioned, among the weaknesses of UML 1.5 in supporting
architecture modeling was the lack of some software architecture speci�c concepts.
The situation changed a bit with the new UML 2.0, as some of these concepts are
added to the language de�nition. In the followings, we will discuss on how much
this impacted on the language ability to be used in architectural description.

The add of concepts like port, port instance, connector, and architecture diagram
enriches the expressive power of UML, when it comes to architecture modeling.
Indeed, having these concepts explicitly at language level (not having to model
each of them) increases the readability of architecture designs done with UML,
and avoids the use of conventions. However, as for the moment only very limited
tool support exists for UML 2.0, it is hard to assess the impact of this improvement
on the architectural modeling: how well the UML tools will manage the desired
topologies, interfaces and interactions between system components.

A step forward was also done towards modeling the behavior and interactions
in architecture modeling, by adding the possibility to specify/constrain the be-
havior as observed at ports or interfaces through protocol state machines. We see
however a problem in the abundance of means existing in UML 2.0 to specify be-
havior and interactions in architecture, especially as the relationship between the
various means is not clearly speci�ed in the standard. Without a good modeling
methodology and the right tool support, we fear that the new additions will not
be used, due to the risk of confusion.

If we look at the list of more precise points raised on the UML 1.5 ability to
address architecture modeling needs, we notice that some of them (point 1 and
3) are partially solved by adding new concepts to UML. Although it is still not
possible to specify what events can an object generate to its environment, using
implemented and required interfaces, it is possible to give information on both
directions of the interaction of an object with its context.

Our discussion represents a �rst level analysis on the use of UML 2.0 for software
architecture modeling, having as starting point the extensive study performed on
UML 1.5 in [16], and the new UML 2.0 standard. This allowed us to infer the e�ect
of the UML evolution. A deeper analysis, similar to the one performed for UML
1.5 is probably needed to correctly asses all the details of the UML 2.0 ability to
address architecture modeling.

COMPONENTS MODELING IN UML 2 89

6. Conclusion
This paper aimed at discussing whether the recently adopted UML 2.0 proposal

was good or not in terms of composition support. We have presented in this
paper a brief overview of the new UML component model and we have done
our best to found some good arguments in favor of the a�rmative answer to
this question. It is undoubtable that the improvements at the notation level will
be useful for component-based systems developers. The new component model is
more expressive and �exible than the one o�ered in the old version of the language.
The main requests formulated in the RFI have been answered. However, some
points still remain to be clari�ed, especially when it comes to the combined use of
various concepts. This may require a non minor amount of work, if one wants to
keep using all the concepts o�ered by UML 2.0. The application of the UML 2.0
on concrete case studies will tell how well new UML component model is adapted
to the industry.

A step forward on the way of applying UML on system engineering is repre-
sented by the SysML initiative. SysML is a modeling language for systems en-
gineering applications called Systems Modeling Language. SysML will customize
UML 2.0 in order to support the speci�cation, analysis, design, veri�cation and
validation of complex systems that include hardware and software components. It
will be interesting to also follow what the people who already had some proposals
for UML support for components, as presented in section 4, will answer to this
same question. This might lead to interesting developments in this area.

References
[1] Scott W. Ambler. The O�cial Agile Modeling Site � The Diagrams of UML 2. Available at

http://www.agilemodeling.com, 2003.
[2] ARTIST. Component-based Design and Integration Platforms : Roadmap. Technical Report

W1.A2.N1.Y1, Project IST-2001-34820, 2003.
[3] Franck Barbier, Brian Henderson-Sellers, Annig Le Parc-Lacayrelle, and Jean-Michel Bruel.

Formalization of the Whole-Part Relationship in the Uni�ed Modeling Language. IEEE
Transactions on Software Engineering, 29(5):459�470, May 2003.

[4] Nicolas Belloir, Jean-Michel Bruel, and Franck Barbier. Whole-Part Relationships for Soft-
ware Component Combination. In Gerhard Chroust and Christian Hofer, editors, Proceed-
ings of the 29th Euromicro Conference on Component-Based Software Engineering, pages
86�91. IEEE Computer Society Press, September 2003.

[5] Nicolas Belloir, Fabien Roméo, and Jean-Michel Bruel. Whole-Part based Composition Ap-
proach: a Case Study. In Proceedings of the 30th Euromicro Conference � Component-Based
Software Engineering Track (Euromicro'2004), March 2004. To be published.

[6] Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins. Making com-
ponents contract aware. IEEE Computer, 13(7):38�45, 1999.

[7] Conrad Bock. UML 2 Composition Model. Journal of Object Technology, 3(10):47�73,
November-December 2004.

[8] Jean-Michel Bruel. CML � Component Modeling Language: project proposal. Technical
report, French National Sciences Funds, 2003.

90 JEAN-MICHEL BRUEL AND ILEANA OBER

[9] E. Bruneton, T. Coupaye, and Jean-Bernard Stefani. Recursive and Dynamic Software
Composition with Sharing. In Proceedings of 7th International Workshop on Component-
Oriented Programming � WCOP02 at ECOOP 2002, June 2002.

