
Anul XLIX 2004

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

2

Redacţia: 3400 Cluj-Napoca, str. M. Kogălniceanu nr. 1 Telefon 405300

SUMAR – CONTENTS – SOMMAIRE

Z. P. Bodo, Maximal Processor Utilization in Parallel Quadtree-Based Fractal
Image Compression on Mimd Architectures ... 3

D. Tătar, Word Sense Disambiguation by Machine Learning Approach: a Short
Survey .. 17

G. Şerban, C. M. Pintea, Heuristics and Learning Approaches for Solving the
Traveling Salesman Problem ... 27

A. M. Tarţa, Task Modeling in Systems Design ... 37

A. Gog, D. Dumitrescu, Parallel Mutation Based Genetic Chromodynamics......... 45

M. Antal, Speaker Independent Phoneme Classification in Continuous Speech 55

D. Rădoiu, A. Vajda, Performance Analysis Model for Goal Driven Measurements
in Software Development Process ... 65

P. C. Pop, C. P. Sitar, A Note on the Complexity of the Generalized Minimum
Spanning Tree Problem ... 75

H. Roumili, A. Keraghel, A. Yassine, Infeasible Primal-Dual Algorithm for
Minimizing Convex Quadratic Problems .. 81

Z. I. Lazar, B. Pârv, A. Fanea, J. R. Heringa, S. W. de Leeuw, COMODI: Guidelines
for a Component-Based Framework for Scientific Computing 91

Z. I. Lazar, B. Pârv, COMODI: Component Wiring in a Framework for Scientific
Computing ... 103

H. F. Pop, Data Analysis with Fuzzy Sets: a Short Survey 111

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLIX, Number 2, 2004

MAXIMAL PROCESSOR UTILIZATION IN PARALLEL
QUADTREE-BASED FRACTAL IMAGE COMPRESSION ON

MIMD ARCHITECTURES

BODÓ ZALÁN-PÉTER

Abstract. Since fractal image compression is computationally very expen-

sive, some researchers tried to parallelize the encoding algorithm. Because

this algorithm is applied independently for some image blocks, fractal im-

age compression implicitly encompasses parallelism. The quadtree-based

compression proceeds recursively and terminates when the previously fixed

threshold remains unexceeded, therefore one cannot be able to calculate and

store the whole domain pool for classification. This, however, can result

some idle processors during the encoding, which is undesirable. In this paper

a parallel implementation devoid of classification will be presented, keeping

the number of idle processors at minimal.

1. Introduction

Belonging to the class of lossy data compressors, fractal image compression is
based on self-similarity in real-world images, where ”an image is modeled as the
unique fixed point of a contractive operator on the space of images” [6]. Barnsley
was who discovered and proved the most important theorem in 1985, namely the
Collage Theorem [1, pp. 94–95], which serves as a basis for the fractal coding
of images. Jacquin wrote down first the famous algorithm of fractal image com-
pression, based on partitioned iterated function systems (PIFS). The algorithm
partitions the image into smaller independent (range and domain) blocks, where
for every range block the best matching domain block is needed to be found. The
long search time makes the encoding problematic. Besides high compression ratios
fractal image compression provides resolution independent image description, that
is the reconstructed image can be zoomed-in without pixelisation.

Received by the editors: August 24, 2004.

2000 Mathematics Subject Classification. 65Y05, 94A08.
1998 CR Categories and Descriptors. D.1.3. [Programming Techniques]: Concurrent

Programming – Parallel programming; I.4.2. [Image Processing and Computer Vision]:

Compression – Approximate methods.

3

4 BODÓ ZALÁN-PÉTER

The main drawback of the proposed quadtree-based fractal image compressions
on MIMD (Multiple Instruction stream and Single Data stream) architectures is
that increasing the number of processors, after a while the gain from adding a new
processor is almost zero. In this paper we present a simple algorithm for MIMD
architectures trying to maximize processor utilization during the encoding phase.

The paper is organized in the following way: in Section 2 we present the proce-
dure of fractal image compression with quadtrees. Details about the complexity
of fractal encoding of images can be found in Section 3. In Section 4 we present
some parallel implementations of fractal coding systems on MIMD architectures.
In Section 5 the proposed parallel quadtree-based fractal image compression algo-
rithm is presented in details. The test results and the conclusions can be found in
Section 6.

2. Fractal Image Compression with Quadtrees

In fractal image compression the image is modeled as the unique fixed point of
the contractive operator

W (·) =
N⋃

n=1

wn(·),

where wn, n = 1, 2, . . . , N are contraction mappings, whose set is called a par-
titioned iterated function system (PIFS). The well known copying machine is an
informal denomination of the mathematical structure called iterated function sys-
tem (IFS). The single difference between IFS and PIFS is that the domains of
the member functions of a PIFS are subsets of the plane on which the (P)IFS
is defined. These structures simplify the fractal coding of not really self-similar
sets. The domains of the transformations are called domain blocks (Di), while the
ranges are called range blocks (Ri), and we can write it in the following way:

wi : Di → Ri, i = 1, 2, . . . , N.

Let T be an arbitrary grayscale image, that is T : I2 → I, where I2 =
{(x, y) | x, y ∈ [0, 1]} and I = {x | x ∈ [0, 1]}. However, this space can be
extended to arbitrary size, only in theory we work with these domains and ranges
for the sake of simplicity. Then we seek such a contractive operator (a set of affine
transformations) that

T = W (T) =
N⋃

n=1

wi(Di).

To measure the distance between two blocks we need to find a feasible metric.
In theory the supremum metric is used, which is easy to work with, but not so

PARALLEL FRACTAL IMAGE ENCODING ON MIMD COMPUTERS 5

advantageous in practice, because it takes only one point from the image, conse-
quently is not relevant for the whole image or image block. In practice the RMS
(Root-Mean-Square) metric is used,

dRMS(T, T ′) =

√√√√ 1
n

∑

(x,y)∈I2

(T (x, y)− T ′(x, y))2, ∀T, T ′ ∈ τ,

where τ = {T : I2 → I} denotes the space of digital images. The metric dsup is
equivalent with metric dRMS .

To guarantee the z-contractivity of the w1, . . . , wn three-dimensional transfor-
mations [2, pp. 12–13], in case of grayscale images we can use transformations of
the form

wi

x

y

z

 =

ai bi 0
ci di 0
0 0 si

x

y

z

 +

ei

fi

oi

 ,

where si controls the contrast and oi controls the brightness of the transformation
[4, pp. 11, 51]. The encoding algorithm consists of finding for all the range blocks
(resulting from the used partition scheme – rectangular, quadtree, horizontal-
vertical, Delaunay-triangular, etc.) such a domain block that the distance between
them be minimal or at least smaller than a predetermined threshold. Usually the
size of the domain blocks is chosen to be greater than that of the range blocks;
comparison is realized by subsampling.

If a1, a2, . . . , an denote the pixel intensities from the set Di and b1, b2, . . . , bn

from the set Ri (|Di| = |Ri| = n, i.e. their cardinal numbers are equal), then we
search for s, o so that the following expression be minimal:

R =
n∑

i=1

[(s · ai + o)− bi]
2
.

The optimal values of the contrast scaling (s) and brightness (luminance) shift (o)
are calculated from the partial derivatives of the above expression. That is,

o =
1
n

(
n∑

i=1

bi − s

n∑

i=1

ai

)
, and s =

n
∑n

i=1 aibi −
∑n

i=1 ai

∑n
i=1 bi

n
∑n

i=1 a2
i − (

∑n
i=1 ai)

2 .

Substituting these expressions into the initial formula we get

R =
1
n

[
n∑

i=1

b2
i + s

(
s

n∑

i=1

a2
i − 2

n∑

i=1

aibi + 2o

n∑

i=1

ai

)
+ o

(
no− 2

n∑

i=1

bi

)]
.

The distance between two blocks is given by
√

R.
The fractal image encoding algorithm can be summarized as follows:

6 BODÓ ZALÁN-PÉTER

Let us determine a partitition for image T, made up of

range blocks Ri, such that T =
⋃

Ri

Fix a t tolerance level

For all Ri do:

Let us find the domain block Di for which d(Ri, Di) is

minimal or d(Ri, Di) < t

Store the transformation wi and the coordinates of Di

End For

The quadtree partition is the most popular scheme in the fractal coding literature.
It offers an adaptive partition, which gives better approximation than the fixed
size. The partition process is not separated from the encoding step. Its name comes
from the modeling (Fig. 1). The root of the tree is the whole, unpartitioned image.
At the first level the image is divided into four equal parts. For all the ranges we
scan the image (domain pool) for a domain block (usually twice the range size),
which is very close, similar to the current range block. If the distance between the
range and the transformed domain block is below a preselected treshold, than we
store the domain coordinates and the transformation on the pixel values. If not,
we divide the current range block into four equal quadrants, which means adding
four childnodes to this range block in the tree representation. Then for each of
the ranges the previous process is repeated.

The tree we obtain is called a quadtree, because each node of the tree can have

Figure 1. Quadtree decomposition.

either four subnodes or not any.

PARALLEL FRACTAL IMAGE ENCODING ON MIMD COMPUTERS 7

3. About the Complexity of Fractal Coding

Consider an n× n pixel image being encoded with fixed size partition and full-
search (full-search means that no tolerance level is used). Let the size of a range
block be nr × nr and the size of a domain block nd × nd (the size of the domain
block is often chosen to be twice the range size, that is nd = 2 · nr). It is easy
to calculate that the number of ranges is bn/nrc2 and the number of domains
(n− nd + 1)2. Then the complexity of the encoding procedure will be

nr of isometries · bn/nrc2 · (n− nd + 1)2 =
nr of isometries · O(n2) · O(n2) = O(n4)

To illustrate how computationally expensive the encoding step is, let n = 256,
nr = 8, nd = 16. Then, to encode this image 8 · 1024 · 58 081 = 475 799 552
comparison steps are needed and, as we have seen, one domain-range comparison
is quite computationally expensive.

Ruhl and Hartenstein proved that finding an optimal fractal code is an NP-hard
problem. They proved this by reducing the MAXCUT problem – which is NP-
hard – to FRACCODE. The proof and the accurate definition of these decision
problems can be found in [9]. In this paper they also proved that collage coding
is not a ρ-approximating algorithm. That is, for every ρ ∈ R+ exists a signal (i.e.
image) Γ and a transformation g ∈ π (π is the set of possible fractal codes for the
signal Γ) such that

‖Ωf − Γ‖2 > ρ · ‖Ωg − Γ‖2,
where f is the transformation that gives the best (minimal) collage error, ‖Γ −
f(Γ)‖; Ωx is the attractor of the fractal code x.

4. Parallel MIMD Fractal Image Compression

There are two main algorithm classes for fractal image compression on MIMD
architectures. The first class includes those algorithms which stores the whole
image on each PE (Processing Element), namely when all the PEs have enough
memory to have a local copy of the image. Thus each PE has the whole domain
pool at its disposal. To each PE a subset of the range blocks is assigned, which
can be made statically or dynamically. The second class includes those algorithms
which distributes the domain pool among PEs, due either to memory lack or to
other reasons. In [5] a more detailed class decomposition can be found.

Jackson and Tinney [7, 8] reported three generic schemes for parallel fractal
image coding. In the following subsections these schemes will be presented.

8 BODÓ ZALÁN-PÉTER

4.1. Static Load Allocation. Static load allocation means that the assignment
of the tasks, jobs is made at the beginning and no other modifications can be
made afterwards. Due to the static property of this model, only fixed size parti-
tion schemes can be used, or those adaptive techniques, where the partition can
be realized before, independently of the encoding process.

The most simpler solution is to distribute the range blocks evenly across the
PEs. If we have np processors, then the work needed to be done by a PE is the
1

np
th of the work done in the sequential case. The speedup can be calculated easily

here, that is the speedup will be np. But the experimental results show that rarely
will the algorithm achieve this speedup, because for a range block a matching can
be found quickly, while for another range block to find a good matching requires
to scan almost the whole domain pool. If we had known something about the
complexity of the range blocks (a range block is said to be complex if it is difficult
to find a match for), then the ranges could have been distributed evenly across the
PEs, according to their complexity. That is, a slave processor gets a small number
of range blocks to be processed if they are complex, while another PE receives a
larger number of simpler range blocks.

M. Chady [3] mentions other two factors which can cause the speedup to fall
below the expected value. If we use a classification scheme, then the order of
the classes is very important; the common classes should be placed before the
uncommon ones, if not, the comparison process to classify a range block will be
slowed down. Although if we talk about classification schemes, one cannot realize
such a classification which provides equal comparison steps for each range block
to classify, except if classification is done in parallel, but this requires as many idle
(free) processors as many classes we have.
Chady mentions another problem which could slow down the encoding in case
of quadtree partition scheme, but of course quadtree partition cannot be applied
within static load allocation, because one can never predict how many range blocks
will be finally and where they will be.

For the reasons mentioned above, this solution cannot guarantee uniform work-
load distribution.

4.2. Dynamic Load Allocation. Dynamic load allocation is often called load
balancing. Load balancing means distributing the tasks evenly through the proces-
sors so that no processing element is overloaded. Load balancing technique is used
especially when it is difficult to predict the number of tasks or the complexity of
a task (time needed to perform the task).

The following scheme can be used as for fixed size partitions as for adaptive
partition schemes like using quadtrees. Jackson defines this method for fixed size

PARALLEL FRACTAL IMAGE ENCODING ON MIMD COMPUTERS 9

partitions in [8]. In dynamic load allocation there is a master or host processor
which distributes the tasks among the other (slave) processors (Fig. 2). The
master has two queues:

• queue of tasks (range blocks, waiting to be processed)
• queue of slaves (idle processors).

Using fixed size partitions the user can determine the so called package size, i.e.
the size of individual assignments allocated by the master by specifying the number
of the range blocks per allocation. The master makes the assignments, assigns a
task to a slave until there are no more idle slave processors or range blocks to be
processed. As a task is assigned to a slave, both the task and the slave is removed
from their queues. On each return the master assigns a new task to the PE which
returned the result.
Using quadtree partition scheme the differences are very small. The slave needs
also to return a value besides the other parameters, which tells the master if a
good matching was found or not. If there was a matching found and if the queue
of tasks is empty, then the slave is placed back into the queue and the result is
stored. If a matching was found and the queue of tasks is not empty, then a new
task is assigned to the slave. If there was not found any suitable match, then the
master divides the returned range block into four equal subsquares and places back
both the range blocks and the slave into the corresponding queues and assigns a
task to a slave until one of the queues becomes empty.

4.3. Dynamic Allocation with Circulating Pipeline Processing. In this
configuration the slave processors communicate in a circulating pipeline fashion
(Fig. 2). The domain pool is distributed among the slave processors. Like in the
previous scheme the master maintains two queues. The assignments are transmit-
ted from the master PE to idle slave PEs. When a task enters the pipeline enters

P0

P1 P2 Pn-1...

queue of tasks

queue of slaves

P0

P1 P2 Pn-1...

queue of tasks

queue of slaves

Figure 2. The structure of the PEs in dynamic load allocation
and circulating pipeline schemes.

with a tag in which the number of the entering PE is stored. A range block will

10 BODÓ ZALÁN-PÉTER

circulate in the pipeline until either a good match is found or all the pipeline nodes
have been visited. The tag carrying the number of the entering node is used to
check whether the task have visited all the PEs in the pipeline.

This configuration can be used both for fixed size and adaptive partition
schemes.

5. Parallel Fractal Image Compression with Maximal Processor

Utilization

Using classification schemes in quadtree-based fractal image compression al-
gorithms on MIMD computers may degrade the performance of the encoding.
According to Chady [3] the encoding proceeds in phases because the domain pool
needs to be calculated for classification, the size of which grows exponentially as
we proceed down in the quadtree. Therefore one cannot store the whole domain
pool for a quadtree-partitioned image, but for example for one level only, which
incidentally gives a good order for storing the parameters. However, there will be
a certain period of time when many processors will be idle, since finding a good
matching for a more complex range block may require much more computation,
while the other processors have to wait for this PE until it terminates searching
to proceed to the next quadtree level.
Avoiding classification the utilization of the processors can be increased. In this
part we present this algorithm, the main idea being that the assignments are made
immediately when new tasks arrive to the master PE. Besides this two recursive
algorithms will be given for storing the partition efficiently.

The master uses a temporary file, where the results returned by the slave
processes are stored. This is needed, because we want to save some space in the
final, compressed file. The master sends the jobs to the slaves, but it is unknown
which one will finish sooner, so if we want to save some space with storing no do-
main coordinates, first we need some space to store the temporary data (instead of
using files one can use for example binary trees). When the master divides a range
block, always assigns a unique string to the blocks, according to the position of it.
For example the string 114 uniquely determines the range block with size n

4 × n
4

(if the image is of size n × n) which is the lower-right quadrant of the upper-left
quadrant of the upper-left quadrant of the image (see Fig. 3 and 4).

The scheme of the algorithms are presented hereinafter.

Master:

Create the queues task and slave

Read the image parameters (size)

PARALLEL FRACTAL IMAGE ENCODING ON MIMD COMPUTERS 11

1 2

3 4

Figure 3. The numbering of the quadrants.

Put the four initial quadrants into task

Put the processor IDs into slave

nr of ranges := 4

While task 6= ∅ and slave 6= ∅ do:

Get the first task and the first free slave

Send the task to the slave

End While

While nr of ranges6=0 do:

Block until receive the parameters from a slave

Put the slave back to slave

If a good matching was found, then:

nr of ranges := nr of ranges-1

Insert the returned parameters into the temporary

file with unique string tag

Else

Divide the range block into four quadrants

Put them into task

nr of ranges := nr of ranges+4

End If

While task 6= ∅ and slave 6= ∅ do:

Get the first task and the first free slave

Send the task to the slave

End While

If nr of ranges = 0, then:

Send to each process the terminate-message

Sort the temporary file after the unique string

tag (this can be made in parallel)

Write the image/compression parameters to the

final file

12 BODÓ ZALÁN-PÉTER

Write the partition table to the file

Copy the needed transformation parameters from the

temporary file to the final one

End If

End While

Slaves:

Read the image data

While TRUE do:

Block until receive some task

If the terminate-message was received, then:

break

End If

Search for a matching domain block

Send to the master process the obtained parameters from

the search

End While

After the slave processors had been finished their work (they have got the
terminate-message from the master), the results are stored in the temporary file
or structure. A record contains the range coordinates, the domain coordinates
and the parameters of the pixel intensity transformation (s, o). Besides these, all
of the records (range blocks) have a unique string, after which the data can be
sorted. Then we need a so called binary partition table, based on which we will
write a recursive function which will draw the decompressed image in the decoder.
In this case we don’t have to store the coordinates of the range blocks, and thus
we can save space.
Suppose that we have the following simple partition represented by strings

111 112 113 114 12 13 14 2 3 4.

Figure 4. Visualization of the example.

PARALLEL FRACTAL IMAGE ENCODING ON MIMD COMPUTERS 13

Then the corresponding binary partition will be

(1(1(0000)000)000).

This can be constructed by the following recursive algorithm.

Partition writing algorithm:

procedure write partition(length)

Begin

For i=1, i<=4 do:

if |buf.ustring| >length, then:

write(1)

write partition(length+1)

else write(0)

if i<4, then read(buf)

End For

End

call: read(buf); write partition(1)

In the decoder (viewer) a drawing function is needed, which visualizes
the decoded picture calling the true drawing function.

Decompression algorithm based on the binary quadtree data:

procedure draw(x,y,rsize)

Begin

read(buf)

If buf=1 then draw(x,y,rsize/2)

Else paint(x,y,rsize)

read(buf)

If buf=1 then draw(x+rsize,y,rsize/2)

Else paint(x+rsize,y,rsize)

read(buf)

If buf=1 then draw(x,y+rsize,rsize/2)

Else paint(x,y+rsize,rsize)

read(buf)

If buf=1 then draw(x+rsize,y+rsize,rsize/2)

Else paint(x+rsize,y+rsize,rsize)

End

14 BODÓ ZALÁN-PÉTER

call: draw(0,0,squaresize/2)

In the above algorithm the read function reads a bit from the binary par-
tition into the variable buf. The function paint realizes the drawing of a range
block. The variable rsize contains the vertical (horizontal) height (width) of the
actual range block. The working of the function is simple: if we read 0 from the
partition table we draw the corresponding range block, if the bit we have read
was 1, then we call the function recursively with rsize/2. The range coordinates
we call with depend on where the value 1 was read.

6. Test Results and Conclusions

The application was written in C/C++ under IRIX64 on the SGI Origin 3800
supercomputer (shared memory MIMD architecture with 128 R12000 400 MHz
processors) situated at the Johannes Kepler Universität in Linz, Austria.

The tests were performed for two different pictures, which are not so relevant
to show here, just to mention that the first one is a real-world image, while the
second one is artificial. Although the results obtained are quite similar, we will
present them separately. Moreover the test results were rather similar to those
obtained using classification.

For measuring execution time and processor utilization we used the timex

command under the IRIX64 operation system. This command can be parame-
trized to show the execution time for the ”whole command” and among other
things to show the execution time and the hog factor for each process(or). The
hog factor gives the processor utilization – a real number between 0 and 1; it is
calculated using the formula (total CPU time)/(elapsed time).

The plots (Fig. 5 and 6) were created using Mathematica. At the x-coordinate
x = 2 we see the speedup (which is 1) and the processor utilization (which should
be 1) of the sequential case, because there always have to be a master processor
due to the used configuration.

In this paper we outlined the method of fractal image compression and the
adaptive quadtree partition scheme. We discussed and analyzed the three main
parallel distribution scheme applied for fractal encoding. The algorithm given in
Section 5 avoids classification, but uses temporary data structure for efficient stor-
age in the final, compressed file. We also gave an algorithm for the construction of
the binary partition table. The results obtained show almost linear speedup up to
a certain number of processors, depending on the complexity and size of the image

PARALLEL FRACTAL IMAGE ENCODING ON MIMD COMPUTERS 15

5 10 15 20 25 30

5

10

15

20

25

30

o

o

o

o

o

o

o

 ! "
 ! "# $ $ %

& ' ! " & (
 & (& ! ! & (& (" " ((;

& ' ! " & (Rest & (
 & ! ! & (& (" " ((

& &) (& (
) ! ! " ! " " (

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1 o

o

o o
o

o

o

* + ,
* + ,

* -
* + 0.7481 ,

* + ,
* + ,. / / 0

1 * * 2 + , * 1 3
* 1 3 * 1 + + 1 3 1 3 , , 3 3 ;

1 * * 2 + , * 1 3 * Rest 1 3
* 1 + + 1 3 1 3 , , 3 3

1 1 4 3 1 3
4 + + , + , , 3

Figure 5. The speedup and average processor utilization results
for the first image.

5 10 15 20 25 30

5

10

15

20

25

30

o

o

o
o

o

o

o

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

o o
o

o
o

o

o

Figure 6. The speedup and average processor utilization results
for the second image.

being encoded. Although the implemented algorithm performed quite efficient, a
better parallelization would be needed to be worth using such an architecture.

References

[1] M. F. Barnsley, Fractals Everywhere, second ed., Morgan Kaufmann, 1993.

[2] Z.-P. Bodó, Parallel Fractal Image Compression, Master Thesis, Babeş-Bolyai University,

Faculty of Mathematics and Computer Science, Cluj-Napoca, 2004.

[3] M. Chady, Application of the Bulk Synchronous Parallel Model in Fractal Im-

age Compression, School of Computer Science, University of Birmingham,

http://citeseer.ist.psu.edu/255267.html.

[4] Y. Fisher (ed.), Fractal Image Compression - Theory and Application, Springer-Verlag, New

York, 1996.

[5] J. Hämmerle, A. Uhl, Parallel Algorithms for Fractal Image Coding on MIMD Architec-

tures, in Proceedings of the First International Conference on Visual Information Systems

(Visual’96), Melbourne, February 1996, pp. 182–191.

[6] H. Hartenstein, M. Ruhl, D. Saupe, Region-Based Fractal Image Compression, IEEE Trans.

on Image Process., Vol. 9, No. 7 (2000), pp. 1171–1184.

16 BODÓ ZALÁN-PÉTER

[7] D. J. Jackson, G. S. Tinney, Fractal Image Compression Using a Circulating Pipeline Com-

putation Model, Technical Report UA-CARL-95-DJJ-01, Computer Architecture Research

Laboratory, The University of Alabama, March 1995.

[8] D. J. Jackson, G. S. Tinney, Performance Analysis of Distributed Implementations of a

Fractal Image Compression Algorithm, Concurrency: Practice and Experience, 8(5) (June

1996), pp. 357–380.

[9] M. Ruhl, H. Hartenstein, Optimal Fractal Coding is NP-Hard, in Proceedings DCC’97 Data

Compression Conference, J. A. Storer, M. Cohn, eds., IEEE Computer Society Press, March

1997, pp. 261–270.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-

Napoca, Romania

E-mail address: zpbodo@yahoo.com

STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume XLIX, Number 2, 2004

WORD SENSE DISAMBIGUATION BY MACHINE LEARNING
APPROACH: A SHORT SURVEY

DOINA T�TAR

Abstract. There is a renewed interest in word sense disambiguation (WSD)
as it contributes to various applications in natural language processing. Ap-
plications for which WSD is potentially an issue are: Machine Translation,
Information Retrieval (IR), QA systems, Dialogue systems,etc. In this paper
we survey vector-based methods for WSD in machine learning approache.

1. Introduction

In the last ten years there has been a dramatic shift in computational linguis-
tics to statistical learning methods (or corpus -based methods). This popularity
of statistical methods has its origin in the growing availability of big machine-
readable corpora and dictionaries. Some concrete publication statistics illustrate
the extent of the revolution in NLP: as an example 63.5 % of the papers in ACL'97
proceedings and 47.7% of the papers in the journal Computational Linguistics in
1997 concerned corpus -based methods, compared with 12.8% and 15.4% in 1990.
The argument for a statistical learning approach is to be able to interact success-
fully with uncertain and incomplete linguistic information. On the other hand
natural language can provide machine learning with a variety of interesting and
challenging problems such as very large feature space or very large training sets.

In this paper we follow a �machine learning� approaches categorization of WSD
as: supervised, bootstrapping and unsupervised (sections 2,3,4). A �machine read-
able dictionary� based approach of WSD is presented in section 5. Some conclu-
sions about Senseval 3 contest, developed in Marts -April 2004, where we partici-
pated with a team for Romanian language [15], will be formulated (section6).

Received by the editors: September 2004.
2000 Mathematics Subject Classi�cation. 68T50,68Q32.
1998 CR Categories and Descriptors. I.2.7 [Computing Methodologies]: Arti�cial In-

telligence � Natural Language Processing; G.3 [Mathematics of Computing]: Statistical Com-
puting .

17

18 DOINA T�TAR

2. Machine learning approach in WSD

2.1. The polysemy. Word sense disambiguation is the task of assigning sense
labels to occurrences of an ambiguous word. This problem can be divided into
two subproblems [14]: sense discrimination and sense labeling. Word sense dis-
crimination is easier than full disambiguation since we need only determine which
occurrences have the same meaning and not what the meaning actually is.

In many applications full disambiguation is needed as for example in the ma-
chine translation. In the following we mean by WSD usually both discrimination
and labeling of ambiguous words.

WSD has been a research area in NLP for almost the begin of this �eld due to
the phenomenon of polysemy that means multiple related meanings with a single
word. At least 40 % of semanticaly signi�ant words are ambiguous. Also the
problem of WSD is AI complete (that means its solution requires a solution to
all the general AI problems of representing and reasoning about arbitrary) and it
is one of the most important open problems in NLP [6].

2.2. Meaning and context. The systems in the supervised learning approach
category are trained to learn a classi�er that can be used to assign a yet unseen
example to one of a �xed number of senses. That means we have a trained corpus,
where the system learns the classi�er and a test corpus which the system must
annotate. So, supervised learning can be considered as a classi�cation task, while
unsupervised learning can be viewed as a clustering task. Word sense disambigua-
tion (for polysemic words) is the process of identifying the correct sense of words
in particular contexts. The precise de�nition of a sense is a matter of considerable
debate within the community. However one would expect the words closest to
the target word to be of greater semantical importance than the other words in
the text. On the other hand, if two words frequently occur in similar context we
may assume that they have similar meanings. The context is hence a source of
information and is the only means to identify the meaning of a polysemous word.

Context is used in two ways: a) as bag of words, without consideration for re-
lationships to the target word in terms of distance, grammatical relations,etc; b)
with relational information. The bag of words approach works better for nouns
than verbs but is less e�ective than methods that take other relations in consider-
ation. Studies about syntactic relations determined some interesting conclusions:
verbs derive more disambiguation information from their objects than from their
subjects, adjective derive almost all disambiguation information from the nouns
they modify and nouns are best disambiguated by directly adjacent adjectives or
nouns [6].

