
Anul L 2005

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

2

Redacţia: 3400 Cluj-Napoca, str. M. Kogălniceanu nr. 1 Telefon 405300

SUMAR – CONTENTS – SOMMAIRE

A. L. Guido, R. Paiano, A. Pandurino, An ontological approach to Web application
design using W2000 methodology .. 3

D. Avram Lupşa, Unsupervised single-link hierarchical clustering 11

A. Fanea, L. Dioşan, Components execution order using genetic algorithms 23

G. Şerban, A. Câmpan, Adaptive clustering using a core-based approach 33

V. Niculescu, G. S. Moldovan, Integrating conversions into a computational
algebraic system .. 41

M. Lupea, Computing default extensions. A heuristic approach 49

D. Avram Lupşa, D. Tătar, Some remarks about feature selection in word sense
discrimination for Romanian language... 59

D. Avram Lupşa, R Lupşa, The law of word length in a vocabulary 69

P. A. Blaga, On tubular surfaces in Computer Graphics .. 81

A. S. Dărăbant, A new approach in fragmentation of distributed object
oriented databases using clustering techniques ... 91

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 2, 2005

AN ONTOLOGICAL APPROACH TO WEB APPLICATION
DESIGN USING W2000 METHODOLOGY

ANNA LISA GUIDO, ROBERTO PAIANO, AND ANDREA PANDURINO

Abstract. Applications users claim ever more quality in the software prod-
uct; that does not mean only an improved performance but also a better
usability or a more efficient interaction paradigm; in other words, a better
”user experience”. The designer focus is not on the system but on the user
and his applications. This point of view creates new requirements that force
the designer to use structured approaches for improving the quality of the
design and of the final web application as well. If we consider the web and
the applications on this channel (where the ”user experience” aspects have
an important role), it’s possible to evaluate the weight of the new features in
the software engineering process.
The new application features don’t exactly match design methodologies, which
must evolve in order to follow the new requirements. Many methodologies
are introducing new primitives and structures that did not exist before. The
well-known UML describing language (and its MOF metamodel) is evolving;
the Jim Connallen’s Web Application Extensions for UML are an example of
the need to update the language to these application trends. Supporting the
UML goodness, in this paper we describe our experiences in the use of Web
Application (WA) design methodology called W2000 (which uses UML) and
in the use of ontology language to represent the same methodology.

1. Introduction & Background

During the standard application development, the designer can use well-known
traditional software engineering techniques that focus on the system aspects, such
as data and transactions; on the contrary, the new user requests put the stress on
the hypermedia aspects, such as information, navigation and presentation aspects;
the combination of these factors improves the user experience and produces a bet-
ter quality product. However linear the modeling technique and however legible
the language used may be, the need to describe in sufficient details the multi-
ple static and dynamic aspects of the application is a highly complex task. The

Received by the editors: September 19, 2005.
1991 Mathematics Subject Classification. [Information Systems: hypertext navigation,

interfaces, decision support etc.](68U, 35).
1998 CR Categories and Descriptors. D.2.0 [Software]: Subtopic – Software Engineering-

General .

3

4 ANNA LISA GUIDO, ROBERTO PAIANO, AND ANDREA PANDURINO

designer has to manage the individual aspects and predict the inevitable interac-
tions among them; in many cases, a navigation choice that is valid for one device
or context turns out to be completely wrong or unworkable in another; thus, the
complexity increases and the methodological instruments to manage it seem to be
insufficient.
The complexity to design a modern application is very high; in particular, we
need to combine the multi-user and multi-device features with the typical trans-
actional aspects. To obtain high quality applications, a structured methodological
approach to model all the user experience aspects is needed.
The design methodologies used to model traditional application are not sufficient
to meet the new application requirements and to improve the quality of the final
product; therefore, new design methodologies, in particular in the web application
domain, are born such as OOHDM [1] ,WSDM [9] , WebML [13] , HDM [3] . The
traditional design tool is also updated to include new primitives and construct.
UML (de facto standard in model representations and independent of methodol-
ogy) must evolve to include the new features: UML [12] defines a formal mech-
anism to extend its semantics. The ”Extension Mechanism” allows to customize
and extend UML with the use of stereotypes, constraints, tag definition and tagged
values. (The same mechanism, defined in UML 1.x, is also valid in UML 2.0 [11]).
In this paper, we describe our experience in the use of web application design
methodology (called W2000 [6] [5]) with UML and highlight the benefits and the
problems connected with the large use of stereotypes. Considering that stereotype
is the only possible choice to describe the primitives not directly implemented into
the UML paradigm, our studies could be applied to all the methodologies that
make a large use of stereotypes.
Many problems arise from MOF (core of UML approach). In this paper, we high-
light these problems and try to use the ontological language as an alternative.

2. Our experience with MOF approach: W2000 methodology

W2000 methodology uses UML and, thus, has a MOF representation (proposed
by OMG [16]) made up of three packages: Information, Navigation and Publishing
Model. Each package has sub-packages where a class diagram represents W2000
methodology primitives and relationships among them. Packages, sub-packages
and OCL constraints [10] (OCL is an external language used to express all the
methodology constraints not directly supported by UML) represent, in MOF ter-
minology, the design methodology metamodel, that is a collection of concepts and
their relationships; in our case it is a collection of W2000 methodology primi-
tives. The specific WA model is produced according to this metamodel. Although
MOF W2000 methodology approach [7] is formally correct, there are some prac-
tical problems (related to UML1.x version and also present in UML2.0), due to
dependence of UML on MOF.
The main problems that we highlight are:

ONTOLOGICAL APPROACH TO WEB APPLICATION DESIGN 5

Metamodel and semantics: In MOF approach there are a lot of primitives not
directly supported by UML and thus all primitives are represented by stereotypes
so metamodel semantic coincides with stereotypes semantic. Furthermore, the
lack of semantics creates confusion to the unskilled designer during the practical
applications of modeling concepts. The explicit presence of semantics helps the
designer to understand how the modeling concepts should be used.
Another problem strictly connected to semantics concerns semantic relationships
among classes: we can observe that MOF allows to use only two relationships
aggregation and association while in W2000 metamodel it is necessary to define
specific methodology relationships with its relative semantics.
Relationships among classes: another problem is that relationships among classes
are lost in the transition from metamodel to model. Supposing that in the meta-
model we have a relationship among classes: when we define the model, rela-
tionships must be redefined because they are not inherited by the model. This
problem could be solved creating intermediate classes to represent the relation-
ships; the disadvantage of this solution is that it will make the model unreadable
for the large number of intermediate classes.
Finally, in MOF approach, if an attribute is the same for two different concepts it
is defined once for each class (each attribute is strictly connected to each class).
This MOF limit creates confusion letting designers think that each attribute has
its semantic but it is not true.
Model Flexibility : another problem is the flexibility, that is the possibility to en-
rich the model with new primitives or to add new characteristics to the primitives
already defined. The solution proposed by UML (both 1.x and 2.0) is to enrich the
UML metamodel with Extension Mechanism but this mechanism require a good
knowledge of UML and then may require a lot of time compromising the evolution
of the WA design methodologies. Another problem related to the language evolu-
tion concerns the unique name assumption principle: in UML approach different
words must refer to different objects. In order to meet WA evolution, it is often
necessary to define new version of concepts (defined before) and to use the same
name. The unique name assumption makes it impossible. The UML and MOF
do not support the dynamic classification of classes. It is possible that, when
metamodel is extended to include the methodology evolution, two classes must be
replaced by their intersection: the instance of the new class contains both previous
classes. This is not possible in UML, since every instance can be only the instance
of a class and not the instance of two classes at the same time.
Standard description of the model : it is important to have a machine readable
description of the model. In MOF approach we use XMI (OMG standard) as
a model representation language (but we are free to use any XML description).
There are different formats according to the graphic editors that produce XMI
but a model description must be understandable in an easy and univocal way by
software agent and preferably should be a W3C standard.

6 ANNA LISA GUIDO, ROBERTO PAIANO, AND ANDREA PANDURINO

An external language to represent constraints: in MOF approach there is an ex-
ternal language, OCL, to describe the methodology constraints. OCL is hard to
understand by designer who are unskilled both in W2000 methodology and in the
OCL language. If the designer is also an OCL language expert, the model obtained
will be formally correct but difficult to understand by developers.

3. Ontological approach to web application design methodology
representation

The main problem related to MOF approach is the lack of semantics that brings
to represent all the W2000 primitives through the same UML primitives: stereo-
types.
Another problem is that WA methodologies must follow the evolution of WA re-
quirements and the methodology representation language must meet this evolution
too: in MOF approach it is often hard to represent the new WA requirements and
the solution is to add new stereotypes that will be increasing the semantic prob-
lem. Finally, the language used to represent the methodology must be easy to
learn and read for designers and guidelines must be provided during the whole
design process; instead, the necessity to learn an external language such as OCL
may be a problem.
Considering these comments, the use of UML as a representation language, in our
experience, forces methodology to adapt itself to the paradigm imposed by UML,
and thus semantics turns flat and it is hard to read and understand the model.
We need to adapt the representation language to methodology and not methodology
to representation language as in UML approach. To solve this problem, we need
a new language easy to use, more flexible and expressive than UML, allowing to
represent directly methodology primitives and helping the designer in his/her task
through a better semantics. We explored several alternatives but the use of se-
mantic language able to describe, in general, a domain of knowledge seems more
flexible and compliant with our goal which consists in representing WA method-
ology in a more meaningful way. The language used is OWL [14], the ontological
language: a text language without graphical notation. Our use of ontology is
quite different from the semantic web which is the traditional one. We use OWL
to represent both WA design methodology and the WA model obtained through
this methodology. We choose to use ontology as a language to represent a method-
ology starting from its definition: ”ontology is a formal, explicit specification of
a shared conceptualization” (Gruber in 1993 [2]), that is ontology is an abstrac-
tion of some concepts made through the definition of its peculiar characteristics.
Defining a metamodel as a set of concepts and rules necessary to specify a model
in the domain of interest, we can state that: ”A valid metamodel is an ontology
but not all the ontologies are expressly modeled as metamodel” [15]. From these
considerations we state that it would be possible to use the ontological languages
to express a metamodel and to obtain from it a model.

ONTOLOGICAL APPROACH TO WEB APPLICATION DESIGN 7

3.1. OWL language in a nutshell. Before explaining the use of OWL in our
approach, it’s necessary to understand its main concepts. OWL primitives are:

• Classes: allow the abstraction of some concepts. Each class has a set of
properties (each one for specific concept characteristics). A class would
be composed by subclasses.

• Properties: There are two types of properties: DataType specific to each
class and ObjectProperty used to create a link between classes. Object-
Property has both domains: class (to which the property is connected)
and range (the possible values of the property). In each class we can
indicate ”restrictions” that define constraints.

• Individuals are objects that have the characteristics defined by classes
and properties. Both classes and properties may have individuals.

3.2. The architecture of our approach. MOF approach, proposed by OMG is
based on a 4-level architecture. It allows to define a language for the methodology
representation and to use this language for model definition. The use of a 4-level
architecture is a good choice because it allows to separate different levels of ab-
straction so we use it but with few changes. Fig. 1 shows the 4-level architecture
compared with our ontological approach.
In MOF approach, M3 level is the level where the MOF language, that is the

Figure 1. MOF and Ontological approaches compared

abstract language used to describe MOF metamodel, is defined. MOF is Object
Oriented and strictly connected to UML: UML notation is used to express MOF
metamodel. In the ontological approach we use in M3 level OWL language instead
of MOF language.

8 ANNA LISA GUIDO, ROBERTO PAIANO, AND ANDREA PANDURINO

In the M2 level we define, both in MOF and ontological approaches, a meta-
model, that is the abstract language that allows the definition of the model in
the M1 level. In MOF approach the metamodel definition is made up of classes,
association, packages and OCL constraints aimed to representing the particular
methodology. In the ontological approach we define the metamodel through on-
tological classes, that allow to define the methodology primitives, and ontological
properties (DataType and Object Property) that allow to give other details about
each methodology primitive. Object Property, using domain and range definition,
represents the semantic network of the methodology. Restriction on properties
allows to define methodology rules without using any external language.
M1 level is the level where the designer, using metamodel (guidelines for methodol-
ogy), designs the specific application. Finally M0 level represents data of a specific
model.
From a technological point of view, in our ontological approach, we use both in the
M2 and M1 level, Protégé[4], an open source ontology editor developed by Stanford
University. Protégé manages separately the metamodel (classes and properties)
and the model (the instances); thus, it’s possible to define the metamodel (M2
level) and model (M1 level) layer. To create the ontological metamodel we fol-
lowed the guidelines defined by the Stanford University researchers [8].

4. Our experience with ontological approach: W2000 methodology

To understand the benefits of our ontological approach we have to explain our
experience with WA design methodology W2000: we explain how problems pre-
sented in section 3 can be solved.
First of all, it’s possible to give a semantic meaning to each W2000 primitive
directly through OWL without the UML stereotypes in order to improve the de-
signer comprehension of the model. In figure 2 there is the OWL code of the
relationship between Entity and Component(Entity and Component are W2000
methodology primitives): the ObjectProperty ”madeOfComponent”. It has a re-
striction that forces each entity to have at least one component. There is also
the relationship between ”Component” and ”Entity”(”belongsToEntity”) defined
as inverse of ”madeOfComponent”: this allows to read in a bi-directional way the
concepts linked to the Object Property.

Figure 2. OWL code: ”inverse of”

The ontological approach allows to define an attribute once and to use it in
different primitives: the domain of this attribute will be the union of all classes

ONTOLOGICAL APPROACH TO WEB APPLICATION DESIGN 9

that represent the primitives in which the attribute will be used.
Concerning the model flexibility, the architecture proposed allows to add new prim-
itives to metamodel inserting new classes and its properties into the metamodel or
new properties to classes. The changes to metamodel are very fast and do not re-
quire technical competences about any language: it will be available immediately
in the model and also the existing model will be updated automatically with new
elements. The OWL language allows to define intersection or union between two
classes (dynamic classification of classes) and the equivalence between classes (the
unique name assumption is not valid in OWL).
The relationships among classes in the transition from the metamodel to the model
is naturally taken. The OWL metamodel is immediately ready to create a WA
model in the OWL language: to create a model starting from metamodel is suffi-
cient to add instances of classes and properties defined in the metamodel. In our
approach the property instances allow to tie together classes without adding, as
in MOF approach, classes that represent the relationship between classes defined
in the metamodel.
The problem of standard description of the model is solved with the OWL use
(recommended by W3C); also with the same language it’s possible to represent
both the metamodel and the model.
The ontological approach avoids the use of external language to represent con-
straints that are described directly in the OWL language using its restriction.
For example, to express that an Entity is made up of at least one Component, a
restriction on the property ”madeOfComponent” is defined (Fig. 3).

Figure 3. OWL code Property restriction

This approach helps the designer to understand the methodology and then to
make a design following all the rules presented in the methodology without learning
an external language. The model obtained is also understandable by developers
who do not have knowledge of the OCL language.

5. Conclusion and future work

Considering that WA design methodologies have peculiar characteristics, dif-
ferent from standard applications, and that the traditional design approaches are
not sufficient to take into account all these new features, we highlight the limits of
MOF. Then we introduce a new ontology approach that uses the OWL language.

10 ANNA LISA GUIDO, ROBERTO PAIANO, AND ANDREA PANDURINO

Our approach applied to W2000 methodology is more flexible and allows method-
ology to adapt itself to WA evolution. The model obtained from the metamodel
is more clear, effective and complete than the one obtained with MOF approach
and makes the designer work easier. In fact, a better semantics provides clear
guidelines for the designer.
At present our work is focused on the development of an editor able to design WA
through W2000 methodology and to obtain an OWL description of the model.
We are also planning to extend metamodel to include a good description of the
operation in an ontological way.

References

[1] D. Schwabe, G. Rossi, S. D. J. Barbosa: Systematic Hypermedia Application Design with
OOHDM Proc. ACM Conf. Hypertext ’96 - Mar 1996 - ACM Press.

[2] Dieter Fensel Ontologies: A silver Bullet for Knowledge Management and Electronic Com-
merce Second Edition, Revised and Extended. Foreword by Michael L.Brodie. Springer-
Verlag Berlin Heidelberg 2004 ISBN 3-540-00302-9.

[3] F. Garzotto, P. Paolini, D. Schwabe: HDM - A Model for the Design of Hypertext Ap-
plications, in Proceedings ACM Hypertext ’91, S. Antonio (TX, USA), ACM Press, Dec.
1991.

[4] http://protege.stanford.edu/.
[5] L. Baresi, F. Garzotto, and P. Paolini, Extending UML for Modeling Web Applications,

Proceedings of 34th Annual Hawaii International Conference on System Sciences (HICSS-
34). IEEE Computer Society, 2001.

[6] L. Baresi, F. Garzotto, Paolo Paolini, From Web Sites to Web Applications: New Issues
for Conceptual Modeling, Proceedings WWW Conceptual Modeling Conference, Salt Lake
City, October, 2000.

[7] L.Baresi, F. Garzotto, M.Maritati: W2000 as a MOF Metamodel In Proceedings of The
6th World Multiconference on Systemics, Cybernetics and Informatics - Web Engineering
track. Orlando (USA), July 2002.

[8] Natalya F. Noy and Deborah L. McGuinnes Stanford University, Stanford, CA, 94305 On-
tology Development 101: A Guide to Creating Your First Ontology

[9] O.M.F. De Troyer, C.J. Leune, WSDM: a user centred design method for Web sites, Pro-
ceeding of WWW7 Conference, April 14-18, Brisbane, Australia, 1998.

[10] OMG, ad/97-08-08, Object Constraint Language Specification, version 1.1, 1 September
1997.

[11] OMG. UML 2.0 Superstructure Specification. Version 2.0, September, 8 2003.
[12] OMG. Unified Modeling Language Specification. Version 1.4, September 2001,

http://www.omg.org/uml.
[13] S. Ceri, P. Fraternali, A. Bongio: Web Modeling Language (WebML): a modeling language

for designing Web sites, Proc. Int. Conf. WWW9, Amsterdam, May 5 2000.
[14] OWL Web Ontology language Reference W3C Recommendation 10 February 2004.
[15] www.metamodel.com : What are differences between a vocabulary, a taxonomy, a thesaurus,

an ontology and a metamodel.
[16] www.omg.org.

Dipartimento Ingegneria dell’Innovazione Universitá di Lecce Via per Arnesano,
73100 Lecce, Italy Tel: +39 0832 297229 Fax: : +39 0832 297279

E-mail address: annalisa.guido@unile.it, roberto.paiano@unile.it, andrea.pandurino@unile.it

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 2, 2005

UNSUPERVISED SINGLE-LINK HIERARCHICAL CLUSTERING

DANA AVRAM LUPŞA

Abstract. There are many clustering techniques presented in the litera-
ture. The particularity of single-link clustering is that it rather discovers
the clusters as chains. We aim to identify a method to apply the single link
clustering technique so that: it discovers the first level clusters and the user
doesn’t have to provide any sort of a parameter. We focuses on clusters that
are well separated, and so, which have to maximize the intra-cluster similar-
ity and minimize the inter-cluster similarity. We evaluate the method on a
two dimensional space, that is planar points.

1. Introduction

In the literature, a vast collection of clustering algorithm [6], [2] is available.
There is no clustering technique that is universally applicable in uncovering the
variety of structures present in multidimensional data sets. Studies of clustering
were made from a long time ([4], 1987), but they also constitute recent preocupa-
tions of reserchers ([7],2002). A list of materials about detecting clusters and the
number of clusters can be found in [10].

All clustering algorithms will, when presented with data, produce clusters –
regardless of whether the data contain clusters or not. If the data does contain
clusters, some clustering algorithms may obtain better results than others. We
focus on data sets that do contain clusters. More than that, we will also request
the data to be relatively uniform distributed inside the clusters.

In the literature, the classification is a method that assigns objects to predefined
groups; it is a sort of supervised learning technique [5]. Clustering infers groups
based on inter-object similarity; it tends to be an unsupervised learning technique.
But clustering techniques needs a semi-supervised parameter - that is the number
of clusters, and/or the error or/and a maximum number of steps to be executed.
In this paper we suggest a method applicable to hierarchical clustering that do
not need any parameter. By using single-link hierarchical clustering, the method

Received by the editors: June 27, 2005.
2000 Mathematics Subject Classification. 65-05, 65S05.
1998 CR Categories and Descriptors. I.5.2. [Computing Methodologies]: PATTERN

RECOGNITION – Design Methodology – Classifier design and evaluation; I.5.3. [Computing
Methodologies]: PATTERN RECOGNITION – Clustering – Algorithms .

11

12 DANA AVRAM LUPŞA

we suggest discover the clusters in which the data is grouped, if there are such
clusters and they are well identified.

2. Hierarchical Clustering

The hierarchical clustering algorithm was first defined by S.C. Johnson in Hi-
erarchical Clustering Schemes , Psychometrika 1967. Given a set of N items to
be clustered, and a N ∗ N distance (or similarity) matrix, the basic process of
hierarchical clustering is this:

Step 1: Start by assigning each item to a cluster, so that if you have N
items, you now have N clusters, each containing just one item. Let the
distances (similarities) between the clusters be the same as the distances
(similarities) between the items they contain.

Step 2: Find the closest (most similar) pair of clusters and merge them
into a single cluster, so that now you have one cluster less.

Step 3: Compute distances (similarities) between the new cluster and each
of the old clusters.

Step 4: Repeat steps 2 and 3 until all items are clustered into a single
cluster of size N .

Step 3 can be done in several ways, which is what distinguishes single-linkage
from complete-linkage and average-linkage clustering.

In single-linkage clustering (also called the connectedness or minimum method),
we consider the distance between one cluster and another cluster to be equal to
the shortest distance from any member of one cluster to any member of the other
cluster. If the data consist of similarities, we consider the similarity between one
cluster and another cluster to be equal to the greatest similarity from any member
of one cluster to any member of the other cluster.

In complete-linkage clustering (also called the diameter or maximum method),
we consider the distance between one cluster and another cluster to be equal to
the greatest distance from any member of one cluster to any member of the other
cluster. In average-linkage clustering, we consider the distance between one cluster
and another cluster to be equal to the average distance from any member of one
cluster to any member of the other cluster.

The complete-link algorithm produces tightly bound or compact clusters . The
single link algorithm, by contrast, suffers from a chaining effect [8]. The single-link
algorithm is more versatile than the complete link algorithm.

In most of the applications, the goal of clustering is to identify some clusters
in the given data. The hierarchical clustering algorithm won’t stop unless we
provide a stop condition. This can be the number of iterations of step 2 and 3,
the number of clusters that we want to obtain or a certain error indicated by an
evaluation of obtained clusters. Those stop conditions are chosen accordingly with

UNSUPERVISED SINGLE-LINK HIERARCHICAL CLUSTERING 13

some extra information about the data of the problem we want to solve. To choose
the appropriate stop condition is not always an easy task.

The problem we address in this paper is to find the clusters by using single-link
hierarchical clustering (which, on the other hand is one of the most simple and
intuitive methods) without having to bother about providing a stop condition. The
idea is to limit the similarity values between elements that can be used to compute
the similarity between 2 clusters (step 3) to the best similarities. We will refer to
the chosen number of best similarities as NBS (Number of Best Similarities).

3. The Basic Idea

The question to which we are going to answer now is how many similarities are
used for building k clusters for N elements, where 1 ≤ k ≤ N .

In single linkage, in each formed cluster, we can build a tree formed by similarity
links used to build that cluster. If ni are the number of the elements in the cluster,
than there are ni − 1 similarities used. With the notation:

UsedSimi(ni) = number of similarities

the next relation holds:

UsedSimi(ni) = ni − 1

Suppose there are k clusters build and the number of elements in each cluster
are n1, n2 . . . , nk . The next relations hold:

(1) n1 + n2 + . . . + nk = N
(2) the total number of used similarities is the sum of the numbers of used

similarities for each cluster; that is:
AllUsedSimi =

∑k
i=1 UsedSimi(ni) =

∑k
i=1(ni − 1) = N − k

(3) 1 ≤ k ≤ N

The idea is to consider only the N − k best similarities to build the clusters.
The clustering process will end when there is no similarity left from the best NBS
that can be used by the clustering process.

During the clustering process, we are not dealing only with the best similarities
among elements to be the similarities that are used for building the cluster. Some
of them are lost for other intra-cluster similarity values. This is one important
property of the method and we are going to find a way to workaround the error
introduced by this property and also to profit by this.

See, for example, the clusters that are produced by using this method and first
N (= 20) best similarities, that are larger than any N − k, in Fig. 1(a) 1.