[10] CCM. CORBA Component Model. OMG Report ptc/02-08-03. URL: http://www.omg.org/.
[11] Laurent Doldi. UML 2 Illustrated � Developing Real-Time & Communications Systems.

TMSO, October 2003.
[12] Desmond D'Souza and Alan Cameron Wills. Objects, Components and Frameworks With

UML: The Catalysis Approach. Addison-Wesley, 1998.
[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.
[14] Gregor Goessler and Joseph Sifakis. Composition for Component-Based Modeling. In Pro-

ceedings of FMCO, November 5-8, 2002, volume 2852. LNCS, 2003.
[15] Frank Lüders, Kung-Kiu Lau, and Shui-Ming Ho. Building reliable component-based software

systems, chapter Speci�cation of Software Components, pages 23�38. Number 2. Artech
House Publishers, Boston, 2002.

[16] N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins. Modeling software ar-
chitectures in the Uni�ed Modeling Language. ACM Transactions on Software Engineering
and Methodology, 11(1), 2002.

[17] Bertrand Meyer. Contracts for components. Software Development Online, July, 2000.
[18] Bertrand Meyer. The grand challenge of trusted components. In ICSE 25, Portland, Oregon,

May 2003. IEEE Computer Press, 2003.
[19] Oscar Nierstrasz and Theo Dirk Meijler. Requirements for a Composition Language. In Pro-

ceedings of ECOOP 94 workshop on Models and Languages for Coordination of Parallelism
ad Distribution, LNCS, pages 147�161. Springer Verlag, 1994.

[20] A. Olafsson and D. Bryan. On the need for required interfaces to components. In Special
Issues in Object-Oriented Programming � ECOOP 96 Workshop Reader, pages 159�171.
dpunkt Verlag, Heidelberg, 1997.

[21] OMG. UML Pro�le for Enterprise Distributed Object Computing Speci�cation (EDOC).
OMG document, Object Management Group, may 2002.

[22] OMG. UML Pro�le for Schedulability, Performance, and Time Speci�cation (PST), Draft
Adopted Speci�cation. OMG document, Object Management Group, January 2002.

[23] OMG. Uni�ed Modeling Language: Infrastructure and Superstructure, version 2.0. OMG
document formal/05-07-05 and formal/05-07-04, Object Management Group, March 2006.

[24] High Con�dence Software and Systems Coordinating Group. High Con�dence Software and
Systems Research Needs. Technical report, InteragencyWorking Group on Information Tech-
nology Research and Development, january 2001.

[25] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley, ACM Press, NY, 1999.

[26] Francois Terrier and Sébastien Gérard. UML 2: Component model and RT feedback of
AIT-WOODDES project to the U2 proposal. In Workshop SIVOES-MONA - UML'2002,
Dresden, 2002.

[27] Tew�k Ziadi, Bruno Traverson, and Jean-Marc Jézéquel. From a UML Platform Independent
Component Model to Platform Speci�c Component Models. In Jean Bezivin and Robert
France, editors, Workshop in Software Model Engineering, 2002.

LIUPPA, Université de Pau et des Pays de l'Adour, 64000 Pau, France
E-mail address: Jean-Michel.Bruel@univ-pau.fr

IRIT, Université Paul Sabatier, Toulouse, France
E-mail address: ileana.ober@irit.fr

STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume LI, Number 1, 2006

A UNIFORM ANALYSIS OF LISTS BASED ON A GENERAL
NON-RECURSIVE DEFINITION

VIRGINIA NICULESCU

Abstract. The paper presents a general, non-recursive de�nition of lists,
in order to be used as a starting point for a uniform analysis of them. A
general parameterized abstract data type List is de�ned, based on the type
parameter Position, and type parameter TE (the type of elements contained
in the list). By instantiating the parameter Position to the concrete types
Index, SNode and DNode we obtained the abstract data types: IndexedList,
SinglyLinkedList, and DoublyLinkedList. For them di�erent representa-
tions could be considered.

This de�nition that starts from a general parameterized ADT has the
advantage of uniform formal introduction of any type of lists. The presenta-
tion is open to other possible instantiations of Position parameter. In order
to illustrate this, the case of unrolled linked lists is presented.

Also, this approach emphasizes the di�erences between the abstract data
types of linked lists and the linked representation of the structures.

1. Introduction
Lists are very important data structures, which are widely used in computer

science.
A recursive de�nition of an ADT for untyped, and mutable lists, speci�es the

domain as:
List = {l|l is empty ∨ l = (e, l1), where l1 : List ∧ e is an entity}

and the operations:
(1) a constructor for creating an empty list;
(2) an operation for testing whether or not a list is empty;
(3) an operation for prepending an entity to a list (cons in Lisp);
(4) an operation for determining the �rst component (or the �head�) of a list

(car in Lisp);

Received by the editors: March 10, 2006.
2000 Mathematics Subject Classi�cation. 68P05, 68P01.
1998 CR Categories and Descriptors. E.1 [Data]: Data Structures � Lists, stacks, and

queues.

91

92 VIRGINIA NICULESCU

(5) an operation for referring to the list consisting of all the components of
a list except for its �rst (or its �tail�) (cdr in Lisp);

This de�nition is preferred in functional languages, but in imperative program-
ming, in which iteration is preferred to recursion, this de�nition is not so appro-
priate.