WORD SENSE DISAMBIGUATION 19

2.3. Vector Space Model. In the following we will use the Vector Space Model
(VSM)[9]: a context c is represented as a vector ~c of some features. The de�nition
and the numbers of these features depend on the method selected. A common
denominator between the methods is that they excavate information using co-
occurrence and collocation statistics. The famous dictum �meaning is use� means
that to understand the meaning of a word one has to consider its use in the frame
of a concrete context. Context size can vary from one word at each side of the
focus word to a more �window� or even the complete sentence. The notations used
are:

• s1, · · · , sNs the senses for w;
• c1, · · · , cNc the contexts for w;
• v1, · · · , vNf the features selected (or terms).

In generally, a number of most frequently used words are selected for use as
features v1, · · · , vNf . When these features have a speci�c position located to the
left and/or the right of the target word w they are collocational features, when
we ignore the exact position of a feature, we call it a cooccurrence feature.

As example we can associate to a context c the vector ~c :
• ~c = (w1, · · · , wNf) where wi is the number of times the word vi occurs

in context c;
• ~c = (w1, · · · , wNf) where wi is 1 if the word vi occurs in context c, or 0

otherwise;
• ~c = (· · ·wi−1, wi+1 · · · ,) where wi−1 (wi+1) is 1 if the word vi occurs in

context c at the left (right) of the word w or 0 otherwise ;
• ~c = (· · ·wi−k, wi−(k−1), ..., wi−1, wi+1, ..., wi+k · · · ,) where wi−j (wi+j)

is 1 if the word vi occurs in context c at the left (right) of the word w

at distance j or 0 otherwise ;
• ~c = (w1, · · · , w|W |) where wi is 1 if the word vi occurs in context c, or

0 otherwise, where vi is a word from the entire text of | W | words. In
this last example the features are all the words in the contexts.

The similarity between two contexts ca, cb (of the same word or di�erent words)
is the normalised cosine between the vectors ~ca and ~cb [7]:

cos(~ca, ~cb) =

∑m
j=1 wa,j × wb,j√∑m

j=1 w2
a,j ×

∑m
j=1 w2

b,j

and sim(~ca, ~cb) = cos(~ca, ~cb).
In all above examples the number wi is the weight of th feature vi. This can be

the frequency fi of the feature vi (term frequency or tf). On the base of feature

20 DOINA T�TAR

relevance principle, the features can be weighted to re�ect the distance of the
words to the focus word. For example, in a -3 +3 windows the weights for the 6
features could be: 0.25, 0.5, 1, 1, 0.5, 0.25.

Another method to establish the weight wi is to capture the fashion of distribu-
tion of vi in all the set of contexts by principle: features that are limited to a small
number of contexts are useful for discriminating those contexts; features that occur
frequently across the entire set of contexts are less useful in this discrimination. In
this case one use a new weight for a feature, called �inverse document frequency�,
denoted by idf and de�ned as below:

De�nition
Let us consider that the number of contexts is Nc and the number of contexts

in which the feature vi occurs is ni. The inverse document frequency is :

idfi =
Nc

ni
or idfi = log(

Nc

ni
)

Combining the tf with idf we obtain tf.idf weighting. In this case: ~c = (w1, · · · ,
wNf), where wi = fi × idfi.

2.3.1. Second-order co-occurrence. In [14] the author introduces two types of vec-
tors: word vectors and context vectors. The word vector for a word x is ~x =
(w1, · · · , wNf) where wi is the number of times the word vi co-occurs in the entire
corpus. The features vi can be selected as above. The context vector for a context
of an ambiguous word is obtained by summing the vectors of all the vectors of
the words in context. Therefore two contexts are similar if the words in these
contexts occur with similar words (or, the contextual representation is similar).
This is known as strong contextual hypothesis. Second order co-occurrence method
is more robust than �rst-order method (as above).

3. Supervised learning of WSD

In such case a system is presented with a training set consisting of a set of input
contexts labeled with their appropriate sense (disambiguated corpus). The task is
to build a classi�er which correctly classi�es new cases based on their context of
use. The two most known supervised algorithms are Bayesian classi�cation and
K-NN classi�cation.

3.1. Naive Bayes classi�er approach of WSD. This method was been intro-
duced by gale, 1992. In this frame the context of a word w is treated as a bag of
words without structure. What we want to �nd is the best sense s′ for an input

WORD SENSE DISAMBIGUATION 21

context cnew of an ambiguous word w. This is obtained as:

s′ = argmaxsk
P (sk | cnew) = argmaxsk

P (cnew | sk)× P (sk)
P (cnew)

=

= argmaxsk
P (cnew | sk)× P (sk)

The independence assumption (naive Bayes assumption) is:

P (cnew | sk) = P ({vi | vi ∈ cnew} | sk) =
∏

vi∈cnew

P (vi | sk)

This assumption (often referred to as a bag of words model)has two conse-
quences:

• the structure and order of words in context is ignored;
• the presence of one word in the context doesn't depends on the presence

of another.
This is clearly not true, but there is a large number of cases in which the

algorithm works well.
Finally, s′ = argmaxsk

P (sk)×∏
vi∈cnew

P (vi | sk).
Thus the supervised algorithm is:

• TRAINING Calculate:

P (sk) =
C(sk)

nr.ofcontexts
; P (vi | sk) =

C(vi, sk)
C(sk)

• TEST Calculate for a new context cnew the appropriate sense:

s′ = argmaxsk
P (sk | cnew) = argmaxsk

P (sk)×
∏

vi∈cnew

P (vi | sk).

3.2. k-NN or memory based learning. At training time, a k-NN model mem-
orizes all the contexts in the training set by their associated features. Later, when
proceeds a new context cnew, the classi�er �rst selects k contexts in the training
set that are closest to cnew, then picks a sense for cnew.

This supervised algorithm is:
• TRAINING Calculate ~c for each context c.
• TEST Calculate:

A = {~c | sim(~cnew,~c) is maxim, | A |= k}
that means A is the set of the k nearest neighbors contexts of ~cnew.

22 DOINA T�TAR

Score(cnew, sj) =
∑

ci∈A

(sim(~cnew, ~ci)× aij)

where aij is 1 if ~ci has the sense sj and aij is 0 otherwise.
Finally, s′ = argmaxjScore(cnew, sj).

3.3. Bootstrapping approach of WSD. A major problem with supervised ap-
proaches is the need for a large sense tagged training set. The bootstrapping
methods use a small number of contexts labeled with senses having a high degree
of con�dence. This could be accomplished by hand tagging with senses the con-
texts of an ambiguous word w for which the sense of w is clear because some seed
collocations [19] occur in these contexts.

These labeled contexts are used as seeds to train an initial classi�er. This is
then used to extract a larger training set from the remaining untagged contexts.
Repeating this process the number of training contexts grows and the number of
untagged contexts reduces. We will stop when the remaining unannotated corpus
is empty or any new context can't be annotated.

The bootstrapping approach is situated between the unsupervised and unsu-
pervised approach of WSD.

For the word bass for example, we might begin with fish as a resonable sense
for sense bass1 (bass as �sh), as presented in WordNet [4] and play as a reasonable
sense for bass2 (bass as music). A small number of contexts can be labeled with
the sense 1 and 2. These labeled contexts are used to extract a larger set of labeled
contexts.

In [16] we present an original algorithm which combines this bootstrapping idea
with elements of NB algorithms .

4. Unsupervised approach

Unsupervised approach of WSD does not use sense tagged data (training data)
at all. Strictly speaking, the task of unsupervised disambiguations is of sense
discrimination . In this case, vector representations of unlabeled contexts are
grouped into clusters, according to a similarity measure. One cluster is considered
as representing a sense and a new context cnew is classi�ed as having the sense of
the cluster to which it is closest according to the similarity measure. An advantage
of unsupervised methods in disambiguation is that granularity of sense distinction
is an adjustable parameter: a number of 10 clusters induces more �ne-grained
sense distinction than a number of 2 clusters, for example.

WORD SENSE DISAMBIGUATION 23

Let us consider that the objects to be clusterized are the vectors of n words,
{w1, w2, · · · , wn}. A vector

~wi = (w1
i , w2

i , · · · , wm
i)

is associated with a word wi as above.
As clustering methods we can use an agglomerative or divisive hierarchical

algorithm or a non-hierarchical (�at) clustering algorithm [16, 1]. In the �rst
case each of the unlabeled context is initially assigned to its own cluster. New
clusters are then formed in bottom-up fashion by successively fusion of two clusters
that are most similar. This process continues until either a speci�ed number
of clusters is obtained or some condition about similarity measure between the
clusters is accomplished. In generally, a good clustering method is de�ned as one
that maximizes the within cluster similarity and minimizes the between cluster
similarity.

• Agglomerative algorithm for hierarchical clustering [9]. The clustering
algorithm begins by considering each word in its own cluster and ends
when all the words are in the same cluster.

• Non-hierarchical clustering algorithm [9]. A non-hierarchical algorithm
starts out with a partition based on randomly selected seeds (one seed per
cluster), and then re�ne this initial partition. The algorithm stops when
a measure of cluster quality is accomplished. As such measure we could
select: group average similarity (average similarity between members);
single link similarity (the similarity of two most similar elements of
a cluster); complete-link similarity (the similarity of two least similar
elements from a cluster).

One of the non-hierarchical algorithm is k-means; it de�nes clusters
as the mean (the average) of their member.

One other algorithm in unsupervised approach is EM-algorithm. In this case we
start with a random computing of parameters P (vj | sk) and then this parameters
are reestimated in an estimation-modi�cation cycle.

5. Dictionary-based disambiguation.

Work in WSD reached a turning point in the 1980s when large-scale lexical
resources such as dictionaries, became widely available. The machine readable
dictionaries (MRD) have a large development in these days. This section de-
scribes disambiguation methods that rely on the de�nition of senses of a word in
dictionaries and thesauri.

24 DOINA T�TAR

5.1. Lesk's algorithm. Reduced form
Lesk (1986) starts from the idea that a word's dictionary de�nition is a good

indicator for the senses of this word. He uses the de�nition in the dictionary
directly.

Suppose that for a polysemic word w we have in a dictionary Ns senses s1, s2, · · · ,
sNs given an equal number of de�nitions D1, D2, · · · , DNs. The new context to
be disambiguated is cnew.

The idea of Lesk's algorithm is :
FOR k = 1, · · · , Ns DO

score(sk) =| Dk ∩ (∪vj∈cnew{vj}) |
ENDFOR
Calculate s′ = argmaxkscore(sk)

The score of a sense is number of words that are shared by the sense de�nition
and context.

The method achieved 50-70% correct disambiguation [9].

5.2. Two claim about senses: one sense per discourse (OSPD), one sense
per collocation (OSPC). In [19] Yarowsky observes that the sense of a target
word is highly consistent within any given document or discourse. This is the
content of OSPD principle. For example, if a document is about biological life,
then each occurrence of the ambiguous word plant is more probably linked with the
sense of �living being�. If the document is about industrial aspects, then plant is
more probably linked with the sense factory. Of course, the de�nition of discourse
is central to the test of OSPD principle.

On the other hand, the sense of a target word is strongly correlated with certain
other words in the same phrasal unit, named collocational features. By a collo-
cation we mean usually �rst /second /third word to the left /right of the target
word. In fact, there are words which collocate with the target word w with a
high probability. Such a words are considered as strongest in the disambiguation
process (OSPC principle). The algorithm proposed by Yarowsky combines both
constraints [9].

6. Recent developments.

6.1. Evaluation of WSD task. Given the variety in the studies it is very di�cult
to compare one method with another. Evaluation of WSD programs has excited
a great deal of interest. Producing a gold standard corpus annotated corpus is
both expansive (many person-months of annotator e�ort) and hard (di�erent
individuals will often assign di�erent senses to the same word-in-context). In

WORD SENSE DISAMBIGUATION 25

April 1997 a workshop of ACL included �rst time a session of WSD evaluation [12].
Beginning with 1998 (then in Sussex, England) in each two years take place some
WSD evaluation workshops, named SENSEVAL. If at the �rst edition participated
over 20 systems and most research has been in English, in 2004 for the �rst time
was a section for Romanian language where participated 7 teams. For Romanian
the manually sense-tagged was worked on a site open at University of North Texas.
Almost half the systems used supervised training methods. The evaluation involves
comparison of the output of each system using as measures precision and recall.

The upper bound for accuracy of a WSD system is usually human performance.
This is between 97% and 99 % [9]. The lower bound is the performance of the
simplest algorithm, baseline, usually the assignment of all contexts to the most
frequent sense.

6.2. Disambiguation and Information Retrieval. WSD is only an interme-
diate task in NLP, like POS tagging or parsing. Examples of �nal applications
for which WSD is potentially an issue are: Machine Translation, Information Re-
trieval (IR), Dialogue systems or improving Parsing. For example, the problem of
�nding whether a particular sense is connected with an instance of a word is likely
the IR task of �nding whether a document is relevant to a query. It is established
that a good WSD program can improve performance of retrieval by 2%. As IR is
used by millions of users, an average of 4 % improvement could be seen as very sig-
ni�cant. A test in 1993 compared two term-expansion queries methods for IR: one
in which each term was expanded with all related terms and one in which it was
only expanded with terms related to the sense used in the query (disambiguated).
The conclusion was that disambiguation did not improve the performance of term
expansion. In [14] the authors propose a new methods that is bene�cial for IR. In
this method the features in the de�nition of vectors are senses, and not words: a
feature in a context has a nonzero value if the context contains a word assigned
to the sense represented by the feature. This method increased performance by
7,4 % compared to �features equal words� case. The two methods are opposites
of each other in the following sense. Term expansion by related terms increases
the number of matching documents for a query: if the query contains the word
cosmonaut and expansion adds astronaut, then the number of documents is big-
ger (the documents containing the word astronaut are added). If the word suit
occurs in the query used in the �legal� sense, then documents that contain suit, for
example, in the �clothes� sense will not longer be founded. An excellent overview
of work in WSD and IR can be found in [6].

26 DOINA T�TAR

References
[1] Avram, Lup³a, D., �erban, G., T tar, D.: Hierarhical clustering algorithms for repeating

similarity values, Studia Universitatis �Babes-Bolyai�, seria Informatica, 2003, nr 2, pp 61 -
72.

[2] Dagan, I., Lee, L., Pereira, F.: Similarity-based models of Word Cooccurences Probabilities,
MLJ, 34(1-3), 1999.

[3] Daelemans, W.: Machine learning approach in Syntactic Wordclass Tagging, Kluwer Aca-
demic Publishers, pp 285-304, 1999.

[4] Fellbaum, C. (editor): WordNet An Electronic Lexical Database, The MIT Press, 1998.
[5] Gauch, S., Wang, J., Rachakonda, S. M.: A corpus analysis approach for automatic query

expansion and its extension to multiple databases, CIKM'97- Information and Knowledge
management.

[6] Ide, N., Veronis, J.: Introduction to the special issue on WSD: the state of the art, Compu-
tational Linguistics, 24(1) 1998, pp1-40.

[7] Jurafsky, D., Martin, J.: Speech and language processing, Prentice Hall, 2000.
[8] Kilgarri�, A.: What is WSD good for?, ITRI Technical Report Series- August, 1997.
[9] Manning, C., Schutze, H. : Foundation of statistical natural language processing, MIT, 1999.
[10] Marcus, S. : Lingvistic matematic , Ed. Didactic si Pedagogic , Bucure³ti, 1966.
[11] Lin, D.:Automatic retrieval and clustering of similar words, COLING-ACL'98, Montreal,

1998.
[12] Resnik, P., Yarowsky,D. : Distinguishing Systems and Distinguishing sense: new evaluation

methods for WSD , Natural Language Engineering, 1 , nr 1, 1998.
[13] Sahlgren, M. : Vector-based semantic analysis: representing word meanings based on ran-

dom labels, in The Acquisition and Representation of Word Meaning,Kluwer Academic
Publishers, 2001.

[14] Schutze, H.: Automatic Word Sense Discrimination, Computational Linguistics, Computa-
tional Linguistics, 24(1) 1998, pp97-123.

[15] Serban, G., Tatar, D.: UBB system at Senseval3, Proceedings of Workshop in Word Disam-
biguation, ACL 2004, Barcelona , July 2004 , pp 226-229.

[16] Tatar, D., Serban,G.: A new algorithm for WSD, Studia Univ. �Babes-Bolyai�, Informatica,
2001, nr.2, pp 99-108.

[17] Tatar, D.: Inteligenta arti�ciala: demonstrare automata de teoreme, prelucrarea limbajului
natural, Editura Albastra, Microinformatica, 2001.

[18] Widdows, D.: A mathematical model for context and word meaning, Fourth International
Conference on Modeling and using context, Stanford, California, June 23-25, 2003.

[19] Yarowsky, D.: Hierarchical Decision Lists for WSD, Kluwer Acadmic Publishers, 1999.

Department of Computer Science, Babe³-Bolyai University, Cluj-Napoca
E-mail address: dtatar@cs.ubbcluj.ro

STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume XLIX, Number 2, 2004

HEURISTICS AND LEARNING APPROACHES FOR SOLVING
THE TRAVELING SALESMAN PROBLEM

GABRIELA �ERBAN AND CAMELIA-MIHAELA PINTEA

Abstract. In present, all known algorithms for NP-complete problems are
requiring time that is exponential in the problem size. Heuristics are a way
to improve time for determining an exact or approximate solution for NP-
complete problems.

In this article is introduced and solved a problem based on a generaliza-
tion of the Traveling Salesman Problem. We compare two classical algorithm
results for the application: Branch and Bound and Nearest Neighbor and
also two Ant Algorithms: Ant System and Ant Colony System. Being sto-
chastic algorithms, Ant Algorithms have the solutions chosen according to
a probability, which depends on the pheromone level, therefore they can be
also considered as reinforcement learning techniques.

We also propose a reinforcement Q-learning method for solving the Trav-
eling Salesman Problem.

Keywords: Combinatorial Optimization, Traveling Salesman Problem,
Symmetric Graphs, Branch and Bound, Nearest Neighbor, Ant Algorithms,
Heuristics, Agents, Reinforcement Learning.

1. Introduction
One of the most important and promising research �eld in recent years has been

Heuristics from Nature. These heuristics, utilizing analogies with natural or social
systems are using to derive non-deterministic heuristic methods and obtain very
good results in NP-hard combinatorial optimization problems.

A heuristic is a commonsense rule (or set of rules) intended to increase the
probability of solving some problems. It is a general formulation that serves to
guide investigation.

Let us consider the Traveling Salesman Problem. The Traveling Salesman Prob-
lem is one of the most studied discrete optimization problems. TSP has many
variations and a large number of applications.

Received by the editors: December 10, 2004.
2000 Mathematics Subject Classi�cation. 68T05, 68T20, 90C27.
1998 CR Categories and Descriptors. I.2.6 [Computing Methodologies]: Arti�cial

Intelligence � Learning; I.2.8 [Computing Methodologies]: Arti�cial Intelligence � Problem
Solving, Control Methods, and Search; G.1.6 [Mathematics of Computing]: Numerical Anal-
ysis � Optimization .

27

28 GABRIELA �ERBAN AND CAMELIA-MIHAELA PINTEA

Today problems are harder and harder to solve, because of the multitude of
inputs and the time needed to produce best results. That is why, in such cases we
try to �nd an approximation of the best solution, using a heuristic.

A construction heuristic is an algorithm that determines a tour, in the graph
associated to the problem, according to some construction rules, but does not try
any improvements upon this tour. Improvement heuristics are characterized
by a certain type of basic move to alter the current tour. We can combine these
two types of heuristics in the following way: �rst we use a constructive heuristic
to construct a tour. Then we repeatedly use an improvement heuristic to improve
the current tour.

Heuristics in Arti�cial Intelligence are obtained using a certain amount of re-
peated trials, employing one or more agents, neurons, particles, chromosomes,
ants. Two main features have to be balanced: the degree of exploits and the
degree of exploration.

In case of multiple individuals, a cooperation or competition among individuals
take place. These agents improve the solution quality at each iteration of the
process and are able to adapt to new situations. So, these heuristics are adaptive
(to the changes in the environment).

The most used construction heuristic is Nearest Neighbor Heuristic, which has
gained in popularity because of the TS problem. The salesman starts at some
city and then visits the city nearest to the starting city. From there he visits the
nearest city that was not visited so far and so on until all cities will be visited,
and the salesman returns to the starting point. It is probably close to the real
salesman's approach. But is a poor heuristic, however.

Other heuristics often applied are the genetic algorithms, the neural net-
works and the heuristics inspired by social insects: swarm intelligence, ant
algorithms.

In section 2, the subsection Theoretical support, we introduce a problem based
on a generalization of Symmetric Traveling Salesman Problem. We will compare
the optimal results obtained with two algorithms, in the classical approach, Branch
and Bound and Nearest Neighbor and the results are shown in a table.

In the section Ant Algorithms we compare the results of two algorithms Ant
System and Ant Colony System, which are applied for the problem mentioned
above. The later one is more e�cient and faster as we will see from the tables.
There are also comparative graphics, that illustrate better the results.

Learning techniques can be considered as a kind of metaheuristics, that is why
we consider in section 3 a reinforcement learning approach for solving the TSP
problem.

2. A generalization of the Symmetric Traveling Salesman Problem
2.1. Theoretical support. As is shown in [1], these are the de�nitions used for
Generalized Symmetric Travel Salesman Problems.

HEURISTICS AND LEARNING APPROACHES FOR SOLVING THE TSP 29

The Generalized Symmetric Traveling Salesman Problem (GSTSP):

De�nition 2.1 Given a weighted complete digraph KN and a partition V1, V2, . . .,
Vk of vertices, �nd a minimum weight cycle containing exactly one vertex from each
set Vi, i = 1, . . . , k.

De�nition 2.2 The sets Vi, are called clusters and a cycle containing exactly
one vertex from each cluster is called a tour.

A common known de�nition of the Traveling Salesman Problem:

De�nition 2.3 Given N cities, if a salesman starting from his home city his
goal is to visit each city exactly once and then return home, �nd the order of a
tour such that the total distance travelled is minimum.

We introduce the following problem:

Given N cities, if a salesman is starting from his home city and his house and
want to visit each city exactly once, through exactly one house, and then return
home, �nd the order of a tour such that the total distance travelled is minimum.

In this work, we consider that every city has a given number of houses. The
salesman crosses each city once going trough one house from a city. We know the
distances between houses from each city. We want to know the shortest way from
the starting house and city making a tour of all cities, coming back in the same
house and city.

The salesman chooses each time the house that is nearest from an unvisited city
in the Nearest Neighbor method, and in the Branch and Bound method he visits
all the cities and a random houses from each city, if there is a way between them.

The input �les are:
• travel.in including a matrix N x N with 0 and 1, the matrix of distances

ex. : (0,1,1,0,1), (1,0,1,1,1), (1,1,0,1,1), (0,1,1,0,1), (1,1,1,1,0);
• travel.txt speci�es the city numbers and the numbers of houses in each

city ex. (5,1)(1,2)(2,3)(3,1)(4,3)(5,1);
• distance.in speci�es the distances between houses of di�erent cities in a

N × 5 matrix.
File distance.in

1, 1, 2, 1, 5 1, 1, 5, 1, 15 3, 1, 5, 1, 6 1, 1, 2, 2, 17
1, 2, 5, 1, 1 2, 1, 4, 1, 55 1, 1, 2, 3, 55 3, 1, 4, 1, 90
1, 2, 2, 1, 60 3, 1, 4, 2, 6 2, 3, 4, 1, 43 1, 2, 2, 2, 8
3, 1, 4, 3, 58 2, 1, 4, 2, 20 1, 2, 2, 3, 44 2, 1, 5, 1, 2
2, 2, 4, 2, 21 1, 1, 3, 1, 33 2, 2, 5, 1, 21 2, 3, 4, 2, 24
1, 2, 3, 1, 4 2, 3, 5, 1, 1 2, 1, 4, 3, 15 2, 1, 3, 1, 54
4, 1, 5, 1, 12 2, 2, 4, 3, 7 2, 2, 3, 1, 31 4, 2, 5, 1, 11
2, 3, 4, 3, 9 2, 3, 3, 1, 2 4, 3, 5, 1, 13

30 GABRIELA �ERBAN AND CAMELIA-MIHAELA PINTEA

2.2. Classical approach. We use two methods for solving this application, namely
Branch and Bound where we randomly choose a house from a city and Nearest
Neighbor technique. For Branch and Bound we make 500 runs for each starting
house from each city. In some cases Nearest Neighbor failed because there is not
a way between cities 1-4.

We denote BB the Branch and Bound method, and NN the Nearest Neighbor
method.

The results are presented in Table 1.

City House NN NN Tours BB BB Tours
1 1,2 Failed 35 (1,1)(5,1)(4,2)(3,1)(2,3)
2 1 33 (2,1)(5,1)(1,2)(3,1)(4,2) 21 (1,2)(5,1)(4,2)(3,1)(2,3)
2 2 56 (2,2)(4,3)(5,1)(1,2)(3,1) 24 (2,1)(5,1)(4,2)(3,1)(1,2)
2 3 36 (2,3)(5,1)(1,2)(3,1)(4,2) 21 (2,3)(3,1)(4,2)(5,1)(1,2)
3 1 Failed 15 (3,1)(1,2)(5,1)(2,3)(4,3)
4 1 62 (4,1)(5,1)(1,2)(3,1)(2,3) 20 (4,1)(5,1)(1,2)(3,1)(2,3)
4 2 Failed 13 (4,2)(3,1)(1,2)(5,1)(2,3)
4 3 80 (4,3)(2,2)(1,2)(5,1)(3,1) 16 (4,3)(2,3)(3,1)(1,2)(5,1)
5 1 29 (5,1)(1,2)(3,1)(2,3)(4,3) 29 (5,1)(1,2)(3,1)(2,3)(4,3)

Table 1.
Remark 2.1 From Table 1 we see that Branch and Bound found the best mini-

mum solution and in the last case the solutions are equal, where the computational
complexity is low.

We mention that the time complexity of the NN approach is O(N2).
Comparative results are also illustrated in Figure 1.

2.3. Ant Algorithms. This section shows a heuristic from nature, Ant Algorithm
[10]. First, this natural heuristic was introduced in [11], [12].

The Ant Systems have proved to be e�cient and robust global optimization
methods. Ant Colony Algorithms are very complex hybrid systems. Inspired
from the nature, they combine the power of metaheuristic in a highly distributed
way. It can be considered as an evolutionary method, where agents are interacting
in a cooperative multi-agent system. Ant systems, like Genetic Algorithms, are
population based approaches.

At all ant-based algorithms the basic idea is the positive feedback mechanism.
A virtual pheromone, used as reinforcement, allows good solutions to be kept in
memory. It is also important to avoid good, but not very good solutions from
becoming reinforced, which can lead to premature convergence, also called stag-
nation.

HEURISTICS AND LEARNING APPROACHES FOR SOLVING THE TSP 31

In order to escape local optima traps, a so-called negative feedback is used
through pheromone evaporation.

Cooperative behavior is another important concept: ant colony algorithms make
use of the simultaneous exploration of di�erent solutions. Ant colonies are multi-
agent systems, where the ants have the role of the cooperative agents. The commu-
nications between agents is done indirectly using the above-mentioned pheromones,
which is also mentioned as the concept of stimergy.

The Ant Colony System Colony was developed to �ll the gaps of the AS Algo-
rithm, making more e�cient and robust. The aim was to improve the performance
of AS, that was able to �nd good solutions within a reasonable time only for small
size problems.

ACS is based on several modi�cations of AS: a di�erent transition rule, a dif-
ferent pheromone trail update rule, the use of local updates of pheromone trail to
favor exploration.

The results for Ant System (AS) and Ant Colony System (ACS) are presented
in Table 2.

