
Anul L 2005

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

1

Redacţia: 3400 Cluj-Napoca, str. M. Kogălniceanu nr. 1 Telefon 405300

SUMAR – CONTENTS – SOMMAIRE

L. Ţâmbulea, Professor Militon Frenţiu at his Sixties .. 3

M. Frenţiu, Correctness: A Very Important Quality Factor in Programming 11

E. Todoran, F. M. Boian, C. Melenti, N. Papaspyrou, Continuations for Remote
Objects Control .. 21

S. Banarjee, C. Groşan, A. Abraham, Modeling Crowd Behavior Using Emotional
Ants ... 37

J. Lu, O. Adjei, W. Chen, F. Hussain, C. Enăchescu, D. Rădoiu, Candidate
Branch-Based Method for Mining Concurrent Branch Patterns................................. 49

D. Dumitrescu, K. Simon, A New Dynamic Evolutionary Technique. Application
in Designing RBF Neural Network Topologies. II. Numerical Experiments 59

G. Şerban, A Programming Interface for Non-Hierarchical Clustering 69

D. V. Bufnea, A. Câmpan, A. S. Dărăbant, Fine-grained Macroflow Granularity
in Congestion Control Management .. 79

G. Şerban, A. Câmpan, Core Based Incremental Clustering 89

H. A. Greblă, A. Gog, Redesign Based Optimization for Distributed Clustering 97

I. Zelina, Parallel Lagrange Interpolation on Extended Fibonacci Cubes................ 105

RECENZII – REVIEWS – ANALYSES

R. Lupşa, Michael Drmota, Phillipe Flajolet, Daniele Gardy, Bernhard
Gittenberger (Editors), “Mathematics and Computer Science III – Algorithms,
Trees, Combinatorics, and Probabilities”,Trends in Mathematics, Birkhäuser
Verlag, Basel-Boston-Berlin, 2004, XV + 555 pp., ISBN 3-7643-7128-5 111

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 1, 2005

PROFESSOR MILITON FRENŢIU AT HIS SIXTIES

LEON ŢÂMBULEA

Professor Frenţiu has graduated Mathematics 38 years ago (the computation is
simple, and requires no programming effort: 60 years of age minus 22 at faculty
graduation). For seven years after graduation he specialised himself in Probability
Theory and Numerical Analysis and started doctoral studies in Numerical Analy-
sis. This background is remarked, as well, from his scientific activity, his first three
published scientific papers, very well received in the literature, being from these
domains. During this period I was a student attending the Probability Theory
seminars of Professor Frenţiu, an assistant at that time.

The scientific and didactic activity of Professor Frenţiu have been radically
changed in 1974, 31 years ago, when he was a beneficiary of a doctoral fellowship in
England. Up to this moment, our faculty had very few study subjects in Computer
Science, and the lectures could be taught only by our colleagues, Cornel Tarţia
and Grigor Moldovan. The huge evolution of Computer Science during these thirty
years is noticeable, as well, by comparing the number of academic positions at the
Department of Computer Science, from the very few hours of Computer Science
then to the 90 didactical positions of Computer Science today.

At his return from England, in 1977, with his awarded PhD Degree, the didac-
tical activity has been oriented towards Computer Science. He was promoted as
lecturer professor in 1979, in 1990 he became associate professor and for 10 years
he has been a professor in Computer Science. He has to teach classes at many
study objects, but the most important are related to algorithmics, programming,
programs correctness, modeling and simulation, or the master lectures. We re-
member here his 26 published books and manuals, or the more than 50 scientific
papers having him as author or co-author.

During the 40 years he is working with our Faculty, he realised many didactical
and extradidactical tasks. I recall here admissions commisions, license commisions,
doctoral coordinations, member of the faculty time-table team, the main promoter
of the Computer Science issues of the Studia Universitatis journal, main promoter
of the preprint journal of the Department of Computer Science, head of chair and
head of department.

Professor Frenţiu added much energy and passion in all his achievements, he
worked very hard for his department, his chair and his colleagues. I am asking
myself whether this strong passion for his profession has any contribution to the
fact that both children of the Frenţiu family are Computer Science graduates.

Received by the editors: April 15, 2005.

3

4 LEON ŢÂMBULEA

Since very long we have found Professor Frenţiu at his office all day long, during
working days and week-ends as well, both in the ages when his office has been on
the old August 23-rd St., at the Red Building, or at the new location in the
University Campus. He had many lectures to prepare, many academic curricula
to conceive and argue for, many student papers or projects to grade. The result
may be seen, as well, by the large number of books and papers he has written,
the large number of academic positions in our current department, but also, by
the large number of colleagues that wished to participate to Professor Frenţiu 60
Years festivities. Colleagues that, I am certain, do appreciate all the energy and
effort Professor Frenţiu has spent for the success of the Faculty of Mathematics
and Computer Science in Cluj.

Published papers

(1) Frentiu M., Program Correctness in Software Engineering Education,
Proceedings of the International Conference on Computers and Com-
munications ICCCM4, pp.154-157, Oradea, 2004, may 27-29.

(2) Frentiu M., An Overview on Program Inspection, Proceedings of the
Symposium “Zilele Academice Clujene”, 2004, pp. 9-14

(3) Frentiu M., Formal Methods in Software Engineering Education, Pro-
ceedings ICELM1, Tg.Mures, 3-5 iunie 2004.

(4) Niculescu V., M. Frentiu, Designing Correct Parallel Programs from
Specifications, “The 8th World Multiconference on Systemics, Cyber-
netics and Informatics (SCI 2004)”, Orlando, USA, July 18-21, 2004.

(5) Frentiu M., Ioan Lazar, and Horia F. Pop, On Individual Projects in
Software Engineering Education, Studia Univ. Babes-Bolyai, Informat-
ica, Volume XLVIII, Number 2, 2003, pp.83-94.

(6) Frentiu M., Formal Methods in Education, Colocviul Academic Clujean
de INFORMATICA, Cluj-Napoca, iunie 2003, pp.7-12

(7) Lazarovici Gh., M.Lazarovici, M.Frentiu,Statistical Analysis of the ar-
chaeological material (Cucuteni A3 phase) from Ruginoasa settlement,
Iasi district, Annals of the Tiberiu Popoviciu Seminar of Functional
Equations, Approximations and Convexity, ISSN 1584-4536, vol.1, 2003,
pp.169-186.

(8) Frentiu M., H.F.Pop, A Study of Dependence of Software Attributes
Using Data Analysis Technique, Studia Univ. Babes-Bolyai, Seria Infor-
matica, XLV(2002), 2, 53-66.

(9) Frentiu M., The Impact of Style on Program Comprehensibility, Pro-
ceedings of the Symposium “Zilele Academice Clujene”, 2002, pp. 7-12

(10) Frentiu M., and H.F.Pop, A Study of Licence Examination Results Using
Fuzzy Clustering Techniques, Research Seminar on Computer Science,
2001, pp. 99-106.

(11) Frentiu M., Is teaching formal methods really needed?, Research Seminar
on Computer Science, 2000, pp. 57-64.

PROFESSOR MILITON FRENŢIU AT HIS SIXTIES 5

(12) Frentiu M., Teaching Program Correctness, Proceedings II AET Work-
shop, Cluj-Napoca, 4-10 October 2000, pp.232-246.

(13) Frentiu M., On programming style - program correctness relation, Studia
Univ. Babes-Bolyai, Seria Informatica, XLV(2000), 2, 60-65.

(14) Frentiu M., Teaching Program Correctness, Proceedings II AET Work-
shop, Cluj-Napoca, 4-10 October 2000, pp.232-246.

(15) Frentiu M., On Program Correctness and teaching programming, Com-
puter Science Journal of Moldova, vol.5(1997), no.3, 250-260.

(16) Frentiu M., D.Dumitrescu, B.Pârv, L.Tambulea si H.F.Pop, Algoritmi
utili existenti ı̂n reteaua Universitatii, Research Seminar on Computer
Science, 1999, pp. 111-122

(17) Frentiu M., Aspecte privind predarea programarii n liceu, Seminarul de
Didactica Matematicii, Volumul 11(1995), 53-60.

(18) Frentiu M., An overview on Computer Science, Babes-Bolyai University,
Faculty of Mathematics, Res. Sem., 1997, no.2, pp.1-2.

(19) Frentiu M., Is there a software crisis?, Babes-Bolyai University, Faculty
of Mathematics, Res. Sem., 1997, no.2, pp.4-8.

(20) Frentiu M., Munteanu E., Nevertheless, there is a Computer Science,
Studia Univ. Babes-Bolyai, Seria Informatica, 1(1996), 1, 1-6

(21) M.Frentiu, The impact of program correctness theory on teaching pro-
gramming, ı̂n “First Joint Workshop on Modern Applied Mathematics”,
Ilieni, 12-16 June 1995

(22) Boian F., M.Frentiu, Z.Kasa, Folosirea calculatorului in predarea geome-
triei, in Lucrarile Conferintei “Informatizarea invatamantului”, Balti, 4-7
octombrie 1995, pp.66-71.

(23) Frentiu M., Asupra predarii informaticii ı̂n liceu, in Lucrarile Conferintei
“Informatizarea invatamantului”, Balti, 4-7 octombrie 1995, pp.47-51.

(24) Frentiu M., Reguli de programare pentru incepatori, in Lucrarile Confer-
intei “Informatizarea invatamantului”, Balti, 4-7 octombrie 1995, pp.55-
61.

(25) Frentiu M., B.Parv, Programming proverbs revisited, Studia Univ. Babes-
Bolyai, Math., XVIII, no.3, 1993, pp.49-58.

(26) Frentiu M., Consideratii privind predarea informaticii ı̂n liceu, Seminarul
de Didactica Matematicii, Volumul 9, 1993, pp.93-96.

(27) Frentiu M., E.Munteanu, Past and Future in Computer Science at the
University of Cluj, Babes-Bolyai University, Faculty of Mathematics,
Res. Sem., 15(1993), no.5, pp.5-28, [MR94-1438806-01A73]

(28) Frentiu M., Gh. Lazarovici, Metode de clasificare automat ı̂n arheologie,
Acta Musei Napocensis, XXIV-XXV, pp.909-918, Cluj-Napoca, 1992.

(29) Boian F., Frentiu M., Program testing for Loop-Exit Schemes, Studia
Univ. “Babes Bolyai”, Math., XXXVIII, 3, 1992, pp. 15-18 .

(30) Frentiu M., B. Prv, V. Prejmerean, Abstract Data Types for Increas-
ing the Productivity in Programming, Babes-Bolyai Univ., Faculty of
Mathematics, Res. Sem., 14(1992), no.5, pp. 6-11.

6 LEON ŢÂMBULEA

(31) Boian F., M.Frentiu, Z. Kasa, Parallel Executable Sequences in Serial
Programs, ı̂n Studia Univ. “Babes Bolyai”, Mathematica, XXXIV, 3,
1989, pp. 3-16.

(32) Frentiu M., Gh. Lazarovici, Seriation and relative chronology of archaeo-
logical complexes from Gornea, in “Second Romanian Conference on the
application of Physics methods in archaeology”, Cluj Napoca, February
17 18, 1989, Vol.2, pp.65-85.

(33) Frentiu M, J.Imreh, A.Motiu, Etude petrographique et geochimique des
calcaires eocenes de la region situee au sud de Razoare, Studia Univ.
Babes Bolyai, Geol., XXXIV, 1989, pp.59-67.

(34) Boian F., M.Frentiu, and Z.Kasa, Efficiency in parallel evaluation of
Arithmetic Expressions, ı̂n “Babes Bolyai” University, Faculty of Math-
ematics, Seminar on Complexity, Preprint no. 10/1989

(35) Boian F., M.Frentiu, and Z.Kasa, Computer aided geometry, ı̂n “Babes
Bolyai” University, Faculty of Mathematics, Seminar on Computer Sci-
ence, Preprint no. 9/1989, pp. 11-20.

(36) Frentiu M, F.Boian, Z.Kasa, Parallel Execution in Loop Exit Schemes,
ı̂n “Babes Bolyai” University, Faculty of Mathematics, Seminar on Com-
puter Science, Preprint no. 9/1988, pp. 3-16.

(37) Frentiu M., and Gh.Lazarovici, Methods for automated classification
used in archaeology. An application to neolithic graves and ornaments,
in First Romanian Conference on the Applied Physics Methods in Ar-
chaeology, Vol.1(1988), pp.131-146.

(38) Frentiu M, F. Boian, Z. Kasa, L. Tambulea, Fortran must be improved,
Studia Univ. Babes-Bolyai, Math., XXXII, 3, 1987, pp. 15-16.

(39) Imreh J., A.Motiu, Frentiu M, Etude geochimique de la dolomits des cal-
caires appartenent de la partie No du bassin de Transylvanie, ı̂n Lucrar-
ile simpozionului National “The Eocene from the Transylvanian Basin”,
Roumania, Univ. Cluj Napoca, 1987, pp.207-219.

(40) Frentiu M, F.Boian, Z.Kasa, Folosirea calculatorului personal ı̂n predarea
geometriei, ı̂n Lucrarile Seminarului “Didactica Matematică”, vol.4 (1987,
88), pp.39-50.

(41) Frentiu M, F.Boian, Z.Kasa, L.Tambulea, Sistem de programe pentru
elaborarea statelor de functii, ı̂n Lucrările sesiunii stiintifice a CCUB,
Bucuresti, 1987, pp. 438-443.

(42) Frentiu M, F.Boian, Z.Kasa, Elemente de programare ı̂n limbajul BA-
SIC. ı̂n Lucrările Seminarului “Didactica matematică”, 1987 1988, pp.
51-64.

(43) Frentiu M, On the asymptotic aspect of the approximation of functions
by means of the D.D.Stancu operators, Seminar on Numerical Analysis,
preprint no.5, 1987, pp.57-64.

(44) Frentiu M, F. Boian, Folosirea corect a matricelor ı̂n programarea modu-
lară, Lucrarile Seminarului “Didactica Matematic”, Univ. Cluj Napoca,
1987, pp. 86-101.

PROFESSOR MILITON FRENŢIU AT HIS SIXTIES 7

(45) Frentiu M, F. Boian, Z. Kasa, A System for Program Writing and De-
buging. În “Babes Bolyai” University, Faculty of Mathematics, Seminar
on Computer Science, Preprint no. 5/1987, pp. 1-21.

(46) Imreh J., Frentiu M. si N.Meszaros, A Geochemical Study on the lime-
stone at Răstoci, Studia Univ. Babes Bolyai, ser. Geologica, XXXI, 1,
1986, 15-26.

(47) Frentiu M, J.Imreh, si N.Meszaros, Geochemische untersuchungen uber
eine eozan-oligozan kalkstein - serie aus dem norden des Siebenburgis-
chen Beckens (Rumanien), Annales Univ. Sci.Budapestinensis, XXVI,
1986, pp. 13-30.

(48) Frentiu M., T.Chiorean, Determinarea prin simulare a capacitătii por-
tante a elementelor de rezistent ale unei constructii, ı̂n Lucrrile celui de al
V lea Colocviu de Informatica, Iasi, 18 19 octombrie 1985, pp. 786-788.

(49) Frentiu M., Program pentru prelucrări statistice ı̂n geologie, ı̂n Lucrările
Laboratorului de Cercetari interdisciplinare ale Univ. Cluj Napoca, 19
decembrie 1985, pp. 29-34.

(50) F.Boian, Frentiu M., Z.Kasa si L.Tambulea, Towards a new standard
Fortran, Seminar on Computer Science, preprint no.6/1985, pp.1-20.

(51) F.Boian, Frentiu M., Z. Kasa, L. Tâmbulea, l. Erdo, A. Szen, Simularea
automatelor programabile, ı̂n Lucrările simpozionului “Informatica si
aplicatiile sale”, Zilele academice Clujene, Cluj Napoca, 1985, pp. 44-
51.

(52) Frentiu M., On the program correctness, Seminar on Computer Science,
preprint no.4, 1984, pp.75-84.

(53) Frentiu M., J.Szilagyi, The MACRO2 Macroprocessor, Mathematica,
22(1980), nr.2, 357-358.

(54) Frentiu M., C.Terchilă, Macroprocesor ı̂n sistemul SIRIS 2, Studia Univ.
Babes Bolyai, 1979, nr.1, 71-72.

(55) Frentiu M., Macroprocesoare ı̂n scrierea translatoarelor, ı̂n Lucrările
celui de al V lea Simpozion “Informatica si conducere”, 5 12 mai 1979,
pp.77-79.

(56) Frentiu M., Error correction in a simple precedence language, Mathe-
matica, 20(43), nr.2, 1978 pp.159-162. [MR80a:68100-68F25].

(57) Frentiu M., A global error correcting parser, Mathematica, 19(42), nr.1,
1977, pp.41-43. [MR80a:68100-68F25]

(58) Coman Gh., Frentiu M., Bivariate spline approximation, Studia Univ.
Babes Bolyai, 1974, nr.1, 59-64.

(59) Frentiu M., A method for generation of pseudo random numbers, Studia
Univ. Babes Bolyai, 1974, nr.1, 41-43.

(60) Frentiu M., Combinatii liniare de polinoame Bernstein si de operatori
Mirakyan, Studia Univ. Babes Bolyai, 1970, nr.1, 63-68.

8 LEON ŢÂMBULEA

Other papers

(1) Frentiu M., Error correcting codes, MPhil. thesis, Brunel Univ., 1975.
(2) Frentiu M., Some aspects of error correction of programming languages

Ph.D. Thesis, Brunel Univ., London, 1977.
(3) M. Frentiu, Conceptul de subalgoritm ı̂n ı̂nvatarea programarii, Gazeta

de informatica, 2000.
(4) Frentiu M., F.Boian, Folosirea corecta a matricelor in programarea mod-

ulara, Lucrarile Seminarului “Didactica Matematica”, Univ. Cluj- Napoca,
1987, pg.86-101

(5) M.Frentiu, Asupra rezolvarii problemelor date la admiterea la Facul-
tatea de Matematica si Informatica a Univ. Babes-Bolyai, 22 iulie 2002,
Gazeta de informatica, 2002.

Published books

(1) Gh.Coman, M.Frentiu, Introducere in Informatică (Introduction to com-
puters and programming), Ed. Dacia, 1982, 213 pagini.

(2) M.Frentiu, B.Prv, Elaborarea programelor. Metode si tehnici moderne,
Ed. Promedia, Cluj-Napoca, 1994, 208 pagini.

(3) M.Frentiu si altii, Manualul ı̂ncepatorului ı̂n Programarea Pascal, Ed.
Microinformatica, Cluj-Napoca, 1995, 252 pagini, I.S.B.N.973-9215-04-
1.

(4) M.Frentiu si altii, Programare Pascal. Programe ilustrative, probleme
propuse, pentru elevi si studenti, Ed. Promedia, 1995, 229 pagini,
I.S.B.N. 973-96862-1-4.

(5) M.Frentiu, I.Lazar, S.Motogna si V.Prejmereanu, Elaborarea algorit-
milor, Ed.Universitatii Babes-Bolyai, Cluj-Napoca, 1998, 188 pagini,
ISBN 973-9261-16-7.

(6) M.Frentiu, I.Lazar, S.Motogna si V.Prejmereanu, Programare Pascal,
Ed.Universitatii Babes-Bolyai, Cluj-Napoca, 1998, 392 pagini, ISBN 973-
9261-18-3.

(7) I. Lazăr, M.Frentiu, V.Niculescu, Programare orientata obiect in Java,
Ed. Univ. Petru Maior, Tg.Mures, 1999, 283 pagini , ISBN 973-99054-
8-X

(8) M.Frentiu, I.Lazar, Bazele Programarii: Proiectarea Algoritmilor, 2000,
Ed. Univ. Petru Maior, Tg.Mures 184 pagini ISBN 973-8084-06-7

(9) M.Frentiu, Verificarea Corectitudinii Programelor, Ed.Univ.“Petru-Maior”,
Tg.-Mures, 2001, 116 pagini, ISBN 973-8084-32-6

(10) M.Frentiu, I.Lazar, L.Tambulea, F.Boian, Informatica de baza, Ed.Universitatii
Babes-Bolyai, Cluj-Napoca, 2005, 226 pagini, ISBN 973-610-340-4

Manuals and other publications of the same nature

(1) M.Frentiu et al, Informatica pentru elevi, Ed.Microinformatica, Editiile
1-2 ı̂n 1992 si Editia 3 ı̂n 1993, 210 pagini.

PROFESSOR MILITON FRENŢIU AT HIS SIXTIES 9

(2) M.Frentiu, I.Lazar, S.Motogna si V.Prejmereanu, Elaborarea algorit-
milor, Ed.Universitatii Babes-Bolyai, Cluj-Napoca, 1996, 188 pagini.

(3) M.Frentiu, I.Lazar, S.Motogna si V.Prejmereanu, Programare Pascal,
Ed.Universitatii Babes-Bolyai, Cluj-Napoca, 1996, 392 pagini.

(4) Fl. Boian, M.Frentiu, S. Groze, E.Iacob, S.Iurian, E.Iacob, Kasa Z.,
S.Motogna, H.F.Pop, V.Prejmereanu, L.Tâmbulea, Bazele Informaticii
I. Culegere de probleme pentru lucrarile de laborator (editia a II-a),
1992, 182 pagini.

(5) M. Frentiu, Z. Kasa, L.Tambulea, C. Tartia, Utilizarea calculatorului
personal ı̂n liceu, 1988, 120 pagini.

(6) M.Frentiu, Z.Kasa, L.Tambulea, C. Tartia Utilizarea calculatorului per-
sonal PRAE M, 1986, 81 pagini.

(7) M.Frentiu, Bazele Matematice ale Calculatoarelor, Univ. “Avram Iancu”,
Cluj-Napoca, 1993.

(8) Fl. Boian, M.Frentiu, S. Groze, D.Dumitrescu, L.Lupsa, Kasa Z., L.Tâmbulea,
Bazele Informaticii I. Culegere de probleme pentru lucrarile de laborator,
Ed.I-a, 1982, 147 pagini.

(9) M.Frentiu, F.Boian, Bazele Informaticii. Limbajul Pascal, (editia a II-a,
1992), 190 pagini.

(10) M.Frentiu, S.Groze, Informatica, Litografia Univ. D. Cantemir, Cluj-
Napoca, 1992, 136 pagini.

(11) M.Frentiu, F.Boian, Bazele Informaticii. Limbajul Pascal, (editia a I-a,
1990), 185 pagini.

(12) M.Frentiu, Geologie matematica, 1987, 122 pagini.
(13) M.Frentiu, S.Groze, Bazele Informaticii I, 1983, 202 pagini.
(14) M.Frentiu, S.Groze, Bazele Informaticii (editia a II-a), 1986, 243 pagini.
(15) M.Frentiu, S.Groze, Programare si Informatica, 1982, 193 pagini.
(16) M.Frentiu, F.Boian, Bazele informaticii I. Instruire ı̂n programare, 1980,

117 pagini.
(17) M.Frentiu, Sisteme de operare si teleprelucrarea datelor. Assiris. 1979,

80 pp.
(18) M.Frentiu si colectiv, Bibliotecile MATH I si MATH II pentru calcula-

toarele personale, cu ITCI, 1987 1988.

Participations at research programmes financed by national
institutions

(1) Studiul elaborarii unei retele a Universitatii. Studiul complexitatii al-
goritmilor si optimizarea programelor (beneficiar Ministerul Educatiei
Nationale, CNCSU), director de proiect M.Frentiu;(1994-1997)

(2) Modelarea si implementarea unei baze multidisciplinare de algoritmi
pentru crearea unui centru de calcul de ı̂nalta performanta, director de
proiect Prof. M.Frentiu (1998-2001)

(3) Cercetari asupra anumitor structuri si metode matematice, cu aplicatii
ı̂n optimizare, mecanica si informatica, 1979-1981, CNST.

10 LEON ŢÂMBULEA

(4) Cercetari privind unele structuri algebrice si metode numerice cu apli-
catii ı̂n optimizare, mecanica si informatica, 1982-1985, cu MEI.

(5) Contract nr.80/531/1989: Noi algoritmi de clasificare, simulare, reorga-
nizarea datelor, sau pentru rezolvarea unor clase generale de probleme
din diferite domenii, ı̂n 1989-93.

(6) Cercetari moderne ı̂n Informatica: Transformarea programelor si a ex-
presiilor secventiale ı̂n programe si expresii paralelizabile, Cu CNST,
1989

Coordinations of international programmes

(1) Coordonator la proiectul Tempus: Advanced Educational Technology
Center - Tempus S-JEP 12518-97, 1997-2000

Participations in research or production contracts with industry

(1) Sistem informatic privind urmarirea bolilor profesionale la angajatii din
Întreprinderea miniera Cluj-Napoca, 1977-1978.

(2) Sistem informatic privind evidenta produselor, lucrarilor si serviciilor
facturate, Întreprinderea Electrometal, Cluj-Napoca, 1978.

(3) Asistenta tehnica pentru perforare, programare si medie mecanizare,
Cons. orasenesc Gheorgheni, jud. Harghita, 1977-1978.

(4) Asistenta tehnica pentru perforare, programare si medie mecanizare.
Cons. popular jud. Harghita, 1979.

(5) Biblioteca matematica pentru calculatoarele din seria 8000. ITC, 1980
1981.

(6) Elaborarea unui sistem de codificare specifica ı̂ntreprinderii Electrometal
Cluj Napoca, 1982-1983.

(7) Studii privind simularea automatelor programabile, CUG Cluj Napoca,
1985.

(8) Elaborarea unei baze de date pentru subsistemul personal. Beneficiar,
Întreprinderea Electrometal, Cluj Napoca, 1987.

(9) Elaborarea bibliotecilor MATH I si MATH II pentru calculatoarele per-
sonale, cu ITCI, 1987-1988.

(10) Elaborarea si implementarea unui mediu de programare PASCAL sub
sistemul de operare “U”. ITCI, 1988.

Babes-Bolyai University of Cluj-Napoca, Faculty of Mathematics and Computer
Science, Department of Computer Science, M. Kogalniceanu Str. 1, Cluj-Napoca,
ROMANIA

E-mail address: leon@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 1, 2005

CORRECTNESS: A VERY IMPORTANT QUALITY FACTOR IN
PROGRAMMING

MILITON FRENŢIU

Abstract. Correctness is one of the most important property of a program.
Nevertherless, the students are usually not taught to prove the correctness of
their programs, and when it is done, they dislike this activity. The importance
of program correctness, and the necessity to teach it from the first course in
programming, are underlined. Also, some consequences on the education
activity are considered.

Keywords: Program correctness, Education, Software Engineering,
Stepwise refinement

1. Introduction

Todays software systems have become essential parts of our everyday life. Com-
puters are used in all fields of human activities. More and more programs are
needed, and their complexity increases continuously. Software critical systems
[But94] require error-free programming. To obtain programs without errors we
need a new way of writing programs, new people, much better educated, able to
do this.

There is a contradiction between the desire to obtain a system as quickly as
possible, and to build a correct system. The experience shows that more than
75% of finished software products have errors during maintenance, and deadlines
are missed and cost overruns is a rule not an exception [Gib94]. It was estimated
[You90] that more than 50% of the development effort was spent on testing and
debugging. Nevertheless, some errors are not detected by testing, and some of
them are never detected. More, there are projects that have never been finished
[Eff94]. And it is not an exception; it is estimated that from each six large projects
two of them are never finished [Gib94, Rob98, or 31.1% according to Sta95]. Also,
some other examples and problems may be found in [Gib94].

