
Anul XLVIII 2003

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

2

Redacţia: 3400 Cluj-Napoca, str. M. Kogălniceanu nr. 1 Telefon 405300

SUMAR – CONTENTS – SOMMAIRE

G. Şerban, A New Interface for Reinforcement Learning Software 3

[paper retracted] ... []

D. Dumitrescu, C. Groşan, V. Varga, Stochastic Optimization of Querying
Distributed Databases II. Solving Stochastic Optimization 17

R. Gorunescu, D. Dumitrescu, Evolutionary Clustering Using an Incremental
Technique ... 25

J. Andras, D. Dumitrescu, Evolving Orthogonal Decision Trees 33

D. Dumitrescu, S. Károly, A New Dynamic Evolutionary Clustering Technique.
Application in Designing RBF Neural Network Topologies. I. Clustering Algorithm… 45

A. Baciu, A. Nagy, Coordination and Reorganization in Multi-Agents Systems, I …. 53

D. Avram Lupşa, G. Şerban, D. Tătar, Hierarchical Clustering Algorithms for
Repeating Similarity Values .. 61

V. Prejmerean, S. Motogna, V. Cioban, Spatial View of 3D Objects Using
Stereograms ... 73

M. Frenţiu, I. Lazăr, H.F. Pop, On Individual Projects in Software Engineering
Education ... 83

R. Lupşa, Complexité algebrique des algorithmes géometriques – le problčme
d'intersections d'un ensemble de segments ... 95

ANIVERSARE – ANNIVERSARY – ANIVERSAIRE

M. Frenţiu, Professor Doina Tătar at her Sixties ... 101

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 2, 2003

A NEW INTERFACE FOR REINFORCEMENT LEARNING
SOFTWARE

GABRIELA ŞERBAN

Abstract. The field of Reinforcement Learning, a sub-field of machine learn-
ing, represents an important direction for research in Artificial Intelligence,
the way for improving an agent’s behavior, given a certain feed-back about its
performance. In this paper we propose an original interface for programming
reinforcement learning simulations in known environments. Using this inter-
face, there are possible simulations both for reinforcement learning based on
the states’ utilities and learning based on actions’ values (Q-learning).
Keywords: Reinforcement Learning, Agents.

1. Introduction

The interface is realized in JDK 1.4, and is meant to facilitate to develop soft-
ware for reinforcement learning in known environments.

There are three basic objects:agents, environments and simulations.
The agent is the learning agent and the environment is the task that it inter-

acts with. The simulation manages the interaction between the agent and the
environment, collects data and manages the display, if any.

Generally, the inputs of the agent are perceptions about the environment (in our
case states from the environment), the outputs are actions, and the environment
offers rewards after interacting with it.

Figure 1 illustrates the interaction between the agent and the environment in a
reinforcement learning task.

The reward is a number; the environment, the actions and perceptions are
instances of classes derived from the IEnvironment, IAction and IState interfaces
respectively. The implementation of actions and perception can be arbitrary as
long as they are understood properly by the agent and the environment. It is
obvious that the agent and the environment has to be chosen to be compatible
with each other in this way.

Received by the editors: December, 10, 2002.
2000 Mathematics Subject Classification. 68T05.
1998 CR Categories and Descriptors. I.2.6 [Computing Methodologies]: Artificial In-

telligence – Learning.

3

4 GABRIELA ŞERBAN

Figure 1. The interaction between the agent and the environment

The interaction between the agent and the environment is handled in discrete
time. We assume we are working with simulations. In other words there are no
real-time constraints enforced by the interface: the environment waits for the agent
while the agent is selecting its action and the agent waits for the environment while
the environment is computing its next state.

We assume that the agent’s environment is a finite Markov Decision Process.
For using the interface, the user has to define the specialized object classes

HisState, HisEnvironment and HisAgent, by creating instances for each. The agent
and the environment are then passed to a simulation object (CSimulation), that
initializes and interconnects them. Then, CSimulation::init() will initialize and
execute the simulation.

If the agent learns the states’ utilities, it has to be derived from the AgentUtility
class, otherwise, if it learns the actions’ values (Q-learning) it has to be derived
from the AgentQValues class.

In the followings we present a prototypical example for a concrete agent.
(1) First, the user defines the class corresponding to a concrete state of the

environment.
public class HisState implements IState
{...}

(2) Second, the user defines the class corresponding to the concrete environ-
ment in which the agent acts.
public class HisEnvironment implements IEnvironment
{...}

(3) The user defines the class corresponding to the concrete agent.
public class HisAgent implements AgentUtility
{

A NEW INTERFACE FOR REINFORCEMENT LEARNING SOFTWARE 5

public void actions(){...}
}
if the agent learns the states’ utilities, respectively
public class HisAgent implements AgentQValues
{

public void actions(){...}
}
if the agent learns the actions’ values.
Using the method actions(), the agent perceives the actions that can be
executed. In our approach, the agent’s actions are numbered (starting
from 1).

(4) Finally, the user defines the application class which initializes the simu-
lation of learning process for the concrete agent in the concrete environ-
ment.
class Application {

public static void main(String args[]){
IEnvironment m=new HisEnvironment();
RLAgent ag=new HisAgent();

//the agent perceives its actions
ag.actions();

//instantiation for the object that realizes the simulation
CSimulation s=new CSimulation(ag, m);

//on initialize the simulation - α, γ, ε, number of episodes
s.init(0.01, 0.3, 0.1, 10);

//on display the policy
s.policy(System.out);

}
We have to mention that the learning algorithms used for implementing the

agents’ behavior are the URU algorithm [4] for learning the states’ utilities (values),
respectively the SARSA algorithm [1] for Q-learning.

2. The Design of the Interface

The classes used for realizing the interface are the following:
• IList INTERFACE

Defines the structure of a list of objects, having operations for man-
aging the list: adding an element on a given position, removing an ele-
ment from a given position, returning the number of elements from the
list, returning an element from a given position.

• IState INTERFACE
Defines the structure of a state from the environment (could have an

explicit representation or an implicit one if the environment is unknown

6 GABRIELA ŞERBAN

and the agent has to retain a model of the environment). The methods
of this class are for: returning a String with the member data of the
class, testing the equality of two states.

• IAction INTERFACE
Defines the structure of an action that the agent could execute. The

methods of this class are for: returning a String with the member data
of the class, testing the equality of two states.

• Element ABSTRACT CLASS
Defines a generic element represented as a triplet (IState, IAction,

value) needed for realizing the learning. Depending on the learning agent
(learns the states’ or the actions’ values), value will represent the utility
of the state IState, respectively the Q-value of the pair (IState, IAction).

• Utility SUBCLASS of Element
Defines the class corresponding to an element (defined above) used

in learning the states’ utilities.
• QValues SUBCLASS of Element

Defines the class corresponding to an element (defined above) used
in learning the actions’ values.

AGENT

The agent is the entity that interacts with the environment, receives perceptions
(states) from it and selects actions. The agent learns by reinforcement and could
have or not a model of the environment.

• RLAgent ABSTRACT CLASS
Is the basic class for all the agents. The specific agents will be

instances of subclasses derived from RLAgent. The methods of this class
are:
(1) void actions() ABSTRACT METHOD

This function is given by the user for the specialized agent class and
defines the list of actions that the agent could execute.

(2) Element choose(Element e, Integer r, double epsilon, IEnvi-
ronment m) ABSTRACT METHOD
This function is used in learning and allows the choice of the next
element (having the type QValues or Utility , depending of the
chosen learning type) to which the agent moves, starting from the
current element e, in the environment m and choosing as a selection
mechanism the ε-Greedy selection (epsilon is given as parameter).
After this choice, the parameter r will contain the reward obtained
by the agent.
This method will have specific definition according to the learning
method (Q-value, utility).

A NEW INTERFACE FOR REINFORCEMENT LEARNING SOFTWARE 7

(3) QValues next(IState s, IEnvironment m) ABSTRACT
METHOD
This function gives the agent’s policy for moving after learning. If
the object having the type QValues returned by the method contains
the state snext and the action a, it means that the agent’s policy is
the following: from the state s, the agent will choose the action a
and will move to the state surm.
This function has specific definition according to the agent’s type,
too.

(4) Element initial(IState s) ABSTRACT METHOD
The state s being the initial state of the environment, the method
returns the initial element (QValues or Utility, corresponding to
the learning’s type) which will starts the learning. This method
has specific definition according to the agent’s type.

(5) void learning(double alpha, double gamma, double epsilon, int
episodes, IEnvironment m)
Is the basic method which implements the learning algorithm of
the agent in the environment m. There are given: the learning
rate (alpha), the reward factor (gamma), the value for epsilon for
the ε-Greedy selection mechanism, the number of training episodes
(episodes).
This method is not abstract, is concretely defined in the class RLA-
gent (indifferent what is the learning’s type, the learning method is
the same).

• AgentUtility ABSTRACT CLASS
Is a subclass of the class RLAgent, being the entity which defines the

behavior of an agent that learns by reinforcement based on the states’
utilities. This class specializes the methods (2), (3) and (4) (defined in
the superclass) according to learning based on states’ utilities.

The method actions() is not defined in this class (that is why the
class is abstract), but will be defined in the class corresponding to the
specialized agent created by the user (and who can be an instance of a
class derived from AgentUtility).

• AgentQValues ABSTRACT CLASS
Is a subclass of the class RLAgent, being the entity which defines the

behavior of an agent that learns by reinforcement based on the actions’
values. This class specializes the methods (2), (3) and (4) (defined in
the superclass) according to the Q-learning method.

The method actions() is not defined in this class (that is why the
class is abstract), but will be defined in the class corresponding to the
specialized agent created by the user (and who can be an instance of a
class derived from AgentQValues).

8 GABRIELA ŞERBAN

ENVIRONMENT

The environment basically defines the problem to solve. It determines the
dynamic of the environment, the rewards and controls, the ending of the training
process. In our approach, the environment will have an implicit representation as
a space of sates (IState).

• IEnvironment INTERFACE
Is the basic class for all environments. The specific environments

will be instances of subclasses derived from IEnvironment. The environ-
ment classes defined by the user (subclasses of IEnvironment) will give
specialized definitions for the following functions:
(1) boolean isValid(IState s) ABSTRACT METHOD

Is the function that verifies if a state s (represented explicitly or
implicitly) is valid in its environment.

(2) IState initial() ABSTRACT METHOD
Is the method that returns the initial state of the environment (the
state that will be used for initializing the learning).

(3) boolean isFinal(IState s) ABSTRACT METHOD
Is the method that returns the final state of the environment (the
state that will be used by the agent for ending the training pro-
cess). The final state could be given explicitly, or given implicitly
by certain conditions.

(4) IState next(IState s, IAction a, Integer r) ABSTRACT
METHOD
Is the main method of the interface IEnvironment. This method
will be called by an instance of the class that simulates the learning
(CSimulation), at each step of the simulation.
This function determines the environment to make a transition from
the current state s to a next state surm, after executing the specific
action a. The state surm will be returned, the function supplying
in the same time the reward r obtained after the transition.
In the case that the action a could not be applied in the state s, the
method returns null.

(5) double value(IState s) ABSTRACT METHOD
Is the method that gives the value of a state in the environment (the
initial utility of the state and the initial Q-values). We considered
that this value depends only on the current state, not on the selected
action (in the case of Q-learning).
This method will be used for initializing the learning process.

SIMULATION

• CSimulation INTERFACE

A NEW INTERFACE FOR REINFORCEMENT LEARNING SOFTWARE 9

Is the basic object of the interface, that manages the interaction
between the agent and the environment. Defines the heart of the inter-
face, the uniform usage that all agents and environments are meant to
conform to.