City House AS AS Tours ACS ACS Tours
1 1 57 (1,1)(2,1)(5,1)(4,2)(3,1) 57 (1,1)(2,1)(5,1)(4,2)(3,1)
1 2 38 (1,2)(2,2)(4,3)(5,1)(3,1) 38 (1,2)(2,2)(4,3)(5,1)(3,1)
2 1 91 (2,1)(1,1)(5,1)(4,2)(3,1) 33 (2,1)(5,1)(1,2)(3,1)(4,2)
2 2 56 (2,2)(4,3)(5,1)(1,2)(3,1) 56 (2,2)(4,3)(5,1)(1,2)(3,1)
2 3 29 (2,3)(4,3)(5,1)(1,2)(3,1) 29 (2,3)(4,3)(5,1)(1,2)(3,1)
3 1 29 (3,1)(2,3)(4,3)(5,1)(1,2) 29 (3,1)(2,3)(4,3)(5,1)(1,2)
4 1 184 (4,1)(2,3)(1,2)(5,1)(3,1) 105 (4,1)(5,1)(1,1)(3,1)(2,3)
4 2 33 (4,2)(2,1)(5,1)(1,2)(3,1) 36 (4,2)(2,3)(5,1)(1,2)(3,1)
4 3 80 (4,3)(2,2)(1,2)(5,1)(3,1) 73 (4,3)(2,3)(5,1)(1,2)(3,1)
5 1 75 (5,1)(4,2)(2,1)(1,1)(3,1) 57 (5,1)(2,1)(1,1)(3,1)(4,2)

Table 2.

Remark 2.2 In half of the cases ACS-Algorithm had better results then AS-
Algorithm.

Comparative results are shown in Figure 2.
We have to mention that adding more agents (ants) to an Ant System leads to

better performance.
The complexity of one cycle of the Ant Algorithm is O(N2 ·M) (N is the number

of inputs, M is the number of ants), so it takes very long time to solve the problem
with many inputs. Researchers have wondered how many arti�cial ants (agents)
are needed for a given problem and they have found that the number of agents
must be approximately equal to the number of inputs [12].

32 GABRIELA �ERBAN AND CAMELIA-MIHAELA PINTEA

Figure 1. NN-BB Figure 2. AS-ACS

3. Learning approach for solving the TSP problem
In this section we propose a reinforcement learning approach for solving the

TSP problem.
Let us consider a �nite number of "cities" and their coordinates on a map. We

suppose that the cost of travel between a pair of cities is given by the euclidian
between them. An agent (the traveling salesman) has to �nd the cheapest way of
visiting all the cities and to return to the starting point. So, the goal of the agent
is to learn by reinforcement the optimal policy.

In Reinforcement learning [14], the agent is simply given a goal to achieve and
then the agent learns how to achieve that goal by trial-and-error interactions with
its environment.

In a reinforcement learning problem, the agent receives a feedback, known as
reward or reinforcement; the reward is received at the end, in a terminal state, or
in any other state, where the agent has correct information about what he did well
or wrong.

3.1. The SARSA Algorithm. SARSA [13] is a reinforcement Q-learning algo-
rithm, which combines the advantages of Temporal di�erence learning and Monte
Carlo learning methods.

From the TD methods, the algorithm takes the advantage of learning at each
step, instead of waiting the end of an episode. From the Monte Carlo methods,
SARSA takes the advantage of going back and using the rewards obtained in
each state in order to update the values of the previous action-state pairs and
the capacity of functioning without the model of the environment in which the
learning takes place [16].

The idea of the SARSA algorithm [13] is to apply the Temporal Di�erence
methods to the state-action pairs, in comparison with the classical methods, where
this methods are applied only to the states.

HEURISTICS AND LEARNING APPROACHES FOR SOLVING THE TSP 33

SARSA converges with probability 1 to an optimal policy and action-value
function as long as all state-action pairs are visited an in�nite number of times
and the policy converges in the limit to the Greedy policy.

The agent learns the optimal policy after some training sequences. A training
sequence consists of a number of episodes, during which the agent has the following
behavior:

• until a �nal state is reached (the �nal state is given by the goal of the
agent) or until the number of steps exceed a maximum number, using
an action selection mechanism (ε-Greedy or SoftMax [13]), the agent
updates properly the Q-values (the values of the state-action pairs).

The complete description of the SARSA algorithm is given in [17].

3.2. Experimental results. In order to apply the SARSA algorithm described
above, we make the following assumptions:

• there are N cities that the agent has to visit;
• from a given city, the agent can visit any other city (the graph is com-

plete);
• the agent starts from the city 1 (the initial state in the RL task);
• the states in the RL task are the cities the agent can visit;
• a city reached by the agent at a given moment is considered to be a �nal

state if the agent has visited all the cities so far;
• the possible actions of the agent in a given state (city) are N-1 (the other

cities that the agent can visit, excepting the current state);
• as an action selection mechanism we use the ε-Greedy approach;
• the reward received by the agent in a given state (city) is considered to

be the euclidian distance between the current city and the city numbered
with 1.

Because of the probabilistic action selection mechanism during the learning
process, we repeat the training sequence of the agent several times.

For a simplest evaluation of the results, we choose the example in which there
are 4 cities. The coordinates of the cities are given in Table 3.

City Coordinates on the map
1 (10,10)
2 (10,11)
3 (11,10)
4 (13,11)

Table 3. Coordinates of the cities on the map.

We mention that the optimal tour is 1,2,4,3,1 and the total distance of this tour
is 7,24. The NN approach determines an approximation of the solution, 1,3,2,4,1
with the total distance 8,57.

34 GABRIELA �ERBAN AND CAMELIA-MIHAELA PINTEA

The results obtained after applying our learning algorithm are shown in Table
4.

Training sequence Number of episodes Tour Total Distance
1 6 1,4,2,3,1 8,57
2 6 1,3,2,4,1 8,57
3 6 1,2,4,3,1 7,24
4 6 1,2,3,4,1 7,81
5 6 1,3,2,4,1 8,57
6 6 1,4,3,2,1 7,81
7 6 1,4,3,2,1 7,81
8 6 1,2,4,3,1 7,24

Table 4. Results obtained with the SARSA algorithm.
The results obtained with SARSA are better than the result obtained with the

NN approach.
We have applied the algorithm for di�erent values ofN and for di�erent number

of training episodes and we observe that SARSA, in average, gives better results
than the NN approach.

We have to mention that the time complexity of the TSP solving with the RL
approach during one training sequence is O(N*e), where e is the number of training
episodes.

3.3. Further work. Further work can be done in the following directions:
• how to improve the learning rate;
• to apply other learning approaches for solving TSP (like LRTA* algo-

rithm [18]);
• the generalization of the above approach for multi agent systems (sys-

tems in which several agents has to cooperatively learn by reinforcement
to solve the TSP problem).

4. Conclusions

Any combinatorial optimization problem has an associated graph, which means
that these problems can be solved in terms of graph theory and also provides us
with an easy way to view the problem.

An heuristic method reduces the time complexity of the problem solving. As an
example, a brute force approach for TSP has O(2N) complexity (N is the number
of cities).

A dynamic programming algorithm also gives the global optimum for this prob-
lem (and for many other hard combinatorial optimization problems) but also takes
exponential time.

HEURISTICS AND LEARNING APPROACHES FOR SOLVING THE TSP 35

Section 2 is based on GSTSP, where we can compare the cities with clusters
and a house with a vertex. A cycle containing exact one house - vertex- from each
city- cluster- is a tour. Branch and Bound is a consistent technique that exhaustive
explore a searching space, following at each step all the minimum possibilities.

The Nearest Neighbor method we will apply in the case when we want an
approximate solution, but obtained in a short time, with a reduced computational
complexity. We can improve methods by taking randomly the equal minimal
values, at each new execution of the algorithm.

We can extend the problem requiring that the traveller should cross exactly
trough a given number of houses in each city, where the given number could be
the minimum values of the houses from the cities.

In section 2 the same problem is solved with Ant Algorithms. Ant Algorithms
are primarily used for combinatorial optimization, especially for NP-hard tasks.
The Traveling Salesman Problem (TSP) is an important application, for which
were developed several Ant Colony methods. The basic idea of Ant System is that
of simulating the behavior of a set of agents that cooperate to solve an optimization
problem by means of simple communications.

As a disadvantage it can be stated the multiple parameters used for these algo-
rithms. It is very hard to set up the optimal values of the parameters, which can
be very di�erent from one problem to another.

As a conclusion, we may say that even though classic algorithms give an exact
solution, heuristics may give very good solution, or even the best one and are very
handy techniques because they are usually cheap to apply and combine. We
should also try to combine heuristics with exact algorithms. Di�erent heuristics
can be obtained as follows: using a Greedy algorithm to choose each move, using
multiple agents that start from di�erent points in the graph, using clustering
techniques to group regions in the search space, using clustering techniques to
group agents, using local search techniques to improve solutions.

References

[1] G. Gutin, Traveling Salesman and Related Problems,Royal Holloway, Univ.of London, 2003
[2] G. Gutin, A. Punnen, The Traveling Salesman Problem and its variations,Kluwer Academic

Publishers
[3] M. Dorigo, L.M. Gambardella, Ant Colonies for the Traveling Salesman Problem, BioSys-

tems 43, 73-81, 1997
[4] M. Dorigo, L.M. Gambardella, Ant Colony System: A Cooperative Learning Approach to

the Traveling Salesman Problem, IEEE Transactions on Evolutionary Computation 1(1)
53-66, 1997

[5] M. Dorigo, V. Maniezzo, A. Colorni, The Ant System: Optimization by a Colony of Coop-
erating Agents, IEEE Transaction on Systems, Man, and Cybernetics-Part B, 26(1) 29-41,
1996

36 GABRIELA �ERBAN AND CAMELIA-MIHAELA PINTEA

[6] M. Dorigo, G. Di Caro, The Ant Colony Optimization Metaheuristic, in D. Corne, M.
Dorigo, F. Glover(Eds.), New Ideas in Optimization, McGraw-Hill, 1999

[7] E. Bonabeau, M. Dorigo, G. Therraulaz, Swarm intelligence: from natural to arti�cial
systems, Oxford University Press, 1999

[8] M. Hozefa Botee, E. Bonabeau, Evolving Ant Colony Optimization, Advances in Complex
Systems 1 (2/3) 149-159, 1998

[9] V. Maniezzo, A. Carbonaro, Ant Colony Optimization: An Overview, in Celso C. Ribeiro,
Pierre Hansen (Eds.), Essays an Surveys in Metaheuristics, Kluwer Academic Publishers,
Boston/ Dordrecht/ London, pp. 21-44, 2002

[10] A. Colorni, F. Dorigo, V. Maniezzo, G. Righini, M. Trubian, Heuristics from nature for hard
combinatorial optimization problems Published in International Transactions in Operational
Research, 3,1, pag.1-21

[11] A. Colorni, F. Dorigo, V. Maniezzo, Distributed Optimization by Ant Colonies Proceedings
of ECAL-91-European Conference on Arti�cial Life, Paris, France, F. Varela and P. Bourgine
(Eds.), Elsevier Publishing, 1991,pp. 134-142

[12] A. Colorni, F. Dorigo, V. Maniezzo, An Investigation of Some Properties of an Ant Al-
gorithm Proceedings of the Parallel Problem Solving from Nature Conference (PPSN 92),
Brussels, Belgium, R. Manner, B. Manderick(Eds.), Elsevier Publishing, 1992, pp. 509-520.

[13] R. Sutton, A.G. Barto, Reinforcement learning, The MIT Press, Cambridge, England, 1998
[14] S.J.Russell, P.Norvig, Arti�cial intelligence. A modern approach, Prentice-Hall Interna-

tional, 1995
[15] M. Harmon, S. Harmon, Reinforcement Learning - A Tutorial, Wright State University,

www-anw.cs.umass.edu/simmharmon/rltutorial/frames. html, 2000
[16] A. Perez-Uribe, E. Sanchez, Blackjack as a TestBed for Learning strategies in Neural

Networks, Proceedings of the IEEE International Joint Conference on Neural Networks
IJCNN'98

[17] G. Serban, A Reinforcement Learning Intelligent Agent, Studia Universitatis "Babes-
Bolyai", Informatica, XLVI, Number 2, pp.9-18, 2001

[18] G. Weiss, Multiagent systems - A Modern Approach to Distributed Arti�cial Intelligence,
The MIT Press, Cambridge, Massachusetts, London, 1999

"Babe³-Bolyai" University
E-mail address: gabis@cs.ubbcluj.ro

"George Co³buc" National College
E-mail address: cami_mihaela@yahoo.com

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLIX, Number 2, 2004

TASK MODELING IN SYSTEMS DESIGN

ADRIANA-MIHAELA TARŢA

Abstract. This paper aims to provide a discussion of how model-based ap-

proaches and the related tools can be used to obtain usable systems. More

than that, in the last years the design of software systems is regarded as a

multisciplinary area, where knowledge from psychology, sociology, etnogra-

phy are interrelated. This paper will show how some techinques specific to

these disciplines can be used in user interfaces design.

1. Introduction

People are often using models in their everyday life. Everytime when a more
complex problem is encountered, the way of dealing with the complexity is by
using models, i.e. identifying the main aspects that should be taken into account
and their relations. It is not suprising that in the software design domain, this
approach has been adopted and now is a technique often used to represent the
various aspects of the problem that must be solved (domain, data, interaction,
etc.). The models’ goal is to provide a structural description of the relevant infor-
mation. The purpose of model-based design is to identify high-level models which
allow designers to specify and analyse interactive software applications from a
more semantic-oriented level rather than starting immediately to address the im-
plementation level. This allows them to concentrate on important aspects without
being confused by the implementation details. Models are capturing the semantic
meaningful aspects and allow the designers to manage more easily the increasing
complexity of interactive systems [Pat04]. The most succesful modeling technique
used in software engineering is UML (Unified Modelling Language), which focus
on modeling the objects composing a system and then modeling of activities that

Received by the editors: December 10, 2004.

2000 Mathematics Subject Classification. 68P99.
1998 CR Categories and Descriptors. D.2.2 [Software]: Software Engineering – Design

Tools and Techniques; H.5.2 [Information Systems]: Information Interfaces and Presentation –

User Interfaces .

37

38 ADRIANA-MIHAELA TARŢA

manipulates the system. The object-oriented approaches are successful at engi-
neering the software implementation level. One of the basic usability principles
says:“focus on the user and their tasks”, that’s why a new trend have gained atten-
tion in the last years, when the comfort of people, the ergonomic aspects of people
work are emphasized more and more. This new trend is called task modeling. The
task oriented approaches focus also on objects and activities, but the difference
from object-oriented approaches is that the task-oriented approaches first identify
the tasks that users perform and then the object manipulated.

2. Task Analysis and Modeling

Before discussing the task analysis and modeling techniques, we have to un-
derstand the meaning of “task” concept. A task is an activity that should be
performed in order to reach a goal. A goal is a desired modification of state or an
inquiry to obtain information on the current state of an object (system)[GM02].

Task models’ goal is to identify useful abstractions highlighting the main aspects
that should be considered when designing interactive systems. The main advantage
of task models is that they represent the logical activities that an application must
support. In order to better understand the user, his work and his expectations,
there are two types of task models: descriptive and prescriptive. The descriptive
task models describe the way in which the task is performed currently (even in
an manual way, or supported by another system). The prescriptive task model
describes how the task should be supported by a new developed system [Pri03].

The descriptive task models are developed by psychologists, etnographers and
domain experts, using data aquisition techniques like: interviews, video record-
ing or direct observation. After data acquisition the information are gathered,
analyzed, and a descriptive task model is generated.

The prescriptive task model is build on the descriptive task model, but it is
restructured, in order to include the modification introduced by the use of new
technology (some redundant tasks will be eliminated, some user tasks will change
in application tasks or interaction tasks, when the user and the system perform
a task in a collaborative manner). The prescriptive task model is conceived by
the designer teams and human factor experts, in order to assure a high level of
usability.

A task model in the design of an interactive system describes a set of activities
that users intend to perform while interacting with the system. There are two
types of task models: the system task model that provide information about how
the designed system requires tasks to be performed, and user task model which is

TASK MODELING IN SYSTEMS DESIGN 39

how users expect to perform their activities. It is desirable that these two models
be very similar, otherwise some usability problems will be present.

Task models are essential in the design of interactive systems because they rep-
resent the logical activities that should support users in reaching their goals. From
informal representations only (like mock-ups or scenarios) the designers won’t have
the necessary information to support the design decisions. Task models represent
the intersection between user interface design and more systematic approaches by
providing designers with means of representing and manipulating an abstraction
of activities that should be performed to reach user’s goals.

Task models are built after task analysis is performed. Task analysis aims to
identify the relevant tasks and how activities are performed currently. Task models
describe the semantic and temporal relations between the identified tasks.

3. Task Modeling Techinques and Tools

Task analysis and modeling is an old method of describing and analyzing the
structure of work and was first used in psychology. The first important method of
task analysis was HTA (Hierarchical Task Analysis), developed in 1960 [DFAB93].
The method represents the structure of task in a hierachical decomposition. The
representation of task structure had two forms: a textual description, where inden-
tation and numbering of task/subtasks were used, and a graphical representation,
using trees. The order of task performance was given by plans which describe the
performance order using the tasks/subtasks numbers.

This approach have been used lately in other task analysis techniques like
GOMS (Goals, Operators, Methods, and Selection Rules), where the tasks and
it’s goals were represented hierarchically, using a textual description.

Even in the last years, the hierarchical decomposition of tasks is considered the
best suited method to describe task models. Because of the interdisciplinary effort
for the design of interactive systems, the graphical representation was adopted.
Task analysis methods like GTA (Groupware Task Analysis)[vdVvW00] and CTT
(ConcurTaskTrees)[GM02] use a tree representation of task in their associated
tools. GTA is a method that starts from the basic idea that nowadays people
are performing their work in a collaborative way, so the work analysis is made for
groups of people. People who are performing a common set of tasks form roles, and
the system or the people is considered to be an agent. In task performance, agents
manipulate objects. The performance of a task is triggered by events or by another
task. In GTA the temporal relation between tasks can’t be precisely specified. The
method doesn’t provide any formal mean of specifying such relations, providing

40 ADRIANA-MIHAELA TARŢA

support only for the description of sequential tasks. These are the main concepts
used to describe the task world and the temporal relations between tasks [vW01].

While the number of task analysis method is signifiant, there are only few tools
that support the use of these methods and that generates task models. Only two
tools are freely available on the Internet: EUTERPE, the task analysis and mod-
eling tool that supports the use of GTA technique [vW01], and CTTE (Concur-
TaskTrees Environment)[GM02] corresponding to CTT (ConcurTaskTrees) analy-
sis and modeling method. EUTERPE provides functionality for describing the
task models in a graphical manner and to store all the objects, responsible roles,
triggered tasks and triggering events for each task. The models can be verified
using a validation tool which verifies a set of constraints that must hold for every
correct model (e.g. tasks that are never triggered, roles which aren’t responsible
for any task). EUTERPE also generates the work flow based on the triggering
events or tasks, but the temporal description is quite ambiguous, because of the
lack of formal methods for representing the time relations between tasks.

The problem of unambiguous specification of time relations is well solved in
CTT (ConcurTaskTrees) that has an associated tool called CTTE (ConcurTask-
Trees Environment). CTT use also a hierarchical representation of tasks using
task trees, but the relations between tasks is described using LOTOS operators:
choice, order independency, concurrent, concurrent with info exchange, CTT dis-
abling, suspend/resume, enabling, enabling with info exchange [GM02]. In CTT
descriptions are also considered the agents, roles and objects related to tasks.
CTTE provides means of describing single user task models and also cooperative
task models. The tool provides also a simulator that helps designers understand-
ing the logical order of tasks’ performance, because when having task models for
complex systems is difficult to verify all the possible paths in task execution.

From our experience in using the above mentioned tools the conclusion is that
each of them has its advantages and disadvantages. EUTERPE supports the
phase of task analysis because of the various information about task’s world which
can be stored by filling the task templates forms and associating documentation
fragments (video fragments, audio fragments, sketches). From a GTA approach,
we can say that EUTERPE supports very well the building and the validation
of task model 1 (the descriptive model of the task). On the other hand, CTTE
supports the building, verification and simulation of task model 2 (the prescriptive
one). The use of temporal operators is an essential feature and opens a road to
the specification of presentations and interactions of the modeled system.

TASK MODELING IN SYSTEMS DESIGN 41

4. Task Modeling in the design of interactive systems

In the design of interactive systems the task analysis can be used with different
goals:

• requirement analysis - when through a task analysis designers identify
requirements that should be satisfied in order to obtain an useful system;

• design of interactive applications - the information from task models is
used to better identify the interaction techniques and the presentations
of the application (in this case the modeling technique should provide
temporal information about the logical order of tasks);

• usability evaluation - the system task model and the user task model are
compared in order to get information about the matching between these
models; also, having a structured task model some techniques like KLM
(Keystroke Level Model) can be applied to get information about the
time needed to perform a task - this kind of approximation may be used
also to compare different task models addressing the same problem.

Task models are built for many different situations: usually, a task model is
built when designing a new application with the goal of obtaining precise informa-
tion about: the order of task performance, objects from the domain manipulated
in the task performance process, agents and roles responsible for the task perfor-
mance, events triggering task performance, preconditions and postconditions for
task performance. Also, a task model can be built for an existing application, in
this case the goal is to understand the underlying design, analyse its limitations,
and solutions to overcome them. Task model can address the problem of designing
an entire application, or just a part of it.

4.1. User Interface Design Based on Task Analysis. Having stored in a
repository all the information acquired in the task analysis phase, having the
structured representation of activities implied by a task performance in a task
model and having the relations between activities, objects manipulated, agents or
roles responsible for each task, using some additional information about the type
of tasks (editing, selection of one/multiple choices, responding to alerts, etc.) and
some descriptions about the objects manipulated (numerical values, texts, etc),
we have the possibility of automatic determination of the main presentations of
the interactive system (the kind of widgets needed in a presentation); also, from
the task model we know the navigational path in the interactive system. The in-
formation obtained might support the process of building an abstract specification
of the user interface (using specification languages like XML, XIML (eXTended
Interface Markup Language) or UIML (User Interface Markup Language)) which

42 ADRIANA-MIHAELA TARŢA

can be then rendered in a concrete user interface. Task models play a key role
when the goal is to develop multiple user interfaces for different devices. In this
situation, the task models capture all the relevant requirements at the task level
and using some tools the abstract specifications, and then the concrete specifica-
tion for different platforms can be generated. The structure of task model provides
guidance for the navigational structure of the concrete user interface and for the
grouping of the object manipulated in the task performance [LM03].

5. Problems with Task Modeling Techniques and Tools

Although the use of task modeling approaches even in real case study have
proved its efficiency, there are some aspects criticised in the domain literature
[vW01, Pat04].

One problem related to the development of task models in software design
process is the extra time needed. Indeed, the process of analyzing people work
and of representing the most important aspects in a structured model need a time
for data acquisition and analysis, but now there are tools that help designers in
building such task models or functionality of modeling tools (e.g. EUTERPE can
display multimedia files registered in the working environment that helps design-
ers in building task models, the CCT task models can be built from an informal
specification (scenarios) using the El-TaskModels tool which helps designers iden-
tifying roles, objects, tasks from informal descriptions [GM02]. Also, if the goal is
to develop a complex application, it is hard to manage complexity without creat-
ing models that provides the semantic and temporal information. The graphical
representation of models takes advantage of the readability for different kind of
specialists involved in the design process.

Another criticism of task modeling technique is that they aren’t applicable for
creative tasks, because in that special case there is no structured task model.
Task models support only functionality where users want to achieve a goal and
the activities needed can be modeled in a structured fashion.

Task models are often used for the design of user interfaces and interaction
styles. Task models lead to verb-noun interaction style which is not preffered by
some users who like first select an object and then the actions on that objects.
We have to mention that these are two different ways of achieving goals, and task
models can be used for implementing both interaction styles, even the verb-noun
style is more intuitively extracted from models.

TASK MODELING IN SYSTEMS DESIGN 43

6. Conclusions

We have presented in this article a different approach that can be used in the
design of usable software systems. This approach focuses on user and user’s tasks
and from the analysis of this information a task model is built that supports the
further design of interaction and presentations of the designed system. We have
presented also some available tools that support the task analysis and design. Be-
cause this approach is still at the beginning the number of such tools is reduced,
but from the experience of using them we know now what are the requirements for
such a tool: the presence of a graphical editor for task trees, support for multiple
representations (formal and informal), consistency between representation, sup-
port for handling different media types in the documentation process of building
models (audio files, video fragments), support for models’ verification and support
for simulation. Most of these requirements are met by the above mentioned pre-
sented tools, but there is an essential aspect that isn’t covered by any of them.
While building a task model, there are several persons implied in this activity,
each of them bringing it’s own contribution to the task model. There isn’t any
tool that offers support for collaborative building of tasks that implies the man-
agement of versions and changes. We consider that this is an important aspect
for future research and development of task analysis and modeling tools. Using
the above mentioned tools we have found the difficulties in using the tak analysis
methods and the corresponding task analysis tools. Our future work will focus on
developing a new task analysis and modeling tool based on the GTA approach.
Some improvements will be made on the specification of temporal relations be-
tween tasks following the ConcurTaskTrees approach. The tool should have the
functionality of automatic generation of an abstract user interface specification
from the task models.

References

[DFAB93] Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale. Human-Computer In-

teraction. Prentice Hall, 1993.

[GM02] Carmen Santoro Giulio Mori, Fabio Paternò. Ctte: Support for developing and

analyzing task models for interactive system design. IEEE Transactions on Software

Engineering, Vol. 28(9), Sepember 2002.

[LM03] C. Santoro L. Marucci, F. Paternò. Multiple User Interfaces: Cross-Platform Appli-

cations and Context-Aware Interfaces, chapter Supporting Interactions with Mul-

tiple Platforms Through User and Task Models, pages 217–238. Wiley and Sons,

2003.

[Pat04] Fabio Paternò. Model-based tools for pervasive usability. Technical report, Univer-

sity of Pisa (Italy), 2004.

44 ADRIANA-MIHAELA TARŢA

[Pri03] Costin Pribeanu. Introducere ı̂n interacţiunea om-calculator, volume 1 of

Interacţiunea om-calculator. Matrix Rom, 2003.

[vdVvW00] Gerrit van der Veer and Martijn van Welie. Task based groupware design: putting

theory into practice. In DIS ’00: Proceedings of the conference on Designing inter-

active systems, pages 326–337. ACM Press, 2000.

[vW01] Martijn van Welie. Task-based User Interface Design. PhD thesis, Vrije Universiteit,

2001.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Depart-

ment of Computer Science, 1, M. Kogalniceanu Street, RO-400084 Cluj-Napoca, Ro-

mania, EUROPE

E-mail address: adriana@cs.ubbcluj.ro

STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume XLIX, Number 2, 2004

PARALLEL MUTATION BASED GENETIC
CHROMODYNAMICS

ANCA GOG AND D. DUMITRESCU

Abstract. Genetic Chromodynamics is a strategy for preventing prema-
ture convergence and detecting multiple optimal solutions. A new technique
of applying genetic operators is proposed. The Parallel Mutation Based Ge-
netic Chromodynamics (PMGC) improves the local search from the standard
approach and combines it with the global search, by using an appropriate
mutation strategy.

Keywords: Evolutionary Computation, Genetic Operators, Genetic Chro-
modynamics

1. Introduction
Genetic Chromodynamics is an evolutionary technique for multimodal opti-

mization. The main idea of Genetic Chromodynamics is to force the formation
and maintenance of stable sub-populations. This aim is achieved by using a local
interaction scheme ensuring sub-population stabilization in the early search stages.
One of the Genetic Chromodynamics principles is the stepping stone search mech-
anism, every solution being involved in a search process by means of recombination
or mutation operators.

A new technique of applying genetic operators is proposed. This method pre-
serves the bene�ts of local interaction scheme from the standard approach of Ge-
netic Chromodynamics and improves it by means of recombination followed by a
small rate mutation, and is also making the exploration of the solutions space by
means of a large step mutation. These two operators are simultaneously applied,
and the two obtained o�spring compete for survival only if they belong to the same
optimal region and after they compete with the parents. If they belong to regions
of di�erent optimal points, both of them will be kept in the next generation. The
enlargement of the population is not a problem, because of the merging operator
that is fusing similar individuals. This way the population size will be reduced.

Received by the editors: November 2004.
2000 Mathematics Subject Classi�cation. 62E99, 68T99.
1998 CR Categories and Descriptors. I.2.8 [Arti�cial Intelligence]: Problem solving,

Control methods, and Search � Heuristic methods; G.3 [Mathematics of Computing]: Prob-
ability and Statistics � Distribution functions .

45

46 ANCA GOG AND D. DUMITRESCU

For the small rate mutation, the Gaussian strategy is applied. The Cauchy muta-
tion strategy is applied for the large step mutation. The experimental results show
an improvement of the existing technique, by applying the proposed method on
several benchmark multimodal functions. The proposed model is called Parallel
Mutation Based Genetic Chromodynamics (PMGC).

The paper is organized as follows: Section 2 presents an overview of the Stan-
dard Genetic Chromodynamics (SGC) approach. The new technique of applying
genetic operators is presented in Section 3. Section 4 describes the two mutation
strategies used in the new approach. Experimental results prove the e�ciency of
the proposed model in Section 5. There are also conclusions presented in Section
6.