Due to unreliable software, many people died, and serious economical damages
have been produced. There are many well known examples. Some of them are
mentioned below, and more (107) can be found in [Der05].

Received by the editors: April 15, 2005.

11

12 MILITON FRENŢIU

During the Gulf war, on February 25-th 1991, a Patriot missile failed to intercept
an incoming Iraqi Scud missile, due to accumulating errors with real numbers
computations [Arn96, Der05]. Due to this error 28 American soldiers died.

On June 4, 1996, the first flight of the Ariane 5 rocket ended in failure. Approxi-
mately 40 seconds after initiation of the flight sequence, Ariane 5 exploded [Jez97].
The European Space Agency and French National Center for Space Studies, es-
tablished an inquiry board to determine the cause of the accident. This accident
happened due to a software reuse error of an integer conversion procedure.

On September 23, 1999 the Mars Climate Orbiter was lost when it entered the
Martian atmosphere in a lower than expected trajectory [Lev01]. The cause of the
accident was in giving data in English units instead of metric units.

According to Andrews [And02], “in the past 20 years, there have been approx-
imately 1100 computer-related accidental deaths.

Let us consider that a program is composed of n procedures, and the probability
of correctness of each procedure is at most p. Then the probability of correctness
of the entire program is at most pn [Dah72]. For p < 1 and n very large this value
is very closed to 0. It means that the only chance to obtain a reliable program is
p = 1, i.e. each procedure must be perfect. This means that we must prove the
correctness of all used procedures, or, as will be shown later, we must obtain a
correct procedure when we conceive it.

Therefore, the most important property of a program is whether it accomplishes
the intentions of its user, i.e. if it is correct.

2. A short overview on program correctness

The concept of program correctness was introduced by Floyd [Flo67]. Also, a
method for proving program correctness was given in the same paper. Before, the
correctness of individual algorithms was proved by Hoare [Hoa67, Hoa68, Hoa71],
Foley and Hoare [Fol71], London [Lon70a, Lon70b], Naur [Nau66].

In a program P we distinguish three types of variabiles, grouped as three vectors
X, Y , and Z. The input vector X = (x1, x2, . . . , xm) consists of the input variables.
They denote the known data of the problem PP solved by the program P . We
may suppose they do not change during computation. The output vector Z =
(z1, z2, . . . , zm) consists of those variables which denote the results of the problem
PP . The program vector Y consists of the auxiliary variables, which denotes
various partially results of the computation.

Two predicates are associated to the program P : an input predicate and an
output predicate. The input predicate ϕ(X) is TRUE for those values a of X for
each the problem may be solved. The output predicate ψ(X, Z) shows the relation
between the results Z and the input values X. It is TRUE for those values a and
b of the vectors X and Z for which the results of the problem are b when the
initial/input data is a. The specification of the program P is the pair formed from
the input predicate ϕ(X) and the output predicate ψ(X, Y).

CORRECTNESS: A VERY IMPORTANT QUALITY FACTOR IN PROGRAMMING 13

The program P terminates in respect to the input predicate ϕ(X) if for each
value a = (a1, a2, . . . , an) of the vector X for which the predicate ϕ is TRUE,
the execution of P terminates. In this case, the computation done by P is the
sequence of states passed during the execution, and the value b of the vector Z
in the final state is the result of the execution. We may write b = P (a), i.e. P
implements a function.

The program P is partially correct with respect to the specification if for the
value a for which ϕ(a) is TRUE and the execution terminates with the results
b = P (a) then ψ(a, b) is TRUE. The program P is totally correct with respect to
ϕ(X) and ψ(X,Y) if the program P terminates with respect to ϕ(X) and it is
partially correct with respect to ϕ(X) and ψ(X, Y).

A method for proving partial correctness of a flowchart program is due to Floyd
[Flo67] and it uses a set of cut-points. This is a set of points on the arcs of the
flowchart such that every loop includes at least one such cut-point. Also, there is
a cut-point on the arc leading from the START box, and there is a cut-point on
the arc leading to the HALT box.

To each cut-point i of the flowchart, a predicate µi(X, Y) is associated. This
predicate, called an invariant predicate, is invariantly true for the current values
of X and Y in this cut-point, i.e. it characterizes the relation that must exist be-
tween variables at this point. At the START cut-point the corresponding invariant
predicate is ϕ(X), and at the HALT cut-point it is ψ(X, Z).

The set of cut-points defines the paths that must be verified. Let α be a path
leading from the cut-point i to the cut-point j, with no intermediate cut-points
(there can be more such paths). To this path we associate a predicate Rα(X, Y)
which gives the condition for the path α to be traversed, and a function rα(X, Y)
such that if Y are the intermediate values in the cut-point i then, when the path
is traversed, Y ′ = rα(X, Y) are the values of Y in the cut-point j. A verification
condition is associated to the path α. This condition is:

∀X∀Y (µi(X,Y) ∧Rα(X, Y) → µj(X, rα(X, Y)))

Floyd [Flo67] proved that if all the verification conditions are true then the
program is partially correct with respect to ϕ(X) and ψ(X, Z).

Floyd also suggested a method for proving termination using well-founded sets.
A well-founded set M is a partially ordered set, without infinite decreasing se-
quences. For each path α from i to j, a termination condition is formed:

ϕ(X) ∧R?(X,Y) → (ui(X, Y) > uj(X, rα(X, Y))

Here
ui : DX ×DY → M

is a function associated to the cut-point i.
If all termination conditions are proved then the program P terminates over

ϕ(X).

14 MILITON FRENŢIU

The ideas of Floyd were developed by Hoare [Hoa69] who introduced an ax-
iomatic method for proving the partial correctness of a program.

Then Dijkstra [Dij75] introduces the important concept of weakest precondition.
His idea, of formally deriving correct programs from specifications, was continued
by Gries [Gri81] who states that is more important to develop correct programs
than to prove latter their correctness: A program and its proof should be developed
hand-in-hand with the former usually leading the way. This idea was developed
further by Dromey [Dro89], and Morgan [Mor90].

3. Consequences of Program correctness theory on teaching
Programming

One way to change the software engineering situation shortly described in the
Introduction, also known as “software crisis, is a better education of the new
generations of programmers. It is the time to teach programming in conformity
with the theory of program correctness. As Naur has underlined in [Nau66], “it is
a deplorable consequence of the lack of influence of mathematical thinking on the
way in which computer programming is being pursued. We think that teaching
programming well is an important part of our tasks as teachers in the universities.

It is not only possible, but necessary, to explicitly teach the methods and prin-
ciples for good programming. Some early papers on program correctness [Nau66,
Lon70a, Lon70b] have proved the correctness of some concrete algorithms. Just
Hoare has made a significant move from a posteriori proof of an existing program
[Hoa67, Hoa68, Fol71] to a program design method [Hoa71].

We need to teach program correctness for many reasons. First one is the impact
this theory has on the future programmers in general. Second, we need very skilled
people for program verification activities. The old testing is needed, but not
sufficient and not efficient. Program inspection [Gil93] is required for CMM level3
[Pau93], and the inspection team must contain people aware of program correctness
theory. More, we need skilled people to use Formal Methods for building all future
safety-critical systems [But94].

Another reason for teaching program correctness comes from the consequences
of program correctness on programming methodology. Why do we need specifi-
cations? What is the importance of program clarity and simplicity in software
engineering? Why we must write all kind of documents?

Some of the most important rules considered important for programming well,
which are consequences of the program correctness theory, are given in [Fre93,
Fre94, Fre97]. We select some of the most important and simple ones below
(specifying the original bibliographical source):

• Define the problem completely (i.e., write the precondition ϕ(X) and
the postcondition ψ(X, Z)) [Gri81, Led75, Sch90].

• Think first, program later [Led75].

CORRECTNESS: A VERY IMPORTANT QUALITY FACTOR IN PROGRAMMING 15

• Write and use modules as much as possible [Led75, Sch90].
• Prove the correctness of algorithms during their design [Gri81].
• Decide which are the needed program variables, and what are their mean-

ings. Write invariants for these variables and insert them as comments
in the program [Gri81, Led75].

• Choose suitable and meaningful names for variables [Led75].
• For each variable of a program, make sure that it is declared, initialised

and properly used [Nau66].
• Verify the value of a variable immediately it was obtained [Nau66].
• Use comments to document the program [Led75].
• Verify each part of a program as soon as possible [Gri81, Sch90, Gil93].
• Use symbolic names for all entities (constants, types, variables, proce-

dures and functions) [Fre94].
• Avoid to use global variables [Sch90].
• Hand-check the program before running it [Led75].
• Write the documentation of the program simultaneously with its building

[Sch90].
• Give attention to the clarity and simplicity of your program [Fre01a]!

Some people [Ste91] are against proving correctness. Others consider it is ex-
pensive, since they think the effort to build a program in such a way is considerable
increased.

Certainly, proving correctness of a real large program is too complicated and,
maybe, inappropriate. But the correctness of the important and difficult proce-
dures used in the system may be proved. And the specifications of these procedures
are not changed from time to time by the client, as some “researchers argue against
proving correctness.

Also, proving correctness has an important impact on program verification. It
is well known that proving correctness and testing complete each other. There are
some aspects (performance, for example) that can be verified only by testing. But
testing is a time consuming activity that must be reduced through other forms
of verifications (inspections [Fag76, Mye78, Gil93], symbolic executions [Kin76]).
And a correct algorithm is not accompanied by debugging. When testing discover
errors we must start the most difficult and unpleasant life-cycle activity, which
is debugging. The minor errors may easily be corrected, meanwhile debugging
logical errors consumes much time and effort, and often are unsuccessful.

Almost all students have learned some programming at school. They think they
know what programming is all about. They express resentment when they a forced
to document their activity, to design the program, or to think to the correctness of
their programs. They run directly to computer and introduce their programs, and
run them. If the first execution seems OK they are satisfied. They are not used
to test seriously their programs. We need to fight with these people, to change
their habit, to educate them in a different way. That is why we have decided to

16 MILITON FRENŢIU

stress from the very beginning that “programming is a high intellectual activity
[Hoa91], that the correctness is the most important property of good programs.

According to ISO-9126 the factors of the program quality are functionality,
reliability, usability, efficiency, maintainability, and portability. Is program cor-
rectness present in defining the quality of a program? We put this question since
it is not directly mentioned in the quality factors.

Nevertheless, correctness is clearly present in the above mentioned factors.
Functionality supposes the program is correct, and reliability expects as few er-
rors as possible. And maintainability is increased in many ways if the program
is correct. First, crorrective maintenance is not needed for a correct program.
Second, perfective and adaptive maintenance is easier for a well design program.
And correctness is strongly connected to good design.

The software engineering course “Algorithms and Pascal programming was
given to the first year computer science students. The course concerned was
presented during their first semester in the University. It is the first course on
programming, and the main parts of it are: a Pseudocode language for describ-
ing algorithms, developing correct algorithms from specifications, simple Pascal
programming, the life-cycle of a program, the methods of designing, coding and
verifying simple programs.

There are some years since the notion of correctness and the Floyds method for
proving correctness are taught in this course. Also, it was underlined that it is more
important to construct a correct program than to prove later its incorrectness. But
is for the first time when the accent was given to develop correct algorithms from
specifications, not on proving correctness.

We used for many years a Pseudocode language to describe algorithms. This
language has those three computation structures needed to write structured al-
gorithms: the sequential structure, the alternative and the iterative computation
structure. Each year stepwise refinement [Wir71] was considered a very impor-
tant programming method, but it was presented in an informal way. In 2004, for
the first time, the development of correct algorithms from specifications was used
in a more rigorous way [Mor90]. The refinement rules for assignement, for the
sequential composition, alternation computation structure (if-then-else), and for
iteration were adapted to the used Pseudocode language [Fre04].

We gave many examples of refinement, and the students exercised these rules.
At the final examination we observed an improvement in the correctness of student
algorithms. The results at students exams in 2004 were compared to those of the
students on 2003 [Fre04], and the statistical hypothesis on mean values equality
was verified. It was rejected, since the results were significantly better in 2004.
Therefore, we may conclude that the correctness of the students algorithms at
the examination has improved in the last year. Certainly, their may be more
reasons for this, but the main difference consisted only in the introduction of the
development of algorithms from specifications, using clear defined rules.

CORRECTNESS: A VERY IMPORTANT QUALITY FACTOR IN PROGRAMMING 17

4. Conclusions

We need confidence in the quality of our software products. We need to educate
the future software developers in the spirit of producing correct, reliable systems.
For this we must teach students to develop correct programs. We are aware that
usually programmers do not prove the correctness of their pograms. There always
must be a balance between cost and the importance of reliability of the programs.
But just when the well educated people do not prove the correctness, their products
are more reliable than the products of those “programmers who never studied
program correctness. Therefore, we consider that the students must hear, and
must pay attention to the correctness of their products.

We think that we educate our students for their future profession, that last for
several decades. Also, they must be prepared for changes in software engineering.
They need to acquire now the knowledge needed to build more reliable systems.
Our simple experiment confirmed the improvement in the correctness of students
algorithms compared to the previous year.

Certainly, proving correctness of algorithms is not enough to obtain more re-
liable systems, but it is necessary. For years we ask the students to understand
and to respect some important rules of programming [Fre93, Fre00, Fre03, Led75].
Many of them are simple consequences of the theory of program correctness [Fre97].

Thus, from first year, students are taught about program specification and
design. The entire life-cycle is presented, the importance of documentation for all
steps is underlined. Top-down and the other programming methods are taught,
and the students hear that the design is more important than coding. Each part
of the design must be specified, the code must be explained by comments, the
comments should be neither more nor less than needed. Since we also observed
that students do not like to write comments [Fre02] we tried to explain their
necessity, and to force them to document the code [Fre03].

The fact that program verification is a very important activity which extends
from the first statement of the problem, until the end of the project is repeated
many times. And a special attention was given to the inspection of all documents.
The students must hear from the beginning that testing is not enough, that in-
spection of all phases may be more useful. Thats why we ask the students to have
a notebook at their laboratories, and the entire life-cycle of their programs must
be reflected in this notebook. And they must respect the order of the activities;
the specification and the design must be before coding.

We must fight against the idea that proving correctness is expensive, that prov-
ing needs time the developers think they do not have. We must tell them they
have very much time for debugging!

18 MILITON FRENŢIU

References

(And02) Andrews P., Safety-critical projects: Can formal methods help?, Builder-
com, 2002, sept. 12.

(Arn96) Arnold D.N., Two disasters caused by computer arithmetic errors,
http://www.ima.umn.edu/∼arnold/455.f96/disasters.html

(But94) Butler, R.W., S.C.Johnson, Formal Methods for Life-Critical Software,
NASA Langley Research Center, http://smesh.larc.nasa.gov/

(Dah72) Dahl O.J., E.W.Dijkstra, and C.A.R.Hoare, Structured programming,
Academic Press, New York, 1972.

(Der05) Dershowitz N., Software horror stories, School of Computer Science,
TelAviv University, http://www.cs.tau.ac.il/∼nachumd/verified/
horror.html

(Dij75) Dijkstra, Guarded commands, nondeterminacy and formal derivation of
programs, Comm.A.C.M., 18(1975), 8, pp.453-457.

(Dro89) Dromey G., Program Derivation. The Development of Programs from
Specifications, Addison Wesley, 1989.

(Eff94) Effy Oz, When Professional Standards are LAX. The CONFIRM Failure
and its lessons, Comm. A.C.M., 37(1994), 10, 29-36.

(Fag76) M. Fagan, Design and Code Inspections to Reduce Errors in Program
Development, IBM Systems Journal, 15 (3), 1976.

(Flo67) Floyd R.W., Assigning meanings to programs, Proc. Symposium in
Applied Mathematics, 19, AMS, 1967, pp.19-32.

(Fol71) Foley M., and C.A.R.Hoare, Proof of a recursive program: Quicksort,
The Computer Journal, vol.14,n.4, p.391-395.

(Fre84) Frentiu M., On the program correctness, Seminar on Computer Science,
preprint 1984, 75-84.

(Fre93) M.Frentiu, B.Pârv, Programming Proverbs Revisited, Studia Universi-
tatis Babes-Bolyai, Mathematica, XXXVIII (1993), 3, 49-58.

(Fre94) M.Frentiu, B.Pârv, Elaborarea programelor. Metode si tehnici moderne,
Ed.Promedia, Cluj-Napoca 1994, 221 pages, ISBN 973-96114-9-4.

(Fre95) M.Frentiu, Reguli de programare pentru incepatori, in Lucrarile Confer-
intei “Informatizarea invatamantului, Balti, 4-7 octombrie 1995.

(Fre97) M.Frentiu, On program correctness and teaching programming, Com-
puter Science Journal of Moldova, vol.5(1997), no.3, 250-260.

(Fre00) M.Frentiu, On programming style program correctness relation, Studia
Univ. Babes-Bolyai, Seria Informatica, XLV(2000), no.2, 60-66.

(Fre01a) M.Frentiu, Verificarea Corectitudinii Programelor, Univ. “Petru-Maior”,
Tg. Mures, 2001, 116 pagini, ISBN 973-8084-32-6.

(Fre01b) M. Frentiu, and H.F.Pop, A Study of License Examination Results Using
Fuzzy Clustering Techniques, Research Seminar on Computer Science,
2001, pp. 99-106.

CORRECTNESS: A VERY IMPORTANT QUALITY FACTOR IN PROGRAMMING 19

(Fre02a) M. Frentiu, The Impact of Style on Program Comprehensibility, Pro-
ceedings of the Symposium Zilele Academice Clujene, 2002, pp. 7-12.

(Fre02b) M. Frentiu, H.F.Pop, A Study of Dependence of Software Attributes
using Data Analysis Techniques, Studia Universitatis Babes-Bolyai, In-
formatica, 47(2),2002, 53-60.

(Fre03) M. Frentiu, On programming style, Babes-Bolyai University, Depart-
ment of Computer Science, http://www.cs.ubbcluj.ro/∼mfrentiu/articole
/style.html

(Fre04a) M. Frentiu, Program Correctness in Software Engineering Education,
Proceedings of the International Conference on Computers and Com-
munications ICCCM4, pp.154-157, Oradea, 2004, may 27-29.

(Fre04b) M. Frentiu, Formal Methods in Software Engineering Education, Pro-
ceedings ICELM1, Tg. Mures, 2004.

(Fre04c) Frentiu M., An Overview on Program Inspection, Proceedings of the
Symposium “Zilele Academice Clujene”, 2004, pp. 9-14.

(Gib94) Gibs W.W., Softwares Chronic Crisis, Scientific American, september,
1994.

(Gil93) Tom Gilb and Dorothy Graham, Software Inspection, Addison-Wesley,
1993.

(Gri81) Gries D., The Science of Programming, Springer-Verlag, Berlin, 1981.
(Hoa69) Hoare C.A.R., An axiomatic approach to computer programming, Comm.

A.C.M., 12 (1969), pp. 576-580.
(Hoa71) C.A.R.Hoare, Proof of a program: FIND, Comm.ACM, 14(1971), pp.39-

45.
(Hoa91) Hoare C.A.R., The Mathematics of Programming, LNCS, 206, 1991,

pp.1-18.
(Iga75) Igarashi S., London R.L., and Luckham D.C., Automatic Program Ver-

ification I: a logical basis and its implementation, Acta Informatica,
4(1975), 145-182.

(Jez97) Jezequel J.M., B.Meyer, Put it in the contract. The lessons of Ariane,
Computer (IEEE), vol.30 (1997), no.2, p.129-130.

(Kat76) Katz, and Manna, Logical analysis of programs, Comm.ACM, 19(1976),
4, p. 188-206.

(Kin76) King J.C., Symbolic Execution and Program Testing, Comm. ACM, 19
(1976), 7, p.385-394.

(Led75) Ledgard H.F., Programming Proverbs for Fortran Programers, Hayden
Book Company, Inc., New Jersey, 1975.

(Lev01) Leveson N.G., Systemic Factors in Software-Related Spacecraft Acci-
dents, AIAA 2001, 47-63.

(Lon70a) London R.L., Proving Programs Correctness. Some Techniques and Ex-
amples, BIT, 10 (1970), pg.168-182.

20 MILITON FRENŢIU

(Lon70b) London R.L., Proof of Algorithms. A new kind of cerification, Comm.
ACM, 13 (1970), pg.371-373.

(Mor90) Morgan, C., Programming from specifications, Springer, 1990.
(Mye78) Myers, A., A Controlled Experiment in Program Testing and Code Walk-

throughs Inspection, Comm.A.C.M., 21(1978), no.9, pp.760-768.
(Nau66) Naur, Proof of Algorithms by general snapshots, BIT, 6(1966), pg.310-

316.
(Nic04) V.Niculescu, M. Frentiu, Designing Correct Parallel Programs from Spec-

ifications, Proceedings of the 8th World Multiconference on Systemics,
Cybernetics and Informatics (SCI 2004), Orlando, USA, July 18-21,
2004, pp.173-178.

(Pau93) Paulk M.C., B.Curtis, M.B.Chrissis, C.V.Weber, The Capability Matu-
rity Model for Software, Tech.Report, CMU/SEI-93-TR-25, and IEEE
Software, 10(1993,4, 18-27.

(Rob98) Robinson H., et all, Postmodern Software Development, The Computer
Journal, 41(1998), 6, p.363-375.

(Sch90) Schach S.R., Software Engineering, IRWIN, Boston, 1990.
(Sta95) The Standish Group Report: Chaos, http://www.scs.carleton.ca/∼bean

/PM/Standish-Report.html
(Ste91) Stevenson D.E., 1001 Reasons for not Proving Program Correct: A Sur-

vey, Philosophy and Computers, 1, 1991.
(You90) Yourdon, E., Modern SoftwareAnalysis, Yourdon Press, Prentice Hall

Buiding, New Jersey 07632, 1989
(Weg74) Wegbreit, The synthesis of loop predicates, CACM, 17(1974), 102-112.
(Wir71) Wirth N., Program development by stepwise refinement, Comm. ACM

14(1971), 4, 221-227.

Babes-Bolyai University of Cluj-Napoca, Faculty of Mathematics and Computer
Science, Department of Computer Science, M. Kogalniceanu Str. 1, Cluj-Napoca,
ROMANIA

E-mail address: mfrentiu@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 1, 2005

CONTINUATIONS FOR REMOTE OBJECTS CONTROL

ENEIA TODORAN1, FLORIAN MIRCEA BOIAN2, CORNELIA MELENTI1,

AND NIKOLAOS PAPASPYROU3

Abstract. We have recently introduced the ”continuation semantics for con-

currency” (CSC) technique in an attempt to exploit the benefits of using con-

tinuations in concurrent systems development. CSC is a general technique

for denotational semantics which provides excellent flexibility in the compo-

sitional modeling of concurrent control concepts. In this paper, we present a

denotational semantics designed with CSC for a distributed languages incor-

porating two control concepts which have not been modeled denotationally

before: remote object (process) destruction, and cloning.

1. Introduction

The CSC technique was recently introduced by us [13, 14] in an attempt to
exploit the benefits of using continuations in concurrent languages development.
It is a general technique for denotational semantic design, which can be used to
model both sequential and parallel composition in interleaving semantics, as well as
various mechanisms for synchronous and asynchronous communication [13]. Intu-
itively, it is a semantic formalization of a process scheduler simulated on a sequen-
tial machine. In the CSC approach, a continuation is an application-dependent
configuration (structure) of computations, where by computation we mean a par-
tially evaluated denotation (meaning function). Every moment there is only one
active computation, which remains active only until it performs an elementary ac-
tion. Subsequently, another computation taken from the continuation is planned
for execution. In this way it is possible to obtain the desired interleaving behavior
for parallel composition.

A continuation is a representation of what remains to be computed after taking
an elementary step from the (currently) active computation. This corresponds
to the original definition of continuations1, but in the CSC approach continua-
tions are structured entities and each computation contained in a continuation
can be accessed and manipulated separately. Synchronization and communication
information can also be encoded in continuations. What one gets with CSC is a

Received by the editors: January 10, 2005.
1A continuation is a representation of the rest of the computation, according to [11].

21

22 TODORAN, BOIAN, MELENTI, AND PAPASPYROU

”pure” continuation based approach to communication and concurrency in which
all control concepts are modeled as operations manipulating continuations.

As shown in [15], by using the CSC technique, denotational semantics can be
used not only for formal specification and design, but also as a general method
for building compositional interpreters for concurrent programming languages. In
this approach, a denotational (compositional) mapping can use continuations for
concurrency to produce incrementally a single stream of observables, i.e. a single
execution trace, rather than an element of a power domain construction. By using
a random number generator an arbitrary execution trace is chosen, thus simulating
the non-deterministic behavior of a ”real” concurrent system. Following [15], we
will call such a compositional mapping a denotational prototype.

In this paper, we employ the CSC technique in designing a denotational seman-
tics and a corresponding denotational prototype for a simple distributed language
providing operations for remote object (process) control. In the sequel, an ob-
ject is a thread (sequence) of computations with a local state. Distributed states
are essential for defining the semantics of concurrent languages used in distrib-
uted computing. The language that we study in this paper provides a mechanism
for synchronous communication taken from CSP [4]. It incorporates a notion of
remote processes as named objects and allow object-to-object communication, as
well as remote object destruction and cloning.

The last two operations can be encountered at operating system level, in some
coordination languages [5], or in distributed object oriented and multi-agent sys-
tems such as Obliq and IBM Java Aglets [3, 7, 6]. The former operation kills
a parallel running object and is similar to the ” kill -9 ” system call in Unix.
The latter operation creates an identical copy of a (parallel) running object. In
this paper, we provide an accurate denotational semantic model for remote object
destruction and cloning. To the best of our knowledge, such operations for re-
mote object control have not been modeled denotationally until now, and all our
attempts solve the problem by using only classic compositional techniques have
failed.

Instead of using mathematical notation for the definition of the denotational
models, we use the (lazy) functional programming language Haskell [9]. In this
way, as in [14], we avoid unnecessary complexities accompanying the use of domain
theory or the theory of metric spaces, which could have been adopted alternatively.
At the same time, we allow our denotational models to be directly implementable,
in the form of interpreters for the language under study, and thus to be easily tested
and evaluated. The denotational semantics will only be tested on trivial (non-
recursive) example programs. However, the corresponding denotational prototype
will be tested on ”real-life” examples. For example, we present a simple concurrent
generator of prime numbers based on the sieve of Erathostenes.

CONTINUATIONS FOR REMOTE OBJECTS CONTROL 23

2. Syntax and informal explanation

We consider a simple distributed language called Lobj . The syntax of Lobj is
given below in BNF. The basic components are a set (v ∈)V 2 of data variables, a
set (n ∈)N of numerical expressions, a set (b ∈)B of boolean expressions, and a
set (y ∈)Y of procedure variables. The language also uses a class (w ∈)W of object
variables; while a data variable holds a data value (in our case an integer value)
an object variable holds an object reference. Lobj comprises a simple language of
expressions, supporting basic operators on numerical values and boolean values.
In the grammar that follows, z denotes an integer constant, and v denotes a
(numerical) variable.

n ::= z | v | n + n | n − n | n % n | ...

b ::= n == n | n < n | ...