An instance of the simulation class is associated with an instance of
an agent and an environment at the creation moment. This is made in
the constructor of the class CSimulation. The methods of this class are
for:
(1) void init(double alpha, double gamma, double epsilon, int

episodes)
Is the method that initializes the simulation with the given param-
eters (is the function that starts the learning process of the agent).

(2) void policy(PrintStream ps)
Is the method that gives the moving policy for the agent, obtained
at the end of the simulation (after the training process).
The class CSimulation keeps references to the instances of the agent
and the environment. This facilitates cross-references of instances
in case it is need.

public class CSimulation
{

private RLAgent a; //reference to the agent’s instance
private IEnvironment m; //reference to the environment’s instance
...

}

3. Experiment

In this section we illustrate the use of the interface on a concrete example.
Let us consider the problem of a path-finding robot, whose goal is to learn (by
reinforcement) to come out from a maze (moving from an initial to a final state).

We assume that:
• the maze has a rectangular form; in some positions there are obstacles;

the agent starts in a given state and tries to reach a final (goal) state,
avoiding the obstacles;

• from a certain position on the maze the agent could move in four direc-
tions: north, south, east, west (there are four possible actions);

For example, let us consider the environment from Figure 2. The state marked
with 1 represents the initial state of the agent, the state marked with 2 represents
the final state and the states filled with black contain obstacles (which the agent
should avoid).

For using the interface, we defined the specialized classes for which we exe-
cuted the simulation (HisState, HisEnvironment and HisAgent) (For lack of space

10 GABRIELA ŞERBAN

Figure 2. The agent’s environment

the complete description of the classes may be found at the following URL:
http://www.cs.ubbcluj.ro/∼gabis/agent.zip).

The moving policy learned by the agent after the training and reported by the
CSimulation object is the same in both learning cases (states’ utilities or Q-values).
The learned path is: (4,1)-(3,1)-(2,2)-(2,3)-(1,3)-(1,4), respectively the sequence
of actions that the agent should execute is: North, East, North, East, North, East.

4. Further Work

A further work for generalizing the interface would be the study of the case in
which the agent’s environment is a Hidden Markov Model [3].

References

[1] Sutton, R., Barto, A., G., Reinforcement learning, The MIT Press, Cambridge, England,
1998

[2] Serban, G., A Reinforcement Learning Intelligent Agent, Studia Universitatis ”Babes-
Bolyai”, Informatica, XLVI (2), 2001, pp. 9–18

[3] Serban, G., Training Hidden Markov Models – a Method for Training Intelligent Agents,
Proceedings of the Second International Workshop of Central and Eastern Europe on
Multi-Agent Systems, Krakow, Poland, 2001, pp. 267–276

[4] Serban, G., A New Reinforcement Learning Algorithm, Studia Universitatis ”Babes-
Bolyai”, Informatica, XLVIII (1), 2003, pp. 3–14

”Babeş-Bolyai” University, Cluj-Napoca, Romania
E-mail address: gabis@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 2, 2003

STOCHASTIC OPTIMIZATION OF QUERYING DISTRIBUTED
DATABASES II. SOLVING STOCHASTIC OPTIMIZATION

D. DUMITRESCU, C. GROŞAN, AND V. VARGA

Abstract. General stochastic query optimization (GSQO) problem for mul-
tiple join — join of p relations which are stored at p different sites — is
presented. GSQO problem leads to a special kind of nonlinear programming
problem (P). Problem (P) is solved by using a constructive method. A se-
quence converging to the solution of the optimization problem is built. Two
algorithms for solving optimization problem (P) are proposed.

Keywords Distributed Databases, Query Optimization Problem, Genetic Al-
gorithms, Evolutionary Optimization, Adaptive Representation.

1. Introduction

The aim of this paper is to solve the general stochastic optimization problem
for the join of p relations, stored at p different sites of a distributed database. In
Part I the general stochastic optimization problem, was reduced to the following
constrained nonlinear programming problem (P):

Let(X, d) be a compact metric space and

f1, ..., fp : X → R+

continuous, strictly positive functions.
The optimization problem (P) is thus:

(P)





minimize y, y ∈ R

subject to:
y > 0,

f1(x) ≤ y,
...
fp(x) ≤ y.

Received by the editors: July 3, 2003.
2000 Mathematics Subject Classification. 68P15, 68T99.
1998 CR Categories and Descriptors. C.2.4 [Computer Systems Organization]:

Computer-Communication Networks – Distributed Systems; H.2.4 [Information Systems]:
Database Management – Systems.

17

18 D. DUMITRESCU, C. GROŞAN, AND V. VARGA

In this Part a constructive method to solve this problem is proposed. A theorem
which demonstrates that the nonlinear optimization problem (P) has at least one
solution is proved in Section 2.

The Constructive Algorithm (CA) given in Section 3 implements the method
of Section 2. The Refining Algorithm (RA) can optimize the solution given by the
Constructive Algorithm. RA starts with a minimum point xmin and searches for
a better solution in the [xmin − ε, xmin] interval and then in [xmin, xmin + ε], where
ε is a problem parameter.

2. A constructive method for solving general stochastic query
problem

Now we are ready to give a constructive method for solving problem (P). This
method generates a sequence converging to a solution of the problem (P). Theorem
2.1 ensures that the constructed sequence really converges towards a solution of
the optimization problem (P).

Let f : X → R be the function defined by

f(x) = max{f1(x), ..., fp(x)}.
and y0 the global minimum value of the function f, i.e.

y0 = min
x∈X

f(x).

Let A1 ⊂ A2 ⊂ A3 ⊂ ... ⊂ An ⊂ ... be a sequence of finite subsets of X such
that

∞∪
n=1

An is dense (see for instance Rudin, 1976) in X, i.e. ∪An = X equivalent

to the fact, that for ∀x ∈ X, ∃xn ∈ ∪
n∈N

An such that xn → x.

We consider

A1 = {u1, u2, ..., uq1}, ui ∈ X, i = 1, . . . q1,

A2 = {v1, v2, ..., vq2}, vj ∈ X, j = 1, . . . q2,

...
An = {w1, w2, ..., wqn}, wk ∈ X, k = 1, . . . qn,

where qi ∈ N∗, i = 1, . . . , n and qn →∞.
Let us consider the sequence (yn)n≥1 defined as folows:

y1 = min{max{f1(u1), f2(u1), ..., fp(u1)}, ..., max{f1(uq1), f2(uq1), ..., fp(uq1)},
y2 = min{max{f1(v1), f2(v1), ..., fp(v1)}, ..., max{f1(vq2), f2(vq2), ..., fp(vq2)},
...

yn = min{max{f1(w1), f2(w1), ..., fp(w1)}, ..., max{f1(wqn), f2(wqn), ..., fp(wqn)}.
It is easy to see that sequence (yn)n≥1 is monotone decreasing and bounded.
Therefore the sequence is convergent.

STOCHASTIC OPTIMIZATION OF QUERYING DISTRIBUTED DATABASES II 19

With respect to the convergent sequence (yn)n≥1 we can state the following
Theorem.
Theorem 2.1 The sequence (yn)n≥1 converges to a solution of the problem (P).
Proof. We have

yn ≥ f(x0)
because x0 is the global minimum of the function f . Therefore, if yn → y∗ we
have

y∗ ≥ f(x0).
We distinguish two cases. First case corresponds to

y∗ = f(x0).
In this case is nothing to demonstrate. The second case corresponds to the

situation
y∗ > f(x0).

We prove that this case it is impossible.
Because the set

∞∪
n=1

An is dense in X and the function f is continuous it results

that there exists a sequence (xn) ⊂ ∞∪
n=1

An such that

xn → x0 and f(xn) → f(x0).

Without loss of generality we may suppose that

x1 ∈ A1, ..., xn ∈ An,

But we have:

yn = min{max{f1(w1), . . . , fp(w1)}, . . . , max{f1(wqn
), . . . , fp(wqn

)}}
and

f(xn) = max{f1(xn), . . . , fp(xn)}
Therefore we have:

f(xn) ≥ yn,

for every n ∈ N∗.
If n →∞ we have f(xn) → f(x0) and yn → y∗, so we obtain

f(x0) ≥ y∗,

which is a contradiction with the assumption y∗ > f(x0). Therefore we obtained
y∗ = f(x0). This completes the proof. ¤
Remark. From the construction above we can see that for every n ∈ N∗, there
exists an index in ∈ {1, ..., qn}such that

yn = max{f1(win), ..., fp(win)}.
In this way we obtain a sequence (win)n≥1. It is obvious that each accumulation

point of the sequence (win)n≥1 is a solution of the problem (P).

20 D. DUMITRESCU, C. GROŞAN, AND V. VARGA

3. Solving problem (Pp) using the proposed constructive method

In the case of solving problem (Pp) using Theorem 2.1 we have

X = [0, 1]n .

In order to obtain an approximate solution of problem (Pp) in the Constructive
Algorithm we take a uniform grid G of the hypercube [0,1]k.

We may choose the sets (Ai)i∈N∗ in the folowing way:

A1 =
{(

i0
n

,
i1
n

, . . . ,
in
n

)
|i0, i1, . . . , in ∈ {0, 1, . . . , n} , i0 < i1 < · · · < in

}
,

A2 =
{(

j0
2n

,
j1
2n

, . . . ,
j2n

2n

)
|j0, j1, . . . , j2n ∈ {0, 1, . . . , 2n} , j0 < j1 < · · · < j2n

}
,

...

Ak =
{(

l0
2k−1n

,
l1

2k−1n
, . . . ,

l2k−1n

2k−1n

)
|l0, l1, . . . , l2k−1n ∈ {

0, 1, . . . , 2k−1n
}

,

l0 < l1 < . . . < l2k−1n} .

Our grid is that induced by A1, A2, . . . , Ak. The sets (Ai)i∈N∗ constructed in
the above way verify the conditions of Theorem 5.1 of Part I of this paper. For
our purposes we may consider n = 10.

For each point of the grid G we compute the values fs, s = 1, . . . , p. Choosing
the maximumfs, s = 1, . . . , p, we ensure that each inequality in the problem (Pp)
holds. Problem solution will be the minimum of all selected maximums.

The previous considerations enable us to formulate an algorithm for solving
problem (Pp). This technique will be called Constructive Algorithm (CA) and
may be outlined as below.

Constructive Algorithm
Input:

n // the number of divisions;
Functions f1,f2...,fp // express the problem constraints.

begin
Initializations:

h = 1
n // the length of one division;

valxj = 0, j = 1, ..., k // initial values for xj ;
for s = 1 to p do // initial values for functions fs

valfs = fs(valx 1, valx 2,. . . ,valxk)
end for
valmax = max{valfs, s = 1, ..., p}
valmin = valmax

STOCHASTIC OPTIMIZATION OF QUERYING DISTRIBUTED DATABASES II 21

for j = 1 to k do // in xminj we store the xj values for which we
xminj = valx j // have the minimum of fs

end for
Constructing the grid:

for i1 = 1 to n do
valx 1 = i1 ∗ h
for i2 = 1 to n do

valx 2 = i2 ∗ h
...
for ik = 1 to n do

valxk = ik∗h
for s = 1 to p do // calculate the values for functions fs for

valf s = fs(valx 1, valx 2,. . . ,valxk) // the current values of xj

end for
valmax = max{valfs, s = 1, ..., p}
if (valmax < valmin) then

valmin = valmax
for j = 1 to k do // store in xminj the new xj values

xminj = valx j // for which we have the
end for // minimum of fs

end if
end for // ik

...
end for // i2

end for // i1
end

Remark. valmin denote the minimum value of ∆1 from problem (Pp) and xminj ,
j = 1, ..., k denote the values for xj , j = 1, ..., k for which the minimum is reached.

The Constructive Algorithm should be repeated for a new value of n, so that
the divisions have to include the old divisions, in this way we obtain a new subset
Ai of the set X.