1The graphics is made by using gnuplot

14 DANA AVRAM LUPŞA

(a) NBS=N (b) Adjusted clusters

Figure 1. Clusters without and with elimination of singular elements

Some of the best similarities are extra-links 2 inside the clusters that are built.
The number N − k is too small, the chosen NBS must consider also that the
extra-links in the clusters are similarities values that can have large value but will
not be used by the algorithm. On the other hand, our formula depends on k and
this is an undesired thing. Consequently, if we consider as NBS the maximum
value that can be obtained by the above formula, we accomplish two requirements:
get a larger value as NBS in order to ignore some extra-links inside the cluster
and also have the advantages of having a NBS value that does not depend on k:

NBS1 : maxk(N − k) = N

On the other hand, the decision to take only the best N similarity values remains
sometimes a little too strong, as we can see in Fig. 1(a). The reason is that
maximization of (N−k) does not cover enough extra-links inside the clusters. But
we can consider that, there is still a good chance that NBS correctly identifies
clusters nuclei.

If we consider that the clusters nuclei are correctly identified, we can improve
the result by continuing to group clusters with one element (in single-link hierar-
chical manner) until the moment when the clusters that must be unified are nuclei
determined by NBS.

The question that arises is what can be considered as a cluster nucleus and
when an element is singular3, that means that is not part of a nucleus. If the
elements are grouped in clusters, we expect that there are elements enough close
so that they would be put together in a cluster - for each natural cluster which
the data contains. Consequently, we will consider as singular elements the ones
that are singular in clusters, and as nuclei - clusters with more than one element.

2In this case, we have notated as extra-link the links among elements in a cluster that are
not used by the single-link clustering algorithm to form the cluster

3We say that an element is singular if it forms a cluster by himself

UNSUPERVISED SINGLE-LINK HIERARCHICAL CLUSTERING 15

By applying this method on the same data sets as in Fig. 1(a), the cluster set
build in this case is indicated on Fig. 1(b).

4. The Choice of NBS

4.1. Implementation Issues. We evaluate our method by hand, by using sets
of points in a two dimensional space and evaluating the computed clusters. We
use as similarity a measure derived from the Euclidian metric distance. If d is the
Euclidian distance between two points p and q:

d(p, q) =

√√√√
2∑

i=1

(pi − qi)2

then the similarity between them can be computed by using the formula:

similarity(p, q) =
1

d(p, q)
(A)

Of course, this metrics holds if there are not 2 elements with the same coordinates.
If this condition is not satisfied, we can use:

similarity(p, q) =
1

d(p, q) + 1
(B)

In our experiments, we are in case when there are not 2 elements with the same
coordinates, and we have taken formula (A) for computing the similarities.

Computation with real values introduce small errors. On the other hand, we are
not interested to put in different clusters the elements that are closest. That is why
we are interested in ignoring small variations of similarities. When we identify the
best similarity values, we consider as acceptable a variation that is not very small
and that depends of the similarity values. In calculus, the variation is interpreted
as an acceptable error. We used an error of 10% from medium difference between
two similarities values, computed with the next formula:

error = (max−min)
(number of similarities)

= 1
10 × max−min

n∗(n−1)/2)

= 1
5 × max−min

n∗(n−1)

where:
max: maximum similarity value
min: the minimum similarity value, greater than 0

On the other hand, we are working with a N ∗N similarity matrix, where the
elements on the main diagonal have a special value and are not used. Each other
similarity value from the matrix is repeated twice. This means that we use a
number of 2 ∗NBS1 values from the similarity matrix.

16 DANA AVRAM LUPŞA

4.2. Fine tuning the parameter. The way in which we build the value NBS
= N would say that the choice is close to the best one, but it is not necessary the
best choice. In order to test this, we will establish a measure of cluster accuracy
and we will study the effects of small variation of NBS value.

As is universally accepted there is no universal measure for evaluating cluster
sets. We choose for evaluation the next measure:

measure = minCi,Cj
dist(Ci, Cj)−minp∈Ci(maxp,q∈Ci

dist(p, q))

and we will earn from the fact that this measure performs well if there are no
singular points that must be part of a cluster and they are not. Because it is a
measure of optimum (max or min), not of average, and one wrong cluster will
modify the result of the evaluation. As we continue clustering starting from a
determined set of nuclei and as long as the set of nuclei remains unchanged, we
get a good chance of eliminating singular points, and so, eliminating the wrong
clusters.

The method we propose is to take as the result the set built for NBS greater
than N and smaller than 3/2N that get a score value at least double compared to
the score for the set built for N , or the set built for NBS = N otherwise. We ask
for the score value to be double because we considered that, if the improvements
are not big, than the better score could appear by cause of the natural tendency of
the evaluation function to grow with the decrease of the number of the determined
clusters set.

We experimented the result by taking as NBS the values that approximate the
interval : N−N/2 . . . N +N/2. That is, we considered as the first best similarities
those with the values ranked between (1; N) . . . (1; 3N) from the N ∗N similarities
of the similarity matrix. The distinct sets of obtained clusters are shown in Fig.
2. Each set of clusters are accompanied by a short explanation as follows:

• on the first line: the score of the cluster set
• on the second line: the smallest value of 2∗NBS (value ranks are between

N and 3 ∗N) that obtain one set of clusters

One very important thing the experiment enlightens is that the result is not
strongly dependent of the chosen NBS value, in the sense that small variations
of NBS keep the result (clusters set) unchanged. Note that there are only 9
distinct cluster sets for a NBS value that vary between NBS = N = 46 and
NBS = 3N = 138, that is for 92 distinct values for NBS.

The experiment confirms that the best result is very close to NBS = N . An-
other thing the experiments points is that when NBS grows bigger, the clusters
grow bigger too and are less well identified, while the evaluation function value
grows either. That is why we cannot use only the evaluation function to identify
the best set of clusters identified during the hierarchical clustering process.

UNSUPERVISED SINGLE-LINK HIERARCHICAL CLUSTERING 17

Figure 2. All different clusters levels when considering best sim-
ilarity values, with ranks between (1 and N/2) and (1 and 3N/2

We also studied the behavior of other 10 data sets. Based on the results of these
experiments, we are going to improve the method by taking as result the first set
of clusters built for an NBS value that satisfies NBS ≥ N and NBS ≤ N +N/2,
if the set is evaluated as being better than the set build for NBS = N .

4.3. Best choice. Experimental results. We have taken 5 different types of
input sets, with 2 examples for each type. That would be a collection of 10 data
sets. We choose data with characteristics presented in the table 1.

The results of clustering processes are presented in Fig. 3.
Evaluation. We take as precision the elements that are considered by a human

subject that are well grouped. We are looking for the most general clusters a
human judge would identify. As we evaluated, there are 8 correct cluster results.
We indicate the sets 4A and 5A as not being correct. That would indicate a
percentage of 80% correct clusters.

4.4. Discussion of special cases. One case of bad distributed elements is the
case when there should be clusters with few elements in a cluster. The figure 4
presents cluster changes with the variation of the number of points.

18 DANA AVRAM LUPŞA

Figure 3. Clusters for different values for NBS

If the elements are not relatively uniform distributed inside the clusters, the
method won’t always obtain good results. In figures 4 and 5 we have the results
from data more or less well distributed.

Figure 5 illustrates that, if the clusters are well identified, the result suffers very
little from small variation of elements’ coordinates.

One could say that the cluster set 3 in the fig. 5 is inaccurate. But what would
be the result if the distances between the elements in clusters 3, 4, 5, 6 are modified

UNSUPERVISED SINGLE-LINK HIERARCHICAL CLUSTERING 19

Data characteristic Identification
in fig

well grouped in clusters 1, 2, 3
well grouped in clusters
and known as with problem for hierarchical clustering
(there are differences between single-link and complete-
link hierarchical clustering)

2

bad cluster identification
many points but sparse data

5

small number of elements in a cluster 4
many clusters with a small number of elements in a cluster 3A
small number of clusters with many elements in a cluster 2B

Table 1. Characterisitc of the data in the figure 3

Figure 4. Clustering over reduced number of elements

20 DANA AVRAM LUPŞA

Figure 5. Clusters built for small variation of elements coordinates

in order to have close value? The result is represented in the 4th data set in the
figure.

As we can see in figure 5, the results for elements that are not uniform distrib-
uted in a cluster are disputable also for human judges. Consider the clusters from
the figure 6. Which of them do we have to consider best? On the other hand, the
elements coordinnates in the two images in the figure are the same. But they are
represented to a different scale. In one the separation among clusters is observable,
and in the other is not. A human judge won’t observe that. For this data set our
algorithm identifies clusters indicated in figure.

Sparse data is also an example of not relatively uniform distributed elements
in a cluster. In this case, the identified clusters are not very close with those
identified by a human judge. If the result are good or not is disputable, as we can
see in the figure 3, sets 5A and 5B. The explanation is that the result for sparse
data is better when the clusters are more compact. This corresponds to smaller
value for NBS.

5. Conclusions and Future Directions

The algorithms we build have the advantage to build the clusters without the
need of some stop condition, so it is a really unsupervised method. We consider
the result as good, as long as the tests indicate an accuracy of about 90% for data
‘well‘ grouped in clusters. The accuracy of the results depends on dispersion of
the elements inside the ‘ideal‘ cluster and the number of the elements inside a
cluster (the bigger, the better). Usually, the algorithm does not work so well if
the clusters in the data do not have many elements, because the number of all
elements is small or the data is sparse.

UNSUPERVISED SINGLE-LINK HIERARCHICAL CLUSTERING 21

Figure 6

One of advantage of the method is that the result do not depend directly from
the NBS, there is an interval of values for which the results are the same.

The method was built for cases when clusters are ‘well identified‘ and the el-
ements are relatively uniform distributed inside the clusters. But, for any sparse
data, there is no guarantee that there is a human judge that identifies clusters.
This is the drawback of the suggested mechanism, if we want to compare it with
the absolute case of a human judge. As is known, in case of sparse data, the
complete-link method is more appropriate than the single-link.

One of the future directions we are working on is to develop a similar method
also for the complete-link hierarchical clustering and compare the results of the
two methods.

We also intend to apply this method to pattern recognition in image processing,
because we think that this is a domain where the method should apply with best
result.

References

[1] Baeza-Yates, R.A. Introduction to data structures and algorithms related to information
retrieval, 1992;

[2] Berkin, P., Survey of Clustering Data Mining Techniques, 2002;
[3] Cao, F. et. al., An a contrario approach to hierarchical clustering validity assessment, 2004;
[4] Dubes, R.C., How many clusters are best? - An experiment, 1987;
[5] Hearst,M., Applied Natural Language Processing, Lecture Notes, 2004;
[6] Jain,A.K., M.N. Murty, Data Clustering: A Review, ACM Computing Surveys, Vol. 31,

No.3, September 1999;
[7] Massey,L., Determination of Clustering Tendency With ART Neural Networks, 2002;

22 DANA AVRAM LUPŞA

[8] Nagy, G., State of the Art in Pattern Recognition, Proc. IEEE 56, 836-862, 1968;
[9] Matteucci, M., A Tutorial on Clustering Algorithms,

http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial html/index.html
[10] Annotated Computer Vision Bibliography

http://iris.usc.edu/Vision-Notes/bibliography/pattern617.html

Babes-Bolyai University, Faculty of Mathematics and Computer Science, Depart-
ment of Computer Science, Cluj-Napoca, Romania

E-mail address: davram@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 2, 2005

COMPONENTS EXECUTION ORDER USING GENETIC
ALGORITHMS

ANDREEA FANEA AND LAURA DIOŞAN

Abstract. The current trend in software engineering is towards component-
based development. A challenge in component-based software development
is how to assemble components effectively and efficiently. In this paper we
present a new approach for computing components execution order. Using
Genetic Algorithms GA we compute the final system from specified compo-
nents with conditions order. Some numerical experiments are performed.

1. Introduction

Component-based software engineering (CBSE) is the emerging discipline of the
development of software components and the development of systems incorporat-
ing such components. In a component-based development process we distinguish
the development of components from development of systems; components can
be developed independently of systems. However, the processes may have many
interaction points.

The main advantage of component-based system development is the reuse of
components when building applications. Instead of developing a new system from
scratch, already existing components are assembled to give the required result.

Unlike previous work [5] which use backtracking algorithm (BA) to determine
the execution order for system components, this work looks for designing an exe-
cution order using evolutionary methods.

Our main purpose is to evolve the execution order for system components. This
basically means that we want to find which component should be executed and
which is the order in which these elements are “computed”. In this respect we
propose a new technique which is used for evolving the execution structure of a
component-based system. We evolve arrays of integers which provide a meaning
for executing the elements within a system.

Received by the editors: November 10, 2005.
2000 Mathematics Subject Classification. 68T20,68N30.
1998 CR Categories and Descriptors. I.2.8 [Artificial Intelligence]: Problem Solving,

Control Methods, and Search – Heuristic methods; I.6.5 [Model Development]: Modeling
methodologies .

23

24 ANDREEA FANEA AND LAURA DIOŞAN

The number of evolved orders found with GA is compared to configurations
number obtained with a backtracking algorithm from [5]. Numerical experiments
show that the GA performs similarly and sometimes even better than standard
backtracking approaches for several human-defined systems.

The paper is structured as follows: Section 2 discusses work related to com-
ponents integration and composition. Section 3 describes, in detail, the proposed
model. Several numerical experiments are performed in Section 4. Conclusions
and further work are given in Section 5.

2. Related work

There are two issues which need to be addressed where a software system is to
be constructed from a collection of components. First there has to be a way to
connect the components together. Then we have to get them to do what we want.
We need to ensure that the assembled system does what it is required [7], [9].

To successfully incorporate a component [4] in a system, certain steps must be
followed: selection, composition and integration, and finally, test and verification
must be followed. In the following we discuss integration and composition of
components.

Component integration and composition are not synonymous. Component inte-
gration is the mechanical process of “wiring” components together, whereas com-
position takes one step further to ensure that assemblies can be used as components
in larger assemblies. Component composition focuses on emergent assembly-level
behavior, assuring that the assembly will perform as desired and that it could be
used as a building block in a larger system. The constituent components must not
only plug together, they must work well together.

The problem of making pieces of software fit together has been the subject of
considerable effort. Systems and schemes exist which address these issues (COM,
EJB, RMI, MSMQ) [10], [12], [1], [2], [8]. These arrangements work by managing
and controlling the interfaces between components. By forcing components to
conform to rules about how they interact with the outside world, systems ensure
that components do not damage each others when they are connected. To a large
extent, this problem may be addressed by managing component interfaces and
ensuring that components are only connected through compatible interfaces.

In [5] a formal model for component composition is described. We consider that
a compound component is formed from two or more simple components. There
are two basic ways [11] in which these simple components can depend on each
other, parallel and serial operation:

• parallel composition, A||B, in which the operations performed on
data are independent and there is no dependency between outports(A)
and outports(B);

• serial composition, A + B, in which the B component expects some
results from component A.

COMPONENTS EXECUTION ORDER USING GA 25

out

A
in1

in2

in3

out1

out2

B

A
in1

in2

in3

out1

out2

B

Figure 1. Parallel and serial compositions

3. Proposed model

This section presents the proposed model for finding the components execution
order. We will use a GA [3, 6] for evolving the execution order of components.
Each GA individual is a fixed-length string of genes. Each gene is an integer
number, from [0...NumberOfComponents]. These values represent indexes order
of the components. They will indicate the time moments for execution.

Some components could be executed earlier and some of them are executed later.
Therefore, a GA chromosome must be transformed to contain only the values from
0 to Max, where Max represents the number of different time moments (at one
moment it is possible that one or more components will be executed).

Example 1. Suppose that we want to evolve the structure of a system that
contains 9 components. This means that the algorithm will have chromosomes
with 9 genes whose values are in the [1...9] range. The dependencies between
components are:

Table 1. Conditions for the first example

CondNr Condition CondNr Condition
1 C1 + C3 6 C6 + C7
2 C2 + C4, 7 C7 + C8,
3 C3 + C5, 8 C5 + C9,
4 C4 + C5, 9 C8 + C9,

A GA chromosome with 9 genes can be:

Genes 1 2 3 4 5 6 7 8 9
Values 2 1 4 3 8 5 6 9 7

For computing the fitness of this chromosome, during one generation, we will
execute the components following this order: first, the second component (because
the gene with minimum value is the second gene), then the first component and

26 ANDREEA FANEA AND LAURA DIOŞAN

so on (it is needed to order the ascending the genes values): execute(C2), exe-
cute (C1), execute (C4), execute (C3), execute (C6), execute (C7), execute (C9),
execute (C5), execute (C8).

In this example at each moment, we execute only one component.
Example 2. Let us consider another example which consists of a chromosome

with 9 genes containing only 5 different values.

Genes 1 2 3 4 5 6 7 8 9
Values 6 2 1 4 7 1 6 2 6

In this case components 3 and 6 are executed in same time (also components 2
and 8, but after the previous execution, also the components 1, 7 and 9). Because
of this synchronism we need to scale the genes of the GA chromosome to the
interval [0 ... 5] (because we need 5 time moments for execution). The obtained
chromosome is:

Genes 1 2 3 4 5 6 7 8 9
Values 4 2 1 3 5 1 4 2 4

To establish the correct order of execution for this chromosome the genes values
must be ascending sorted. Then we obtain:

Genes 3 6 2 8 4 1 7 9 5
Values 1 1 2 2 3 4 4 4 5

3.1. Fitness assignment. The model proposed in this paper is a GA that evolves
the order of execution for the components of a system.

The array of integers encoded into a GA chromosome represents the order of
execution for system components. The fitness of a chromosome represents the sum
of two values: the number of breached conditions and the number of components
that are not executed.

Some components depend on the results provided by the other components
(one component must wait until other component (s) finished its execution). For
instance, we have two number a and b and we want to verify if the greatest common
divisor of these two numbers is a prim number, that’s equivalent to have two
components: C1 that computes the greatest common divisor of a and b and C2
that verifies if a number is prime. In our problem C1 must be executed before
C2. A system with more components will have more conditions. If one of these
conditions is not respected (by the order given by the GA individual), than we
increase the fitness.

COMPONENTS EXECUTION ORDER USING GA 27

Even if the number of genes from a GA individual is equal to the components
number, it is possible that not all components can be executed. For instance, if
the order provided by the GA chromosome supposes to execute the component C2
before C1, than C2 will not be executed and we increase the fitness value.

In the second example, the genes with same execution moments proceed in
parallel and the genes with different values are executed serial. But for a parallel
execution of two or more components these elements must be independent (are
not the subject of one of the system conditions).

The system executes the components C3 and C6 if and only if there isn’t any
constrict for these components. Components C3 and C6 are independent, so the
system can execute them in parallel (but also it is possible to execute them in
serie). But really, the system executes only C6 because C3 can’t b executed (C1
isn’t yet executed). Then, component C2 is executed in series with C6 because
the associated genes have different values. Then component C8 has the same gene
value with C2 and there isn’t any condition regarding these components, therefore
they can be executed in parallel (but C8 will not be executed because, C7, must
be executed first and so on. Finally, this chromosome will have a fitness equal to 8
(four components are not executed and four elements breached the dependencies).

3.2. Algorithm. The algorithm used for evolving the integration order of com-
ponents system is described in this section. The algorithm is a standard GA [3, 6].
We use a generational model as underlying mechanism for our GA implementation.

Population Initialization P (0).
Evaluate P (0).
For t = 1 to NumberOfGeneration do

Add the best individual from P (t− 1) to P (t)
While P (t) is not complete (full, whole) do

Select two parents P1 and P2 from P (t− 1)
Recombine the parents, obtaining two offspring O1 and O2.
Mutate each offspring.
Add the two offspring O1 and O2 to P (t).
Evaluate P (t)

End While
End For
The GA starts by creating a random population of individuals. Each individ-

ual is a fixed-length (equal to the number of system components) array of integer
numbers. The following steps are repeated until a given number of generations is
reached: we put in the next generation the best chromosome from current gen-
eration. Two parents are selected using a standard selection procedure (binary
tournament selection) until we obtain a new complete generation. The parents are
recombined (using one-cutting point crossover) in order to obtain two offspring.
The offspring are considered for mutation which is performed by replacing some

28 ANDREEA FANEA AND LAURA DIOŞAN

genes with randomly generated values. Finally, we put the offspring in next gen-
eration.

4. Numerical experiments

In order to test our approach we performed three didactical experiments with
different number of components involved in the system and with different types
of dependences between components. We compared the result obtained with the
algorithm from [5] with the presented GA.

Having specified the simple components that we need to compose, a model for
component composition [5] is used to obtain all the possibilities of using parallel
and serial composition. In the end we will obtain the system that we want. First
we have to check if the data can pass between the simple components involved in
the composition. That is if inports of all the simple components are inports of the
black box or if they occur as outports of the other components. If the condition
above is satisfied then we can obtain the black box component (final system),
respecting dependencies between components.

The dependencies between components must be first determined as follows: we
must check if an inport of a component appears as an outport of other component;
if an inport ini of a component B appears as an outport outj of a component A,
(ini = outj) then we must use component A before component B, and we can use
B only with the + operator (for serial composition). These conditions are incorpo-
rated in the backtracking algorithm: if the component that we check for integration
depends on the results provided by other components than those components must
finish their executions before using this component. The dependent component
must have a higher position number in the solution array then the components it
depends. Also, in the solution array before a component with dependencies we
always use serial composition +.

Experiment 1. In this experiment we deal with ten involved components
having nine dependencies between them. The system that we want to obtain is
presented in Figure 2 with the following computation semantics: gcd - greatest
common divisor, sd - sum of digits, pd - prime divisors, np - number of prime
numbers, scd - smallest common divisor, inv - inverse, oed - product of sum
between odd and even digits, sed - sum of even digits, npn - next prime number
and aa - arithmetic average.

We denote by “+” the serial composition and by “||” the parallel composition.
The dependencies between the involved components are presented in Table 2.

Taking into account the above conditions we compute all the possibilities to
obtain the desired system. Using BA from [5] one solution is:

(((((((((C2||C6) + C4)||C1) + C7) + C3) + C8)||C9) + C5) + C10).

This formula means that the result for computing in parallel C2 with C6 is
then computed serial with C4, because C4 expects the result from C2. Then, the

COMPONENTS EXECUTION ORDER USING GA 29

Table 2. Conditions for the first experiment

CondNr Condition CondNr Condition
1 C1 + C3, 6 C7 + C8,
2 C2 + C4, 7 C5 + C10,
3 C6 + C7, 8 C8 + C10,
4 C3 + C5, 9 C9 + C10.
5 C4 + C5,

gcd pd

sd np
scd

inv

oed sed

npn

aa

Figure 2. Component-based system for experiment 1

current result subsystem is composed in parallel with C1. Because component C6
was computed we can then serially execute C7. The result for computation of
C1 is already obtained so can serially execute C3. Next, we can execute either
serial C5, serial C8 or in parallel C9. We cannot compute C10 because we have to
previous execute C5, C8 and C9. In previously experiment serial C8 is integrated.
The following possibilities are parallel C9 and serial C5. Parallel C9 is executed
and then serial C5. Having all the three components executed, we can now serial
execute component C10.

We compare this approach with an evolutionary one. We use a standard GA for
evolving the execution order. For GA we use a population with 200 individuals,
each of them with 1 dimension. The gene number for a dimension will be equal to
the components number (for this example it is 10). During 10000 generations we
apply binary tournament selection, one cut point crossover with probability 0.8
and mutation (we mutate a random chosen gene) with probability 0.2.

But, since the GA uses pseudo-random numbers, it is very likely that successive
runs of the same algorithm will generate completely different solutions. This prob-
lem can be handled in a standard manner: the genetic algorithm is run multiple
times (100 runs in fact) and the number of the “good” chromosomes (with fitness
0) will be the average over all runs.

Applying GA one chromosome is:
We sort this chromosome after genes values and obtain:

30 ANDREEA FANEA AND LAURA DIOŞAN

Genes 1 2 3 4 5 6 7 8 9 10
Values 2 1 4 2 6 1 3 5 5 6

Genes 2 6 1 4 7 3 8 9 5 10
Values 1 1 2 2 3 4 5 5 6 6

Decoding it we obtain the following execution order: C2 in same time with
C6, then C1 and C4, and then C7 and C3 (serial execution). At moment 5 we
execute in parallel C8 and C9. Components C5 and C10 have the same execution
moment, but they aren’t executed in parallel because there exists a dependence
between these two components. Therefore we execute first C5 and then, serial
execution, C10. The experiment results are presented in Table 3 .

Table 3. Experiment 1: ten involved components with nine dependences

Algorithm Solutions Time
BA 3024 2′′

GA 3883 2′′

Experiment 2. In this experiment we deal with eleven involved components
having ten dependencies between them. The computation semantics for each
component involved in system integration are similar with those from the first
experiment. We only present in Table 4 the dependencies between the involved
components.