Lobj provides assignment (v := n), a primitive for writing the value of a nu-
merical value (i.e. for producing an intermediate observable) at the standard out-
put file (write n)3, a null command (skip), recursion, a conditional command
(if b then x else x), sequential composition (x ; x), guarded nondeterministic
choice (ned [(γ → x)∗]), together with constructs for object (process) creation
(new w is x), destruction (kill w), and cloning (clone w is w). The syntax
of Lobj is formally defined as follows:

x ::= skip | v := n | write n | call y | letrec y be x in x

| if b then x else x | ned [(γ → x)∗] | x ; x

| new w is x | kill w | clone w is w

where
γ ::= w ! n | ? v

The guards γ of a non-deterministic choice are constructs for object-to-object
synchronous communication. In Lobj , an object is a thread (sequence) of compu-
tations acting on a local state. There is no shared memory area. Parallel objects
can only communicate by exchanging messages. The communication mechanism
is taken from CSP [4]. A communication can take place by the synchronous exe-
cution of two actions w !n and ? v , occurring in parallel objects. The primitive
w !n evaluates the expression n and sends the value to the object referred by
w. An object executing the ? v statement is willing to communicate with an
arbitrary partner object, as long as that partner explicitly mentions the name of
the object in which the ? v primitive occurs; upon synchronization, the primitive
? v assigns the received value to the variable v. The expression n is evaluated in

2In this paper, the notation (x, y, ...)X introduces the set X with typical variables x, y,...
3Expressions of boolean type can not be assigned or output; they can only be used as

conditions.

24 TODORAN, BOIAN, MELENTI, AND PAPASPYROU

the memory area of the sending object and the result is assigned to the variable v

in the memory area of the receiving object. In order to communicate, two parallel
objects synchronize (the first one that is ready to communicate waits for the other)
and then they exchange a single value.

The new w is x statement can be used to create a new object (with a new
private state) which evaluates x. A reference to the newly created object is assigned
to variable w. Therefore, this statement not only creates a new object but also
a new communication connection to this object, which can be used by a w !n
primitive. Moreover, the new reference can be used by the two constructs for
remote object control: kill w and clone w1 is w . The former destroys the
parallel running object to which variable w refers. The latter clones the parallel
running object referred by w and assigns the clone’s identifier to the object variable
w1.

In Haskell, we implement the syntax of Lobj as follows:

type V = String
type W = String
type Y = String
data N = Z Int | V V | Plus N N | Minus N N | Mod N N
data B = Eq N N | Lt N N
data C = Snd W N | Rcv V
data X = Skip | Assign V N | Write N | Call Y | LetRec Y X X

| If B X X | Ned [(C,X)] | Seq X X
| New W X | Kill W | Clone W W

3. Denotational semantics

Lobj is a language with distributed objects. Objects can be referred and con-
trolled by using object identifiers (or references). For simplicity, we represent
object references by integer numbers.

type O = Int

Each object in Lobj has a local state, which can be accessed or modified in an
imperative manner. A state is usually represented as a mapping from variables to
values. In Lobj a state has two components: one for data values and the other one
for object references. We implement states by the type S. The operations getv,
setv, getw and setw provide the basic functionality of a state.

type S = (W -> O,V -> Int)

getv :: V -> S -> Int
getv v (sw,sv) = sv v

CONTINUATIONS FOR REMOTE OBJECTS CONTROL 25

setv :: S -> V -> Int -> S
setv (sw,sv) v i = (sw,subs sv v i)

getw :: W -> S -> O
getw w (sw,sv) = sw w

setw :: S -> W -> O -> S
setw (sw,sv) w o’ = (subs sw w o’,sv)

The mapping subs is defined as follows:

subs :: (Eq a) => (a -> b) -> a -> b -> (a -> b)
subs f x y = \x’ -> (if (x==x’) then y else f x’)

We can already define simple valuations evN and evB, for numerical and boolean
expressions. In general, the meaning of a (boolean) expression depends on the
current state.

evN :: N -> S -> Int
evN (Z n) s = n
evN (V v) s = getv v s
evN (Plus n1 n2) s = (evN n1 s) + (evN n2 s)
evN (Minus n1 n2) s = (evN n1 s) - (evN n2 s)
evN (Mod n1 n2) s = (evN n1 s) ‘mod‘ (evN n2 s)

evB :: B -> S -> Bool
evB (Eq n1 n2) s = (evN n1 s) == (evN n2 s)
evB (Lt n1 n2) s = (evN n1 s) < (evN n2 s)

In Lobj it is possible for a program to block, if all parallel objects are waiting at
nondeterministic constructs that do not have matching communication primitives.
Such a deadlock is fundamentally different from non-termination (e.g. a procedure
that repeatedly calls itself) and we expect it to be detected by the denotational
semantics. We use the type Q to represent streams (lists) of observables. In the
definition given below, Epsilon denotes normal termination and Deadlock denotes
deadlock.

data Q = Epsilon | Deadlock | Q Int Q

We use the following Show instance to visualize the yields of our denotational
models.

instance Show Q where
show Epsilon = " "
show Deadlock = " deadlock "
show (Q n q) = " " ++ (show n) ++ (show q)

26 TODORAN, BOIAN, MELENTI, AND PAPASPYROU

The denotational semantics for Lobj maps each statement to a computation
(a partially evaluated denotation), which is an element of type D. We will use
continuation semantics for concurrency, therefore it is reasonable to assume that
a computation is a function that depends on the current continuation. In the
definition below, Cont is the semantic class of continuations. The semantics of a
program also depends on the current state.

type D = Cont -> S -> Final

Final is the final yield of the denotational mapping. In section 4, Final will
implement a domain for random execution traces [15]. In this section, Final
implements a classical power domain construction [10], and the denotational se-
mantics produces the collection of all possible traces for any given program; the
Haskell definition will be given later.

Following the CSC technique [13, 14], a continuation is a configuration of com-
putations that can be executed in parallel. The CSC technique is very general.
It does not impose any restriction on the structure of continuations. For our lan-
guage with object creation it is convenient to define continuations to be multisets
of objects. Objects are elements of type Obj. An object is a triple, consisting of an
object identifier, a thread (sequence) of computations, and a local state. We use
two basic notions to model the flow control: the stack to model sequential com-
position, and the multiset to model parallel composition. A stack models a single
thread (or sequence) of computations. We implement both stacks and multisets
as Haskell’s lists. The type PC implements a multiset. The type SC implements
a stack. An element of a SC stack is either a computation or a non-deterministic
choice consisting of a list of guarded alternatives, where each alternative consists
of a (synchronous) communication attempt and a computation. Haskell definitions
are as follows:

type Cont = PC
type PC = [Obj]
type Obj = (O,SC,S)
type SC = [Comp]
data Comp = D D | S [(SemC,D)]

We use some auxiliary mappings on objects.

idOf :: Obj -> O
idOf (o,sc,s) = o

threadOf :: Obj -> SC
threadOf (o,sc,s) = sc

stateOf :: Obj -> S

CONTINUATIONS FOR REMOTE OBJECTS CONTROL 27

stateOf (o,sc,s) = s

updThread :: Obj -> SC -> Obj
updThread (o,sc,s) sc’ = (o,sc’,s)

updState :: Obj -> S -> Obj
updState (o,sc,s) s’ = (o,sc,s’)

The type SemC implements communication attempts. The function semC maps the
(syntactic) communication primitives of Lobj to corresponding (semantic) commu-
nication attempts.

data SemC = SemSnd W (S -> Int) | SemRcv V

semC :: C -> SemC
semC (Snd w e) = SemSnd w (evN e)
semC (Rcv v) = SemRcv v

The function k implements continuation completion. It maps a continuation
to the program answer that would result if the continuation alone was left to
execute. It first normalizes the continuation by using the auxiliary mapping re.
The execution terminates if the (normalized) continuation is empty. Otherwise, k
calls the function kc which implements a scheduler, by using the auxiliary functions
schedc, comp, scheds, and send.

k :: Cont -> Final
k c = case (re c) of {

[] -> epsilon;
c -> kc c;

}

kc :: Cont -> Final
kc c = case ((schedc c) ++ (scheds c [])) of {

[] -> deadlock;
scd -> bigned (map exe scd);

}

schedc :: PC -> [Sched]
schedc pc =

[(Schedc d (obj:pc’) (stateOf obj)) | (D d,obj:pc’) <-
comp pc []]

comp :: PC -> PC -> [(Comp,PC)]

28 TODORAN, BOIAN, MELENTI, AND PAPASPYROU

comp [] pc’ = []
comp (obj:pc) pc’ =

(let p:sc = threadOf obj in
[(p,(updThread obj sc):(pc ++ pc’))])

++ (comp pc (obj:pc’))

scheds :: PC -> PC -> [Sched]
scheds [] pc’ = []
scheds (obj:pc) pc’ =

(send [obj] (pc ++ pc’)) ++ (scheds pc (obj:pc’))

send :: PC -> PC -> [Sched]
send pc1 pc2 =

[(Scheds ((addc (D d1) (obj1:pc1’)) ++
(addc (D d2) (updState obj2 (setv (stateOf obj2)

v (pe (stateOf obj1))):pc2’)))) |
(S snd,obj1:pc1’) <- comp pc1 [],
(S rcv,obj2:pc2’) <- comp pc2 [],
(SemSnd w pe,d1) <- snd, (SemRcv v,d2) <- rcv,
(getw w (stateOf obj1)) == idOf obj2

]

Continuations are multisets of objects. The semantic operators are designed in
such a way as to maintain the following invariant of the continuations: the thread
of each object in a continuation is always non-empty, with the possible exception
of the leftmost one which conceptually contains at its head the active computation.
The normalization function re removes the leftmost object in a continuation in
case its thread has remained empty after taking an elementary step from the active
computation.

re :: Cont -> Cont
re ((o,[],s):pc) = pc
re pc = pc

Both ordinary computations and pairs of communicating processes are handled by
the scheduler mapping kc. The function schedc handles ordinary computations.
The function scheds handles pairs of communicating objects (processes). The
scheduler computes all possible schedules for a given continuation. Deadlock is
detected when there are no schedules. A schedule is an element of the type Sched.

data Sched = Schedc D Cont S | Scheds Cont

CONTINUATIONS FOR REMOTE OBJECTS CONTROL 29

Schedules of the form Schedc d c s are produced by the function schedc.
Schedules of the form Scheds c are produced by scheds. The mapping exe
executes a single schedule.

exe :: Sched -> Final
exe (Schedc d c s) = d c s
exe (Scheds c) = k c

The scheduler also uses the mapping bigned to compute the meaning correspond-
ing to all possible schedules. A possible definition of bigned for a classical power
domain semantics is given later in this section. An alternative definition of bigned,
suitable for computing a single arbitrary execution trace, is considered in section
4.

The denotational function for Lobj uses the following semantic operators for
modeling the flow of control: addc, new, kill and clone. The operator addc adds
a computation to the continuation for sequential composition. The operators new,
kill and clone are used for object creation, destruction, and cloning respectively.

addc :: Comp -> Cont -> Cont
addc p (obj:pc) = (updThread obj (p:threadOf obj)):pc

new :: Comp -> Cont -> W -> S -> Cont
new p (obj:pc) w s = let on = newo (obj:pc)

in (updState obj (setw s w on)):(on,[p],s0):pc

kill :: Cont -> W -> S -> Cont
kill pc w s =

aux pc (getw w s)
where aux :: PC -> O -> PC

aux [] ok = []
aux (obj:pc) ok =

if (idOf obj == ok) then pc else (obj:(aux pc ok))

clone :: Cont -> W -> W -> S -> Cont
clone (obj:pc) wn wo s =

let on = newo (obj:pc)
in aux (updState obj (setw s wn on):pc) (getw wo s) on

where aux :: PC -> O -> O -> PC
aux [] oo on = error "clone: invalid object name"
aux (obj:pc) oo on =

if (idOf obj == oo) then
case (threadOf obj) of {

30 TODORAN, BOIAN, MELENTI, AND PAPASPYROU

[] -> obj:pc;
_ -> obj:(on,threadOf obj,stateOf obj):pc;

}
else obj:aux pc oo on

The mapping newo takes as parameter a continuation and creates a new fresh
object identifier. It returns an identifier which is not already in use by some
object in the given continuation.

newo :: Cont -> O
newo c = (maximum [idOf obj | obj <- c]) + 1

For handling recursion, we use semantic environments and a fixed-point operator.
A semantic environment is a mapping from procedure variables to computations.

type Env = Y -> D

fix :: (a -> a) -> a
fix f = f (fix f)

We are finally prepared to present the denotational semantics for Lobj .

sem :: X -> Env -> D
sem Skip e c s = k c
sem (Assign v n) e (obj:pc) s =

k (updState obj (setv s v (evN n s)):pc)
sem (Write n) e c s = prefix (evN n s) (k c)
sem (Ned gx) e c s =

k (addc (S [(semC c,sem x e) | (c,x) <- gx]) c)
sem (Seq x1 x2) e c s = sem x1 e (addc (D (sem x2 e)) c) s
sem (Call y) e c s = e y c s
sem (LetRec y x1 x2) e c s =

sem x2 (subs e y (fix (\d -> (sem x1 (subs e y d))))) c s
sem (If b x1 x2) e c s =

if (evB b s) then (sem x1 e c s) else (sem x2 e c s)
sem (New w x) e c s = k (new (D (sem x e)) c w s)
sem (Kill w) e c s = k (kill c w s)
sem (Clone wn wo) e c s = k (clone c wn wo s)

When the CSC technique is employed in semantic design one can use a linear-
time domain (see [1]) as final yield of a denotational model for synchronous com-
munication [13]. Intuitively, an element of type Final is a set of Q sequences of
observables. The constants epsilon and deadlock are of the type Final. The
former models normal termination and the latter models deadlock detection in the
Final domain. The bigned operator computes the union of a list of elements of

CONTINUATIONS FOR REMOTE OBJECTS CONTROL 31

type Final. To this end, it is convenient to make Q an instance of Eq. The prefix
operator implements the prefixing of an observable to a final program answer.

type Final = [Q]

instance Eq Q where
Epsilon == Epsilon = True
Deadlock == Deadlock = True
(Q n1 q1) == (Q n2 q2) = (n1 == n2) && (q1 == q2)
_ == _ = False

epsilon, deadlock :: Final
epsilon = [Epsilon]
deadlock = [Deadlock]

prefix :: Int -> Final -> Final
prefix n p = [(Q n q) | q <- p]

bigned :: [Final] -> Final
bigned [] = []
bigned (q:p) = q ‘union‘ (bigned p)

union :: (Eq a) => [a] -> [a] -> [a]
union [] ys = ys
union (x:xs) ys =

if (x ‘elem‘ ys) then (xs ‘union‘ ys) else x:(xs ‘union‘ ys)

In order to test our denotational semantics we define initial values for the se-
mantic environment, continuation, and state.

e0 :: Env; e0 y c s = epsilon;
c0 :: Cont; c0 = [(o0,[],s0)];
o0 :: O; o0 = 0;
s0 :: S; s0 = (\w -> o0,\v -> 0);

For experiments, we consider the following example programs in Lobj .

x1 = Seq (New "w1" (Write (Z 1))) (Seq (New "w2" (Write (Z 2)))
(Write (Z 3)))

x2 = Seq (New "w1" (Ned [(Rcv "v",Write (V "v"))]))
(Ned [(Snd "w1" (Z 1),Ned [(Rcv "v",Skip)]),

(Snd "w1" (Z 2),Write (Z 2))])
x3 = Seq (New "w1" (Ned [(Rcv "v",

Seq (Write (Z 1))

32 TODORAN, BOIAN, MELENTI, AND PAPASPYROU

(Seq (Write (Z 2))
(Ned [(Rcv "v",Skip)])))]))

(Ned [(Snd "w1" (Z 0),
Seq (Clone "w2" "w1")

(Seq (Clone "w3" "w1")
(Seq (Kill "w1")
(Seq (Kill "w2") (Kill "w3")))))])

One can perform the following tests4:

Main> sem x1 e0 c0 s0
[3 2 1 , 3 1 2 , 2 1 3 , 2 3 1 , 1 3 2 , 1 2 3]
Main> sem x2 e0 c0 s0
[1 deadlock , 2 2]
Main> sem x3 e0 c0 s0
[, 1 2 2 1 2 , 1 2 2 1 , 1 2 1 2 2 , 1 1 2 2 2 , 1 1 2 1 , 1 1 2
1 2 , 1 1 2 1 2 2 , 1 1 2 2 1 2 , 1 1 2 2 1 , 1 1 1 , 1 1 1 2 , 1
1 1 2 2 , 1 1 1 2 2 2 , 1 1 , 1 1 2 2 , 1 1 2 , 1 2 1 1 2 2 , 1 2
1 1 , 1 2 1 1 2 , 1 2 1 2 1 , 1 2 1 2 1 2 , 1 2 1 2 , 1 2 1 , 1 ,
1 2 2 2 , 1 2 , 1 2 2]

4. Denotational prototype

In [15] we have introduced the notion of a denotational prototype. A denota-
tional prototype is a compositional mapping that produces a single execution trace
for a given concurrent program rather than the collection of all possible traces.
By using a random number generator, an arbitrary execution trace is chosen, thus
simulating the non-deterministic behavior of a ”real” concurrent system. A de-
notational prototype is a compositional interpreter for the concurrent language
under study, which can be used without difficulty to test non-trivial concurrent
algorithms.

It is very easy to modify the denotational semantics given in section 3 to get
a denotational prototype for Lobj . We change the definition of the type Final
to reflect the fact the the final yield of the denotational prototype is a sequence
of observables (a single execution trace) of type Q. The denotational prototype
simulates the selection of an arbitrary execution trace by using a random number
generator, which is an element of type RNG.

type Final = RNG -> Q

The new definitions for epsilon and deadlock are as follows:

4We accomplished the experiments by using the Hugs interpreter available from

http://www.haskell.org.

CONTINUATIONS FOR REMOTE OBJECTS CONTROL 33

epsilon, deadlock :: Final
epsilon = \rng -> Epsilon
deadlock = \rng -> Deadlock

Random numbers are natural numbers. A random number generator is a pair con-
sisting of a random number and a mapping that produces a new random number
from a given one. rng0 is a poor man’s random number generator that will be
used to test our denotational prototype for Lobj .

type R = Int

type RNG = (R,R -> R)

rng0 :: RNG
rng0 = (17489,\r -> ((25173*r+13849) ‘mod‘ 65536))

All that remains to be done is to adapt the definitions of bigned and prefix to
deal with single arbitrary execution traces. The new definitions are given below.

bigned :: [Final] -> Final
bigned fs = \(r,next) -> (nth fs (r ‘mod‘ (length fs))

(next r,next))

nth :: [a] -> Int -> a
nth (z:xs) 0 = z
nth (z:xs) n = nth xs (n-1)

prefix :: Int -> Final -> Final
prefix n f = \rng -> (Q n (f rng))

The function (test x m) defined below calls m times our semantic interpreter
to execute the program x. Each time, the random number generator is initialized
with a new (pseudo-)random value. As a consequence, different results (execu-
tion traces) are produced at consecutive executions of the same program, thus
simulating the non-deterministic behavior of a ”real” concurrent system.

test :: X -> Int -> IO ()
test x m = aux x m rng0

where aux x 0 rng = return ()
aux x m (r,next) =

do { putStr (show (sem x e0 c0 s0 (r,next))
++ "\n\n");

aux x (m-1) (next r,next);
}

34 TODORAN, BOIAN, MELENTI, AND PAPASPYROU

We test the denotational prototype for Lobj on ”real life” programs. The first one
is a concurrent generator of prime numbers based on the sieve of Erathostenes. It
creates a new object for each prime number. Therefore, in this case the perfor-
mance degrades continuously. The second example program demonstrates remote
object destruction and cloning. A counting object is created and left alone to do
its job for a little while. Then, two clones of this object are created and there are
three counters working in parallel. After some time, the three objects are killed
and the program terminates.

x4 = LetRec "drive"
(Ned [(Snd "c" (V "i"),Seq (Assign "i" (Plus (V "i") (Z 2)))

(Call "drive"))])
(LetRec "run"

(Seq (Seq (Ned [(Rcv "i",Skip)])
(If (Eq (Z 0) (Mod (V "i") (V "p")))

Skip
(Ned [(Snd "cout" (V "i"),Skip)])))

(Call "run"))
(LetRec "sieve"
(Seq (Ned [(Rcv "p",Skip)])
(Seq (Write (V "p"))
(Seq (New "cout" (Call "sieve")) (Call "run"))))
(Seq (Assign "i" (Z 3)) (Seq (New "c" (Call "sieve"))

(Call "drive"))))
x5 = (LetRec "y"

(Seq (Write (V "v"))
(Seq (Assign "v" (Plus (V "v") (Z 1))) (Call "y")))

(LetRec "sleep"
(If (Lt (Z 0) (V "v1"))

(Seq (Assign "v1" (Minus (V "v1") (Z 1))) (Call "sleep"))
Skip)

(Seq (New "w" (Seq (Assign "v" (Z 10)) (Call "y")))
(Seq (Seq (Seq (Assign "v1" (Z 3)) (Call "sleep"))

(Seq (Clone "w1" "w") (Clone "w2" "w")))
(Seq (Seq (Assign "v1" (Z 7)) (Call "sleep"))

(Seq (Kill "w") (Seq (Kill "w1")
(Kill "w2"))))))))

Now one can perform the following experiments:

Main> test x4 1
3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73{Interrupted!}

CONTINUATIONS FOR REMOTE OBJECTS CONTROL 35

Main> test x5 4
10 11 12 13 14 13 14 15 15 14 15 16 16 17 16 17 18 18 17 18 19 19

10 11 12 13 13 13 14 14 15 14 15 15 16 16 16 17 17 18 18 19

10 11 12 13 13 13 14 14 15 14 15 15 16 16 16 17

10 11 12 13 13 14 14 14 15 15 15 16 16 16 17 17 17 18 18 18 19 19

5. Conclusions and future research

The CSC technique provides a discipline for compositional development of con-
current programming languages based on the concept of a continuation. It provides
the ability to encapsulate the concurrent behavior in continuations. The seman-
tic model for remote object control given in this paper shows that, by using the
CSC technique parallel computations can be manipulated as data in a strict de-
notational framework. Classic compositional technique do not seem to provide an
adequate framework for handling such operations.

In the near future, fundamental research related to the CSC technique will be
conducted in two main directions. First, in order to provide an abstract framework
for handling context changes and locality in concurrent languages development,
we plan to study the possibility of using the CSC technique in the possible world
semantics, eventually by extending models given in [12, 2]. Second, in order to
improve the flexibility, elegance and modularity of the denotational semantic de-
scriptions, we also plan to study the possibility to define monads [8, 16] for the
CSC technique.

References

[1] J.W. de Bakker and E.P. de Vink. Control flow semantics. MIT Press, 1996.

[2] S. Brookes. The essence of parallel Algol. Information and Computation, vol. 179(1),

pages 118–149, 2002.

[3] L. Cardelli. A language with distributed scope. In Proc. of the 22nd Annual ACM Sym-

posium on Principles of Programming Languages, pages 286–297, 1995.

[4] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[5] A.A. Holzbacher. A software environment for concurrent coordinated programming. In

Proc. of 1st Int. Conf. on Coordination Languages and Models, pages 249–267, Springer,

1996.

[6] IBM Aglets website: http://www.trl.ibm.com/aglets.

[7] D. Lauge and M. Oshima. Programming and deploying Java mobile agents with Aglets.

Addison Wesley, 1998.

[8] E. Moggi. An abstract view of programming languages. Technical Report ECS-LFCS-

90-113, University of Edinburgh, 1990.

36 TODORAN, BOIAN, MELENTI, AND PAPASPYROU

[9] S. Peyton Jones and J. Hughes (editors). Report on the programming lan-

guage Haskell 98: a non-strict purely functional language, 1999. Available from

http://www.haskell.org/.

[10] G.D. Plotkin. A powerdomain construction. SIAM Journal of Computing, vol. 5, pages

522–587, 1976.

[11] C. Stratchey and C.P. Wadsworth. Continuations: a mathematical semantics for handling

full jumps. Technical monograph PRG-11, Programming Research Group, Univ. Oxford,

1974.

[12] R.D. Tennent and J.K. Tobin. Continuations in possible world semantics. Theoretical

Computer Science, vol. 85(2), pages 283–303, 1991.

[13] E. Todoran. Metric semantics for synchronous and asynchronous communication: a

continuation-based approach. In Proc. of FCT’99 Workshop on Distributed Systems,

Electronic Notes in Theoretical Computer Science (ENTCS), vol. 28, pages 119–146,

Elsevier, 2000.

[14] E. Todoran and N. Papaspyrou. Continuations for parallel logic programming, In Proc. of

2nd International ACM-SIGPLAN Conference on Principles and practice of Declarative

Programming (PPDP’00), pages 257–267, ACM Press, 2000.

[15] E. Todoran and N. Papaspyrou. Denotational prototype semantics for a simple con-

current language with synchronous communication. Technical report CDS-SW-TR-1-04,

National Technical University of Athens, School of Electrical and Computer Engineering,

Software Engineering Laboratory, 2004.

[16] P. Wadler. Monads for functional programming. In Advanced Functional Programming,

Springer, LNCS 925, 1995.

1 Technical University of Cluj-Napoca, Faculty of Automation and Computer Sci-

ence, Department of Computer Science, Baritiu Str. 28, Cluj-Napoca, ROMANIA

E-mail address: {Eneia.Todoran,Cornelia.Melenti}@cs.utcluj.ro
2 ”Babes-Bolyai” University of Cluj-Napoca, Faculty of Mathematics and Computer

Science, Department of Computer Science. M. Kogalniceanu Str. 1, Cluj-Napoca,

ROMANIA

E-mail address: florin@cs.ubbcluj.ro

3 National Technical University of Athens, Department of Electrical and Com-

puter Engineering, Software Engineering Laboratory, Polytechnioupoli, 15780 Zo-

grafou, Athens, GREECE

E-mail address: nickie@softlab.ntua.gr

STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume L, Number 1, 2005

MODELING CROWD BEHAVIOR USING EMOTIONAL ANTS

SOUMYA BANARJEE, CRINA GROSAN, AND AJITH ABRAHAM

Abstract. It is known that one of the most disastrous forms of collective
human behavior is the kind of crowd stampede induced by panic. This situa-
tion often leads to fatalities as people are crushed or trampled. This problem
has been well researched from a socio-psychological point of view. In this
paper we attempt to study and analyze the crowd behavior by using an Ant
Colony Optimization (ACO) based computational framework. The initial
simulations refer to a panic situation generated in few connected cities of a
war a�ected country.

1. Introduction
When people are part of a crowd, they often behave di�erently than if they were

by themselves. Crowds often act overly frantic or fearful. The shout of 'FIRE!' in
a packed movie theater will result in a stampede to the door. Sometimes, crowds
behave in a cruel and violent manner. The lynch mobs in America at the turn of
the century are a classic example of how barbaric people can be when in a crowd.
Crowds can also be apathetic. Often people will act as bystanders to an assault
on another person without doing anything to help the person being assaulted.

What is the cause of crowd behavior? This question has intrigued psychologists
for decades. The answer appears to depend on the type of crowd behavior and
sometimes on the context in which the behavior is shown. Some psychologists
suggest that group hostility can arise as a result of de-individualization. De-
individualization refers to a weakened sense of personal responsibility. In other
words, since people feel anonymous in a crowd, they often act irresponsibly and
without care for others.

So, from a modeling perspective study of crowd events is appealing to social
simulation researches, because their associated phenomena are largely emergent in
nature. The recent lavish development of applied cognitive science [1] helps the
researcher to evaluate the other hybrid models related to crowd behavior.

Received by the editors: May 10, 2005.
2000 Mathematics Subject Classi�cation. 68T20, 68-02, 68Txx.
1998 CR Categories and Descriptors. I.6 [Simulation and Modeling]: Simulation

Theory - Model classi�cation, System Theory .