Solution obtained by the Constructive Algorithm can be refined using the Re-
fining Algorithm (RA).

Let us denote by (xmin 1, xmin 2, ..., xmin k) the minimum point obtained by the
Constructive Algorithm. Let us define the vectors xmin − ε, xmin + ε:

xmin − ε = (xmin 1 − ε, xmin 2 − ε, ..., xmin k − ε),
xmin + ε = (xmin 1 + ε, xmin 2 + ε, ..., xmin k + ε) .

Initially Refining Algorithm searches for a better minim in the interval: [xmin − ε, xmin].
Then it searches in [xmin, xmin + ε], where ε is a problem parameter. In case of

22 D. DUMITRESCU, C. GROŞAN, AND V. VARGA

found a better minim (to the left, or to the right) the algorithm will continue to
search refining the grid by division by 2. Let IterNr be the maximum allowed
number of iterations.

Refining Algorithm can be outlined as follows.

Refining Algorithm

Input:
n // the number of divisions;
eps // the accepted error;
IterNr // the number of iterations;
xminj , j = 1, ..., k // a minimum point obtained with algorithm CA;

Initializations:
h = 1

n // the length of one division;
for s = 1 to p do // values for functions fs;

valf s = fs(xmin1, xmin2,. . . ,xminxk)
end for
valmin = max{valfs, s = 1, ..., p}
for j = 1 to k do // in xminr j we store the xj values for which we

xminr j = xminj // have the minimum of fs

end for
Refining the minimum:

while h >= eps do
for iter = 1 to IterNr do

for j = 1 to k do
while found a better minimum to the left do

if xminj – h > 0 then
xminj = xminj – h
valmax = max{fs(xmin1,..., xmink), s = 1, ..., p}
if (valmax < valmin) then

valmin = valmax // a new minimum was found;
for j = 1 to k do // store in xminr j the new xj

xminr j = xminj // values for which we have the
end for // minimum of fs;
reloop while

end if
end if

end while // found to the left
while found a better minimum to the right do

if xminj + h > 0 then
xminj = xminj + h
valmax = max{fs(xmin1,..., xmink), s = 1, ..., p}
if (valmax < valmin) then

STOCHASTIC OPTIMIZATION OF QUERYING DISTRIBUTED DATABASES II 23

valmin = valmax // a new minimum was found;
for j = 1 to k do // store in xminr j the new xj

xminr j = xminj // values for which we have the
end for // minimum of fs;
reloop while

end if
end if

end while // found to the right
end for // j

end for // iter
h = h/2 // refine the division;

end while // h >= eps

Algorithms CA and RA can be used to solve the general stochastic optimization
problem (P). The problem of four relations join is formulated as the problem (P1)
of Part I, which is a particularization of general problem (P).

Numerical experiments for solving problem (P1) using the Constructive Algo-
rithm and Refining Algorithm are presented in Part III.

References

[1] C. J. Date (2000): An Introduction to Database Systems, Addison-Wesley Publishing Com-
pany, Reading, Massachusetts.

[2] R. F. Drenick (1986): A Mathematical Organization Theory, Elsevier, New York.
[3] P. E. Drenick, R. F. Drenick (1987): A design theory for multi-processing computing systems,

Large Scale Syst. Vol. 12, pp. 155-172.
[4] P. E. Drenick, E. J. Smith (1993): Stochastic query optimization in distributed databases,

ACM Transactions on Database Systems, Vol. 18, No. 2, pp. 262-288.
[5] D. Dumitrescu, C. Grosan, M. Oltean (2001): A new evolutionary adaptive representation

paradigm, Studia Universitas “Babes-Bolyai”, Seria Informatica, Volume XLVI, No. 1, pp.
15-30.

[6] C. Grosan, D. Dumitrescu (2002): A new evolutionary paradigm for single and multiobjec-
tive optimization, Seminar on Computer Science, “Babes-Bolyai” University of Cluj-Napoca.

[7] J. Kingdon,L. Dekker (1995): The shape of space, Technical Report, RN-23-95, Intelligent
System Laboratories, Department of Computer Science, University College, London.

[8] S. LaFortune, E. Wong (1986): A state transition model for distributed query processing,
ACM Transactions on Database Systems, Vol. 11, No. 3, pp. 294-322.

[9] T. Markus, C. Morosanu, V. Varga (2001): Stochastic query optimization in distributed
databases using semijoins, Annales Universitatis Scientiarum Budapestinensis de Rolando
Eötvös Nominatae Sectio Computatorica 20, pp. 107-131.

[10] M. T.Özsu, P. Valduriez (1999) : Principles of Distributed Database Systems, Prentice-Hall.
[11] R. Ramakrishnan (1998): Database Management Systems WCB McGraw-Hill.
[12] W. Rudin(1976): Principles of Mathematical Analysis, McGraw-Hill, New York.
[13] J. D. Ullman (1988): Principles of Database and Knowledge-Base Systems, Vol. I-II, Com-

puter Science Press.

24 D. DUMITRESCU, C. GROŞAN, AND V. VARGA

[14] V. Varga (1998): Stochastic optimization for the join of three relations in distributed
databases I. The theory and one application, Studia Universitas “Babes-Bolyai”, Seria In-
formatica, Volume XLIII, No. 2, pp. 37-46.

[15] V. Varga (1999): Stochastic optimization for the join of three relations in distributed
databases II. Generalization and more applications, Studia Universitas “Babes-Bolyai”, Se-
ria Informatica, Volume XLIV, No. 1, pp. 55-62.

E-mail address: ddumitr@cs.ubbcluj.ro

E-mail address: cgrosan@cs.ubbcluj.ro

E-mail address: ivarga@cs.ubbcluj.ro

Department of Computer Science, Faculty of Mathematics and Computer Science,
Babeş-Bolyai University, Cluj-Napoca, Romania

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 2, 2003

EVOLUTIONARY CLUSTERING USING AN INCREMENTAL
TECHNIQUE

R. GORUNESCU AND D. DUMITRESCU

Abstract. Since the various clustering methods developed over the time
have failed to prove their flawless efficiency in the field, it might be that
evolutionary computation holds the solution to this issue as well.

The goal of this paper is to present such an evolutionary technique with
a classical clustering engine behind it.

Keywords: incremental clustering, evolutionary computation, genetic
algorithms, merging, splitting, weighted similarity measures

1. Introduction

A new evolutionary clustering technique is proposed. This method represents
an evolutionary variant of the incremental clustering technique.

Incremental clustering (IC)[6] is a powerful clustering method that is of great
interest mainly because the number of clusters is not specified. This feature is very
important in the field of unsupervised learning. Therefore, instances are added one
by one forming a tree, starting with an empty root node. The best location for
the new instance or the best restructuring of the part of the tree affected by it is
determined by several operators, operators whose diversity leads us to the second
reason behind the success of the IC method. The ordinary Euclidean distance -
usually used for building an objective function - is replaced by a function called
category utility which measures the quality of the partitioning.

2. Incremental Clustering

The idea behind the IC algorithm is quite simple. We start with an empty
root. Instances are added sequentially until there are none remaining, as follows:
for each instance we compute the category utility of placing it into an existing
leaf versus the category utility of forming a leaf by itself. Whichever is better will
determine the location of that instance. This is the general approach, but if we

Received by the editors: September 12, 2003.
2000 Mathematics Subject Classification. 62H30, 68T20.
1998 CR Categories and Descriptors. I.5.3 [Pattern Recognition]: Clustering – Clustering

algorithms; I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods and Search –
Heuristic methods.

25

26 R. GORUNESCU AND D. DUMITRESCU

were to continue in this manner the resulting clustering would be dependent on the
order in which instances were considered. Therefore, we move on to the next two
operators that intervene now in the process. Firstly, there is the merging operator
- that is combining two classes into a single one before the new instance is added
to the resulting leaf - and secondly, the reverse one, that is the splitting operator
- dividing a class into two. These two operators have proven to be extremely im-
portant in balancing the possible negative effects of the above mentioned ordering
of instances.

2.1. Category utility criterion. A function to measure the quality of the clus-
tering with a complex role is considered. The proposed function maximizes both
the probability that instances in the same class have common attribute values and
the probability that instances from different classes do not.

Let us consider the following notations:
P (A = v|C) is the probability that an instance has value v for its attribute

A, given that it belongs to class C. The higher the probability, the more likely
instances in the same class will have attribute values in common.

P (C|A = v) is the probability that an instance belongs to class C, given that it
has value v for its attribute A. The higher the probability, the less likely instances
from different classes will have common attribute values.

P (A = v) is a weight of the fact that frequently occurring attribute values have
a stronger influence on the evaluation.

Let C1, ..., Ck be the current partition. The category utility function U(C1, ..., Ck)
is the quantity defined as follows:

U(C1, ..., Ck) =
∑

C

∑

A

∑
v

P (A = v)P (A = v|C)P (C|A = v),

where the first sum is taken with respect to all clusters, the second one with
respect to all attributes of the members in class C and the third with respect to
the attribute values.

However, this expression is not the one that is being used in practice. Instead,
we will use a slightly changed form. This new expression is obtained by applying
the Bayes formula for conditional probabilities, that is

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A),
and thus by simplying the first expression using the above formula, we obtain:

∑

C

∑

A

∑
v

P (A = v|C)2P (C)

The final form of the category utility will measure the amount by which in-
formation about what cluster the current instance is in does make a difference,
compared to the situation of not knowing anything about the cluster structure,
summed over all the clusters by their probabilities. Finally it is divided by the

EVOLUTIONARY CLUSTERING USING AN INCREMENTAL TECHNIQUE 27

number of clusters to discourage the phenomenon that each instance would be put
in its own cluster.

3. A new evolutionary clustering algorithm

The drawbacks of the IC method are not particularly disturbing at large, with
only one exception. To what extent is the final result dependent on the order of
examples? Are the two operators - splitting and merging - sufficient to prevent
this dependence?

The present method is desired to take care of this aspect through the tech-
niques of evolutionary computation, on the one hand, and to take advantage of
the characteristics of a powerful method, the incremental clustering, on the other
hand.

The incremental nature of the IC method will be preserved precisely. The mech-
anisms of evolutionary algorithms will provide the several parallel possibilities of
ordering the instances. The effect of the merging and splitting operations will be
identical to that of the original method by means of the recombination and muta-
tion operators. Finally, the expression of the fitness function will be inspired from
the category utility criterion, but dwelt upon more from a similarity comparison
between instances point of view rather than from a probabilistic one.

3.1. Representation. Initial population. The value of a gene will represent
the cluster number of the instance labelled with the position of that gene. That
is, if we denote by c the current chromosome, then ci will give the number of the
cluster in which the i-th instance will be, i = 1, ..., m, where m is the number of
instances of the specified database. For example, if we have four objects, then
the chromosome (1,3,3,2) means that instance one is in a cluster, instance four in
another cluster, and instances two and three in the third cluster.

The initial population will be made up of chromosomes with a single 1-valued
arbitrary position, that is for every chromosome we take randomly an instance
and put it in the first cluster. In this way, the algorithm starts to offer several
parallel possibilities of ordering the data, and continues furthermore in this sense
by the means of a special variation operator.