Table 4. Conditions for the second experiment

CondNr Condition CondNr Condition
1 C1 + C3 6 C6 + C7
2 C3 + C5, 7 C7 + C9,
3 C4 + C5, 8 C8 + C10,
4 C2 + C8, 9 C9 + C10,
5 C5 + C8, 10 C10 + C11.

Applying algorithm from [5] one solution is:

((((((((((C3||C6) + C7)||C1) + C2)||C4) + C9) + C5) + C8) + C10) + C11).

This solution is represented in Figure 3. Each component has on the upper-left
corner a number representing the order of execution.

Applying GA we obtain a chromosome of the following form:
We sort this chromosome on genes values and obtain:
The experimental results are shown in Table 5.

COMPONENTS EXECUTION ORDER USING GA 31

gcd

rn

pn

npn

nd

tp

bt

nad

sse

qr
scd

Figure 3. Component-based system for experiment 2

Genes 1 2 3 4 5 6 7 8 9 10 11
Values 2 3 1 3 5 1 2 6 4 6 7

Genes 3 6 1 7 2 4 9 5 8 10 11
Values 1 1 2 2 3 3 4 5 6 6 7

Table 5. Experiment 2: eleven involved components with ten dependences

Algorithm Solutions Time
BA 1680 1′′

GA 2957 1′′

5. Conclusions and Further work

In this paper a new method for component integration is proposed. The
method is based on GA computing the order possibilities of components execution
from a component-based system. A comparison between a previous developed
backtracking-based algorithm and a GA algorithm is presented. The experiments
on different data sets prove that we obtain much more solutions applying GA than
applying other algorithms.

However, taking into account the No Free Lunch theorems for Search [13] and
Optimization [14] we cannot make any assumption about the generalization ability
of the evolved execution order. Further numerical experiments are required in
order to assess the power of the evolved order.

Further works can be done in the following directions:

32 ANDREEA FANEA AND LAURA DIOŞAN

• how can we use GA to compute all the possibilities of obtaining a correct
syntactical component-based system using only the information on the
component interface;

• how can we use IA methods to analyze the behavior of a component-
based system or to predict the behavior.

References

[1] R. Allen and D. Garlan, A formal basis for architectural connection, ACM Trans. on
Software Eng. and Methodology, 6(3):213–249, July 1997.

[2] D. Box, Essential COM, Addison Wesley, 1998.
[3] H. J. Bremermann, Optimization through evolution and recombination, M.C. Yovits, G.T.

Jacobi, and G.D. Goldstein, editors, Self-Organizing Systems 1962, Proceedings of the
Conference on Self-Organizing Systems, Chicago, Illinois, 22.- 24.5.1962, pp. 93-106, 1962.

[4] I. Crnkovic, M. Larsson, Building reliable component-based software systems, Artech House,
2002

[5] A. Fanea, S. Motogna, A Formal Model for Component Composition, Proceedings of the
Symposium “Zilele Academice Clujene”, 2004, pp. 160-167

[6] D. Goldberg, Genetic algorithms in search, optimization and machine learning, Addison-
Wesley, Boston, USA, 1989.

[7] A. M. Gravell, and P. Henderson, Executing formal specifications need not be harmful,
Software Engineering Journal, 11(2):104-110, IEE/BCS, March 1996

[8] D. N. Gray, J. Hotchkiss, S. LaForge, A. Shalit and T. Weinberg, Modern Languages and
Microsoft’s Component Object Model, Communications of the ACM 41(5): 55-65 1998.

[9] C. A. R. Hoare, The role of formal techniques: past, current and future or how did soft-
ware get so reliable without proof?, 18th International Conference on Software Engineering
(ICSE-18), Berlin, IEEE Computer Society Press, 1996, pp. 233-234.

[10] Object Management Group, http://www.omg.org/
[11] B. Parv, S. Motogna, A formal model for components, Bul. Stiint., Univ. Baia Mare, Ser.

B, Matematica-Informatica, XVIII(2002), No.2, pag. 269-274
[12] Sun Microsystems, http://www.sun.com/
[13] D. H. Wolpert and W. G. McReady, No Free Lunch Theorems for Search, Technical Report

SFI-TR-05-010, Santa Fe Institute, USA, 1995.
[14] D. H. Wolpert and W. G. McReady, No Free Lunch Theorems for Optimization, IEEE

Transaction on Evolutionary Computation, Nr. 1, pp. 67-82, IEEE Press, NY, USA, 1997

Department of Computer Science, Faculty of Mathematics and Computer Science,
Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: afanea, lauras@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 2, 2005

ADAPTIVE CLUSTERING USING A CORE-BASED APPROACH

GABRIELA ŞERBAN AND ALINA CÂMPAN

Abstract. This paper studies an adaptive clustering problem. We focus on
re-clustering an object set, previously clustered, when the feature set char-
acterizing the objects increases. We propose an adaptive, k-means based
clustering method, Core Based Adaptive k-means (CBAk), that adjusts the
partitioning into clusters that was established by applying k-means or CBAk
before the feature set changed. We aim to reach the result more efficiently
than running k-means starting from the current clustering. Experiments test-
ing the method’s efficiency are also reported.

Keywords: Data Mining, clustering, k-means.

1. Introduction

A large collection of clustering algorithms is available in the literature. The
papers [5], [6] and [7] contain comprehensive overviews of the existing clustering
techniques.

A well-known class of clustering methods is the one of the partitioning by re-
location methods, with representatives such as the k-means algorithm or the k-
medoids algorithm. Essentially, given a set of n objects and a number k, k ≤ n,
such a method divides the object set into k distinct clusters. The partitioning
process is iterative and stops when a “good” partitioning is achieved. Finding a
“good” partitioning coincides with optimizing a criterion function. The criterion
function used in k-means is the squared error criterion, which tends to work well
with isolated and compact clusters [7].

Generally, these methods apply on a set of objects measured against a known
set of features (attributes). But there are applications where the attribute set
characterizing the objects evolves. For obtaining in these conditions a partitioning
of the object set, the clustering algorithm can be, obviously, applied over and
over again, beginning from scratch or from the current partitioning, each time

Received by the editors: October 15, 2005.
2000 Mathematics Subject Classification. 62H30, 68U35.
1998 CR Categories and Descriptors. 62H30 [Statistics]: Multivariate analysis – Classi-

fication and discrimination; cluster analysis; 68U35 [Computer science]: Computing method-
ologies and applications – Information systems (hypertext navigation, interfaces, decision sup-
port, etc.);

33

34 GABRIELA ŞERBAN AND ALINA CÂMPAN

when the attributes change. But this can be inefficient. What we want is to
propose an adaptive, k-means like clustering method, named Core Based Adaptive
k-means (CBAk), that is capable to efficiently re-partition the object set, when the
attribute set increases. The method starts from the partitioning into clusters that
was established by applying k-means or CBAk before the attribute set changed.
We aim to reach the result more efficiently than running k-means starting from
the current clustering.

Related Work

There are few approaches reported in the literature that address the problem of
adapting the result of a clustering when the object feature set is extended. Early
works treat the sequential use of features in the clustering process, one by one. An
example of such a monothetic approach is mentioned in [7]. A more recent paper
[10] analyzes the same problem of adapting a clustering produced by a DBSCAN
like algorithm, using some additional structures and distance approximations in
an Euclidian space. However, adapting a clustering resulted from a partitioning
algorithm, using partitioning-based methods hasn’t been reported by none of these
works.

2. Theoretical Model

Let X = {O1, O2, . . . , On} be the set of objects to be classified. Each object is
measured with respect to a set of m initial attributes and is therefore described
by an m-dimensional vector Oi = (Oi1, . . . , Oim), Oik ∈ <+, 1 ≤ i ≤ n, 1 ≤ k ≤ m.
Usually, the attributes associated to objects are standardized, in order to ensure
an equal weight to all of them [5].

Let {K1,K2, . . . , Kp} be the set of clusters discovered in data by applying the
k-means algorithm. Each cluster is a set of objects, Kj = {Oj

1, O
j
2, . . . , O

j
nj
}, 1 ≤

j ≤ p. The centroid (cluster mean) of the cluster Kj is denoted by fj , where

fj =

njP
k=1

Oj
k1

nj
, . . . ,

njP
k=1

Oj
km

nj

.

The measure used for discriminating objects can be any metric or semi-metric
function d. We used the Euclidian distance:

d(Oi, Oj) = dE(Oi, Oj) =

√
m∑

l=1

(Oil −Ojl)2.

The measured set of attributes is afterwards extended with s (s ≥ 1) new
attributes, numbered as (m+1), (m+2), . . . , (m+s). After extension, the objects’
vectors become O′i = (Oi1, . . . , Oim, Oi,m+1, . . . , Oi,m+s), 1 ≤ i ≤ n. We denote by
extO′

i = (Oi,m+1, . . . , Oi,m+s) the s-attribute extension of the vector associated to
Oi.

ADAPTIVE CLUSTERING USING A CORE-BASED APPROACH 35

We want to analyze the problem of recalculating the objects’ grouping into
clusters, after object extension and starting from the current partitioning. We
start from the fact that, at the end of the initial k-means clustering process, all
objects are closer to the centroid of their cluster than to any other centroid. So,
for any cluster j and any object Oj

i ∈ Kj , inequality (1) below holds.

(1) dE(Oj
i , fj) ≤ dE(Oj

i , fr),∀j, r, 1 ≤ j, r ≤ p, r 6= j.

We denote by K ′
j , 1 ≤ j ≤ p, the set containing the same objects as Kj , after

the extension. By f ′j , 1 ≤ j ≤ p, we denote the mean (center) of the set of K ′
j . We

denote by extf ′j =

njP
k=1

Oj
k,m+1

nj
, . . . ,

njP
k=1

Oj
k,m+s

nj

 the s-attribute extension of the

K ′
j center (mean). These sets K ′

j , 1 ≤ j ≤ p, will not necessarily represent clusters
after the attribute set extension. The newly arrived attributes can change the ob-
jects’ arrangement into clusters. But there is a considerable chance, when adding
one or few attributes to objects, that the old arrangement in clusters to be close
to the actual one. The actual clusters can be obtained by applying the k-means
algorithm on the set of extended objects starting from the current clustering. But
we try to avoid this process and replace it with one less expensive but not less
accurate. With these being said, we agree, however, to continue to refer the sets
K ′

j as clusters.
We therefore take as starting point the previous partitioning into clusters and

study in which conditions an extended object Oj′
i is still “correctly” placed into

its cluster K ′
j . For that, we express the distance of Oj′

i to the center of its cluster,
f ′j , compared to the distance to the center f ′r of any other cluster K ′

r.

Lemma 1. When inequality (2) holds for an extended object Oj′
i ∈ K ′

j

(2) d2(extOj′
i , extf ′j) ≤ d2(extOj′

i , extf ′r)

for all r = 1, p, r 6= j then the object Oj′
i is closer to the center f ′j than to any

other center f ′r, 1 ≤ j, r ≤ p, r 6= j.

Proof
We prove this statement. For Oj′

i and 1 ≤ r ≤ p

d2(Oj′
i , f ′j)−d2(Oj′

i , f ′r) = d2(Oj
i , fj)+d2(extOj′

i , extf ′j)−d2(Oj
i , fr)−d2(extOj′

i , extf ′r).
Using the inequality (1), we have:
d2(Oj′

i , f ′j)− d2(Oj′
i , f ′r) ≤ d2(extOj′

i , extf ′j)− d2(extOj′
i , extf ′r).

If the inequality (2) holds, then the inequality above becomes:
d2(Oj′

i , f ′j)− d2(Oj′
i , f ′r) ≤ 0.

Because all distances are non-negative numbers, it follows that:

36 GABRIELA ŞERBAN AND ALINA CÂMPAN

d(Oj′
i , f ′j) ≤ (Oj′

i , f ′r), ∀r, 1 ≤ r ≤ p, r 6= j.

Remark The global complexity of the CBAk algorithm is not increased by the
cluster cores calculation.

3. The Core Based Adaptive k-means Algorithm

We will use the property enounced in the previous paragraph in order to identify
inside each cluster K ′

j , 1 ≤ j ≤ p, the objects that have a considerable chance to
remain stable in their cluster, and not to move into another cluster as a result of
the attribute set extension. These objects form the core of their cluster.

Definition 1.

a) We denote by StrongCorej = {Oj′
i |Oj′

i ∈ K ′
j , O

j′
i satisfies the inequality

(2)}, ∀r, 1 ≤ r ≤ p, r 6= j.
b) Let sat(Oj′

i) be the set of all clusters K ′
r, ∀r, 1 ≤ r ≤ p, r 6= j not

containing Oj′
i and for which object Oj′

i satisfies inequality (2).

We denote by WeakCorej = {Oj′
i |Oj′

i ∈ K ′
j , |sat(Oj′

i)| ≥
njP

k=1
|sat(Oj′

k)|
nj

}
the set of all objects in K ′

j satisfying inequality (2) for at least so many
clusters that all objects in K ′

j are satisfying (2), in the average.
c) Corej = StrongCorej iif StrongCorej 6= ∅; otherwise,

Corej = WeakCorej . OCorej = K ′
j \ Corej is the set of out-of-core

objects in cluster K ′
j .

d) We denote by CORE the set {Corej , 1 ≤ j ≤ p} of all cluster cores and
by OCORE the set {OCorej , 1 ≤ j ≤ p}.

We have chosen the above cluster cores definition because of the following rea-
sons. It is not sure that there is in cluster K ′

j any object that satisfies inequality (2)
for all clusters K ′

r, 1 ≤ r ≤ p, r 6= j. If there are such objects (StrongCorej 6= ∅),
we know that, according to Lemma 1, they are closer to the cluster center f ′j than
to any other cluster center f ′r, 1 ≤ r ≤ p, r 6= j. Then, Corej will be taken to be
equal to StrongCorej and will be the seed for cluster j in the adaptive algorithm.
But if StrongCorej = ∅, for the core not to be empty, we will choose as seed for
cluster j other objects, the most stable ones between all objects in K ′

j .
The cluster cores, chosen as we described, will serve as seed in the adaptive

clustering process. All objects in Corej will surely remain together in the same
group if clusters do not change. This will not be the case for all core objects, but
for most of them, as we will see in the results section.

We give next the Core Based Adaptive k-means algorithm.

ADAPTIVE CLUSTERING USING A CORE-BASED APPROACH 37

We mention that the algorithm stops when the clusters from two consecutive
iterations remain unchanged or the number of steps performed exceeds the maxi-
mum allowed number of iterations.

Algorithm Core Based Adaptive k-means is

Input: - the set X = {O1, . . . , On} of m-dimensional previously clustered

objects,

- the set X ′ = {O′1, . . . , O′
n} of (m+s)-dimensional extended objects

to be clustered; O′i has the same first m components as Oi,

- the metric dE between objects in a multi-dimensional space,

- p, the number of desired clusters,

- K = {K1, . . . , Kp} the previous partition of objects in X,

- noMaxIter the maximum number of iterations allowed.

Output: - the new partition K′ = {K′
1, . . . , K

′
p} for the objects in X ′.

Begin

For all clusters Kj ∈ K

Calculate Corej = (StrongCorej 6= ∅)?StrongCorej : WeakCorej

K′
j = Corej

Calculate f ′j as the mean of objects in K′
j

EndFor

While (K′ changes between two consecutive steps) and

(there were not performed noMaxIter iterations) do

For all clusters K′
j do

K′
j = {O′i | d(O′i, f

′
j) ≤ d(O′i, f

′
r), ∀r , 1 ≤ r ≤ p, 1 ≤ i ≤ n}

EndFor

For all clusters K′
j do

f ′j = the mean of objects in K′
j

EndFor

EndWhile

End.

The algorithm starts by calculating the old clusters’ cores. The cores will be the
new initial clusters from which the iterative processing begins. Next, the algorithm
proceeds in the same manner as the classical k-means method does.

4. Experimental Evaluation

In this section we present some experimental results obtained by applying the
CBAk algorithm described in section 3.

As case studies, for experimenting our theoretical study described in section 2
and for evaluating the performance of the CBAk algorithm, we considered the data

38 GABRIELA ŞERBAN AND ALINA CÂMPAN

sets described in [1]. The data were taken from the website ”http://www.cormac-
tech.com/neunet” and have also been used in [2, 4, 9].

4.1. Quality Measures. As a quality measure for our algorithm we take the
movement degree of the core objects and of the extra-core objects. In other words,
we measure how the objects in either Corej ∈ CORE, or OCorej ∈ OCORE,
remain together in clusters after the algorithm ends.

As expected, more stable the core objects are and more they remain together
in respect to the initial sets Corej , better was the decision to choose them as seed
for the adaptive clustering process.

We denote by S = {S1, S2, . . . , Sp}, Si ⊆ Ki, a set of clusters’ subsets (as CORE
and OCORE are). We express the stability factor of S as:

(3) SF (S) =

p∑
j=1

|Sj |
no of clusters where the objects in Sj ended

p∑
j=1

|Sj |

The worst case is when each object in Sj ends in a different final cluster, and
this happens for every set in S. The best case is when every Sj remains compact
and it is found in a single final cluster. So, the limits between which SF (CORE)
varies are given below, where the higher the value of SF (CORE) is, the better
was the cores choice:

(4)
p

p∑
j=1

|Corej |
≤ SF (CORE) ≤ 1

For comparing the quality of the partitions produced by our algorithm and by
k-means, we consider the squared sum error (SSE) of a clustering K, defined as:

(5) SSE(K) =
∑

Kj∈K

∑

Oi∈Kj

d2(Oi, fj)

When comparing two partitions K1 and K2 for the same data set, we will say
that K1 is better than K2 iff SSE(K1) < SSE(K2).

For measuring the clustering tendency of a data set, we use the Hopkins sta-
tistics, H [11], an approach that uses statistical tests for spatial randomness. H
takes values between 0 and 1, and a value near 1 indicates that data is highly
clustered. Usually, for a data set with clustering tendency, we expect for H values
greater than 0.5.

ADAPTIVE CLUSTERING USING A CORE-BASED APPROACH 39

4.2. Results. In this section we comparatively present the results obtained by
applying the CBAk algorithm and k-means, for the experimental data. We mention
that the results are calculated in average, for several executions.

Table 1. The comparative results

Experiment Cancer Dermatology Wine

No of objects 457 366 178

No of attributes (m+s) 9 34 13

No of new attributes (s) 4 3 4

No of clusters 2 6 3

No of k-means iterations for m attributes 5.66 11.2 9.28

No of k-means iterations for +s attributes 4 1.33 3.85

No of CBAk iterations for +s attributes 4 5.66 2.42

k-means SSE for +s attributes 13808.784 12683.82 49.016

CBAk SSE for +s attributes 13808.784 12522.95 49.019

SF(CORE) 1.0 0.8119 0.97

SF(OCORE) 0.5 0.646 0.475

H for s attributes 0.666 0.68122 0.7018

H for m+s attributes 0.7148 0.6865 0.7094

From Table 1 we observe that using the CBAk algorithm the number of itera-
tions for finding the solution is not always smaller that in case of using k-means;
but the cores’ stability factor, SF (CORE), is high. We mention that for every run
of each experiment, SSE(CBAk) has been roughly equal to SSE(k-means). Also,
every time, the stability of the objects chosen to be part or cores was greater than
the stability of out-of-core objects.

5. Conclusions and Future Work

In this paper we proposed a new method for adapting the result of a clustering
when the attribute set describing the objects increases. The experiments on differ-
ent data sets prove that, in most cases, the result is reached more efficiently using
the proposed method than running k-means starting from the current partition, on
the feature-extended object set. But there are some situations when it is better to
resort to a k-means clustering of the feature-extended object set, starting from the
existing clustering, than using the CBAk algorithm. For example, such situations
can be: the addition of a large number of features or the addition of new features
with large information gain and contradictory information with respect to the old
feature set.

Further work may be done in the following directions:

40 GABRIELA ŞERBAN AND ALINA CÂMPAN

• to isolate conditions to decide when it is more effective to adapt (using
CBAk) the result of a clustering of the feature-extended object set than
to resume its clustering using k-means;

• to study how the information brought into the system by the newly
added attributes, their correlation with the initial ones, influences the
number of iterations performed by the CBAk algorithm for finding the
solution;

• to apply the adaptive algorithm on precise problems, from where the
need of such an adaptive algorithm originated;

• to study how the theoretical results described for non-hierarchical clus-
tering could be applied/generalized for other clustering techniques.

References

[1] Şerban, G., Câmpan, A.: “Core Based Incremental Clustering”, Studia Universitatis
“Babeş-Bolyai”, Informatica, L(1), 2005, pp 89–96

[2] Aeberhard, S., Coomans, D., de Vel, O.: “THE CLASSIFICATION PERFORMANCE
OF RDA”, Tech. Rep. 92–01, Dept. of Computer Science and Dept. of Mathematics and
Statistics, James Cook University of North Queensland, 1992

[3] CorMac Technologies Inc, Canada: “Discover the Patterns in Your Data”,
http://www.cormactech.com/neunet

[4] Demiroz, G., Govenir, H. A., Ilter, N.: “Learning Differential Diagnosis of Eryhemato-
Squamous Diseases using Voting Feature Intervals”, Artificial Intelligence in Medicine

[5] Han, J., Kamber, M.: “Data Mining: Concepts and Techniques”, Morgan Kaufmann
Publishers, 2001

[6] Jain, A., Dubes, R.: “Algorithms for Clustering Data”, Prentice Hall, Englewood Cliffs,
New Jersey, 1998

[7] Jain, A., Murty, M. N., Flynn, P.: “Data clustering: A review”, ACM Computing Surveys,
31(3), 1999, pp 264-323

[8] Quinlan, J. R.: C4.5: “Programs for Machine Learning”, Morgan Kaufmann. San Mateo,
California, 1993

[9] Wolberg, W., Mangasarian, O. L.: “Multisurface method of pattern separation for medical
diagnosis applied to breast cytology” Proceedings of the National Academy of Sciences,
U.S.A., Volume 87, December 1990, pp 9193–9196

[10] Wu, F., Gardarin, G.: “Gradual Clustering Algorithms”, Proceedings of the 7th Interna-
tional Conference on Database Systems for Advanced Applications (DASFAA’01), 2001,
pp 48–57

[11] Tan, P.-N., Steinbach, M., Kumar, V.: “Introduction to Data Mining”, Addison Wesley,
2005, chapters 8,9

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: gabis@cs.ubbcluj.ro

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: alina@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 2, 2005

INTEGRATING CONVERSIONS INTO A COMPUTATIONAL
ALGEBRAIC SYSTEM

VIRGINIA NICULESCU AND GRIGORETA SOFIA MOLDOVAN

Abstract. Conversions play an important role in any computational alge-
braic system. This article analyzes two approaches for integrating conver-
sions. The first is based on template method design pattern and the other is
based on aspect-oriented programming. The advantages and disadvantages
of these approaches are emphasized.

1. Introduction

Object oriented programming and design patterns introduce a high level of
abstraction that allows us to implement and work with mathematical abstractions.
Classic algebraic libraries and systems, based on imperative programming, contain
subalgorithms for working with polynomials, matrices, vectors, etc. Their main
inconvenience is the dependency on types.

In [4] we have analyzed the design of the kernel for an object oriented com-
putational algebra system based on design patterns. This approach allows us to
work not only with concrete algebraic structures, but also with abstract algebraic
structures. The advantages are mainly given by the creational design patterns,
by reflection and dynamic loading, and by representation independence. These
introduce significant flexibility and abstraction.

Conversions play an important role in a computational algebraic system, and
we present here two solutions for integrating them.

2. The Basic Design of the Algebraic System

The main requirement for an alegraic system is the possibility of working with
abstract algebraic structures like groups, rings, fields, etc. The user has to be
allowed to define concrete algebraic structures by using these abstractions. We
restrict the discussion to basic algebraic structures, and to polynomials and vector
spaces.

Received by the editors: November 21, 2005.
2000 Mathematics Subject Classification. 68R01, 68U99.
1998 CR Categories and Descriptors. J.2 [Computer Applications]: Physical Sciences

and engineering – Mathematics and statistics ;

41

42 VIRGINIA NICULESCU AND GRIGORETA SOFIA MOLDOVAN

Abstract classes are defined for elements of each abstract algebraic structure.
Their hierarchy is shown in Figure 1.

Figure 1. The class diagram for basic abstract algebraic structures.

New abstract algebraic structures may be built over the existing algebraic struc-
tures; for example polynomials and vector spaces. Polynomials are built over a
unitary commutative ring, and they also form a unitary commutative ring. In
order to define a vector space we need a group, a field, and an external operation.

The Composite design pattern [3] may be used to implement this kind of struc-
tures. Using the Composite pattern we may define polynomials over other polyno-
mials. Similar examples may be given for matrices – we can define matrices over
polynomials, etc.

More details about the system design can be found in [4].