2. Genetic Chromodynamics
Many evolutionary techniques for solving multimodal optimization problems

have been proposed. Genetic Chromodynamics is a non-niching strategy that
maintains population diversity and detects multiple optima. The main principles
of Genetic Chromodynamics are:

1. population size is variable;
2. sub-population structure is not prede�ned, but emergent;
3. each individual within the current population is considered to be a stepping-

stone for the search process;
4. a new operator for merging very close individuals is considered;
5. at convergence, the number of sub-populations represents the number of op-

timal solutions.
In the standard Genetic Chromodynamics approach, every solution is involved

either in recombination or mutation. The best between the dominant parent and
the o�spring created by recombination or mutation will be kept in the next genera-
tion. In this approach, the o�spring obtained by mutation will be unconditionally
accepted if it is better than its parent. Thus, this strategy can be useful in the
�rst generations of the search process, but in the later stages could cause some
optima extinction. To prevent this situation, the mutation will always create o�-
spring belonging to the interaction range, by choosing an appropriate value of the
standard deviation parameter [4].

3. Parallel Mutation for Genetic Chromodynamics
We may consider a new recombination � mutation scheme, depicted in Figure

1. This scheme may be viewed as a new composed search operator. Recombina-
tion followed by mutation can be considered as a unique search operator. It will
be called RM. We also consider another mutation operator, called M, which acts
independently. In the proposed model, the di�erence between the two mutation
operators is made. M1 has a small rate of mutation, and M2 has a higher step.

PARALLEL MUTATION BASED GENETIC CHROMODYNAMICS 47

Figure 1. PMGC model

The proposed search model applies the two operators simultaneously and is called
Parallel Mutation Based Genetic Chromodynamics (PMGC). Both genetic oper-
ators will create o�spring that will compete for survival �rst with their parents.
After this, the best of them will survive if the two obtained o�spring belong to the
region of the same local optimum. If they belong to regions of di�erent local op-
tima, both of them will survive. This approach will not a�ect the local interaction
scheme and will improve the exploration of the solutions space.

The role of the very small rate mutation (operator M1) is to avoid the inter-
ference between recombination and high mutation. If the o�spring obtained after
recombination is a good solution for the problem, we do not want to loose this
descendent by applying a high mutation rate [1]. The proposed strategy is the
Gaussian one, which ensures a small mutation rate.

Larger mutation step (operator M2) ensures the exploration of the solutions'
space. Also, when recombination cannot be made anymore, this mutation will
attend faster the optimal points. Using a Cauchy mutation strategy ensures the
larger step (see Section 4).

The reason why both descendents survive if they belong to di�erent regions of
optimal points is to avoid the extinction of useful potential optima. This situation
can interfere if the o�spring obtained by M has a higher �tness that the �tness
obtained by RM and it belongs to a region corresponding to a di�erent optimum
point. This way, a useful optimum point represented by the RM o�spring is lost.

In order to keep all useful solutions, distance between the o�spring is taken into
account. If the two possible solutions belong to di�erent regions (the second does
not belong to the interaction range of the �rst one) then both of them will be kept.

48 ANCA GOG AND D. DUMITRESCU

4. Gaussian and Cauchy mutation strategies
Gaussian mutation strategy accomplishes the request of a small mutation rate

that follows the recombination. Cauchy strategy is used for the mutation that acts
simultaneously to it. The two mutation strategies are described in the following
paragraphs:

4.1. Gauss mutation strategy. Let us consider the following chromosome:

{x1, x2, . . . , xm}
If the element xk is selected for mutation, k = 1, . . . ,m, the result will be:

{x1, . . . , x
′
k, . . . , xm}

Gaussian mutation has two parameters: a mean value and a standard deviation.
In this mutation approach, the following relation transforms the element xk into
x′k:

(1) x′k = xk + ηNk(0, 1),

where the correction step η is the standard deviation for Gaussian mutations.
Nk(0, 1) denotes a normally distributed one-dimensional random number with
mean 0 and standard deviation 1. This random number is generated anew for
each value of k, k = 1, . . . , m [3].

4.2. Cauchy mutation strategy. Cauchy mutation can perform longer jumps
with high probability. The search step size is much larger than the search step
of the Gaussian mutation. The shape of Cauchy density function is similar to
that of the Gaussian density function but approaches the axis so slowly that an
expectation does not exist [7]. As a result, the variance of the Cauchy distribution
is in�nite. Figure 2 shows the di�erence between Cauchy and Gaussian density
functions.
The one-dimensional Cauchy density function centered at the origin is de�ned by:

ft(x) = t/π(t2 + x2),−∞ < x < ∞,

where t > 0 is a scale parameter. The corresponding Cauchy distribution function
is given by:

Ft(x) = 1/2 + arctan(x/t)/π.

In this mutatin strategy, the following relation transforms the element xk into x′k:

(2) x′k = xk + ηδk,

PARALLEL MUTATION BASED GENETIC CHROMODYNAMICS 49

Figure 2. Comparison between Cauchy and Gaussian density functions

where δk is a Cauchy random variable. The method used to generate Cauchy ran-
dom numbers is based on the inverse transformation, i.e. the inverse distribution
function, and is de�ned by:

δk = ttan[π(U(0, 1)− 1/2)],

where U(0,1) denotes the unit rectangular variate [5].
In the continuous case, the uniform distribution is also called the rectangular

distribution because of the shape of its probability density function. The standard
uniform distribution is the continuous uniform distribution with the values of a
and b set to 0 and 1 respectively, so that the random variable can take values only
between 0 and 1.

Generally t is taken to be 1. δk is generated anew for each value of k. Correction
step η may have the same value as in correction rule (1).

5. Experimental results
Multimodal functions having local optima are often regarded as being di�cult

to optimize. The e�ectiveness of the method is demonstrated on a number of
eight multimodal test functions [2], [6]. One-dimensional functions have been cho-
sen for implementation, but the method can be easily extended to n-dimensional
functions.

The following eight benchmark functions are used for testing the proposed
model:

f1(x) = [0.002 +
25∑

i=1

1/(i + (x− ai)6)]−1,−1000 ≤ x ≤ 1000

f2(x) = 0.00025(x− 100)2 − cos(x− 100) + 1,−600 ≤ x ≤ 600

50 ANCA GOG AND D. DUMITRESCU

f3(x) = −
5∑

i=1

ci[exp(−(x− ai)2/π)cos(π(x− ai)2)], 0 ≤ x ≤ 10

f4(x) = 20− 20exp(−0.2x + e− exp(cos(2xπ)/n)), 1 ≤ x ≤ 30
f5(x) = 10 + (x2 − 10cos(2xπ)), 1 ≤ x ≤ 5
f6(x) = 418.9828872724339− xsin(

√
|x|),−500 ≤ x ≤ 300

f7(x) = lnxsin(ex) + sin(3x), 0.1 ≤ x ≤ 4
f8(x) = exp(−2ln2((x− 0.1)/0.8)2)sin(5xπ)2, 0 ≤ x ≤ 3

Remarks:
(i) Coe�cients ai, i = 1, . . . , 25 in function f1 (Shekel's Foxholes function), are
components of the vector a=(-32 -16 0 16 32 -32 ... 0 16 32).
(ii) Coe�cients ci, i = 1, . . . , 5 in function f3 (Langerman's function), are compo-
nents of the vector c=(0.806 0.517 1.5 0.908 0.965), and coe�cients ai, i = 1, . . . , 5
are components of the vector a=(9.681 9.4 8.025 2.196 8.074).

Example:
Let us consider the function de�ned as:

f3(x) = −
5∑

i=1

ci[exp(−(x− ai)2/π)cos(π(x− ai)2)],

0 ≤ x ≤ 10.

Algorithm parameters are given in Table 1.

Table 1. PMGC parameters for test function f3.

Initial population size 300
Interaction (mating) radius 0.5
Mutation step size 0.001
Merging threshold 0.1
Number of epochs before stopping 10
Remarks The function has one global

optimum and seven local op-
tima.

Results obtained are given in Table 2.
Initial population is depicted in Figure 3. Populations obtained at several in-

termediate stages (epochs) are depicted in Figures 4 and 5. Final population is
depicted in Figure 6. Final population contains only problem optima. All optima
are correctly detected.

PARALLEL MUTATION BASED GENETIC CHROMODYNAMICS 51

Figure 3. Initial 300 members population.

Figure 4. PMGC population after 2 epochs. Population has 68 members.

52 ANCA GOG AND D. DUMITRESCU

Figure 5. PMGC population after 5 epochs. Population has 25 members.

Figure 6. PMGC �nal population obtained after 35 epochs.
Population has 7 members representing optimal solutions. All
optimal solutions are correctly detected in this run.

PARALLEL MUTATION BASED GENETIC CHROMODYNAMICS 53
Table 2. PMGC results obtained for test function f3 with pa-
rameters in Table 1.

Number of detected optima 7
Number of epochs needed for convergence 35
Number of recombinations involved 232
Number of mutations involved 242

Table 3 summarizes the �nal results obtained after 100 runs of SGC and PMGC
for all considered benchmark functions. It can be seen that PMGC performs
better than SGC consistently for these functions. The proposed PMGC model
outperforms SGC as regards the number of epochs needed to �nd the local optimal
points. The results regard the average number of generations needed to locate
the optimal points in both SGC and PMGC approaches after 100 runs of both
algorithms. Also, the best value obtained in both approaches can be seen in Table
3.

Table 3. Results obtained after 100 runs of PMGC and SGC;
the average and the best number of epochs needed to �nd the
optimal points.

Test function Average
PMGC

Average
SGC

Best
PMGC

Best
SGC

f1 57 83 39 64
f2 53 66 32 35
f3 71 102 31 60
f4 55 99 35 50
f5 52 107 34 51
f6 53 95 37 52
f7 69 792 52 685
f8 52 53 35 38

Regarding the number of optimal points detected, PMGC and SGC have similar
results. For the considered test functions, in both approaches, in 98% of the cases
all the optimal points have been detected.

6. Conclusions
A new model of applying genetic operators consistently improves the results

obtained by the standard approach of Genetic Chromodynamics. The model is
based on the parallel action of two genetic operators: recombination followed by
small rate mutation and high rate mutation. The obtained o�spring will compete

54 ANCA GOG AND D. DUMITRESCU

with the parents for survival. The two chromosomes with the higher quality will
survive if they belong to regions of di�erent optimal points. The Gaussian mu-
tation strategy is proposed for the mutation that follows recombination and the
Cauchy strategy is proposed for the mutation that acts parallel to recombination.

References
[1] Bäck, T., Fogel, D.B., Michalewicz, Z. (Editors), Handbook of Evolutionary Computation,

Institute of Physics Publishing, Bristol and Oxford University Press, New York, 1997.
[2] Digalakis, J.G., Margaritas, K. G., An experimental study of benchmarking functions for

genetic algorithms, Intern. J. Computer Math., 2002, Vol. 79(4), pp. 403�416.
[3] Dumitrescu, D., Lazzerini, B., Jain, L.C, Dumitrescu, A., Evolutionary Computation, CRC

Press, Boca Raton, FL., 2000.
[4] D. Dumitrescu, A. Gog, A new evolutionary technique for multimodal optimization. Interna-

tional Conference on Computer and Comunications (ICCC) Oradea, 2004, p. 119-123.
[5] Maulik, U., Bandyopadhyay, S., Pakhira, M., Clustering Using Annealing Evolution: Ap-

plication to Pixel Classifcation of Satellite Images, The 3rd Indian Conference on Computer
Vision, Graphics and Image Processing: ICVGIP-2002 Proceedings, December 2002.

[6] Naujoks, B., Bäck, T., Willmes, L., Test Case Computation Results INGENET Project
Report D 5.21 (ICD), January 2000.

[7] Yao, X., Liu, Y., Lin, G. Evolutionary Programming Made Faster, IEEE Transactions on
Evolutionary Computation, 3(2), 1999, p.82-102.

Babes-Bolyai University of Cluj-Napoca, Faculty of Mathematics and Computer
Science, Computer Science Department

E-mail address: {anca,ddumitr}@cs.ubbcluj.ro

STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume XLIX, Number 2, 2004

SPEAKER INDEPENDENT PHONEME CLASSIFICATION IN
CONTINUOUS SPEECH

MARGIT ANTAL

Abstract. This paper examines statistical models for phoneme classi�ca-
tion. We compare the performance of our phoneme classi�cation system
using Gaussian mixture (GMM) phoneme models with systems using hidden
Markov phoneme models (HMM). Measurements show that our model's per-
formance is comparable with HMM models in context independent phoneme
classi�cation.

Key words: Phoneme classi�cation, Gaussian mixture models, Contin-
uous speech recognition, Unsupervised learning

1. Introduction
In order to build a continuous speech recognition system it is necessary to

model sub-word units. It is impossible to model all the words even in a reduced
size vocabulary. Word models will be formed from the concatenation of sub-word
units. These units will be the phonemes. The phonemes are a set of base-forms
for representing the sounds in a word. Replacing one phoneme in a word with
another is usually enough to turn that word into a di�erent word (or no word).

There are two general methods used for evaluating phoneme recognition sys-
tems, classi�cation and recognition. In classi�cation the segmentation is given
and the goal is to �nd the most likely label for each segment of speech, given its
beginning and end time. In the more general problem of recognition, on the other
hand, both the labels and the segmentation are unknown.

This paper investigates the problem of phoneme classi�cation. All the mea-
surements were done on the DARPA TIMIT speech corpus which is a manually
segmented speech database. The state-of-the-art technology in speech recognition
is Hidden Markov Models [5]. Commercial speech recognition systems usually use
HMM models for phonemes with continuous densities. The common model is a
left-to-right HMM with three states (see Fig.1). The reason for using three states

Received by the editors: November 2004.
2000 Mathematics Subject Classi�cation. 68T10, 65C40.
1998 CR Categories and Descriptors. I.5.1 [Computing Methodologies]: Pattern

Recognition � Models; I.5.4 [Computing Methodologies]: Pattern Recognition � Applica-
tions .

55

56 MARGIT ANTAL

o1 o2 o3 oT

2 3

probabilities

state
transition

omission
probabilities

observation
sequence

1

...

states

Figure 1. Three-state left-to-right phoneme model

is that the �rst part and last part of a phoneme are usually di�erent from the mid-
dle due to co-articulation. This means that every state is responsible to model one
third of a phoneme. Several authors [1] noticed that the transition probabilities
have a negligible impact on the recognition accuracy and are often ignored. That
is why in our system we used GMM for modeling phonemes. A GMM is a HMM
with a single state, so there are no state transition probabilities, only observation
emitting probabilities. Measurements show that our system's classi�cation accu-
racy is close to systems using HMM for context-independent phoneme models and
with Maximum-likelihood estimation of the parameters.

The structure of this paper is as follows. First we provide a short review of the
phoneme classi�cation problem and present the GMM modeling technique. Then
we describe the acoustic features which were used. The �nal part of the paper
discusses aspects of the experiments and the obtained results.

2. Phoneme Classification
2.1. Phoneme Modeling. Phoneme classi�cation in continuous speech is a spe-
cial pattern classi�cation problem. It is easier than the phoneme recognition,
because in classi�cation phoneme boundaries are given. There are several ap-
proaches to pattern classi�cation. Roughly we can divide these approaches into
generative and discriminative modeling.

The HMM-GMM approach belongs to the generative models. Recently these
models were extended and new discriminative training algorithms were proposed
[6]. In the HMM-GMM approach each phoneme in the speech signal is given as
a series of observation vectors O = o1, o2, . . . , oT , and each one has one model
for each phoneme c. These models return a class-conditional likelihood P (O|c).

SPEAKER INDEPENDENT PHONEME CLASSIFICATION IN CONTINUOUS SPEECH 57

The models are composed of states, and for each state we model the probability
that a given observation belongs to this state. Time warping is handled by state
transition probabilities, that is the probability that a certain state follows the
given state. Supposing that the observations are independent (which is true only
if we perform feature extraction in a very special way), the �nal probability for a
sequence of observations can be computed using the forward algorithm [5].

HMM has several di�erent forms like the discrete observation HMM and the
continuous observation HMM. The discrete observation HMM is restricted to the
production of a �nite set of discrete observations. On the other hand in contin-
uous observation HMM the observations are continuous and vector-valued. The
usual way is to use a mixture of weighted Gaussian probability density function
characterizing the distribution of observations within each state. The probability
density function is given as

(1) p(oj) =
k∑

i=1

PiN (oj ,Mi, Σi)

where N (. , Mi,Σi) denotes the multidimensional normal distribution with mean
Mi and covariance matrix Σi, k is the number of mixtures, and Pi are positive
weighting factors which sum to 1. The D-dimensional normal density function has
the form

(2) N (oj ,Mi,Σi) =
1√

(2π)Ddet(Σi)
e−

1
2 (oj−Mi)

T Σ−1
i (oj−Mi)

While HMMs are used for computing the class conditional likelihoods, discrimina-
tive models try to model the surfaces that separate the classes. For discriminative
models one can use Arti�cial Neural Networks [7] (ANN) or a relatively new tech-
nology called Support Vector Machines [8]. A special ANN which was successfully
applied for phoneme recognition is the Self-Organizing Map (SOM). This was in-
troduced by Kohonen [9] for Finnish phoneme models and good results were also
obtained for English vowels [10].

2.2. Gaussian Mixture Models. Our classi�cation system was built for gener-
ative models. Instead of three states HMM we used only one state HMM which is
a GMM. Our aim was to achieve the same recognition accuracy as for the classi-
cal three states HMM. We performed context independent classi�cation (context
dependent models perform better) on the DARPA TIMIT database and obtained
slightly better classi�cation accuracy than those using HMM on the same database.

Gaussian Mixture Models can be viewed as a special type of clustering. Clus-
tering is an unsupervised classi�cation and in the contributed papers appears as
normal decomposition. Decomposition of a distribution into a �nite number of
normal distributions has been studied extensively. The parameters of normal dis-
tributions can be estimated using the method of moments or maximum likelihood

58 MARGIT ANTAL

estimation. The maximum likelihood (ML) method is more reliable especially for
high-dimensional cases. Having high dimensional feature vectors as data, we chose
this one. Let us assume that p(X) consists of k normal distributions as

(3) p(X) =
k∑

i=1

Pi · pi(X)

where pi(X) is a normal distribution (N (X, Mi,Σi)) with the expected vector
Mi and covariance matrix Σi. Our problem simpli�es to estimation of Pi, Mi,
Σi (i = 1 . . . k) from the n available samples X1, X2, . . . , Xn, drawn from p(X).
Our goal is to maximize

∏n
j=1 p(Xj) with respect to Pi, Mi,and Σi under the

constraint
∑k

i=1 Pi = 1. This optimization problem must be solved iteratively.
One solution to this problem can be found by applying the maximum likelihood
estimation technique (ML). Taking the logarithm of

∏n
j=1 p(Xj), the criterion to

be maximized becomes
∑n

j=1 ln p(Xj). Using the Lagrange multiplier's method
the criterion to be maximized is

(4) J =
n∑

j=1

ln p(Xj)− µ

(
k∑

i=1

Pi − 1

)
,

where µ is a Lagrange multiplier. Computing the derivatives with respect to Pi,
Mi and Σi and making them zeros we obtain the following formulas.

(5) Pi =
1
n

n∑

j=1

qi(Xj)

(6) Mi =
1
Ni

n∑

j=1

qi(Xj)Xj

(7) Σi =
1
Ni

n∑

j=1

qi(Xj)(Xj −Mi)(Xj −Mi)T ,

where

(8) qi(X) =
Pi pi(X)∑k

j=1 Pj pj(X)

is the a posteriori probability of X belonging to class i and satis�es
∑k

i=1 qi(X) =
1. Ni is the number of samples belonging to class i.

The parameter estimation process can be described as follows.
Step 1. Choose an initial classi�cation, Ω(0), and calculate Pi, Mi and Σi (i =
1, . . . , k).

SPEAKER INDEPENDENT PHONEME CLASSIFICATION IN CONTINUOUS SPEECH 59

Step 2. Having calculated P
(l)
i , M

(l)
i , and Σ(l)

i , compute P
(l+1)
i , M

(l+1)
i , and Σ(l+1)

i

by 5, 6 and 7 . The new q
(l+1)
i (X) can be calculated as

(9) q
(l+1)
i (Xj) =

P
(l)
i · p(l)

i (Xj)∑k
s=1 P

(l)
s p

(l)
s (Xj)

Step 3. When q
(l+1)
i (Xj) = q

(l)
i (Xj) for all i = 1, . . . k and j = 1, . . . n, then stop.

Otherwise, increase l by 1 and go to step (2)
In order to reduce the computation time we can force the covariance matrices

to be diagonal. This assumption is justi�ed since we can extract statistically
uncorrelated features from speech. A diagonal covariance matrix allows expressing
(2) as:

N(o(j),M (i),Σ(i)) =
1√

(2π)D
∏D

k=1(σ
(i)
k)2

e
− 1

2

∑D
k=1

(o
(j)
k
−M

(i)
k

)2

(σ
(i)
k

)2

where M (i) = (M (i)
1 , M

(i)
2 , . . . ,M

(i)
D) , σ(i) = (σ(i)

1 , σ
(i)
2 , . . . , σ

(i)
D) and o(j) =

(o(j)
1 , o

(j)
2 , . . . , o

(j)
D).

3. Experimental results
3.1. The DARPA TIMIT speech corpus. We used the TIMIT corpus for all
experiments. This corpus was designed for training and testing continuous speech
recognition systems. The database contains 6300 sentences, 10 sentences uttered
by each of 630 speakers from 8 major dialect regions of the United States. The data
were recorded at a sample rate of 16 KHz and a resolution of 16 bits. This corpus
was manually segmented so the phonetic boundaries are given. The phoneme set is
divided into the following 6 categories: vowels, stops, a�ricates, fricatives, nasals,
semivowels (and glides). Other symbols are used for silence and closure intervals
of stop consonants and a�ricates. There are 61 symbols used for labeling phonetic
segments but most research papers present results on a reduced 39 symbol set.
Table 1 presents the reduced 39 TIMIT symbol set.

3.2. Features, training and testing. We used for feature extraction 16 ms
frame with 8 ms frame shift. We chose 16 ms for frame length because the
phonemes belonging to the Stop category are usually very short. For example
we obtained 17.93 ms average length for the b phoneme. This length was com-
puted considering 915 occurrences of the phoneme in the speech corpus. From
every frame we computed 12 mel frequency cepstrum coe�cients[2, 3] and the
energy of the frame. These coe�cients do not incorporate any information about
the way the signal changes over longer periods. However, it is well known that
such information is essential in identifying sounds. In order to incorporate such

60 MARGIT ANTAL
Table 1. TIMIT symbols

Category Group Category Group Category Group
Vowel ah, ax, axh Vowel ih, ix Fricative z
Vowel iy Semivowel el, l Fricative f
Vowel ih, ix Semivowel r Fricative th
Vowel eh Semivowel w Fricative v
Vowel ey Semivowel y Fricative dh
Vowel ae Semivowel hh, hv Stop b
Vowel aa, ao Nasal m, em Stop d
Vowel aw Nasal n, en, nx Stop g
Vowel ay Nasal ng, eng Stop p
Vowel oy A�ricate jh Stop t
Vowel ow A�ricate ch Stop k
Vowel uw, ux Fricative s Stop dx
Vowel axr, er Fricative sh, sz Closure epi,q,bcl, dcl,gcl,

kcl,pcl,tcl,pau,h#

information we computed the �rst and second order derivatives which resulted in
39 features for a frame [4].

The 6300 utterances from TIMIT corpus were split into 4620 training utterances
and 1680 testing ones. We performed three types of training. In the �rst type we
used only 200 occurrences of every phoneme from the training set, in the second
type we selected 400 occurrences and in the third one we used 1000 occurrences
per phoneme. From these data we trained our phoneme models. For testing we
used only the �rst 200 utterances from the standard 1680 set.

For every experiment we used the reduced 39-TIMIT phoneme set.

3.3. Baseline GMM system. In this experiment we �xed all parameters of the
system except the number of mixtures. We used only diagonal covariance matrices
in order to speed up the parameter estimations. Table 2 summarizes the overall
classi�cation accuracy obtained for di�erent number of mixtures and for di�erent
numbers of phoneme occurrences used in training the models.

The best result for every type of training is in bold type. From this table we can
conclude that for a �xed number of training data always exist an optimal model.
If we use 200 occurrences per phonemes, the optimal model is formed by 32 normal
densities. When we increased this number, there were not enough training data
for accurate estimation of model parameters.

SPEAKER INDEPENDENT PHONEME CLASSIFICATION IN CONTINUOUS SPEECH 61
Table 2. Classi�cation accuracies vs. number of Gaussians

Nr. of Gaussians 200 occ./phone 400 occ./phone 1000 occ./phone
1 41.56% 42.41% 44.68%
2 45.27% 47.77% 47.73%
4 48.54% 50.37% 51.20%
8 49.27% 52.34% 52.49%
16 51.98% 55.99% 55.68%
32 53.55% 57.10% 58.54%
64 52.68% 57.77% 58.89%
128 57.28% 60.16%
256 60.43%

Table 3. HMM

Paper Frame size/shift Features Mixtures/state Accuracy
[6] 32ms/10ms MFCC-13+Delta 5 58.97%
[11] 25.6ms/unspec. CC-12+Delta 8 57.10%
[12] 20ms/10ms MFCC-18+Delta unspec. 63.00%

3.4. Baseline HMM systems. Comparing our results with results obtained by
other researchers is not an easy task, although the experiments are conducted on
the same speech corpus. This di�culty is due to the incomplete presentation of
the parameters of the experiments. In this section we try to summarize results
obtained by others in the task of phoneme classi�cation using HMM technology for
phoneme modeling. We present results obtained by context independent phoneme
models with measurements performed on TIMIT corpus. All the cited papers used
3 state hidden Markov phoneme models. Table 3 presents the results obtained
by other research papers on the same task. It must be noted that [12] used
full covariance matrices and the others (including our paper) diagonal covariance
matrices for normal densities modeling.

More results can be found on the phoneme recognition topic, especially reported
on the context dependent phoneme recognition task.

3.5. Frames selection. Several authors select only a few frames from the mid-
dle of each phoneme and use only these frames for training the models [9, 10].

62 MARGIT ANTAL
Table 4. Classi�cation accuracies vs. number of frames

Nr. of frames Classi�cation accuracy
3 53.07%
5 56.06%
7 56.70%
all 57.10%

Sometimes they use such a frame selection for simpli�cations, but it can be proved
experimentally that the middle part of phonemes contain the real phoneme speci�c
features. Our experiment was performed using as models 32 Gaussian mixtures
and 200 occurrences per phonemes in training. Instead of using all frames belong-
ing to the phoneme segment we used only a �xed number of frames and computed
the recognition accuracy for the overall system. We ran this experiment for the
following number of frames: 3, 5, 7 and all frames belonging to the phoneme.
Table 4 summarizes the results.

3.6. Intra-category classi�cation. The best classi�cation accuracy for 400 oc-
currences per phoneme in training was obtained for 64 Gaussian models. We
calculated the classi�cation accuracies for the six phoneme categories. Using these
models we computed the intra-category classi�cation accuracy. Obviously the
intra-category classi�cation is higher than the all phonemes classi�cation (see Ta-
ble 5) because classi�cation accuracy decreases with increasing the number of
classes. One way to deal with this problem is to divide the entire phoneme set
into phoneme categories by a category classi�er and then to recognize phonemes in
each category by a phoneme classi�er. These categories contain all phonemes from
Table 1 except silence, because this is the only category having only one phoneme
group.

We computed the confusion matrix for 64 Gaussian models with 1000 occur-
rences per phoneme in training. The best classi�ed phoneme was the vowel oy and
the worst uh. Both are vowels. The most common errors are between symbols
belonging to the same category (see Table 6).

4. Conclusions and Future Work
The main conclusions of this paper are as follows. For a �xed number of training

data always exist an optimal model. This was demonstrated experimentally. Our
measurements show that using GMM as phoneme models one can reach slightly
better classi�cation accuracy than using three-states hidden Markov models. Ex-
periments show that the middle part of the phoneme contains the most phoneme

SPEAKER INDEPENDENT PHONEME CLASSIFICATION IN CONTINUOUS SPEECH 63
Table 5. Intra category and all phonemes classi�cation accuracies

Phoneme category All phonemes Intra category
Vowels 56.05% 60.70%
Nasals 48.63% 61.26%

Fricatives 68.80% 77.64%
Semivowels 59.91% 84.47%

Stops 51.19% 60.78%
A�ricates 57.35% 72.80%

Table 6. The ten most common errors

Hand Label Recognizer Label Percentage of all errors
n, en, nx ng, eng 2.7%
Closures dx 2.6%
ih, ixx ah,ax,ax-h 1.9%

b g 1.9%
ih, ix iy 1.6%
d g 1.6%

ih, ix ey 1.4%
r axr, er 1.3%

Closures dh 1.3%
Closures g 1.3%

speci�c information. The confusion matrix demonstrates the viability of cate-
gory classi�cation scheme, because the most common errors are between symbols
belonging to the same category.