Under the imperative paradigm, a list is usually de�ned as an instance of an
abstract data type (ADT) formalizing the concept of an ordered collection of
entities. However, there are a lot of types of list data structures, and also in the
literature could be found di�erent de�nitions for ADT List. Also, the ADTs List
are introduced very often in an informal way. Di�erent implementations of list
data structures are discussed more than a general ATD de�nition for them, and
because of this there is not a uniform approach of the subject in the literature
[2, 4, 5, 6, 7].

In practice, lists are usually implemented using arrays or linked lists of some
sort; due to lists sharing certain properties with arrays and linked lists. Many
times, the term list is used synonymously with linked list. Sequence is another
used name, emphasizing the ordering and suggesting that it may not be a linked
list. However, it is generally assumed that elements can be inserted into a list in
constant time, while access of a random element in a list requires linear time; this
is to be contrasted with an array (or vector), for which the time complexities are
reversed.

Lists have the following properties:

• The contents or data type of lists may or may not vary at runtime.
• Lists may be typed. This implies that the entries in a list must have

types that are compatible to the list base type.
• They may be sorted or unsorted.
• Random access over lists may or may not be possible.
• Equality of lists:

: - In mathematics, sometimes equality of lists is de�ned simply in
terms of object identity: two lists are equal if and only if they are
the same object.

: - In modern programming languages, equality of lists is normally
de�ned in terms of structural equality of the corresponding entries,
except that if the lists are typed, then the list types may also be
relevant.

We propose, in this paper, a formal, general, non-recursive de�nition for a
typed, unsorted ADT List. This could be used, then, as the starting point for a
formal introduction of all the aspects referring to lists.

A UNIFORM ANALYSIS OF LISTS 93

2. ADT List
We consider a list being a collection of elements of the same type (TE), where

each element has a certain position. Each element in a list has a successor element
and a predecessor element in the list, with two exceptions: the �rst element that
has only a successor, and the last element that has only a predecessor.

The constructive approach is used for de�ning abstract data types.
We de�ne a parameterized Abstract Data Type List, with two type parameters:

(i) The type parameter TE, which represents the type of the constitutive
elements, characterized by at least two operations: assign, and equals.

(ii) Position is a type parameter that emphasizes the type of elements' po-
sitions. The instances of the type parameter Position are characterized
by the existence of two operations: next, and prev. The properties of
this type parameter are strictly connected to the type List. Knowing a
position of an element in a list, we have, based on the list de�nition, to
be able to extract the element stored at that position, and to compute
successor and predecessor elements in the list.

Domain
List(Position, TE) = {l|l is a list of elements of type TE,

in which each element has a position of type Position}
Operations:

(1) createEmpty(l)
pre: true
post: l : List and l is empty

(2) length(l)
pre: l : List
post: result = the number of the elements of the list l

(3) getF irstPosition(l)
pre: l : List

post: result =
{ ⊥, l is empty list

p, p : Position is the �rst position in the non-empty list l

(4) getLastPosition(l)
pre: l : List

post: result =
{ ⊥, l is empty list

p, p : Position is the last position in the non-empty list l

(5) valid(l, p)
pre: l : List and p : Position

post: result =
{

true, if p is a valid position in l
false, otherwise

94 VIRGINIA NICULESCU

(6) addFirst(l, e)
pre: l : List and e : TE
post: l

′
= (e, l)

(7) insert(l, p, e)
pre: l : List and p : Position and e : TE and valid(p, l)
post: l

′ is the list l after inserting e on the next position of p

(8) delete(l, p)
pre: l : List and p : Position and valid(p, l)
post: l

′ is the list l after removing the element on the position p

(9) next(l, p)
pre: l : List and p : Position and valid(p, l)

result =
{

the next position of p, if p is not the last position
⊥, if p is the last position

(10) prev(l, p)
pre: l : List and p : Position and valid(p, l)

post: result =
{

the previous position of p, if p is not the �rst position
⊥, if p is the �rst position

(11) getElement(l, p)
pre: l : List and p : Position and valid(p, l)
post: result = the element e at the position p and e : TE

(12) setElement(l, p, e)
pre: l : List and p : Position and valid(p, l) and e : TE
post: the element at the position p is equal to e

(13) iterator(l)
pre: l : List
post: result = iterator of type ListIterator on the list l

We have used the notation ⊥ for the unde�ned position, which is a special value
of Position type. (The unde�ned position is always not valid, but a value which is
not valid for a list does not have to be equal to ⊥.) In the formal speci�cation of an
operation with parameter l, l

′ denotes l after the execution of that operation. We
consider ListIterator, the type of a bidirectional �Read-Write� iterator on lists,
characterized by the following operations (beside the creational operations):

(1) valid(it, l)
pre: l : List and it : ListIterator

post: result =
{

true, if it indicates no element in the list l
false, otherwise

A UNIFORM ANALYSIS OF LISTS 95

(2) next(it, l)
pre: l : List and it : ListIterator and valid(it, l)
post: it

′ indicates the next position of that indicated by it

(3) prev(it, l)
pre: l : List and it : ListIterator and valid(it, l)
post: it

′ indicates the previous position of that indicated by it

(4) element(it, l)
pre: l : List and it : ListIterator and valid(it, l)
post: result = e, where e is the element indicated by it

(5) insert(it, l, e)
pre: l : List and it : ListIterator and e : TE and valid(it, l)
post: l

′ is l after inserting e on the next position of that indicated by it

(6) delete(it, l)
pre: l : List and it : ListIterator and valid(it, l)
post: l

′ is l after removing the element on the position indicated by it

Since insert and delete operations are de�ned for ListIterator, a list could also
be modi�ed using an iterator. More restrictive iterator types could be considered,
too.