3. Conversions

Operations between different types of numbers are an important issue for an
algebraic system, and the design of the algebraic structures must take into consid-
eration the design of the conversions.

INTEGRATING CONVERSIONS INTO A COMPUTATIONAL ALGEBRAIC SYSTEM 43

If we add a real number to a complex number, we know that the result is a
complex, because a real number is also a complex number, which has the imaginary
part equal to zero.

If we generalize this, we arrive to a situation where between two algebraic
structures an inclusion relation may be defined. We may have subgroups, subrings,
etc. Let us consider that we have a group (G, +), and a subgroup (or submonoid)
(SG,+), SG ⊂ G. Corresponding to these, we will have the classes GElem and
SGElem. If we have an element g of type G and an element sg of type SG, we may
consider that sg is also an element of type G, and we may use it in operations of
class GElem. For this we have to allow automatic conversions from SG type to G
type.

For example, if we consider the group (Z,+) and the monoid (N,+), we have
to allow conversions from natural to integer numbers.

One solution to allow this is to use inheritance for defining SGElem class (to be
derived from GElem). Then the operation g.plus(sg) would be possible. But the
operation plus is a commutative one, so we would like to also allow the operation
sg.plus(g), but using this solution this is not possible.

But the main disadvantage of the solution based on inheritance can be un-
derstood from the following example. We define the class IntElem derived from
GroupElem, corresponding to the group (Z,+), and the class NaturalElem derived
from MonoidElem, corresponding to the monoid (N,+). If we choose the solution
based on inheritance for conversions, we have to derive NaturalElem from class
IntElem, as well. So, we arrive to a situation when NaturalElem is a group, too
— which is completely wrong (the corresponding UML diagram is presented in
Figure 2).

Figure 2. A wrong solution for implementing conversions.

A compatibility between two classes is defined when an instance of one class
can be converted into an instance of the other.

As a general rule we allow defining conversion if an inclusion type relation can
be defined between structures.

Still, we should allow some special cases:

44 VIRGINIA NICULESCU AND GRIGORETA SOFIA MOLDOVAN

• To add a simple real to a polynomial over reals.
• Consider the group of continuous functions (RA,+), where RA = {f |f :

A → R, f continuous, A ⊂ R}. If we have g ∈ RA, we can add it to an
r ∈ R, and the result will be of type RA. We can add g to r, because r
can be seen as h(x) = r, for any x ∈ A, hence we actually apply the add
operation to g and h.

• New structures may be defined based on the existing ones. For example,
the group (Mn,+), where Mn = {a + b

√
n|a, b ∈ Z} and n ∈ N, n is a

prime number. The structure (Mn,+) is a group, and Z ⊂ Mn (because
if b = 0, a + b

√
n ∈ Z, ∀a ∈ Z).

So, we may also admit conversions when we have a structure defined over an-
other structure, and when a simple element of the basic structure may form an
element of the complex structure.

Another special case when conversions have to be used is related to special
representations and precision. If we want to represent structures that are defined
over infinite sets, we cannot represent all the elements. So, we may consider only
the elements of some subsets. These subsets may be included one into another.
Corresponding to these we will have different classes. Integers may be represented
using primitive types like int or long, but also using another representation that
could be based on a bigger base. Because they are different representations of the
same algebraic structures, they have to be compatible. (The situation is similar to
that of the usual conversions that appear in any programming language.) When it
is the case, we may base our conversions on the conversions in the implementation
language.

3.1. The Basic Design. The solution that we suggest is based on reflection and
dynamic loading. These are used for defining new compatibilities between the
existing and the new created structures, and for dynamic loading of these compat-
ibilities. The compatibilities are implemented as distinct classes, and their names
are stored in a specific file, which can be updated. We will be able to choose
whether conversions are accepted or not, or to choose a subset of the set of all
defined conversions.

We define a Conversions class, which will store all the conversions available
in the system. This class will be a singleton [3], because we do not need more
than one instance of it. We also define a Conversion interface, which will handle
the actual conversion, and which has three methods (Figure 3). The methods
getFirstClass() and getSecondClass() are used to determine what type of
conversions the concrete class deals with. The convert(...) method converts
one of the two parameters to the class of the other parameter. Because we do
not need to know which parameter has been converted, the result will be an array
with two elements.

When the constructor of the Conversions class is called, it will dynamically
load from the file all the classes that implement the Conversion interface, and store

INTEGRATING CONVERSIONS INTO A COMPUTATIONAL ALGEBRAIC SYSTEM 45

an instance of each class in a list. The method existConversion(...) verifies
whether there exists a conversion between the two classes given as parameters. If
there is one, the convert(...) method of the Conversions class will be used to
make the actual conversion, using the corresponding Conversion class.

Figure 3. Integer - Real - Complex conversions.

The inconvenience of this solution is that a different conversion class must be
defined for each possible compatibility. We must define a class for converting an
integer to a real, one for converting a real to a complex, and also one for converting
an integer to a complex. This inconvenience can be solved using a graph of types
and then finding the smallest path from one type to another. The vertices of
this graph represent the types, and an edge between two vertices represents a
compatibility between the two corresponding types.

In the following, we present two approaches to integrate this design into the
algebraic system.

3.2. The Template Method Approach. For each operation equals(), plus(),
minus(), etc. the same steps are followed every time, so one approach to integrate
the conversions could be based on Template Method design pattern [3].

As we have said before, two algebraic elements are considered compatible if
they have the same class or there is a conversion between them (Section 3). Any
algebraic element can be compared for equality with another algebraic element if
they are compatible. So, AlgElem has an equals() method that compares two
AlgElems for equality.

It is desirable to build an extendible system, to which the user can add new
types. For each new type, the developer will have to override the equals()
method, where he/she has to verify first if those elements are compatible. The
equals() method is implemented as a template method. It verifies whether the
elements have the same type, and if they do, it calls the method equalsS()
which compares two elements of the same type. If the elements have different
types, but they are compatible, it first calls the convert() method and then the

46 VIRGINIA NICULESCU AND GRIGORETA SOFIA MOLDOVAN

equalsS() method to compare them. If the types are incompatible, an exception
is thrown. Therefore, the AlgElem defines not only the method equals() (the
template method), but also an abstract method equalsS().

public abstract class AlgElem {

public final boolean equals(AlgElem e)

throws IncompatibleClassesException{

if (this.getClass()!=e.getClass()){

if (Conversions.getInstance().existConversion(

this.getClass(),e.getClass())){

AlgElem[] conver=Conversions.getInstance().convert(this, e);

return conver[0].equalsS(conver[1]);

}else

throw new IncompatibleClassesException("There is not defined

any conversion between "+this.getClass()+" "+e.getClass());

}else

return this.equalsS(e);

}

protected abstract boolean equalsS(AlgElem o);

}

Figure 4. Java implementation of the class AlgElem.

In the hierarchy of algebraic structures (Figure 1) there are other operations that
need to use conversions: plus(), minus(), times(), etc. These operations
take parameters(operands) which should have the same type. But there are cases
when these operations could be called with parameters of different types, because
the types are compatible.

The first time such an operation appears in the hierarchy, we define a template
method for it. This template method calls another method that does the actual
work on the parameters of the same type. The implementation is similar to that
for equals.

This solution is quite good but it spans over many classes (AlgElem,
SemigroupElem, GroupElem, RingElem and DivisionRingElem) and any modifi-
cations/changes to the conversions module will also have to be done in all these
classes. This solution also adds a number of new methods to the algebraic struc-
tures interfaces, which increases the complexity.

If we decide not to allow conversions, or to only allow a subset of the defined
conversions, we have to replace the file that contains them. No recompilation of
the program is needed.

3.3. The Aspect Oriented Approach. The second approach uses Aspect Ori-
ented Programming(AOP) [1].

AOP is a new methodology that provides separation of crosscutting concerns
(as logging, authorization, etc.) by introducing a new unit of modularization, the

INTEGRATING CONVERSIONS INTO A COMPUTATIONAL ALGEBRAIC SYSTEM 47

aspect that crosscuts other modules. With AOP it is possible to implement cross-
cutting concerns in aspects instead of fusing them in the core modules. An aspect
weaver, which is a compiler-like entity, composes the final system by combining
the core and crosscutting modules through a process called weaving. The result
is that AOP modularizes the crosscutting concerns in a clear-cut fashion, yielding
a system architecture that is easier to design, implement, and maintain. Aspect-
oriented programming is a way of modularizing crosscutting concerns much like
object-oriented programming is a way of modularizing core concerns.

Conversions are concerns that are separated from operations such as equals(),
plus(), etc. In order to integrate conversions in the system using this approach,
all we have to do is define an aspect: ConversionsAspect that contains the calls to
the conversions. For each method that might use conversions we define a pointcut
and an advice. The pointcut gathers the context and other necessary information,
and the advice tells what it must be done when the pointcut is reached. The code
below presents the pointcut for equals() when AspectJ [2] is used:

equals(AlgElem e1,AlgElem e2): target(e1) && args(e2) &&

execution(* AlgElem+.equals(AlgElem) throws IncompatibleClassesException);

We consider here as join point the execution of the method equals() from
AlgElem or any of its subclasses. After that, we define an advice for it. Because
this method might throw an exception when there is no conversions between the
two algebraic elements, and the body of equals() is no longer executed, we need
to use the around() advice:

Object around(AlgElem e1,AlgElem e2)

throws IncompatibleClassesException : equals(e1,e2){

if (e1.getClass()!=e2.getClass()){

if (Conversions.getInstance().existConversion(

e1.getClass(),e2.getClass())){

AlgElem[] conver=Conversions.getInstance().convert(e1,e2);

return new Boolean(conver[0].equals(conver[1]));

}else

throw new IncompatibleClassesException("There is not defined

any conversion between "+e1.getClass()+" "+e2.getClass());

}else

return proceed(e1,e2);

}

The pointcuts and advices are very similar for all operations, but after a call
to conversions the context might change, so we must take into consideration this
situation, as well. For example, if we try to compare a real to a complex, the
equals() method called belongs to the first parameter (which belongs to the
Real class), but after the conversion we need to call the equals() method from
the Complex class, and this is not possible using AspectJ proceed() statement,
which remembers the states of each parameters from the advice.

48 VIRGINIA NICULESCU AND GRIGORETA SOFIA MOLDOVAN

If later we decide not to use conversions, we have to recompile the system
without the ConversionsAspect. We could replace this aspect with another one
to check the compatibility of the parameters type, but it is not mandatory.

Using AOP there is no need to add more methods in the algebraic structure
classes, the conversion crosscutting concern is kept in one place, and if in the fu-
ture more operations that need conversions are added, the only place that must
be changed/modified is the aspect. If the Conversion module is changed, modifi-
cations must also be done in only one place, the ConversionsAspect aspect.

4. Conclusion

We have analyzed how conversions could be added to an algebraic system. The
design is based on reflection and dynamic loading, and can be integrated using two
approaches. The first one uses Template Method design pattern. This approach
is easy to understand and allows adding new types and operations that might use
convertions without recompilation. But it also has some disadvantages. For each
operation a new template method has to be built and this increases the complexity
of maintenance and extendibility. If the conversions are removed, the execution is
still slown down because of the verifications done by the template methods. The
second approach uses Aspect Oriented Programming. Using this approach there
is no need to add new methods in the algebraic structures classes, the conversion
crosscutting concern is kept in one place, and if in the future more operations that
need conversions are added, the only place that must be changed is the aspect.
But any addition of new types needs recompilation of the whole system. If the
conversions are removed, we need to recompile the whole system, but the execution
is not slown down by verifications.

References

[1] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Irwin.
Aspect-Oriented Programming, Proceedings European Conference on Object-Oriented Pro-
gramming (ECOOP), Springer-Verlag, 1997, pages 220–242.

[2] The AspectJ web site: http://eclipse.org/aspectj.
[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable

Object Oriented Software, Addison-Wesley, 1995.
[4] Niculescu V, Moldovan G.S.,Building an Object Oriented Computational Algebra System

Based on Design Patterns, Proceedings of 7th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC’05), IEEE Computer Press, 2005.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: vniculescu@cs.ubbcluj.ro

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: grigo@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 2, 2005

COMPUTING DEFAULT EXTENSIONS. A HEURISTIC
APPROACH

MIHAIELA LUPEA

Abstract. Default logics represent a simple but a powerful class of non-
monotonic formalisms. The main computational problem specific to these
logical systems is a search problem: finding all the extensions (sets of non-
monotonic theorems - beliefs) of a default theory. GADEL is an automated
system based on a heuristic approach of the classical default extension com-
puting problem and applies the principles of genetic algorithms to solve the
problem. The purpose of this paper is to extend this heuristic approach for
computing all type of default extensions: classical, justified, constrained and
rational.

1. Introduction

The nonmonotonic reasoning is an important part of human reasoning and rep-
resents the process of inferring conclusions (only plausible, not necessary true) from
incomplete information. Adding new facts may later invalidate these conclusions,
called beliefs.

The family of default logics is based on first-order logic and introduces a new
type of inference rules, called defaults. These special inference rules model laws
that are true with a few exceptions, formalizing a particular type of nonmonotonic
reasoning, called default reasoning. The differences among different variants of
default logic are caused by the semantics of the defaults. These logical systems
are sintactically very simple, but very powerful in their inferential process.

A default theory ∆ = (D, W) consists of a set W of consistent formulas of
first order logic (the facts) and a set D of default rules. A default has the form
d = α:β1,...,βm

γ , where: α is called prerequisite, β1, . . . , βm are called justifications
and γ is called consequent.

A default d = α:β1,...,βm

γ can be applied and thus derive γ if α is believed and it
is consistent to assumed β1, . . . , βm(meaning that ¬β1, . . . ,¬βm are not believed).

2000 Mathematics Subject Classification. 03B79, 68T15, 68T27.
1998 CR Categories and Descriptors. I2 [Artificial Intelligence]: Logic in artificial in-

telligence – default logics, nonmonotonic reasoning, theorem proving .

49

50 MIHAIELA LUPEA

Using the classical inference rules and the defaults, the set of facts, W, can
be extended with new formulas, called nonmonotonic theorems (beliefs) obtaining
extensions.

The set of defaults used in the construction of an extension is called the gener-
ating default set for the considered extension.

In this paper we will use the following notations (d = α:β
γ):

Prereq(d) = α, Justif(d) = β, Conseq(d) = γ, Prereq(D) =
⋃

d∈D Prereq(d),
Justif(D) =

⋃
d∈D Justif(d), Conseq(D) =

⋃
d∈D Conseq(d),

Th(X) = {A|X ` A} the classical deductive closure of the set X of formulas.
The versions (classical, justified, constrained, rational) of default logic try to

provide an appropriate definition of consistency condition for the justifications of
the defaults, and thus to obtain many interesting and useful properties for these
logical systems:

• Classical default logic was proposed by Reiter [9]. Due to the indi-
vidual consistency checking of justifications and thus the loss of im-
plicit assumptions when are constructed the classical extensions, this
logical system does not satisfy some desirable formal properties: semi-
monotonicity, regularity, existence of extensions, commitment to as-
sumptions.

• Justified default logic was introduced by Lukaszewicz [3]. The applica-
bility condition of default rules is strengthen and thus individual in-
consistencies between consequents and justifications are detected, but
inconsistencies among justifications are neglected. In this logical sys-
tem the existence of extensions and the semi-monotonicity property is
guaranteed.

• Constrained default logic was developed by Schaub [10]. The consis-
tency condition is a global one and it is based on the observation that in
commonsense reasoning we assume things, we keep track of our assump-
tions and we verify that they do not contradict each other. This logic is
strongly regular, semi-monotonic, strongly commits to assumptions and
guarantees the existence of extensions.

• Rational default logic was introduced in [7] as a version of classical default
logic, for solving the problem of handling disjunctive information. The
defaults with mutually inconsistent justifications are never used together
in constructing a rational default extension. This logic is strongly regular
but does not guarantee the existence of extensions, is not semi-monotonic
and does not commit to assumptions.

Automated theorem proving for default logics has began with solving the ex-
tension computing problem for particular default theories: normal, ordered semi-
normal, and then was extended to general theories. The classical theorem proving

COMPUTING DEFAULT EXTENSIONS. A HEURISTIC APPROACH 51

methods: resolution, semantic tableaux method, connection method, were incor-
porated and adapted in automated systems to solve specific tasks:

• DeRes [2] computes classical extensions for stratified default theories,
using a semantic tableaux propositional prover;

• Exten [1] is based on an operational approach for computing classical,
justified and constrained extensions;

• Xray [12] represents an approach of the query-answering problem in
constrained and cumulative default logics;

• DARR [5] is a theorem prover for constrained and rational default logics
based on a modified version of propositional semantic tableaux method.

Due to its very high level of theoretical complexity (
∑p

2−complete), caused by
the great power of the inferrential process, the problem of finding the extensions
of a default theory, can be solved in an efficient manner only for particular classes
of default theories.

In the paper [8] a heuristic approach of the classical extension computation
problem is presented. An efficient automated system, called GADEL [8], which
computes the classical extensions for propositional default logic using the principles
of genetic algorithms was also developed.

The purpose of this paper is to extend this heuristic approach for computing
all type of default extensions: classical, justified, constrained and rational.

2. Default logics

The results from [6] show that default theories can be represented by unitary
theories (all the defaults have only one justification, d = α:β

γ) in such a way that
extensions (classical, justified, constrained, rational) are preserved. In this paper
we will use only unitary default theories.

Definition 1. [13] A set X of defaults is grounded in the set of facts W if there is
an enumeration 〈di〉i∈I of the defaults from X such that:

∀i ∈ I we have W ∪ Prereq({d0, d1, ..., di−1}) ` Prereq(di).

The following theorems provide global characterizations for classical, justified,
constrained and rational extensions of a default theory using the generating default
sets.

Theorem 1. [11] Let (D,W) be a default theory, and let E be a set of formulas.
E is a classical extension of (D,W) if and only if E = Th(W ∪Conseq(D′)) for
a maximal set D′ ⊆ D such that D’ is grounded in W and the following conditions
are satisfied:

• For any α:β
γ ∈ D′: W ∪ Conseq(D′) ∪ {β} is a consistent set;

• For any α:β
γ /∈ D′: W ∪ Conseq(D′) ∪ {β} is inconsistent or

W ∪ Conseq(D′) ∪ {¬α} is consistent.

52 MIHAIELA LUPEA

This theorm shows that the defaults are nonmonotonic inference rules, meaning
that conclusions derived using defaults can be later invalidated by adding new
facts. The consistency condition for justifications is an individual one.

Theorem 2. [4] Let (D,W) be a default theory, and let E, J be sets of formulas.
(E,J) is a justified extension of (D,W) if and only if E = Th(W ∪Conseq(D′))
and J = Justif(D′) for a maximal set D′ ⊆ D such that D’ is grounded in W and
the conditions:

• ∀d ∈ D′: the set W ∪ Conseq(D′) ∪ Justif(d) is consistent.
are satisfied.

The justifications of the generating default set satisfy an individual consistency
condition (stronger than in the classical default logic) and are memorized in a
support set J. Unfortunatly this set may be inconsistent, and thus two formulas
of the actual extension E may be derived using contradictory assumptions.

Theorem 3. [10] Let (D,W) be a default theory, and let E, C be sets of formu-
las. (E,C) is a constrained extension of (D,W) if and only if E = Th(W ∪
Conseq(D′)) and C = Th(W ∪ Conseq(D′) ∪ Justif(D′)) for a maximal set
D′ ⊆ D such that D’ is grounded in W and the following condition is satisfied:

• the set W ∪ Conseq(D′) ∪ Justif(D′) is consistent.

Each constrained extension is generated by a set of defaults whose justifications
and consequents are together consistent, and at the same time consistent with the
set of facts. The actual extension E is embedded in a consistent context C where
all the assumptions (justifications) used in the reasoning process are retained.

Theorem 4. [4] Let (D,W) be a default theory, and let E, C be sets of formulas.
(E,C) is a rational extension of (D,W) if and only if E = Th(W ∪Conseq(D′))
and C = Th(W ∪ Conseq(D′) ∪ Justif(D′)) for a maximal set D′ ⊆ D such that
D’ is grounded in W and the conditions:

• the set W ∪ Conseq(D′) ∪ Justif(D′) is consistent;
• ∀d ∈ D\D′ we have:

– W ∪ Conseq(D′) ∪ ¬Prereq(d) is consistent or
– W ∪ Conseq(D′) ∪ Justif(D′ ∪ d) is inconsistent,

are satisfied.

The theorem above states that the reasoning context C must be consistent and
the set of generating defaults must be maximal-active [7] with respect to W and
the actual extension E, for a rational extension.

From theorems 1,2,3 and 4 we can conclude that all four types of extensions
are deductive closures of the set W (explicit content) and the consequents of the
generating default set D’ (implicit content).

According to the initial fixed-point definitions of all variants of default logic we
have the following definitions for the generating default sets:

COMPUTING DEFAULT EXTENSIONS. A HEURISTIC APPROACH 53

Definition 2. Let E1 be a classical extension, (E2, J) be a justified extension,
(E3, C3) be a constrained extension and (E4, C4) be a rational extension of the
default theory (D,W), then we have:

• GDE1
(D,W) =

{
α:β
γ ∈ D|α ∈ E1 and E1 ∪ {β} is consistent

}

is the generating default set for the classical extension E1;
• GD

(E2,J)
(D,W) =

{
α:β
γ ∈ D|α ∈ E2 and ∀η ∈ J ∪ E2, E2 ∪ {γ, η} consistent

}

is the generating default set for the justified extension (E2, J);
• GD

(E3,C3)
(D,W) =

{
α:β
γ ∈ D|α ∈ E3 and C3 ∪ {β, γ} is consistent

}

is the generating default set for constrained extension (E3, C3);
• GD

(E4,C4)
(D,W) =

{
α:β
γ ∈ D|α ∈ E4 and C4 ∪ {β} is consistent

}

is the generating default set for the rational extension (E4, C4).

From [11] and [13] we have the following result regarding the generating default
sets of different types of extensions.

Theorem 5. The generating default sets for every type of extension are grounded
in the set of facts of the default theory.

Example: In this example we illustrate many types of contradictory informa-
tion in consequents and justifications of the defaults and show how the versions
of default logic solve them. The default theory (D,W) with W = {F ∨ C} and
D =

{
d1 = :A

B , d2 = :¬A
C , d3 = :¬B∧¬F

G , d4 = :¬B∧¬C
E

}
has:

• One classical extension: E1 = Th({F ∨ C, B, C}) with D1 = {d1, d2}
as a generating default set.

• Three justified extensions:
– (E1, J1)=(Th({F ∨ C, B, C}), {A,¬A}) with D1 as a generating

default set;
– (E2, J2)=(Th({F ∨ C, G, E}),{¬B ∧ ¬C,¬B ∧ ¬F}) with

D2={d3, d4} as a generating default set;
– (E3, J3)=(Th({F ∨ C, C, G}), {¬A,¬B ∧ ¬F}) with D3 = {d2, d3}

as a generating default set.
• Three constrained extensions:

– (E4, C4) =(Th({F ∨ C, B}), Th({F ∨ C, B, A})) with D4 = {d1}
as a generating default set;

– (E5, C5) =(Th({F ∨ C, C,G}),Th({F ∨ C, G,¬A,¬B ∧ ¬F})) with
D5 = {d2, d3} as a generating default set;

– (E6, C6) =(Th({F ∨ C, E}), Th({F ∨ C, E,¬B ∧ ¬C}))with D6 =
{d4} as a generating default set.

• Two rational extensions: (E4, C4) and (E5, C5).

54 MIHAIELA LUPEA

3. A heuristic approach of the extension computation problem

In this section we extend the heuristic approach of the classical extension prob-
lem from [8] to all types of default extensions: justified, constrained, rational.
The theorems from the previous section show that the problem of finding exten-
sions can be reduced to the problem of finding the generating default sets for those
extensions.

In this heuristic approach we need to define a search space for generating default
sets and an evaluation function to compute the fitness of each element of this space
according to the definitions of different types of default extensions.

For a default theory (D,W) we define the search space as the set CGD = 2D,
representing all possible configurations, called candidate generating default sets.

Definition 3. For a default theory (D,W) and X ∈ CGD we define:
- candidate extension associated to X: CE(X) = Th(W ∪ Conseq(X));
- candidate context associated to X: CC(X) = Th(W ∪Conseq(X)∪ Justif(X));
- candidate support set associated to X: CJ(X) = Justif(X).