In the future we would like to implement the category classi�cation scheme
and after that to transform our system into a phoneme recognition system. An-
other aim is to test our system using context dependent phoneme models and to
improve the parameter estimation using other methods than the ML (Maximum
Likelihood).

64 MARGIT ANTAL

5. Acknowledgements
We are grateful to Arti�cial Intelligence Research Group of the Hungarian Uni-

versity of Szeged1 for the possibility to use their speech database for these experi-
ments.

References
[1] M. K. Omar, M. Hasegawna-Johnson, S. Levinson, �Gaussian Mixture Models of Phonetic

Boundaries for Speech Recognition�, Automatic Speech Recognition and Understanding
Workshop, 2001.

[2] L.R. Rabiner, B.H. Juang, �Fundamentals of Speech Recognition�, Prentice Hall, Englewood
Cli�s, 1993.

[3] J.R. Deller, Jr. J. H.L. Hansen, J. G. Proakis, �Discrete-Time Processing of Speech Signals�,
John Wiley&Sons, 2000.

[4] X. Huang, A. Acero, H.-W. Hon, �Spoken Language Processing�, Prentice Hall, 2001.
[5] L. R. Rabiner, �A tutorial on hidden Markov models and selected applications in speech

recognition.� Proceedings of the IEEE, vol. 37, no. 2, pp. 257-86, February, 1989.
[6] R. Chengalvarayan, L. Deng, �Speech Trajectory Discrimination Using the Minimum Clas-

si�cation Error Learning�, IEEE Transactions on Speech and audio Processing, Vol. 6, No.
6, pp. 505-515, Nov. 1998.

[7] C. M. Bishop, �Neural Networks for Pattern Recognition�, Oxford University Press Inc.,
New-York, 1996.

[8] V. N. Vapnik, �Statistical Learning Theory�, John Wiley & Sons Inc., 1998.
[9] T. Kohonen, �Self-Organizing Map�, 3rd edition, Springer, Berlin, 2001.
[10] N. Arous, N. Ellouze, �Cooperative supervised and unsupervised learning algorithm for

phoneme recognition in continuous speech and speaker-independent context�, Neurocom-
puting 51, pp. 225-235, 2003.

[11] B. Logan, P. Moreno, �Factorial HMMs for acoustic modeling�, ICASSP, Vol. 2, pp. 813-816,
1998.

[12] R. Merwe, �Variations on Statistical Phoneme Recognition - a hybrid approach�, master
thesis, 1997.

Sapientia � Hungarian University of Transylvania, Faculty of Technological and
Human Sciences, 540053 Târgu-Mure³, Romania

E-mail address: manyi@ms.sapientia.ro

1Research Group on Arti�cial Intelligence of the Hungarian Academy of Sciences and
University of Szeged, H-6720 Szeged, Aradi vertanuk tere 1., Hungary, http://www.inf.u-
szeged.hu/speech

STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume XLIX, Number 2, 2004

PERFORMANCE ANALYSIS MODEL FOR GOAL DRIVEN
MEASUREMENTS IN SOFTWARE DEVELOPMENT PROCESS

D. RADOIU AND A. VAJDA

Abstract. The paper proposes a Performance Analysis Model (PAM) as
base for analysis of goal driven measurements within software development
process.

The model is developed on common view of the process for both acquirer
and supplier enabling parties both to identify problem areas and to improve
the overall process.

Keywords: Performance Analysis Model, Process Measurements, Out-
sourcing Process Management, Application Development, Improvement.

1. Introduction

The research was organized as a practical project at Infopulse1 and a research
project at Petru Maior University2 of Tirgu Mures.

The paper �rstly reviews the Acquirer and Supplier roles and responsibilities in
a sourcing process, points on process areas which are within the control of both
parties, proposes a set of relevant goal driven measurements, and a performance
analysis model to interpret them.

Issues in sourcing are complex and multidimensional yet both Supplier and
Acquirer have similar fundamental objectives such as:

• on time/schedule
• at cost/on budget
• with all required functionalities
• without defects/of required quality (no rework after delivery)

Received by the editors: December 2004.
2000 Mathematics Subject Classi�cation. 68N30.
1998 CR Categories and Descriptors. D.2.9 [Software]: Software Engineering � Manage-

ment .
1www.infopulse.ro
2www.upm.ro

65

66 D. RADOIU AND A. VAJDA

We start from the assumption that the goal (for the proposed set of measure-
ments) is enabling both parties to identify problem areas in the sourcing process
and to improve the overall process. �The balanced set of measurements helps
prevent dysfunctional behavior by monitoring the group's performance in several
complementary aspects of their work that lead to project success.�[5].

As the Acquirer and the Supplier have control and best insight on di�erent
process areas, the interpretation of measurements with regard to the above men-
tioned goals is inherently di�erent. Therefore agreement over the Sourcing Process
Model (SPM), roles, responsibilities, measurements and their interpretation to se-
cure success, is required.

This can be done by developing a Performance Analysis Model (PAM) agreed
by both parties.

The fundamental idea of this paper is that the agreed set of goal driven mea-
surements interpreted through a commonly agreed performance analysis model
enables:
a. Identi�cation of problem areas and quick implementation of appropriate action
b. Process quality improvement
c. Better planning estimates based on historical data
d. Common view (for both Acquirer and Supplier) of the process

2. Sourcing Process Model

The Sourcing Process Model (SPM) is depicted in Figure1 [1]

Figure 1. Sourcing Process Model (SPM)

PERFORMANCE ANALYSIS MODEL IN SOFTWARE DEVELOPMENT 67

Di�erent terms are used interchangeably in available literature to describe the
roles and the responsibilities of the parties involved in the sourcing process:

• Acquirer/Partner to describe the party authorizing a work package (ac-
quisition) and

• Supplier/Vendor/Developer/Contractor for the party accepting the work
package (contracting)

We start by identifying process areas and which party exercises control over it.
The overall process consists of six major areas:

• Authorizing a work package (Acquirer)
� Activities: requirements management, de�ning the work package

and stating acceptance criteria for executed work
• Accepting a work package (Supplier)

� Activities: clarifying work package de�nition, acceptance criteria,
assessing risk

• Executing a work package (Supplier)
� Activities: work package planning and execution, reporting progress

(status). Activities are strongly in�uenced by directions and correc-
tions, change requests, from Supplier and communication quality.

• Assessing progress (Acquirer)
� Activities: monitoring progress, directions and corrections

• Delivering executed work package (Supplier)
� Activities: check executed work package against acceptance criteria

(usually changed according to post-award change requests due to
poor requirements management) and timely delivery

• Accepting executed work package (Acquirer)
� Activities: receiving executed work package and checking require-

ments satisfaction

Acquirer has full control over:

• Work package (WP) de�nition
• Work package (WPS) stability
• Requirements management (area that usually is poorly measured/managed

problems being transferred to the Supplier)
• Project monitoring (status) and oversight (directions and corrections)
• Requirements satisfaction (by checking deliverables against acceptance

criteria)

68 D. RADOIU AND A. VAJDA

Supplier has full control over:
• Internal development processes
• Deliverables quality (e.g. executed work package, intermediate deliver-

ables)
Supplier & Acquirer share control over:

• Communication e�ectiveness
• Relationship management
• Contract execution
• Communication channels
• Risk management

3. Goal Driven Measurements and Performance Analysis Model

Measurements goal is to insure successful software development by early iden-
ti�cation of problem areas and implementation of corrective actions. Performance
Analysis model (PAM, Figure 2) suggests both a set of relevant measurements [1]
and a consistent way to interpret them.

3.1. Authorizing and Accepting a WP measurements. The sourcing pro-
cess is initiated by the Acquirer which authorizes a WP and proposes it to the
Supplier. A WP could be described in various ways, e.g. WP size, based on Func-
tional Points (FP) and WP Accuracy (WPA), a quantitative estimation of how
well the assignment is described through analysis documents, design documents,
acceptance criteria.

Communication (e.g. questions and answers, QA) plays a very important role
in clarifying WP accuracy related issues. QA could be quanti�ed simply by their
number. But regardless of their number it is important that questions are answered
in a reasonable time (quanti�ed by average response time, ART) and answers are
speci�c and complete (quanti�ed by communication quality, CQ).

Based on agreed estimating models (e.g. historical data) the parties can quan-
tify measurements either quantitatively (numerical values) or qualitatively (e.g.
color code levels). For instance, using the largely accepted color code, communi-
cation quality could be quanti�ed as good (�Green�), average (�Amber�) or poor
(�Red�). Similarly

WPA could be also described using the same color code or quantitatively by:
WPA = 1 � [QA/FP]

PERFORMANCE ANALYSIS MODEL IN SOFTWARE DEVELOPMENT 69

Figure 2. Performance Analysis Model (PAM)

3.2. Executing a WP and Assessing Progress Measurements. This phase
is initiated by the Supplier by accepting a WP and acknowledging the acceptance
criteria for the executed WP. Let us call the speci�c WP accuracy at the moment
of awarding as WP de�nition level.

Although the development process starts by executing the WP at the de�nition
level, frequently the initial request is changed via formal change requests (CR). If
accepted by the Supplier, CR also modi�es acceptance criteria. Consider a �rst
approximation where the WP stability is also a measurement of acceptance criteria
stability.

WP Stability (WPS) is a quantitative estimation of change requests (CR) per
functional point (FP) after the WP has awarded by Acquirer and accepted by
Supplier:

WPS = 1 � [CR/FP]

Based on statistics, WPS associated risk could be color coded as depicted in
Figure 3.

Ideal stability means no change requests are made after the work package has
been accepted by the Supplier (WPS = 1).

70 D. RADOIU AND A. VAJDA

Figure 3. WP Stability in�uenced by change requests

3.3. Delivering and Receiving a WP Measurements. As in the previous
stages, the focus is on co-operation issues (i.e. between the Supplier and the
Acquirer) therefore measurements will not focus on WP quality, amount of rework,
etc.

Average delivery time, de�ned as:

ADT = delivery time/FP

Could be used to assess delays introduced by di�erent interference factors like
change requests, communication quality, corrections and directions.

PERFORMANCE ANALYSIS MODEL IN SOFTWARE DEVELOPMENT 71

Figure 4. Delivering and receiving an executed WP

4. Interpreting measurements

Table 1 contains measurements to be used with our performance analysis model
(Measurements have no meaning apart from their context).

Let us use them to quickly asses risks associated with accepting a work package.
We will use qualitative measurements for WP accuracy and communication.

Table 2 reveals that a poorly described WP and a poor communication rela-
tionship certainly leads to failure (highest risk level, Red). Any combination of
Middle-Low WPA and communication quality requires immediate corrective ac-
tions (medium risk level, Amber). A high level of WPA could lead to success

72 D. RADOIU AND A. VAJDA

Measurements Acronym Value Tracked Process/Project Is-
sues

WP size WP FP Product complexity, growth
WP accuracy WPA WPA = 1 �

[QA/FP]
Requirements gathering
quality, client expecta-
tions management, design
quality

WP stability WPS WPS = 1 �
[CR/FP]

Sourcing process e�ciency,
productivity, rework, sched-
ule delays

Communication
quality

CQ Green, Amber,
Red

E�ciency, productivity

Questions and
answers

QA number Analysis and design quality

Average re-
sponse time

ART ART =∑ response time
QA

E�ciency, productivity

WP de�nition
level

WPD WP at the mo-
ment of starting
execution

Product size, complexity,
required e�ort, schedule,
acceptance criteria

Directions and
corrections

DC Green, Amber,
Red

Responsiveness and e�ec-
tiveness

Average
Delivery Time

ADT ADT = delivery
time/FP

Productivity

(assuming a high stability of the requirements) almost regardless of the communi-
cation quality between parties (low risk level, Green).

PERFORMANCE ANALYSIS MODEL IN SOFTWARE DEVELOPMENT 73

Again, as the purpose of this PAM is to identify problem areas in a sourcing
process, the focus is not on the software development process but on the co-
operation between parties.

Executing a WP is in�uenced by WP accuracy and requirements stability. Re-
quirements stability is an area usually not very well managed by Acquirer which
means customer management issues are transferred to Supplier. Risks could be
lowered though by a high quality communication and e�ective directions and cor-
rections (Table 3).

Risk level is high (Red) when we have to deal with a poor described WP when
execution is interfered by a relatively high number of change requests, poorly sup-
ported by directions via a poor quality communication. Yet, this table also reveals
that very good communication and quality directions and corrections support even
a poor WP accuracy interfered by CR.

WP delivery risk level is similarly evaluated in Table 4.

5. Conclusions and further work

PMA was imagined to support sourcing process analysis for small teams and
small to medium size projects. Although PMA is independent of the supplier's

74 D. RADOIU AND A. VAJDA

team, increased team size brings more complexity and therefore requires more
attention.

Quantitative measurements bring more insight into the overall process. For
instance, based on historical data one can infer that a certain CR average score
indicates that up to a certain percentage of the requirements were not known when
the WP was awarded.

We must also observe that PMA does not take into consideration factors outside
control of Acquirer and Supplier (e.g. end user).

References
[1] Radoiu D., Vajda A., �Process-Oriented Metrics for Application Development Outsourcing�,

internal report
[2] Jeannine Siviy, Goethert W., Ferguson R.,Trading Places: Measurement and Analysis in

the Eyes of the Acquirer and the Supplier, SEPG 2004, March 2004
[3] McGarry J., Card D., Jones C., Layman B., Elizabeth Clark, Dean J., Hall F., Practical Soft-

ware and Systems Measurement A Foundation for Objective Project Management, Guide-
book, Addison Wesley Professional, October 2001, http://www.psmsc.com/PSMBook.asp

[4] Florac, Park, and Carleton, Practical Software Measurement: Measuring for Process Man-
agement and Improvement, CMU/SEI-97-HB-003, 1997

[5] Paulk, Weber, Garcia, Chrissis, Bush, Key Practices of the Capability Maturity Model,
Version 1.1., CMU/SEI-93-TR-25, ESC-TR-93-178, 1993

Department of Mathematics and Computer Science, Petru Maior University,
Târgu Mure³, Romania

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLIX, Number 2, 2004

A NOTE ON THE COMPLEXITY OF THE GENERALIZED
MINIMUM SPANNING TREE PROBLEM

PETRICĂ CLAUDIU POP AND CORINA POP SITAR

Abstract. We consider the Generalized Minimum Spanning Tree Problem
denoted by GMST. It is known that the GMST problem is NP-hard. We
present a stronger result regarding the complexity of the problem, namely,
the GMST problem even on trees is NP-hard. As well as we present three
cases when the GMST problem is solvable in polynomial time.
Keywords: combinatorial optimization, complexity theory, NP-hard, gen-
eralized minimum spanning tree problem, dynamic programming.

1. Introduction

We are concerned with the generalized version of the minimum spanning tree
problem (MST) called the generalized minimum spanning tree problem (GMST).
Given an undirected graph whose nodes are partitioned into a number of subsets
(clusters), the GMST problem is then to find a minimum-cost tree which includes
exactly one node from each cluster. Therefore, the MST is a special case of the
GMST problem where each cluster consists of exactly one node.

The model fits various problems of determining the location of regional service
centers (e.g. public facilities, branches, distribution centers) which should be con-
nected by building links (e.g. highways, communication links). For example, when
a company tries to establish marketing centers, one for each market segment, and
construct a communication network which interconnects the established centers,
the company faces a GMST problem. For another example, when designing met-
ropolitan area networks [7] and regional area networks [15], we are to interconnect
a number of local area networks. For this model, we must select a node in each
local network as a hub (or a gateway) and connect the hub nodes via transmission
links such as optical fibers. Then, such a network design problem reduces to a
GMST problem.

The GMST problem has been introduced by Myung, Lee and Tcha in [10]. Since
then it appeared several papers studying different aspects of the GMST prob-
lems: Feremans, Labbé and Laporte in [5] and Pop in [11] present several integer

Received by the editors: October 5, 2004.
2000 Mathematics Subject Classification. 90C05,90C25, 90C34.

75

76 PETRICĂ CLAUDIU POP AND CORINA POP SITAR

formulations of the GMST problem, in [5] Feremans et al. study the polytope
associated with the GMST problem, in [12] Pop presents approximation results of
the problem, etc. The GMST problem was solved to optimality for graphs with
up to 200 nodes by Feremans [4] using a branch-and-cut algorithm and by Pop
[13] for graphs with up to 240 nodes using a so-called rooting procedure.

A variant of the GMST problem is the problem of finding a minimum cost tree
including at least one vertex from each cluster. This problem was introduced by
Dror et al. in [3]. These authors provide also five heuristics including a genetic
algorithm [8]. In the present paper we confine ourselves to the problem of choosing
exactly one vertex per cluster.

2. Definition of the problem

We begin this section with the definition of the well-known minimum spanning
tree problem.

Let G = (V, E) be a connected graph. A spanning tree is a graph where all the
nodes in the graph are connected in some way with the requirement that there are
no cycles in the graph. If each edge has a weight or cost connected to it, denoting
how much you have to pay in order to use the edge, the total sum of the costs of
the edges can vary from one edge to another, in the same graph. The one of these
possibilities which has the lowest sum is called the minimum spanning tree.

The minimum spanning tree problem can be solved by a polynomial time algo-
rithm, for instance the algorithms of Kruskal [9] or Prim [14]. However as we will
show the GMST problem is NP-hard [1].

The GMST problem is defined on an undirected graph G = (V, E) with nodes
partitioned into m clusters. Let |V | = n and K = {1, 2, . . . , m} be the index set
of the node sets (clusters). Then, V = V1 ∪ V2 ∪ . . . ∪ Vm and Vl ∩ Vk = ∅ for all
l, k ∈ K such that l 6= k. We assume that edges are defined only between nodes
belonging to different clusters and each edge e = {i, j} ∈ E has a nonnegative cost
denoted by cij or by c(i, j).

The GMST problem is the problem of finding a minimum-cost tree spanning a
subset of nodes which includes exactly one node from each cluster. We will call a
tree containing one node from each cluster a generalized spanning tree.

3. Complexity of the GMST problem

Garey and Johnson [6] have shown that for certain combinatorial optimization
problems, the simple structure of trees can offer algorithmic advantages for effi-
ciently solving them. Indeed, a number of problems that are NP-complete, when
are formulated on a general graph, become polynomially solvable when the graph
is a tree. Unfortunately, this is not the case for the GMST problem. We will show
that on trees the GMST problem is NP-hard.

COMPLEXITY OF THE GMST PROBLEM 77

Let us consider the case when the GMST problem is defined on trees, i.e. the
graph G = (V, E) is a tree.

To show that the GMST problem on trees is NP-hard we introduce the so-called
set cover problem which is known to be NP-complete (see [6]).

Given a finite set X = {x1, ..., xa}, a collection of subsets, S1, ..., Sb ⊆ X and an
integer k < |X|, the set cover problem is to determine whether there exists a subset
Y ⊆ X such that |Y | ≤ k and

Sc ∩ Y 6= ∅, ∀ c with 1 ≤ c ≤ b.

We call such a set Y a set cover for X.

Theorem 1. The Generalized Minimum Spanning Tree problem on trees is NP-
hard.

Proof: In order to prove that the GMST problem on trees is NP-hard it is enough
to show that there exists an NP-complete problem that can be polynomially re-
duced to GMST problem.

We consider the set cover problem for a given finite set X = {x1, ..., xa}, a collec-
tion of subsets of X, S1, ..., Sb ⊆ X and an integer k < |X|.
We show that we can construct a graph G = (V,E) having a tree structure such
that there exists a set cover Y ⊆ X, |Y | ≤ k if and only if there exists a generalized
spanning tree in G of cost at most k.

The constructed graph G contains the following m = a + b + 1 clusters
V1, ..., Vm:

• V1 consists of a single node denoted by r
• V2, ..., Va+1 node sets (corresponding to x1, x2, ..., xa ∈ X) each of which

has two nodes: one ’expensive’ (see the construction of the edges) say xi

and one ’non-expensive’ say x̂i, for i = 2, ..., a , and
• b node sets, Va+2, ..., Vm with Vν = Sν−(a+1), for ν = a + 2, ...,m.

Edges in G are constructed as follows:
(i) Each ’expensive node’, say xt of Vt for all t = 2, ..., a + 1, is connected

with r by an edge of cost 1 and each ’non-expensive’ node, say x̂t of Vt

for all t = 2, ..., a + 1, is connected with r by an edge of cost 0.
(ii) Choose any node j ∈ Vt for any t ∈ {a + 2, ..., m}. Since Vt ⊂ X, then j

coincides with a node in X, say j = xl. We construct an edge between
j and (the expensive node) xl ∈ Vl with l ∈ {2, ..., a}. The cost of the
edges constructed in this way is 0.

By construction the graph G = (V, E) has a tree structure.

Suppose now that there exists a generalized spanning tree in G of cost at most k
then by choosing

78 PETRICĂ CLAUDIU POP AND CORINA POP SITAR

Y := {xl ∈ X | the expensive vertex xl ∈ Vl+1 corresponding to xl is
a vertex of the generalized spanning tree in G}

we see that Y is a set cover of X.

On the other hand, if there exists a set cover Y ⊆ X, |Y | ≤ k then according to
the construction of G there exists a generalized spanning tree in G of cost at most
k. ¥
The following theorem due originally to Myung et al. [10] is an easy consequence
of Theorem 1.

Theorem 2. The Generalized Minimum Spanning Tree problem is NP-hard.

Remark 3. To show that the GMST problem is NP-hard, Myung, Lee and Tcha
[10] used the so-called node cover problem which is known that is NP-complete (see
[6]) and showed that it can be polynomially reduced to GMST problem. Recall
that given a graph G = (V, E) and an integer k < |V |, the node cover problem is
to determine whether a graph has a set C of at most k nodes such that all the
edges of G are adjacent to at least one node of C. We call such a set C a node
cover of G.

4. Polynomially solvable cases of the GMST problem

As we have seen the GMST problem is NP-hard. In this section we present
some cases when the GMST problem can be solved in polynomial time.

A special case in which the GMST problem can be solved in polynomial time is
the following:

Remark 4. If |Vk| = 1, for all k = 1, ...,m then the GMST problem trivially
reduces to the classical Minimum Spanning Tree problem which can be solved in
polynomial time, by using for instance the algorithm of Kruskal or the algorithm
of Prim.

Another case in which the GMST problem can be solved in polynomial time is
given in the following proposition:

Proposition 5. If the number of clusters m is fixed then the GMST problem can
be solved in polynomial time (in the number of nodes n).

Proof: We present a polynomial time procedure based on dynamic programming
which solves the GMST problem in this case.

Let G′ be the graph obtained from G after replacing all nodes of a cluster Vi with
a supernode representing Vi, that we will call the global graph. For convenience,
we identify Vi with the supernode representing it. We assume that G′ with vertex
set {V1, ..., Vm} is complete.

COMPLEXITY OF THE GMST PROBLEM 79

Given a global spanning tree of G′, which we shall refer to as the global spanning
tree, we use dynamic programming in order to find the best (w.r.t. cost minimiza-
tion) generalized spanning tree.

Fix an arbitrary cluster Vroot as the root of the global spanning tree and orient
all the edges away from vertices of Vroot according to the global spanning tree. A
directed edge 〈Vk, Vl〉 resulting from the orientation of edges of the global spanning
tree defines naturally an orientation 〈i, j〉 of an edge (i, j) ∈ E where i ∈ Vk and
j ∈ Vl. Let v be a vertex of cluster Vk for some 1 ≤ k ≤ m. All such nodes v are
potential candidates to be incident to an edge of the global spanning tree.

The ”subtree” rooted at a vertex v, v ∈ Vk with k ≤ m, denoted by T (v) includes
all the vertices reachable from v under the above orientation of the edges of G,
based on the orientation of the edges of the global spanning tree of G′. The children
of v denoted by C(v) are all those vertices u with a directed edge (v, u). Leaves
of the tree have no children.

Let W (T (v)) denote the minimum weight of a generalized ”subtree” rooted at v.
We want to compute:

min
r∈Vroot

W (T (r)).

We give now the dynamic programming recursion to solve the subproblem W (T (v)).
The initialization is:

W (T (v)) = 0 if v ∈ Vk and Vk is a leaf of the global spanning tree.

The recursion for v ∈ V an interior vertex is then as follows:

W (T (v)) =
∑

l,C(v)∩Vl 6=∅
min
u∈Vl

{c(v, u) + W (T (u))},

where by c(v, u) we denoted the cost of the edge (v, u).

For computing W (T (v)), i.e. find the optimal solution of the subproblem W (T (v)),
we need to look at all the vertices from the clusters Vl such that C(v) ∩ Vl 6= ∅.
Therefore for fixed v we have to check at most n vertices. So the overall complexity
of this dynamic programming algorithm is O(n2), where n = |V |.
Notice that the above procedure leads to an O(mm−2n2) time exact algorithm
for GMST problem, obtained by trying all the global spanning trees, i.e. the
possible trees spanning the clusters, where mm−2 represents the number of distinct
spanning trees of a completely connected undirected graph of m vertices given by
Cayley’s formula [2]. Therefore when the number of clusters m is fixed the above
procedure leads to a polynomial time algorithm for solving the GMST problem.
¥

80 PETRICĂ CLAUDIU POP AND CORINA POP SITAR

The last case when the GMST problem can be solved in polynomial time is given
in the following proposition:

Proposition 6. Consider the GMST problem on trees. If the number of leaves is
bounded then the problem can be solved in polynomial time.

Proof: Because the number of leaves of the graph G = (V, E) (having a tree
structure) is bounded, the number of possible generalized spanning trees, i.e. trees
containing exactly one node from each cluster is finite. Therefore the GMST
problem in this case is solvable in polynomial time. ¥

References

[1] G. Ausiello, Crescenzi, P., Gambosi, G., Kann,V., Marchetti-Spaccamela, A., Protasi, M.,
Complexity and Approximation Combinatorial optimization problems and their approxima-
bility properties, Springer Verlag, 1999.

[2] A. Cayley , On the mathematical theory of isomers, Philosophical Magazine, 67, 1874, 444.
[3] M. Dror, Haouari, M., Chaouachi, J., Generalized Spanning Trees, European Journal of

Operational Research, 120, 2000, 583-592.
[4] C. Feremans, Generalized Spanning Trees and extensions, Ph.D. thesis, Universite Libré de

Bruxelles, Belgium, 2002.
[5] C. Feremans, Labbé, M., Laporte, G., A Comparative Analysis of Several Formulations for

the Generalized Minimum Spanning Tree Problem, Networks 39(1), 29-34, 2002.
[6] M.R. Garey, M.R., Johnson, D.S., Computers and Intractability: A Guide to the Theory of

NP-Completeness, Freeman, San Francisco, California, 1979.
[7] M. Gerla, Frata, L., Tree structured fiber optics MAN’s, IEEE J.Select. Areas Comm. SAC-6,

1988, 934-943.
[8] J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press,

Ann Arbor, 1975.
[9] J.H. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman prob-

lem, Proceedings of the American Mathematical Society 7, 48-50, 1956.
[10] Y.S. Myung, Lee, C.H., Tcha, D.w., On the Generalized Minimum Spanning Tree Problem.

Networks, Vol 26, 1995 231-241.
[11] P.C. Pop, The Generalized Minimum Spanning Tree Problem, Ph.D. thesis, University of

Twente, The Netherlands, 2002.
[12] P.C. Pop, Kern, W., Still, G., An Approximation Algorithm for the Generalized Minimum

Spanning Tree Problem with bounded cluster size, EIDMA 2001 Symposium, Oostende,
Belgium, 25-26 October, 2001.

[13] P.C. Pop, Kern, W., Still, G., A New Relaxation method for the Generalized Minimum
Spanning Tree Problem, to appear in European Journal of Operational Research.

[14] R.C. Prim, Shortest connection networks and some generalizations, Bell Systems Technical
Journal, 36, 1389-1401, 1957.

[15] J.J. Prisco, Fiber optic regional area networks in New York and Dallas, IEEE J. Select.
Areas Comm. SAC-4, 1986, 750-757.