The position of one element in the list allows us to obtain the element, and it
may be given either by giving the index of the element in the list, or by given a
reference to the location where that element is stored.
So, possible choices for Position are:

(1) Index = {i|i ∈ N}
The resulted lists are characterized by the
ADT List(Index, TE) = IndexedList(TE).

(2) SNode = {(e, n)|e : TE ∧ n : ref(SNode)}
The resulted lists are characterized by the
ADT List(ref(SNode), TE) = SinglyLinkedList(TE).

(3) DNode = {(p, e, n)|e : TE ∧ n, p : ref(DNode)}
The resulted lists are characterized by the
ADT List(ref(DNode), TE) = DoublyLinkedList(TE).

The notation ref(Type) speci�es a type of references to values of type Type.
The types ref(SNode) and ref(DNode) use the value null (it could be a null
pointer or a null reference to an entry into an array) for specifying ⊥, and the
type Index could use the value 0 for the same purpose.

96 VIRGINIA NICULESCU

By choosing concrete instances of type Position we obtain abstract data types,
which are parameterized only by the elements' type TE. For an ADT like this,
we may choose di�erent representations of the values of the domain List and
corresponding implementations of the operations. So, di�erent list data structures
are obtained.

Other instantiations for Position may be considered. For example, for a un-
rolled linked or chunk list that is a linked list in which each node contains an array
of data values, the Position could be de�ned as a reference to the type

ArrayNode = {(A, next,max, ind)|
A : Array(TE) ∧ next : ref(ArrayNode) ∧max, ind ∈ N∗}

where max represents the number of the elements stored in the node, and ind
represents the current position into the node. The unrolled linked lists increase
the cache performance while decreasing the memory overhead for references.

3. IndexedList

IndexedLists are characterized by the fact that elements are accessed directly
by their indices. The internal representation of the lists is independent of their
interface, so we may considere an array representation, but also a linked represen-
tation for IndexedList.

If we consider that the lists are represented using a dynamic array (its size is
not constant) of elements of type TE, we obtain a list data structure in which
direct access to the elements is possible in an O(1) time, but delete and insert
operations need each O(n) time. Usually, this data structure is called ArrayList
or Sequence.

Another possibility to implement IndexedList is based on a linked representa-
tion. In this case, each element is placed in a node that contains not only the value
of the element, but also a pointer to the node that contains the next element in
the list; in a doubly linked representation, a pointer to the node that contains the
previous element in the list is stored, too. This representation of the IndexedList
does not improve the time complexity of the operations insert and delete, since the
positions are still referred to by indices. The improvement could be obtained if the
insertions and deletions are done using an iterator, and not using the operations
of the interface.

The majority languages de�nes in their collection libraries implementations of
the ADT IndexedList. This is the case of Java [3], where the interface List corre-
sponds to the interface of IndexedList, and the classes ArrayList and LinkedList
are implementations of this. Therefore, the class LinkedList has not the type that
corresponds to a linked list since its interface is an IndexedList interface. Only,
its representation is a linked one. The same situation there is in C++, in STL
library [8].

A UNIFORM ANALYSIS OF LISTS 97

The IndexedList ADT is preferred to be implemented, since its interface does
not contain parameters of type pointer or reference, which may bring some prob-
lems.

4. LinkedList

We will treat together the ADT SinglyLinkedList and ADT DoublyLinkedList
since their problems are similar.

The positions, in this case, are expressed by the addresses where the elements
are stored, and the elements are accessible through them. For representation, we
may consider both static and dynamic linked allocation.

Dynamic linked allocation is based on nodes that contains the element's value
and pointers to the node of the next element (and to the previous element, for the
DoublyLinkedList). A representation for SinglyLinkedLists may use a pointer to
the �rst node, and a representation for DoublyLinkedLists may use two pointers
to the �rst and last nodes.

For DoublyLinkedLists, the insert and delete operations take O(1) time, fact
that corresponds to the general meaning of lists.
Another advantage of DoublyLinkedLists is that an easy reverse traversal is pos-
sible.

In the SinglyLinkedList case, insert operation also takes O(1) time. But
delete operation takes O(n) time, because it has to compute the previous position
of the element to be deleted, and the prev operation takes O(n) time, in this case.

Static linked storage means that not dynamically allocation is used, but an
associative array. For SinglyLinkedLists each entry of the associative array con-
tains a value of type TE and a link to the sucessor element. Inside an array the
reference(address) of an element is given by its index, so in this case a link is
expressed as an index. The free space is also managed as a linked list. In the
DoublyLinkedList case, an entry of the associative array also contains a link to
the predecessor element.