For defining the evaluation function we need four intermediate functions:
f type
0 , f type

1 , f type
2 , f type

3 , where type=clas for classical extensions, type=just for
just ified extensions, type=cons for constrained extensions and type=rat for rat ional
extensions.

f type
0 rates if the candidate extension / candidate context is consistent or not

as follows:

f clas
0 (X), f just

0 (X) =
{

0 if CE(X) is consistent
1 otherwise

fcons
0 (X), frat

0 (X) =
{

0 if CC(X) is consistent
1 otherwise

f type
1 rates the correctness of the candidate generating default set according to

the definitions of different types of default extensions:
f type
1 (X) =

∑n
i=1 π(di), where D = {d1, d2, ..., dn}

The next table defines π(di) - a penalty for each default of D, where k>0.

case di ∈ X CE(X) ` αi Cond-justif type π(di) di = αi : βi

γi

1 true true true 0 di correctly applied
2 true true false k di wrongly applied
3 true false true k di wrongly applied
4 true false false k di wrongly applied
5 false true true k di wrongly not applied
6 false true false 0 di correctly not applied
7 false false true 0 di correctly not applied
8 false false false 0 di correctly not applied

COMPUTING DEFAULT EXTENSIONS. A HEURISTIC APPROACH 55

The condition Cond − justif type represents the consistency condition for the
justifications of defaults according to the Definition 2 of the generating default
sets for different types of extensions.

• Cond− justif clas : CE(X) ∪ {βi} is consistent;
• Cond− justif just : ∀η ∈ CJ(X) ∪ βi : CE(X) ∪ {η, γi} is consistent;
• Cond− justif cons : CC(X) ∪ {βi, γi} is consistent;
• Cond− justifrat : CC(X) ∪ {βi} is consistent.

f type
2 rates the level of groundness of the candidate generating default set as

follows: f type
2 (X) = card(Y), where Y is the biggest grounded set Y ⊆ CGD.

f type
3 checks the groundness property of X:

f type
3 (X) =

{
0 if X is grounded
1 otherwise

Definition 4. For a default theory (D,W) the evaluation function for a candidate
generating default set X ∈ CGD of an extension of type ∈ {clas, just, cons, rat}
is defined by:

evaltype : CGD 7−→ Z ∪ {⊥,>}
if f type

0 (X) = 1
then evaltype(X) = >
else if f type

1 (X) = 0 and f type
3 (X) = 0

then evaltype(X) = ⊥
else evaltype(X) = f type

1 (X)− f type
2 (X)

endif
endif

The following theorem provides a necessary and sufficient condition for a set
of defaults to be a generating set for an extension of type ∈ {clas, just, cons, rat}
using the evaluation function evaltype.

Theorem 6. Let (D,W) be a default theory. A candidate generating default set
X ∈ CGD generates an extension of type ∈ {clas, just, cons, rat} if and only if
evaltype(X) = ⊥.

Proof of ”⇒”:
Let (W,D) be a default theory, D’ a generating default set for an extension of

type ∈ {clas, just, cons, rat} and suppose that evaltype(D′) 6= ⊥. We have two
cases a) evaltype(D′) = > or b) evaltype(D′) ∈ Z.

a) If evaltype(D′) = > then according to Definition 4, f type
0 (D′) = 1, which

means that:
• CE(D′) = Th(W ∪Conseq(D′)) is inconsistent for classical and justified

default logics.
But from Theorem 1 and Theorem 2, with D’ as a generating default

56 MIHAIELA LUPEA

set, W ∪ Conseq(D′) is consistent as a subset of consistent sets.
Thus we have that the deductive closure of a consistent set is inconsis-
tent, which is a contradiction.
Therefore for a generating default set of a classical or justified extension
we can not have evaltype(D′) = >.

• CC(D′) = Th(W ∪ Conseq(D′) ∪ Justif(D′)) is inconsistent for con-
strained and rational default logics.
But from Theorem 3 and Theorem 4, with D’ as a generating default
set, W ∪ Conseq(D′) ∪ Justif(D′) is consistent.
Thus we have that the deductive closure of a consistent set is inconsis-
tent, which is a contradiction.
Therefore for a generating default set of a constrained or rational exten-
sion we can not have evaltype(D′) = >.

b) If evaltype(D′) ∈ Z, then according to Definition 4, we have f type
1 (D′) 6= 0

or f type
3 (D′) 6= 0

• f type
3 (D′) 6= 0 means that D’ is not grounded in W, which contradicts the

fact that a generating default set for every type of extension is grounded
in W.

• f type
1 (D′) 6= 0 implies that ∃d ∈ D such that π(d) 6= 0.
– According to the definition of π(d) there is only the case 5: ∃d ∈

D−D′ such that π(d) 6= 0, meaning that the default d is wrongly not
applied. This contradicts the maximality of the generating default
set D’ for all types of extensions, from the theorems 1,2,3,4.

– There are 3 cases for which ∃d ∈ D′ such that π(d) 6= 0, with the
meaning that the default d is wrongly applied.
i) case 3 and case 4 from definition of π(d) imply that the condition
for the prerequisite: CE(D′) ` α is false, which contradicts the
property of groundness for a generating default set.
ii) case 2 from the same definition of penalty implies that the consis-
tency condition for the justification of the default d is false, which
contradicts Definition 1 of the generating default sets for all types
of extensions.

Therefore for a generating default set of any type ∈ {clas, just, cons, rat} of ex-
tension we can not have evaltype(D′) ∈ Z.

From a) and b) we can conclude that evaltype(D′) = ⊥, where D’ is a generating
default set of any type ∈ {clas, just, cons, rat} of extension.

Proof of ”⇐”: Suppose that X ∈ CGD is a candidate generating default set of
type ∈ {clas, just, cons, rat} of extension and evaltype(X) = ⊥. From Definition
4 and evaltype(X) = ⊥ we have that f type

0 (X) = 0, f type
1 (X) = 0, f type

3 (X) = 0.

• f type
0 (X) = 0 means that CE(X) = Th(W ∪ Conseq(X)) is consistent

for classical and justified extensions and CC(X) = Th(W ∪Conseq(X)∪

COMPUTING DEFAULT EXTENSIONS. A HEURISTIC APPROACH 57

Justif(X)) is consistent for constrained and rational extension. From
here we have that W ∪ Conseq(X) is consistent, respectivelly W ∪
Conseq(X) ∪ Jusif(X) is consistent.

• f type
3 (X) = 0 means that X is grounded in the set of facts W.

• f type
1 (X) = 0 in cases 1,6,7,8 implies that the conditions for prerequi-

sites and justifications for the defaults from X are satisfied according
to different types of extensions, meaning that the defaults from X are
generating defaults. f type

1 (X) = k in cases 2,3,4,5 implies that all the
defaults from D-X can not be generating defaults.

Now we can easy prove that the conditions from the Theorems 1,2,3 and 4 are
satisfied, therefore X is a generating default set for different types of extensions.

Example - continued: we will calculate the evaluation function for different
candidate generating default sets, according to different types of extensions.

- evalclas(D1) = ⊥, and thus D1 is a generating default set for E1 because:
• CE(D1) = Th({F ∨ C, B, C}) consistent implies f clas

0 (D1) = 0;
• the defaults from D1 have no prerequisites, and thus f clas

3 (D1) = 0;
• f clas

1 (D1) = π(d1)+π(d2)+π(d3)+π(d4) = 0+0+0+0 = 0 according
to the definition of the penalty. d1, d2 are correctly applied (Cond −
justif clas for d1 and d2 is satisfied) and d3, d4 are correctly not applied
(Cond− justif clas for d3 and d4 is not satisfied).

- evalcons(D1) = >, therefore D1 is not a generating default set for a con-
strained extension because f cons

0 (D1) = 1 (CC(D1) = Th({F ∨ C,B,C, A,¬A})
is inconsistent).

- evalcons(D5) = evalrat(D5) = ⊥, therefore D5 = {d2, d3} is a generating
default set for the constrained and rational extension (E5,C5) because:

• CC(D5) = Th({F ∨ C,G,¬A,¬B ∧ ¬F}) is consistent, and thus
f cons
0 (D5) = frat

0 (D5) = 0;
• no prerequisites for d2 and d3 implies fcons

3 (D5) = frat
3 (D5) = 0;

• f cons
1 (D5) = frat

1 (D5) = 0, there is no penalty for the defaults of D5 :
d2, d3 are correcty applied and d1, d4 are correctly not applied.

- evalcons(D6) = ⊥ but evalrat(D6) ∈ Z, therefore D6 = {d4} is a generating
default set for the constrained extension (E5,C5) but can not be a generating
default set for a rational extension as follows:

• CC(D6) = Th({F ∨ C,E,¬B ∧ ¬C}) is consistent, and thus
f cons
0 (D6) = frat

0 (D6) = 0;
• no prerequisite for d4 implies f cons

3 (D6) = frat
3 (D6) = 0;

• f cons
1 (D6) = 0, there is no penalty for the defaults of D6 : d4 is correcty

applied and d1,d2,d3 are correctly not applied.
• f cons

1 (D6) 6= 0, there is a penalty for the defaults d1 and d2 because
they are wrongly not applied (case 5: the conditions for prerequisites
and justifications are satisfied, but d1, d2 does not belong to D6).

58 MIHAIELA LUPEA

If we try to add one or both of these defaults to D6 to obtain a new
candidate default set, the new candidate context will not be consistent,
which means that even if d1, d2 can be applied, their application will
give inconsistency.

4. Conclusions

Based on the results from [8], in this paper we proposed a heuristic approach
of the extension computing problem for all variants of default logic: classical,
justified, constrained and rational. The evaluation function is used to compute
the fitness of the elements of the search space according to the definitions of the
generating default sets for different types of extensions. Future works will consist
in developping an automated system, based on this approach and applying the
principles of genetic algorithms.

References

[1] G. Antoniou, A.P. Courtney, J. Ernst, MA. Williams, A System for Computing Constrained
Default logic Extensions, Logics in Artificial Intelligence, JELIA’96, Lecture Notes in Arti-
ficial Intelligence, 1126, 1996, pg. 237-250.

[2] P. Cholewinski, W. Marek si M. Truszczynski, Default reasoning system DeReS, Proceedings
of KR-96, Morgan Kaufmann, 1996, pg. 518-528.

[3] W. Lukasiewicz, Considerations on default logic - an alternative approach, Computational
Intelligence, 4, 1988, pg. 1-16.

[4] M. Lupea, Nonmonotonic reasoning using default logics, Ph.D. Thesis, Babes-Bolyai Uni-
versity, Cluj-Napoca, 2002.

[5] M. Lupea, DARR - A theorem prover for constrained and rational default logics, Studia
Universitas Babes-Bolyai, Informatica, XLVII, No.1, 2002, pg. 45-52.

[6] W. Marek, M. Truszczynski, Normal form results for default logics, Non-monotonic and
Inductive logic, Springer Verlag, LNAI 659, 1993, pg. 153-174.

[7] A. Mikitiuk, M. Truszczynski, Rational default logic and disjunctive logic programming, A.
Nerode, L.Pereira, Logic programming and non-monotonic reasoning, MIT Press, 1993, pg.
283-299.

[8] P. Nicolas, F. Saubion, I. Stephan, Genetic algorithm for extension search in default logic,
8-th International Workshop on Non-Monotonic Reasoning, 2000.

[9] R. Reiter, A Logic for Default reasoning, Artificial Intelligence 13, 1980, pg. 81-132.
[10] T.H. Schaub, Considerations on default logics, Ph.D. Thesis, Technischen Hochschule Darm-

stadt, Germany, 1992.
[11] T.H. Schaub, The automation of reasoning with incomplete information, Springer-Verlag,

Berlin, 1997.
[12] T.H. Schaub, XRay system: An implementation platform for local query-answering in de-

fault logics, Applications of Uncertainty Formalisms, Lecture Notes in Computer Science,
vol 1455, Springer Verlag, 1998, pg. 254-378.

[13] C. Schwind, A tableaux-based theorem prover for a decidable subset of default logic, Pro-
ceedings CADE, Springer Verlag, 1990.

Babeş Bolyai University, Cluj Napoca,Romania
E-mail address: lupea@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 2, 2005

SOME REMARKS ABOUT FEATURE SELECTION IN WORD
SENSE DISCRIMINATION FOR ROMANIAN LANGUAGE

DANA AVRAM LUPSA, DOINA TATAR

Abstract. The problem of feature selection in Word Sense Discrimination
(a subtask of Word Sense Disambiguation) is crucial for the accuracy of re-
sults. The paper proposes as a new feature the length of words [1]. Some
combination between this feature and other features usually used are studied
and presented.

1. Introduction

The task of Word Sense Discrimination is to divide the occurrences of a word
into a number of classes. It differs from the more general Word Sense Disambigua-
tion (WSD) [20, 4] in the fact that we need only to determine which occurrences
have the same meanings and not what the meaning actually is. The result is that
a reference to an external knowledge source for sense definition is not required for
the task of Word Sense Discrimination. Since WSD is a necessary step in a large
range of applications, for many problems in information access it is sufficient to
solve the discriminating problem only.

In this paper we present some remarks about feature selection in context-group
discrimination method. The method was first introduced by Shutze ([15]) and
consist in an unsupervised grouping of a set of contextually similar occurrences of
an ambiguous word into a same cluster. The approach of this problem is based on
the strong contextual hypothesis of Miller and Charles ([6]) which states that “two
words are semantically related to the extent that their contextual representations
are similar”.

In [9] the authors systematically compare unsupervised word sense discrimi-
nation using different features of representing contexts and different clustering
methods. In this paper we present some experiments made with SenseCluster
using a corpus in Romanian language.

The hypothesis we introduce in this paper is that longer words carry more
semantic significance on their own.

Received by the editors: November 1, 2005.
2000 Mathematics Subject Classification. 68T50, 68Q32.
1998 CR Categories and Descriptors. I.2.7 [Computing Methodologies]: ARTIFICIAL

INTELLIGENCE – Natural Language Processing .

59

60 DANA AVRAM LUPSA, DOINA TATAR

The paper is structured as follows. Section 1 and 2 contain an introduction
in Word Sense Discrimination problem and a presentation of SenseClusters tool.
Section 3 presents the problem of feature selection in learning algorithms as well
as a new introduced feature characterisation. Section 4 contains the experiment
and evaluations of the results. In Section 5 some conclusions and future directions
are presented.

2. SenseClusters

SenseClusters is a freely available word sense discrimination system ([17]) devel-
oped at the University of Minnesota, Duluth. It provides support for [9]: feature
selection from an input corpus selected by user, for several different context rep-
resentation methods, for various clustering algorithms and for evaluation of the
discovered clusters. SenseClusters creates clusters made up of some contexts (in-
stances) in which a given target ambiguous word occurs. A context is a group
of 2 or 3 sentences, one of which contains the target word. Processing starts
by selecting a corpus (in format of Senseval contests) and then selecting of fea-
tures. SenseClusters supports the use of most frequent words (unigrams), the
most frequent groups of two words with or without words intervening between
them (bigrams) and co-occurence features (bigrams that include the target am-
biguous word). The method used by the system is to represent each context as
a vector. This vector could be binary, if it shows that a feature occurs or not
in the context, or the frequency vector, if it shows how often the feature occurs
in the context. This association of features with contexts is called “first order
context vector”, as different of “second order context vectors”, introduced in [15].
There, the context vector is the average of the first order vectors associated with
the words that occur in the context.

SenseClusters interface provides support for a number of clustering techniques
provided by CLUTO, a Clustering Toolkit ([12]). It also offers the options for a
number of similarity measures as simple matching, the cosine, the Jaccard and the
Dice measures.

SenseClusters produces clusters of contexts where each cluster refers to a par-
ticular sense. The evaluation of these clusters is made with the help of an existing
external knowledge of correct senses (the gold standard senses). The system pro-
duces a confusion matrix which shows the distribution of correct senses in each
of the discovered clusters. The problem of assigning the maximally accurate dis-
crimination becomes one of re-ordering the columns of the confusion matrix to
maximize the diagonal sum. This method corresponds to several known methods
in operation research.

3. Feature selection in learning algorithms

Notational conventions for WSD used in the following are as in [4], [20]:

SOME REMARKS ABOUT FEATURE SELECTION 61

• w– the ambiguous word (target word);
• v1, · · · , vJ— words used as contextual features for disambiguation of w.

Regarding v1, · · · , vJ , there are many possibilities. In [5] the author enumerated
some sets of good indicators of word senses which could be selected as features:

• 0-param features, which can be used or not, without any parameter to
set (as example the part of speech (POS) of a surrounding word). In
addition in [5] are mentioned 0-param features as: verb before, verb
after, noun before, noun after, named entity before, named entity after,
preposition before, preposition after, pronoun before, pronoun after;

• 1-param features, which have one variable parameter that can be set to a
specific value; (for example the length of a window of surrounding words
or the position of a collocated word with the ambiguous word w);

• 2-param features, which have two parameters associated. As an example
consider “a number” of words (the first parameter) which occur at least
“a number” of times (the second parameter). As a second example
consider “a number” of bigrams (first parameter) occurring at least “a
number” of times (the second parameter).

A system used at contest Senseval 2 during the English all words task and
English lexical sample task, based on these features selection, was ranked as the
best performing one in the ranking made before the deadline.

In [7] the features are considered in the following three categories:
• morphological features (number for nouns, tense for verbs);
• POS features of two words immediately preceding and following the am-

biguous word;
• collocation features which indicate if a particular word occurs in a win-

dow with the ambiguous word.

3.1. New Word Feature Characterization. In this paper we propose to take
into consideration also the length of the words and we examinate this on the
Romanian language word sense discrimination case.

Our ideea is based on two facts:
(1) The first is that longer words carry more semantic information of their

own. For example, most prepositions and conjunctions are shorter words
in a given language.

(2) The other is that longer words are less predilect to accumulate new
meanings .

In Romanian, a special case of written word polysemy exists in the case of
different words with different pronunciation and the same spelling. In what follows
we will refer to it as f-homonimy. Because f-homonims are different words with
the same written form, in what follows we need to make the distinction between
the word and the vector of letters that constitutes the written form of the word.

62 DANA AVRAM LUPSA, DOINA TATAR

Whenever we need to make this distinction, we will use the term “word form” to
refere the letters of the written form of the word.

In order to test our intuition (item (2) in the list above), for each possible
word length we compared the number of word forms in Romanian language with
the number of word forms which have f-homonims. In this paper, we study the
case of f-homonimy instead of polisemy for Romanian language, because a free
version of DEX ([2]) is available and because distinct words with the same form
(f-homonims) are easy to identify because they have distinct entries in DEX.

By using the Romanian DEX ([2]) we have extracted all distinct word forms
that are entries in DEX and also all word forms that have more than one entry in
DEX. Their absolute frequencies for each possible word length is depicted on the
same graphic (figure 1).

Figure 1. The number of F-Homonymic word lenghts compared
with lengths of all words for Romanian language

Sub-Figure (1.A) presents the histogram of the absolute word form frequency
for a given length and absolute frequency of f-homonimic word forms. Sub-Figure
(1.B) represents the ratio between frequency of f-homonimic word forms and fre-
quency of all word forms for each possible word length. The representation from

SOME REMARKS ABOUT FEATURE SELECTION 63

(1.B) indicates more visibly that the ratio between f-homonimic word forms fre-
quency and word forms frequency is decreasing while word length is increasing.
This is the remark (related to 2) we intend to take advantage of when we introduce
the feature selection parametrized by the length of the word feature.

4. The Experiment

4.1. How we evaluate our hypothesis. The hypothesis we introduce in this
paper is that longer words carry more semantic significance on their own and are
less polysemantic. A consequence of this is that selecting longer words as attributes
of a context should characterize better the context.

One way of doing word sense discrimination is to cluster the contexts of am-
biguous word. A cluster of contexts corresponds to contexts of the same meaning
of the given word. Choosing better attributes for the contexts should bring better
results for the word sense discrimination process.

We evaluate the importance and the influence on clustering process by selecting
different word lengths as context attributes and we use that for clustering contexts
of some polisemous Romanian words. For clustering contexts of word occurences,
we use the SenseClusters program. A presentation of the application was made by
its authors in [3], [13], [12]. The use of clustering similar contexts in word sense
discrimination and the influence of different parameters is studied in [9], [11],[10].

We want to represent the meaning of a context as an average meaning of the
words that appear in the context. Following this idea, we choose to use the agglom-
erative clustering method with average link criteria function. There are argues in
literature [11], [10] that the average link criteria function fares well.

We use the unigram and bigram type of feature. There is not a consentaneous
opinion about which of them is better. The work presented in [8] emphasizes the
importance of bigram in word sense dezambiguation, while in [11] co-occurences
and unigrams achieved the overall best results. For our data, unigrams performed
better than bigrams.

From SenseClusters point of view, bigrams features are pairs of words that occur
in a given order within some distances from each other. We choose a window size
of three, meaning that there could be at most one intervening word between the
first and the second word that make a bigram.

Unigrams are single words that occur in the same context as the target word
and they are made up of all the words found in context.

The new parameter we introduce is the length of feature words. We used as
word length parameter the values 2, 3, ..., 10. In general, the length parameter
indicates that the length of the word feature is greater than the parameter value.
For unigrams, it means that selected feature words are longer than the indicated
value. In the case of bigram attributes, this parameter refers to the two feature
words which are selected according to the bigram model. In this case we enforce
that both feature words to be longer than the length parameter.

64 DANA AVRAM LUPSA, DOINA TATAR

Figure 2. Best values of FMeasure (in percent) with and without
word length filter (on the gray line - with word length filter; on
the black line - without word length filter)

For each dataset and the two type of attribute we have worked with, we com-
pared the best result obtained with using the word length parameter and without
selecting attributes based on their word length. The results are presented in table
4.1. The dark color represents the best results obtained without any restriction of
word length and the light color represents the results obtained by using the word
length restriction.

That type of general results obtained by the application with and without using
word length parameter justifies the fact the word length parameter is worthy to
be studied. In the next section we are going to present in detail the results for all
the combinations of parameters we have studied.

4.2. Data. We use as test data a Romanian corpus from SenseEval 1 that is not
annotated with POS information. It contains contexts for 39 words, among them
there are 25 nouns. There are about 1 million words and 7674 contexts. The file
contains 248 number of senses to be disambiguated/discriminated.

We choose the words actiune (action), eruptie (eruption), problema (problem).
For each of them we have selected three set of contexts, as follows:

• one is formed by all contexts of the word and its senses in the original
selected SenseEval file;

• the other two sets of contexts are built by dividing the corpus into two
parts, with almost the same size.

The characteristics of the chosen contexts are presented in table 1.

4.3. Evaluation Method. In this study we use all the 9 datasets presented in
subsection 4.2 for each word length parameter value in {2, 3, . . . , 10}. We evaluated
each result by using F-measure values computed by SenseClusters.

1We used the file RomanianLS.unlabeled

SOME REMARKS ABOUT FEATURE SELECTION 65

word number of
senses contexts words in contexts

actiune 8 299 about 50000
actiune 7 138
actiune 8 161
eruptie 2 54 about 8500
eruptie 2 18
eruptie 2 36
problema 6 288 about 45000
problema 5 142
problema 5 146

Table 1. Characteristics of the sets of word contexts

For overall evaluation we used two methods. One is by computing the average
of the F-measure values of all datasets for each word length parameter (figures 3(a)
and 4(a)). The other is based on ranking the F-measure values and we present it
in what follows.

Borrowing ideas from the notion of Pareto dominance ([18], [19]) we define the
dominance number (definition 2) and use it for a second type of evaluation of the
importance of word length parameter.

Definition 1 (Better solution). Let S be solution space, x, y ∈ S and eval : S → <
a solution evaluation function. We define:

better solution(x; y) =
{

1 if eval(x) ≥ eval(y)
0 if eval(x) ≤ eval(y)

In other words, the definition (1) says that better solution(x; y) = 1 iff x is a
better solution than y; otherwise better solution(x; y) = 0.

Definition 2 (Dominance number). Let S be solution space , y, x1, x2, . . . xn ∈ S
and eval : S → < a solution evaluation function. The dominance number of y
over x1, x2, . . . xn is:

dominance number(y; x1, x2, . . . xn) =
n∑

i=1

better solution(y, xi)

Let us consider a data set and the F-measure value for each parameter value.
We computed the dominace number (definition 2) for each parameter value. The
overall evaluation of each parameter value is made by averaging the dominace
number for all data sets considered.

4.4. Results. We do that independently for bigram and unigram feature and for
each word length parameter. The results for bigram feature is presented in figure 3

66 DANA AVRAM LUPSA, DOINA TATAR

and the results for unigram feature are presented in figure 4. On x axis, graphic
representations contain the results for each value used as length parameter. The
y axis correspond to the average of the evaluation measure.

The use of the average of dominance number values and the results are given
in figures 3(b) and 4(b).