Department of Mathematics and Computer Science, Faculty of Sciences, North
University of Baia Mare, Romania

E-mail address: pop petrica@yahoo.com

STUDIA UNIV. BABE��BOLYAI, INFORMATICA, Volume XLIX, Number 2, 2004

INFEASIBLE PRIMAL-DUAL ALGORITHM FOR MINIMIZING
CONVEX QUADRATIC PROBLEMS

H. ROUMILI, A. KERAGHEL, AND A. YASSINE

Abstract. Problems with a convex quadratic objective function and lin-
ear constraints are important in their own right, and they also arise as sub
problems in Methods for general constrained optimization, such as sequential
quadratic Programming and augmented Lagrangian methods.

In this paper, we propose and implement an infeasible primal-dual algo-
rithm in order to minimize a convex quadratic function subject to bounded
and linear equality constraints.

Preliminary experimentations are particularly encouraging.
Key words : feasible interior points methods, convex quadratic Pro-

gramming, infeasible interior points methods.

1. Introduction

Interior point's methods are recognized to be e�cient for solving many opti-
mization problems. However, �nding a strictly feasible initial point (phase1) is
di�cult.

In theory, we can overcome this di�culty by introducing some arti�cial variables
and by transforming the problem in a new one into a space of superior dimension.
This transformation requires using parameters in general (unknown) to big values
as in the approach of �Big M� in linear programming. Inconveniences of this
approach are known:

(1) One does not know if the size of these large parameters values risk to
destabilize the algorithm.

(2) The reformulation can impair the structure of the original problem be-
cause we add lines and columns. Because of these failings, this approach
is not very welcomed, or is carefully used. Considerable research e�orts
are dedicated to initializing interior point's methods.

Received by the editors: October 15, 2004.
2000 Mathematics Subject Classi�cation. 65K05, 90C20, 90C51.

81

82 H. ROUMILI, A. KERAGHEL, AND A. YASSINE

Several approaches are proposed in which the variant phase1 and phase2 and
where no large parameter is used. The arti�cial variables are introduced through
lines and supplementary columns. The relative process to this approach spread
between 1986 and 1991. All these works main objective consisted in elaborating
algorithms that do not necessarily start inside the feasible domain (of the original
problem) along with theoretical properties, as the polynomial complexity. Re-
searchers did not globally aim at the numeric aspect. So, in these methods, the
initial point is not necessary but transforming the problem is unavoidable.

E�orts of research are oriented towards numeric performances. About this, a
set of practical variants is proposed with the comparative numeric tests from 1989
to 1992. All these algorithms do not require feasible initial point transformation
but start from any positive point and tempt to achieve feasibility and optimality
in a simultaneous manner.

These algorithms are called infeasible interior point's methods; the most part
of these algorithms is that of Newton type. This last class is the object of our
study. We concentrated our e�orts on methods favoured by a rich theory and also
by a lot of numeric subtleties. Indeed, the latter starts phase 2 directly.

Regarding this, several researchers like Zhang, and all authors of principals�
relative development of these methods regarding the linear programming, think
that these algorithms are more e�ective. These subjects seem to be very logical.
On one hand, phase 1 is eliminated and on the other hand, phase 2 iteration
does not defer too much from the feasible case. The preliminary study that we
did stimulates of the numeric behaviour of the convex quadratic programming
development.

2. General presentation of the convex quadratic program

A convex quadratic program with constraints means optimization problem, in
which the objective is a convex quadratic form. The constraints are linear.

Without loss of generalities, we can write it as follwos:

(QP)

min ctx + 1
2xtQx

Ax = b

x º 0
where Q is a n × n matrix assumed to be positive semide�nite, b ∈ Rm, c ∈ Rn

and A is a m× n matrix of full rank.
The dual of (QP) is:

(QD)

max bty − 1
2xtQx

Aty + z −Qx = c

z ≥ 0, y ∈ Rm

INFEASIBLE ALGORITHM FOR CONVEX QUADRATIC PROBLEMS 83

where y ∈ Rm and z ∈ Rn.
We impose the following assumptions:

• (H1) : Sint = {x ∈ Rn / Ax = b, x 〉 0} 6= Φ interior feasible solutions of
(P) is non-empty;

• (H2) :Tint = {(y, z) ∈ Rm × Rn / Aty + z −Qx = c, z 〉 0} 6= Φ interior
feasible solutions of (D) is non-empty.

These assumptions are often used to develop the interior point�s algorithms.

2.1. Principle. Most of the new interior point�s methods are motivated by the
the logarithmic barrier function technique of Frisch (1955) to problem (QP) ap-
plication.

Indeed, to the problem (QP), one associates the problem gate non linear next
one:

(QPµ)

min ctx + 1
2xtQx− µ

n∑
i=1

ln xi = fµ(x)

Ax = b

x 〉 0

 The principle of these methods is to solve the system of Karuch-Kuhn-Tucker
(KKT) partner to the problem (QPµ) by the method of damped Newton, while
leaving from any positive point which is not necessarily feasible. The resolution
of (QPµ) is equivalent at that of (QP) with that if x∗(µ) is an optimal solution of
(QPµ) then x∗ = lim

µ→0
x∗(µ) is an optimal solution of (QP). To achieve feasibility

and optimality we introduce a merit function de�ned by:
φ(x,y, z) = xtz + r(x,y, z)

where r(x, y, z) = ‖Ax− b‖+ ‖−Qx + Aty + z − c‖.
It is clear that r measure feasibility and xtz (duality gap) control the optimality.

The idea is to make the value of this function towards zero during iterations.

2.2. Resolution of (Pµ). x is an optimal solution of (Pµ) if an only if there is
y ∈ Rm such that:

(1)

c− µX−1e−Aty + Qx = 0
Ax = b

x > 0

where: X−1 = diag(1/xi). We apply the method of damped Newton to solve the
system of nonlinear equations (1) from an infeasible starting point (which is not
necessarly feasible) (x, y, z) ∈ Rn×Rm×Rn, (x, z) 〉 0 and µ = xtz/n 〉 0, we gets
the following system:

84 H. ROUMILI, A. KERAGHEL, AND A. YASSINE

X∆z + Z∆x = −XZe + σµe 0 < σ < 1, Z = diag(zi)
A∆x = b−Ax

−Q∆x + At∆y + ∆z = c−Aty + Qx− z

where the solution is: (∆x, ∆y, ∆z), the new iterate is then: (x̂, ŷ, ẑ) = (x, y, z) +
α(∆x, ∆y, ∆z)

With α 〉 0 is the displacement step chosen such a way that (x̂, ẑ) 〉 0 and φk

decreases. If the test of stop is not satis�ed one replaces µ by µ1(µ1 ≺ µ) and
reiterate.

Our infeasible interior point algorithm is described as follows:
BASIC ALGORITHM
Beginning :
Initialisation:

Start with (x, z) 〉 0, y ∈ Rm (arbitrary) and calculate φ. Either ε 〉 0 a
parameter of precision.

K = 0
when φ 〉 ε do:
step 0:
Calculate µ = (1/n) (x)t

z and choose σ ∈ (0, 1)
step 1:
Solve the following linear system:

Z 0 X

A 0 0
−Q At I

∆x

∆y

∆z

 =

µσe−XZe

b−Ax

c−Aty + Qx− z

step 2:
�nds a step of displacement α 〉 0 such as:
x = x + α∆x 〉 0, z = z + α∆z 〉 0 and φ decreasing.
step 3:
y = y + α∆y

K = k + 1
End.

2.3. Convergence of the Algorithm. The convergence of the algorithm is stud-
ied in [19, 20, 21] for linear and complementarity programming, we extend these
results for quadratic convex programming. Under hypotheses (H1) and (H2), the
convergence of the algorithm is based on the following lemma:

Lemma 1. Let
{(

xk, yk, zk
)}

be the sequence of iterates generated by the algorithm
then we have:

1) A(xk + αk∆xk)− b = (1− αk)(Axk − b) = vk+1(Ax0 − b)

INFEASIBLE ALGORITHM FOR CONVEX QUADRATIC PROBLEMS 85

2) At(yk+αk∆yk)−Q(xk+αk∆xk)+(zk+αk∆z)−c = vk+1(Aty0+z0−Qx0−c)
3) (xk + αk∆xk)t(zk + αk∆zk) = (xk)tzk(1− αk + αkσk) + (αk)2(∆xk)t∆zk,

where vk+1 = (1− αk)vk = (1− αj) º 0, v0 = 1.

Proposition 2. The sequence
{

φk
}

generated by the algorithm satis�es:

φk+1 =
(
1− δk

)
φk

Where δk = δ
(
αk

)
=

[
αk(1−σk)(xk)t

zk+αkvkr0−(αk)2(∆xk)t
∆zk

]

[(xk)tzk+vkr0] .

Corollary 3. It is easy to prove that the sequence
{

φk
}

converge linearly if
0 〈 αk ≤ 1 to which case we have 0 〈 δk 〈 1 and if δk o�ers toward 1 the convergence
becomes super linear.

Proposition 4. Let us suppose the initial point is given by
(
x0, y0, z0

)
= ζ (e, 0, e)

(ζ 〉 0) then: the algorithm converges on at most O
(
n2 |log (ε)|) iterations (ε a

parameter of precision).

2.4. Determination of the displacement step. The displacement step choice
is based on the decreased monotonous of the merit function and on the strict
positivity of (x, z). To get the global convergence, two supplementary hypotheses
are necessary to know:

C1) h (α) =
[
min(X (α) z (α))− γ (x (α))t

z (α) /n
]
º 0 α ∈ (0, 1]

 C2) g (α) =
[
(x (α))t

z (α)− v (α)
(
x0

)t
z0

]
º 0 α ∈ (0, 1]

 where 0 〈 γ 〈 1 satis�ed γ ≤ min
(
X0z0

)
/(

(
x0

)t
z0/n) et X (α) = diag

(
xk+1

)
,

x (α) = xk+1, z (α) = zk+1, v (α) = vk+1 The C1 condition is essential for
interior point�s methods. Its role is to prevent iterates to approach prematurely
the border (before the optimality), while the C2 condition gives the priority to
the feasibility on complementarity (the feasibility is achieved at the latest at the
same time than complementarity:

(xk)tzk/
(
x0

)t
z0 º ((rk/r0) = vk).

Let us determine then αk while taking account the two previous conditions and
the maximization of δ (α) in (0, 1] that is to say:

αk = arg max {δ (α) : h (β) º 0, g (β) º 0 for any β ≤ α} (1)

The solution of (1) is given below by the lemma:

Lemma 5. If the C1 condition is veri�ed to every iteration,then the problem (1.3)
admits a unique solution:

86 H. ROUMILI, A. KERAGHEL, AND A. YASSINE

αk =

{
min

(
1, αk

1 , αk
2

)
si

(
∆xk

)t ∆zk ≤ 0
min

(
1, αk

1 , αk
3

)
si

(
∆xk

)t ∆zk 〉 0

where:
αk

1 = min {α 〉 0 : h (α) = 0}

 αk
2 =

{
1 si

(
∆xk

)t ∆zk = 0
min {α 〉 0 : g (α) = 0} si

(
∆xk

)t ∆zk 〈 0
 and

αk
3 =

[
(1− σ)

(
xk

)t
zk + vkr0

]
/2

(
∆xk

)t ∆zk. [18]

Remark 1. Let us note that the previous choice of step constitutes a condition
su�cient only for the convergence, which gives us a certain liberty in practice.
Indeed, a less expensive choice is possible, it is about choosing α so that (x, z) 〉 0
(strictly positive) while taking account of the decrease of the merit function.

 In the implementation our suitable choice of the largest step size is given by
: αx = βα´

x and αz = βα´
z (0〈β〈1) where

α´
x =

{
min (−xi/∆xi) si ∆xi 〈 0

1 si ∆xi º 0
 α´

z =
{

min (−zi/∆zi) si ∆zi 〈 0
1 si ∆zi º 0

 Whose new iterate is: x = x + αx∆x, z = z + αz∆z and y = y + αz∆x.

All time, it is important to signal that performances of interior points methods
feasible or no, depend greatly on the choice of the displacement step.

2.5. Calculation of the displacement direction. In the algorithms, the cost
of an iteration is dominated by the calculation of the displacement direction ∆w =
(∆x, ∆y, ∆z) that is by solving the following of the linear system:

Z 0 X

A 0 0
−Q At I

∆x

∆y

∆z

 =

µσe−XZe

b−Ax

c−Aty + Qx− z

 (2)

Several procedures can be used to solve (2) like Gauss elimination. The obtained
results are valid but limited with small dimensions. Moreover, the strategy is not
optimal. The manipulated matrix is of dimension (2× n + m, 2× n + m) . To
calculate the displacement direction, we introduce a more economic alternative
which consists in reducing the implemented matrix size. For that, with simple
calculations, one obtains the system of equations according to:

INFEASIBLE ALGORITHM FOR CONVEX QUADRATIC PROBLEMS 87

A(QX + Z)−1XAt∆y = b−Ax + A(QX + Z)−1

[Xze− µσe−X(c−Aty + Qx− z)]
∆x = (QX + Z)−1[XAt ∆y + µσe−Xze−X(c−Aty + Qx− z)]

∆z = (X)−1(µσe−Xze− Z∆x)
Only matrix A(QX + Z)−1XAtof size (m×m) will be necessary for to resolve

the system in question.
The matrix: A(QX + Z)−1XAt is positive semi de�nite and:
i) A(QX + Z)−1XAt =

(
A(QX + Z)−1XAt

)t

ii) x 6= 0, 〈 (
AA(QX + Z)−1XAt

) (
A(QX + Z)−1XAt

)t
x, x 〉 =

〈 (
A(QX + Z)−1XAt

)
x,A(QX + Z)−1XAtx 〉 =∥∥(

A(QX + Z)−1XAt
)
x
∥∥2〉 0

Therefore, the Cholesky factorization (which is a particular case of the Gauss
method) is frequently used in solving the system.

2.6. Numerical experiments. This paragraph is dedicated to preliminarily nu-
merical results presentation in order to test our algorithm, implemented on a
Pentium II and in TURBO-PASCAL programming.

Examples are stated under the following canonical form:

(QP)

min ctx + 1
2xtQx

Ax = b

x º 0

The dual of (QP) is:

(QD)

max bty − 1
2xtQx

Aty + z −Qx = c

z ≥ 0, y ∈ Rm

 Example 1:

min
(x,t)

f(x, t) = 6.5x + 0.5x2 − t1 − 2t2 − 3t3 − 2t4 − t5

Az ≤ b

z = (x, t)t

x º 0, t1 º 0, t2 º 0
0 ≤ ti ≤ 1 i = 3, 4

0 ≤ t5 ≤ 2

b = (26,−11, 24, 12, 3)

88 H. ROUMILI, A. KERAGHEL, AND A. YASSINE

A =

1 2 8 1 3 5
−8 −4 −2 2 4 −1
2 0.5 0.2 −3 −1 −4
0.2 2 0.1 −4 2 2
−0.1 −0.5 2 5 −5 3

 The optimal solution of (QP) is:
z∗ = (x∗, t∗)t = (0, 7.987342, 0.253165, 2, 2, 0)t

The optimal solution of (QD) is:
y∗ = (−0.246835, 0, 0,−0.253165, 0)t

objective function: −18.493671 Example 2:

min
x

f(x) = 0.5
6∑

i=1

βi(xi − αi)2

Ax ¹ b

x º 0

b = (−5, 2,−1,−3, 5)t

A =

−3 7 0 −5 1 1
7 0 −5 1 1 0
0 −5 1 1 0 2
−5 1 1 0 1 −1
1 1 0 2 −1 −1

 case 1: βi = 1, αi = 2 for i : 1, ..., 6 The optimal solution of primal problem
is: x∗ = (1.010453, 0.749129, 1.303136, 1.442509, 0, 0)t The optimal solution
of dual problem is: y∗ = (−0.661232,−0.646117,−1.217533,−0.709915, 0)t
Objective function: 2.680600 case 2: βi = 1, αi = 2 for i : 1, ..., 6 The optimal
solution of primal problem is:

x∗ = (1.715685, 0.965687, 2.397060, 1.431373, 0.544120, 0)t

The optimal solution of dual problem is:
y∗ = (−7.862744,−3.183211,−13.518993,−2,−11.590071)t

Objective function: −11.467500
case 3: βi = 1, αi = 2 for i : 1, ..., 6
The optimal solution for primal problem is:
x∗ = (1.715685, 0.965687, 2.397060, 1.431373, 0.544120, 0)t

The optimal solution for dual problem is:
y∗ = (−15.725487,−6.366421,−27.037984,−4,−23.180141)t

Objective function: −22.935000
case 4: βi = 2, αi = 0 for i : 1, ..., 6
The optimal solution of primal problem is:
x∗ = (2.05, 1.30, 3.40, 2.10, 2.55, 0)t

INFEASIBLE ALGORITHM FOR CONVEX QUADRATIC PROBLEMS 89

The optimal solution for dual problem is:
y∗ = (−13,−4.80,−22.40,−2.60,−19.40)t

Objective function: −11.400000
Example 3:

min
x

f(x) =
9∑

i=1

xixi+1 +
8∑

i=1

xixi+2 + x1x9 + x1x10 + x2x10 + x1x5 + x4x7

10∑
i=1

xi = 1

x º 0
 The optimal solution of primal problem is:

x∗ = (0, 0.249335, 0.25, 0, 0.000665, 0.017431, 0, 0.25, 0.232568, 0)t

The optimal solution of dual problem is:
y∗ = 0.25
Objective function: 0.125010

3. Conclusion

In this paper, we presented an implementing method for convex quadratic pro-
gramming which stimulates greatly the development of the numeric behaviour
of infeasible methods for problems of optimization. One can conclude that these
methods constitute a valid solution as to the algorithm initialization problem. This
one deserves some supplementary e�orts essentially when choosing the step dis-
placement. This, until now, is the object of numerous researches aiming to reduce
the iteration cost and, by the same time, improve the numeric behaviour distinctly.
This one deals not only with the linear and convex quadratic programming but is
extended to non linear programming.

References
[1] I. ADLER, R.D.C. MONTEIRO: �Interior path following primal-dual algorithms, Part II:

Convex quadratic programming�, Mathematical Programming 44 (1989) 43-66.
[2] I. ADLER, R.D.C. MONTEIRO: �Interior path following primal-dual algorithms, Part I:

Linear programming�, Mathematical Programming 44 (1989) 27-41.
[3] S. BAZARA, H.D. SHERALI, C.M. SHETTY: �Nonlinear programming, theorie and algo-

rithms�, Second édition (1993).
[4] J.F. BONNANS,J.C. GILBERT, C. LEMERECHAL, C. SAGASTIZABAL �Méthodes

numérique d'optimisation(�4)�, INRIA, 78153 Lechesnay France (1995).
[5] A. COULIBALY: �Méthodes de points intérieurs en programmation linéaire�, Thèse de

l'université Blaise Pascal (1994).
[6] J.C. CULIOLI: �Introduction à l'optimisation�, Edition Marketing (1994).
[7] A.V. FICCO, G.P. MCCOMICH: �Nonlinear programming sequential unconstrained mini-

mization technique(1968) �, J.Wiley, New York.

90 H. ROUMILI, A. KERAGHEL, AND A. YASSINE

[8] C. GANZAGA: �Path-following methods for linear progmming �. SIAM Review Vol 34.NO.2
(1992).

[9] Z. KEBBICHE: �Mise en oeuvre d'une méthode de trajectoire centrale pour les problèmes
complémentaires linéaires monotones�, Thèse de Magister (1997), U.F.A Sétif-Algérie-.

[10] A. KERAGHEL: �Etude adaptative et comparative des principales variantes dans
l'algorithme de Karmarkar�, Thèse de Doctorat Université Joseph Fourier Grenoble (1989).

[11] N. MEGIDDO: �Pathways to the opyimal set in linear programming�, Progress in Mathé-
matical Programming interior-point (1989).

[12] N. MEGIDDO, M. KOJIMA, S. MIZUNO: �A primal-dual infeasible interior point algorithm
for linear programming�, Mathématical Programming 61(1993) 263-280.

[13] MINOUX: �Programmation mathématique théorie et algorithmes� T.1, (1984), Dunod,
Paris.

[14] S. MIZUNO: �Polynomiality of infeasible interior point algorithms for linear programming�,
Mathématical Programming 67(1994) 109-119.

[15] S. MIZUNO, M. KOJIMA, A. YOSHISE: �A primal-dual interior-point algorithm for linear
programming�, Report NO.B188, TOKYO (1987).

[16] H. ROUMILI: �Etude qualitative des méthodes de points intérieurs non réalisables pour la
programmation linéaire�,Thèse de Magister(1998), U.F.A Sétif-Algérie.

[17] M. TODD: �potential-reduction methods in mathematical programming�, Mathématical
Programming serieB-january 1997.

[18] S.J. WRIGHT: �Primal-dual interior-point methods�, Copyright (1997) by SIAM.
[19] Y. ZHANG, D. ZHANG: �Superlinear convergence of infeasibal-interior point methods for

linear programming�, Mathématical Programming 66 (1994) 361-377.
[20] Y. ZHANG: �On the convergence of a class of infeasibal-interior point algorithms for the

horizontal linear complementarity problem�, SIAM journal on optimisation 4 (1994) 208-227.

Department of Mathematics, University of Setif 19000, Algeria
E-mail address: r_nouha@yahoo.fr

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLIX, Number 2, 2004

COMODI: GUIDELINES FOR A COMPONENT-BASED
FRAMEWORK FOR SCIENTIFIC COMPUTING

ZSOLT I. LÁZÁR, BAZIL PÂRV, ANDREEA FANEA, JOUKE R. HERINGA,

AND SIMON W. DE LEEUW

Abstract. The present work discusses the aspects pertaining to the change

of scientific software development practices towards the paradigm of component-

based programming [1]. It summarizes the symptoms that indicate the ne-

cessity of a renewal in computational sciences. The main ingredients for the

solution are identified and a vision on how effective code sharing can affect

future scientific research is presented. Starting from the premises of today’s

scientific software development a set of requirements for the framework, com-

ponent descriptor language, component wiring and component repository are

formulated. We claim that the community rather needs a useful tool even if

of restricted use than an ultimate high-tech solution that will remain unac-

cessible to a community not willing to change overnight those programming

practices it has been accustomed to for decades.

1. Introduction

1.1. The problem. Today, most scientists can program and do it as an every-
day activity. A rich variety of hardware architectures, operating systems, software
libraries, protocols, standards, languages, etc. are in place. The scientist, as com-
puter user, trying to communicate and share “business logic” with fellow scientists
has to fight the ubiquitous incompatibilities at a day-to-day basis. A large seg-
ment of the community writes its own software tools. Consequently, several people

Received by the editors: September 2, 2004.

2000 Mathematics Subject Classification. 68U99, 68N99.
1998 CR Categories and Descriptors. D.2.12 [Software Engineering]: Interoperabil-

ity – Interface definition languages; D.2.11 [Software Engineering]: Software Architectures –

Languages, Patterns; D.2.6 [Software Engineering]: Programming Environments – Graphical

environments, Integrated environments, Interactive environments, Programmer workbench; G.4

[Mathematics and Computing]: Mathematical Software – User interfaces; J.2 [Computer

Applications]: Physical Sciences and Engineering – Aerospace, Archaeology, Astronomy, Chem-

istry, Earth and atmospheric sciences, Electronics, Engineering, Mathematics and statistics,

Physics .

91

92 LÁZÁR, PÂRV, FANEA, HERINGA, AND DE LEEUW

and research groups around the globe code for the same problem without knowing
about each other. With the available source code the task is still major due to the
fact that most programs are written for one specific problem and with no reusabil-
ity considerations in mind. Scientific programs are often not properly structured
and even if so, ad hoc binding standards are followed. Even if they used the same
programming language, which is not really typical, adapting third party modules
for personal use would prove to be a lengthy endeavor.

Many theoretical publications report on results of computer simulations. Un-
less, some widely popular software is used, reproducing the simulation by interested
parties is more effort than most scientists would take.

This situation is referred to by Douglas Post as an actual crisis in computational
sciences [2]. His report analyzes the symptoms, causes and possible solutions to
this crisis. One of his conclusions is that high-performance computing should move
towards newer technologies that provide better efficiency in terms of development
efforts even on the cost of loosing some performance.

1.2. The solution. Component-based programming is one of todays’ hottest top-
ics in computer science [3]. Many view it as the holy grail of software reuse. Sharing
code would provide computational sciences with at least three major benefits:

(1) Efficiency due to enhanced reusability, diversity and availability
(2) Quality due to the strong focus of expert groups, ranking systems
(3) Reproducibility of computer experiments by the author, referees and

third party scientists

The means for achieving these goals are as follows:

(1) development environment for high-level visual programming
(2) standardized scientific component descriptor language (CDL)
(3) component developer tools facilitating the “componentization” of exist-

ing and future scientific software
(4) interactive project management and monitoring
(5) distributed component repository

Basically, a framework is needed which allows the assembling of scientific mod-
ules into a computational project depending on the services they offer. These
services are defined via their interfaces documented in an XML-based Component
Descriptor Language. These components are stored in a global component repos-
itory. Additional developer tools should facilitate adapting newly developed and
existing code to the framework.

FRAMEWORK FOR SCIENTIFIC COMPUTING 93

1.3. The benefits. Reuse oriented research would truly revolutionize computa-
tional sciences. In the component oriented future it is expected that...

• scientists program from scratch only when developing new algorithms
and domain specific models

• reuse and integrate seamlessly other’s components to support their own
research

• find other’s computational works in an instant and select from a large
repository

• share their code with others
• reproduce results of computational studies published anywhere
• double check their own results using the same or similar algorithms de-

veloped by other authors
• have better control of complex computational projects
• component-technology will fully integrate with GRID technologies
• a top quality component layer will sediment in a few years by ”natural

selection”

2. State of the art

The first concrete steps towards component-based scientific computing have
been made before the turn of the century. [4] describes a “standard for inter-
operability among high-performance scientific components”. They touch upon
most fundamental concepts of component-based programming in the context of
high-performance computing and suggest a standard that they term as “Common
Component Architecture” (CCA). Their recommendation for an interface defini-
tion language (IDL) closely follows the CORBA principles. The ideas therein are
further developed in [5]. This group, however, favors an XML-based language for
describing component interfaces. In both cases Java is chosen as the implemen-
tation language for the integration framework. Most of later works focus on the
integration of the component-based approach into the realm of distributed comput-
ing in general and grid computing in particular. Notable efforts have been made
by several member institutes of the Common Component Architecture Forum [6]
for delivering different implementations of a CCA framework [7, 8, 9]. Most of
the activity is centered around the Babel language interoperability tool [10] of the
Lawrence Livermoore National laboratory [11]. Babel uses the Scientific Interface
Definition Language (SIDL) for defining the interfaces of components implemented
in any of the programming languages encountered in scientific computing. The
palette includes C, Fortran and variants but also higher-level languages such as
Java and Python.

94 LÁZÁR, PÂRV, FANEA, HERINGA, AND DE LEEUW

Alexandria [12] is meant to be the future repository for CCA compliant com-
ponents. As per now it contains no components.

Efforts of more restricted scope can be encountered in different fields of science
such as life sciences [13], chemistry [14], nuclear physics [15], to name a few.
The tremendous need in all computational sciences for sharing code is apparent if
we consider the popularity of Netlib [16]. Netlib is a collection of mathematical
software, papers, and databases with hundreds of numerical libraries available for
download. There is an enormous number of over 270 million requests that have
been made to the repository. And Netlib only includes mathematical software,
no modeling or simulation packages built over them. Unfortunately, there is no
uniform way for reusing this large variety of modules originating from different
places and being the result of independent and uncorrelated efforts.

OpenDX is a powerful, full-featured software package for the visualization of
scientific, engineering and analytical data [17]. Its open system design is built on
familiar standard interface environments. Its sophisticated data model offers great
flexibility in creating visualizations by providing hundreds of built-in specialized
functions. The user can drag and drop different data filters onto the canvas and
connect output to inputs for setting up the data flow diagram (Figure 1). OpenDX
automatically checks the compatibility of the interfaces. The functions in OpenDX
are hard-coded into the application. One can contribute with new components by
applying the prescriptions that are set for the interfaces. The new component will
become available after the recompilation of the application.