3.2. Fitness function. First of all, we have to define the similarity measure be-
tween two instances of our considered database, since our function is built upon
its expression. We have used a weighted similarity measure, since each attribute
of our data has a different degree of importance in the field they are extracted
from.

distance(a, b) =
n∑

k=1

compare(ak, bk),

where a and b are the two instances and n represents the number of attributes.
At this point there are two cases:

28 R. GORUNESCU AND D. DUMITRESCU

(i) If we are dealing with numerical attributes, the difference between the two
attributes is the square weighted Euclidian similarity measure, that is:

compare(ak, bk) = (ak − bk)2weightk,

where weightk is a positive number specifying the importance of attribute k.
(ii) In the other case, of the nominal attributes, we have considered their rep-

resentation as fuzzy. Therefore, for the difference between such attributes, the
max-min distance specific to fuzzy data is considered:

compare(ak, bk) = max(
nk

min
i=1

)(ai
k, 1− bi

k)weightk,

where nk is the number of values for the k-th attribute of the chromosome.
For the expression of the fitness value, we will act as it follows.
Let c be the current chromosome and we would like to compute its performance.
Then

eval(c) =

k∑
Clst=1

∑
i,j=1,...,m,i<j,ci=cj=Clst

distance(instancei, instancej)

k
,

where instancei represents the i - th instance in the database and k represents
the number of clusters denoted by that chromosome.

If a gene with a unique value in that chromosome is found, its penalty (instead
of the distance function in the above formula) for forming a cluster of its own will
be 1.

The division by the number of clusters prevents the phenomenon of too crowded
clusters.

As it can be easily seen, this performance function is somewhat similar to
the expression of the category utility in IC, with the significant difference that,
while category utility has to be maximized, we are trying to minimize our fitness
function.

Another fitness evaluation can be considered independent of the category utility
criterion, but still considering the basic idea of clustering, that is minimizing intra-
class distance and maximizing inter-class distance. Therefore, we are led to the
following multi objective optimization problem (MOEA):

f1(c) =

∑
k

∑
ci=cj=ck

d(instancei, instancej)

|ck|2 → min

and

f2(c) =

∑
k

∑
ci=ck,cj 6=ck

d(instancei, instancej)

|ck|2 → max

EVOLUTIONARY CLUSTERING USING AN INCREMENTAL TECHNIQUE 29

Standard MOEAs [1] can be used for solving our problem.
The output of a MOEA is a set of feasible solutions, the optimal Pareto solutions

[1].
To avoid difficulty in choosing a single Pareto solution, we propose to combine

the objective functions f1 and f2 in a unique criterion function:

F (c) = k1f1 + k2
1
f2

We are led to F → min.

3.3. Variation Operators.

3.3.1. Recombination. The standard 2:2 one point crossover operator is used. When
used, it will produce either a merging or a splitting of the two clusters involved.

The best two individuals from both parents and offsprings are kept.

3.3.2. Mutation. As regarding mutation, special interest has to be paid, as two
types are considered.

The first one is in charge of splitting. When a gene is considered for this kind
of mutation, a second one that has the same value is searched for, and if a single
one found, the current gene will get the number of the next cluster to be formed.
Else, nothing happens.

The second type of mutation puts the current instance (given by the index of
the current gene) in an existing cluster, whether that instance is or not part of a
cluster containing other instances as well. This second mutation operator is clearly
in charge either of splitting or merging.

Again the best individual among parent and offspring is accepted in the new
population, in both cases.

3.3.3. Increment. A new variation operator — increment — is introduced. It is
applied for every chromosome, taking randomly a gene of the current one, whose
value is necessarily zero, and assigning it either the number for the next cluster
to be formed or the number of an existing cluster. This operator is in charge of
keeping the incremental nature taken over from the IC method. It actually puts
an undistributed instance in a new or an existing cluster.

3.3.4. Stop condition. The algorithm stops when, after a number of iterations,
considered equal in value to the number of the objects in the data set, no progress
in the value of the overall fitness function can be observed.

The best chromosome from the final population will give the optimal clustering.

3.4. Other parameter settings and experimental results. Consider a fic-
tional data set that describes the weather conditions for playing some unspecified
game[6] given in Table 1.

30 R. GORUNESCU AND D. DUMITRESCU

id
o
u
tl

o
o
k

te
m

p
e
r
a
tu

r
e

h
u
m

id
it
y

w
in

d
y

x
1

(s
u
n
n
y
-0

.7
8
,o

v
er

ca
st

-0
.4

5
,r

a
in

y
-0

.2
0
)

(h
o
t-

0
.9

0
,m

il
d
-0

.5
0
,c

o
o
l-
0
.1

0
)

(h
ig

h
-0

.7
8
,n

o
rm

a
l-
0
.1

2
)

(t
ru

e-
0
.1

3
,f
a
ls

e-
0
.9

0
)

x
2

(s
u
n
n
y
-0

.8
0
,o

v
er

ca
st

-0
.3

4
,r

a
in

y
-0

.1
0
)

(h
o
t-

0
.8

0
,m

il
d
-0

.4
0
,c

o
o
l-
0
.2

0
)

(h
ig

h
-0

.8
0
,n

o
rm

a
l-
0
.2

0
)

(t
ru

e-
0
.8

9
,f
a
ls

e-
0
.2

3
)

x
3

(s
u
n
n
y
-0

.3
0
,o

v
er

ca
st

-0
.8

5
,r

a
in

y
-0

.3
4
)

(h
o
t-

0
.9

0
,m

il
d
-0

.3
0
,c

o
o
l-
0
.1

0
)

(h
ig

h
-0

.9
0
,n

o
rm

a
l-
0
.3

0
)

(t
ru

e-
0
.1

6
,f
a
ls

e-
0
.7

7
)

x
4

(s
u
n
n
y
-0

.1
0
,o

v
er

ca
st

-0
.5

0
,r

a
in

y
-0

.9
0
)

(h
o
t-

0
.4

0
,m

il
d
-0

.8
0
,c

o
o
l-
0
.5

0
)

(h
ig

h
-0

.7
0
,n

o
rm

a
l-
0
.1

0
)

(t
ru

e-
0
.2

2
,f
a
ls

e-
0
.8

6
)

x
5

(s
u
n
n
y
-0

.1
3
,o

v
er

ca
st

-0
.5

0
,r

a
in

y
-0

.7
0
)

(h
o
t-

0
.1

0
,m

il
d
-0

.5
0
,c

o
o
l-
0
.8

0
)

(h
ig

h
-0

.3
0
,n

o
rm

a
l-
0
.8

0
)

(t
ru

e-
0
.1

5
,f
a
ls

e-
0
.8

8
)

x
6

(s
u
n
n
y
-0

.2
0
,o

v
er

ca
st

-0
.4

0
,r

a
in

y
-0

.8
7
)

(h
o
t-

0
.2

0
,m

il
d
-0

.4
0
,c

o
o
l-
0
.9

0
)

(h
ig

h
-0

.3
0
,n

o
rm

a
l-
0
.7

9
)

(t
ru

e-
0
.7

7
,f
a
ls

e-
0
.3

0
)

x
7

(s
u
n
n
y
-0

.5
0
,o

v
er

ca
st

-0
.8

0
,r

a
in

y
-0

.3
0
)

(h
o
t-

0
.3

0
,m

il
d
-0

.2
0
,c

o
o
l-
0
.9

2
)

(h
ig

h
-0

.4
0
,n

o
rm

a
l-
0
.9

8
)

(t
ru

e-
0
.8

9
,f
a
ls

e-
0
.2

0
)

x
8

(s
u
n
n
y
-0

.9
0
,o

v
er

ca
st

-0
.7

0
,r

a
in

y
-0

.1
0
)

(h
o
t-

0
.6

0
,m

il
d
-0

.8
0
,c

o
o
l-
0
.2

0
)

(h
ig

h
-0

.8
4
,n

o
rm

a
l-
0
.2

2
)

(t
ru

e-
0
.1

4
,f
a
ls

e-
0
.8

8
)

x
9

(s
u
n
n
y
-0

.7
8
,o

v
er

ca
st

-0
.3

4
,r

a
in

y
-0

.2
0
)

(h
o
t-

0
.2

0
,m

il
d
-0

.6
0
,c

o
o
l-
0
.9

6
)

(h
ig

h
-0

.1
3
,n

o
rm

a
l-
0
.9

5
)

(t
ru

e-
0
.1

0
,f
a
ls

e-
0
.9

8
)

x
1
0

(s
u
n
n
y
-0

.1
0
,o

v
er

ca
st

-0
.5

0
,r

a
in

y
-0

.7
0
)

(h
o
t-

0
.1

0
,m

il
d
-0

.9
0
,c

o
o
l-
0
.5

0
)

(h
ig

h
-0

.2
4
,n

o
rm

a
l-
0
.8

7
)

(t
ru

e-
0
.3

4
,f
a
ls

e-
0
.6

8
)

x
1
1

(s
u
n
n
y
-0

.8
0
,o

v
er

ca
st

-0
.3

0
,r

a
in

y
-0

.1
0
)

(h
o
t-

0
.2

0
,m

il
d
-0

.8
7
,c

o
o
l-
0
.4

0
)

(h
ig

h
-0

.3
2
,n

o
rm

a
l-
0
.8

9
)

(t
ru

e-
0
.5

6
,f
a
ls

e-
0
.4

5
)

x
1
2

(s
u
n
n
y
-0

.4
0
,o

v
er

ca
st

-0
.9

0
,r

a
in

y
-0

.3
0
)

(h
o
t-

0
.1

2
,m

il
d
-0

.9
0
,c

o
o
l-
0
.6

0
)

(h
ig

h
-0

.8
2
,n

o
rm

a
l-
0
.3

0
)

(t
ru

e-
0
.8

5
,f
a
ls

e-
0
.3

0
)

x
1
3

(s
u
n
n
y
-0

.2
0
,o

v
er

ca
st

-0
.9

0
,r

a
in

y
-0

.5
0
)

(h
o
t-

0
.9

0
,m

il
d
-0

.5
0
,c

o
o
l-
0
.2

0
)

(h
ig

h
-0

.4
0
,n

o
rm

a
l-
0
.8

0
)

(t
ru

e-
0
.6

5
,f
a
ls

e-
0
.2

2
)

x
1
4

(s
u
n
n
y
-0

.1
0
,o

v
er

ca
st

-0
.3

0
,r

a
in

y
-0

.9
0
)

(h
o
t-

0
.4

0
,m

il
d
-0

.7
8
,c

o
o
l-
0
.1

1
)

(h
ig

h
-0

.9
8
,n

o
rm

a
l-
0
.1

4
)

(t
ru

e-
0
.9

4
,f
a
ls

e-
0
.1

2
)

0
.2

0
.3

0
.1

0
.4

T
a
b
l
e

1
.

T
he

w
ea

th
er

da
ta

se
t

EVOLUTIONARY CLUSTERING USING AN INCREMENTAL TECHNIQUE 31

We consider the values for the other parameters involved given in Table 2.

population size recombination probability mutation probability
100 0.7 0.7

Table 2. Algorithm parameter values

The best chromosome obtained is:

5 5 3 6 2 7 7 6 4 2 4 1 8 1

Therefore, the corresponding classes are:

A1 = {x1, x2},

A2 = {x3},

A3 = {x4, x8},

A4 = {x5, x10},

A5 = {x6, x7},

A6 = {x9, x11},

A7 = {x12, x14}
and

A8 = {x13}.
What is very encouraging is that all the final chromosomes provide in 9 cases

out of 10 the following clustering results:
(i) instances x6, x7 in a cluster,
(ii) instances x5, x10 in a cluster,
(iii) instances x3, x8 in a cluster,
(iv) instances x1, x2 in a cluster, and
(v) instances x12, x14 in a cluster.

32 R. GORUNESCU AND D. DUMITRESCU

3.5. Conclusions and future work. The proposed method provides a good
enough clustering method. In future work, a better control over the merging and
the splitting is desired.

Moreover, a comparison between the results of the original IC method and the
evolutionary one would be of real interest.

References

[1] Coello Coello, C., Van Veldhuizen, D., Lamont, G., Evolutionary Algorithms for Solving
Multi-Objective Problems, Kluwer Academic/Plenum Publishers, New York, 2002.