(a) average of FMeasures (b) average of dominace numbers cor-
responding to FMeasures

Figure 3. Evaluation for bigram word features

(a) average of FMeasures (b) average of dominace numbers corre-
sponding to FMeasures

Figure 4. Evaluation for unigram word features

It can easily be observed that the best results for bigram type of features are
achieved for length parameter with value six if we are giving credit to the evaluation
that use average of F-measure values (figure 3(a)). If we are using the evaluation
technique based on dominance number (figure 3) we should say that we get better
results if we select the words longer than five characters. As the two different

SOME REMARKS ABOUT FEATURE SELECTION 67

evaluation techniques get slightly different results, we could only claim that best
results are obtained for length parameter with value five or six.

When using unigrams, first of the two evaluation methods indicates as best
results those obtained without using the length parameter (or choosing the value
0 for this parameter), closely followed by results obtained for length parameter
with value four (figure 4(a)). The second evaluation indicates selection of word
feature by the length greater than seven as getting best results (figure 4(b)).

5. Conclusions

The experiments confirm the intuition that the results are better when using
longer words as features. The length parameter value for which the results are
better, cover the set {4, 5, 6, 7}. The non-achievement of this study is that we
couldn’t indicate a unique best value for the word length parameter.

Some future studies about other features which could improve word sense dis-
crimination results and the possibilities to integrate these conclusions in existing
WSD methods are in this moment in our attention.

References

[1] D. Avram: Extragerea informatiilor de tip semantic din texte folosind clasificare nesuper-
vizata. PhD. Thesis, Babes-Bolyai University Cluj-Napoca (in Romanian)(in preparation)

[2] dexonline - Romanian EXplanatory Dictionary , 2004.
http://www.dexonline.ro/

[3] A. Kulkarni, T. Pedersen: SenseClusters: Unsupervised Clustering and Labeling of Similar
Contexts. Proceedings of the ACL Interactive Poster and Demonstration Sessions, pp. 105–
108, 2005
http://www.aclweb.org/anthology/P/P05/P05-3027

[4] C. Manning, H. Schutze: Foundation of statistical natural language processing. MIT, 1999
[5] R. Mihalcea: Word Sense Disambiguation with pattern learning and automatic feature se-

lection. Natural Language Engineering, 1:1–15, 2002
[6] G.Miller, W.G. Charles: Contextual corelates of semantic similarity. Language and Cogni-

tive Processes, 6:1–28, 1991
[7] T. Pedersen, R. Bruce, J. Wiebe: Sequential Model Selection for Word Sense Disambigua-

tion. Proceedings of the Fifth Conference on Applied Natural Language Processing (ANLP-
97), 1997
http://www.d.umn.edu/∼tpederse/Pubs/anlp97.ps

[8] T. Pedersen: A decision tree of bigrams is an accurate predictor of word sense. In Proceed-
ings of the Second Annual Meeting of the North American Chapter of the Association for
Computational Linguistics (NAACL-01), 2001
http://www.d.umn.edu/∼tpederse/Pubs/naacl01.pdf

[9] A. Purandare, T. Pedersen: SenseClusters - Finding Clusters that Represent Word Senses.
In Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI),
2004
http://www.d.umn.edu/∼tpederse/Pubs/AAAI04PurandareA.pdf

[10] A. Purandare, T. Pedersen: Word Sense Discrimination by Clustering Contexts in Vector
and Similarity Spaces. Proceedings of the Conference on Computational Natural Language

68 DANA AVRAM LUPSA, DOINA TATAR

Learning (CoNLL) 2004
http://www.d.umn.edu/∼tpederse/Pubs/conll04-purandarep.pdf

[11] A. Purandare: Unsupervised Word Sense Discrimination by Clustering Similar Context.
PhD. Thesis, University of Minnesota, 2004

[12] T. Pedersen and A. Kulkarni: Identifying Similar Words and Contexts in Natural Language
with SenseClusters. Proceedings of the Twentieth National Conference on Artificial Intelli-
gence, 2005
http://www.d.umn.edu/∼tpederse/Pubs/aaai2005-demo-sc.pdf

[13] T. Pedersen: Language Independent Methods of Clustering Similar Contexts. Eurolan 2005
Summer School. Tutorials, 2005

[14] H. Schutze: Automatic Word Sense Discrimination. Computational linguistics, 24(1):97–
123, 1998

[15] H. Schutze: Dimensions of meaning. Proceedings of Supercomputing ’92, pp.787–796, 1992
[16]
[17] T. Pedersen, A. Purandare, A. Kulkarni: Senseclusters home page. 2005.

http://senseclusters.sourceforge.net/
[18] W. Stadler: A Survey of Multicriteria Optimization, or the Vector Maximum Problem.

Journal of Optimization Theory and Applications 29:1–52, 1979
[19] R.E. Steuer: Multiple Criteria Optimization: Theory, Computation and Application. New

York: Wiley, 1986
[20] D. Tatar: Word sense disambiguation; a short survey. Studia Univ. Babes-Bolyai,

XLIX(2):17–27, 2004

Babes-Bolyai University, Faculty of Mathematics and Computer Science, Depart-
ment of Computer Science, Cluj-Napoca, Romania

E-mail address: davram@cs.ubbcluj.ro, dtatar@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 2, 2005

THE LAW OF WORD LENGTH IN A VOCABULARY

DANA AVRAM LUPSA, RADU LUPSA

Abstract. In the literature we can find linguistics laws that are then ex-
ploited by many applications. This paper presents an empirical law that
describes the frequency of the words of a given length in a language’s vocab-
ulary, as well as the length of distinct words in a corpus. This is a law that
applies to any language.

1. Introduction

In linguistics there are some general laws that have no imediate consequences
for computational linguistics. There are also some laws that are a gold mine and
are exploited by many applications on computational linguistics.

From the first category are Zipf law and Heaps law. In linguistics, Zipf law [14]
states that while only a few words are used very often, many or most are seldom
used. The frequency of a word ranked the n-th (notated Pn) is given by the next
relation: Pn ≈ 1

nα , where α is almost 1. This means that a word that occurs 10
times more frequently than another word, it is ranked 10 less. Heaps law [13] is an
empirical law which describes the portion of a vocabulary which is represented by
an instance document (or set of instance documents) consisting of words chosen
from the vocabulary V. This can be formulated as VR(n) = K × nβ , where VR is
the subset of the vocabulary V represented by the instance text of size n. K and β
are free parameters determined empirically. With English text corpora, typically
K is between 10 and 100, and β is between 0.4 and 0.6. Heaps’ law means that
as more instance text is gathered, there will be diminishing returns in terms of
discovery of the full vocabulary from which the distinct terms are drawn.

In the second category is placed the distributional hypothesis introduced by
Harris [5] and which is widely used in NLP applications ([1], [6], [8] and the list
can continue). The basic idea is that we should know a word by the company it
keeps ([4]).

Received by the editors: November 5, 2005.
2000 Mathematics Subject Classification. 68R15, 68T50.
1998 CR Categories and Descriptors. G12 [Mathematics of Computing]: NU-

MERICAL ANALYSIS – Approximation – Special function approximations; I27 [Computing
Methodologies]: ARTIFICIAL INTELLIGENCE– Natural Language Processing – Text analy-
sis .

69

70 DANA AVRAM LUPSA, RADU LUPSA

A quite complete and recent survey on linguistic principles and their applica-
tions can be found in [1], [2], [12].

This paper describes a law that we found. Section 2 presents the parametrized
function that describes the frequency of the words length in a language’s vocab-
ulary. It is an empirical law which is stated as being general, in the sense that it
applies for any language. To the best of our knowledge, this is the first time the
distinct word length frequency in a vocabulary is stated as a law.

On the other hand, the distinct words in a corpus are an approximation of that
language vocabulary (see Heap’s law in [13]). In consequence, in section 3 we
verify if the frequences of distinct word lengths in a corpus are described by the
same law.

In this paper, our study is applied for two languages: Romanian and English.
The justification of the fitting the data with the given law is done by computing
the relative error.

2. The Law that Describe the Frequency of the Words of a Given
Length in a Language’s Vocabulary

This section presents the empirical law that describes the relation between the
length of words and its absolute frequency (i.e. the number of distinct words for
each possible word length) in a language vocabulary. The law takes into account
the dictionary forms only, and each of them is counted once.

In the following experiments we rely of the fact that the dictionary word forms
(also named basic forms) are found as entries in a dictionary and they are also the
forms of the words in Wordnet synsets.

2.1. The Law. The absolute frequency of lengths of the words in a language
vocabulary states that the absolute frequency of words of a given length is ap-
proximated by the function:

(1) LV (x; c, k, θ) = c× xk × e−
x
θ

where k, θ and c are parameters determined experimentally and LV (x; c, k, θ) is
the law that describe the absolute frequency of the dictionary form of the words
with length x in a language vocabulary.

2.2. Experimental Data. The Vocabulary.

2.2.1. Romanian Experimental Data. We took the Internet version of the Ro-
manian explanatory dictionary ([3]), 1998 edition, off-line version, that we shall
call dex98. Its database contains 41466 entries of 39531 distinct word forms.

THE LAW OF WORD LENGTH IN A VOCABULARY 71

2.2.2. English Experimental Data. We extracted the English words from the Word-
net for English. We rely on the fact that the English vocabulary is formed by all
the words that appears in the Wordnet synsets. We also consider that synsets
contains only the base form of the words. There were 74331 distinct words.

2.3. The Hypothesis and Romanian Vocabulary. In this section we present
the way we approximate the parameters for LV function. We also compute the
relative error with which the LV function approximates the Romanian vocabulary.
Considering that the computed values leave room for further improvement, we also
refine our search for values of the parameters and we point out that this leads to
improvement.

2.3.1. LV Parameters Estimation. We selected all the distinct basic word forms
that are found as entries in the dictionary. We grouped them by their length. In
order to verify the hypothesis, we determined the values for c, k and θ, and we
computed the approximation error of the parametrized LV function. We estimated
the best values for c, k and θ in the following set of possible values:

(2)
c ∈ {1, 2, . . . , 100} ,
k ∈ {0.1, 0.2 . . . , 9.9, 10.0} ,
θ ∈ {0.1, 0.2, 0.3, . . . , 9.9, 10.0} .

For all these possible values of c, k and θ we computed the following sum:
n∑

i=1

|LV (i, c, k, θ)− di|

where n is the number of distinct lengths of the words, and di is the number of
the words with length i. We took as the best parameters those that minimize the
above sum, that is:

(3) (c, k, θ) ← argminc,k,θ

n∑

i=1

|LV (i, c, k, θ)− di|

The best parameters for LV describing the absolute words length frequency
according to the Romanian dictionary are:

(4)
c = 1 ,
k = 9 ,
θ = 0.8 .

The graphical representation of the distinct word length absolute frequency,
along with the function from (1) with the parameters from (4) is shown in fig-
ure 1. Experimental data computed from dex98are given as vertical lines. The
approximation function of (1) is given as the continous curve.

72 DANA AVRAM LUPSA, RADU LUPSA

Figure 1. Distinct word length absolute frequency as of
dex98approximated by LV with parameters from (4)

2.3.2. Error of the Approximation. Using the notations di for the absolute fre-
quency of length i words and ei the (theoretical) aproximation (ei = LV (i)), we
computed the absolute error (that we notate AbsErr):

AbsErr =
n∑

i=1

|di − ei| =
21∑

i=1

|di − ei| ≈ 2848

The relative error (notated RelErr) is considered:

(5) RelErr =
AbsErr∑n

i=1 |max(di, ei)|
This relative error formula has the next properties:

• the minimum error value is 0
• the error is 0 if and only if di = ei, ∀i ∈ 1, 2 . . . , n
• the error is undefined if and only if di = 0 and di = 0 ∀i ∈ 1, 2 . . . , n
• the maximum error value is 1
• the error is 1 if and only if

– we are not in the next case: di = 0 and di = 0 ∀i ∈ 1, 2 . . . , n
– di = 0 or ei = 0, ∀i ∈ 1, 2 . . . , n

In our case, di > 0 and ei > 0, ∀i ∈ 1, 2 . . . , n, so the next relation holds:

0 < RelErr < 1 .

More precisely, for function from (1) and with parameter values from (4), the
relative error is:

RelErr =
AbsErr∑n

i=1 |max(di, ei)|
≈ 2848

40670
≈ 0.0700 = 7.00%

(6)

THE LAW OF WORD LENGTH IN A VOCABULARY 73

In the next section (2.3.3) we will see that the parameters can be approximated
better by using smaller steps, and that, in this case, the relative error is reduced.

2.3.3. Fine Tuning the Parameters. The first five ranked estimated parameters (in
section 2.3.1) for (c, k, θ) are presented in (7).

(7)

c = 1.00 k = 8.50 θ = 0.90 ;
c = 3.00 k = 7.90 θ = 0.90 ;
c = 1.00 k = 9.00 θ = 0.80 ;
c = 2.00 k = 8.10 θ = 0.90 ;
c = 4.00 k = 7.80 θ = 0.90 .

Starting with the remark that the first five ranked parameters satisfy (8):

(8)
c ∈ {1, 2, 3, 4} ,
k ∈ [7.8, 9.00] ,
θ ∈ {0.8, 0.9} ,

we searched the best values for c, k, and θ in the following set of possible values:

(9)
c ∈ {0.10, 0.11, . . . , 4.99, 5.00} ,
k ∈ {7.00, 0.11, . . . , 10.00} ,
θ ∈ {0.10, 0.11, . . . , 3.00} .

The best identified parameters for (c, k, θ) are:

(10)
c = 0.32 ,
k = 9.89 ,
θ = 0.75

In this case, the relative error (computed with formula (5)) is:

(11) RelErr =
Pn

i=1 |di−ei|Pn
i=1 |max(di,ei)|

≈ 0.0262 = 2.62%

The new identified parameter are better; there is a decrease of the error by 62.4%.
The graphical representation of the distinct word length absolute frequency,

along with the best approximation function of the form (1) with the parameters
from (10) is shown in figure 2. Experimental data computed from dex98are given
as vertical lines. The approximation function of (1) is given as the continous curve.

2.4. The Hypothesis and English Vocabulary. We estimated the LV parame-
ter values for English vocabulary (see section 2.2.2) in the same way as in sections
2.3.1 and 2.3.3 for Romanian data.

74 DANA AVRAM LUPSA, RADU LUPSA

Figure 2. Distinct word length absolute frequency as of
dex98approximated by LV with parameters from (10)

2.4.1. LV Parameters Approximation. By using the same method as in section 2.3.1
and searching possible parameter values as indicated in list (2), the best parame-
ters we computed for (c, k, θ) are:

(12)
c = 3 ,
k = 7.8 ,
θ = 1 .

2.4.2. Error of the Approximation. We computed the relative error as in sec-
tion 2.3.2, formula (5). The relative error for parameter values from (12) is:

RelErr =
∑n

i=1 |di − ei|∑n
i=1 |max(di, ei)|

=
∑27

i=1 |di − ei|∑27
i=1 |max(di, ei)|

≈ 6698
80023

≈ 0.0837 = 8.37%

(13)

2.4.3. Fine Tuning the LV Parameters. Best ranked five parameters are:

THE LAW OF WORD LENGTH IN A VOCABULARY 75

(14)

c = 6.00 k = 7.10 θ = 1.10 ;
c = 4.00 k = 7.60 θ = 1.00 ;
c = 2.00 k = 8.40 θ = 0.90 ;
c = 3.00 k = 7.80 θ = 1.00 ;
c = 7.00 k = 7.00 θ = 1.10 .

Starting with the observation that the first five ranked parameters satisfy:

(15)
c ∈ {2, 3, 4, 6, 7} ,
k ∈ [7.10, 8.40] ,
θ ∈ {0.9, 1.1} ,

we estimated the best values for c, k, and θ in the following set of possible values:

(16)
c ∈ {0.10, 0.11, . . . , 4.99, 8.00} ,
k ∈ {7.00, 0.11, . . . , 10.00} ,
θ ∈ {0.10, 0.11, . . . , 3.00} .

The best values identified for parameters (c, k, θ) are:

(17)
c = 0.9 ,
k = 8.84 ,
θ = 0.89 .

In this case, the relative error (see formula 5) is:

(18) RelErr ≈ 0.0572 = 5.72%

There is a decrease of the error by 36.4%. This means that the new identified
parameter are better.

The graphical representation of the distinct word length absolute frequency,
along with the best approximation function of the form (1) is shown in figure 3.
The function from (1) is represented by continuous line. The light color contin-
uous line correspond to parameters from (12) and the dark color continuous line
correspond to parameters from (17).

2.5. Discussion. We saw above that the distinct word length absolute frequency
in a vocabulary is described by the parametrized function LV (see formula (1)).
With the appropriate choice of the parameter values the absolute word length
frequency in a vocabulary is aproximated by LV with precision of 97.38% for
Romanian vocabulary (with parameter setting from (10)) and with precision of
94.28% for English vocabulary (with parameter setting from (17)).

We conclude that for a language there are c, k, and θ such that the frequency
of the basic forms of the words of a given length is approximated by LV (x, c, k, θ),
where x is the word length. This is the law of the frequency of words Length in a
Vocabulary.

76 DANA AVRAM LUPSA, RADU LUPSA

Figure 3. Distinct word length absolute frequency as of Wordnet
approximated by LV with parameters from (10)

2.5.1. A Short Comparison between Romanian and English Data. We stated that
the absolute word lengths frequency from vocabularies are approximated by the
parametrised LV function (and we experimented that over Romanian and English
vocabulary). If this is true, the shape of the histograms (in our case for Romanian
and English) is the same.

We selected all the distinct basic word forms that are found in Romanian and
English vocabulary (data presented in section 2.2) and grouped them by their
length. The figure 4 represents the relative frequency of the distinct word lengths
for both English and Romanian case. The length is represented on the x axis, and
the relative frequency on the y axis. Note that the two histograms have the same
shape.

3. The Frequency of the Distinct Word Forms of a Given Length in
Texts

In this paragraph we shall see that the frequency of the distinct word lengths
in texts is approximated by the same LV function.

Following the Heap’s law [13], we could say that if a corpus is large enough, the
distinct words from the corpus are an approximation for the words of the vocabu-
lary of that language. That is why we expect that the frequencies of distinct words
from a corpus, grouped by their length, to follow the same law. The difference
between the distinct words in a corpus and the words in a vocabulary relies on the
fact that the words which are entries in a dictionary (see section 2.2.1) are only
the base form of the words. To one word from a dictionary usualy corresponds
more than one word in a corpus; these are the flexioned forms of the word.

THE LAW OF WORD LENGTH IN A VOCABULARY 77

Figure 4. The relative frequency of distinct word lengths as of
Romanian Dex and of English Wordnet.

We measured the length of each word in a given corpus, and, for each length, we
counted all the distinct words of that length. We state that the number of distinct
words of a given length is approximated by the LV function (see section 2.1).

We conducted the following experiment: we took all the different words from a
Romanian language corpus, and we represented graphically the frequency of each
word length as a function of the length.

3.1. Romanian and English Corpora. The Romanian corpus was automat-
ically extracted from the Internet, by using a search by the words limbaj and
natural. The corpus contains about 85000 words and 12500 among them are dis-
tinct. The English language corpus was constructed similarly to the Romanian
one, by using a search by the words natural and language. The corpus contains
about 50000 words and 5500 among them are distinct.

3.2. The Approximation by LV Function Hypothesis. The law of frequency
of distinct words length in a corpus can be written as:

(19) LV (x; k, θ, c) = c× xk × e−
x
θ

where LV (x; k, θ, c) is the frequency of the distinct words of length x in the corpus
(that is, the number of distinct words of length x in the corpus over the total
number of distinct words in the same corpus), and k, θ, and c are experimentally
determined parameters.

3.3. LV Parameters Estimation. Figures 5 and 6 show the approximated func-
tions for the word length frequencies in texts. A discussion about the way the
parameters are determined and the relative error of the approximation is given
below.

78 DANA AVRAM LUPSA, RADU LUPSA

Figure 5. The approximation function for distinct word length
absolute frequency in a Romanian corpus with two sets of para-
meters

We used steps from list (2) for the first approximation of LV parameters for
Romanian texts. The estimated parameters were:

(20)
c = 2 ,
k = 7.10 ,
θ = 1.00 .

For those parameters, the relative error is 12.56%.
By verifing the values around the previously determined parameters by using

smaller steps we determined the next parameters:

(21)
c = 0.65 ,
k = 7.99 ,
θ = 0.92 .

For those parameters we get better results; the relative error is 10.97%.
In figure 6, the light color represents LV function approximation with para-

meters from (20) and the dark color represents LV function approximation with
parameters from (21).

We used steps from list (2) for the first approximation of LV parameters for
English texts. The estimated parameters were:

(22)
c = 12 ,
k = 4.9 ,
θ = 1.3 .

For those parameters, the relative error is 7.36%.

THE LAW OF WORD LENGTH IN A VOCABULARY 79

Figure 6. The approximation function for distinct word length
absolute frequency in an English corpus with two sets of parame-
ters

We verify the parameter values around the previously determined parameters
by using smaller steps and we determined the next values:

(23)
c = 12.75 ,
k = 4.91 ,
θ = 1.28 .

For those parameters we get better results; the relative error is 6.55%.
In figure 6, the light color represents LV function approximation with para-

meters from (22) and the dark color represents LV function approximation with
parameters from (23).

4. Conclusion and Future Research

This paper presents for the first time an empirical law which we call LV. It
describes the frequency of the words of a given length in the vocabulary of a given
language. It also approximates the frequency of distinct words length in a corpus.
This is a law stated as being general, in the sense that it applies to any language.
But we have studied it for two languages: Romanian and English. We intend
to extend the verification of this law over other languages and we think to use
EuroWordnet in order to do that.

The experiments indicates that most frequent in a vocabulary are words with
length between six and ten. It is easy to see that words that do not carry se-
mantic information of their own (as preposition, conjunction, auxiliary verbs) are
among the shortest words in a language. We intend to use this remark to try
to improve contexts clustering process by introducing a new clustering parameter
which is word feature length. Language independent methods of clustering similar
contexts ([7], [6], [10]) on which relies a multitude of other linguistic processing,
as identifying similar words ([8]), name discrimination ([9]), word sense discrimi-
nation ([11]) do not use the length as a word feature parameter.

80 DANA AVRAM LUPSA, RADU LUPSA

References

[1] S. Bordag. Algorithms extracting linguistic relations and their evaluation. 2005.
[2] S. Bordag and G. Heyer. A structuralist framework for quantitative linguistics. 2005.
[3] dexonline, Romanian EXplanatory Dictionary 1998 (dex98). http://www.dexonline.ro/

(visited 2004).
[4] J.R. Firth. Modes of Meaning. In Papers in Linguistics, Oxford University Press, 1957.
[5] Z. Harris. Mathematical structures of language. Interscience Publishers, New York, 1968.
[6] A. Kulkarni and T. Pedersen. SenseClusters: Unsupervised clustering and labeling of similar

contexts. In Proceedings of the ACL Interactive Poster and Demonstration Sessions, 2005.
[7] T. Pedersen. Language independent methods of clustering similar contexts. In Eurolan 2005

Summer School. Tutorials, 2005.
[8] T. Pedersen and A. Kulkarni. Identifying similar words and contexts in natural language

with senseclusters. In AAAI 2005, 2005.
[9] T. Pedersen, A. Purandare and A. Kulkarni. Name discrimination by clustering similar

contexts. In Proceedings of the Sixth International Conference on Intelligent Text Processing
and Computational Linguistics (CICLING), 2005.

[10] T. Pedersen, A. Purandare and A. Kulkarni. Senseclusters home page, 2005.
http://senseclusters.sourceforge.net/.

[11] A. Purandare and T. Pedersen. Word sense discrimination by clustering contexts in vector
and similarity spaces. In Proceedings of the Conference on Computational Natural Language
Learning (CoNLL), 2004.

[12] B. Rieger. Computing granular word meanings. A fuzzy linguistic approach in computational
semiotics, 2005.

[13] http://en.wikipedia.org/wiki/Zipf%27s Law
[14] http://en.wikipedia.org/wiki/Heaps%27 law

Babes-Bolyai University, Faculty of Mathematics and Computer Science, Depart-
ment of Computer Science, Cluj-Napoca, Romania

E-mail address: davram@cs.ubbcluj.ro, rlupsa@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 2, 2005

ON TUBULAR SURFACES IN COMPUTER GRAPHICS

PAUL A. BLAGA

Abstract. We propose new approaches to the investigation of tubular and

canal surfaces, regarded as swept surfaces, we give a parametric representa-
tion of the inverse of a canal surface and we suggest several applications of

tubular surfaces in scientific vizualization.

1. Introduction

Tubular surfaces are among the surfaces which are easier to describe both an-
alytically and “operationally”. They are still under active investigation, both for
finding best parameterizations (see, for instance, [9, 11]) or for application in dif-
ferent fields (for instance in medicine, see [6]).