5. Lists with Cursor
For each ADT List, a representation with a cursor could be chosen. In this case,

a current position is stored (in the cursor) for any list, so the Position parameter
p of the operations: insert, delete, next, prev, getElement, and valid, is included
in the List parameter.

This representation is not common for indexed lists, but it brings some advan-
tages for linked lists. The complexity of the operations is not in�uenced by the
storing of this current position, but the advantage is given by the fact that the
user has not direct access to the addresses where the elements are stored, and so
the information is better protected. For linked lists, this cursor acts as an iterator
on that list.

98 VIRGINIA NICULESCU

6. Conclusions
There are a lot of de�nitions of lists in literature, and they are very often

informally de�ned. We have presented in this paper a formal de�nition for a general
ADT List, from which specialized ADTs List are obtained by instantiation of the
type parameter used for specifying positions in lists. The discussed ADTs, which
are obtained after Position instantiation are IndexedList, SinglyLinkedList, and
DoublyLinkedList. This analysis that starts from a general parameterized ADT
has the advantage of a uniform formal introduction of any type of lists. The
presentation is open to other possible instantiations of Position parameter.

This formal and general de�nition of lists emphasizes very clearly the di�er-
ences between an indexed list (in which elements are referred to by using their
number into the list) implemented in a linked way (as LinkedList in Java), and an
implementation of ADT LinkedList.

Acknowledgment: This general and formal de�nition of lists was developed
after long and interesting discussions that I had with Gabriela Serban referring to
Data Structures Course. I am grateful for her suggestions and observations.

References
[1] Aho, A. V., Data Structures and Algorithms. Addison-Wesley, 1983.
[2] Amsbury,W., Data Structures - From Arrays to Priority Queues. 1985.
[3] Arnold, K., Holmes, D., Gosling, J., The Java Programming Language. Addison-Wesley,

2000.
[4] Horowitz, E, Sartaj Sahni, Fundamentals of Data Structures in C++. Computer Science

Press, New York, 1995.
[5] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., Introduction to algorithms, sec.

ed. MIT Press 2001.
[6] Mount, D. M., Data Structures, University of Maryland, 1993.
[7] Standish, T.A.,Data Structures, Algorithms and Software Principles. Addison-Wesley, 1994.
[8] Musser, D.R., Scine A., STL Tutorial and Reference Guide: C++ Programming with Stan-

dard Template Library, Addison-Wesley, 1995.

Department of Computer Science, Babe³-Bolyai University, Cluj-Napoca
E-mail address: vniculescu@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 1, 2006

A FRAMEWORK PROPOSAL FOR FINE GRAINED ACCESS
CONTROL

COSTA CIPRIAN

Abstract. One of the main concerns in database security is confining a user

to a specific set of the existing data. Current common DBMS implementa-

tions usually rely on specifying the columns a user might or might not see.

The more intricate problem of restricting the user to several specified parti-

tions of the data is usually left to the programmers and implemented through

views (either simple or parameterized). This has long been acknowledged by

the research community and the concept of query rewriting and ”authoriza-

tion transparent” queries has been introduced and discussed in great detail

[1, 2, 4]. The scope of this paper is to introduce a framework for expressing

the rules used in access control. The novelties introduced by this framework

are: ability to choose between the type of access control (rewriting, check-

ing), ability to use the structure of the query as input for the access control

routines, ability to specify access control routines as a set of rules connect-

ing specific users with specific constraints. The framework is part of the

larger effort of defining AQL - a query language based on a code generation

framework [5].

1. Introduction

The problem addressed by this paper is how we restrict the users of a database
to specific sets of data. We have several answers to this problem and we will
present some of them along with their advantages and disadvantages.

One of the solutions would be to create views that the users will use instead of
the relations in the database. That means that there should be a view (simple or
parameterized) for each user or group of users and that the client must be aware
of which view to use for which user. Aside from that, the big draw-back here

Received by the editors: May 22, 2006.

1998 CR Categories and Descriptors. H.2.7 [Information Systems]: Database Man-

agement – Database Administration - Security, integrity, and protection; H.3.3 [Information

Systems]: Information Storage and Retrieval – Information Search and Retrieval - Information

filtering .

99

100 COSTA CIPRIAN

is maintainability: both changes of the underlying schema (database evolution)
and changes in the security strategies (requirements evolution) result in all views
needing to be rewritten.

A big advantage of using views is that they can introduce computed data as
part of the schema. For example, a security restriction might be that the grade of
a student should only be available as a logical typed column stating whether the
student has passed or not.

A disadvantage of using views is that, in some cases, more relations need to
be joined in order to compute the set of data the user is allowed to see. When a
query uses several of these views, some of the tables might be joined several times
needlessly, those consuming execution and optimizer time. The problem here
is that when you define the view, you don’t have information about the overall
structure of the query - a problem that is addressed by our solution.

There are, of course, query rewriting algorithms that can do the job of replacing
the relations with the corresponding views transparently for the user. This allows
for the query writing and rights management issues to be orthogonal, and also
might address some of the performance issues (since one of the primary usages
of query rewriting is optimization). The disadvantages are that the views still
have to be maintained and, more importantly, these features are not supported by
commercial RDBMS’s.