37

38 SOUMYA BANARJEE, CRINA GROSAN, AND AJITH ABRAHAM

The purpose of the present research is to create an e�cient biologically inspired
agent (ant colony model) to analyze emotion model of crowd. We expect the
proposed model would have a phenomenal impact on many policies and strategies,
as the model considers the crowd model and behavior for a war-infected region.

In Section 2, we investigate few existing models of crowd behavior simulation
in di�erent aspects of social boundary and their scienti�c signi�cance which in-
spired the present work. Section 3 describes the role of bio-inspired agent for the
proposed model and, subsequently how the newly introduced 'emotional ants' are
constructed to model the crowd behavior during a war situation. Some simulation
and illustrations are also provided. Results are analyzed in Section 4 followed by
few conclusions in the last Section of the paper.

2. Related Research
There are several signi�cant breakthroughs in the applied cognitive sciences con-

centrating mainly on the behavioral modeling of crowd using di�erent paradigms.
The behavior of pedestrians in di�erent situations has been exhaustively detailed
in the literature [2, 3, 4].

Agent based models also have been proposed which begin to address the indi-
vidual movement. Again a frequently cited model was by Helbing et al. [4]. The
model is strongly physics oriented which calculates forces acting on agents to de-
termine movement with excessive forces leading to agent injuries. Similarly there
are other works, which describes the crowd modeling simulation in emergency
situations [5].

Pedestrian tra�c in large cities is modeled in [1]. The work presents a way of
simulating an intelligent crowd behavior in a virtual city. There are also some
work related to urban planning with the help of crowd movement.

In tune of present research there is substantial motivation to study the psycho-
logical part of crowd model. Considering all the major works it has been observed
that there is signi�cant gap between the crowd model and their emotion especially
in an uncertain situation. The work we propose in this paper refers to a country
or region in the war-a�ected situation and exhibits plenty of cognitive, behavioral
and psychological impacts under di�erent conditions.

Crowd event may accumulate and occur in several situations. Some of them
can be:

• Panic situation after air raid
• Negotiation between town leaders and soldiers
• Searching for explosives and weapons
• Protest over the arrest essential commodity, if any.
• Domestic terrorist attack or gorilla war resulting looting, shouting slo-

gans heckling etc.
• Even crowd gather after he groups of troops arrived in between.

MODELING CROWD BEHAVIOR USING EMOTIONAL ANTS 39

Therefore, in the situation considered here, the country `C' comprising di�erent
towns, like t1, t2,. . . ,tn are a�ected with those crowd movements.

3. Proposed Model Using Emotional Ants
The main objective of the proposed model is to fabricate an emotion based

analytical model of crowd behavior which in turn seems to be more realistic in
uncertain environment. The agent used in this model is biologically inspired whose
transition behavior is modeled using fuzzy logic.

In any corner of a region, during war the people moves from one city to another,
the city dwellers as crowd also alter their positions. The problem could be more
complicated if the third city is also war a�ected. So, di�erent cognitive behavior
of crowd can be modeled using the same model.

• Anger (A)
• Sel�sh minded (S1)
• Confused (C)
• Sad (S2)

When a sel�sh minded crowd (only bother about their own shelter) meets an
angry crowd from other city, both become confused, because each of their emotion
is opposite. We have then:

A + S2 => 2C
S1 + C => 2S1 dominant model
A + C => 2A

Therefore likely behavior of crowd under di�erent situations are as follows:
• The meeting of a sel�sh minded crowd and a sad minded crowd could

result in a confused crowd
• Sad crowd could get angry if they are upset that some crowd components

can be sel�sh when they are sad
In this case we have:

Sel�sh + Sad => C+A
Sel�sh + Angry => 2C
Sad + Confused => A +C

Let i and j be subjects of emotions, emotion carriers, person and modules. The
subjects take their states si and sj from the set e = {sel�sh, anger confused, sad}
in the discrete time: for t ∈ N , st

i, st
j ∈ E. The subjects move in a physical space

and collide with each other.

40 SOUMYA BANARJEE, CRINA GROSAN, AND AJITH ABRAHAM

When confronted they update their emotional states:
St+δ

i = f(St
i + St

j)

A relation between the molecules of x and y is seen as:

{(f (x,y), f(y,x)} → {z1, z2 },
where x, y, z1, z2 ∈ E.
On this basis, the war crowd is modeled using an emotional ant agent. We

interpret the model of emotion through the extended model of ACO [6] with some
�avor of parallel ant agent in a multi agent scenario. The model is well backed up
using fuzzy if-then rule templates to monitor the emotional ant movement. This
makes the hybrid model more smart to tackle any kind of input conditions.

The pheromone level belonging to one colony has di�erent meaning for other
colonies representing di�erent crowd behavior. Therefore the pheromone com-
munication is based on fuzzy if-then rules, by which emotions of ant agents are
exchanged.

3.1. Pheromone Model of Emotional ants. As the model uses the foraging
behavior of ants, the foraging tasks may be abstractly viewed as a sequence of two
alternating tasks for each ant: start from a nest where panic situation occurs and
moves to a safe place (food). In this problem, we simulate the situation through
ant, so the a�ected city is the start place and the safe place is the goal state or
vice versa. The ant agent receives a reward at goal state; at other state does not.

Ants exhibit satisfaction or reward P (s) for transitioning to the desired goal
(safe place) irrespective the emotional state of the crowd (sel�sh or sad and even
confused). The utility value of the state Vp (Ci) is the concentration of a given
pheromone type p at the city location Ci. Now the di�erence of pheromone en-
coding occurs in the following type p at the city location Ci. Now the di�erence
in the pheromone encoding occurs as follows:

• The ant's, strategy as we de�ne
• (Si → A) which maps states into action

The particular choice of pheromone to update and to base transition decision
is dependent on the ant's internal state.

(1) We choose the ant agent, released to search the safe place for the crowd
problem with attractive pheromone

(2) Repulsive pheromone
These ants often select the action putting the pheromone when reaching the

`safe place' and tends to relocate by preferring little intensity of pheromone. If
they discover a safe place they keep forcing it and put no pheromone. Through
this local behavior, the pheromone space is formed in such a way that the gradient
of pheromone density is full towards the safe place.

MODELING CROWD BEHAVIOR USING EMOTIONAL ANTS 41

When it reaches the goal, it increases the value on the track it takes and sub-
sequently this safety condition is exchanged, while visiting other crowd; similarly
they also adopt certain route and so on. The main steps are presented below:

for each crowd population do
if safe place found
then increases edge weights on path to safe place
else if dead end found

then
Population stack until a new route towards safe place is found.
Decrease weight of edge corresponds to popped node

else
Select a neighboring node of the current node of movement of crowd
Push this node into the stack

endif
endif

endfor
The modi�cation in the development of ant system has primarily related to

modeling the methods of communication among ant agents. Although substantial
progresses have been achieved with the crowd algorithm, but transition rule of
next iteration for the ants have remained practically unaltered. Ant colony related
algorithm show good performance in solving problems that are combinatorial in
nature. However some of the real life problems characterized by uncertainty are
not covered by any of the modi�cations of any system that are found in research
literature.

In this work, the transition rules for the ant agent incorporated to investigate
the crowd movement are modeled using fuzzy if-then rules. Basically the emotion
template designated for sel�sh, angry, sad or confused crowd are presented through
fuzzy rule of following type.

If sel�sh minded crowd is small and sad crowd is less and trail intensity is
stronger then volume of confused crowd becomes very small

Therefore to implement the fury transition rule for the �ow of the ant agent in
war a�ected region we use following mathematical back up:

1. The concentration of the trail phenomena cij on branch i (i=1,2) immediately
behind each choice point j (j=1,2) changes in time t according to:

Dcij′ Dt = q ∅ij(t) + q∅ij(t-τ) - Vcij(τ)
with j' = 3 - j
where:
∅ij (t) represents the overall �ow of foragers from the nest to the food source

choosing branch i behind the choice point 1, ∅12(t) the opposite �ow on branch
i behind the other choice point j1= 3 � j= 2, t the average time required for an
ant to get from one choice point to the other, q the quality of phenomena laid on

42 SOUMYA BANARJEE, CRINA GROSAN, AND AJITH ABRAHAM

the trail and V the decay rate of the phenomena. Moreover if the density is low
enough,
∅ij(t) = ∅j(t)Fij(t) ;
Where ∅iis the outbound �ow of foragers from the nest to food source and ∅2the

opposite nest bound �ow. The function Fij describes the relative attractiveness
of the trail on branch i at choice point j.

2.The model the pushing of crowd in a panic situation it is important to coor-
dinate the overall �ow of ants arriving at choice point j and choosing branch i and
the following formula is used:
∅ij(t) = ∅(t)Fij [1- Ya ∅ij(t- τ)/w] + ∅ (t)Fij(t) Ya ∅ ij(t- τ)/w
Here [∅j(t) Fij (t)] represents the �ow of ants engaged on branch i [∅j(t) Fij(t)],

diminished by the �ow of ants pushed towards the other branch i' by ants arriving
from the opposite direction.

a∅ij(t-τ)/w is the proportion of ants decelerated by interaction.
The factor a is proportional to the interaction time period and the lateral width

of ants.
Y ≈ 0.57 denotes of being pushed in case of crowd encounter.
The 2nd term on the right hand side of the above equation represents the �ow

of ants that were engaged on branch i and were pushed towards branch i.

3.2. Details of fuzzy rule based propositions. In order to incorporate the
fuzzy rule [7] (shown in the model) for crowd transition movement through ant
agents we assume certain parameters:
dk

ij− the expected distance that kthant will travel if it decides to go from node i
to j .

τ ij−The pheromone trail intensity that the kth ant can smell when traveling
between node i and node j.

wk
ij− weight / importance of the kth ant located in node i to visit node j.

Rule 1:
if dk

ij is small and τ ij is weak
then ants importance/ weight wk

ijof visiting jth node is very high
else

Rule 2:
if dk

ij is small and τij is medium
then ants importance/ weight dk

ij of visiting jth node is very high
else

Rule 3:
if dk

ij is small and τ ij is strong then ants importance/ weight dk
ij of visiting jth

node is very very high
else

Rule 4:

MODELING CROWD BEHAVIOR USING EMOTIONAL ANTS 43

if dk
ij is medium and τ ij is weak

then ants importance/ weight dk
ij of visiting jth node is low

else
Rule 5:

if dk
ij is medium and τ ij is medium

then ants importance/ weight dk
ij of visiting jth node is medium

else
Rule 6:

if dk
ij is medium and τ ij is strong

then ants importance/ weight dk
ij of visiting jth node is high

3.3. Graphical representation. The network is composed of few cities and their
intra connections. The total number of layers in the network, n is equal to the
number of transit lines. There is a strong connectivity between two cities where
from the movement of crowd begins.

Let the origin of panic crowd `o' origin and it has to move to safe city, the ants
have few options when choosing the �rst node in the �rst layer. We model the
emotion of ants to be represented through the deposition of new pheromone and
at the same time it re�ects the propagation from neighboring places.

The attractive pheromone represents the safe state of crowd. As the crowd may
alternate between cities, this leads the system into a bi-partite graph. There are
2 shortest paths through this graph from state 10 (C1, 3, 3) to state 11(C2, 0, 0).
So each 11 steps long and di�ering only the penultimate state (which in this case
is safe state of crowd).

Figure 1. Graphical representation of the experiment

In our model we follow two di�erent modes:
(1) End search safe place mode

44 SOUMYA BANARJEE, CRINA GROSAN, AND AJITH ABRAHAM

(2) Start search mode
End search mode simply denotes terminate the run at the point concerning the

failure. When starting the search node the ant agent test the trip before they
leave any city. If the transmission is not achieving safe place then they cancel the
pheromone and for next turn to come. We place the ants with di�erent emotions
representing pheromone where the transition rules were controlled using fuzzy-if-
then rules.

So as base line:
• We consider the entire crowd movement without pheromone (0 bits of

pheromone)
• The choice or liking functions return a constant probability
• Afterward agents tries to sense the category of pheromone and category

of crowd emotion e.g. Sel�sh, angry or confused or sad crowd
• From the emotion template of the crowd model presented, we can declare

sel�sh and angry crowd lay down identical (as their output state remains
always confused). So an ant agent can know the sel�sh and angry crowd
is present from the pheromone deposition, not the density or population
estimation

To sum up these parameters we solicit the model where the dynamics of emotion
propagates from one place to the neighboring places. Pheromone will be deposited
(irrespective of the current state of crowd that will be clari�ed further on the basis
of their emotion) at every node that was visited at least by one ant agent. Therefore
at the beginning of the search process it will be assumed that the pheromone trail
is very low in every node and it is equal to some positive constant. But it is not
certain what should be the density of crowd in each city at any point of time. In
2 the �ow of experiment is presented.

Results of experiment are presented in Table 1.

3.4. Synthetic Pheromone. Insects perform impressive feats of coordination
without direct inter-agent coordination, by sensing and deposition pheromones in
the environment [8]. For example ants construct networks of paths that connect
their nests with available food sources.

Mathematically, these networks from spanning trees, minimizing the energy
ants expend in bringing food into the nest.

The real world extrapolates three operations on chemical pheromones that sup-
port purposive insect actions:

• It aggregates deposits from individual agents
• Pheromone evaporates over time
• It di�uses pheromones to nearby places, thus disseminating information

for access by nearby agents.

MODELING CROWD BEHAVIOR USING EMOTIONAL ANTS 45

Figure 2. Di�erent state of pheromone with the metal tendency
of crowd

The pheromone �eld constructed by the ants in the environment is in fact a
potential �eld that guide their movements. The dynamic �eld is a measure of agent
movement. Agents increment the dynamic �eld level when moving. By analogy
with ant pheromones the dynamic �eld di�uses and evaporates. By consulting the
dynamic �eld an agent can follow other nearby agents without directly considering
the position of any other agent.

Considering these diversi�ed applications of synthetic pheromone, there are
di�erent domains applications [8]. The potential of insect models for multivalent
coordination and control thus is receiving signi�cant attention.

46 SOUMYA BANARJEE, CRINA GROSAN, AND AJITH ABRAHAM
Table 1. Experiment results

End search safe place mode Start search
safe place
mode

Emotion position Bits
of in-
forma-
tion

Success
for safe
place

Average
length

Maximum
length

Median Lower
quar-
tile

Upper
quar-
tile

Neutral Ants In
crowd

0 0 0 - 353 198 738

Ants Generate
Sel�sh Pheromone

1 7 1 20 85.5 57 124

Ants Generate
Anger Pheromone

1 5 2 21 74 57 112

Ants Gener-
ate Confused
Pheromone

3.58 49 6 21 78 44 128

Ants Generate
Sad
Pheromone

3.58 18 4 20 73.5 46 117

Optimum Safe
place, com-
bined all of
them (Smart
or attractive
Pheromone)

4.91 8940 755 93 23.5 18 34

Distributed coordination problem is one of the aspects of those applications.
Subsequently there are the issues of optimization techniques under the same prob-
lem domain. To tackle the uncertainty of search space and constraints there are
several techniques proposed [9][10][11]. Hence, the problem of tackling the distri-
bution model of emotion representation of crowd is equally challenging in the light
of synthetic pheromone distribution techniques.

The underlying mathematics of the entire search in the war a�ected region
would be:

S(t + 1, p) = E * s(t, p) + r (t, p) + q(t, p)
Where,

• P = {pi} = set of places
• N : P → P = neighbor relation between places.
• S(t,p) = pheromone strength at time t and place p

MODELING CROWD BEHAVIOR USING EMOTIONAL ANTS 47

• r(t,p) = external input at time t to place p
• q(t,p) = propagated input at time t to place p
• E (0, 1) = Evaporation parameter.

4. Discussions
In the work we speci�ed di�erent pheromone values as indicated the state of

mind of the crowd. Typically, 4 types of pheromone representations have been
adopted along with no pheromone and smart pheromone (when the di�erent be-
havioral crowd reach safe place in a war a�ected region).

Using the proposed model with the smart/attractive pheromone and on the
basis of fuzzy rule transition, end search safe place mode succeeds 8940 times, i.e.
the crowd is most safe with this choice combining their mental state, 755 with the
minimum length and maximum length of 93. The start search safe place mode
median is 23.5 with quartile of 18 and 34 respectively.

The improvement over the other types of individual pheromone (e.g. sad
pheromone) is (73.5 - 23.5)/ 73.5 = 68%. So it implies that even with a poor
initial start which does not exhibits good performance, as more information is
available the perofmance can enhance signi�cantly due to the modi�cation of the
di�erent combination of pheromone values of the mental states of the crowd.

5. Conclusion
An e�ort is made to simulate the emotional model of crowd using bio-inspired

agents and meta-heuristic approaches. It is expected that this kind of model
would be able to assist substantially in social science, cognitive science and broadly
machine like behavior and learning.

References
[1] Funge, J., Making Them Behave: Cognitive Models for Computer animation, Ph.d Thesis

University of Torrento, 1998.
[2] Helbing. D, A Mathematical Model for the Behavior of Pedestrians, 1991.
[3] Helbing. D, Farkas. I.J., Molner, P., Viesek, T: Simulation of pedestrians crowds in nor-

mal and evacuation situations in: Schreckenberg, M, Sharma S.D.(eds.): Pedestrian and
evacuation dynamics, Springer-Verlag, New York.

[4] Helbing. D, Fakas. I, Viesek T: Simulating Dynamical Features of Escape Panic. Nature v.
407, pp. 487-490, 2000.

[5] Oleg Yacovenko and Phdvalery Startrov, Crowd Behavior Modeling in Emergency.
[6] E . Bonabeau, Dorigo. M and Theraulaz G, Swarm Intelligence: From Natural To Arti�cial

System. New York, Oxford University Press, 1999.
[7] Casillas. J, Cordon. O, Herra. F and Magdalena. L, editors: Interpretability issues in Fuzzy

Modeling, Springer-Heidelberg, Germany, 2003.
[8] Brueckner S, Return from the Ant: Synthetic Ecosystems for Manufacturing Control. Thesis

at Humboldt University, Berlin Department of Computer Science, 2000.
[9] Parunak, H.V.D , Adaptive control of Distributed Agents through Pheromone Techniques

and Interactive Visualization. 2000, web:www.erim.org.cec/projects/adaptiv/

48 SOUMYA BANARJEE, CRINA GROSAN, AND AJITH ABRAHAM

[10] Horst R, Pardalos, P.M. editors, Handbook of Global Optimization, Kluwer Academic Pub-
lishers, 1995

[11] Horst R, Tuy, P. Global Optimization: Deterministic Approaches. Springer-Verlag, 1990.
[12] Mockus, J, Baysian Approach to Global Optimization: Theory and Applications. Kluwer

Academic, 1989.

Department of Computer Applications, Institute of Management Studies, India
E-mail address: soumyabanerjee@imsddun.com

Department of Computer Science, Babes-Bolyai University, 400084 Cluj-Napoca,
Romania

E-mail address: cgrosan@cs.ubbcluj.ro

School of Computer Science and Engineering, Chung-Ang University, Korea
E-mail address: ajith.abraham@ieee.org

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 1, 2005

LARGE CANDIDATE BRANCH-BASED METHOD FOR MINING
CONCURRENT BRANCH PATTERNS

JING LU, OSEI ADJEI, WEIRU CHEN, FIAZ HUSSAIN, CĂLIN ENĂCHESCU,

AND DUMITRU RĂDOIU

Abstract. This paper presents a novel data mining technique, known as
Post Sequential Patterns Mining. The technique can be used to discover
structural patterns that are composed of sequential patterns, branch pat-
terns or iterative patterns. The concurrent branch pattern is one of the main
forms of structural patterns and plays an important role in event-based data
modelling. To discover concurrent branch patterns efficiently, a concurrent
group is defined and this is used roughly to discover candidate branch pat-
terns. Our technique accomplishes this by using an algorithm to determine
concurrent branch patterns given a customer database. The computation of
the support for such patterns is also discussed.

Keywords: Post Sequential Patterns Mining; Concurrent Branch Pat-
terns; Sequential Patterns Mining

1. Introduction

Sequential patterns mining proposed by Agrawal and Srikant [1] is an important
data mining task and with broad applications. Based on the analysis of sequential
patterns mining, we proposed a novel framework for sequential patterns called se-
quential pattern graph (SPG) as a model to represent relations among sequential
patterns [2]. SPG can be used to represent sequential patterns encountered in
patterns mining. It is not only a minimal representation of Sequential patterns
mining result, but it also represents the interrelation among patterns. It estab-
lishes further the foundation for mining structural knowledge. Based on SPG and
sequential patterns mining, a new mining technique called post sequential pat-
terns mining (PSPM) [3] is presented to discover new kind of structural patterns.
A structural pattern [4] is a new pattern, which is composed of sequential patterns,
branch patterns or iterative patterns.

In order to perform post sequential patterns mining, the traditional sequential
patterns mining should be firstly completed. Post sequential patterns mining can
be viewed as a three-phase operation that consists of pre-processing, processing
and post-processing phases. In the pre-processing phase, based on the result of
sequential patterns mining, the Sequential Patterns Graph (SPG) is constructed.
SPG is a bridge between traditional sequential patterns mining and the novel post

Received by the editors: June 1, 2005.

49

50 LU, ADJEI, CHEN, HUSSAIN, ENĂCHESCU, AND RĂDOIU

sequential patterns mining. The processing phase corresponds to the execution
of the mining algorithm, given the maximal sequences set (MSS) recognized by
SPG and customer sequence database DB as input, structural patterns (including
concurrent branch patterns, exclusive branch patterns and iterative patterns) are
discovered. During post-processing, the mined structural pattern can be repre-
sented graphically. In this paper, we focus on concurrent branch pattern and its
mining algorithms. We address the question: Given a set of sequential patterns
and customer sequence database DB, how can we efficiently find concurrent branch
patterns?

The first step in the discovery of a concurrent process should be to identify the
individual threads and their individual behaviours. Our work demonstrates that
since it is part of the post sequential patterns mining, concurrent branch pattern
mining discovers patterns on the basis of sequential patterns. In a concurrent
process, it is important to also locate the points where the threads interact. Our
method solves this crucial problem by taking out a common prefix and/or a com-
mon postfix from sequential patterns that is candidate branch patterns. Section 3,
discusses the concurrent branch pattern mining algorithm whilst section 4, reviews
some related work. Section 5 presents our conclusions.

2. Problem Statement

To formally define the concurrent branch mining algorithm we introduce some
basic terminology. In the following definition, let SP represent Sequential Patterns;
xα, xβ, αy, βy, xαy, xβy ∈ SP ; α, β ∈ SP ; x, y ∈ SP or x, y ∈ ∅.

Definition 1: CandidateBranch Pattern
Sequential patterns which contain common prefix and/or common postfix can

constitute Candidate Branch Pattern.
• Sequential patterns xα and xβ can make up a candidate branch pattern

which has a sub-sequence x as a common prefix and denoted by x[α, β].
• Sequential patterns αy and βy can make up a candidate branch pattern

which has a sub-sequence y as a common postfix and denoted by [α, β]y.
• Sequential patterns xαy and xβy can make up a candidate branch pat-

tern which has sub-sequence x as a common prefix, sub-sequence y as a
common postfix and denoted by x[α, β]y.

In the above definitions, notation [α, β] represents two branches of a candidate
branch pattern.

Let us consider some examples. Sequential patterns <efcb> and <ebc> can make
up a candidate branch pattern which has e as a prefix and denoted by e[fcb,bc].
This candidate branch pattern has two branches, fcb and bc. Sequential patterns
<fcb>, <dcb> and <acb> can make up a candidate branch pattern which has cb
as a postfix and denoted by [f, d, a]cb. This candidate branch pattern has three
branches f, d and a. It should be noted that in a candidate branch pattern such
as a[b,c]d, the order of b and c is indefinite. Therefore, a[b,c]d can appear in a
transaction database in the form of abcd, acbd or a(b,c)d. The purpose of defining

MINING CONCURRENT BRANCH PATTERNS 51

a candidate branch pattern is to discover true branch patterns (concurrent branch
patterns or exclusive branch patterns). A candidate branch pattern can also be
extended to multiple sequential patterns.

Definition 2: Concurrence
The concurrence of sub-sequential patterns α and β is defined as the fraction

of customers that contain α and β simultaneously and it is denoted as:
concurrence(α ∧ β) = ‖{T : α ∪ β ⊆ T, T ∈ D}‖/‖D‖

Let minsup be user specified minimal support, if concurrence (α∧β) ≥ minsup
is satisfied then α and β are concurrent. Similarly, multiple candidate branches
a1 . . . ai (αi ∈SP ; 1 ≤ i ≤ n) are concurrent branches if and only if concurrence
(a1 ∧ . . .∧ai)≥minsup.

Definition 3: Concurrent Branch
Two branches α and β of candidate branch pattern x[α, β]y are concurrent

branch if and only if in a transaction database, α and β are concurrent between a
common prefix x and/or common postfix y.

Definition 4: Concurrent Branch Pattern
For candidate branch pattern x[α, β]y, if branches α and β are concurrent

branches, then x[α, β]y is concurrent branch pattern.
The problem of concurrent branch pattern mining is to find the complete

set of concurrent branch patterns in a given sequential pattern mining result and
customer sequence database DB with respect to given support threshold.

Example 1: Let us consider a customer sequence database in PrefixSpan [5]:
(1) <a (a,b,c) (a,c) d (c,f)>
(2) <(a,d) c (b,c) (a,c)>
(3) <(e,f) (a,b) (d,f) c b>
(4) <e g (a,f) c b c>

and two branches f and eb of the candidate branch pattern [f, eb]c. Let min-
sup=50%.

Both customer sequence (3) <(e,f) (a,b) (d,f) c b> and (4) <e g (a,f) c b c>
contain f and eb. Thus, the concurrence (f ∧eb) is 50%. That is, f and eb are con-
current branches and sup ([f,eb]c)=50%. Therefore, the candidate branch pattern
[f, eb]c is a concurrent branch pattern.

It can be concluded from definition 4 that, concurrent branch patterns mining
problem can be decomposed into the following sub-problems of: how to generate all
candidate branch pattern; how to determine the concurrence of candidate branches;
and how to calculate the support of candidate branch pattern.

3. Concurrent Branch Pattern Mining

Let us consider the first problem in concurrent branch patterns mining, i.e., how
to generate all candidate branch patterns. Since the concurrent branch pattern
mining is based on the result of sequential patterns mining, which is the set of
sequential pattern, hence the direct way to discover candidate branch pattern
should be based on sequential pattern set. All candidate branch patterns can be

52 LU, ADJEI, CHEN, HUSSAIN, ENĂCHESCU, AND RĂDOIU

generated by taking out a common prefix or/and a common postfix from sequential
pattern set. However, the shortcoming of this method is that some non-concurrent
branches can be generated.

In order to get rid of non-concurrent items, the concurrent group and the max-
imal concurrent group are defined first. Then, rough concurrent branch patterns
are computed based on the maximal concurrent group to obtain candidate branch
patterns.

3.1. Concurrent Group and Rough Concurrent Branch Pattern.
Definition 5: Concurrent Group (CG)
Given customer sequences database DB, set of items (or itemset) that have

transaction support above minsup makes up a concurrent group and it is denoted
by CG for brief.

Definition 6: Maximal Concurrent Group (MCG)
A concurrent group is called a maximal concurrent group if any of its superset

is not a concurrent group. The set of maximal concurrent group set is denoted by
MCGS for abbreviation.