We remind that, if C is a space curve, a tubular surface associated to this curve
is a surface swept by a family of spheres of constant radius (which will be the radius
of the tube), having the center on the given curve. Alternatively, as we shall see
in the next section, for them we can construct quite easily a parameterization
using the Frenet frame associate to the curve. The tubular surfaces are used
quite often in computer graphics, but we think they deserve more attention for
several reasons. For instance, there is the problem of representing the curves
themselves. Usually, the space curves are represented by using solids rather then
tubes. There are, today, several very good computer algebra system (such as
Maple, or Mathematica) which allow the vizualisation of curves and surfaces, in
different kind of representations. However, the graphical output they produce is
not always of the best quality and it is, definitely, useful to be able to export
the graphic in a format which is recognized by a professional software, such as
RealStudio, or AutoCad, which, in turn, have superior rendering possibilities.
Unfortunately, the DXF format, for instance, is based on meshes, therefore, for
instance, if one produces a graphic containing both curves and surfaces, the curves
will be “lost in translation” when the graphic is exported as a DXF file. The
situation would be different, of course, if one would be able to choose to represent
the curves as tubes, rather then solids. Another problem is related to the flexibility.
Usually, the softwares for graphing curves and surfaces come equipped with a given

1998 CR Categories and Descriptors. I.3.5[Computational Geometry and Object

Modeling]: Subtopic – Curve, surface, solid, and object representations .
Key words and phrases. tubular surfaces, canal surfaces.

81

82 PAUL A. BLAGA

set of thickness for the curves and it is not possible to prescribe the thickness of
the curve at will. Moreover, if the space curves are represented as tubes, this helps
also the intuition, it is possible to use different effects (shadow, transparency, etc.).
It would be possible even to use the tubular surface for graphing the wireframe
of a surface. There is, of course, a price that we have to pay: the speed. It
is, clearly, more expensive to represent a curve as a tubular surfaces than to
representing using solids. However, this problem can be partially solved using
spline approximations. Moreover, this is really a problem only for the interactive
visualization and it should be always possible to use the “tube approach” only
when the “still” graphics is produces.

The aim of this paper is to discuss propose new approaches to the the tubular
and canal surfaces (which, as we shall see, are natural generalization of tubu-
lar surfaces), providing explicit representation of them as swept surfaces as well
as parameterization of the surfaces obtained by their transformation by inver-
sion. Finally, we suggest some possible application of tubular surfaces in scientific
vizualisation (for differential geometry and topology).

We mention that all the figures from the paper have been realized by using
the C++ graphical library Open Geometry, based on OpenGL, elaborated at the
Technical University of Wien by G. Glaeser and H. Stachel (see [8] for a recent
survey).

2. Tubular surfaces

We shall give here the mathematical description of tubular surfaces associated
to space curves. For all the geometrical notions, see [3].

Definition 2.1. Let r : I → R3 be a smooth, regular space curve. The tubular
surface associated to r, of radius a, is, by definition, the envelope of the family of
spheres of radius a, with the center on the curve (see figure 2).

Remark 2.1. Clearly, if r is a straight line, then the tubular surface of radius a
associated to it is just the circular cylinder of radius a, having r as symmetry axis.
If, on the other hand, r is a circle, then the corresponding tubular surface is a
torus.

We shall assume, hereafter that r is biregular, in other words, along the curve
the following condition is fulfilled: r′(t)× r′′(t) 6= 0. We notice that this condition
do not hold for straight lines. Then, to each point of the curve, we can associate
the Frenet frame, i.e. the frame {τ ,ν,β} formed by the following three vectors
(see [3]):

(i) τ =
r′

‖r′‖
– the unit tangent vector;

(ii) β =
r′ × r′′

‖r′ × r′′‖
– the unit binormal vector;

ON TUBULAR SURFACES IN COMPUTER GRAPHICS 83

Figure 1. Tubular surfaces as envelopes of spheres

Figure 2. The torus as a tubular surface

(iii) ν = β × τ – the unit principal normal vector.
Now, it is easy to see that the contact between the spheres from the family and
the tubular surface is a great circle of the sphere, lying in the normal plane of the
generating curve. Let us describe, then, a very simple method of parameterization
of the tubular surface. Take the parameter along the generating curve to be one
of the parameters and denote by R the position vector of a point on the surface.
As we mentioned earlier, this point lies in the normal plan to the generating curve
at a point t. On the other hand, it lies on a circle of radius a, situated in this
plan, with the center at the point r(t) from the curve. Let us denote by ρ the
vector connecting the point from the curve with the point from the surface. Then,
clearly, we have

(1) R = r(t) + ρ.

84 PAUL A. BLAGA

The vector ρ itself lies in the normal plane. Let us denote by θ the angle between
the vectors ρ and ν. Then, as one can see immediately, we have

(2) ρ = a(ν(t) cos θ + β(t) sin θ).

Combining (1) and (2), we see that we obtained a parameterization of the tubular
surface,

(3) R(t, θ) = r(t) + aν(t) cos θ + aβ(t) sin θ.

Implementation issues. When using a computer algebra system, usually we
can compute, formally, the derivatives of functions. However, generally, these
facilities are not available. Apparently, we are left with the problem of evaluating
numerically the derivatives in order to construct the Frenet frame. However, in
practice, we usually do not follow this method. The solution is quite simple, if we
use the geometrical interpretations of the tangent line and the osculating plane
(the plane containing the tangent versor and the principal normal versor). Namely
(see [3])
(1) the tangent line at a point of a curve is the limit position of the straight line

determined by the given point and a neighboring point of the curve, when this
one approaches the given point;

(2) the osculating plane at a point of the curve is the limit position of a plane
determined by the given point and two neighboring points of the curve, when
these ones approaches the given point.

Thus, the algorithm for finding the Frenet at a point of the curve goes like that:
(1) Choose another point of the curve, which is close enough to the given one, by

varying a little bit the parameter. These two points determine a straight line,
which, within a precision limit which should be prescribed by the user, approx-
imates the tangent line. We take then two points of the line. They determine
a vector which, after normalization, can be considered as an approximation of
τ (the tangent versor)

(2) Choose yet another point of the curve, beside the one already chosen at the
previous step, again, close enough to the initial point. The three points will
determine a plane, which is an approximation of the osculating plane. The
unit normal vector of this plane will be, the, an approximation of the binormal
vector, β.

(3) ν (or, rather, its approximation) will be obtained by taking the cross product
of the vectors constructed previously.

3. Canal surfaces

The tubular surfaces are particular cases of more general surfaces, called canal
surfaces, which are envelopes of family of spheres, of variable radius, with the
center on a given curve. It is very easy to see that they have a parameterization

ON TUBULAR SURFACES IN COMPUTER GRAPHICS 85

of the form (3), only that now a is not any longer a constant. For instance, in the
figure 3(a) we represented the canal surfaces obtained as the envelope of the spheres
of radius 4 + sin(2t), with the centers on the circle r(t) = (10 cos t, 10 sin t, 0),
while in the figure 3(b) we represented a member of a family of surfaces which are
very important for computer graphics, a Dupin cyclide. The canal surfaces (and,
in particular, the tubular surfaces) have the property that they have a family
of curvature lines which are circles (the contacts between the surfaces and the
generating spheres). The Dupin cyclides have the property that all the curvature
lines are circles and it is exactly this the reason why they are so useful in computer
graphics, for blending more complex surfaces (see, for instance, the review paper
by Boehm ([4]).

(a) A canal surface on a circle (b) A Dupin cyclide

Figure 3. Canal surfaces

4. Canal surfaces as swept surfaces

Swept surfaces (see, for instance, [10]) are, roughly speaking, surfaces obtained
by “sweeping” a curve along another curve. More specifically, a swept surface is a
surface obtained in the following way. We denote by r(t) the trajectory curve and
by C(θ) the section curve. Then a swept surface determined by the two curves is
a surface of the form

(4) S(t, θ) = r(t) + M(t) ·C(θ),

where M(t) is a 3× 3 matrix, describing the transformations applied to the curve
C along the trajectory. More precisely, M describes the rotations and the scal-
ings applied to the section curve. In practice, usually both T and C are given as
NURBS curves and the intention is to represent the surface (itself as a NURBS
surface. Usually, for an arbitrary transformation matrix, this might not be possi-
ble, therefore we have to use approximations. In fact, only in the very particular
case of translation surfaces, when the matrix M is the identity we have an exact

86 PAUL A. BLAGA

NURBS representation for the surface, if the two generating curves are given as
NURBS curves. However, this case is not very interesting, as one can see immedi-
ately that the only translation surface that is also a tubular surface is the circular
cylinder and, generally speaking, the translation surfaces which are canal surfaces
are surfaces of revolution.

We shall deduce now the precise form of the equation of a tubular surface as
a swept surface, in the sense that we shall indicate the form of the matrix M for
the case of tubular surfaces. First of all, the curve C is a circle of radius a, which
we assume to be situated in the xOy plane, in other words, its equation is of the
form

(5) C(θ) = (a cos θ, a sin θ, 0).

What we have to do now is to rotate the curve C in such a way that, after rotation,
it will lye in the normal plane of the curve r. Thus, for any t, the transformation
matrix M should turn the xOy plane into the normal plane of the curve at the
point r(t). The idea, of course, is to find a three-dimensional rotation that will
turn the axes of the coordinate system (translated at the point of the curve!) into
the axes of the Frenet frame, in such a way that the z-axis correspond to the
tangent of r, the x-axis – to the principal normal and the y-axis – to the binormal.
But then (see [7]), we know that the columns of the rotation matrix should be
nothing but the versors of the new direction. Thus, in this case, we have

(6) M(t) =
[
ν(t) β(t) τ (t)

]
.

More generally, if we consider an arbitrary canal surface, instead of a tubular one,
then an uniform scaling is, also, involved and then the transformation matrix will
be the product of matrices:
(7)

M(t) = [ν(t) β(t) τ (t)] ·

f(t) 0 0
0 f(t) 0
0 0 f(t)

 ≡ [f(t) · ν(t) f(t) · β(t) f(t) · τ (t)] ,

where f(t) is the scaling factor.

Remark 4.1. It is very easy to check that, indeed, the equation (4), with the
transformation matrix (6) and the sweeping curve (5) coincide with the equation
of the tubular surface established earlier, namely the equation (3).

As we mentioned earlier, generally speaking, the swept surfaces are not, as such,
NURBS surfaces, even if the generating curves are NURBS curves. The problem
is due to the, generally complicated, structure of the transformation matrix (in
particular, that of the rotation matrix). This claim is true, in particular, also for
canal surfaces. There are several ways to approximate swept surfaces by NURBS.
They are described, in details, in [10].

ON TUBULAR SURFACES IN COMPUTER GRAPHICS 87

5. The inversion of tubular surfaces and canal surfaces

A geometrical transformation that it was not exploited yet properly in computer
graphics is the inversion. We recall, (see, for instance [2]) that the inversion (in
space), is a geometrical transformation, defined by a point P (called the center of
the inversion) and a real number k,(different from zero), called the power of the
inversion. The inversion I is defined on R \ P , with values in the entire space,
such that, for each point M 6= P , I(P) is a point that lies on the straight line PM
and the following relation is fulfilled:

(8) PI(M) · PM = k,

where with an overline we denoted the signed length of the segments. If k is
positive, M and I(M) are on the same halfline with respect to P and the inversion
is called positive. Otherwise, they are on opposite sides and the inversion is called
negative. The sphere with center at P and with radius

√
|k| is called the inversion

sphere or inverting sphere.
We are going to find now explicitly the equation of the inverse of a canal surface.

Let P be the center of inversion and k – its power. We assume that the radius
vector of the center is r0 and M an arbitrary point in space, different from M ,
with the position vector r. We denote by M ′ its inverse and by r′ the radius vector
of the inverse. We intend to find this radius vector, in terms of r and r0. First of
all, as the points P,M and M ′ are colinear, the relation (8) is equivalent to

(9)
−−→
PM ·

−−−→
PM ′ = k

or, which is the same,

(10) (r− r0) · (r′ − r0) = k.

On the other hand, as the three points are colinear, we also have

(11) r′ − r0 = λ(r− r0),

where λ is a constant to be determined. Combining (10) and (11), we get to the
conclusion that

(12) r′ = r0 +
r− r0

(r− r0)2
.

Thus, the inverse of a canal surface with respect to a point of radius vector r0 will
have the equation

(13) R′(t, θ) = r0 +
r(t)− r0 + f(t)(ν(t) cos θ + β(t) sin θ)

(r(t)− r0 + f(t)(ν(t) cos θ + β(t) sin θ))2
,

where f(t) is the scaling function. Of course, if f is a constant, we get the equation
of the inverse of tubular surface. The transformation by inversion should play a
more important role in computer graphics, due to several appealing qualities (see,
for instance, ([2]) for a discussion of the properties of inversion):

88 PAUL A. BLAGA

Figure 4. A tubular surface and its inverse

• it is a conformal transformation (leaves invariant the angles);
• leaves invariant the curvature lines of surfaces.

Also, a very important property is that the circles that do not pass through the
inversion center are also transformed into circles. As a direct consequence of these
properties, one can see easily that a torus is transformed into a Dupin cyclide
(these are the only surfaces for which both families of curvature lines are circles
(as it happens, also, for the torus, which is, also, a particular case of a cyclide)

By inverting surface, with a suitable choice of the center of power of inversion,
we can produce surfaces with interesting shapes, sometimes we can even imitate
natural shapes. In the figure (5) we show a helical surface (obtained, for instance,
as the envelope of a family of spheres of radii .5, with the center on a cylindrical
helix of parameter .5, lying on cylinder of radius 1.4, having the z-axis as the
symmetry axis, as well as the inverse of this surface with respect to the origin,
with the power of inversion equal to 2.

6. Applications

We shall illustrate here two applications of the tubular surface for the visuali-
sation of surfaces in differential geometry and topology.

We produced, first of all, two plots of a geodesic on a circular cylinder (see
figure 6). Obviously, the method works also in more general circumstances, but we
only want to emphasize the utility as such an approach, as opposed to the classical
one. In the first graphic we have drawn a thinner tube, without transparency, in
the second we took a bigger radius an also used transparency also for the tube,
not only for the cylinder.

As a second example, we mention the illustration of the classification theorem
for compact, orientable surfaces in R3. As it is known (see, for instance, [1]), any
compact, orientable surface of genus g is homeomorphic to a sphere with g handles
(see figure 6), or , which is the same, with a torus with g holes (see figure 6). The

ON TUBULAR SURFACES IN COMPUTER GRAPHICS 89

(a) Thinner, no trans-

parency

(b) Thicker, with trans-

parency

Figure 5. A geodesic on the cylinder

images were constructed very easily, just as unions of a sphere and three tori,
respectively as a union of three tori.

References

[1] Agoston, M.: Algebraic Topology: A First Course, Marcel Dekker, 1976
[2] Audin, M.: Geometry, Springer, 2003
[3] Blaga, P.A.: Lectures on Classical Differential Geometry, Risoprint, Cluj-Napoca, 2005

[4] Boehm, W.: On Cyclides in Geometric Modelling, Computer Aided Geometric Design, 7
(1990), 243-255.

[5] Boehm, W., Prautsch, H.: Geometric Concepts for Geometric Design, A.K. Peters, 1994
[6] Bornik, A., Reitinger, B., Beichel, R.:Simplex-Mesh based Surface Reconstruction and Rep-

resentation of Tubular Structures, in Proceedings of BVM2005, Springer, 2005
[7] Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics, Principles and

Practice, second edition, Addison-Wesley, 1990
[8] Glaeser, G., Schröcker, H.-P.: Handbook of Geometric Programming Using Open Geometry

GL, Springer, 2001

90 PAUL A. BLAGA

Figure 6. A sphere with three handles

Figure 7. A torus with three holes

[9] Landsmann, G., Schicho, J., Winkler, F: The Parametrization of Canal Surfaces and the
Decomposition of Polynomials into a Sum of Two Squares J. Symb. Comput. 32(1/2)(2001),
119-132

[10] Piegl, L., Tiller, W.:The NURBS Book, second editionn, Springer, 1997
[11] Schicho, J.: Proper Parametrization of Real Tubular Surfaces J. Symb. Comput. 30(5)

(2000), 583-593 (2000)

“Babeş-Bolyai” University, Faculty of Mathematics and Computer Science, 1, Kogălniceanu

Street, Cluj-Napoca, Romania

E-mail address: pablaga@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 2, 2005

A NEW APPROACH IN FRAGMENTATION OF DISTRIBUTED
OBJECT ORIENTED DATABASES USING CLUSTERING

TECHNIQUES

ADRIAN SERGIU DARABANT

Abstract. Horizontal fragmentation plays an important role in the design
phase of Distributed Databases. Complex class relationships: associations,
aggregations and complex methods, require fragmentation algorithms to take
into account the new problem dimensions induced by these features of the
object oriented models. We propose in this paper a new method for hori-
zontal partitioning of classes with complex attributes and methods, using AI
clustering techniques. We provide quality and performance evaluations us-
ing a partition evaluator function and we prove that fragmentation methods
handling complex interclass links produce better results than those ignoring
these aspects.

1. Introduction

As opposed to centralized databases where the design phase handles only logi-
cal and physical data modeling, the design process in Distributed Object Oriented
Databases involves as well data partitioning and allocation to the nodes of the sys-
tem. Horizontal fragmentation, in Object Oriented Database Systems, distributes
class instances into fragments. Each object has the same structure and a different
state or content. Thus, a horizontal fragment of a class contains a subset of the
whole class extension. Horizontal fragmentation is usually subdivided in primary
and derived fragmentation.

Many of the existing Object Oriented (OO) fragmentation approaches are usu-
ally inspired from the relational fragmentation techniques. While this proves to
be a good starting point for approaching the fragmentation problem, there is defi-
nitely a limit in applying these techniques to data models featuring all the complex
characteristics of a real OO model. The OO model is inherently more complex
than the relational model. Inheritance, polymorphism, class aggregation and asso-
ciation all induce complex relations between classes in an object oriented database.
In order to cope with the increased complexity of the OO model, one can divide
class features as follows: simple attributes – attributes with scalar types; complex
attributes – attributes with complex types (other classes), sets, bags, etc. as their

Received by the editors: December 5, 2005.

91

92 ADRIAN SERGIU DARABANT

domain; simple methods – methods accessing only local class simple attributes;
complex methods - methods that return or refer instances of other classes.

In this paper we approach the horizontal fragmentation problem of classes with
complex attributes and methods. We rely on AI clustering as an alternative to
the current state of the art fragmentation techniques derived from the relational
approaches.

1.1. Related Work. Fragmentation methods for OODB environments, or flat
data models have been generally considered in Karlapalem [1], [4], [5], Ezeife
[2]. Ravat [6] uses the Bond Energy Algorithm (BEA) for vertical and horizontal
fragmentation. Ezeife [7] presents a set of algorithms for horizontally fragmenting
models with simple attributes/methods and complex attributes/methods. She
is using the algorithm developed for horizontal fragmentation in relational data
models. Bellatreche et al. [9] propose a method that emphasizes the role of queries
in the horizontal fragmentation.

We have already discussed an alternative AI clustering fragmentation method
for OO models with simple attributes and simple methods in [12].

1.2. Contributions. We propose a new technique for horizontal fragmentation in
object-oriented databases with complex attributes and methods. Fragmentation in
complex OO hierarchies is usually performed in two steps: primary fragmentation
and derived fragmentation. Primary fragmentation groups class instances accord-
ing to a set of class conditions [12] imposed on their simple attributes. Derived
fragmentation takes into account the class relationships (aggregation, association,
complex methods). It groups instances of a class in fragments according to the
fragmentation of the related classes. There are generally two approaches in de-
rived fragmentation: left order derived fragmentation (parent first) and right order
derived fragmentation (child first). They differ in the order in which two related
classes are fragmented. In the left order derived fragmentation, the referring class
is fragmented first and determines a partitioning of the instance set of the referred
class. In the right order derived fragmentation, the referred class is fragmented
first and determines the partitioning of the instances of the referring class.

We propose an algorithm that unifies the two fragmentation steps: primary
and derived into a single step. Both class conditions and class relationships are
modeled together in a vector space. Each object is represented as a vector and we
use the k-means clustering algorithm for separating clusters (fragments) of objects.

The paper is organized as follows. The next section of this work presents the
object data model and the constructs used in defining the object database and
expressing queries. Section 3 introduces the vector space model we use to compare
objects, methods for constructing the object characteristic vectors and similarity
metrics over this vector space. Section 4 presents our fragmentation algorithm.
In section 5 we present a complete fragmentation example over a class hierarchy

FRAGMENTATION OF DISTRIBUTED OBJECT ORIENTED DATABASES 93

and we evaluate the quality of our fragmentation scheme by using a variant of the
Partition Evaluator [12].

2. Data Model

We use an object-oriented model with the basic features described in the litera-
ture [8], [11]. Object-oriented databases (OODB) represent data entities as objects
supporting features like inheritance, encapsulation, polymorphism, etc. Objects
with common attributes and methods are grouped into classes. A class is an or-
dered tuple C=(K, A,M, I), where A is the set of object attributes, M is the set
of methods, K is the class identifier and I is the set of instances of class C. Every
object in the database is uniquely identified by an object identifier (OID). Each
class can be seen in turn as a class object. Class objects are grouped together
in metaclasses. This allows us to consider classes as being instances of higher-
level classes that describe the database schema. This way the database schema is
self-describing.

Classes are organized in an inheritance hierarchy, in which a subclass is a spe-
cialization of its superclass. Although we deal here, for simplicity, only with simple
inheritance, moving to multiple inheritance would not affect the fragmentation al-
gorithm in any way, as long as the inheritance conflicts are dealt with into the
data model. An OODB is a set of classes from an inheritance hierarchy, with all
their instances. There is a special class Root that is the ancestor of all classes in
the database. Thus, in our model, the inheritance graph is a tree.

An entry point into a database is a metaclass instance bound to a known variable
in the system. An entry point allows navigation from it to all classes and class
instances of its sub-tree (including itself). There are usually more entry points in
an OODB.

Given a complex hierarchy H, a path expression P is defined as C1.A1. . . .An,
n≥1 where: C1 is an entry point in H, A1 is an attribute of class C1, Ai is an
attribute of class Ci in H such that Ci is the domain of attribute Ai−1 of class Ci1

(1≤ i ≤ n). In the general case, Ai can be a method call. If i<n, then Ai must
return a single complex type value (an object).

As presented in [12], a query is a tuple with the following structure q=(Target
class, Range source, Qualification clause), where:

• Target class – (query operand) specifies the root of the class hierarchy
over which the query returns its object instances;

• Range source – a path expression starting from an entry point and spec-
ifying the source class hierarchy;

• Qualification clause – logical expression over the class attributes and/or
class methods, in conjunctive normal form. The logical expression is
constructed using atomic predicates: path expression θ value where θ ∈
{<,>,≤,≥, =, 6=,∈,⊃,⊇}.

94 ADRIAN SERGIU DARABANT

3. Vector Space Modeling

3.1. Primary Fragmentation Modeling. We denote by Q ={q1 ,. . . , qt} the
set of all queries in respect to which we want to perform the fragmentation. Let
Pred={p1, . . . , pq} be the set of all atomic predicates Q is defined on. Let
Pred(C)={p ∈Pred | p imposes a condition to an attribute of class C or to an at-
tribute of its parent}. Given the predicate p ≡ C1.A1. . . .An θ value, p∈Pred(Cn),
if class Ci is the complex domain of Ai−1, i = 2..n, and An has a complex type or
simple type.

Given two classes C and C ′, where C ′ is subclass of C, Pred(C ′) ⊇Pred(C).
Thus the set of predicates for class C ′ comprises all the predicates directly imposed
on attributes of C ′ and the predicates defined on attributes of its parent class C
and inherited from it [12].

We construct the object-condition matrix for class C, OCM(C) = {aij , 1 ≤
i ≤ |Inst(C)|, 1 ≤ j ≤ |Pred(C)|}, where Inst(C) = {O1, . . . Om} is the set of all
instances of class C, Pred(C) = {p1, . . . , pn}:

aij =
{

0, if pj(Oi) = false
1, if pj(Oi) = true

(1)

wij =
1
m

∑

l=1..m,alj=aij

[(alj |alj = 1) + (1− alj |alj = 0)]

Each line i in OCM (C) is the object-condition vector of Oi, Oi ∈Inst(C).
We obtain from OCM (C) the characteristic vectors for all instances of C. The
characteristic vector for object Oi is wi = (wi1, wi2, . . . , w in), where each wij is the
ratio between the number of objects in C respecting the predicate pj ∈ Pred(C) in
the same way as Oi, and the number of objects in C. We denote the characteristic
vector matrix as CVM (C) [12].

3.2. Attribute Induced Derived Fragmentation Modeling. We have cap-
tured so far all characteristics of simple attributes and methods. We need to
express the class relationships in our vector space model. We first model the
aggregation and association relations.