3. Scientific vs. commercial software development

In spite of the determining influence of natural sciences on information technol-
ogy, the maturing process of computer science started with the rise of interest of
the private sector. The economical factors imposed several restrictions on using
and developing software. The need for optimizing all aspects fueled studies that
were beyond the goal of natural sciences. Important aspects included development
and maintenance costs implying internal qualities such as reusability and external
qualities such as ease of use. As the necessities of science regarding computer
technologies are different from the needs of businesses and home users, their tools
and programming methodologies are also different. We can even say that though
natural sciences drive the evolution of IT they lag behind when it comes to using
mature software development methodologies. Below, we have summarized a few
of the main distinctive features of programming in natural sciences. The reader
should be aware that these statements describe trends not laws. In most cases
exceptions are available abundantly:

FRAMEWORK FOR SCIENTIFIC COMPUTING 95

Figure 1. Example of flow-based programming. Representation of a data

visualization project in Open Data eXplorer [17]

• requires scientific background of the programmer
• for a specific purpose, therefore of limited applicability
• for internal use
• does not have the constraints of commercial software development (bud-

gets, deadlines, marketing strategies)
• performance critical
• developers use low-level languages such as C and Fortran
• high-level abstractions such as OOP concepts are rare
• requires more computer resources than commercial software (CPU, stor-

age)
• lower complexity in terms of function points
• higher complexity algorithms
• less focus on reuse
• less investment in design
• requires less user interaction
• projects involve small to medium sized developer groups

Even though one can identify interdependencies between several items in the above
list it is hopeless trying to disentangle them into cause-effect sequences. Any

96 LÁZÁR, PÂRV, FANEA, HERINGA, AND DE LEEUW

project that aims at changing many decades of programming traditions in com-
putational sciences has to bear in mind these differences. Otherwise, attempts to
make up the “grand unified way” will not have the proposed impact on the scien-
tific community and will be downgraded to research of purely academic interest.

4. Requirements

Let us now formulate the expectations that we set against those constituents of
a complete solution, which together will make component-based programming in
computational sciences possible.

The framework should:

(1) be portable: since one of the main goals is to reduce environment de-
pendence, a platform-independent programming is required such as Java,
Python or other interpreted language.

(2) allow for high-performance computation: the implementation language
of the framework should offer the facilities necessary for binding low
level languages such as C and Fortran. The portability of the framework
implies a higher level interpreted language. Therefore a careful design
should assure a minimum involvement of the framework during project
runtime.

(3) make component development and deployment easy
(4) allow for easy customization of user interfaces to domain specific needs
(5) be user friendly
(6) be open source

The component descriptor language should:

(1) describe both syntactically and semantically the component
(2) support the programming style of computational scientists as far as data

structures
(3) be extensible

The component wiring mechanism should:

(1) constitute a low overhead in terms of execution time
(2) require little or no glue-code writing from the developer
(3) not require such changes in the implementation or interface of compo-

nents that would make them unusable outside the framework

Certain amount of glue-code is usually inevitable. This task, however, should be
the responsibility of additional developer tools.

The repository should:

(1) be distributed

FRAMEWORK FOR SCIENTIFIC COMPUTING 97

(2) offer uniform and transparent access to every site storing components
(3) expose both direct user interfaces and transparent web service type ac-

cess points
(4) employ a comprehensive and unambiguous classification scheme of com-

ponents
(5) provide advanced search facilities
(6) provide ranking facilities of components as to popularity, user satisfac-

tion, etc.
(7) allow for easy upload and download of components

5. Approach

Present section will discuss those guidelines that have been set forth for the
COmputational MODule Integrator (COMODI) project [1]. COMODI is an in-
ternational and interdisciplinary initiative attempting to offer a viable solution to
computational sciences for moving towards the promised land of component tech-
nology. Henceforth, depending on the context, the word “COMODI” will refer
either to the project itself, comprising the participants, ideas and means, or to
the framework software with or without additional ingredients such as the com-
ponent descriptor language and developer tools. Considering the faint success
of present attempts it is apparent that the main challenges are not so much of
technical nature but rather consist in finding the solution that is most likely to
receive acceptance from the conservative community of computational scientists.
COMODI’s aim is to shape present programming practices such that they could
metamorphose into future paradigms. In the first stage, COMODI will try to
accommodate to present trends in scientific software development. This will be
followed by a new generation of components that will adapt to the most recent
paradigms.

COMODI’s first target is the scientific software developer segment. The rea-
soning behind this strategy is to build up a component repository that by its sheer
size will provide the variety and quality of components that will be appealing to
most users. Besides, due to the level of proficiency in computer related issues,
the developer segment will tolerate with more patience the less user-friendly and
buggy versions in the initial phase of COMODI and will be able to contribute with
important amount of know-how to its development.

Most present efforts to bring under the same roof the problematics of component-
based, distributed and parallel programming are in their infancy. Indeed, this
unification will most probably be ultimate solution for computational sciences.
However, the surveys made by COMODI show that even though many scientists

98 LÁZÁR, PÂRV, FANEA, HERINGA, AND DE LEEUW

rely on parallel code the parallelism therein is usually transparent. Most don’t
participate in the development of parallel code and are aware of grid computing
to the extent they are aware of quantum computing. Therefore we claim that ef-
fort should be invested into developing a framework, CDL and repository without
mixing it with the paradigms of distributed computing.

Where does COMODI want to be better?

• short learning curve for scientific component developers
• no constructs of high-level abstraction, no new languages required, leav-

ing that to a later stage
• bottom-up construction of the framework
• automatic glue-code generation
• zero source code line change for adapting scientific routines to COMODI

5.1. Structure of the framework. In order to make COMODI itself easily ex-
tensible it has to be component-based. This requires the separation of the frame-
work into a core layer and several other modules built on the top of it. It is possible
to enforce a very general view on this component architecture and deal uniformly
with computational components and components that are intimately related to
the framework itself. In this approach, anything apart from the core is a compo-
nent, be it a simple numerical component or a heavyweight GUI. However, this
uniformity, while simplifying the integration of components vital to the proper
functioning of COMODI, will hit back by compromising the postulated simplicity
of wiring computational components by users. Even though the customizability
of COMODI to the needs of different user groups is a priority we can build upon
the premise that the group of those that will contribute to COMODI will be a
fraction of those that will use it or contribute to the repository. Therefore it is
sensible not to sacrifice the support of user and component developer activities to
those related to the development of COMODI.

COMODI will expose a core level API allowing the independent development of
satellite modules such as GUIs and batch system handlers. The component archi-
tecture of the framework software itself would permit the contribution of several
parties to the development of COMODI. More importantly, it will diversify the
user experience allowing such “packagings” that best fit the purposes of a user
group of a particular profile or closely resemble such visual development environ-
ments that this group is accustomed to, such as LabView, Simulink or OpenDX.

Under this cover COMODI, the CDL and the wiring mechanisms will be able
to develop without exposing the users to major interface functionality disruptures
between versions.

FRAMEWORK FOR SCIENTIFIC COMPUTING 99

5.2. Granularity. There is no consensus as to what exactly a component and a
component’s port is [3]. This is due to the differences between the various lan-
guages concerning structuring code and passing data between processing units.
In our case, a component can be viewed from the perspective of the computa-
tional project wherein the constituting elements are functions and procedures. If
regarded from the point of view of the data that the project operates with, com-
ponents should be objects in the sense of the OOP terminology. And finally, it is
common to use the word “component” to a bundle of software entities, interfaces,
classes, data, deployed as a unit. In other words, the physical properties of the
software define the boundaries of a component.

At a lowest granularity level, where functions can be considered as components,
each argument in the function signature can be considered a port. At a level of a
class method, calls stand for the elementary access point while at a physical level
deployment, packages can be considered the unit of assembly and whole interfaces
represent the entry points. The table below is a summary of the different levels of
granularity.

Component Port

Function argument of the signature
Class function signature
Package interface/pure abstract class

COMODI works at the lowest level using functions as atomic components. Even
though it is meant to be a support for low-level programming, higher levels can
also be emulated. Alternatively, COMODI can come with higher level APIs built
over the base API. The higher level API’s can be used for components that obey
the rules of OOP.

5.3. Component wiring. In order to satisfy the requirement of low overhead in
performance it is necessary that the framework does not intermediate the commu-
nication between components. Instead, it will wire up the connections by setting
direct component-to-component references [10]. Therefore the components will
have to comply with certain rules as to the interfaces they expose. These rules,
however, should be set such that the guidelines formulated in section 4 are closely
followed. [18] discusses in more detail several alternatives.

5.4. Component Descriptor Language. The problem of the CDL is the alpha
and omega of any component-based framework. It should inspire from existing
technologies such as CORBA, but at the dawn of grid computing web services
are the most likely to set the standards. Given the many aspects that ought to
be considered, [19], present paper will not even try to go deep into this topic.

100 LÁZÁR, PÂRV, FANEA, HERINGA, AND DE LEEUW

COMODI’s CDL is XML-based, even though a CDL file can also have an SIDL
type of representation that is more appealing to the technically trained eye [10].
The CDL’s complexity is expected to grow together with the user community and
the number of application areas.

6. Conclusions and outlook

The tasks to be carried out for achieving COMODI’s objectives of efficient code
sharing are major. It will clearly need a large user and component developer base
that will bring into motion the component repository. This goal can be achieved
only with a sufficiently low accommodation effort threshold. COMODI is an at-
tempt to minimize this threshold on the cost of temporarily sacrificing generality.
As such, it is not meant to be long-lived in present form. However, higher-level
constructs, when the times are ripe, can be built over, hiding such obscure de-
tails that in COMODI’s initial form are required for assisting a community with
deep roots in “performance mining” and low-level programming. The benefits of
code sharing can put scientific research on a ground that challenges science-fiction.
Nevertheless, the islands of isolated feeble initiatives should coalesce into a general
awareness and coherent world-wide effort. Otherwise, computational sciences are
doomed to spend at least another decade in the past.

7. Acknowledgments

This research is supported by the Netherland’s Organization for Scientific Re-
search (NWO) with grant no. 048.031.003 and by the National Research Council
of Romania (CNCSIS) with grant no. 37/2004.

References

[1] COMODI homepage, http://phys.ubbcluj.ro/comodi/

[2] D. Post, The Coming Crisis in Computational Science, Proceedings of the IEEE Interna-

tional Conference on High Performance Computer Architecture: Workshop on Productivity

and Performance in High-End Computing, Madrid, Spain, February 14, 2004

[3] C. Szyperski, D. Gruntz and S. Murer, Component Software; Beyond Object Oriented Pro-

gramming, 2nd edition, Addison-Wesley (2002)

[4] R. Armstrong, Dennis Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker and,

B. Smolinski, Toward a Common Component Architecture for High-Performance Scientific

Computing, Proceedings of the 8th IEEE International Symposium on High-Performance

Scientific Distributed Computing, August (1999)

[5] R. Bramley, K. Chiu, S. Diwan and D. Gannon, A Component Based Ser-

vices Architecture for Building Distributed Applications, Ninth IEEE International

Symposium on High Performance Distributed Computing, August 01-04, 2000

(http://www.extreme.indiana.edu/ccat/papers/hpdc2000.pdf)

FRAMEWORK FOR SCIENTIFIC COMPUTING 101

[6] Common Component Architecture (CCA) Forum homepage, http://www.cca-forum.org

[7] CCAFE homepage, http://www.cca-forum.org/∼baallan/ccafe

[8] SCIRun homepage, http://www.sci.utah.edu

[9] XCAT homepage, http://www.extreme.indiana.edu/xcat

[10] Babel homepage, http://www.llnl.gov/CASC/components/babel.html

[11] Component Architecture for Scientific Computing homepage,

http://www.llnl.gov/CASC/components/

[12] Alexandria component repository homepage,

http://www.llnl.gov/CASC/components/alexandria.html

[13] IBM Life Sciences Framework homepage,

http://www-306.ibm.com/software/info/university/products/lifesciences/framework/

[14] Octet Molecular Informatics Framework homepage, http://octet.sourceforge.net/

[15] ROOT homepage, http://root.cern.ch/

[16] Netlib homepage, http://www.netlib.org/

[17] Open Data Explorer homepage, http://www.opendx.org/

[18] Zs.I. Lázár, B. Pârv, COMODI: Component Wiring in a Framework for Scientific Comput-

ing, Studia Universitatis Babes-Bolyai, Series Informatica 49 (2), 2004, pp. 103–110

[19] A. Mayer, S. McGough, M. Gulamali, L. Young, J. Stanton, S. Newhouse, J.

Darlington, Meaning and Behaviour in Grid Oriented Components, Proceedings

of the Third International Workshop on Grid Computing, Springer-Verlag (2002)

(www.lesc.ic.ac.uk/iceni/pdf/Grid2002.pdf)

Department of Theoretical and Computational Physics, Faculty of Physics, Babeş-

Bolyai University, Str. M. Kogălniceanu Nr. 1, RO 400084 Cluj-Napoca, Romania

E-mail address: zlazar@phys.ubbcluj.ro

Chair of Programming Languages and Methods, Faculty of Mathematics and Com-

puter Science, Babeş-Bolyai University, Str. M. Kogălniceanu Nr. 1, RO 400084 Cluj-

Napoca, Romania

E-mail address: bparv@cs.ubbcluj.ro

Chair of Programming Languages and Methods, Faculty of Mathematics and Com-

puter Science, Babeş-Bolyai University, Str. M. Kogălniceanu Nr. 1, RO 400084 Cluj-

Napoca, Romania

E-mail address: afanea@cs.ubbcluj.ro

Physical Chemistry & Molecular Thermodynamics, DelftChemTech, Technical Uni-

versity of Delft, Julianalaan 136, 2628 BL Delft, The Netherlands

E-mail address: J.R.Heringa@tnw.tudelft.nl

Physical Chemistry & Molecular Thermodynamics, DelftChemTech, Technical Uni-

versity of Delft, Julianalaan 136, 2628 BL Delft, The Netherlands

E-mail address: S.W.deLeeuw@tnw.tudelft.nl

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLIX, Number 2, 2004

COMODI: COMPONENT WIRING IN A FRAMEWORK FOR
SCIENTIFIC COMPUTING

ZSOLT I. LÁZÁR AND BAZIL PÂRV

Abstract. We present several alternatives for wiring atomic components,
namely functions, within the COMODI framework [1]. The benefits and
drawbacks of the different solutions are analyzed in the light of a few major
guidelines that are set forth for COMODI. A mixture of pipe&filter and
repository type of architectures is found to satisfy best the requirements for
scientific computing. The role of connector components are also discussed.

1. Introduction

In [2], a few guidelines have been established for the possible wiring mechanisms.
According to this paper the wiring should

• constitute a low overhead in terms of execution time
• require little or no glue-code writing from the developer
• not require such changes in the implementation or interface of compo-

nents that makes them unusable outside the context of the framework
Even though the above requirements sound restrictive the forthcoming sections
will show that it is possible to design such architectures. Let us first define the
problem.

2. Calls & connectors

As described in [2] and ch. 8 of [4], components can be considered at different
levels of granularity. For the points to be made in this paper, we shall distinguish

Received by the editors: September 2, 2004.
2000 Mathematics Subject Classification. 68U99, 68N99.
1998 CR Categories and Descriptors. D.2.12 [Software Engineering]: Interoperabil-

ity – Interface definition languages; D.2.11 [Software Engineering]: Software Architectures –
Languages, Patterns; D.2.6 [Software Engineering]: Programming Environments – Graphical
environments, Integrated environments, Interactive environments, Programmer workbench; G.4
[Mathematics and Computing]: Mathematical Software – User interfaces; J.2 [Computer
Applications]: Physical Sciences and Engineering – Aerospace, Archaeology, Astronomy, Chem-
istry, Earth and atmospheric sciences, Electronics, Engineering, Mathematics and statistics,
Physics .

103

104 ZSOLT I. LÁZÁR AND BAZIL PÂRV

between physical and logical components. By the former we mean units of de-
ployment, namely native library files, Java class files, etc. In view of the low-level
languages used in high-performance computing, this is almost synonymous with
units of compilation. Logical components are viewed from the perspective of the
computational project assembled by the user. A project is a graph of intercon-
nected components, as shown in Figure 1. Following the recommendations from
[2], we shall work at the lowest level of granularity, i.e. the atomic components
will consist in regular functions. Within the context of this work we shall use the
words “component” and “function” interchangeably. Connection means data flow
via function interfaces from the output of one component to the input of another.

We can distinguish between horizontal and vertical communication. The latter,
e.g. 1.1 - 2.1.2, is the direct representation of the pull model for module commu-
nication. It consists in a function calling another, which returns a result to the
former. This is basically the only model for communication in languages such as
C or Fortran. In terms of connection architectures, it belongs to a client-server
setup. On the other hand, horizontal calls imply the piping of an output into the
input ports of another component. This pipe&filter architecture, and implicitely
the push model, is not directly supported by low level languages. It is the repre-
sentation of equivalent vertical calls at a high level of abstraction.

Level 1

Level 2

Level 3

1.1 1.41.31.2

2.1.1 2.3.12.1.2

3.1.2.1

Time

2.3.2

Figure 1. Structure of a project in a framework at a higher level of ab-
straction. See Figure 2 for more details.

We can define two levels of abstraction when modeling this communication. At
higher level (Figure 1), we disregard the existence of the framework and certain
elementary connectors that are components that perform simple tasks pertaining
rather to the mediation of information between two or more components. This
indirection can be due to reasons such as the necessity for satisfying certain syn-
tactical requirements of component wiring. For a review on connectors see [3] and
ch. 10 in [4]. At a lower level of abstraction (Figure 2), horizontal data flow is

COMODI COMPONENT WIRING 105

“translated” into vertical flow by the help of connector components that we will
henceforth term as propagators.

Level 0

Level 1

Level 2

Level 3

Framework

1.1 1.41.31.2

2.1.1 2.3.12.1.2

3.1.2.1

Time

Connector

2.3.2

Figure 2. Structure of a project in a framework at a more concrete level
of abstraction. The dotted line represents communication through interfaces
that are discovered at runtime. The data flow between the upper layers,
through the dashed line, takes place via interfaces that are established at
compile time and necessarily have to be compatible. The components reach
execution state starting from left to right, bottom to top. In this case the
order is: framework, 1.1, 2.1.1, 2.1.2, 3.1.2.1, 1.2, 1.3, 2.3.1, 2.3.2, 1.4.

Excluding for now more advanced flow-control such as conditional branching
and loops, the connection of components at low abstraction is tree-like since there
are only vertical calls. At the lowest level, the framework calls the component
positioned at level one. These can call others at higher level and so on. The
layering is strict in the sense that there is communication only between adjacent
levels. In the following, we will refer to components that are directly accessed by
any given component as the latter’s child components.

There are “framework aware” activities done at all three levels: at compile-,
link- and runtime.

At compile time, there is extra coding necessary that will endow the physical
component, be it a library or class, with the capabilities required by the frame-
work. The definition of “dangling bonds” and statically set bindings is up to the
developer. The glue-code can be written manually or generated automatically.

At link-time, the user decides on the particular wiring to be established be-
tween the components while the framework verifies the connections and sets the

106 ZSOLT I. LÁZÁR AND BAZIL PÂRV

references. At this point, a variety of connectors need to be employed and con-
figured, some manually by the user, some automatically by the framework. A
typical example for manual configuration of a connector would be the case of two
components that provide and require similar data but the correspondence between
the parameters in the argument list is not obvious, e.g. (float pressure, float tem-
perature) 6= (float temperature, float pressure). However, the framework can set
the propagator connectors by itself if the connected input and output ports are
compatible. Other, special connectors fall in between these two extremes. They
will require indications from the user while most of the settings are carried out by
the framework.

In this approach, there is a uniform handling of calls at all levels of the hierarchy.
As described in [2], it is necessary that runtime calls are done directly between the
different components, that is, they are not intermediated by the framework. At the
lowest level, the framework will call a component that will do all the invocations
of the second level components. Following present practices this will often be a
shell script or equivalent. In other cases it will be just an automatically generated
propagator, such as in Figure 2.

3. Wiring architectures

We can distinguish between two largely different ways of managing the access
of components to the references of their children:

(1) using a pipe&filter architectural style, wherein components posses only
the reference data that exclusively concerns them and pass to their chil-
dren the subtree of information that is necessary.

(2) using a repository-based architecture. Here a collectively accessible data
repository is consulted by each component and the necessary information
extracted.

Both architectures have beneficial and disadvantageous implications which we
will explore in the following.

3.1. A pipe&filter architecture. This alternative confers more autonomy to
the logical constituents of a project, i.e., to the functions. We can even say that
this approach favors the logical component view on the available component base.
The interfaces of all logical components will need to be extended with a new
argument through which the reference tree is communicated to the component,
Figure 3a. We will refer to it as paramString as it can be a simple XML string or
an equivalent representation of it such as a data aggregate (structure or object)
describing an XML node. Every function will receive a paramString containing
child information and invokes child components by sending, along other data, a
subtree of the paramString. An important disadvantage of this architecture is
that the signature of all functions will be unnaturally “distorted” because of the
paramString argument that has to be passed along. Moreover, the implementation

COMODI COMPONENT WIRING 107

of the functions should be changed such that the parsing of the paramString could
be done. It is feasible to parse the paramStrings and set the references only once
during the linking of the project by storing the references in internal static variables
of each component.

3.2. A repository architecture. The suggested architecture enforces an object-
oriented approach and confers a more important role to the physical aspect of
components. The framework may create as many instances of a physical compo-
nent (Java class, C library, etc.) as many times one of its methods are used in
the project. Each instance will manage the reference data of its methods to other
“child methods” internally, storing them in instance variables or global variables in
case of a C library. The most important advantage is that the logical components,
the methods, will not need to pass paramStrings to each other during runtime and
they will not need to have any implementation part dealing with paramString.
Similarly to the pipe&filter architecture, the parsing of the paramString and set-
ting the references is done only once per project. The beauty flaw that appears
in this case is the global scope of the reference variables, which is usually not
preferred by those writing computational library functions. On the other hand,
existing libraries can be much more readily adapted to the framework.

In conclusion, the repository approach has the important benefit of not requiring
modifications in the interfaces (signatures) of the logical components (functions).
Moreover, unlike the pipe&filter architecture, the implementation of these com-
ponents do not require any glue-code either. These benefits come at the cost of
child reference variables with the scope of the whole physical component. In the
pipe&filter case, XML parsing has to be included into all functions. There is more
effort needed for implementing those indirections for each method, but some may
prefer to pay this price for making the child reference variable’s scope local.

Fortunately, the benefits of the two approaches can be collectd into an archi-
tecture that behaves like the pipe&filter variant during link-time and exhibits
repository architecture traits during runtime.

3.3. Mixed architecture. There are different solutions sketched in Figure 3.
Even though the last three show traits of the repository architecture, they are
rather variants of the pipe&filter version. Each of them do a better or worse job
in avoiding the three main problems that characterize this architecture: (i) the
necessity of modifying the body of the function to include paramString parsing
and the initialization of children references, (ii) the modified function signature
that is used when being called and/or when calling the children, and (iii) the
indirection introduced within the body of the physical component.

In Figure 3a, the signature includes an extra paramString entry and the body
of the function is also modified.

108 ZSOLT I. LÁZÁR AND BAZIL PÂRV

Solution shown in Figure 3b moves the wiring into a separate function. In this
way, the actual function can retain its most natural form both from the point of
view of the interface and of the implementation. The drawback is the indirection
that is introduced. Another imperfection is the fact that outgoing calls, i.e., calls
to children will still require an outgoing interface that includes the paramString.

The third alternative, illustrated in Figure 3c, eliminates this problem by offer-
ing two different entry points at link-time and at runtime. However, this comes at
the cost of an extra level of indirection. In this setup, function calls only require
the passing of actual data.

One can eliminate the second level of indirection during runtime, the way it
is depicted in Figure 3d. The runtime entry point is called once also during
link-time and the children references are requested from the function in charge
with wiring. As a result, the wiring function can be completely avoided during
runtime. The actual business logic will be in the body of a function that receives
all necessary information, including the child references, as parameters. This has
the additional benefit of self-containment. The function is fully functional also
outside the context of the framework without confusing extra arguments. On the
other hand, there are two other functions containing glue-code of no interest for
the component developer. However, the burden of writing glue-code can be taken
over by auxiliary applications once the interface descriptor is available.

wiring

PS IO

BL

IO CR

BL

wiring

PS IOlinktime runtime

linktime

runtime

runtime

linktimeruntime

wiring

PS IO

IO

IO CR

BL

a. b. c.

linktime

linktime

runtime

runtime

linktimeruntime

wiring

PS

IO

IO CR

BL

d.

linktime

linktime

runtime

linktime

PARENT LEVEL PARENT LEVEL PARENT LEVEL PARENT LEVEL

CHILD LEVEL CHILD LEVELCHILD LEVELCHILD LEVEL

Figure 3. Different binding solutions for the pipe&filter architecture. No-
tation: PS = paramString, IO = input/output, BL = business logic, CR =
children references

3.4. Putting it all together. At times, the different components will share a
small amount of data, sometimes large chunks of it. The exchange may happen
once in a while or frequently. As long as small amounts of data is flowing occa-
sionally from one component to the other any binding will do it. If the amount

COMODI COMPONENT WIRING 109

is large or the communication is frequent or both, performance and storage issues
should be considered.

In Figure 1 we saw two different communication types: framework-component
and component-component. Since the framework-component connection is done
dynamically through reflection, the whole communication process imposes a much
larger overhead than direct connection between components. In C, sharing large
amounts of data is done in a straightforward manner as methods pass each other
pointers to the array they want to share. This has the benefit of avoiding data
replication. Assuming that the framework is implemented in Java, the Java Native
Interface (JNI) also passes objects by reference. However, this does not solve the
problem of large arrays. They get copied to another location in the memory and
upon leaving the native function, the original data gets updated with the modified
one. This makes JNI in its original form unfit for the job. Fortunately, since
version 1.4 of the JDK, JNI has been renewed with new features targeting exactly
the problem of performance. Previously, Java introduced a new package of IO
classes which performs much better than the original one. The new JNI makes
use of this package and provides more low level approach to data communication
between object methods. This, to some extent, solves the problem of passing large
chunks of data via the framework.

Frequent data passing occurs at higher levels in the hierarchy between compo-
nents which heavily use the specialized services of some lightweight child compo-
nents.

When connecting components, a simple syntactic check of primitive data types
is not sufficient. Data types relevant to science, such as temperature, electric
resistance, particle number, represent a certain amount of semantics. The types
preferred by the computer are: double, long, etc. One alternative for including
semantics would be the definition of classes and therein all properties of the given
quantity. This would reduce the semantic problem to a regular syntactic one. The
main problem of this approach is that a consistent organization of the inheritance
tree of all quantities used in natural sciences may not be feasible. Moreover, the
used low level languages do not offer a natural way of dealing with objects.

As for now, the connection could be done by the user tying explicitly outputs
and inputs that are semantically compatible. The syntactical validation can be
done simultaneously by the framework. There are reversed situations when two
entry points are compatible semantically but different data types are used. For
instance, electric charge is described using integer data type in one component and
floating point in another. This will require simple connector objects.

4. Conclusions and outlook

We have shown that there is a way to harmonize all requirements for a wiring
mechanism. The suggested architecture neither causes execution overhead, nor
requires extra implementation from the developer, nor distorts in any way the

110 ZSOLT I. LÁZÁR AND BAZIL PÂRV

signatures of functions when adapting them to COMODI. As a next step, one
has to look into the actual form of the glue-code that is generated so that it
could cope with tasks such as callbacks to the framework for exception and error
handling, project monitoring, and user interaction management. Achieving this
for the relevant languages in the spirit of Babel [5] is expected to be a considerable
technical challenge but none that is insurmountable.

5. Acknowledgments

This research is supported by the Netherland’s Organization for Scientific Re-
search (NWO) with grant number 048.031.003 and by the National Research Coun-
cil (CNCSIS) with grant code 37/2004. One of the authors (Zs.I.L) is especially
indebted to Prof. Dr. Simon de Leeuw from the Physical Chemistry and Mole-
cular Thermodynamics Group at the Department of Chemical Technologies of
the Technical University of Delft, The Netherlands for sharing his own and his
group’s extensive experience in computer simulation. The insightful comments of
dr. Jouke Heringa are gratefully acknowledged.

References

[1] COMODI homepage, http://phys.ubbcluj.ro/
[2] Zs.I. Lázár and B. Pârv, COMODI: Guidelines for a Component Based Framework for

Scientific Computing, Studia Universitatis Babes-Bolyai, Seria Informatica 49 (2), 2004,
pp. 91–102

[3] A. Mayer, S. McGough, M. Gulamali, L. Young, J. Stanton, S. Newhouse, J.
Darlington, Meaning and Behaviour in Grid Oriented Components, Proceedings
of the Third International Workshop on Grid Computing, Springer-Verlag (2002)
(www.lesc.ic.ac.uk/iceni/pdf/Grid2002.pdf)

[4] C. Szyperski, D. Gruntz and S. Murer, Component Software; Beyond Object Oriented Pro-
gramming, 2nd edition, Addison-Wesley (2002)

[5] Babel homepage, http://www.llnl.gov/CASC/components/babel.html

Department of Theoretical and Computational Physics, Faculty of Physics, Babeş-
Bolyai University, Str. M. Kogălniceanu Nr. 1, RO 400084 Cluj-Napoca, Romania

E-mail address: zlazar@phys.ubbcluj.ro

Chair of Programming Languages and Methods, Faculty of Mathematics and Com-
puter Science, Babeş-Bolyai University, Str. M. Kogălniceanu Nr. 1, RO 400084 Cluj-
Napoca, Romania

E-mail address: bparv@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLIX, Number 2, 2004

DATA ANALYSIS WITH FUZZY SETS: A SHORT SURVEY

HORIA F. POP

Abstract. This paper develops a short survey of the fuzzy sets theory and
how it can contribute to better, more robust data analysis methods. We
briefly cover the major fuzzy sets definitions, the rough sets alternative, fuzzy
clustering, fuzzy classification, fuzzy regression, data visualisation and pro-
jection. We conclude that the fuzzy sets represent a very important advance
for intelligent data analysis.