[2] Dumitrescu, D., Genetic Algorithms and Evolution Strategies, Blue Publishing House, Cluj-
Napoca 2000

[3] Dumitrescu, D., Lazzerini, B., Jain, L., C., Dumitrescu, A., Evolutionary Computation, CRC
Press, Boca Raton, Florida, 2000

[4] Gorunescu, R., Evolutionary Incremental Clustering. A New Technique for Detecting Natural
Grouping, Research Notes in Artificial Intelligence and Digital Communications, 103, 2003,
73–81

[5] Michalewicz, Z., Genetic Algorithms + Data Structures + Evolution Programs, 2nd edition,
Springer - Verlag, 1992

[6] Witten, I., H., Frank, E., Data Mining: Practical Machine Learning Tools and Techniques
with Java Implementations, Morgan Kaufmann, 1999

Faculty of Mathematics and Computer Science, Department of Computer Science,
University of Craiova, 13 Al. I. Cuza 1100 Craiova Romania

E-mail address: ruxandragorunescu@yahoo.com

Faculty of Mathematics and Computer Science, Department of Computer Science,
Babes-Bolyai University, 3400 Cluj - Napoca Romania

E-mail address: ddumitr@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 2, 2003

EVOLVING ORTHOGONAL DECISION TREES

JOÓ ANDRÁS AND D. DUMITRESCU

Abstract. Instead of using or fine-tuning the well-known greedy methods to
induce decision trees, we propose a new method, which explores the ‘brute’
force of evolutionary algorithms to evolve decision trees, used mainly for
classification. MEP, a new evolutionary technique is used for representing
the decision trees.

The paper is organized as follows: the introduction makes a short
overview of the decision tree induction techniques. Section 2 contains the
short review of the basics of the MEP. Section 3 contains the description of
the MEPDTI. Section 4 presents the results, followed by the conclusions, and
possible ways to improve the presented method.

Keywords: decision tree, evolutionary algorithms.

1. Introduction

Decision trees are one of the best-known classifiers systems. They classify in-
stances, propagating the instance through the decision tree, testing at each internal
node one or more attributes of the instance. When the instance reaches one of the
final nodes of the tree, it is classified: the decision trees have in their leaf nodes the
possible classes in which the instance can be classified. Decision trees are usually
built using a set of training instances, called the training data, and tested with
another set of instances, called the test data. The building process is referred as
the decision tree induction.

Decision trees can be classified using several criteria. One criterion is the num-
ber of classes: if there are only two classes, they are called binary decision trees.
Another criterion is the type of attributes, which characterize an instance. There
are two main classes of attribute types: symbolic (unordered), and numeric (or-
dered). Another axis on which decision trees can be classified is the way in which
they are built from the training data (the tree induction type). The classical way
is a greedy method, on which the most of the tree induction algorithms are based.
Another approach is the evolutionary method: the trees are not built, but evolved.
But (probably) the main criteria by which the decision trees are categorized is the
test type, which is made in the internal nodes of the decision tree. There are two

Received by the editors: June 2003.
2000 Mathematics Subject Classification. 62C99, 68T20.
1998 CR Categories and Descriptors. I.2.8 [Artificial Intelligence]: Problem Solving,

Control Methods, and Search – Graph and tree search strategies; I.5.2 [Pattern Recognition]:
Design Methodology – Classifier Design and Evaluation.

33

34 JOÓ ANDRÁS AND D. DUMITRESCU

main categories: univariate decision trees (also called orthogonal), and multivari-
ate decision trees. While univariate decision trees test only one attribute per node,
the multivariate ones test more attributes.

Most of the decision tree induction algorithms are based on the following greedy
algorithm:

BASIC TREE INDUCTION ALGORITHM

• If all the training examples at the current node t belong to category C,
create a leaf node with the class C.

• Otherwise, score each one of the sets of possible splits S, using a quality
measure.

• Choose the best split s∗ as the test at the current node.
• Create as many child nodes as there are distinct outcomes of s∗. La-

bel edges between the parent and child nodes with outcomes of s∗, and
partition the training data using s∗ into the child nodes.

• A child node t is said to be pure if all the training samples at t belong to
the same class. Repeat the previous steps on all impure child nodes. [4]

One of the most early, and most famous decision tree induction algorithms is the
ID3, invented by Quinlan. ID3 uses the information gain as quality measure, to
decide at which attribute should split the data. Newer versions of ID3, C4.5, and
C5 use the gain ratio, to qualify an attribute. Other inducers use other methods to
calculate the measure of goodness. For example, the CART algorithm, invented by
Briemann, uses the Gini index. Other tree induction algorithms include: CN2, a
multivariate tree inducer, SPRING and SLIQ developed to handle large datasets,
OC1, an oblique tree classifier, and others.

After the tree is built, it is usually too overfit to be used in classification.
This happens if there are too few representative instances in the training data
to ‘produce’ a true target function, or when there is noise in the training data.
Growing the tree in this case still all the training instances are ‘consumed’ can
lead to the effect called overfitting. There are two main methods to combat this
situation: to stop the tree growth in the induction phase, or to prune back the
tree. The second method means elimination of some nodes that seem to not have
sufficient evidence.

Another way to build a decision tree is to use an evolutionary method. First
an initial tree population is generated randomly. Every individual from the pop-
ulation is evaluated, and some of them are selected and are given the chance to
reproduce. In a pure generational model offspring replace the parent generation.
The process continues until a termination criterion is satisfied. This is usually
connected with the maximum number of generations. Koza [5] was one of the
firsts, who applied genetic programming to evolve decision trees. Koza used LISP
strings to encode the decision trees into chromosomes. There are direct methods,
in which the genetic operators operate right on the decision trees [3].

Evolutionary methods can be combined with other powerful heuristics to pro-
duce better results. A successful trial for this is presented in [1].

EVOLVING ORTHOGONAL DECISION TREES 35

2. An Alternative Encoding Scheme for Evolutionary Algorithms:
Multi-Expression Programming

Multi-Expression Programming (MEP), as introduced in [2], adds an extra step
of parallelism to the evolutionary algorithm using a special coding technique. MEP
was successfully used in several areas like symbolic regression, evolution of game
strategies, or in NP-complete problems like the traveling salesman problem.

MEP uses linear chromosome encoding. Genes of variable length build up
every chromosome. Each gene encodes a terminal or a functional symbol. A gene
encoding a function contains pointer towards the function arguments. Function
parameters are always on a ‘lower’ level in the chromosome than the function itself.
Let us consider the following example:

1 : a
2 : b
3 : + 1, 2
4 : c
5 : d
6 : + 4, 5
7 : ∗ 3, 6

This chromosome has seven phenotypic transcriptions, namely:

E1 : a
E2 : b
E3 : a + b
E4 : c
E5 : d
E6 : c + d
E7 : (a + b) ∗ (c + d)

Generally each chromosome encodes a number of expressions equal to the number
of genes it contains. This is the source of a very strong implicit parallelism.

One might ask which phenotypic transcription should be used when the fit-
ness of a chromosome has to be computed? A possible method is to select the
expression, which gives the best fitness. Another way to solve this problem is to
let several expressions represent a given chromosome. According to [2] this gives
supplementary power to the method.

MEP uses the following evolutionary algorithm:

MEP ALGORITHM
begin

Generate Initial Population;
t = 0;
Evaluate Individuals;
while not Termination Condition do

36 JOÓ ANDRÁS AND D. DUMITRESCU

Elitism;
Selection;
Recombination;
Mutation;
Evaluate Individuals;
endwhile

end

For more details regarding MEP, see [2].

3. MEP-Based Decision Tree Induction

An evolutionary classifier system, called MEP-Based Decision Tree Induction
(MEPDTI) is proposed. MEPDTI uses the MEP technique to represent the in-
dividuals. Classifier systems are used to classify instances from a given data set.
Each instance has a set of attributes. Based on the training data set a classi-
fier system builds an internal, and usually compressed representation of the data.
This representation is not necessary a decision tree. It may consist from a set of
decision rules, or some hybrid solution, as in our case.

3.1. MEPDTI Classes. Instances have to be classified into classes representing
meaningful categories. In our model classes are described as simple character
strings.

3.2. MEPDTI Attributes. Each instance is characterized by a set of attributes.
In MEPDTI attributes can be of three different forms: nominal, discrete, and
continuous.

Nominal attributes are symbolic types, which cannot be ordered. They are
characterized with a set of possible values they can take. An example for nominal
attribute could be colour, with the set of possible values {red, green, blue}. Boolean
attributes are considered as nominal attributes.

Discrete attributes are characterized by predefined sets of numercal values. An
example for a discrete attribute is age. This attribute takes values from the set
{0, 1, 2, . . . , 130}

Continuous attributes are ordered attributes, without a set of predefined values.
Optionally a lower and an upper bound can be specified for them. An example for
such attribute is temperature, which takes values from (0, +∞) (in Kelvin degrees).

3.3. MEPDTI Instances. An instance is a vector consisting of possible values
of the different attributes, characterizing instances.

Example. Consider the problem of deciding whether a financial organization
should or should not offer loan to somebody. The decision relies upon:

• the year income of the applicant (discrete attribute),
• the age of the applicant (discrete attribute),
• criminal records (nominal attribute).

EVOLVING ORTHOGONAL DECISION TREES 37

In this case a possible instance representing a person could be:
(10000, 47, no).

This means, that the applicant has a 10000 income per year, is 47 years old, and
has no criminal records.

Usually instances are divided in two categories: training instances and test in-
stances. While training instances are used to build the decision tree, test instances
are used to test the resulting decision trees. Regardless to its type, each instance
has associated the correct classification.

3.4. MEPDTI Representation. In order to evolve classifiers, the decision mech-
anism has to be encoded into chromosomes. We use MEP-like chromosomes to
represent individuals in MEPDTI. A MEPDTI individual has the following struc-
ture:

1: Class1
2: Class2
. . .
n: Classn

n + 1: if (conditionn+1
1) then jump to jpn+1

1 ,
if (conditionn+1

2) then jump to jpn+1
2 ,

. . . ,
else jump to jpn+1

k ;
. . .
n + m: if (conditionn+m

1 then jump to jpn+m
1

if (conditionn+m
2 then jump to jpn+m

2 ,
. . . ,
else jump to jpn+m

1 ;
Let us take a closer look to this general form of the MEPDTI chromosome. It is

made up by genes (a line in the chromosome). In each line, the first number is the
gene identification number. This number identifies a gene in the chromosome (but
it does not belong to the chromosome). They will be referred as jump points, entry
points or nodes. There are two types of genes: terminal, and non-terminal genes.
Terminal genes are classes and they occupy the first n loci in the chromosome.

Non-final genes are a little bit trickier. They are made up by decision rules.
The general form of a decision rule is:

if (condition) then (action).

The condition part a tests an instance with respect to an attribute. The general
form of a condition is:

(attribute of instance) (operator) (possible value of the attribute)

Depending on the type of the attribute, different operators have been defined:

38 JOÓ ANDRÁS AND D. DUMITRESCU

• for nominal attributes the unique operator is ” = ”, which test the
equality of two nominal values;

• for discrete and continuous attributes the following operators are used:
” < ” (less), ” <= ” (less or equal), ” > ” (greater), ” >= ” (greater or
equal), ” = ” (equal).

Let us suppose that we want to test the ‘year income’ attribute at an instance
(10000, 47, no). Supposing that the ‘year income’ attribute takes values from set
{0, 1, 2, . . .}, a possible condition would be:

10000 <= 7329,

where 7329 is a possible value of the attribute ‘year income’, and ” <= ” is a
relational operator. Because this condition evaluates to false, no action is made.

The action part of a decision rule, indicates a jump at one of the jump points of
the chromosome. The jump point must be smaller than the actual identification
number of the gene. This restriction is introduced to avoid recurrent jumps and
to obtain only syntactically correct individuals by recombination.