Another approach (that also takes the query rewriting path) is the Virtual
Private Database feature of Oracle’s 9iR2 RDBMS [2]. This feature allows for
predicates to be added to the where clause of the query in which a relation appears.
Although it allows for fine grained transparent access control and usage of data
that is not in the original result set, it is still quite limited in terms of taking
advantage of the query structure.

The approach introduced in [1] advocates that access control should not inter-
fere with the expected behavior of a query since it is likely that it will produce
unexpected results. The approach uses the notions of non-Truman models, autho-
rization views and conditional validity in order to apply the declared restrictions.
Although the inference rules proposed are capable of taking the query structure
into consideration (to some extent), it still requires the creation and management
of views and is not supported by commercial RDBMS’s. Another difference of
this approach is that it allows for transparent validation of queries but the query
writing and access control are still tightly coupled and not at all orthogonal since
no query rewriting takes place.

A FRAMEWORK PROPOSAL FOR FINE GRAINED ACCESS CONTROL 101

Our approach is based on representing the query as an XML document with
a specified schema (defined in the AQL system). Although the system was first
designed so that the user writes XML documents instead of queries, the XML
document could just as well be generated by a translator based on the considered
language’s grammar.

Since our approach relies on modifying any aspect of the query, we are actually
talking about a code generation framework, so we can also use here all the research
on the topic of code generation as well [5, 6, 7].

2. AQL

For the purpose of self containment we will introduce here some issues regarding
AQL, a declarative language that we developed for the broader topic of database
evolution.

AQL is an instance of the code generation framework that we created and which
is based on XML documents and transformations applied on those documents
(either XSLT scripts or plug-ins written in any programming language).

From an architectural point of view AQL uses the compiler approach of multiple
serial transformations. Each XML document contains tags that instruct the com-
piler which code generation strategy it should use. Once a strategy is identified,
the steps from within that strategy are applied on the XML document and the
result of the final step is the query statement.

This approach is similar to the one adopted in [3] and the main advantages over
other generation techniques (string based approaches, translators) are the ease of
evolution and separation of concerns.

We will continue with a simple example (a select statement). Keep in mind that
even if the XML document we start with does not appear to be user friendly, it
is created by either a graphical user interface or by an SQL parser. Let’s consider
the select statement which returns all the quantities that have been shipped from
an OrderDetails relation. The starting document would then be:

1 <StrategyParam Name="SimpleSelect">

2 <Extraction>

3 <HeaderColumns>

4 <ColumnRef Name="Quantity"></ColumnRef>

5 </HeaderColumns>

6 <Source SourceID="0">

7 <Columns>

8 <Column Name="Quantity" Type="num"/>

102 COSTA CIPRIAN

9 <Column Name="IsShipped" Type="logical"/>

10 </Columns>

11 <Table>OrderDetails</Table>

12 </Source>

13 <Filters>

14 <CreationFilter>

15 <Expression>

16 <ColumnRef Name="IsShipped"></ColumnRef>

17 </Expression>

18 </CreationFilter>

19 </Filters>

20 </Extraction>

21 </StrategyParam>

Through a series of transformations that will transform the filters, collapse header
columns, check for computed fields, etc., the final result will be:

select Quantity from OrderDetails where IsShipped = 1

The transformation that makes it possible to use in a filter a single column of
type bit (which is not possible in TransactSQL - the targeted SQL dialect) has the
following elements:

(1) An XPath expression identifying all the nodes that require the transfor-
mation - in our case all the ColumnRef tags that are not children of an
operator

(2) An XSLT transformation that creates the expression Column = 1
(3) A hint on what to do with the result of the previous statement - in our

case the action would be to replace the input tag

This is just one of the simplest applications of AQL. For a more in-depth analysis
of AQL and it’s features please refer to [5].

3. Fine Grained Access Control Framework

The access control framework that we propose is based on AQL code generation
framework. As depicted in the above example, each step of an AQL code genera-
tion strategy has access to entire query and to any level of detail, so it is possible
to take the best decision regarding how the query should be rewritten.

3.1. Access control scenarios. In order to understand the complexity of the
access control problem we will consider some of the scenarios that could become
a reality in a large application.

A FRAMEWORK PROPOSAL FOR FINE GRAINED ACCESS CONTROL 103

The simplest and most common access control scenario is to restrict a user to
only see some of the columns in a relation (this is the scenario that is taken into
account by most of the commercial RDBMS’s today). In our framework this is
possible by removing all the top-level references to columns that are not visible to
the user.

A derived scenario is when the user is not allowed to see the actual values in
the columns but is allowed to use them for other operations (such as joins for
example). If we want to implement this in a RDBMS we will need to create views
or stored procedures that encapsulate the joins and then expose the result to the
user. The big problem here is that the user will be confined to the set of joins
that we create and this could be a serious drawback in open database schemas.
In our framework this can be implemented by restricting the space in which the
ColumnRef tags are searched to the Header and filter sections.

Another common access rule that involves columns is the restriction that certain
columns cannot be used unless they are aggregated. For example a user might not
be allowed to see the actual grade of a student, but might be allowed to see the
average grade for the entire year.