Example 2: Consider the customer sequences in example 1 and let minsup
be 50%. Items (or itemset) sets {a,b,c,d}, {(a,b),c,d,f} and {(a,c),b,d} are all
examples of concurrent group since the condition in definition 5 is satisfied. From
definition 5 we know that concurrent group is a set and the elements in this set
can be an item or an itemset. Consider {(a,b),c,d,f} for example, four elements
are contained in this concurrent group, one is an itemset (a,b) and the other three
are items c,d, and f. Among these three concurrent groups, {(a,b),c,d,f} is a
maximal concurrent group but {a,b,c,d} is not, since its superset {(a,b),c,d,f} is a
concurrent group.

If each customer sequence is considered as a transaction, then discovering con-
current group from customer sequence database is identical to the discovery of
frequent patterns. The maximal concurrent group of the above example is:

MCG = {{(a, b), c, d, f}, {(a, c), (b, c), d}, a, b, c, e, f}}
Following the definition of the maximal concurrent group, we investigate the

relation between the maximal sequence set (MSS) discovered in sequential patterns
mining and the maximal concurrent group proposed.

Definition 7: Rough Concurrent Branch Pattern (RCBP)
Let C be a maximal concurrent group in MCG. Concurrent sequences can be

obtained by the sequential intersection operation of C and each element in MSS
respectively. These concurrent sequences constitute a rough concurrent branch
pattern and denoted by RCBP for brief. Sequential intersection operation can be
treated as a normal intersection, and the sequence relations among elements after
this operation will be consistent with that in the original sequence pattern. The
notation for sequential intersection is:

Sequential pattern or Sequential pattern set ∩ Concurrent Group
Rough Concurrent Branch Pattern is a candidate branch pattern, which has a

null common prefix and a null common postfix.

MINING CONCURRENT BRANCH PATTERNS 53

Algorithm 1: Cal RCBP (Getting a RCBP)
Input: Maximal concurrent group C and maximal sequence set MSS.
Output: Rough Concurrent Branch Patterns RCBP(C).
Method: Find the rough concurrent branch patterns in the following steps:

(1) Let rough concurrent branch pattern for C, RCBP(C), be empty.
(2) For each element ms in MSS

Add ms to RCBP(C);
For each element (item or itemset) i in ms, test if i is an element
of C or i is included in one element of C ;
If neither condition is satisfied, then delete i from ms.

(3) Delete the element in RCBP(C) which contained by another pattern in
the RCBP(C).

(4) The result is RCBP(C).
Example 3: Given MSS={<eacb>, <efcb>, <a(b,c)a>, <(a,b)dc>, <fbc>, <(a,b)f>,

<ebc>, <dcb>, <abc>, <acc>, <(a,c)>} and maximal concurrent group MCG =
{{(a,b), c, d, f}, {(a,c), (b,c), d}, {a, b, c, e, f}}.

Table 1. Rough Concurrent Branch Pattern Example

The rough concurrent branch patterns can be computed using algorithm 1.
The final result is shown in table 1.

3.2. Sub-customer sequence set. The feature of our method is that the cus-
tomer sequence database DB is not used for counting support after the discovering
of candidate branch patterns. Rather, the sub customer sequence set SubDB is
used for this purpose. The number of entries in SubDB may be smaller than the
number of transaction in DB. In addition, each entry may be smaller than the
corresponding transaction because the items (itemset) before the prefix element
or after the postfix element are deleted.

Definition 8: Sub-customer sequence set
Given a candidate branch pattern x[α, β]y and a customer sequence database

DB, the sub customer sequence set of DB is obtained by deleting the minimal
pre-sub sequence contains prefix x or/and the minimal post-sub sequence contains
a postfix y of each customer sequence in DB. This is denoted by SubDB(x,y).

The support of the sub-customer sequence set SubDB(x,y) is:
sup(SubDB(x,y))=| SubDB(x,y)|/|DB|

54 LU, ADJEI, CHEN, HUSSAIN, ENĂCHESCU, AND RĂDOIU

Explanation. Minimal pre-sub sequence contains x : Suppose x=cd and the cus-
tomer sequence is acbdefdg. The result for deleting the minimal pre-sub sequence
is efdg.

Minimal post-sub sequence contains y: Suppose y=bg and customer sequence
is acbdefdg. The result for deleting the minimal post-sub sequence is ac.

The purpose of finding the sub-customer sequence set is to calculate the support
of the candidate branch pattern x[α, β]y and to determine the concurrence of
branches [α, β]. For a candidate branch pattern x[α, β]y, (i) if sup(SubDB(x,y))<
minsup, then the candidate branch pattern x[α, β]y cannot be a concurrent branch
pattern; (ii) if sup(SubDB(x,y))≥ minsup, then only the concurrence checking of
branches x and y is needed. That is, it is only necessary to check if x and y occurs
simultaneously in each sub customer sequence of SubDB(x,y).

Algorithm 2: Gen SubDB (Computes Sub-customer sequence set)
Input Common prefix x and/or common postfix y of candidate branch pattern
x[α, β]y; Customer sequence database DB.
Output Sub customer sequence set SubDB.
Method:

SubDB(x,y)=∅;
For each customer sequence cs∈DB Do

{ Scan cs from left to right, find the sub customer sequence which
contains prefix x completely, record the position p of the last matched
element in cs. If not found, set p be the length of cs;
Scan cs from right to left, find the sub customer sequence which con-
tains prefix y completely, record the position q of the first matched
element in cs. If not found, set p be 0;
If p≥q //There is no sub sequence have prefix x and postfix y in
cs
then DB=DB -{cs} //Delete cs from DB
else

Delete sub customer sequence before the pth (contains pth)
element and after the q th (contains q th), obtained cs(xy)
SubDB(x,y)= SubDB(x,y)∪ cs(xy)

End if
}

return SubDB(x,y).

Theorem 1: Given a candidate branch pattern x[α, β]y and sub customer
sequence set SubDB(x,y), if α and β are concurrent in SubDB(x,y) i.e., if the
number of occurrence of α and β simultaneously in SubDB(x,y) is greater than
or equal to a user specified minimal support minsup, then the candidate branch
pattern x[α, β]y is a concurrent branch pattern. (Proof is omitted for brevity)

Thus, the problems of how to determine the concurrence of candidate branch
pattern and how to calculate the support of a candidate branch pattern reduces to

MINING CONCURRENT BRANCH PATTERNS 55

how to find a sub-customer sequence set SubDB and how to check the concurrence
of a candidate branch pattern in SubDB.

3.3. Concurrent Branch Pattern Mining Method. Steps taken to mine con-
current branch patterns based on candidate branch pattern are given as follows.

(1) Find the maximal sequence set (MSS) from customer sequences using
traditional sequential patterns mining algorithm;

(2) Find the maximal concurrent group set (MCGS) from customer se-
quences in DB using traditional frequent patterns mining algorithm;

(3) Generate the rough concurrent branch pattern (RCBP) using Cal RCBP
algorithm;

(4) Calculate the sub-customer sequence set (SubDB) using Gen SubDB al-
gorithm;

(5) Determine the support of the candidate branch in the sub-customer se-
quence set to generate concurrent branch pattern.

Example 4: Given a customer sequence database DB (refer to example 1) and
its rough concurrent branch pattern RCBP (shown in table 1), steps taken to find
all concurrent branch patterns are as follows:

(1) Generate the candidate branch pattern CanBP based on RCBP. With
respect to Table 1:
RCBP(3) = {<eacb>, <efcb>, <aba>, <aca>, <fbc>, <af>, <bf>, <ebc>,
<abc>, <acc>}.

Since <eacb> and <efcb> have a common prefix e and a common
postfix cb, these two sequential patterns can constitute candidate branch
pattern e[a,f]cb; <aba> and <aca> have a common prefix a and common
postfix a, and make up a candidate branch pattern a[b,c]a; Similarly,
<af > and <bf > make up [a,b]f.

The candidate branch pattern set of RCBP(3) is CanBP3 = {e[a,f]cb;
a[b,c]a; a[b,c]c; ab[a,c]; ac[a,c]; [f,e,a]bc}. In the same way, CanBP1

= {ac[a,b,c]; [a,f,d]cb; (a,b)[dc,f]; a[b,c]c; [a,f]bc; f[cb,bc]}; CanBP2 =
{ac[a,b,c]; ab[a,c]; [a,d]cb; a[b,c]a; a[b,d,c]c; [a,b]dc}

(2) Generate the Sub-Customer Sequence Set SubDB
For the common prefix and/or common postfix in the above candi-

date branch patterns, the sub-customer sequence set of example 1 can
be calculated by using algorithm 2. The result is shown in table 2.

(3) Counting the support to find Concurrent Branch Pattern CBP
Calculate the support of the candidate branch in sub-customer se-

quence set SubDB to generate concurrent branch patterns. Here, we only
consider: CanBP1={ac[a,b,c];[a,f,d]cb;(a,b)[dc,f];a[b,c]c;[a,f]bc;a[b,c]a }.
Table 3 is an example of the processes involved in the calculation of the
support.

Next, the candidate branch which is not concurrent and the number of which
is at least 2 is decomposed. The concurrence of its decomposition is determined

56 LU, ADJEI, CHEN, HUSSAIN, ENĂCHESCU, AND RĂDOIU

Table 2. Sub Customer Sequence Set of Example 1

Table 3. Example for counting support for CanBP1

continuously. Since ac[a,b,c] is not concurrent, it is decomposed into [a,b], [a,c],
[b,c]. Also [a,f,d]cb is not concurrent and it is decomposed into [a,f], [a,d], [f,d].
The process is shown in table 4.

Finally, the concurrent branch pattern CBP1 derived from CanBP1 is com-
puted as CBP1={a[b,c]c, (a,b)[dc,f], ac[a,c], ac[b,c], [a,d]cb, [a,f]cb, a[b,c]a}.

4. Related Work

Concurrency is particularly a difficult aspect of some systems’ behaviours. Cook
et al. [6] presented a technique to discover patterns of concurrent behaviour from
traces of system events. The technique uses statistical and probabilistic analyses to
determine when a concurrent behaviour occurs, and what dependent relationships
might exist among events. The technique is useful in a wide variety of software
engineering tasks that includes, re-engineering, user interaction modelling, and
software process improvement.

MINING CONCURRENT BRANCH PATTERNS 57

Table 4. Example for counting support for the decomposition of CanBP

Other related work can also be found in the area of workflow data analysis,
since many workflows exhibit concurrent behaviour. Herbst [7-9] investigated the
discovery of both sequential and concurrent workflow models from logged execu-
tions. Agrawal et al. [10] investigated production activity dependency graphs
from event-based workflow logs that had already identified the partial ordering of
concurrent activities.

5. Conclusions

In this paper, we developed candidate branches based method to detect concur-
rent behaviour in customer sequence database and to infer a model that describes
the concurrent behaviour. The problem of finding concurrent branch pattern was
first introduced in this paper. This problem is concerned with finding concurrent
branch pattern in a given sequential pattern mining result and a customer data-
base. The main purpose of Post Sequential Patterns Mining is to discover the
hidden structural patterns in event-based data. Concurrent branch pattern is an
important pattern, which occurs in many event-based data. Thus, we concentrated
on concurrent branch pattern mining in this paper.

An important phase for our work is to perform more experiments to support our
theories. In our previous work [2], we implemented the algorithm for construct-
ing SPG and analysed the efficiency of that approach. In our existing research
work, we anticipate that more experiments are needed to demonstrate the affec-
tive nature and efficiency of concurrent branch patterns mining algorithms. This
paper has been theoretical; experimentation is on going to establish the validity
of our algorithms. In addition to the above, we intend to extend the method to
cover concurrent branch patterns to exclusive branch patterns mining or iterative
patterns mining. This, we envisage will be our ultimate goal.

58 LU, ADJEI, CHEN, HUSSAIN, ENĂCHESCU, AND RĂDOIU

References

[1] Agrawal, R. & Srikant, R. (1995). Mining sequential patterns. Proceedings. of the Eleventh
Internal Conference on Data Engineering(pp.3-14). Taipei, Taiwan. IEEE Computer Society
Press.

[2] Lu,J., Wang, X.F., Adjei, O., & Hussain, F.(2004a) Sequential Patterns Graph and its
Construction Algorithm. Chinese Journal of Computers. 6, 782-788.

[3] Lu, J., Adjei, O., Wang, X.F., & Hussain, F. (2004b) Sequential Patterns Modeling and
Graph Pattern Mining. Proceedings of the Tenth International Conference IPMU (pp.755-
761). Perugia: Italy.

[4] Lu,J., Adjei, O., Chen, W.R., & Liu, J. (2004c) Post Sequential Pattern Mining: A new
Method for discovering Structural Patterns. Proceedings of International Conference on
Intelligent Information Process (pp.239-250). Beijing: China.

[5] Pei,J., Han, J.W., Behzad M.A, & Pinto, H.(2001). PrefixSpan: Mining sequential patterns
efficiently by prefix-projected pattern growth. Proceedings. of 17 th International Conference
on Data Engineering (pp.215-226). Heidelberg: Germany.

[6] Cook ,J.E., & Wolf ,A.L. (1998). Event-Based Detection of Concurrency. Proceedings of
the Sixth International Symposium on the Foundations of Software Engineering (pp.35-45).
Orlando: FL.

[7] Herbst, J.(1999). Inducing Workflow Models from Workflow Instances. Proceedings of the
Sixth European Concurrent Engineering Conference, Society for Computer Simulation
(pp.175-182).

[8] Herbst, J.(2000a). A Machine Learning Approach to Workflow Management. Proceedings of
European Conference on Machine Learning(pp.183-194). Lecture Notes in Artificial Intelli-
gence Nr. 1810.

[9] Herbst, J.(2000b). Dealing with Concurrency in Workflow Induction. Proceedings of the
Seventh European Concurrent Engineering Conference, Society for Computer Simulation
(pp.169- 174).

[10] Agrawal, R., Gunopulos, D., & Leymann, F. (1998). Mining Process Models from Workflow
Logs. Proceedings of the Sixth International Conference on Extending Database Technology
(EDBT).

Department of Computing and Information Systems, University of Luton, Park Sq.
Luton, LU1 3JU UK, School of Computer Science & Technology, Shenyang Institute
of Chemical Technology, Shenyang 110142 China

E-mail address: jing.lu@luton.ac.uk

Department of Computing and Information Systems, University of Luton, Park Sq.
Luton, LU1 3JU UK

E-mail address: osei.adjei@luton.ac.uk

School of Computer Science & Technology, Shenyang Institute of Chemical Tech-
nology, Shenyang 110142 China

E-mail address: willc@mail.china.com

Department of Computing and Information Systems, University of Luton, Park Sq.
Luton, LU1 3JU UK

E-mail address: fiaz.hussain@luton.ac.uk

School of Computer Science, Petru Maior University, Târgu Mureş, Romania
E-mail address: ecalin@upm.ro

School of Computer Science, Petru Maior University, Târgu Mureş, Romania
E-mail address: dumitru.radoiu@Infopulse.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 1, 2005

A NEW DYNAMIC EVOLUTIONARY CLUSTERING
TECHNIQUE. APPLICATION IN DESIGNING RBF NEURAL

NETWORK TOPOLOGIES.
II. NUMERICAL EXPERIMENTS

D. DUMITRESCU AND KÁROLY SIMON

Abstract. Recently a new evolutionary optimization metaheuristics, the

Genetic Chromodynamics (GC) has been proposed. Based on this meta-

heuristics a dynamic clustering algorithm (GCDC) is proposed. This method

is used for designing RBF neural network topologies. Complexity of these net-

works can be reduced by clustering the training data. The GCDC technique

is able to solve this problem. In Part I the GCDC technique is presented. It is

described, how this method could be used for designing optimal RBF neural

network topologies. In Part II some numerical experiments are presented.

The proposed algorithm is compared with a static clustering technique, the

generalized k-means algorithm.

Keywords and phrases: Dynamic evolutionary clustering, Genetic Chro-

modynamics, designing neural networks, RBF neural networks.

1. Introduction

Recently a new evolutionary search and optimization metaheuristics - called Ge-
netic Chromodynamics (GC) (see [4, 14]) - has been proposed. Based on this the-
ory a clustering method is proposed. This GC-based dynamic clustering technique
- called GCDC - is described in [9]. The proposed algorithm can be successfully
used for designing optimal RBF neural network topologies.

In this Part some numerical experiments and obtained results are presented.
GCDC is used for clustering two-dimensional input data. The use of GCDC for

Received by the editors: February 18, 2005.

2000 Mathematics Subject Classification. 68T05, 68T20, 91C20, 92B20.

1998 CR Categories and Descriptors. I.2.6 [Artificial Intelligence]: Learning – Con-

nectionism and neural nets; I.5.3. [Pattern Recognition]: Clustering – Algorithms .

59

60 D. DUMITRESCU AND KÁROLY SIMON

designing optimal RBF neural network topologies is investigated. The method is
compared with a static clustering technique, the generalized k-means algorithm
[17].

In the next section the GCDC method is tested on two-dimensional input data.
The behavior of the fitness function is investigated. Section 3 presents how this
method can be used for designing RBF neural networks. GCDC is used for clus-
tering training data. The topology of the RBF network is designed based on the
obtained results. In the experiment presented in Section 4 the GCDC method is
compared with the generalized k-means clustering algorithm .

2. Experiment 1

From the two-dimensional input space 19 data points ((x, y) pairs, where x ∈
{100, ..., 300} and y ∈ {100, ..., 300}) organized in 5 clusters are considered.

GCDC is used for clustering this data set. The parameters of the method are:
- initial population size: 38;
- parameters for the fitness function: α = 2, C = 140;
- mutation step size: σ = 10;
- merging radius: ε = 25.
After 45 iterations the correct number of clusters is determined by the GCDC

method. The algorithm detects existing clusters and corresponding centers. The
obtained results are presented in Figure 1.

Figure 1. Convergence of the GCDC algorithm: two-
dimensional input data, 19 data points organized in 5 clusters

GCDC FOR DESIGNING RBF NEURAL NETWORKS 61

More tests with different parameters for the fitness function are performed. The
behavior of the fitness function is presented in Figure 2, Figure 3, Figure 4 and
Figure 5.

α=1 c=35

 80 100 120 140 160 180 200 220 240 260 280 300x
 80

 100
 120

 140
 160

 180
 200

 220
 240

 260
 280

 300

y

 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0.22

fitness

Figure 2. Fitness landscape for α = 1, C = 35

3. Experiment 2

RBF neural network is used for approximating the function:

f : [0, 9.5] → R, f(x) = 2 · sin
(
ln(x) · ecos(x

2)
)

.

3.1. Experimental Conditions. From the interval [0,9.5] 200 points are consid-
ered as training samples. GCDC is used for clustering training data.

The obtained centers are used as center parameters for the RBF network. The
number of processor units in the hidden layer of the network is equal with the
number of centers determined by the GCDC method.

Parameters for GCDC:
- initial population size: 400;
- parameters for the fitness function: α = 1, C = 0.00001;
- mutation step size: σ = 0.0001;
- merging radius: ε = 0.05.

62 D. DUMITRESCU AND KÁROLY SIMON

α=2 c=35

 80 100 120 140 160 180 200 220 240 260 280 300x
 80

 100
 120

 140
 160

 180
 200

 220
 240

 260
 280

 300

y

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

fitness

Figure 3. Fitness landscape for α = 2, C = 35

α=2 c=90

 80 100 120 140 160 180 200 220 240 260 280 300x
 80

 100
 120

 140
 160

 180
 200

 220
 240

 260
 280

 300

y

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035

fitness

Figure 4. Fitness landscape for α = 2, C = 90

Gaussian activation functions are used. The parameters for the learning algo-
rithm are:

GCDC FOR DESIGNING RBF NEURAL NETWORKS 63

α=2 c=140

 80 100 120 140 160 180 200 220 240 260 280 300x
 80

 100
 120

 140
 160

 180
 200

 220
 240

 260
 280

 300

y

 0

 0.005

 0.01

 0.015

 0.02

 0.025

fitness

Figure 5. Fitness landscape for α = 2, C = 140

- learning rate: 0.1;
- maximum number of learning epochs: 10000.
The generalization error is calculated using M = 400 inputs (that do not belong

to the training set) from the interval [0,9.5]. The following formula is used:

Eg =
1
M

M∑

i=1

(zi − yi)
2
,

where zi is the expected output and yi is the network output.

3.2. RBF networks obtained by using GCDC. RBF network has been trained
using 10 data sets. Each training set consists of 200 points from the interval [0,9.5].
In each set the points are organized in 50 well-separated clusters. For each set the
GCDC method is performed and RBF neural network topologies are created based
on the returned results.

In 5 cases the number of centers determined by GCDC is 50. In other 5 cases
there is a little difference (maximum +4). For some classes more centers are
considered. These differences have only minor effects on the network topologies.
There is no situation where the number of clusters determined by GCDC is less
than 50 (the optimal number of clusters).

64 D. DUMITRESCU AND KÁROLY SIMON

After training the obtained RBF networks, the mean generalization error is
0.539953496. Satisfactory approximation results are obtained (Figure 6).

Figure 6. 200 training samples organized in 50 clusters, centers
determined by the GCDC technique, output of the RBF network
after 10000 training epochs.

3.3. RBF networks obtained by using randomly generated centers. A
training set of 200 points organized in 20 clusters is considered. 20 centers are
randomly selected from this set. The RBF network is designed using these centers.
The procedure is repeated 10 times. After training the obtained RBF networks
the mean generalization error is 0.634810589.

The GCDC technique is performed for clustering the same data set. The method
finds 20 clusters and corresponding centers. Based on the returned results a RBF
neural network is designed. After 10000 learning epochs the 0.591574517 gen-
eralization error is achieved. Better result is obtained using GCDC than using
randomly selected centers.

GCDC FOR DESIGNING RBF NEURAL NETWORKS 65

4. Experiment 3

A RBF Neural Network is used for approximating the function:

f : [0, 1] → R, f(x) =
(

x− 1
3

)3

· 1
27

.

The GCDC technique is compared with the generalized k-means algorithm.

4.1. Experimental Conditions. A training set consisting of 100 data points
organized in 18 clusters is considered.

For k-means algorithm the number of centers is randomly generated in the range
10-25 (we assume that there are more than 10 and less than 25 clusters). 10 tests
with 10 different values for the number of centers are performed.

The parameters for the GCDC algorithm are:
-initial population size: 200;
-parameters for the fitness function: α = 1, C = 0.00001;
-mutation step size: σ = 0.00001;
-merging radius: ε = 0.02.
The learning rate for the training process is fixed to 0.1. The learning process

will stop if the 0.00005 global learning error is achieved.
The generalization error is calculated using M = 400 inputs from the interval

[0, 1].

4.2. Obtained Results and Conclusions. The results obtained using the k-
means algorithm are presented in Table 1. The mean generalization error is:
0.002228871.

GCDC detects 18 clusters and corresponding centers (Figure 7). Using these
18 centers for designing the RBF neural network the learning error of 0.00005 is
achieved in 10945 epoches. The generalization error is 3.442700794496429E-4.

A better result is obtained using GCDC than using k-means. The method is
able to determine the optimal number of the centers. Using the k-means method
much better result is obtained by using 18 or greater value for the number of
centers, than using 17 or a smaller value (18 was the real number of the centers).
The learning process is thus very sensitive to the number of clusters.

66 D. DUMITRESCU AND KÁROLY SIMON

Figure 7. 100 training samples organized in 18 clusters, centers
determined by the GCDC technique, output of the RBF network
after 10945 training epochs.

5. Conclusions

Based on the GC metaheuristics, GCDC is a new evolutionary technique for
dynamic clustering. Experimental results indicate that GCDC could be a powerful
instrument for data clustering.

The use of GCDC for designing optimal RBF neural network topologies is in-
vestigated. Better results are obtained than using standard methods.

References

[1] Broomhead D. S., Lowe D.; Multivariable Functional Interpolation and Adaptive Networks,

Complex Systems, 2 (1988), pp. 321-355.

[2] Dumitrescu D.; Algoritmi Genetici şi Strategii Evolutive - Aplicaţii ı̂n Inteligenţa Artificială

şi ı̂n Domenii Conexe, Editura Albastra, Cluj Napoca, 2000.

[3] Dumitrescu D., Lazzerini B., Jain L. C., Dumitrescu A.; Evolutionary Computation, CRC

Press, Boca Raton, 2000.

GCDC FOR DESIGNING RBF NEURAL NETWORKS 67

No. of Centers No. of Epoches Generalization Error
10 42386 0.003929447755582894
11 26312 0.0039125335843709025
12 15889 0.0038635588999552293
14 8218 0.0037191067346458145
16 2153 0.0028095882895919533
17 2479 0.002400189413222201
18 5466 7.485072155731134E-4
19 10208 5.057298901372404E-4
20 10017 2.240292093213028E-4
23 4918 1.76023288279397E-4

Table 1. Generalization errors obtained in 10 runs using the gen-
eralized k-means algorithm and 10 different values for the number
of centers

[4] Dumitrescu D.; Genetic Chromodynamics, Studia Univ. Babes-Bolyai, Ser. Informatica, 35

(2000), pp. 39-50.

[5] Dumitrescu D.; A New Evolutionary Method and its Applications in Clustering, Babeş-Bolyai

University, Seminar on Computer Science,2 (1998), pp. 127-134.

[6] Dumitrescu D., Simon K.; Evolutionary Clustering Techniques for Designing RBF Neural

Networks, Babeş-Bolyai University, Seminar on Computer Science, (2003).

[7] Dumitrescu D., Simon K.; Reducing Complexity of RBF Neural Networks by Dynamic Evolu-

tionary Clustering Techniques, Proceedings of the 11th Conference on Applied and Industrial

Mathematics, (2003).

[8] Dumitrescu D., Simon K.; Genetic Chromodynamics for Designing RBF Neural Networks,

Proceedings of SYNASC, (2003).

[9] Dumitrescu D., Simon K.; A New Dynamic Evolutionary Clustering Technique. Application

in Designing RBF Neural Network Topologies. I. Clustering Algorithm, Studia Univ. Babes-

Bolyai, Ser. Informatica, (2004).

[10] Enăchescu C.; Caracterizarea Reţelelor Neuronale ca şi Metode de Aproximare- Interpolare,

Petru Maior University, Buletinul Stiintific, 7 (1994).

[11] Enăchescu C.; Elemente de Inteligenţă Artificială, Petru Maior University, Tg. Mureş, 1997.

[12] Haykin S.; Neural Networks, Macmillan College Publishing Company, New York, 1994.

[13] Moody J., Darken C.; Fast Learning in Networks of Locally Tuned Processing Units, Neural

Computation, 1 (1989), pp. 281-294.

[14] Oltean M., Groşan C.; Genetic Chromodynamics Evolving Micropopulations, Studia Univ.

Babes-Bolyai, Ser. Informatica, (2000).

68 D. DUMITRESCU AND KÁROLY SIMON

[15] Poggio T., Girosi F.; Networs for Approximation and Learning, Proceedings of IEEE, 78

(1990), pp. 1481-1497.

[16] Powell M. J. D.; Radial Basis Functions for Multivariable Interpolation: A review, in Algo-

rithms for Approximation, J. C. Mason and M. G. Cox, ed., Clarendon Press, Oxford, 1987,

pp. 143-167.

[17] Schreiber T.; A Voronoi Diagram Based Adaptive k-means Type Clustering Algorithm for

Multidimensional Weighted Data, Universitat Kaiserslautern, Technical Report, (1989).

[18] Selim S. Z., Ismail M. A.; k-means Type Algorithms: A Generalized Convergence Theorem

and Characterization of Local Optimality, IEEE Tran. Pattern Anal. Mach. Intelligence,

PAMI-6, 1 (1986), pp. 81-87.

[19] Simon K.; OOP Pentru Calculul Neuronal, Petru Maior University, Dipl. Thesis, 2002.