If a condition satisfied a jump is made. But what if the condition is not satisfied?
Then the next decision rule from the gene is considered. It could happen that
none of the conditions is satisfied. To handle this situation, we introduced an else
branch, which guaranties that the gene can be leaved in any circumstances.

3.5. Classification. The primary job of a chromosome C is to classify instances
from different data sets. The classification accuracy of a chromosome is strictly
connected whith its fitness. The better a chromosome classifies a data set, the
higher its fitness is. For classifying an instance, we start at some ‘entry’ point of
the chromosome, apply the decision rules found there, jump if needed, and continue
this until one of the final genes (classes) are reached. The following pseudocode
gives the classification algorithm:

CLASSIFICATION ALGORITHM
function classify(instance, entry point)
{

jump to gene denoted by the entry point;
while (this is not a final gene) do
{

take the first rule from gene ;
while (rule evaluates to false)
{

take next rule;
}
if there are no more rules, then jump to node contained by the

‘else’ branch;
else jump to node contained by the rule, which evaluated to true;

}
return (the class belonging to the final gene)

}

EVOLVING ORTHOGONAL DECISION TREES 39

Note that due to the MEP structure, the classification highly depends on the
chosen entry point. This is because starting from different entry points result in
different set of decision rules.

3.6. Calculating Fitness. The fitness of an individual in MEPDTI is the mea-
sure of how well this individual can classify a given set. So, the fitness is given by
the following formula:

fitness =
number of well classified instances from set S

total number of instances from set S

An important question arises: where to start the classification, which should be
the entry point? To explore the massive parallelism given by the MEP encoding
scheme, when the fitness of an individual is calculated ALL possible entry points
are used, and the one, which leads to the most correctly classified instances gives
the ‘number of well classified instances from set S’ used in the above formula.

FITNESS ASSIGNMENT ALGORITHM
function fitness(chromosome, set of instances)
{

max = 0;
for (every instance x from the set S)
{

nr=0;
for(every entry point ep from the chromosome C)
{

if (classify(x, ep)==x.class) then nr++;
}
if (max < nr) max = nr;

}
return(max/number of instances in the set);

}
Remark. x.class denotes the correct classification of instance x, as it is given

in the training data set.

3.7. Variation Operators.

3.7.1. Recombination. Recombination ensures the mixture of genes. There are
three types of recombination operators in MEPDTI: one-point crossover, two-
points crossover, and uniform crossover. All of them affect only the outer part of
the chromosome: none of the genes are broken during recombination operations.

3.7.2. Mutation. Mutation slightly perturbs a chromosome. It affects only the
inner part of the chromosome, (i.e. the genes, and the sub-gene structures). In
our implementation the variation operator can take one of more of the following
actions:

40 JOÓ ANDRÁS AND D. DUMITRESCU

• change either of operands from a condition
• change the operator from a condition
• change the jump point from a decision rule, or the else branch
• insert or delete decision rules from/into the gene
• change the attribute on which the tests are made from the gene

3.8. MEPDTI Algorithm. We are ready now to present the MEPDTI evolu-
tionary algorithm.

MEPDTI ALGORITHM
Function MEPDTI(max epochs)
{

t = 0;
Generate a randomly initialized population;
While (t < max epochs)
{

Calculate the fitness of every individual from the population;
Sort by fitness the individuals from population;
While(there are unoccupied positions in the new population)
{

Select two individuals from the population, based on their
fitness using some selection technique;
Recombine the two selected chromosomes with a specified
probability, using some recombination technique;
Apply the mutation operator on the resulting two offsprings
with a specified probability, using some of the mutation types;
Put the offsprings into the new population;

}
Replace the population with the new one;
t++;

}
Sort by fitness the individuals from population;
Return (the best individual);

}

3.9. Classification Revisited. Let us suppose that the evolutionary process
ends and we have the best chromosome. One might ask how does this chromosome
classify an unknown instance. We reevaluate the chromosome on the training set,
and find the entry point, which leads to the most correctly classified instances.
This entry point is used then to classify the unknown instance.

3.10. MEPDTI Complexity and Strong Parallelism. The strong parallelism
hold by MEP has a serious drawback: the evaluation must be done on each pos-
sible entry point. This increases the classification complexity of a chromosome

EVOLVING ORTHOGONAL DECISION TREES 41

(classifying a single instance) in the worst case from O(n) to O(n2), where n is
the number of genes in the given chromosome.

MEPDTI time complexity is O(m · q · e ·n2), where m is the size of the training
data, q is the number of chromosomes from the population, and e is the number
of generations.

3.11. Example. In this section the example of Quinlan [6] is considered. The
problem is to decide whether to play or not golf, depending on the weather condi-
tions. There are two classes in this problem {play, don’t play}, and four attributes:

• outlook, with possible values: {sunny, overcast, rain}
• temperature, which is continuous
• humidity, also continuous
• windy, with possible values: {true, false}

In the data set there are 14 instances:

overcast, 64, 65, true, play
overcast, 72, 90, true, play
overcast, 81, 75, false, play
overcast, 83, 78, false, play
rain, 65, 70, true, don’t play
rain, 68, 80, false, play
rain, 70, 96, false, play
rain, 71, 80, true, don’t play
rain, 75, 80, false, play
sunny, 69, 70, false, play
sunny, 72, 95, false, don’t play
sunny, 75, 70, true, play
sunny, 80, 90, true, don’t play
sunny, 85, 85, false, don’t play

A chromosome evolved by MEPDTI in 250 generations which classifies 100%
the above data set is:

0::<<Play>>
1::<<Don’t Play>>
2::[humidity]::if inst>70.00 then jump to: 0;; if inst>=85.00 then

jump to: 0;; else jump to: 0;;
3::[windy]::if inst=true then jump to: 1;; else jump to: 0;;
4::[humidity]::if inst<=70.00 then jump to: 0;; else jump to: 1;;
5::[outlook]::if inst=sunny then jump to: 4;; if inst=overcast then

jump to: 0;; else jump to: 3;;

The best entry point found for test set is: 5. If you look closer to the chro-
mosome, you may see that there is an unused gene, labeled with 2, which can be
pruned. After pruning the tree has the following form:

0::<<Play>>
1::<<Don’t Play>>

42 JOÓ ANDRÁS AND D. DUMITRESCU

2::[windy]::if inst=true then jump to: 1;; else jump to: 0;;
3::[humidity]::if inst<=70.00 then jump to: 0;; else jump to:

1;;
4::[outlook]::if inst=sunny then jump to: 3;; if inst=overcast

then jump to: 0;; else jump to: 2;;

3.12. Handling Continuous and Missing-Valued Attributes. Pruning.
Handling continuous and missing-valued attributes and tree pruning are important
topics in the decision tree induction field. In MEPDTI we used some simple
techniques to solve these problems.

Continuous attributes are used without any modification, as they are in the
training or test data files. They are mainly used in the random initialization of
the chromosomes, and the in the mutation phase.

Before the evolutionary process starts, both data and test files are parsed to
eliminate the missing-valued attributes. A simple heuristic is used: if a ,,?” is
found in an instance x (meaning that there is missing value), it is replaced by the
most common value from instances which are classified in the same class as x.

When evolutionary process ends, MEPDTI returns the most successful chro-
mosome, and the most successful entry point of this chromosome. Usually there
are some jump points that are not used (starting from the most successful entry
point). These corresponding genes are eliminated using a pruning procedure. This
procedure parses the chromosome starting at a given entry point, and deletes those
genes which are not used in the classification process.

4. Numerical Experiments

MEPDTI produces classifiers whose accuracy is similar with those produced
by the classical decision tree inducers, like CN2 or C4.5. For test purposes data
from the UCI Repository Of Machine Learning Databases and Domain Theories
[7] have been used. The following table presents the results of the MEPDTI. The
results of CN2, C4.5, and BGP, an evolutionary method were taken from [3].

The following settings were used:
• population size: 1000
• number of generations: 250
• variable length chromosome usage
• mutation probability: 0.9 (!)
• crossover probability: 0.9
• tournament selection, with tournament size = 4
• no fitness remapping
• two point, or univariate crossover
• strong mutation, meaning that all mutation types described in the pre-

vious part of this article are used
• elitism: 1-5%

EVOLVING ORTHOGONAL DECISION TREES 43

D
at

a
se

t

n
am

e

N
u

m
b

er

o
f

cl
as

se
s

N
u

m
b

er
 o

f

at
tr

ib
u

te
s

C
l a

ss
if

ic
at

io
n

ra
ti

o

B
e s

t
en

tr
y

p
o

in
t'
s

p
o

si
ti

o
n

(a
f t

er
 p

ru
n

n
in

g
)

C
l a

ss
if

ic
at

io
n

ra
ti

o
 w

it
h

 t
h

e

b
e s

t
en

tr
y
 p

o
in

t

N
u

m
b

er
 o

f
g

en
es

in
 t

h
e

b
es

t

c h
ro

m
o

sm
e

(a
ft

er

p
ru

n
n

in
g

)

C
N

2

c l
as

si
fi

ca
ti

o
n

r a
ti

o

C
4

.5

c l
as

si
fi

ca
ti

o
n

r a
ti

o

B
G

P

c l
as

si
fi

ca
ti

o
n

r a
ti

o

cr
x

2

1
5

0
.8

3

la
st

0
.8

3

3
?

?
?

h
y
p

o

5
2

9
0

.9
5

la

st
0

.9
5

1

?
?

?

i o
n

o
sp

h
er

e
2

3
4

0
. 9

1

l a
st

0
. 9

1

7
0

. 9
2

0

. 9
3

0

. 8
9

ir
is

3

4
0

.9
5

la

st
0

.9
5

3

0
.9

4

0
.9

4

0
.9

4

m
o

n
k

-1

2
6

0
.8

5

l a
st

0
.8

5

1
1

.0
0

1

.0
0

0

.9
9

m
o

n
k

-2

2
6

0
.6

4

la
st

0
.6

4

3
0

.6
2

0

.6
3

0

.6
8

m
o

n
k

-3

2
6

0
. 9

7

l a
st

0
. 9

7

3
0

. 9
0

0

. 9
6

0

. 9
7

p
im

a
2

8
0

.7
7

la

st
0

.7
7

3

0
.7

2

0
.7

3

0
.7

2

t i
c-

ta
c-

to
e

2
9

0
.7

5

l a
st

0
.7

5

3
?

?
?

v
o

te
s

2
1

6
0

.9
7

la

st
0

.9
7

5

?
?

?

s o
y
b

ea
n

1

9
3

5
0

.3
1

l a

st
0

.3
1

2

?
?

?

F
ig

u
r
e

1
.

T
ab

le
sh

ow
in

g
th

e
re

su
lt

s
of

M
E

P
T

D
T

I

44 JOÓ ANDRÁS AND D. DUMITRESCU

The first remark to the test runs is that although all possible entry points are
used for classification, usually the last entry point has the biggest success. How-
ever, there were cases when the most successful entry point was an intermediate
one.

Another observation is the increased importance of the mutation operator against
the crossover. On some data sets the results were the same even if the crossover
was given zero probability. The total pass over of the crossover operator needs
more investigations.

4.1. Future Work. In our approach, only one attribute is tested at each gene.
Thus a MEPDTI chromosome corresponds to an orthogonal decision tree. In
order to get rid of the drawbacks of univariate decision trees, we intend in the
next version to evolve multivariate classifiers.

References

[1] Bala J., Huang J., Vafaie H., DeJong K., Wechsler H., Hybrid Learning Using Genetic Al-
gorithms and Decision Trees for Pattern Classification. IJCAI Conference, Montreal, 19-25,
1995.

[2] Oltean M., Dumitrescu D., Multi Expression Programming, submitted to Journal of Genetic
Programming, 2003.