1. Introduction

The fuzzy sets represent a mathematical theory suitable for modelling impre-
cision and unclearness. Generally, unclearness is associated to the difficulty of
making precise statements with respect to a certain topic. On the other side, in
the Fuzzy Sets Theory, the hard alternative yes - no is indefinitely nuanceable.
From this point of view, the fuzzy sets theory is not only a theory dealing with
ambiguity; it is also a theory of fuzzy reasoning.

The interpretation of Fuzzy Logic is twofold. In a narrow sense, fuzzy logic is a
logical system that may be viewed as an extension and a generalization of classical
logic. In a wider sense, fuzzy logic is almost synonymous with the theory of fuzzy
sets, encompassing the ‘strict’ fuzzy logic.

The fundamental fact that lies behind fuzzy logic is that any field and any theory
may be fuzzified by replacing the concept of crisp set with the concept of fuzzy
set. Thus have appeared theoretic fields such as fuzzy arithmetic, fuzzy topology,
fuzzy graph theory, fuzzy probability theory, ‘strict’ fuzzy logic, a.o. Similarily,
applied fields that suffered generalizations are fuzzy neural network theory, fuzzy
pattern recognition, fuzzy mathematical programming, a.o.

Received by the editors: December 10, 2004.
2000 Mathematics Subject Classification. 03E72, 62-07, 62Hxx.
1998 CR Categories and Descriptors. I.5.1 [Computing Methodologies] : Pattern

Recognition – Models – Fuzzy set ; I.5.2 [Computing Methodologies] : Pattern Recognition –
Design methodology – Classifier design and evaluation, Feature evaluation and selection, Pattern
analysis; H.3.1 [Information Systems] : Information Storage and Retrieval – Content analysis
and indexing .

111

112 HORIA F. POP

What is gained through fuzzyfication is greater generality, higher expressivity,
an enhanced ability to model real-world problems, and a methodology for exploit-
ing the tolerance for imprecision [6].

2. Fuzzy sets

Fuzzy sets were introduced as generalization of the classical crisp sets, as a
means of representing and manipulating imprecise data. However, not all the
properties that are valid for operations on crisp set are valid for fuzzy sets, and
the inability to deal with this may result in improper use of fuzzy sets [13].

Professor Lotfi A. Zadeh used the following words to describe the importance
of fuzzy sets:

“The fuzzy set was conceived as a result of an attempt to come
to grips with the problem of pattern recognition in the context
of imprecisely defined categories. In such cases, the belonging
of an object to a class is a matter of degree, as is the question
of whether or not a group of objects form a cluster.”

We recall here the basic definitions of fuzzy sets.
Let X be a non-empty crisp set. The fuzzy set A in X is characterised by its

membership function, A : X → [0, 1], where A(x) is interpreted as the membership
degree of element x ∈ X in the fuzzy set A.

The universal fuzzy set in X, denoted by X, is defined by X(x) = 1,∀x ∈ X.
The empty fuzzy set in X, denoted ∅, is defined by ∅(x) = 0, ∀x ∈ X.
The fuzzy sets A and B in X are said equal, and denoted A = B, if A(x) =

B(x), ∀x ∈ X.
The fuzzy set A in X is a subset of the fuzzy set B in X, denoted A ⊂ B, if

A(x) ≤ B(x), ∀x ∈ X.
The complement of a fuzzy set A in X, denoted Ā is defined by Ā(x) = 1 −

A(x),∀x ∈ X.
The intersection of fuzzy sets A and B in X, denoted A ∩ B, is the fuzzy set

defined as (A∩B)(x) = T (A(x), B(x)),∀x ∈ X, where T is a triangular norm (i.e.
commutative, associative, non-decreasing in each argument, and T (a, 1) = a,∀a ∈
[0, 1]).

The union of fuzzy sets A and B in X, denoted A ∪B, is the fuzzy set defined
as (A ∪ B)(x) = S(A(x), B(x)), ∀x ∈ X, where S is a triangular conorm (i.e.
commutative, associative, non-decreasing in each argument, and S(a, 0) = a,∀a ∈
[0, 1]).

For any triangular norm T : [0, 1] × [0, 1] → [0, 1], the dual triangular conorm
S : [0, 1] × [0, 1] → [0, 1], defined by S(x, y) = 1 − T (1 − x, 1 − y) is, itself, a
triangular conorm.

DATA ANALYSIS WITH FUZZY SETS: A SHORT SURVEY 113

In what follows we will analyse some of the properties of crisp sets from the
point of view of applicability to fuzzy sets. We will exemplify with two widely-used
t-norms and t-conorms:

Standard: TS(a, b) = min{a, b} and SS(a, b) = max{a, b}
Lukasiewicz: TL(a, b) = max{a + b− 1, 0} and SL(a, b) = min{a + b, 1}

Property Crisp sets TS and SS TL and SL

(1) Idempotence laws Valid Valid Invalid
(2) A ∪ Ā = X and A ∩ Ā = ∅ Valid Invalid Valid
(3) Distributivity laws Valid Valid Invalid
(4) De Morgan laws Valid Valid Valid

Properties (1) are satisfied only by the standard t-norm and t-conorm. Prop-
erties (4) are satisfied by any t-norm and the dual t-conorm. Any t-norm and
t-conorm, defined on nondegenerate fuzzy sets, that satisfy properties (2), do not
satisfy properties (3). For any t-norm and t-conorm that verify the properties (2)
and (3), the fuzzy sets have only crisp values, i.e. they reduce to crisp sets.

The properties above make the standard definition suitable for use in ‘strict’
fuzzy logic, and the Lukasiewicz definition suitable for use in fuzzy clustering.

3. Rough sets

A different generalisation of the concept of crisp set is the rough set. But while
a fuzzy set comes as a membership function, the idea behind rough sets is to
approximate sets using collections of sets [8].

Let us consider a collection of sets C = {C1, C2, . . .}, and a set D. We define
the lower approximation of D by C, denoted DL, the set

DL = ∪Ci such that Ci ∩D = Ci.

We define the upper approximation of D by C, denoted DU , the set

DU = ∪Ci such that Ci ∩D 6= ∅.
We define the boundary of D by C, denoted DU

L = DU −DL.
A set D is said to be rough if it has a non-empty boundary when approximated

by C. Otherwise, the set D is called crisp.
Fuzzy sets model the inherent vagueness in the data. As a difference, rough

sets model ambiguity due to lack of information.

4. Fuzzy clustering

The subject of Cluster Analysis is the classification of objects into categories.
Since most categories we use have vague boundaries, and may even overlap, the
necessity of introducing fuzzy sets is obvious. The main issues approached by
research in Fuzzy Clustering refer to the following [10]:

114 HORIA F. POP

Data representation: Input data is obtained by measurements on the
objects that are to be recognized. Each object is represented as a vector
of measured values x = (x1, x2, . . . , xs), where xi is a particular charac-
teristic of the object.

Feature extraction: Due to the large number of characteristics, there is
a need to extract the most relevant characteristics from the input data,
so that the amount of information lost in this way is minimal, and the
classification realised with the projected data set is relevant with respect
to the original data. In order to achieve this feature extraction, different
statistical techniques, as well as the fuzzy clustering algorithms outlined
here, may be used.

Clusters shape: Pattern recognition techniques based on fuzzy objective
functions minimizations use objective functions which are particular to
different clusters shapes. Ways to approach the problem of correctly
identifying the clusters shape are the use of adaptive distances in a second
run to change the shapes of the produced clusters so that all are unit
spheres, and adaptive algorithms which dynamically change the local
metrics during the iterative procedure in the original run, without the
need of a second run.

Cluster validity: Another problem of such algorithms is that of deter-
mining the optimal number of classes that correspond to the cluster
substructure of the data set. There are two approaches: the use of valid-
ity functionals which is a post-factum method, and the use of hierarchical
algorithms, which produce not only the optimal number of classes (based
on the needed granularity), but also a binary hierarchy that show the
existing relationships between the classes.

Defuzzification of final fuzzy partition: Since humans need for their
analysis crisp partitions, such procedures should be able to produce,
together with the final fuzzy partition, a crisp version thereof. There
are a number of techniques, which differ on their ability to produce a
non-degenerate crisp partition (i.e. a crisp partition with all the member
crisp sets non-empty), and on their ability to produce the crisp partition
closest to the original fuzzy partition.

Method: Essentially, the method is based on defining a dissimilarity func-
tion between the data set and the prototypes (not necessarily vectors in
the same space) of the fuzzy classes. A fuzzy objective function is de-
fined based on this dissimilarity function. In order to minimize the fuzzy
objective function, a two step iterative procedure is used: for certain
prototypes, the optimal fuzzy partition is determined; reciprocally, for
a certain fuzzy partition, the optimal prototypes are determined. This
procedure continually decreases the value of the objective function.

In what follows we will recall the Fuzzy Clustering generic algorithm [1].

DATA ANALYSIS WITH FUZZY SETS: A SHORT SURVEY 115

Let us consider a set of data items X =
{
x1, . . . , xn

} ⊂ Rs, characterised in
such a way that we may define a measure of their (dis)similarity. Our aim is to find
a fuzzy partition P = {A1, . . . , Ac} that best represents the cluster substructure of
the data set X., i.e. data items of the same class should be as similar as possible,
and data items of different classes should be as dissimilar as possible.

Let us suppose that the fuzzy sets Ai are represented by some prototypes Li, and
that we can define a function D(xj , Li) that represents the dissimilarity between
a certain data item xj and the prototype Li.

At this point, we do not specify the exact shape of the prototypes Li. Of course,
when the prototypes Li are fully described, the dissimilarity D(xj , Li) will need
to be fully described, as well.

We define the representation inadequacy of the fuzzy partition P by the set of
prototypes L as the function

J(P, L) =
c∑

i=1

n∑

j=1

Ai(xj)m ·D(xj , Li)

where m > 1 is a constant defining the weight the fuzziness is taken into account
with.

Let us observe that J is an objective function of the tipe of square errors sum.
Our problem is to determine the fuzzy partition P and its prototype representation
L that minimizes the function J . Because an algorithm to obtain an exact solution
to this problem is not known, we will use an approximate method in order to
determine a local solution. The minimum problem will be solved by using an
iterative method where J is successively minimized with respect to P and L.

The Fuzzy Clustering generic algorithm is, thus, the following:
(1) Given: c, n, m, and xj , j = 1, . . . , n; l = 0;
(2) Initialize fuzzy partition P (0) = {A1, . . . , Ac};
(3) Compute prototypes Li that minimize J(P (l), ·); this depends on the

definition of D, and may be costly;
(4) Compute fuzzy partition P (l+1) that minimizes J(·, L):

A
(l+1)
i (xj) =

1
c∑

k=1

(
D(xj , Li)
D(xj , Lk)

) 1
m−1

(5) Compare fuzzy partitions P (l+1) with P (l). If close enough, then stop,
else increase l by 1 and goto step 3.

4.1. Fuzzy clustering variants and improvements. The first algorithm from
this class, developed by Dunn [3], was the Fuzzy c-Means algorithm and used
spherical prototypes. For an up-to-date discussion of the different variants and
improvements of the Fuzzy c-Means algorithm, see [5].

116 HORIA F. POP

Geometric prototypes:
• Fuzzy c-Means – Dunn (1974), Bezdek (1974)
• Fuzzy c-Varieties and Fuzzy c-Elliptotypes – Bezdek et.al. (1981)
• Fuzzy c-Ellipsoids – Lenart (1989)
• Adaptive Fuzzy Clustering – Dave (1989), Dumitrescu, Pop (1990)
• Use of fuzzy covariance matrix – Gustaffson, Kessel (1979)
• Lp Fuzzy c-Means – Miyamoto, Agusta (1998), Hathaway, Bezdek

(2000)
Empty shell prototypes:

• Fuzzy c-Shells – Dave (1990), Krishnapuram, Nasraoui, Frigui (1992)
• Adaptive Fuzzy c-Shells – Dave, Bhaswan (1992)
• Fuzzy c-Ellipsoidal Shells – Frigui, Krishnapuram (1996), Gath,

Hoory (1995)
• Fuzzy c-Quadric Shells – Krishnapuram, Frigui, Nasraoui (1993,

1995)
• Fuzzy c-Rectangular Shells – Höppner, Klawonn, Kruse (1997)

Fuzzy clustering with incomplete data:
• Unsupervised fuzzy competitive learning – Chung, Lee (1994)
• Whole data strategy – Hathaway, Bezdek (2001)
• Partial distance strategy – Hathaway, Bezdek (2001)
• Optimal completion strategy – Hathaway, Bezdek (2001)
• Nearest neighbour strategy – Hathaway, Bezdek (2001)

Other methods and models:
• Fuzzy divisive hierarchic clustering – Dumitrescu (1988)
• Cross-clustering – Dumitrescu, Pop (1995)
• Noise Clustering – Dave (1991), Dave, Sen (1997)
• Possibilistic, Probabilistic – Krishnapuram, Keller (1993), Gath,

Geva (1989)

5. Fuzzy classification

Let us consider a set of objects, X = {x1, . . . , xp} ∈ Rd, classified with a
fuzzy clustering algorithm of the type Fuzzy n-Means, and the fuzzy partition
P = {A1, . . . , An} coresponding to the cluster substructure of the set X (see [4]).

We rise the problem of including an extra-object x0 6∈ X in the cluster structure
of X. Of course, this would mean to determine the membership degrees of x0 to
the fuzzy sets members of the partition P . These degrees will provide sufficient
information in order to classify the object x0 with respect to the elements of X.

The algorithms that solve this kind of problems are called fuzzy decision su-
pervized classification algorithms [9]. Supervised classification because the classi-
fication of the extra-object is realized using not only the data set X, but also the
fuzzy partition obtained by classifying the set X. Fuzzy decision because, unlike
the traditional classifiers, where the aim is to state in which classical subset the

DATA ANALYSIS WITH FUZZY SETS: A SHORT SURVEY 117

object may be included, now we are interested in the membership degrees of the
object to the fuzzy sets members in the given fuzzy partition.

This category of classifiers has to be studied in comparison with the other two
important classes. On one hand, the classical classifiers, where the supervised
information is a crisp partition and the final descision is, as well, crisp (i.e. the
‘to be or not to be’ kind of question). On the other hand, we have the traditional
fuzzy generalisations of the crisp classifiers, the so-called fuzzy classifiers, where
the supervised information is a fuzzy partition, but the final decision is, still, crisp.

The simplest approach for the fuzzy decision supervised classifier is the classi-
fication of the extended set X ∪ {x0} using one of the common fuzzy clustering
algorithms, and the comparative analysis of the produced partition to the partition
P . Unfortunately, this method is very costly considering the neccessary execution
time, because it supposes the classification of the objects of X, set that in the real
applications may be quite large. Also, this is not supervised classification, because
the information provided by the fuzzy partition P is not used.

The alternate approach is to keep unchanged the membership degrees of the
objects in X to the sets of the fuzzy partiton P , and to determine the membership
degreess of x0 as a consequence of the minimization of an objective function similar
to those used for the algorithms of the Fuzzy n-Means type.

There are, as well, a few more straightforward algorithms of this type. These
algorithms are fuzzy generalizations of the well-known k nearest neighbours and
nearest prototype.

6. Fuzzy regression

The aim of regression techniques is to relate, corelate or model a measure re-
sponse based on the value of a given variable.

The common approach has been to work with traditional schemes as, for ex-
ample, the linear Least-Square method. But these methods come with important
drawbacks: they assume that data is homoscedastic – y-direction error is indepen-
dent of the controlled variable.

Unfortunately, most real-world data are heteroscedastic, and presence of outliers
is, as well, common. In such cases, use of robust methods is desired. But most of
current robust methods do not provide best results in all situations.

We aim at developing a class of fuzzy regression methods that overcome these
negative issues.

Fuzzy clustering techniques are suitable for determining the optimal cluster
substructure of a data set, and they suppose that such a substructure does exist.
The problem at hand is, however, to be able to determine the one fuzzy set A and
its prototype L that best describes the data set. In such a case, a regular fuzzy
clustering algorithm will not work.

118 HORIA F. POP

The fuzzy set that best corresponds to a data set, based on a prototype char-
acterisation of the data, is a useful notion in the search for robust regression tech-
niques, as well as for developing data analysis techniques where the data items are
considered according to their goodness of fit (i.e. their membership degree to this
fuzzy set).

We consider a binary fuzzy partition, {A, Ā}, where Ā is a virtual class with a
hypothetical prototype, characterized by the constant dissimilarity

D(xj , L̄) = δ :=
(

α

1− α

)m−1

.

The optimal fuzzy set A, as defined by our problem, is determined by minimizing
the following fuzzy objective function:

J(A,L) =
n∑

j=1

A(xj)mD(xj , L) +
n∑

j=1

Ā(xj)m

(
α

1− α

)m−1

, α ∈ (0, 1).

The algorithm used to solve this problem has been called the Fuzzy Regression
generic algorithm [11, 12]:

(1) Given α; Initialize A(0)(x) = 1, l = 0;
(2) Compute prototype L that minimizes J(A(l), ·);
(3) Compute fuzzy set A(l+1) that minimizes J(·, L):

A(l+1)(xj) =

α

1− α
α

1− α
+ D(xj , L)

1
m−1

(4) Compare fuzzy sets A(l+1) with A(l). If close enough, then stop, else
increase l by 1 and goto step 2.

As an improvement, in order to assure the independence of scale, in the equation
from step 3, we will replace the dissimilarity D(xj , L) with the relative dissimi-
larity

Dr(xj , L) = D(xj , L)/ max
j=1,n

D(xj , L).

This is equivalent to setting δ initially to

D(xj , L̄) = δ :=
(

α

1− α

)m−1

max
j=1,n

D(xj , L).

6.1. Properties of the Fuzzy Regression algorithm. Let us suppose that X is
a data set, and A and L are the optimal fuzzy set and its prototype representation,
respectively. The following properties are valid [11].

i. (Maximal membership degree) A(x) = 1 ⇔ D(x, L) = 0
ii. (Minimal membership degree) A(x) = α ⇔ Dr(x, L) = 1
iii. (Membership degree interval) A(x) ∈ [α, 1] for all x ∈ X

DATA ANALYSIS WITH FUZZY SETS: A SHORT SURVEY 119

iv. (Empty fuzzy set) α = 0 ⇔ A(x) = 0 for all x ∈ X
v. (Degenerate fuzzy set) α = 1 ⇔ A(x) = 1 for all x ∈ X
vi. (Strict monotony) A(x) < A(y) ⇔ D(x, L) < D(y, L)
vii. (Equality) A(x) = A(y) ⇔ D(x, L) = D(y, L)

The constant α is an input parameter that has the role of setting the polarization
of the fuzzy partition {A, Ā}. The best results appear to be obtained with α ≈
0.10.

Being based on the Fuzzy c-Lines algorithm, the linear version of this algorithm
(Fuzzy Linear Regression) uses as dissimilarity the square distance to the line, as
opposed to the y-distance, used by the classical Least Squares algorithm.

Due to the use of fuzzy sets, the algorithm is efficient in all testing conditions,
and is better than most methods it has been compared with [11].

The algorithm allows the detection of the type of data sets, i.e. homoscedas-
ticity, heteroscedasticity, presence of outliers, or any combination thereof, with or
without any other irregularities. This is done through repeated runs by analysing
the graphical representation of the surface made by the coefficients vectors of the
linear prototypes, as determined for α varied continuously in the interval (0, 1).
In the case of a two-dimensional data set, the curve is defined through the points
(a0, a1), where y = a0 + a1x is the linear prototype of the data set defined.

7. Data projection and selection

7.1. Visualisation of high-dimensional data items. The simplest method to
visualise a data set is to plot profiles: two-dimensional graphs where the dimensions
are enumerated on the x axis, and the corresponding values on y. An alternative,
also largely used, is to plot two-dimensional representations of pairs of two original
dimensions.

There are, also, methods that produce different curves based on the data items
values. The most important drawback of such methods is that they do not reduce
the amount of data, and thus they cannot be used effectively with large high-
dimensional data sets. However, they can be used for illustrating data summaries.

7.2. Projection methods. The main feature of clustering algorithms is that
they reduce the amount of data items by grouping them in classes. The projection
methods described below can be used for reducing the data dimensionality. The
goal of these techniques is to represent the data set in a lower-dimensional space
in such a way that certain properties of the data set are preserved as much as
possible.

The following questions are important when discussing a method for large, high-
dimensional data sets: what kind of structure the method extracts from the data
set; how does it illustrate the structure; does it reduce dimensionality of data; does
it reduce the number of data items.

120 HORIA F. POP

7.3. Principal Components Analysis with Fuzzy sets. The aim of PCA
is to achieve data dimensionality reduction by determining new, fewer variables.
The new variables, called principal components, correspond to the axes of maxi-
mal elongation of data These principal components are linear combinations of the
original variables.

It has been remarked that the number of principal components necessary to
conserve 90% of data variance is considerably less than the size of data space. As
such, it has become extremely important to determine the relevant variables. We
could thus achieve not only a significant data projection, but as well a variable
selection.

The use of fuzzy sets enables us to aproach the problem of isolated points with
respect both to the data set and to the principal directions [2].

The PCA Algorithm. The PCA algorithm starts by computing the covariance
or corelation matrix

Covij =
1

n− 1

n∑

k=1

(xk
i − x̄i) · (xk

j − x̄j)

Corij =
Covij

si · sj
, si =

1
n− 1

n∑

k=1

(xk
i − x̄i)2

Then we compute the eigenvectors and eigenvalues of this matrix; these are the
principal components and the scatter values. Based on these scatter values, select
the necessary number of principal components.

Then we determine the values of data for the new variables (i.e. project the
data set in the space of the selected principal components): X ′T = XT · E.

This is a very simple, but very effective algorithm indeed. Essentially, we achieve
a clearer image about the data by only rotating the data space such that the new
axes of coordinates coincide with the directions of maximal elongation of data.

Fuzzy PCA, first component. The major problem of the PCA algorithm rests,
as always, with the isolated points. As a first possible way to handle this, we will
take into account the points isolated with respect to the first principal component
only.

We aim to introduce fuzzy membership degrees according to the distance to
the first principal component. As such, we will use a scheme similar to the fuzzy
regression algorithm, to determine the first fuzzy principal component and the
corresponding fuzzy membership degrees.

We will thus replace the traditional covariance matrix by the fuzzy covariance
matrix, given by

Cij =

∑n
k=1 A(xk)m · (xk

i − x̄i) · (xk
j − x̄j)∑n

k=1 A(xk)m
, i, j = 1, . . . , p.

DATA ANALYSIS WITH FUZZY SETS: A SHORT SURVEY 121

The major advantage is that the first principal component will count the merits
of each data item; as such, will consider the isolated points with less significance.

Fuzzy PCA, orthogonal. The Fuzzy PCA algorithm discussed in the preceding
section fuzzifies only the first component. In order to get a most effective method,
we have to deal with the problem of fuzzifying all the components.

The main idea is to use a different approach: by projecting the data in smaller-
sized spaces. After the first fuzzy eigenvector is determined, all data is projected
to the hyperplane rectangular on it. The eigenvectors corresponding to the pro-
jected data will be orthogonal to the eigenvector determined above. As such, the
second largest eigenvector of the original data will correspond to the largest eigen-
vector of the projected data. The projection continues further on, etc.; finally, the
eigenvectors are rebuilt in the original space.

This method Advantage: the compotation of the other fuzzy components is
reduced to the computation of the first fuzzy component of a smaller-sized matrix

7.4. Multi-Dimensional Scaling. Alternate projection methods aim to reduce
the data dimensionality is to optimize the representation in the lower-dimension
space so that the distances between points in the projected space are as similar as
possible to the distances between the corresponding points in the original space
[7].

We will present here a class of methods known as multidimensional scaling
(MDS). The aim of these methods is to project data from a pseudo-metric space
(i.e. characterised by a dissimilarity measure) onto a metric space. Such metods
are especially useful for preprocessing non-metric data in order to use them with
algorithms only valid with metric input.

The first MDS method is the metric MDS, characterized by minimizing the
squared error cost function:

EM =
∑

k 6=l

(d(k, l)− d′(k, l))2 ,

where, for the original items xk and xl, d(k, l) is their dissimilarity, and d′(k, l) is
the distance between the corresponding vectors from the projected metric space.

If the components of the data vectors are expressed on an ordinal scale, a
perfect reproduction of the Euclidean distances may not be the best goal. In such
a situation, only the rank order of the distances between the vectors is meaningful.
The error function is defined as

EN =

∑

k 6=l

(f(d(k, l))− d′(k, l))2

∑

k 6=l

(d′(k, l))2
,

122 HORIA F. POP

where f is a monotonically increasing function that acts on the original distances
and always maps the distances to such values that best preserve the rank order.

Another non-linear mapping method, the Sammon’s mapping, is closely related
to the metric MDS. The only difference is that the errors in distance preservation
are normalized with the distance in the original space. Thus, preservation of small
distances is emphasized. The error function is defined as

ES =
∑

k 6=l

(d(k, l)− d′(k, l))2

d(k, l)
.

8. Conclusions

This paper surveyed the different intelligent data analysis aspects, with an
insight from the fuzzy sets perspective. The fuzzy sets, as a natural generalisation
of the classical crisp sets, bring more power and refinement to data analysis. A
lot of work has been done in developping better, more robust algorithms for data
analysis. The different fuzzy data analysis algorithms are not only an issue for
theoretical study, but a series of effective tools used in most diverse applications,
from medicine to chemistry, physics, biology and engineering.

References

[1] James C. Bezdek, Pattern Recongnition with Fuzzy Objective Function Algorithms,
Plenum Press, New York, 1981

[2] Thomas R. Cundari, Costel Sârbu, Horia F. Pop, Robust Fuzzy Principal Component
Analysis (FPCA). A comparative study concerning interaction of carbon-hydrogen bonds
with molybdenum-oxo bonds. J. Chem. Inf. Comput. Sci., 42, 6, 2002, 1363–1369

[3] J.C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact
well-separated clusters, Journal of Cybernetics 3, 1974, 32–57

[4] D. Dumitrescu, Hierarchical pattern classification, Fuzzy Sets Syst., 28, 1988, 145–162
[5] F. Höppner, F. Klawonn, R. Kruse, T. Runkler, Fuzzy Cluster Analysis, Wiley, New

York, 1999
[6] George J. Klir, Bo Yuan, Fuzzy Sets and Fuzzy Logic, Prentice Hall, New Jersey, 1995
[7] J. B. Kruskal, M. Wish, Multidimensional Scaling, Sage Publications, Beverly Hills, CA,

1977
[8] Zdzislaw Pawlak, Rough sets, Int. J. Comput. Inform. Sci., 11, 1982, 341–356
[9] Horia F. Pop, Fuzzy decision supervised classifiers, Studia Universitatis Babes-Bolyai, Se-

ries Informatica, 40, 3, 1995, 89–100
[10] Horia F. Pop, Sisteme inteligente ı̂n probleme de clasificare, Editura Mediamira, Cluj, 2004
[11] Horia F. Pop, Costel Sârbu, A New Fuzzy Regression Algorithm, Anal. Chem. 68, 1996,

771–778
[12] Costel Sârbu, Horia F. Pop, Fuzzy robust estimation of central location, Talanta, 54,

2001, 125–130
[13] Lotfi A. Zadeh, Fuzzy sets, Inf. Control, 8, 1965, 338–353

Department of Computer Science, Babeş-Bolyai University, 1 M. Kogălniceanu St.,
RO-400084 Cluj-Napoca, Romania

E-mail address: hfpop@cs.ubbcluj.ro

	00_contents
	01Zalan
	02Tatar
	03SerbanPintea
	04Tarta
	05Gog
	06Antal
	07Radoiu
	08PopP
	09Roumili
	10Parv
	11Parv
	12Pop