[20] Simon K.; Evolutionary Clustering for Designing RBF Neural Networks, Babeş-Bolyai Uni-

versity, MSc. Thesis, 2003.

”Babeş-Bolyai” University, Faculty of Mathematics and Computer Science, Com-

puter Science Department, Cluj Napoca, Romania

E-mail address: ksimon@nessie.cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 1, 2005

A PROGRAMMING INTERFACE FOR NON-HIERACHICAL
CLUSTERING

GABRIELA ŞERBAN

Abstract. Clustering is one of the important techniques in Data Mining.
Clustering methods aim at grouping objects into clusters, so that the objects
within a cluster are more similar to each other than objects in different clus-
ters. The similarity between two objects is defined by a distance function.
Clustering techniques are used in a variety of domains like: Natural Language
Processing, Databases, HealthCare. In this paper we present a new program-
ming interface for non-hierarchical clustering. Using this interface, we can
simply develop non-hierarchical clustering applications. Using the designed
interface, we made an experiment for words clustering, using a Romanian
corpus.

Keywords: Clustering, Programming, Interface.

1. Introduction

The purpose of this paper is to present a standard interface for programming
clustering tasks. The interface is meant to facilitate the development of software
for clustering in different domains. In particular, the interface should facilitate an
approach in which objects to be clustered and attributes describing the objects
can be designed and implemented separately and then interconnected relatively
easily in a standard, uniform fashion.

The aim of the proposed approach is to abstract the clustering issue, assuring
a general approach, independent of the concrete representations of the entities
involved in the clustering process.

In various domains clearly appears the necessity of clustering different kind of
objects, with respect to different kind of attributes.

For example, in the field of Natural Language Processing we often need to group
words by the similarity of their meanings, using a given corpus of words. In this

Received by the editors: March 20, 2005.
2000 Mathematics Subject Classification. 68N19, 62H30.
1998 CR Categories and Descriptors. I.5.3[Computing Methodologies]: Pattern

Recognition – Clustering; D.1.5[Software]: Programming Techniques – Object-Oriented Pro-
gramming;

69

70 GABRIELA ŞERBAN

example, the objects to be clustered are words and the attributes characterizing
the objects are also words (from the corpus) [2].

Another example in which clustering is needed is HealthCare. HealthCare rises
the problem of grouping patients in classes (clusters) with respect to the values of
a number of symptoms for a given disease. In this kind of problems, the objects
to be clustered are patients, and the attributes are symptoms [9].

There are many other domains in which clustering is needed, but for different
kinds of objects and attributes.

That is why, in this paper we propose an unitary approach for all the clustering
applications, independent of the type of objects to be clustered and the type of
attributes characterizing the clustering process.

2. Clustering

As it is well-known, clustering is a partition of data into groups of similar
objects.

Let us consider the following issue: given n objects O1, O2, ..., On, and m at-
tributes A1, A2, ...Am (a set of relevant characteristics of the analyzed objects) ,we
intend to group the objects in a given number k of clusters, so that the objects
within a cluster are more similar (related to the given attributes) to each other
than objects in different clusters.

For computing the similarities between objects we use the vector-space model,
which means that the vector ~Oi = (Oi

1, Oi
2, ..., Oi

m) is associated with an object
Oi as following: Oi

j is a real number that gives a classification of the object Oi

from the point of view of attribute Aj .
For designing our interface, the computation method of Oi

j is unimportant.
Similarity and dissimilarity between objects are calculated using metric or semi-

metric functions, applied to the attribute values characterizing the objects.
There are several methods for computing the similarity between two objects

represented by their associated vectors (as defined above).

(1) The similarity measure between two objects Oa and Ob is defined as the
normalised cosine between the vectors ~Oa and ~Ob [7]:

sim(~Oa, ~Ob) = cos(~Oa, ~Ob) =

∑m
j=1 Oj

a ×Oj
b√∑m

j=1 Oj2

a ×
√∑m

j=1 Oj2

b

.

(2) the similarity measure between two objects Oa and Ob is defined as

sim(~Oa, ~Ob) =
1

∑m
j=1 (Oj

a −Oj
b)

2 .

A PROGRAMMING INTERFACE FOR NON-HIERACHICAL CLUSTERING 71

(3) the similarity measure between two objects Oa and Ob is defined as

sim(~Oa, ~Ob) =
1∑m

j=1 |Oj
a −Oj

b |
.

The distance between two objects Oa and Ob is defined as

d(~Oa, ~Ob) =
1

sim(~Oa, ~Ob)
.

A well-known class of clustering methods is the one of the partitioning methods,
with representatives such as the k-means algorithm. Essentially, given a set of n
objects and a number k, k ≤ n, such a method divides the object set into k distinct
and non-empty partitions. The partitioning process is iterative and heuristic; it
stops when a “good” partitioning is achieved. A partitioning is “good”, as we said,
when the intra-cluster similarities are high and inter-cluster similarities are low.

We give next the non-hierarchical clustering algorithm (k-means algorithm) [8].

Algorithm k-means is
Input: - The set X = { ~O1, ~O2, · · · , ~On} of n vector objects to be

clusterised,
- the distance measure d : Rm ×Rm → R, between objects in a
multi-dimensional space,
- k, the number of desired clusters,
- a function for computing the mean of a cluster C, µ : C →
R,
- the coefficient σ (the threshold).

Output: - the set of clusters C = {C1, C2, · · · , Ck}.
Begin

Select k initial centroids {~f1, ~f2, · · · , ~fk}
While the diameter of a cluster ≥ σ do

For all clusters Cj ∈ C do

Cj = { ~Oi | ∀~fl d(~Oi, ~fj) ≤ d(~Oi, ~fl)}
EndFor
For all clusters Cj ∈ C do

~fj = ~µ(Cj)
EndFor

EndWhile
End.

As distance measure we considered:

72 GABRIELA ŞERBAN

d(~Oa, ~Ob) =
1

sim(~Oa, ~Ob)
and as centroid the mean of the cluster:

~µ(Cj) =
1

| Cj |
∑

~O∈Cj

~)

We define the diameter of a cluster as the distance between the least similar
elements in a cluster.

We also mention that the algorithm stops when the diameter of each cluster is
less then a fixed threshold.

3. The programming interface

In this section we propose a standard interface that allows a simple develop-
ment of clustering applications, providing a uniform development for all kind of
applications.

The programming interface provides a hierarchy of classes and interfaces that
can be used in all clustering applications. The clustering mechanism will be the
same for all types of objects and attributes.

The interface is realized in JDK 1.5, and is meant to facilitate software devel-
opment for non-hierarchical clustering.

There are three basic entities (objects): objects to be clustered, attributes (that
characterize the objects) and clustering.

For designing the interface, we made an abstraction of the clustering mecha-
nism, in order to be used for any kind of data (objects and attributes). Much
more, the objects to be clustered are completely separated from the attributes
that characterize them (an object has to know nothing about an attribute). Thus,
we can easily change the attributes characterizing the objects, without affecting
the clustering process.

The clustering object is the main object of the interface that manages the
clusterization of the given objects related to the given attributes. The clustering
object provides the behavior specific to the clustering process.

A main characteristic is that the clustering object is completely separated from
the objects to be clustered and the attributes characterizing the objects (the clus-
tering object knows only the behavior provided by the methods from the interface
of these entities).

The interface provides an object as a manager for the list of objects to be
clustered that manages the creation of the list of objects, attributes and centroids
from an external device (file, database).

For using the interface, the user has to define the specialized object classes
CConcreteObject (the concrete object to be clustered), CConcreteAttribute

A PROGRAMMING INTERFACE FOR NON-HIERACHICAL CLUSTERING 73

(the concrete attribute) and CConcreteManager (the concrete manager for the
list of objects and attributes), by creating instances for each. The list of objects,
attributes and centroids given by the manager are then passed to a clustering ob-
ject (CClustering), that will initialize the clustering process and will manage the
results.

In the following we present the skeleton of a clustering application.

(1) First, the user defines the class corresponding to the concrete object to
be clustered.
public class CConcreteObject extends CObjectToBeClusterized
{...}

(2) Second, the user defines the class corresponding to the concrete attribute
that characterizes the objects.
public class CConcreteAttribute implements IAttribute
{...}

(3) The user defines the class corresponding to the concrete manager of ob-
jects to be clustered and attributes.
public class CConcreteManager implements IClusteringManager
{
public CListOfObjectsToBeClustered createListOfObjects(){...}
public CListOfAttributes createListOfAttributes(){...}
public CCluster createCentroids(){...}
{...} }

The application class which initializes the clusterization with the data provided
by the concrete manager object is always the same (remains unchanged for all
non-hierarchical clustering issues), and is described below.

class Application {
private Application(){

CConcreteManager cm=new CConcreteManager();
//the manager provides the list of objects to be clusterized

CListOfOjectsToBeClustered l=cm.createListOfObjects();

//the manager provides the list of attributes corresponding to the objects
CListOfAttributes y=cm.createListOfAttributes();

//the manager provides the initial centroids of the clusters
CCluster f=cm.createCentroids();

//the manager initializes the clustering process
CClustering l=new CClustering(l, y, f); }

74 GABRIELA ŞERBAN

public static void main(String args[]){
Application apl=new Application();

}}
Figure 1 shows a simplified UML diagram of the interface, illustrating the hi-

erarchy of classes. It is important to mention that all the classes provided by the
interface, except the concrete classes, remain unchanged for all kinds of clustering
applications.

4. The Design of the Interface

The classes used for realizing the interface are the following:
• IList INTERFACE

Defines the structure of a list of objects, having operations for man-
aging the list: adding an element on a given position, removing an ele-
ment from a given position, returning the number of elements from the
list, returning an element from a given position.

• IClusteringManager INTERFACE
Defines the structure of a manager for the clustering process. The

manager provides methods for obtaining the elements that are needed in
the clustering process: creating the list of objects, the list of attributes
and the initial centroids.

• CLine
Defines the structure for the vector ~O corresponding for an object

O (as we had defined above). An element of this vector is a real num-
ber, representing a characteristic measure for the object related to an
attribute (in this class, the type of an attribute is unimportant). The
main methods of this class are for: adding, updating, removing elements,
for calculating the similarity between two lines.

• CCluster
In our design a cluster is represented as a list of CLine(a line iden-

tifies in fact an object). For a cluster, the type of the object is unim-
portant. The main methods of this class are for: adding, updating,
removing elements, for calculating the centroid of a cluster, for testing
the equality of two clusters.

OBJECTS

An object is the entity to be clustered.
• CObjectToBeClustered ABSTRACT CLASS

Is the basic class for all the objects. The specific objects will be
instances of subclasses derived from CObjectToBeClustered. An ob-
ject is identified by its vector representation. The methods of this class

A PROGRAMMING INTERFACE FOR NON-HIERACHICAL CLUSTERING 75

Figure 1. The diagram of the programming interface

76 GABRIELA ŞERBAN

are for: returning a String with the representation of an object, return-
ing the value of an object, comparing two objects, returning the vector
corresponding to an object.

• CListOfObjects ABSTRACT CLASS
This class represents the list of objects to be clustered. The main

methods are for managing the list.
• CListOfObjectsToBeClustered ABSTRACT CLASS

This class maintains a list of objects CListOfObjects and the list
of vector representations corresponding to each object from the list. The
main methods are for managing the components.

ATTRIBUTES

• IAttribute INTERFACE
Defines the structure of an attribute characterizing an object to be

clustered. The methods of this class are for: returning a String with
the representation of an attribute, returning the value of an attribute,
comparing two attributes.

CLUSTERING

• CClustering
Is the basic object of the interface, that manages the clustering

process of the objects (related to the attributes). Defines the heart of
the interface, the uniform usage that all objects and attributes are meant
to conform to.

An instance of the clustering class is associated with an instance of
a list of objects and a list of attributes at the creation moment. This is
made in the constructor of the class CClustering. The main method
of this class is the method that manages the clusterization process (us-
ing the non-hierarchical clustering algorithm) and returns the clusters
obtained.

public class CClustering
{

private CListOfAttributes y; //reference to the list of attributes
private CListOfObjectsToBeClusterized l; //reference to the list of

objects to be clustered
private CCluster f; //reference to the initial centroids
...

}

A PROGRAMMING INTERFACE FOR NON-HIERACHICAL CLUSTERING 77

5. Experiments

In order to test the above defined interface, we considered a NLP experiment
for the Romanian language. The aim was to clusterize a set of words (to group
the words after the similarity of their meanings).

In our experiment, the attributes for the words to be clusterised were also words.
Using a corpus for Romanian language, the vector words are computed based on
the idea described in [2].

For testing the generality of our interface, we have also developed a clustering
application for HealthCare. We mention that all data were taken from the website
at [10].

The objects to be clusterized in this experiment were patients: each patient is
identified by 9 attributes [9]. The attributes have been used to represent instances.
Each instance has one of two possible classes: benign or malignant.

For each experiment, we have defined the classes that provide the current clus-
tering focus, CConcreteManager, CConcreteAttribute and CConcreteObject
and the applications for clustering were easily developed.

As a conclusion of our experiments, we have to mention, from a programmer
point of view, the advantages of using the above proposed interface:

• is very simple to use;
• the effort for developing a clustering application is reduced – we need to

define only three classes, the rest is provided by the interface;
• the user of the interface has to know nothing about the method for

clustering the objects, because is provided by the interface;
• we can dynamically change the type of objects to be clustered or the

type of the attributes that characterize the objects, and the interface
remains unchanged.

6. Conclusions and Further Work

As a conclusion, we have developed a small framework that will help program-
mers to build, dynamically, their own clustering applications without dealing with
the clustering mechanism (that remains unchanged and is provided by the inter-
face). For a concrete application, the programmer has only to create three classes
(derived from the classes defined by the interface): a class corresponding to the
object to be clustered, a class corresponding to the attribute characterizing an
object and, finally, a class corresponding to the entity that manages the objects
and attributes.

After defining the concrete classes, the clustering will be made by creating an
instance of the class CClustering provided by the interface. So, the programmer’s
effort for developing an application is small.

We mention that using the proposed interface we can simply develop clustering
applications for different kind of data (objects). The objects can be words (in

78 GABRIELA ŞERBAN

NLP), databases, even patients (in HealthCare), or any other objects for which
clustering techniques can be applied.

Further works can be done in the following directions:
• how can the interface be generalized in order to be used both for hier-

archical [2] and non-hierarchical clustering;
• how can the interface be generalized for adaptive clustering (there are

new Objects to be clustered or/and new Attributes that characterize the
already clustered Objects).

References

[1] Jain, A., Dubes, R, “Algorithms for Clustering Data”, Prentice Hall, Englewood Cliffs,
New Jersey, 1998.

[2] Tatar, D., Serban, G.: “Words Clustering in Question Answering Systems”, Studia Uni-
versitatis ”Babes-Bolyai”, Informatica, XLVIII(1), 2003, pp.23–32.

[3] I. Dagan, L. Lee, F. C. N. Pereira: “Similarity-based models of Word Coocurences Prob-
abilities”, Machine Learning Journal 34(1–3), 1999, pp.1–26.

[4] C. Orasan, D. Tatar, G. Serban, D. Avram, A. Onet: “How to build a QA system in
your back-garden: application to Romanian”, EACL ’03, Budapest, April 2003, 12-14,
pp.139–142.

[5] P. Resnik: “Semantic Similarity in a Taxonomy: An information-Based Measure and its
Application to Problems of Ambiguity in Natural language”, Journal of AI Research,
1998, Center for the Study of Language and Information (CSLI), pp.1–28 .

[6] G. Serban, D. Tatar, “Word Sense Disambiguation for Untagged Corpus: Application
to Romanian Language”, Proceedings of CICLing 2003 (Intelligent Text Processing and
Computational Linguistics), Mexico City, Mexic, Lecture Notes in Computer Science N
2588, Springer-Verlag, 2003, pp.270-275.

[7] D. Jurafsky, J. Martin: “Speech and language processing”, Prentice Hall, 2000.
[8] C. Manning, H. Schutze: “Foundation of statistical natural language processing”, MIT,

1999.
[9] Wolberg, W., Mangasarian, O.L.: “Multisurface method of pattern separation for medical

diagnosis applied to breast cytology”, Proceedings of the National Academy of Sciences,
U.S.A., Volume 87, December 1990, pp 9193–9196.

[10] http://www.cormactech.com/neunet, “Discover the Patterns in Your Data”, CorMac
Technologies Inc, Canada.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,
Romania

E-mail address: gabis@cs.ubbcluj.ro

STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume L, Number 1, 2005

FINE-GRAINED MACROFLOW GRANULARITY IN
CONGESTION CONTROL MANAGEMENT

DARIUS VASILE BUFNEA, ALINA CAMPAN, AND ADRIAN SERGIU DARABANT

Abstract. A recent approach in Internet congestion control suggests col-
laboration between sets of streams that should share network resources and
learn from each other about the state of the network. Currently such a set
of collaborating streams - a macro�ow - is organized on host pair basis. We
propose in this paper a new method for grouping streams into macro�ows
when they behave similarly. A �ow behavior is described by a set of state
variables, such as the round trip time, retransmission time out or conges-
tion window size. This extended macro�ow granularity can be used in an
improved Congestion Manager.

1. Introduction

Congestion control aims to control and adapt the transmission rate of the Inter-
net streams in order to reduce the amount of dropped packets in case of overloaded
communication lines and routers. Practical congestion control approaches work
either at protocol level or at router level. A transport protocol should normally
implement a congestion control algorithm. The TCP protocol, which transports
over 90% of Internet data, treats this aspect. But there are other protocols, which
remain congestion unaware. Routers have their congestion control policies and
algorithms for handling congestion situations that are usually induced by misbe-
haved congestion unaware �ows. The two mentioned approaches do not exclude
each other; rather they are completing each other.

In order to properly o�er reliable data transmission and congestion control, a
TCP connection uses some state variables such as: the round trip time (rtt), the

Received by the editors: March 15, 2005.
2000 Mathematics Subject Classi�cation. 62H30, 90B20, 68U35.
1998 CR Categories and Descriptors. 62H30 [Statistics]: Multivariate analysis � Clas-

si�cation and discrimination; cluster analysis; 90B20 [Operations research, mathemati-
cal programming]: Operations research and management science � Tra�c problems; 68U35
[Computer science]: Computing methodologies and applications � Information systems (hy-
pertext navigation, interfaces, decision support, etc.).

79

80 DARIUS VASILE BUFNEA, ALINA CAMPAN, AND ADRIAN SERGIU DARABANT

retransmission time out (rto) [4], the congestion window (cwnd) and the slow start
threshold (sstresh) [1]. Usually, each TCP connection maintains independently
its own state variables and performs its own calculation for determining these
variables� values.

But even when each stream, independently, incorporates congestion aware algo-
rithms, a set of concurrent streams will still compete with each other for network
resources, rather than share them e�ectively [2]. Recent approaches introduce the
idea of Internet streams collaborating for an improved congestion control mecha-
nism. Rigorous delimited (de�ned) set of streams should share network resources
and learn from each other about the state of the network. Currently, such a set of
collaborating streams, referred as a macro�ow, is organized on host pair basis; i.e.
a macro�ow comprises connections sharing the same (source IP, destination IP)
pair. We propose in this paper a new method for grouping streams into macro�ows
according to their similar behavior. This method provides an accurate, less naive
approach for delimiting macro�ows inside the overall set of connections maintained
by a host. As a consequence, more connections will be detected as being part in
one macro�ow and will share their network knowledge. This approach is meant to
be part of an improved congestion Control Manager.

1.1. Related Work. Floyd suggested in [6] that the rtt and rto values should be
the same for all connections that share the same (source IP, destination IP) pair
in the same moment in time. For this reason, she claimed that the network level
should be maintaining the values of these state variables, and not the transport
level. However, Floyd did not further explore this approach.

[5] joins the idea of sharing state variables between �ows, on host pair basis. In
addition, she gives practical suggestions and solutions for accomplishing this, in
certain concrete situations.

[3] describes the LINUX caching mechanism of state variables values. One set
of information is maintained for each destination IP. The cached values serve for
state variables initialization of new connections targeting the same destination IP.
Thus, the LINUX caching mechanism also functions on host pair basis.

A state of the art approach [2] in congestion control suggests a practical way
for the collaboration between transport protocols and applications. This collabo-
ration should take place into an integrated Congestion Manager (CM) framework.
All protocols and applications involved in such a framework should provide their
network knowledge (rtt, packet losses) to the CM. The CM should aggregate all
these information on host pair basis (macro�ow basis), �learn� from them and
inform the protocols and applications, in a synchronous or asynchronous manner,
about when and how much data they can safely �put on the wire�. Practically,

FINE-GRAINED MACROFLOW GRANULARITY 81

the collaboration will take place, mediated by the CM, between connections inside
a macro�ow; no collaboration will happen across macro�ows. So, more adequate
the macro�ows are established, more e�cient the CM�s control will be.

1.2. Contributions. We propose in this paper a new method for grouping streams
into macro�ows when they behave similarly. A �ow behavior is de�ned by a set of
state variables, such as the round trip time, retransmission time out or congestion
window size. The advantage is that we can cluster together streams not only on
host pair basis, but also on LAN pair basis; even more generally, streams sharing
a particular network bottleneck will be identi�ed by our method. This extended
macro�ow granularity can be used in an improved Congestion Manager.

2. Data Model

2.1. Rtt Vectors. We consider the case of an upload server that treats a high
number of simultaneous incoming connections. The aim is to establish (infer)
inside this set of connections some groups of connections with similar behavior. A
Congestion Manager running on that server will treat such a group as a macro�ow.

We denote by S the server machine itself or its network identi�cation IP ad-
dress.

Each incoming connection is identi�ed by the server S by a pair (CIP : Cport),
where CIP is the client's IP address and Cport is the client's port identi�cation.

During the life time of each (CIP : Cport) connection, the server S will peri-
odically measure and retain the values of some state variables, such as the round
trip time, retransmission time out or congestion window size. We based our ex-
periments on measurements of the round trip time (rtt) state variable. Practical
ways for the achievement of measurements are described in [8, 9].

Therefore, from the point of view of the upload server S, the incoming con-
nection f = (CIP : Cport) during the time interval (tb, te) is described by the rtt
vector V = (r1, r2, . . . , rk) where:

- (tb, te) ⊆ (CIP : Cport) connection life time;
- ∆t is the interval between two consecutive measurements;
- k = (te − tb)/∆t;
- ri is the rtt value measured at the tb + ∆t ∗ (i− 1) time moment.

We say that the rtt vector associated to a connection describes the connection's
behavior. The choice of the rtt state variable for describing a connection behav-
ior is justi�ed as follows. For two connections f1 and f2 coming from the same
client or LAN the rtt values measured at the same moment in time are quasi-
identical. Therefore, their associated rtt vectors during the same time interval are

82 DARIUS VASILE BUFNEA, ALINA CAMPAN, AND ADRIAN SERGIU DARABANT

also quasi-identical. This means that f1 and f2 manifest a similar behavior, which
justi�es their placement in the same macro�ow. As we said, we want to extend the
macro�ow granularity outside the host-pair scope, on the basis of similar behavior;
but we also want to keep such connections (as f1 and f2 are) as much as possible
together in macro�ows. So, according to our modeling such connections must have
similar behavior. The rtt vectors model ensures that fact.

2.2. Similarity Measure. For grouping similarly behaving �ows we will use, as
described in the next paragraph, an arti�cial intelligence clustering algorithm.
Such an algorithm needs a similarity measure and a distance function for compar-
ing and di�erentiating two analyzed �ows. We propose next such measures and
justify our choice.

We associated to a connection an rtt vector describing its behavior. The rtt
vector re�ects the rtt temporal evolution of that �ow. Two connections will be
considered more similar as they are more linearly correlated (e.g. the rtt values
for the two connections increase and decrease at the same moments in time). A
statistical measure for the linear correlation of two vectors is the Pearson coe�-
cient.

Given two connections, f1 = (C1
IP : C1

port) and f2 = (C2
IP : C2

port) measured
during the time interval (tb, te) and their associated rtt vectors V1 = (r11, r12, . . . , r1k)
and V2 = (r21, r22, . . . , r2k), the Pearson correlation coe�cient of f1 and f2 is de-
�ned as:

P (V1, V2) =

k∑
i=1

r1i · r2i −
k∑

i=1
r1i·

k∑
i=1

r2i

k

√√√√√

 k∑

i=1

r2
1i −

(
k∑

i=1
r1i)2

k

 ·

 k∑

i=1

r2
2i −

(
k∑

i=1
r2i)2

k

=

k∑
i=1

(r1i − r1) · (r2i − r2)
√(

k∑
i=1

(r1i − r1)2
)(

k∑
i=1

(r2i − r2)2
)(1)

where r1 and r2 are the mean values of V1 and V2.
P (V1, V2) takes values in [-1,1] interval, a value of 1 meaning that the compared

vectors are linearly correlated, and a value of -1 meaning that they are inversely
linearly correlated. We chose to transport the Pearson coe�cient values in [0,1]
interval. However, this will not a�ect the semantics of the transformed coe�cient.

FINE-GRAINED MACROFLOW GRANULARITY 83

Its maximal value will still indicate o positive correlation between parameters, and
the minimal value a negative correlation. Therefore, the similarity measure we use
for comparing connections will be:

(2) P (V1, V2) =
P (V1, V2) + 1

2

For di�erentiating connections we use a distance function de�ned by:

(3) dP (V1, V2) = 1− P (V1, V2)

dP take values in [0,1]; two identical �ows will be at 0 distance, two negatively
correlated �ows will be separated by a distance of 1.

The distance function de�ned on the basis of the correlation coe�cient as above
does not satisfy the triangle inequality; it is, therefore, what is called a semi-metric.

We have to notice a shortcoming of the correlation coe�cient in describing vec-
tors with a constant evolution (e.g. vectors with all the components equal). If one
of the vectorial arguments of P is constant, the correlation coe�cient is unde�ned.
We choused to consider it -1, as nothing can be said about the correlation between
such arguments and we want them not to disturb the classi�cation of the other
connections with well de�ned behavior.

3. The Macro�owIdenti�cation Algorithm

Let F = f1, f2, . . . , fn be the set of all incoming concurrent connections served
by S. For the (tb, te) time interval, the measured rtt vectors are V = V1, V2, . . . , Vn,
where Vi is the rtt vector associated to fi, fi = (Ci

IP : Ci
port), Vi = (ri1, ri2, . . . , rik).

We use an agglomerative hierarchical clustering algorithm for grouping in macro-
�ows the concurrent connections described by similar rtt vectors. This bottom-up
strategy starts by placing each connection in its own cluster (macro�ow) and then
merges these atomic clusters into larger and larger clusters (macro�ows) until a
termination condition is satis�ed.

At each iteration, the closest two clusters (macro�ows) are identi�ed. The
distance between two clusters Mi and Mj is considered to be, as de�ned in (4),
the maximum distance of any pair of objects in the cartesian product Mi×Mj . If
the distance between these two closest clusters does not exceed a given threshold
thr_max_dist, we merge them and the algorithm continues by a new iteration.
Otherwise, the algorithm stops. So, the termination condition holds when there
are no more clusters closer than a given threshold.

84 DARIUS VASILE BUFNEA, ALINA CAMPAN, AND ADRIAN SERGIU DARABANT

This decision regarding the termination condition is justi�ed. We want that the
resulting macro�ows do not contain any �wrong� placed connections, so that the
subsequent decisions based on our macro�ow delimitation not to be erroneous. A
macro�ow is �correct� if any pair of its objects are similar enough.