[3] Rouwhost S.E., Engelbrecht A.P., Searching the Forest: Using Decision Trees as Building
Blocks for Evolutionary Search in Classification Databases.Proc. Congress on Evolutionary
Computation (CEC-2000), 633-638. La Jolla, CA, USA, 2000.

[4] Murthy, S.K., Kasif, S., Salzberg, S., A System for Induction of Oblique Decision Trees,
Journal of Artificial Intelligence Research 2, 1-32, 1994.

[5] Koza, J., Genetic Programming: On The Programming of Computers by Means of Natural
Selection, MIT Press, Cambridge, MA, 1992.

[6] Quinlan, R., C4.5: Programs for Machine Learning, Morgan Kaufmann, San Meteo, CA,
1993.

[7] UCI Machine Learning Databases and Domain Theories, ftp.ics.uci.edu: pub/machine-
learning-databases

Department of Computer Science, Babes-Bolyai University, Cluj
E-mail address: jooandras@ms.sapientia.ro
E-mail address: ddumitr@nessie.cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 2, 2003

A NEW DYNAMIC EVOLUTIONARY CLUSTERING
TECHNIQUE. APPLICATION IN DESIGNING RBF NEURAL

NETWORK TOPOLOGIES. I. CLUSTERING ALGORITHM

D. DUMITRESCU AND KÁROLY SIMON

Abstract. Recently a new evolutionary optimization metaheuristics, the
Genetic Chromodynamics (GC) has been proposed. Based on this meta-
heuristics a dynamic clustering algorithm (GCDC) is proposed. This method
is used for designing RBF neural network topologies. Complexity of these net-
works can be reduced by clustering the training data. The GCDC technique
is able to solve this problem. In Part I the GCDC technique is presented. It is
described, how this method could be used for designing optimal RBF neural
network topologies. In Part II some numerical experiments are presented.

Keywords and phrases: Dynamic evolutionary clustering, Genetic Chro-
modynamics, designing neural networks, RBF neural networks.

1. Introduction

By clustering a data set is divided into regions of high similarity, as defined by a
distance metric. In most instances, a prototypical vector (the cluster center) iden-
tifies a cluster. Hence, the problem of cluster optimization is twofold: optimization
of cluster centers and determination of number of clusters. The latter aspect has
often been neglected in standard approaches (static clustering methods), as these
typically fix the number of clusters a priori.

In case of practical problems the number of natural existing clusters is generally
unknown. Opposed to static, dynamic clustering does not require a priori specifi-
cation of the number of clusters. Some tentative to develop dynamic evolutionary
clustering algorithms are known [5].

Recently a new evolutionary search and optimization metaheuristics - called Ge-
netic Chromodynamics (GC) (see [4, 13]) - has been proposed. Based on this the-
ory a clustering method is proposed. This GC-based dynamic clustering technique
(GCDC) can be successfully used for designing RBF neural network topologies.

Received by the editors: September 25, 2003.
2000 Mathematics Subject Classification. 68T05, 68T20, 91C20, 92B20.
1998 CR Categories and Descriptors. I.2.6 [Artificial Intelligence]: Learning – Connec-

tionism and neural nets; I.5.3. [Pattern Recognition]: Clustering – Algorithms.

45

46 D. DUMITRESCU AND KÁROLY SIMON

Solving a problem with a neural network a primordial task is the determina-
tion of the network topology. Generally the determination of the neural network
topology is a complex problem and cannot be easily solved. When the number of
trainable layers and processor units (neurons) is too low, the network is not able
to learn the proposed problem. If the number of layers and neurons is too high
then the learning process becomes too slow. The main aim is designing optimal
topology.

Radial Basis Function (RBF) neural networks are relatively simple neural net-
works, used especially for solving interpolation problems (see [1, 9, 10, 11, 12, 14,
15, 18]). Complexity of these networks depends on the number of hidden processor
units. In the case of the RBF neural networks is dependence between the number
of training samples and the number of hidden neurons. Complexity of networks
can be reduced by clustering the training data.

Generally, some static clustering techniques are used in order to reduce the com-
plexity of RBF networks. The most popular static clustering algorithms are the
k-means type algorithms (see [16, 17]). These methods require a priori specifica-
tion of the number of existing clusters. Dynamic evolutionary clustering techniques
could be more efficient for designing optimal RBF neural network topologies (see
[6, 7, 8, 19]).

In the next section the GCDC method is described. Section 3 presents how this
method can be used for designing RBF neural networks.

2. GC-based Dynamic Clustering

GC [4] is a new kind of evolutionary search and optimization metaheuristics. GC
is a metaheuristics for maintaining population diversity and for detecting multiple
optima. The main idea of the strategy is to force the formation and maintenance
of stable sub-populations.

GC-based methods use a variable-sized population, a stepping-stone search
mechanism, a local interaction principle and a new operator for merging very
close individuals.

Corresponding to the stepping-stone technique each individual in the population
has the possibility to contribute to the next generation and thus to the search
progress. Corresponding to the local interaction principle the recombination mate
of a given individual is selected within a determined mating region. Only short
range interactions between solutions are allowed. Local mate selection is done
according to the values of the fitness function. An adaptation mechanism can be
used to control the interaction range, so as to support sub-population stabilization.
Within this adaptation mechanism the interaction radius of each individual could
be different.

To enhance GC, micropopulation models [13] can be used. Corresponding to
these models, for each individual a local interaction domain is considered. In-
dividuals within this domain represent a micropopulation. All solutions from a

GCDC FOR DESIGNING RBF NEURAL NETWORKS 47

micropopulation are recombined using local tournament selection. When the local
domain of an individual is empty the individual is mutated.

Within GC sub-populations co-evolve and eventually converge towards several
optima. The number of individuals in the current population usually changes with
the generation. A merging operator is used for merging very close individuals.
At convergence, the number of sub-populations equals the number of optima.
Each final sub-population hopefully contains a single individual representing an
optimum, a solution of the problem.

GC allows any data structure suitable for the problem together with any set of
meaningful variation/search operators. For instance solutions may be represented
as real-component vectors. Moreover the proposed approach is independent of the
solution representation.

Based on the GC metaheuristics a new dynamic clustering algorithm - called
GCDC - is developed. This technique is described below.

2.1. Solution Representation. Let

X = {x1, ..., xm} , xi ∈ Rs, s ≥ 1,

be the data set for clustering. The cluster structure of X is given by a fuzzy
partition P = {A1, ..., An} of X. Every class Ai is represented by a prototype
Li ∈ Rs. L = {L1, ..., Ln} is the representation of the partition P .

In the proposed clustering technique each prototype is encoded into a chromo-
some. Totality of these chromosomes represents a generation.

The idea of the method is to determine formations of evolving chromosomes
converging towards prototypes of real clusters.

The initial population is randomly generated and it contains a large number of
individuals. Operations involved in the searching process are selection, crossover,
mutation and merging.

2.2. Fitness Function. The fitness value of the chromosome L is calculated using
the following fitness function:

f (L) =
m∑

i=1

1
dα (xi, L) + C

,

where α ≥ 1 and C > 0.
The role of the constant C is to prevent infinite or too great values for the

fitness function, and together with α controls the granularity of the clusters.

2.3. Interaction Range. For each individual in the population (a chromosome
representing a prototype) a mating region is considered as the closed ball with
radius d∗, where the interaction radius d∗ depends on the chromosome.

Initially we consider the neighborhood distance for each chromosome as the
standard deviation of the all points. For a chromosome L the mean distance δ is

48 D. DUMITRESCU AND KÁROLY SIMON

calculated between the points in V (L, d∗) and L:

δ =
nd∗∑

i=1

d (xi, L)
nd∗

,

where x1, ..., xnd∗ are the points in the neighborhood with radius d∗ of L.
When the points in V (L, d∗) are uniformly distributed, the value of δ is d∗

β ,
where β ∈ (1, 2] is a fixed number, which depends on the dimension s of the search
space (generally the best value for β is s

√
2). d∗ is adjusted such that δ to be equal

with d∗
β , so if δ ≤ d∗

β then the next value for d∗ will be βδ, else δ. If there are
not at least two points in the neighborhood of the chromosome, then the previous
distance value will be not modified.

2.4. Genetic Operators. A micropopulation model is used. At each step of the
generation process every chromosome is selected to produce an offspring through
crossover or mutation. An individual can be involved into a crossover operation
only with individuals that are at smaller distance than d∗. The crossover oper-
ation is a convex combination of the codes of the genes. The coefficient of the
combination is a randomly generated number for each gene.

The mate for the crossover operation for an individual is selected among the
chromosomes in its neighborhood with a proportional selection. Later the mate
will be selected as first parent to produce its offspring. For this reason at crossover
only one new chromosome is generated. If there is no mate for the crossover
operation in the neighborhood of radius d∗ of an individual, then the mutation
operator will be applied.

Mutation is an additive perturbation of the genes with a randomly chosen value
from a N(0,σ) normal distribution, where σ is a control parameter called mutation
step size.

At each generation every chromosome is involved in crossover or mutation.
An offspring can replace only its parent. When an offspring is produced, it is
compared with the parent and the best (with better fitness) is introduced in the
new generation.

An effect of the crossover operation is that the chromosomes in the same subpop-
ulation are overlapping after a number of iterations. When the distance between
two chromosomes is smaller than a considered value ε (merging radius) they are
merged. In this way the size of the population decreases during the process until
n individuals remain, where n is the optimal cluster number.

2.5. Termination and Fuzzy Class Detection. If no more changes occur in
the population through a fixed number of iterations then the process will stop.
Individuals constituting the last population are considered as prototypes of the
detected clusters. For all data points the fuzzy membership degrees to the clusters
determined by the prototypes are calculated.

GCDC FOR DESIGNING RBF NEURAL NETWORKS 49

3. Designing RBF Neural Networks Using the GCDC Technique

Complexity of RBF neural networks depends on the number of hidden processor
units. There is dependence between this number and the number of training
samples. Complexity of networks can be reduced by clustering the training data.

3.1. Designing and Training RBF Neural Networks. RBF is a feed-forward
neural network with an input layer (made up of source nodes: sensory units), a
single hidden layer and an output layer. The network is designed to perform a
nonlinear mapping from the input space to the hidden space, followed by a linear
mapping from the hidden space to the output space.

The activation functions for the processor units in the hidden layer are radial
basis functions (for example Gaussian functions). These functions generally have
two parameters: the center and the width. The argument of the activation function
of each hidden unit computes a distance between the input vector and the center
of that unit.

Figure 1. RBF neural network topology

If x= (x1, ..., xn) is the input vector, gi() is the activation function and wi is the
synaptic weight corresponding to the ith hidden neuron, then the output created
by the network will be:

y =
K∑

i=1

wigi(x).

Usually Gaussian functions are used as RBF. In this case we may consider:

gi(x) = e−
‖x−ci‖2

2σi ,

where ci is the center parameter and σi is the variance (width parameter) for the
function corresponding to neuron i.

The hidden layer of the RBF neural networks may be trained with a supervised
learning algorithm. The aim is to establish the synaptic weights of the network.
A descendent gradient-based algorithm can be considered.

50 D. DUMITRESCU AND KÁROLY SIMON

Let us to note:

∆wi = −η
∂E

∂wi
, i = 1, ..., K,

where η is the learning rate and E is the global learning error.
At the lth step of the learning process the global learning error is calculated

according to the formula:

El =
1
N

N∑

i=1

(zi − yi)
2

where N is the number of points in the training data set, zi is the desired output
and yi is the network output.

Network weights are modified according to the following correction rule:

wi = wi + ∆wi, i = 1, ..., K.