The more complex access rules are the ones referring to the rows that a user
is allowed to see. In most cases this translates in appending a predicate to the
where clause and maybe join some other relations in order to get the required
data. However, there are some hidden complexities for this scenario. For example,
a user might want to find the difference between his grade and the average grade.
The SQL statement from which they would start in AQL (this is not a correct
SQL statement in most of the RDMS we are aware of) is:

select grade - avg(grade) from Grades

This sentence would be translated by AQL as

select grade - AVG_GRADE

from Grades, (select avg(Grade) as AVG_GRADE from Grades)

If the user is not allowed to see the grades of all the students (but, for example
only for the student with the StudentID of 1), we must not apply this filter when
computing the average, because, in that case, the difference would always be 0.
So, the correct translation is:

select grade - AVG_GRADE

from Grades, (select avg(Grade) as AVG_GRADE from Grades)

where Grades.StudentID = 1

104 COSTA CIPRIAN

As you can see, it is not always enough to just add a predicate to the where
statement. The rule in this case is: ”if the query uses the Grades relation and
uses a column outside of an aggregate function then append the StudentID = 1
predicate to the where statement”.

3.2. Framework description. Recent work on rights management has identified
the problem of access control checks as being a typical application of crosscutting
concerns and there are many examples of how to use Aspect Oriented Programming
to solve this. Although AQL is not a typical object oriented language, we still can
apply some of the AOP techniques (at least the ones using the compile-time code
generation approach).

In figure 1 we showed the intended usage of the framework within a complex
deployment. Besides enabling access control, we also get rid of problems like
sending SQL code from the client (which, even if not recommended, is very often
used in middle sized applications).

Figure 1. Access Control Framework

One of the big advantages of using an XML based document to represent source
code is the ability to execute complex queries on that source code. Many techniques
used in refactoring are based on an intermediary, xml-based representation of the
source code ([8]). The consequence in our case is that we can easily express
elements of aspects by using an XML query language (in our case XPath).

A FRAMEWORK PROPOSAL FOR FINE GRAINED ACCESS CONTROL 105

An AQL Aspect is defined as AQLAspect = (Cond, JoinPoint, AspectCode)
where:

• Cond is an XPath expression that evaluates to one or more XML nodes
if the aspect is relevant for the AQL query. For example an horizontal
expression on table A would have the condition ”.//Table[@Name=’A’]”
(which evaluates to one or more nodes if the table A is used in the query

• A join point is used to identify a set of points where the aspect code
should be weaved. A JoinPoint is defined as JoinPoint = (BaseSelector,
ExtensionSelector), where:

– BaseSelector is an XPath expression that identifies the node which
will be used to further identify the actual join point. In our previous
example, the base selector should identify the select statement using
table A: ”.//Table[@Name=’A’]/parent::*”

– ExtensionSelector is also an XPath expression that identifies the
actual join point (relative to the node or nodes identified by the
base selector). In our example the extension selector should identify
the filters section of the select statement: ”./Filters”

• AspectCode is an XML node that should be inserted at the join points
previously identified. I our example it should specify a filter: ”¡Fil-
ter¿Column = Value¡/Filter¿”

3.3. Examples. In order to better understand the usage scenarios of the frame-
work and the extent of its capabilities, we created the following examples:

(1) Restrict access to the students of group 931. This could be done by
adding a simple filter whenever the Students table is accessed.

A1 = (

".//Table[@Name=’Students’]",

(".//Table[@Name=’Students’]/parent::*", "./Filters"),

"<Filter> group=’931’ </Filter>")

(2) Restrict a teacher to the groups he has classes with. We will assume that
the relation between Teacher and Groups is kept in a separate relation
TeacherGroups. In order to do that we will need to join the students
table to the TeacherGroups and Teachers table and then add a filter on
the UserID column of the Teachers table.

A1 = (

".//Table[@Name=’Students’]",

(".//Table[@Name=’Students’]/parent::*", "."),

106 COSTA CIPRIAN

"<Join>

<Table Name=" TeacherGroups"/>

<Condition Value="Students.Group = TeacherGroups.Group"/>

<Join>")

A2 = (

".//Table[@Name=’Students’]",

(".//Table[@Name=’Students’]/parent::*", "."),

"<Join>

<Table Name="Teachers"/>

<Condition Value="Teacher.TeacherID = TeacherGroups.TeacherID"/>

<Join>")

A3 = (

".//Table[@Name=’Students’]",

(".//Table[@Name=’Students’]/parent::*", "./Filters"),

"<Filter> UserID = @UserID </Filter>")

In the second example we used the following aspects:

• A1 in order to insert a join to the TeacherGroups table
• A2 in order to insert a join to the Teachers table
• A3 in order to restrict the selection to the groups assigned to the current

user

3.4. Advantages and disadvantages. The most obvious disadvantages to this
approach are the fact that the user must use AQL and that performance might be
negatively affected if each query is serialized in an XML document, transformations
are applied and, at the end, the actual query is obtained.

The usage of AQL might not be a disadvantage since we are creating a com-
plete solution that addresses ease of querying, schema and requirement evolution,
access control, etc. However, if the system is already implemented and has to be
translated to AQL just for the sake of access control, this is probably not the best
solution.