The threshold thr_max_dist was chosen above 0.95, to ensure correct macro�ow
construction. By merging two clusters that are close enough with respect to
the threshold thr_max_dist ensures that, inside the obtained merged cluster
(macro�ow), any two connections are not more distant than thr_max_dist. So, it
is safe to place them into the same macro�ow.
Algorithm MacroflowIdentification is
Input: n, the number of concurrent connection at server S;

F = {f1, f2, . . . , fn} the set of concurrent connection at S;
V = {V1, V2, . . . , Vn}, Vi = (ri1, ri2, . . . , rik), i = 1..n, the rtt vectors
associated to the connections;
thr_max_dist, the maximal distance threshold for two connections
to be admitted in the same macroflow.

Output:m, the number of macroflows inferred in the concurrent connections
set;
M = {M1, . . . , Mm}, the inferred macroflows, where
Mi 6= ∅, i = 1..m, ∪m

i=1Mi = F, Mi ∩Mj = ∅, i, j = 1..m, i 6= j.
Begin

m := n;
M := ∅;
For i:= 1 to m do

Mi := {fi};
M := M ∪ {Mi};

End For;
While (m>1) and (Continue(M,thr_max_dist,Mmerge1, Mmerge2)=true) do

Mnew := Mmerge1 ∪Mmerge2;
M := M − {Mmerge1, Mmerge2} ∪ {Mnew};
m := m-1;

End While;
End.

Function Continue(M the set of current macroflows, thr_max_dist,
out Mmerge1, out Mmerge2):boolean is

Begin
min_dist := ∞;
For each Mi ∈ M

FINE-GRAINED MACROFLOW GRANULARITY 85

For each Mj ∈ M, Mj 6= Mi

(4) dist(Mi, Mj) = max{dP (vr, vt)|fr ∈ Mi, ft ∈ Mj};
If dist(Mi, Mj) < min_dist

min_dist := dist(Mi, Mj);
Mmerge1 := Mi; Mmerge2 := Mj ;

End If;
End For;

End For;
If min_dist < thr_max_dist Return True;
Else Return False;
End If;

End Function.

Function Continue determines the closest two clusters from the clusters set
M . It will return true if these clusters are closer than thr_max_dist and false
otherwise.

4. Results and Evaluation

Figure 1. A macro�ow composed of connections originating
from the same client IP

86 DARIUS VASILE BUFNEA, ALINA CAMPAN, AND ADRIAN SERGIU DARABANT

Figure 2. Macro�ows composed of connections originating from
di�erent client IPs

To test the e�ciency of the proposed algorithm, we used it on an http upload
server, with a high number of incoming connections. We measured the rtt state

FINE-GRAINED MACROFLOW GRANULARITY 87

variable for the incoming connections at S during a larger time interval and we
considered for clustering samples of 20 seconds. We take the case of one such
sample, composed of 89 connections, originated from 50 di�erent remote hosts.
Inside this connection set our algorithm detected 38 macro�ows.

The connections originating from the same client were, most of them, clustered
together in one or few clusters. Figure 1 represents a macro�ow in which were
grouped together 4 connections with the same client IP.

But the algorithm also detected, as we intended, macro�ows over connections
coming from di�erent client IPs. Two such macro�ows are illustrated in Figure 2.
It can be clearly seen the similar rtt evolution during time for the connections of
each macro�ow. This fact might happen in di�erent situations: client IPs hosted
in the same remote LAN or client IPs sharing the same bottleneck toward server
S.

The connections with quasi-constant (almost all components of the associated
rtt vectors are equal) were all grouped together in one cluster - however, taking
into account the behavior of the Pearson correlation coe�cient in the presence of
a constant vector argument they are not to be considered as similar and forming
a macro�ow.

5. Conclusions and Future Work

We suggested in this paper a data model and an algorithm for extending the
macro�ow granularity outside of the host-pair approach. Our method will prove
its advantages in a Congestion Manager framework.

As a future work we plan to explore the use of di�erent similarity measures
and other state variables to compare the timely evolution of the connections being
analyzed. We also want to extend the clustering method to an incremental variant
having the ability to deal with new connections entering or leaving the system at
any given moment.

References
[1] Allman, M., Paxson, V., Stevens, W. - TCP Congestion Control, IETF RFC 2581, April,

1999.
[2] Balakrishnan, H., Seshan, S. - The Congestion Manager, IETF RFC 3124, June 2001.
[3] Sarolahti, P., Kuznetsov, A. - Congestion Control in Linux TCP, In Proc. of the FREENIX

Track: 2002 USENIX Annual Technical Conference, pp 49-62, 2003.
[4] Paxon, V., Allman, M. - Computing TCP�s Retransmission Timer, IEFC RFC 2988, No-

vember 2000.
[5] Touch, J. - TCP Control Block Interdependence, IETF RFC 2140, April 1997.

88 DARIUS VASILE BUFNEA, ALINA CAMPAN, AND ADRIAN SERGIU DARABANT

[6] Floyd, S. - A report on Some Recent Developments in TCP Congestion Control, IEEE
Communication Magazine, 39(4), 2001.

[7] Han, J., Kamber, M. - Data Mining: Concepts and Techniques, Morgan Kaufmann Pub-
lishers, 2001.

[8] Bufnea, D., Sterca, A., Cobarzan, C., Boian, F. - Improving the Round Trip Time Estimation
in Internet Routers, In Carpathian Journal of Mathematics, 20(2), Proc of the 4th Intl. Conf.
on Applied Mathematics (ICAM4), Baia Mare, Romania, pp 149-154, 2004.

[9] Bufnea, D., Sterca, A., Cobarzan, C., Boian, F. - TCP State Variables Sharing, Proc. of the
Symposium Zilele Academice Clujene, Romania, 2004.

Babes-Bolyai University, Cluj-Napoca,Romania
E-mail address: bufny@cs.ubbcluj.ro

Babes-Bolyai University, Cluj-Napoca, Romania
E-mail address: alina@cs.ubbcluj.ro

Babes-Bolyai University, Cluj-Napoca,Romania
E-mail address: dadi@cs.ubbcluj.ro

STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume L, Number 1, 2005

CORE BASED INCREMENTAL CLUSTERING

GABRIELA �ERBAN AND ALINA CÂMPAN

Abstract. Clustering is a data mining activity that aims to di�erentiate
groups inside a given set of objects, with respect to a set of relevant at-
tributes of the analyzed objects. Generally, existing clustering methods, such
as k-means algorithm, start with a known set of objects, measured against
a known set of attributes. But there are numerous applications where the
attribute set characterizing the objects evolves. We propose in this paper
an incremental, k-means based clustering method, Core Based Incremental
Clustering (CBIC), that is capable to re-partition the objects set,when the
attributes set increases. The method starts from the partitioning into clusters
that was established by applying k-means or CBIC before the attribute set
changed. The result is reached more e�ciently than running k-means again
from the scratch on the feature-extended object set. Experiments proving
the method's e�ciency are also reported.

Keywords: Data Mining, clustering, k-means.

1. Introduction
Unsupervised classi�cation, or clustering, as it is more often referred as, is a

data mining activity that aims to di�erentiate groups (classes or clusters) inside
a given set of objects. The inferring process is carried out with respect to a set of
relevant characteristics or attributes of the analyzed objects. The resulting groups
are to be built so that objects within a cluster to have high similarity with each
other and low similarity with objects in other groups. Similarity and dissimilarity
between objects are calculated using metric or semi-metric functions, applied to
the attribute values characterizing the objects.

A large collection of clustering algorithms is available in the literature. [5] and
[6] contain comprehensive overviews of existing techniques.

A well-known class of clustering methods is the one of the partitioning methods,
with representatives such as the k-means algorithm or the k-medoids algorithm.

Received by the editors: March 15, 2005.
2000 Mathematics Subject Classi�cation. 62H30, 68U35.
1998 CR Categories and Descriptors. 62H30 [Statistics]: Multivariate analysis � Classi-

�cation and discrimination; cluster analysis; 68U35 [Computer science]: Computing method-
ologies and applications � Information systems (hypertext navigation, interfaces, decision sup-
port, etc.);

89

90 GABRIELA �ERBAN AND ALINA CÂMPAN

Essentially, given a set of n objects and a number k, k ≤ n, such a method divides
the object set into k distinct and non-empty partitions. The partitioning process
is iterative and heuristic; it stops when a "good" partitioning is achieved. A
partitioning is "good", as we said, when the intra-cluster similarities are high and
inter-cluster similarities are low.

Generally, these methods start with a known set of objects, measured against
a known set of attributes. But there are numerous applications where the object
set is dynamic, or the attribute set characterizing the objects evolves. Obviously,
for obtaining in these conditions a partitioning of the object set, the clustering
algorithm can be applied over and over again, beginning from the scratch, every
time when the objects or attributes change. But this can be une�cient. What we
want is to propose an incremental, k-means based clustering method, named Core
Based Incremental Clustering (CBIC), that is capable to e�ciently re-partition
the objects set, when the attributes set increases with one new attribute. The
method starts from the partitioning into clusters that was established by applying
k-means or CBIC before the attribute set changed. The result is reached more
e�ciently than running k-means again from the scratch on the feature-extended
object set.

2. Formal Problem Study
Let {O1, O2, . . . , On} be the set of objects to be classi�ed. Each object is

measured with respect to a set of m initial attributes and is described therefore
by a m-dimensional vector Oi = (Oi1, . . . , Oim), Oik ∈ <, 1 ≤ i ≤ n, 1 ≤ k ≤ m.
Usually, the attributes associated to objects are standardized, in order to ensure
an equal weight to all of them ([6]).

Let {K1,K2, . . . , Kp} be the set of clusters discovered in data by applying the
k-means algorithm. Each cluster is a set of objects, Kj = {Oj

1, O
j
2, . . . , O

j
nj
}, 1 ≤

j ≤ p. The centroid (clusters mean) of the cluster Kj is denoted by fj , where

fj =

nj∑
k=1

Ok1

nj
, . . . ,

nj∑
k=1

Okm

nj

.

The measure used for discriminating objects can be any metric function, d. We

used the Euclidian distance: d(Oi, Oj) = dE(Oi, Oj) =

√
m∑

l=1

(Oil −Ojl)2.

The measured set of attributes is afterwards extended with one new attribute,
the (m + 1) or last attribute. After extension, the objects' vectors become O′i =
(Oi1, . . . , Oim, Oi,m+1), 1 ≤ i ≤ n.

We want to analyze the problem of recalculating the objects grouping into
clusters, after object extension and starting from the current partitioning. We
want to obtain a performance gain in respect to the partitioning from scratch
process.

CORE BASED INCREMENTAL CLUSTERING 91

We start from the fact that, at the end of the initial clustering process, all
objects are closer to the centroid of their cluster than to any other centroid. So,
for any cluster j and an object Oj

i ∈ Kj , inequality (1) holds.

(1) dE(Oj
i , fj) ≤ dE(Oj

i , fr), 1 ≤ r ≤ p, r 6= j.

We denote by K ′
j , 1 ≤ j ≤ p the set containing the same objects as Kj , after

the extension. By f ′j , 1 ≤ j ≤ p we denote the mean (center) of the set K ′
j . These

sets K ′
j , 1 ≤ j ≤ p will not necessarily represent clusters after the attribute-set

extension. The newly arrived attribute can change the objects arrangement into
clusters, formed so that the intra-cluster similarity to be high and inter-cluster
similarity to be low. But there is a considerable chance, when adding one or
few attributes to objects, and the attributes have equal weights and normal data
distribution, that the old arrangement in clusters to be close to the actual one. The
actual clusters could be obtained by applying the k-means classi�cation algorithm
on the set of extended objects. But we try to avoid this process and replace it
with one less expensive but not less accurate. With these being said, we agree,
however, to continue to refer the sets K ′

j as clusters.
We therefore start by taking as reference point the previous partitioning in

clusters and study in which conditions an extended object Oj′
i is still correctly

placed in its cluster K ′
j . For that, we express the distance of Oj′

i to the center of
its cluster, f ′j , compared to the distance to the center f ′r of any other cluster K ′

r.

Theorem 1. When inequality (2) holds for an extended object Oj′
i and its cluster

K ′
j

(2) Oi,m+1 ≥

nj∑
k=1

Ok,m+1

nj

then the object Oj′
i is closer to the center f ′j than to any other center f ′r, 1 ≤ r ≤

p, r 6= j.

Proof
We prove below this statement.

d2(Oj′
i , f ′j) − d2(Oj′

i , f ′r) = d2(Oj
i , fj) +

nj∑
k=1

Ok,m+1

nj
−Oi,m+1

2

− d2(Oj
i , fr) −

nr∑
k=1

Ok,m+1

nr
−Oi,m+1

2

.

Using the relation in (1), we have:

92 GABRIELA �ERBAN AND ALINA CÂMPAN

d2(Oj′
i , f ′j)−d2(Oj′

i , f ′r) ≤

nj∑
k=1

Ok,m+1

nj
−Oi,m+1

2

−

nr∑
k=1

Ok,m+1

nr
−Oi,m+1

2

⇔

d2(Oj′
i , f ′j)−d2(Oj′

i , f ′r) ≤

nj∑
k=1

Ok,m+1

nj
−

nr∑
k=1

Ok,m+1

nr

·

nj∑
k=1

Ok,m+1

nj
+

nr∑
k=1

Ok,m+1

nr
− 2 ·Oi,m+1

.

If the relation in (2) holds for Oj′
i , then the inequality above becomes:

d2(Oj′
i , f ′j)− d2(Oj′

i , f ′r) ≤ −

nj∑
k=1

Ok,m+1

nj
−

nr∑
k=1

Ok,m+1

nr

2

⇔

d2(Oj′
i , f ′j)− d2(Oj′

i , f ′r) ≤ 0.
Because all the distances are non-negative, it results that

d(Oj′
i , f ′j) ≤ d(Oj′

i , f ′r).

3. The Core Based Incremental Clustering Algorithm
We will use the property enounced in the previous paragraph in order to identify

inside each cluster K ′
j , 1 ≤ j ≤ p those objects that have a considerable chance to

remain stable in their cluster. We will use these cluster cores as seed for clustering.

De�nition 1. We denote by Corej = {Oj′
i |Oj′

i ∈ K ′
j , d(Oj′

i , f ′j) ≤ d(Oj′
i , f ′r), 1 ≤

r ≤ p, r 6= j} the set of all objects in K ′
j that are closer to f ′j than to any other

center f ′r. We denote by CORE the set {Corej , 1 ≤ j ≤ p} of all clusters cores.

All objects in Corej will surely remain together in the same group if clusters
do not change. This will not be the case for all core objects, but for most of them.

We give next the Core Based Incremental Clustering algorithm.
We mention that the algorithm stops when the clusters from two consecutive

iterations remain unchanged or the number of steps performed exceeds the maxi-
mum number of iterations allowed.

Algorithm Core Based Incremental Clustering is
Input: - the set X = {O1, . . . , On} of m-dimensional objects previously

clustered,
- the set X ′ = {O′1, . . . , O′

n} of (m+1)-dimensional extended objects
to be clusterized, O′i has the same first m components as Oi,
- the metric dE between objects in a multi-dimensional space,
- p, the number of desired clusters,
- F = {F1, . . . , Fp} the previous partitioning of objects in X.
- noMaxIter the maximum number of iterations allowed.

Output: - the re-partitioning F ′ = {F ′1, . . . , F ′p} for the objects in X ′

CORE BASED INCREMENTAL CLUSTERING 93

Begin
For all clusters Fj ∈ F

Calculate Corej = {Oj′
i ∈ F ′j that satisfies inequality (2)}

F ′j := Corej

Calculate f ′j as the mean of objects in Corej

EndFor
While (F ′ changes between two consecutive steps) and

(there were not performed noMaxIter iterations) do
For all clusters F ′j do

F ′j := {O′
i | ∀f ′r d(O′i, f

′
j) ≤ d(O′

i, f
′
r)}

EndFor
For all clusters F ′j do

f ′j := the mean of objects in F ′j
EndFor

EndWhile
End.

4. Results and Evaluation
In this section we present some experimental results obtained after applying the

CBIC algoritm described in section 3.
For this purpose, we had used a programming interface for non-hierarchical

clustering described in ([1]). We have to mention that using this interface we can
simply develop non-hierarchical clustering applications for di�erent kind of data
(objects to be clusterized). As it is shown in our experiments, the objects to be
clusterized are very di�erent (patients, wine instances).

As a case study, for experimenting our theoretical results described in section
2 and for evaluating the performance of the CBIC algorithm, we consider some
experiments that are brie�y described in the following subsections.

We have to mention that all data were taken from the website at "http://www.
cormactech.com/neunet".

As a quality measure we take the movement degree of the core objects. More
stable they are, better was the decision to choose them as cores for the incremental
clustering process. We express the core stability factor as:

(3) CSF (CORE) =

p∑
j=1

|Corej |
no of clusters where the objects in Corej ended

p∑
j=1

|Corej |

94 GABRIELA �ERBAN AND ALINA CÂMPAN

The worst case is when each object in Corej ends in a di�erent �nal cluster, and
this happens for every core in CORE. The best case is that every Corej remains
compact and it is found in a single �nal cluster. So, the limits between which CSF
varies are given below, where the higher the value of CSF is, better was the cores
choise:

(4) p
p∑

j=1

|Corej |
≤ CSF (CORE) ≤ 1

4.1. Experiment 1. Cancer. The breast cancer database was obtained from
the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg.

The objects to be clusterized in this experiment are patients: each patient is
identi�ed by 9 attributes [2].The attributes have been used to represent instances.
Each instance has one of 2 possible classes: benign or malignant. In this experi-
ment are 457 patients (objects).

The attribute information used in the "cancer" experiment is shown in Table
1.

Table 1. Attribute information in the "cancer" experiment

Attribute Domain
1. Clump Thickness 1 - 10
2. Uniformity of Cell Size 1 - 10
3. Uniformity of Cell Shape 1 - 10
4. Marginal Adhesion 1 - 10
5. Single Epithelial Cell Size 1 - 10
6. Bare Nuclei 1 - 10
7. Bland Chromatin 1 - 10
8. Normal Nucleoli 1 - 10
9. Mitoses 1 - 10

4.2. Experiment 2. Dermatology. The �le for this experiment was obtained
from the website at "http://www.corma-ctech.com/neunet".

The objects to be clusterized in this experiment are also patients: each patient
is identi�ed by 34 attributes, 33 of which are linear valued and one of them is
nominal. There are 366 objects (patients).

The aim of the clustering process is to determine the type of Eryhemato-
Squamous Disease [3].

The di�erential diagnosis of erythemato-squamous diseases is a real problem in
dermatology [7]. They all share the clinical features of erythema and scaling, with

CORE BASED INCREMENTAL CLUSTERING 95

very little di�erences. The diseases in this group are psoriasis, seboreic dermatitis,
lichen planus, pityriasis rosea, cronic dermatitis, and pityriasis rubra pilaris.

Usually a biopsy is necessary for the diagnosis but unfortunately these diseases
share many histopathological features as well. Another di�culty for the di�erential
diagnosis is that a disease may show the features of another disease at the beginning
stage and may have the characteristic features at the following stages.

Patients were �rst evaluated clinically with 12 features. Afterwards, skin sam-
ples were taken for the evaluation of 22 histopathological features. The values of
the histopathological features are determined by an analysis of the samples under
a microscope.

In the dataset constructed for this domain, the family history feature has the
value 1 if any of these diseases has been observed in the family, and 0 otherwise.
The age feature simply represents the age of the patient. Every other feature
(clinical and histopathological) was given a degree in the range of 0 to 3. Here, 0
indicates that the feature was not present, 3 indicates the largest amount possible,
and 1, 2 indicate the relative intermediate values.

4.3. Experiment 3. Wine. The �le for this experiment was obtained from the
website at "http://www.corma-ctech.com/neunet".

These data are the results of a chemical analysis of wines grown in the same
region in Italy but derived from three di�erent cultivars. The analysis determined
the quantities of 13 constituents found in each of the three types of wines [4].

The objects to be clusterized in this experiment are wine instances: each is
identi�ed by 13 attributes. There are 178 objects (wine instances).

We have to mention that all attributes in this experiment are continuous.

4.4. Results. In this section we present comparatively the results obtained after
applying the CBIC algorithm for the experiments described in the above subsec-
tions.

Table 2. The comparative results

Experiment No. of No. of No. of No. of No. of The cores'
objects attributes iterations iterations iterations stability

(m+1) for m+1 for m for m+1 attributes factor
attributes attributes using CBIC CSF(CORE)

Cancer 457 9 13 10 8 0.804347826
Dermatology 366 34 7 11 5 0.713114754
Wine 178 13 4 6 3 1.0

96 GABRIELA �ERBAN AND ALINA CÂMPAN

From Table 2 we observe that using the CBIC algorithm the number of iterations
for �nding the solution is smaller, and also the cores' stability factor, CSF(CORE),
is high.

5. Conclusions and Future Work
We proposed in this paper a new method for adapting a clustering when the

attribute set describing the objects increases by one. The experiments on di�er-
ent data sets prove that the result is reached more e�ciently using the proposed
method than running k-means again from the scratch on the feature-extended
object set.

Further works can be done in the following directions:
• to experiment the theoretical results in the case in which more attributes

(that characterize the objects) are added;
• how can the theoretical results described for non-hierarchical clustering

be applied/generalized for other clustering techniques.

References
[1] �erban, G.: �A Programming Interface for Non-Hierarchical Clustering�, Studia Universi-

tatis "Babe³-Bolyai", Informatica, XLX(1), 2005, to appear.
[2] Wolberg, W., Mangasarian, O.L.: �Multisurface method of pattern separation for medical

diagnosis applied to breast cytology�, Proceedings of the National Academy of Sciences,
U.S.A., Volume 87, December 1990, pp 9193�9196.

[3] Demiroz, G., Govenir, H. A., Ilter, N.: �Learning Di�erential Diagnosis of Eryhemato-
Squamous Diseases using Voting Feature Intervals�, Arti�cial Intelligence in Medicine.

[4] Aeberhard, S., Coomans, D., de Vel, O.: �THE CLASSIFICATION PERFORMANCE OF
RDA� Tech. Rep. no. 92�01, 1992, Dept. of Computer Science and Dept. of Mathematics
and Statistics, James Cook University of North Queensland.

[5] Jain, A., Dubes, R, �Algorithms for Clustering Data�, Prentice Hall, Englewood Cli�s,
New Jersey, 1998.

[6] Han, J., Kamber, M. �Data Mining: Concepts and Techniques�, Morgan Kaufmann Pub-
lishers, 2001.

[7] http://www.cormactech.com/neunet, �Discover the Patterns in Your Data�, CorMac Tech-
nologies Inc, Canada.

Babe³ Bolyai University, Cluj Napoca,Romania
E-mail address: gabis@cs.ubbcluj.ro

Babe³ Bolyai University, Cluj Napoca, Romania
E-mail address: alina@cs.ubbcluj.ro

STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume L, Number 1, 2005

REDESIGN BASED OPTIMIZATION FOR DISTRIBUTED
DATABASES

HOREA-ADRIAN GREBLA, ANCA GOG

Abstract. The execution process of the queries in distributed databases
require accurate estimations and predictions for performance characteristics.
The problems of data allocation and query optimization done by means of
mobile agents and evolutionary algorithms are considered. These problems
still present a challenge because of the dynamic changes in number of com-
ponents and architectural complexity of nowadays system topologies. The
distributed system is modeled as a graph structure on which is de�ned a dy-
namic cost vector. The cost vector remains consistent, relevant, by use of
mobile agents performing cost statistics and vector updates. An evolutionary
technique for the re-design phase is proposed. Experimental results prove the
e�ciency of the proposed technique.

Keywords: Distributed Databases, Data Fragmentation, Data Alloca-
tion, Evolutionary Computation, Mobile agents

1. Introduction
Distributed databases (DDBs) have become necessity as networks expand and

organizations perform geographically distributed operations. International com-
panies store their data at di�erent sites of a computer network, possibly in a va-
riety of forms, ranging from �at �les, to hierarchical, relational or object-oriented
databases. The network itself consists of variety of transmission media, network
topologies or network speeds. Design approaches for distributed databases have
to consider various factors that can a�ect performance: CPU time, data transmis-
sion time, disk I/O operation time. Such distributed system architecture reveals
some data management challenges. The system needs to be highly scalable with
no critical failure points. In accordance to nowadays computing needs, the latency
must not a�ect the performance of real-time applications. The aim is to provide
uniform access to physically distributed data, no mater what the distance between
the access location and places data resides. A possible approach is to represent the
DDB as a graph and to perform system's management automatically by means

2000 Mathematics Subject Classi�cation. 62E99, 68T99.
1998 CR Categories and Descriptors. C.2.4 [Computer Systems Organization]:

Computer-Communication Networks � Distributed systems I.2.8 [Arti�cial Intelligence]:
Problem solving, Control methods, and Search � Heuristic methods;

97

98 HOREA-ADRIAN GREBLA, ANCA GOG

of mobile agents. An evolutionary algorithm is proposed to solve the problem of
re-fragmentation and re-allocation of data.

2. Distributed Database Design Issues
Distributed database management system [8] has to ensure local applications

for each computational component as well as global applications on more com-
putational machines; it also has to provide a high-level query language with dis-
tributed query power, for distributed applications development. Must be ensured
transparency levels that confer the image of a unique database. To improve the
performance of global queries, data can be partitioned and spread over the sys-
tem's components. A distributed database system supports data fragmentation
if a relation stored within can be divided in pieces called fragments. These frag-
ments can be stored on di�erent sites residing on the same or di�erent machines.
The aim is to store the fragments closer to where they are more frequently used
in order to achieve best performance. The partitions can be created horizontal,
vertical or mixed (the combination of horizontal and vertical fragmentation).

Let R[A1,A2,. . . ,An] be a relation where Ai, i = 1, . . . , n are attributes. A
horizontal fragment can be obtained by applying a restriction: Ri = σcondi(R),
where condi is the guard condition. So we can rebuild the original relation by
union as follows:

R = R1 ∪ R2 ∪ . . .∪ Rk.
A vertical fragment is obtained by a projection operation:

Ri =
∏

{Ax1,Ax2,...,Axp}
(R),

where Axi, i = 1, . . . , p are attributes. The initial relation can be reconstructed
by join of the fragments:

R = R1

⊗
R2

⊗
. . .

⊗
Rl.

A DDB system can be represented [5] as a graph where the sites are given by
(V), the set of vertices, and the edges (E) given by the direct connections between
sites. Each edge has associated a cost, but this cost will be examined later in
this paper. For exempli�cation we consider in Figure 1 a distributed system and
obtain in Figure 2 the corresponding graph representation.

The system must preserve distributed data independence [9], such that any
change of physical location of data must not disturb application functionality. A
good management of DDBs implies a considerable e�ort in the design phase of the
system and also implies a redesign phase for performance tuning. One of the design
phase component that raise problems represent data fragmentation and allocation.
The biggest improvement in system's response can be achieved by fragmentation
and reallocation in the design re�nement phase. The use of mobile agents can
bring great performance value to the system because a software agent [10] can act
autonomously on behalf of the administrator. The elements of the system do not

REDESIGN BASED OPTIMIZATION FOR DISTRIBUTED DATABASES 99

Figure 1. Distributed database system

Figure 2. Corresponding graph of the system from Figure 1

have to be connected all the time, agents can travel in the network and execute at
di�erent hosts by taking their state and implementation with them. Agents can
be intelligent, take decisions and react to environment changes to perform their
actions, and most important, they can cooperate to ful�ll their common goal.