Given two classes CO (owner) and CM (member), where CM is the domain of
an attribute of CO, a path expression traversing this link navigates from instances
of CO to one or more instances of CM . In the case of left derived fragmentation
CO will be fragmented first, followed by CM . In the right derived fragmentation
variant the order in which the two classes are fragmented is reversed. Each of the
two strategies is suitable for different query evaluation strategies. For example, in
reverse traversal query evaluation strategy, the right derived fragmentation variant
gives the best results. We assume here, for space reasons, that right derived

FRAGMENTATION OF DISTRIBUTED OBJECT ORIENTED DATABASES 95

fragmentation method is used. However, both: the algorithm and the vector
space model remain the same when considering left derived fragmentation order.

Thus, in right derived fragmentation method, when fragmenting CO we should
take in account the fragmentation of CM [13]. We want to place in the same
fragment of CO objects aggregating instances from a fragment of CM . Objects
of a fragment of CO should aggregate as much as possible objects from the same
fragment of CM .

Let {F1, . . . Fn} be the fragments of CM . We denote by Agg(Oi, Fj)={Om |
Om∈F j , Oi references Om}. Given the set of fragments for CM , we define the
attribute-link induced object-condition vectors for derived fragmentation as ad i =
(ad i1, ad i2, . . . , ad in), where each vector component is expressed by the following
formula:

(2) adij = sgn(|Agg(Oi, Fj)|), j = 1, n

For an object Oi ∈Inst(CO) and a fragment Fj of CM , ad ij is 1 if Oi is linked
to at least one object of Fj and is 0 otherwise.

Given the set of fragments for CM , we define the attribute-link induced charac-
teristic vectors for derived fragmentation as wad i = (wad i1, wad i2, . . . , wad in),
where each vector component is expressed by the following formula:

(3) wadij =
|{Ol ∈ Inst(CO)|sgn(|Agg(Ol, Fj)|) = sgn(|Agg(Oi, Fj)|)}|

|Inst(CO)| , j = 1, n

Each wad ij component gives the percentage of objects in CO that aggregate/refer
in the same way as Oi objects from Fj . Two objects Oi and Ol are said to aggre-
gate Fj in the same way if they are both either linked or not linked with objects
from Fj . According to this criterion, two objects are candidates to be placed in
the same fragment of CO in respect to Fj if they are both related in the same way
to Fj .

3.3. Method Induced Derived Fragmentation Modeling. In the following
paragraphs we model the class relationships induced by the presence of complex
methods. Given a class with complex methods C(owner) that has to be frag-
mented, we need to take in account, when fragmenting it, the fragmentation of
classes referred by its complex methods. In order to model the method refer-
ence dependencies in the fragmentation process we need to express this type of
relationships in our vector space.

We denote by MetComplex (C)={mi| mi complex method of C} – the set of all
complex methods of class C.
Let SetCRef(m, C) = {CR|C 6= CR, CR is referred by method
m ∈ MetComplex(C)} be the set of classes referred by the complex method

96 ADRIAN SERGIU DARABANT

m of class C. For a given instance of a class C with complex methods we denote
as:
SetORef (m,Oi, CR)={O′

r∈Inst(CR) | CR∈SetCRef (m, C), m ∈ MetComplex(C),
O
′
r is referred by method m} – the set of instances of class CR,referred by the com-

plex method m of class C.
For each pair (mk, CR) ∈ {mk ∈ MetComplex(C)} × SetCRef(mk, C) we

quantify the way each instance of C refers - through complex methods - instances
from fragments of CR. Given a class CR referred by a complex method mk of
class C, and the fragments of class CR → {F1, . . . Fn}, we define the method-link
induced object-condition vectors for derived fragmentation. For each instance Oi of
C let md i= (md i1, md i2, . . . , md in) be the method-link induced object-condition
vector. Each vector component is defined by the following formula:

(4) mdij = sgn(|{Ol ∈ Inst(CR)|Ol ∈ Fj ∩ SetORef(mk, Oi, CR)}|), j = 1, n

Each md ij evaluates to 1 when object Oi∈Inst(C) refers objects from fragment
Fj of class CR and 0 otherwise. For each object Oi we obtain, for each pair
(mk, CR), one method-link induced object-condition vector. We derive from it the
method-link induced characteristic vector for derived fragmentation, wmd j =(wmi1,
wmd i2,. . . ,wmd in), where:

(5) wmdij =
|{Ol ∈ Inst(C)|mdlj = mdij}|

Inst(C)
, j = 1, n , l = 1, |Inst(C)|

Each wmd ij quantifies the way objects of class C refer objects from fragments
of Cj through complex methods.

When modeling relationships induced by the presence of complex methods, we
obtain as many referring condition vectors (object-condition and characteristic),
for each instance Oi of C, as the number of elements of the Cartesian product
{mk ∈ MetComplex(C)} × SetCRef(mk, C).

3.4. Derived Fragmentation Modeling. As the number of elements in {mk ∈
MetComplex(C)}×SetCRef(mk, C) is usually large we need to use some heuris-
tics in order to retain only the pairs with significant impact in the fragmentation.
In order for a pair (mk, CR) to be kept it should satisfy the following combined
restrictions:

• The number of calls to the method mk should be significant compared
to the contribution brought by all method calls made by applications
running on the database;

• The number of instances of CR referred by the method mk should be
significant compared to the number of instances of all classes generally
referred by the applications.

FRAGMENTATION OF DISTRIBUTED OBJECT ORIENTED DATABASES 97

The above conditions are expressed in the following formula (significance fac-
tor):

Sig(mk, CR) =
NrCalls(mk)∑

ml∈MetComplex(C)

NrCalls(ml)
(6)

×

∑
Oi∈Inst(C)

|SetORef(mk, Oi, CR)|
∑

Cp∈SetCRef(mk)

∑
Or∈Inst(C)

SetORef(mk, Or, Cp)

In (6) the first factor gives the ratio between the number of calls to method mk

and the number of calls of all complex methods of class C. The second factor gives
the ratio between the number of CR instances referred by mk and the number of all
objects referred by mk. In reality the actual method parameters would normally
influence the set of objects referred by the method. Even more, the set of referred
objects could be as well influenced by the internal state of the object. However,
tracking all the possible combinations is computationally intractable – even in
simple situations. The statistical heuristic proposed in (6) is still manageable and
helps reducing the problem space dimensions.

Usually, the fragmentation of a class C is performed in two steps: primary frag-
mentation, according to query conditions, and derived fragmentation, according to
the fragments of the member or owner classes. We merge the two phases into one
single step capturing the semantic of both primary and derived fragmentations.
For this we unify the characteristic vector, the attribute-link and method-link in-
duced characteristic vectors for each object Oi of the class C, and we obtain the
extended characteristic vector. Each extended characteristic vector quantifies all
the information needed for fragmentation: the conditions imposed on the object
and the relationships of the object with instances of related classes, induced either
by complex attributes or by complex methods.

If the class C is related with classes CA1, CA2,. . . , CAp by means of complex
attributes, and with classes CM1, CM2, . . . , CMr by means of complex methods,
the extended characteristic vector wei for object Oi ∈ Inst(C) is obtained by
appending the p attribute-link induced characteristic vectors and the number of
mc = |{mk ∈ MetComplex(C)} × SetCRef(mk, C)| method-link characteristic
vectors to the characteristic vector of Oi. However, as we have already mentioned
above, we are using the significance factor to filter out non-relevant pairs (mk, CR)
and vectors derived from them. As observed experimentally, a significance factor
around 0.27 will filter out most of the inappropriate (mk, CR) pairs.

The extended object-condition vector aei for an object Oi is obtained in the same
way by appending its attribute-link and method-link induced object-condition
vectors to its object-condition vector. We denote by EOCM (C) and ECVM (C)
the extended object-condition and characteristic matrices for class C.

98 ADRIAN SERGIU DARABANT

3.5. Similarity between Objects. The aim of our method is to group into a
cluster those objects that are similar to one another. Similarity between objects
is computed using the Euclidian and Manhattan metrics:

(7) dE(wei, wej) =

√√√√
n∑

k=1

(weik − wejk)2 , dM (wei, wej) =
n∑

k=1

|weik − wejk|

Given two objects Oiand Oj , we define two similarity measures between them
in (8):

(8) simE(Oi, Oj) = 1− dE(wei, wej)
|Inst(C)| , simM (Oi, Oj) = 1− dM (wei, wej)

|Inst(C)|
We use simE and simM in (8) to measure how similar two objects are. Both

measures take values in [0,1] and are expressed using one of the two distances
from (7). The distance functions and the similarity measures are inversely pro-
portional in [0,1]. As the distance between two objects increases, their similarity
decreases. We should note that all characteristic vectors have positive coordinates
by definition.

4. K-means Centroid-based Fragmentation

We apply an algorithm we have used to fragment classes with simple attributes
and methods: the k-means centroid based clustering algorithm [12]. The classical
k-means algorithm takes the input parameter k and partitions a set of m objects
into k clusters so that the resulting intra-cluster similarity is high but the inter-
cluster similarity is low. Cluster similarity is measured in regard to the mean value
of the objects in a cluster, which can be viewed as the cluster’s center of gravity
(centroid). First, the k-means algorithm randomly selects k of the objects, each
of which initially represents a cluster mean or center. For each of the remaining
objects, an object is assigned to the cluster to which is the most similar, based on
the distance between the object and the cluster centroid. It then computes the
new centroid for each cluster and redistributes all objects according to the new
centroids. This process iterates until a criterion function converges. The criterion
tries to make the resulting k clusters as compact and separate as possible.

Our version of the algorithm improves several aspects of the original algorithm
with regard to the semantic of object fragmentation. First of all, we implement
a variant where we choose as initial centroids the most representative objects
in respect with fragmentation predicates, rather than choosing them arbitrarily.
At each iteration, if an object should be placed in any of several clusters (same
similarity with the centroid), we choose the cluster to which the object has max-
imum similarity with. We also choose as criterion function the degree of com-
pactness/homogeneity H of all clusters. For a given cluster F , this value is the

FRAGMENTATION OF DISTRIBUTED OBJECT ORIENTED DATABASES 99

difference between the maximum and minimum similarity of all pairs of objects in
F :

(9) H(F) = max{sim(a, b) ∈ F × F, a 6= b} −min{sim(a, b) ∈ F × F, a 6= b}
Algorithm k-meansFrag is:
Input: Class C, Inst(C) to be fragmented, the similarity function
sim : Inst(C) × Inst(C) → [0, 1],m = |Inst(C), 1 < k ≤ m desired number of
fragments, OCM(C), CV M(C), threshold value.
Output: the set of clusters F = {F1, . . . , Ff}, where f ≤ k.
Begin

Centr={c1, . . . , ck}=InitCentr(Inst(C), OCM(C), CVM(C), k);
F = {Fi|Fi = {ci}, ci ∈ Centr, i = 1..k};F ′

= ∅;
// initial object allocation to clusters;
For all objects Oi do

Fcandidates = {argmaxcentr(sim(Oi, cl), l = 1..k)};
Fu∗ = argmaxsim(sim(Oi, fc), fc ∈ Fcandidates); Fu∗ = Fu∗ ∪ {Oi};

End For;
While F

′ 6= F and H(F)<threshold value do
For all Fi ∈ F recalculate centroid ci;
F
′
= F;

For all objects Oi do
Fcandidates = {argmaxcentr(sim(Oi, cl), l = 1..k)}; (i)
Fu∗ = argmaxsim(sim(Oi, Fc), Fc ∈ Fcandidates); (ii)
F
′
v = F

′
v − {Oi}, where Oi ∈ F

′
v;

F
′
u∗ = F

′
u∗ ∪ {Oi};

F
′
= F

′ − {F ′
l |F

′
l = ∅}; // eliminate empty clusters

End For;
End While;

End.

Function InitCentr(Inst(C),OCM(C),CVM(C),k) is
Begin

Centr=∅; n = |Pred(C)|;
For i=1 to k do

ci = argmin[dM (OCM(Oj), ui)], Oj /∈ Centr, i ≤ n; (iii)
ci = argmin(sim(Oj , Centr)), Oj /∈ Centr, i > n; (iv)
Centr = Centr ∪ {ci};

End for;
Return Centr;

End Function;

100 ADRIAN SERGIU DARABANT

Function InitCentr chooses the initial centroids as described above. In line (iii)
ui is the identity vector of degree i, which has 1 only on the ith position and
0 on the other positions. Each ui represents the corresponding predicate from
Pred(C). Line (iii) chooses as centroid the closest object to ui, i.e. the most
representative object for that predicate. We note that we can choose this way as
many centroids as the number of predicates in Pred(C). If we need more clusters
than |Pred(C)|, we choose as their initial centroids the objects most dissimilar to
the already chosen centroids (line (iv)). We try this way to minimize the impact
of “losing” clusters in the following iterations. This occurs when all objects in a
cluster relocate to other clusters because the initial centroid is not semantically
representative to our set of predicates.

We use in lines (i) and (ii) the similarity of an object Oi with a cluster Fc,
defined as (the average similarity with all objects of the cluster):

(10) sim(Oi, Fc) =

∑
a∈Fc

sim(Oi, a)

|Fc|

5. Results and Evaluation

In this section we illustrate the experimental results obtained by applying our
fragmentation scheme on a test object database. Given a set of queries, we first
obtain the horizontal fragments for the classes in the database; afterwards we
evaluate the quality and performance of the fragmentation results. The problem
with the evaluation method is that it is difficult to quantify a fragmentation result
without allocating the fragments to the nodes of a distributed system. On the
other side, the allocation problem must be solved in order to be able to evaluate
the fragmentation. As resolving the allocation problem in the general case is not
a trivial task, we need a simplified allocation model, yet a valid one. Our solution
is to consider a distributed system running database applications (queries). Some
of the nodes are part of the distributed object oriented DBMS as well. They
hold fragments of the database and a database engine. All applications run with
different frequencies on different nodes of the system. We chose to allocate each
fragment on the node where is most needed (accessed).

Another issue that might affect the results is the fact that the order in which
classes are fragmented is significant as it captures the semantic of query path
expressions into the fragmentation process [13]. It might be possible to obtain
better results by using a different order for fragmenting classes. We do not handle
here the ordering problem, but we address it in [13].

The sample object database represents a reduced university database. The
inheritance hierarchy is given in Figure 1 and a trimmed down version of the
aggregation/association graph is shown in Figure 2.

The queries running on the classes of the database are given bellow:

FRAGMENTATION OF DISTRIBUTED OBJECT ORIENTED DATABASES 101

Figure 1. The database class hierarchy

Figure 2. The database aggregation/association graph

q1 =(Grad, Faculty.Dept.Student, Grad.Supervisor.OrgUnit.Name in (“ProgMeth”, “In-
fSyst”))
q2 =(UnderGrad, Faculty.Dept.Student, UnderGrad.Dept.Name like “CS%”
and UnderGrad.Grade between 7 and 10)
q3 =(UnderGrad, Faculty.Dept.Student, (UnderGrad.Dept.Name like “Math%” or
UnderGrad.Dept.Name like “CS%”) and UnderGrad.Age()≥24)
q4 =(Researcher, Doc.Person, Researcher.count(Reasercher.doc) ≥2)
q5 =(Prof, Faculty.OrgUnit.Employee, Prof.OrgUnit.Name in (“ProgMeth”, “InfSyst”)
and Prof.salary≥40000)
q6 =(Prof, Doc.Person., Prof.Paper.Publisher in (“IEEE”, “ACM”) and Prof.Position =
“prof”)
q7 =(TechReport, Doc, TechReport.year>1999)
q8 =(Set(Student.Dept), Person, Student.Grade<5)
q9 =(Employee, Person, Employee.salary>35000)
q10 =(Grad, Person, Grad.count(Grad.Paper)≥1)
q11 =(Student, Person,Student.Dept.Name like “CS%”)
q12 =(Student, Person,Student.Dept.Name like “Math%”)

102 ADRIAN SERGIU DARABANT

q13 =(Staff, Person, Staff.salary>12000)
q14 =(Person, Person, Person.Age()>30)

In Figure 2 the links between Doc and Person should be inherited by all subclasses
of Person and Doc. This is graphically represented in the figure by the dotted arrows.
Similar inherited links are present for other classes in this graph (links not represented
here). The motivation for aggregation/association inheritance is presented in [13].

For measuring the fragmentation quality we determine the cost of remote accesses
combined with the cost of local irrelevant accesses to each fragment. Remote accesses
are made by applications running on a given node and accessing objects that are not
stored on that node. Local irrelevant accesses are given by local processing incurred
when a query accesses a fragment. Each access to a fragment implies a scan to determine
objects that satisfy a condition. Irrelevant local access measure the number of local
accesses to objects that will not be returned by the query. Intuitively, we want that each
fragment be as compact as possible and contain as much as possible only objects accessed
by queries running on the fragment’s node. We use the following measure for calculating
the fragmentation quality:

(11) PE(C) = EM2 + ER2

(12) EM2(C) =

MX
i=1

TX
t=1

freq2
ts∗ |Accit| ∗

�
1− |Accit|

|Fi|
�

(13) ER2(C) =

TX
t=1

min

(
SX

s=1

MX
i=1

freq2
ts ∗ |Accit| ∗ |Accit|

|Fi|

)

The EM term calculates the local irrelevant access cost for all fragments of a class. ER
calculates the remote relevant access cost for all fragments of a class. Accit represents
the set of objects accessed by query t from fragment Fi. The value freqts is the frequency
of query t running on site s. In (12) s is the site where Fi is located, while in (13) s is any
site not containing Fi. M is the number of clusters for class C, T is the number of queries
and S is the number of sites [12]. The fragmentation is better when the local irrelevant
costs and the remote relevant access costs are smaller. Each term of PE calculates in
fact the average square error of these factors. Globally, PE measures how well fragments
fit the object sets requested by queries.

Using the given query access frequency, the fragments above are allocated to 4 dis-
tributed sites. Query frequency at sites is presented in Table 1.

We qualitatively compare the results of our fragmentation method with a centralized
and a full replicated database in Figure 3. The centralized version of the database is
allocated to node S1, while in the replicated case each node holds a copy of the entire
database. It can be seen that our fragmented database obtains smaller PE costs, with
both measures, than the centralized and full replicated database. The full replicated
case obtains the worst costs as the irrelevant access cost explodes in this case. Even
though remote accesses tend to zero in the replicated case, the local irrelevant accesses
increase considerably as each node holds an entire copy of the database, thus many

FRAGMENTATION OF DISTRIBUTED OBJECT ORIENTED DATABASES 103

Table 1. Access frequencies of queries at distributed sites

Freq(q,s) S1 S2 S3 S4

q1 0 10 5 20

q2 0 10 5 25

q3 20 0 15 10

q4 15 10 5 0

q5 25 20 0 20

q6 30 0 20 10

q7 30 25 0 10

q8 10 0 0 10

q9 20 20 10 0

q10 15 25 0 0

q11 5 10 5 0

q12 0 0 0 10

q13 15 0 0 5

q14 20 5 0 0

irrelevant objects for each query. In reality, the full replicated case performs well only
when there are no updates to the database. The Manhattan similarity measure applied on
OCM obtains the best results, followed by Manhattan similarity applied on characteristic
vectors and by the Euclid measure at last.

In Figure 4 we present the PE costs induced on each fragmented class with each
method. Here it can be seen that the Manhattan and Euclid measures behave approx-
imately the same on all classes except Undergrad. In our example, classes have been
fragmented in the order they appear in Figure 4, from left to right, Undergrad being the
last fragmented class. Even if PE scores for other classes are approximately the same –
the resulting fragments are not identical for different similarity measures.

This leads to the fact that when fragmenting Undergrad, the resulting fragments are
influenced by the fragmentation of the related classes. Manhattan applied on OCM does
the best fragmentation on the intermediate (related) classes, which leads to a better score
when the last class (Undergrad) is fragmented.

Finally in Figure 5 we compare the results of the same fragmentation algorithm in
two cases: when complex class relationships are considered and when complex class
relationships are ignored, i.e primary only fragmentation. The P-Euclid, P-Manhattan
Charact. Vect. and P-Manhattan Obj. Conditions denote the primary only versions of
the fragmentation algorithm.

It can be seen that the fact of considering the complex class relationships improves
quality. All similarity measures in this case behave better than the best case of the
fragmentation without derived fragmentation.

6. Conclusions and Future Work

We proposed in this paper a new horizontal fragmentation method for object oriented
distributed databases. Our method takes into account all complex relationships between

104 ADRIAN SERGIU DARABANT

Figure 3. Comparative PE values for our fragmentation
method, centralised and replicated databases

classes: aggregations, associations, and links induced by complex methods. Primary
and derived fragmentations are modeled together and are performed in a single step.
This reduces the complexity of our technique compared to traditional approaches that
perform primary and derived fragmentation in two distinct steps, processing twice the
entire database.

We have shown that taking complex relationships into account significantly improves
fragmentation quality as opposed to methods considering only primary fragmentation.
The order in which classes are fragmented is important as class relationships may induce
mutual transitive class dependencies. There is always a fragmentation order that pro-
duces better results than the average of all other orders. We proposed an algorithm for
determining the fragmentation order in [13].

We aim to find new ways of expressing inter-class relationships and compare their
results and impact in the fragmentation process.

References

[1] Karlapalem, K., Navathe, S.B., Morsi, M.M.A.: Issues in distribution design of object-
oriented databases. In: Tamer Ozsu, M., Dayal, U., Valduriez, P. (eds.): Distributed Object
Management, Morgan Kaufmann Publishers (1994) 148-164

[2] Ezeife, C.I., Barker, K.: A Comprehensive Approach to Horizontal Class Fragmentation
in a Distributed Object Based System, International Journal of Distributed and Parallel
Databases, 3(3) (1995) 247-272

FRAGMENTATION OF DISTRIBUTED OBJECT ORIENTED DATABASES 105

Figure 4. Comparative class PE values for each similarity measure

Figure 5. Comparative PE values for primary only fragmenta-
tion and our complex fragmentation method (primary + derived
fragmentation)

[3] Han, J., Kamber, M., Data Mining: Concepts and Techniques, The Morgan Kaufmann
Series in Data Management Systems (2000)

106 ADRIAN SERGIU DARABANT

[4] Karlapalem, K., Li, Q.: Partitioning Schemes for Object-Oriented Databases, In Proceedings
of the Fifth International Workshop on Research Issues in Data Engineering-Distributed
Object Management, Taiwan (1995) 42–49

[5] Karlapalem, K., Li, Q., Vieweg, S.: Method Induced Partitioning Schemes in Object-
Oriented Databases, In Proceedings of the 16th Int. Conf. on Distributed Computing System
(ICDCS’96), Hong Kong (1996) 377–384

[6] Ravat, S.: La fragmentation d’un schema conceptuel oriente objet, In Ingenierie des systemes
d’informaton (ISI), 4(2) (1996) 161–193

[7] Ezeife, C.I., Barker, K.: Horizontal Class Fragmentation for Advanced-Object Modes in a
Distributed Object-Based System, In the Proceedings of the 9th International Symposium
on Computer and Information Sciences, Antalya, Turkey (1994) 25-32

[8] Bertino, E., Martino, L.: Object-Oriented Database Systems; Concepts and Architectures,
Addison-Wesley (1993)

[9] Bellatreche, L., Karlapalem, K., Simonet, A.: Horizontal Class Partitioning in Object-
Oriented Databases, In Lecture Notes in Computer Science, volume 1308, Toulouse, France
(1997) 58–67

[10] Savonnet, M. et. al.: Using Structural Schema Information as Heuristics for Horizontal
Fragmentation of Object Classes in Distributed OODB, In Proc IX Int. Conf. on Parallel
and Distributed Computing Systems, France (1996) 732-737

[11] Baiao, F., Mattoso, M.: A Mixed Fragmentation Algorithm for Distributed Object Oriented
Databases, In Proc. Of the 9th Int. Conf. on Computing Information, Canada (1998) 141-148

[12] Darabant, A. S., Campan, A.: Semi-supervised learning techniques: k-means clustering in
OODB Fragmentation, IEEE International Conference on Computational Cybernetics ICCC
2004, Vienna University of Technology, Austria, August 30 - September 1 (2004) 333-338

[13] Darabant, A.S, Campan, A.: Optimal Class Fragmentation Ordering in Object Oriented
Databases, In Studia Universitatis Babes Bolyai Informatica, Volume XLIX, Number 1
(2004) 45-54

Babes-Bolyai University, Cluj-Napoca, Romania
E-mail address: dadi@cs.ubbcluj.ro

	00_contents
	01Paiano
	02Lupsa
	03Fanea
	04SerbanCampan
	05NiculescuMoldovan
	06Lupea
	07TatarLupsa
	08LupsaLupsa
	09Blaga
	10Darabant