As far as the algorithms are not implemented within the native query com-
piler and the targeted level of generality is high, there will always be a certain
amount of performance penalties. In order to mitigate this, smart caches could
be implemented, but only if the queries that are sent to the database are not very
diverse.

A FRAMEWORK PROPOSAL FOR FINE GRAINED ACCESS CONTROL 107

There are also several advantages, some given by the fact that we are using
AQL (we mentioned them earlier). However, as far as access control is concerned
the biggest advantages are the fact that the entire query can be analyzed in order
to decide how to restrict access and the fact that there is no limit on the type of
transformations that are applied to the query.

Another issue that is broadly discussed by the research community is the fact
that query rewriting will change the expected behavior of queries and might intro-
duce very subtle problems in complex scenarios. This is true, but we consider that
in the case of AQL there is such a big amount of query rewriting that the user
must acknowledge and understand the inner workings of the rewriting algorithm,
and, as such, is less likely to overlook important details.

4. Conclusions and further work

The framework that we present here has a very specific set of characteristics
that set it apart from other frameworks that are available ([2], [3]). Because of
this, the framework is going to address a particular type of applications, in which
the access control patterns are very diverse and there are many clients writing
queries and we want to implement security transparently, without affecting the
number and complexity of the relations in the database. Because of this, we can
identify two main directions in which research should continue:

(1) Defining complete, reusable design patterns for access control and im-
plementing them in AQL. For this purpose we must consider a broad
range of commercial applications and identify requirements, define best
practices and implement them in a reusable and extensible fashion

(2) Continuing the development of AQL and especially improving its per-
formance and range of available mechanisms. This is a very important
task if this language is to be adopted in real-life scenarios and used in
large applications.

References

[1] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, Prasan Roy, Shariq Rizvi: Extending Query

Rewriting Techniques for Fine Grained Access Control, SIGMOD 2004 June 13-18, 2004,

Paris, France.

[2] The Virtual Private Database in Oracle9ir2: An Oracle Technical White Paper

http://otn.oracle.com/deploy/security/oracle9ir2/pdf/vpd9ir2twp.pdf.

[3] Galen S. Swint, Calton Pu, Gueyoung Jung, Wenchang Yan, Younggyun Koh, Qinyi Wu,

Charles Consel, Akhil Sahai: Clearwater: Extensible, Flexible, Modular Code Generation,

ASE’05, November 7-11, 2005, Long Beach, California, USA.

108 COSTA CIPRIAN

[4] A. Halevy. Answering queries using views: A survey. The VLDB Journal, 10(4):270-294, 2001.

[5] C. Costa: An XML evolution based approach to code generation, about to be published

[6] Alfred V. Aho, Mahadevan Ganapathi, Steven W. K. Tjiang: Code Generation Using Tree

Matching and Dynamic Programming, ACM Transactions on Programming Languages and

Systems, Vol. 11, No. 4, October 1989, Pages 491-516.

[7] Mahadevan Ganapathi, Charles N. Fischer: Affix Grammar Driven Code Generation, ACM

Transactions on Programming Languages and Systems, Vol. 7, No. 4, October 1985. Pages

560-599.

Babes-Bolyai University, Faculty of Mathematics and Computer Science, Depart-

ment of Computer Science, Cluj-Napoca, Romania

E-mail address: costa@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LI, Number 1, 2006

CSÖRNYEI ZOLTÁN, FORDÍTÓPROGRAMOK

(COMPILERS – IN HUNGARIAN),
TYPOTEX BUDAPEST, 2006, PP 326, ISBN 963-9548-83-9

KÁSA ZOLTÁN

The contents of this book are based on the lectures held by the author for
students at the Faculty of Informatics, Loránd Eötvös University in Budapest. The
eleven chapters are: Introduction, Structure of a compiler, Parsers, Syntactical
analyzers, Top-down analyzers, Bottom-up analyzers, Symbol table, Semantical
analyzers, Error handling, Code generation, Code optimization.

The aim of the book is to present how a compiler works, how it detects the
source errors, and how it prepares from the source code the excutable target code.
A programmer who know the inside of a compiler and gets acquainted with trans-
lation algorithms will be able to write better and more efficient programs.

The book deals with the translation algorithms regarding the imperative lan-
guages. Theoretical backgrounds and efficient and practical methods used in com-
piler design and construction are in detail presented. Because the author focuses
his interest on practical aspects, principles and translation methods, the proof of
theorems are left to the reader’s interest and can be found in referred papers. The
book contains a lot of examples written in a easy readable pseudocode.

The book is good written, carefully printed, with 37 references and an exhaus-
tive index table. You are invited to find more information about this and other in-
teresting books on the web site of the publishing company, http://www.typotex.hu.

Department of Computer Science, Faculty of Mathematics and Computer Science,
Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: kasa@cs.ubbcluj.ro

Received by the editors: April 19, 2006.

109

	00_contents_1_2006
	01-StoeanDumitrescu
	02-FaneaMotogna
	03-SerbanCzibula
	04-CampanSerban
	05-StercaBoian
	06-AntalToderean
	07-Tarkalanov
	08-SerbanMoldovan
	09-BruelOber
	10-Niculescu
	11-Costa
	12R-Kasa