3. Overview and Architecture of the System
In what follows, a distributed database system architecture where design relies

on the graph representation and system management improvement by use of agents
is proposed. An agent based architecture with distributed access and concurrent
queries in heterogeneous database system is described. The considered architecture
provides high scalability and performance optimization. The main improvement
is the manner of cost de�nition between sites:
• First, we de�ne the initial cost assigned by the system designer to an edge; this
cost is estimated based on network transfer rate, data access time and computing
power on a site. We call this initial estimated cost.
• At some given times we can obtain more accurate cost in the system; we de�ne
this cost the up-to-date computed cost.

100 HOREA-ADRIAN GREBLA, ANCA GOG

Translator agents perform the translation of local names to global names and
provide a common language for distributed queries assuring local database man-
agement system independence.

Retriever agents collect data from corresponding fragments by communicating
with Translators. In fact they build the query in the agent common language and
ask the translators for results.

Optimizer can be unique for the entire system or can be cloned; it contains the
query optimizer. One role of the Optimizer is to build up-to-date computed cost
from statistics for the sites with respect to the amount of data accessed on that
site. The proposed architecture is depicted in Figure 3.

Figure 3. Proposed architecture

4. Evolutionary Fragmentation and Allocation Algorithm in
Distributed Databases

The problem of database fragmentation and data allocation is modeled as a
graph. We have to distribute m tuples to n nodes of the graph. The costs of the
edges between the vertexes of the graph are given. Also, statistics referring to the
frequency of the requested tuples in the graph are given (computed by agents).
The tuples' distribution can be reduced to an optimization problem which goal
is to minimize the costs generated by the queries in the graph. An evolution-
ary algorithm is proposed to solve this NP-Complete problem [6]. The proposed
algorithm is called Evolutionary Fragmentation and Allocation Algorithm in Dis-
tributed Databases (EFA algorithm).

A �xed size population is used in the proposed algorithm. The m tuples that
have to be distributed to nodes will be denoted by t1, t2, . . . , tm. There are no
restrictions regarding the minimum or the maximum number of tuples contained
by a node. A potential solution of the problem (a chromosome) is a string of

REDESIGN BASED OPTIMIZATION FOR DISTRIBUTED DATABASES 101

constant length {x1, x2, . . . , xm}, where the gene xi, xi ∈ {1, 2, . . . , n}, indicates
to which node the tuple i belongs.

The potential solutions are evaluated by means of a real-valued �tness function
F, F : X → R, where X denotes the space of potential solutions. The �tness of
a chromosome takes into account the costs of the edges between nodes and the
statistics regarding the frequency of the requested tuples in the graph:

F (x) =
∑n

i=1

∑m
j=1 fijciNj ,

where fij , i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m}, represents the frequency of the
requests of the tuple j from the node i of the graph. Also, ciNj

, i ∈ {1, 2, . . . , n},
j ∈ {1, 2, . . . ,m}, represents the cost of the edges between the node i and the
node that contains the tuple j, denoted by Nj . The �tness function F is to be
minimized.

Rank-based selection for recombination mechanism [4], two points crossover
and weak mutation operator [1] are considered for the proposed algorithm [3].
The best from parent and o�spring enters the new generation [2].

The algorithm ends after a certain number of generations that did not improve
the best solution of the generation [7]. The best solution obtained during the
search process is considered to be the solution of the problem.

5. Experimental results
A graph having �ve nodes is considered (n = 5). Let us denote the �ve nodes

by N1, N2, N3, N4, N5. The associated costs for the edges between the given
nodes are depicted in Figure 4. Remark: We are interested only in the direct cost

Figure 4. Proposed architecture

between two nodes, and that is why there are nodes without edges between them,
even if there could be a path between the two nodes by using intermediate nodes.

A dataset of 1.200.000 tuples is given. The given tuples are denoted by t1, t2, . . .,
tm, where m represents the number of tuples. The existing dataset fragmentation
and distribution of tuples in nodes are depicted in the Table 1.

102 HOREA-ADRIAN GREBLA, ANCA GOG
Table 1. Dataset fragmentation and distribution of tuples in nodes.

Node Dataset fragmentation Number of tuples/node
N1 t1 − t100.000 100.000
N2 t100.001 − t380.000 280.000
N3 t380.001 − t540.000 160.000
N4 t540.001 − t720.000 180.000
N5 t720.001 − t1.200.000 480.000

The statistics regarding the frequency of requests of the tuples from each node
are depicted in Tables 2 - 6.

Table 2. The frequency of requests of the tuples from the node N1

Tuples Frequency
t40.001 − t90.000 4
t420.001 − t560.000 10
t610.001 − t730.000 12
t980.001 − t1.100.000 5

Table 3. The frequency of requests of the tuples from the node N2

Tuples Frequency
t250.001 − t330.000 2
t560.001 − t680.000 14
t1.100.001 − t1.200.000 7

Table 4. The frequency of requests of the tuples from the node N3

Tuples Frequency
t1 − t100.000 3
t250.001 − t290.000 10
t880.001 − t970.000 9
t990.001 − t1.000.000 16

The tuples that do not appear in the tables containing the frequency of requests
are never requested. They will remain inside the nodes that contain them before
applying the EFA algorithm. The proposed EFA algorithm was applied for data
described above. The chosen values for the algorithm parameters are written in
Table 7.

REDESIGN BASED OPTIMIZATION FOR DISTRIBUTED DATABASES 103
Table 5. The frequency of requests of the tuples from the node N4

Tuples Frequency
t100.001 − t170.000 3
t220.001 − t330.000 7
t450.001 − t560.000 13
t680.001 − t770.000 8

Table 6. The frequency of requests of the tuples from the node N5

Tuples Frequency
t200.001 − t260.000 12
t700.001 − t830.000 6
t920.001 − t980.000 1

Table 7. The EFA algorithm parameters

Population
size

Number of genera-
tions that did not
improve the current
solution

Probability of
recombination

Probability of
mutation

200 50 0.7 0.1

After applying EFA algorithm, the way the tuples are redistributed to the nodes
of the graph, by taking into account the frequency of the requests of the tuples, is
described in Table 8.

6. Conclusions and future work
An evolutionary algorithm called EFA was proposed for the redesign phase,

meaning re-fragmentation and re-allocation, in our distributed system. The con-
sidered problem is a NP-Complete one. EFA was successfully applied and experi-
mental results have proved the e�ciency of the proposed algorithm.

As future work, the method can be improved by computing the costs weighted
with factors like local interest for fragments (recommend replication or not), real-
time response importance (some applications do not need real-time response), data
access frequency (balance sheet data may be consulted once in a month).

The weight of the factors in the cost computation can be changed in time, also
changes in network topology or transmission media can in�uence the response
time. The statistics are useful for rebalancing the system by re-computing the
costs to obtain best response time for all queries on any site.

104 HOREA-ADRIAN GREBLA, ANCA GOG
Table 8. Reallocation of tuples in nodes after applying EFA.

Node Dataset refragmentation Number of tuples/node
N1 t680.001 − t770.000, t1.000.001 −

t1.100.000

190.000

N2 t170.001 − t200.000, t250.001 − t260.000

t330.001 − t380.000, t560.001 − t610.000

t770.001 − t830.000, t970.001 − t980.000

t1.100.001 − t1.200.000

310.000

N3 t1 − t40.000, t90.000 − t100.000

t260.001 − t330.000, t380.001 − t420.000

t880.001− t970.000, t990.001− t1.000.000

260.000

N4 t40.001 − t90.000, t100.001 − t170.000

t420.001 − t560.000, t980.001 − t990.000

270.000

N5 t200.001 − t250.000, t610.001 − t680.000

t830.001 − t880.000

170.000

References
[1] Bäck, T., Fogel, D.B., Michalewicz, Z. (Editors), Handbook of Evolutionary Computation,

Institute of Physics Publishing, Bristol and Oxford University Press, New York, 1997.
[2] Bäck, T., Optimal mutation rates in genetic search, Proceedings of the 5th International

Conference On Genetic Algorithms, Ed. S. Forrest, Morgan Kaufmann, San Mateo, CA,
2-8, 1993.

[3] Dumitrescu, D., Lazzerini, B., Jain, L.C, Dumitrescu, A., Evolutionary Computation, CRC
Press, Boca Raton, FL., 2000.

[4] Goldberg, D.E., Deb, K., A comparative analysis of selection schemes used in genetic algo-
rithms, Foundations of Genetic Algorithms G.J.E. Rawlins (Ed.), Morgan Kaufmann, San
Mateo, CA, 69-93, 1991.

[5] Moldovan, G., Reorganization of a Distributed Database, Babes-Bolyai University, Seminar
of Models, Structures and Information Processing, Preprint nr. 5, p. 3-10, 1984.

[6] Levin, K. D., Morgan, H. L., Optimizing distributed databases-A framework for research,
Proceedings of AFZPS NCC, vol. 44. AFIPS Press, pp. 473-478, 1975.

[7] Mitchell, M., An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA, 1996.
[8] Oszu, M. T., Valduriez, P., Principles of Distributed Database Systems, Prentice Hall, En-

glewood Cli�s, NJ, 1999.
[9] Piattini, M. and Diaz, O., Advanced Database Technology and Design, Artech House, Inc.

685 Canton Street Norwood, MA 02062, 2000.
[10] Weiss, G., Multiagent System, A Modern Approach to Distributed Arti�cial Intelligence,

MIT Press , USA, 2000.

Babes-Bolyai University of Cluj-Napoca, Faculty of Mathematics and Computer
Science, Computer Science Department

E-mail address: horea,anca@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 1, 2005

PARALLEL LAGRANGE INTERPOLATION ON
EXTENDED FIBONACCI CUBES

IOANA ZELINA

Abstract. In this paper is presented a parallel algorithm for computing a
Lagrange interpolation on a Extended Fibonacci Cube EFC 1(n).The algo-
rithm consists of three phases: initialisation phase, main phase in wich the
Lagrange polynomials are computed and final phase in wich the terms of the
interpolation formula are added together.

1. Introduction

Interpolation techniques are of great importance in numerical analysis since they
are used in many science and engineering domains. The Lagrange interpolation
for a given set of points (x1, y1), (x2, y2),..., (xN , yN) and a value x is defined as

(1.1) f(x) =
N∑

i=1

yi × Li(x)

where Li, i = 1, N are the Lagrange polynomials given by the formula

(1.2) Li(x) =
(x− x0) . . . (x− xi−1)(x− xi+1) . . . (x− xN)

(xi − x0) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xN)
When the number of points N is very large a long computation time and a large

storage capacity may be required to carry out the calculation. To overcome this,
a parallel implementation would be appropriate. This kind of parallel algorithms
were introduced for Lagrange interpolation for different topologies: Goertzel [2] has
introduced a parallel algorithm for a tree topology with N processors augmented
with ring connections which requires N/2 + O(log N) steps each composed of two
substractions and four multiplications; a parallel algorithm has been discussed
in [6] which uses a k-ary n-cube consisting of O(kn + kn) steps, each with 4
multiplications and substractions for N = kn node interpolation. In [5] is described
a parallel algorithm for computing a N = n!-node Lagrange interpolation on a
n-star graph. The algorithm in [5] consists of three phases and requires n!/2
steps, each consisting of 4 multiplications, 4 substractions and one communication
operation. In [7] this parallel algorithm is applied for computing an N = n2n

point Lagrange interpolation on an n-dimensional cube-connected cycles (CCCn).

Received by the editors: February 18, 2005.

105

106 IOANA ZELINA

The method can be applied for any Hamiltonian network, the performances
depending on the communication abilities of the host network.

In this paper the algorithm described in [5] is applied to a Extended Fibonacci
Cube topology. The algorithm relies on all-to-all broadcast communication at
some stages during computation. This is achieved by using a gossiping algorithm
on a ring embedded in the host network having its all nodes.

2. Preliminaries

Due to the regularity, logarithmic diameter, logarithmic node degrees, etc. of
hypercube interconnection networks, they are used by most researchers. The
hypercube provides a rich interconnection structure which permits many other
topology to be emulated. Nevertheless, when dimension of hypercube increases,
the number of nodes increases too fast. Because of this, Hsu [3] developed Fi-
bonacci Cubes and they are more sparse than the hypercubes and Wu [8] devel-
oped Extended Fibonacci Cubes by changing the initial conditions. The Extended
Fibonacci Cubes are also more sparse than the hypercubes.

One third of Fibonacci Cubes are Hamiltonian, however, all of Extended Fi-
bonacci Cubes are Hamiltonian. Both of these interconnection can be considered
as nodes faulty with incident edges hypercubes.

Fibonacci Cubes and Extended Fibonacci Cubes
Extended Fibonacci Cubes (EFC) topology was proposed by Wu [1] and this

topology is based on the Fibonacci Cube proposed by Hsu [3]. Both topologies
use the Fibonacci series and initial conditions for topologies can be different from
Fibonacci series initial conditions.

An kth (k = 1, 2) order Extended Fibonacci Cube is denoted by EFCk(n)
where n − 2 is the length of bitstring representing the address of nodes in EFC.
EFCk(n) is a subgraph of the corresponding hypercube. Each node of EFCk(n)
is addressed with Fibonacci Code (FC). The simplest version of these cubes series
is the Fibonacci Cubes. The Fibonacci Cube (FC(n)) can be described as below.

Definition 2.1. [Fibonacci Cube] Assume the graphs FC(n) = (V (n), E(n)),
FC(n−1) = (V (n−1), E(n−1)) and FC(n−2) = (V (n−2), E(n−2)). We define
the Fibonacci Cube using the recursion for the nodes set as
V (n) = 0‖V (n − 1) ∪ 10‖V (n − 2), where ‖ denotes the concatenation of two
bit-strings. Two nodes in FC(n) are connected by an edge in E(n) if and only if
their labels differ exactly in 1-bit position. The initial condition for recursion is
V (2) = ∅ and V (3) = {0, 1}.
Definition 2.2. [Extended Fibonacci Cube] Let EFC1(n) = (V1(n), E1(n)), where
V1(n) is the set of nodes and E1(n) is the set of edges in EFC1(n), and
EFC1(n− 1) = (V1(n− 1), E1(n− 1)), EFC1(n− 2) = (V1(n− 2), E1(n− 2)).

EFC1(n) can be defined recursively by using EFC1(n − 1) and EFC1(n − 2) as
it follows: V1(n) = 0‖V1(n − 1) ∪ 10‖V1(n − 2) where ‖ denotes the concatena-
tion of two strings. The initial condition for recursion is V1(3) = {0, 1} and
V1(4) = {00, 10, 11, 01}. Two nodes in EFC1(n) are connected if and only if their
address representations differ in exactly 1-bit position.

PARALLEL LAGRANGE INTERPOLATION 107

Some EFC1(n) are shown in Fig.1 where n = 3, 4, 5, 6 and each EFC1(n)
consists of an EFC1(n− 1) and an EFC1(n− 2).

0 1

10 11

00 01

011 001

010 000 100

101

0010 0011

0000
0001

1010 1011

1000

1001

0100 0101

EFC1(3)

EFC1(4) EFC1(5)

Fig. 1

EFC1(6)

It is known that while less than one third of Fibonacci cubes are hamiltonian,
all of EFCk(n) are Hamiltonian. This can be proved using inductive reasoning on
n, where n = 4 and n = 5 are the induction basis. In Fig. 1 a hamiltonian cycle
is shown with bold links. This means that ring can be embedded into EFCk(n)
with dilation and congestion 1. FC(n) is a proper subgraph of EFC1(n).

There is a Hamming distance path in EFC1(n) where Hamming distance is
the exclusive-or operation on both addresses of nodes and this distance is equal
to Hamming distance. The diameter of EFC1(n) is n − 2 and node degrees are
between

⌈
n
3

⌉
and n− 2.

By changing the initial conditions for EFC1(n), another Extended Fibonnaci
Cube can be extracted, denoted as EFC2(n) with initial conditions
V2(4) = {00, 10, 11, 01} and V2(5) = {000, 100, 101, 111, 110, 010, 011, 001}.

EFC1(n) is a proper subgraph of EFC2(n). The generated FC for EFC1(n)
and EFC2(n) are mutually disjoint.

We denote by N the number of nodes in EFC1(n).

3. The Parallel Algorithm

The parallel algorithm is based on the algorithm described in [5] for computing
a N = n! node Lagrange interpolation on a n-star graph. We shall apply this
algorithm for a network using an n- extended Fibonacci cube EFC1(n) topology
with bidirectional links between nodes. Let N be the number of the nodes in
EFC1(n).

108 IOANA ZELINA

The computation is carried out in three phases: initialisation, main and final
phase. In the initialisation phase, the set of points to be interpolated are allocated
to the nodes, one point for each node. Then, in the main phase, the Lagrange
polynomials Li(x),i = 1, N are computed and in the final phase the terms are
added together to obtain the final result y = f(x).

We denote by Pw the processor in the node of the extended Fibonacci cube
EFC1(n) with the binary representation w. Each processor Pw has six registers
denoted R1, R2, R3, R4, R5, R6 and we indicate by Pw(Ri) the content of the
register Ri in the processor Pw, i = 1, 6, w ∈ V1(n) and by P

(t)
w (Ri), i = 1, 6,

w ∈ V1(n) the content of the register Ri in the processor Pw after step t. In each
node, registers R1, R2, R3, R4 will hold the terms required for computing the
polynomials and registers R5, R6 will be used to implement an all-to-all broadcast
algorithm in a ring embedded in the host network EFC1(n) during the main phase.

The EFC1(n) = (V (n), E(n)) is hamiltonian. When constructing a hamilton-
ian cycle in EFC1(n), two arrays, Next[w] and Previous[w], which indicate the
nodes before, respectively after node w, w ∈ V (n) in the embedded cycle can also
be constructed. For any node Pw in the embedded hamiltonian ring, the next and
previous nodes are PNext[w], respectively PPrevious[w]. Those arrays should have
been set to their proper values before starting the initialisation phase.

3.1. Initialisation phase. The values x, Next[w], Previous[w], (xi, yi) are assig-
nated to the processor Pw to be stored in the local memory where i is the order
of the Fibonacci number w = fi, i = 1, N with initial conditions from Definition
2.2. The registers R1, R2, R3, R4, R5, R6 of each processor are set to their initial
values, for all w ∈ V (n), in parallel:

P
(0)
w (R1) = 1; P

(0)
w (R2) = 1; P

(0)
w (R3) = xi; P

(0)
w (R1) = xi;

P
(0)
w (R5) = x− xi; P

(0)
w (R6) = x− xi;

3.2. Main phase. In this phase, each node Pw uses the values Next[w] and
Previous[w] to communicate with the next and previous node in the embedded
hamiltonian cycle. To compute the terms Li(x) all the processors perform the
following sequence simultaneously:

For t = 0, 1, ..., N/2− 2 do

P
(t+1)
w (R3) ⇐ P

(t)
Next[w](R3);

P
(t+1)
w (R4) ⇐ P

(t)
Pr evious[w](R4);

P
(t+1)
w (R5) ⇐ P

(t)
Next[w](R5);

P
(t+1)
w (R6) ⇐ P

(t)
Pr evious[w](R6);

P
(t+1)
w (R1) = P

(t+1)
w (R1)× P

(t+1)
w (R5)× P

(t+1)
w (R6);

P
(t+1)
w (R2) = P

(t+1)
w (R2)× (xi − P

(t+1)
w (R3))× (xi − P

(t+1)
w (R4));

end for;

PARALLEL LAGRANGE INTERPOLATION 109

P
(N/2)
w (R3) ⇐ P

(N/2−1)
Next[w] (R3);

P
(N/2)
w (R1) = P

(N/2)
w (R1)× P

(N/2)
w (R5);

P
(N/2)
w (R2) = P

(N/2)
w (R2)× (xi − P

(N/2)
w (R3));

The last iteration is used to avoid multiplying the terms (x−xN/2) and (xi−xN/2)
twice.

Each step consists of two data communications (the first two respectively the
last two communications can be realized in parallel because of bidirectional links
between nodes), 2 substractions and 4 multiplications.

To conclude the main phase, all the processors execute the instruction

P (N/2+1)
w (R1) =

P
(N/2)
w (R1)

P
(N/2)
w (R2)

× yi.

Therefore, at the end of this phase Pw(R1) = Li(x)× yi.
In the main phase, each processor performs N data communications, 2N − 1

multiplications, N − 1 substractions and one division.

3.3. The Final Phase. In this phase, the contents of register R1 in all nodes are
added together to obtain the final result. We can use for this a gossiping method
for a ring similar to the one used in the main phase but we can also use a method
similar to the addition of the content of the processors in a hypercube network
topology.

Remark that if a node w ∈ V (n) in EFC1(n) is labeled with a bit string
having 1 on his first position, w = 1u2u3 . . . un−3 then u2 = 0 and the node
w′ = u3 . . . un−3 ∈ V (n − 2) is a node in EFC1(n − 2). A node w ∈ V (n) in
EFC1(n) is labeled with a bit string having 0 on his first position,
w = 0u2u3 . . . un−3 then the node w′ = u2u3 . . . un−3 ∈ V (n − 1) is a node in
EFC1(n−1). If we add simultaneously the content of registers R1 in all the nodes
w = 1u2u3 . . . un−3 to the content of registers R1 in the corresponding nodes
v = 0u2u3 . . . un−3 then we reduce the size of the EFC from n to n − 1. So we
can add together the partial results accumulated in registers R1 of all nodes in n
steps, each consisting of one addition and two communication operations. Each
step reduces the size of problem by one until the last step, (n − 2)th step, which
complete the computation having stored the final result in register R1 of processor
P0...0.

For i = 1, 2, ..., n− 2 do
For all w = 0i−11ui+1 . . . un−2 do in parallel

P0iui+1...un−2(R1) = P0i−11ui+1...un−2(R1) + P0iui+1...un−2(R1);

end for;

110 IOANA ZELINA

End for;

This phase includes n− 2 additions and n− 2 communication operations.
Let n be the order of the Extended Fibonacci Cube EFC1 (n) and N be the

dimension of the EFC1 (n), i.e. the extended Fibonacci number defined by the
recursion fn = fn−1 + fn−2, n ≥ 2, f0 = 2, f1 = 4.

Theorem 3.1. The parallel algorithm presented carries out the computation of a
N -point Lagrange interpolation on a Extended Fibonacci Cube EFC1 (n) in a total
time of O (N).

Proof: The algorithm computes a N -point interpolation, in three phases, re-
quiring in total N + n− 2 data communications, n− 2 additions, 2N − 1 multipli-
cations, N − 1 substractions and one division.

Remark 3.1. The parallel algorithm carries out in a total time of O(N) while the
running time for such an interpolation on a single-processor system is of O(N2).

References

[1] Akl, S., Parallel Computation: Models and Methods, Prentice Hall, 1997
[2] Goertzel, B., Lagrange interpolation on a tree of processors with ring connections, JPDC,

22, pp.321-333, 1994
[3] Hsu, W.J., Fibonacci Cube- A New Interconnection Topology, IEEE Trans. on Parallel and

Distributed Systems, vol.4, no.1, pp.3-12, 1993
[4] Karci, A., New Interconnection Networks: Fibonacci Cube and Extended Fibonacci Cubes

Based Hierarchic Networks, Proc. of 15th ICOIN, 2001
[5] Sarbazi-Azad, H., Ould-Khaoma, M., Mackenzie, L.M., A Parallel Lagrange Interpolation

on the Star Graph, Proc. 14th IPDPS, Cancun, Mexico, pp.777, 2000
[6] Sarbazi-Azad, H., Ould-Khaoma, M., Mackenzie, L.M., A Parallel Lagrange Interpolation

on k-ary n-cubes, LNCS1557, pp.85-95, 1999
[7] Sarbazi-Azad, H., Ould-Khaoma, M., Mackenzie, L.M., An Efficient Parallel Algorithm

for Lagrange Interpolation and Its Performance, Proc. 4th Int.Conf. on High Performance
Conputing in Asia Pacific Region, vol 2, Beijing, China, pp.593, 2000

[8] Wu, J., Extended Fibonacci Cubes, IEEE Trans. on Parallel and Distributed Systems, vol.8,
no.12, pp.1203-1210, 1997

North University of Baia Mare, Faculty of Science, Department of Mathematics
and Computer Science, Victoriei 76, Baia Mare, Romania

E-mail address: ioanazelina@yahoo.com

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume L, Number 1, 2005

MATHEMATICS AND COMPUTER SCIENCE III – ALGORITHMS,
TREES, COMBINATORICS AND PROBABILITIES, MICHAEL

DRMOTA, PHILIPPE FLAJOLET, DANIÈLE GARDY AND
BERNHARD GITTENBERGER (EDITORS), TRENDS IN

MATHEMATICS, BIRKHÄUSER VERLAG,
BASEL-BOSTON-BERLIN 2004, XV + 555 PP, ISBN:

3-7643-7128-5

RADU LUPŞA

The book contains invited papers, contributed papers (lectures) and short com-
munications (posters), which were presented at the International Colloquium of
Mathematics and Computers Science held at the Vienna University of Technology,
in September 13-17, 2004. This colloquium is the third one in a now regularly es-
tablished series, following the first two venues in September 2000 and September
2002 in Versailles. Their Proceedings were published too with Birkhäuser Verlag
in 2000 and 2002, respectively. These colloquia were acknowledged as a success
by the two communities, mathematicians and computer scientists, as well as other
people working in various areas of applied mathematics and engineering. They
offer the opportunity to establish the state of the art and, at a same time, to
present new results, new trends and new ideas in common areas.

The present volume addresses problems situated at the interface between mathe-
matics and Computer Science, with special emphasis on discrete probabilistic mod-
els and their relation to algorithms. Combinatorial and probabilistic properties of
random graphs, random trees, combinatorial stochastic processes (random walks,
for instance) are also included. The major field of applications is the analysis of
algorithms and data structures, but applications to statistical theory, information
theory and mathematical logic are also considered.

The papers are grouped in seven parts: I. Combinatorial and Random Structures
(8 papers dealing with partitions, iterated logarithm law for random permutation);
II. Graph Theory (5 papers on perfect matching in random graphs, avalanche
polynomials, spanning trees in graphs, etc); III. Analysis of Algorithms (7 papers
on move-to-rule rule with random weights, probabilistic bin packing, universal
data compression, etc); IV. Trees (9 papers on multidimensional interval trees,
monotonically labelled trees,number of vertices in a Galton-Watson forest); V.

Received by the editors: March 9, 2005.

111

112 RADU LUPŞA

Probability (10 papers on geometrically distributed samples, semi-Markov walks,
Yaglom type limit theorems, and others); VI. Combinatorial Stochastic Processes
(6 papers on jumping particles, Euler orientations of planar graphs, random walks
on groups); VII. Applications (9 papers dealing among others with zero-one law
for first-order logic on random images, stochastic chemical kinetics, decidability of
simple brick codes).

Bringing together contributions in these closely related areas — mathematics
and computer science, the present volume and the previous two ones, serve as an
outstanding tool of information for a large audience including researchers, teach-
ers, graduate students and engineers interested in applied mathematics, discrete
mathematics and computer science. The volume emphasizes the interplay between
mathematics and computer science, and the key roles each of them plays in the de-
velopment of the other one.Also the range of applications is very wide and reaches
beyond computer science.

Department of Computer Science, Faculty of Mathematics and Computer Science,
Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: rlupsa@cs.ubbcluj.ro

	00_contents
	01Tambulea
	02Frentiu
	03Boian
	04Grosan
	05Enachescu
	06Dumitrescu
	07Serban
	08Bufnea
	09SerbanCampan
	10GreblaGog
	11Zelina
	12BookRevLupsa