3.2. Using GCDC for Designing Optimal RBF Neural Network Topolo-
gies. Complexity of RBF neural networks depends on the number of hidden neu-
rons. This is the number of radial basis functions with different center parameters.
It should be favorable the use of training samples as RBF centers, but in some
cases this is impossible. If few training points are present then all of them should
be used as centers. In this case the number of processor units in the hidden layer
is equal with the number of training samples. If the number of training samples
is high, then not all of them might be used (the number of hidden processor units
must be reduced). In this situation the locations of the centers may be chosen
randomly from the training data set. In practical situations this solution is not
very efficient. A better idea is to consider a single neuron for a group of similar
training points. These groups of similar training points can be identified using
clustering methods.

Generally, some static clustering techniques are used in order to solve the RBF
center detection problem. GCDC does not require a priori specification of the
number of clusters. The algorithm is able to determinate this number, so it can
be used for designing optimal RBF neural network topologies.

Let

T = {(xi, zi)|xi ∈ Rn, zi ∈ R, i = 1, ..., N},
be the set of training samples.

The GCDC algorithm is used for clustering this training set. A RBF neural
network is considered. The number of neurons in the hidden layer of the network is
K, where K is the number of clusters determined by the GCDC method. Cluster
centers identified by the GCDC algorithm are used as center parameters for the
activation functions. Width parameters can be determined corresponding to the
diameter of the clusters. In this way optimal RBF neural network topology can
be obtained.

GCDC FOR DESIGNING RBF NEURAL NETWORKS 51

4. Conclusions

Within clustering problems a primordial task is the determination of the number
of natural existing clusters. Dynamic clustering techniques are able to solve this
problem.

Based on the GC metaheuristics, GCDC is a new evolutionary technique for
dynamic clustering. The method can be used for designing optimal RBF neural
network topologies.

References

[1] Broomhead D. S., Lowe D.; Multivariable Functional Interpolation and Adaptive Networks,
Complex Systems, 2 (1988), pp. 321-355.

[2] Dumitrescu D.; Algoritmi Genetici şi Strategii Evolutive - Aplicaţii ı̂n Inteligenţa Artificială
şi ı̂n Domenii Conexe, Editura Albastra, Cluj Napoca, 2000.

[3] Dumitrescu D., Lazzerini B., Jain L. C., Dumitrescu A.; Evolutionary Computation, CRC
Press, Boca Raton, 2000.

[4] Dumitrescu D.; Genetic Chromodynamics, Studia Univ. Babes-Bolyai, Ser. Informatica, 35
(2000), pp. 39-50.

[5] Dumitrescu D.; A New Evolutionary Method and its Applications in Clustering, Babeş-Bolyai
University, Seminar on Computer Science,2 (1998), pp. 127-134.

[6] Dumitrscu D., Simon K.; Evolutionary Clustering Techniques for Designing RBF Neural
Networks, Babeş-Bolyai University, Seminar on Computer Science, (2003).

[7] Dumitrscu D., Simon K.; Reducing Complexity of RBF Neural Networks by Dynamic Evolu-
tionary Clustering Techniques, Proceedings of the 11th Conference on Applied and Industrial
Mathematics, (2003).

[8] Dumitrescu D., Simon K.; Genetic Chromodynamics for Designing RBF Neural Networks,
Proceedings of SYNASC, (2003).

[9] Enăchescu C.; Caracterizarea Reţelelor Neuronale ca şi Metode de Aproximare- Interpolare,
Petru Maior University, Buletinul Stiintific, 7 (1994).

[10] Enăchescu C.; Elemente de Inteligenţă Artificială, Petru Maior University, Tg. Mureş, 1997.
[11] Haykin S.; Neural Networks, Macmillan College Publishing Company, New York, 1994.
[12] Moody J., Darken C.; Fast Learning in Networks of Locally Tuned Processing Units, Neural

Computation, 1 (1989), pp. 281-294.
[13] Oltean M., Groşan C.; Genetic Chromodynamics Evolving Micropopulations, Studia Univ.

Babes-Bolyai, Ser. Informatica, (2000).
[14] Poggio T., Girosi F.; Networs for Approximation and Learning, Proceedings of IEEE, 78

(1990), pp. 1481-1497.
[15] Powell M. J. D.; Radial Basis Functions for Multivariable Interpolation: A review, in Algo-

rithms for Approximation, J. C. Mason and M. G. Cox, ed., Clarendon Press, Oxford, 1987,
pp. 143-167.

[16] Schreiber T.; A Voronoi Diagram Based Adaptive k-means Type Clustering Algorithm for
Multidimensional Weighted Data, Universitat Kaiserslautern, Technical Report, (1989).

[17] Selim S. Z., Ismail M. A.; k-means Type Algorithms: A Generalized Convergence Theorem
and Characterization of Local Optimality, IEEE Tran. Pattern Anal. Mach. Intelligence,
PAMI-6, 1 (1986), pp. 81-87.

[18] Simon K.; OOP Pentru Calculul Neuronal, Petru Maior University, Dipl. Thesis, 2002.
[19] Simon K.; Evolutionary Clustering for Designing RBF Neural Networks, Babeş-Bolyai Uni-

versity, MSc. Thesis, 2003.

52 D. DUMITRESCU AND KÁROLY SIMON

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Depart-
ment of Computer Science, Cluj-Napoca, Romania

E-mail address: ddumitr@cs.ubbcluj.ro

E-mail address: ksimon9@yahoo.com

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 2, 2003

COORDINATION AND REORGANIZATION IN MULTI-AGENTS
SYSTEMS, I

ALINA BACIU AND ADINA NAGY

Abstract. A method of considering coordination and reorganization as keys
in achieving (organizational) multi-agent system adaptation in unknown situ-
ations is proposed. Within a not totally predictable environment multi-agent
systems are prone to failures. In such unpredicted situations the system must
be able to adapt in order to accomplish its purpose.

The proposed system architecture is a combination of MOISE+ and
MOCA concepts. The main inconvenient of MOCA platform is that the
mechanism of dynamic role allocation is entirely left to the designer. The
inconvenient of MOISE+ platform is that agents’ behavior is not considered.

MOCA gives a structural vision on multi-agents systems based on in-
dividual and collective patterns of behavior. MOISE+ model describes how
agents endorse roles in order to achieve their individual and collective goals.

In Part I the main concepts of MOCA and MOISE+ models are pre-
sented.

Keywords: Additional Key Words: Multiagent Systems Reorganiza-
tion, Role Endorsement Mechanism

1. Introduction

The term agent is difficult to define. The main point about agents is they
are autonomous: capable of acting independently, exhibiting control over their
internal state. Thus: an agent is a computer system capable of autonomous action
in some environment. An intelligent agent is a computer system capable of flexible
autonomous action in some environment. By flexible, we mean (Wooldridge and
Jennings, 1995) autonomy, reactivity, pro-activeness and social ability.

1.1. Multi Agent Systems. A Multi Agent System (MAS) is a network of au-
tonomous entities (agents) that work together in order to achieve a global goal,
the system goal. Data in the system is decentralized and there is no agent that can
accomplish by himself the system’s goal, meaning that agents need each other to

Received by the editors: October 8, 2003.
2000 Mathematics Subject Classification. 68T05.
1998 CR Categories and Descriptors. I.2.11 [Artificial Intelligence]: Distributed Artifi-

cial Intelligence – Multiagent systems, Coherence and coordination.

53

54 ALINA BACIU AND ADINA NAGY

achieve the system goal. A MAS has two main properties, which seems controver-
sial: the global purpose that must be achieved and the autonomous agents. While
the autonomy of the agents is essential for the MAS, it may also cause the loose-
ness of the global coherence. In these conditions MAS organization is used to solve
this conflict, constraining agent’s behavior towards the system global purpose.

1.2. Mainstream researches in MAS. Mainstream researches in MAS corre-
spond to the MAS central concepts: namely that of agent and group. The agent-
centered approaches are concerned on how to represent agent ‘internal’ knowledge
(such as Believes, Intentions and Desires, in a so-called mentalist approach) or
internal behavior, as well as their local interactions and environment (Nagy, 2002).

In the framework of organizational systems, three dimensions are used to de-
scribe the MAS:

• the structure expressed through roles and groups,
• the functioning (global plans and tasks) and
• deontic relations or other norms (agents’ obligations, norms, responsi-

bilities, permissions etc.).

Agent and organization based approaches share the same goals: explain what a
multi-agent system is, how it works and how it can be used. The main difference
is the set of basic concepts. While both of them allow for a sociological dimension
- local interactions for the agent-centered approach – the organization-centered
approach has a real social dimension.

When describing an organization, one of the encountered problems is to define
these aspects in such a way that they can be assembled in a single coherent spec-
ification. The existent models of MAS concentrate mainly on a single dimension.
Such is the MOCA platform (Amiguet, Müller, Báez, and Nagy, 2002) and the
Agent-Group-Role (AGR) models or others concentrated on the deontic aspect of
the system (Barbuceanu and Lo, 2000).

Our research is located in the field of organization-centered systems where
agents are able to represent the organization they evolve in. The proposed model
combines the existent concepts in two models: MOCA model and MOISE+ model.

2. MOCA platform

There are mainly two types of approaches of organizational multi-agent systems
in literature: some systems allow for dynamic social organization but social struc-
tures do not impose anything on agent’s behavior; other models do consider social
structures as recurrent patterns of interaction, but then the social structures are
usually static.

The contribution of MOCA (Model of Organization Centered on Agents) plat-
form is to combine these two approaches by allowing the designer to describe

COORDINATION AND REORGANIZATION IN MULTI-AGENTS SYSTEMS, I 55

the organizations with their roles, relationships and dynamics (protocols), but si-
multaneously allowing any agent to dynamically create a group instantiating an
organization, to enter and to leave such a group.

MOCA is the first realized platform that gives both the theoretical background
and an operational semantics for the notion of (behavioral) role and organization.
In what follows, we will distinguish MOCA’s concepts of role and organization by
mentioning the platform MOCA-role, MOCA-organizational structure, etc.

While the deontic and other specifications of multi-agent systems in terms of
agents’ obligations, norms, responsibilities, permissions, etc. can be classified as
mentalist (Parunak and Odell, 2001) approaches to organizational design, the
specification of MOCA organization belongs to the class of behaviorist approaches
(see Nagy, 2003).

A MOCA-organization is a recurrent pattern of interaction, representing a
global, but specific (meaning several view-points on a system can co-exist and
interact) view on a system. Such an organization is represented by a graph where
the vertices are MOCA-role descriptions and the edges are inter-role relations,
which specify – among other properties – the types of perturbations a role can
generate and receive.

A MOCA-role is an individual recurrent pattern of behavior, within an organi-
zation. MOCA-roles are specified through the mechanism of state-charts, which
identify the sequences of state-transition and actions firing, according to internal
conditions and perturbations received by the agent endorsing a role.

MOCA leaves a high autonomy to agents, which can endorse and leave a role
according to their individual goals (this part is left for a further work and it is
here that our model enriches MOCA). However, the role endorsement is driven by
agent competences.

A MOCA-role specifies what competences an agent should have in order to
endorse it. Also some competences can be provided to the agent through the roles
the agent endorses. The agent’s competences are expressed as components of the
role, and implemented, on the MOCA platform, as java interfaces.

MOCA notions are structured on two axes: a two levels structure and an
internal-external distinction (see Figure 1).

The distinction between the executive level and the descriptive level is the
same as the distinction between the class and the object in the object oriented
programming. We can tell that the executive level is the instantiation of the
descriptive level.

The internal - external distinction related to the agent shows the role position
in this model: the role realizes the link between the internal state of the agent and
the system he evolves in.

The main inconvenient of MOCA is that it leaves the system designer without
any tool for assigning roles to agents. Another shortcoming can be the management
group. This group is responsible for group’s dynamic (agents entering and leaving

56 ALINA BACIU AND ADINA NAGY

Figure 1. The main concepts of MOCA

groups). This can be a bottleneck point in the system and its failure could lead
to system failure.

3. MOISE+ Model

A new direction in MAS is to join the organizational “roles” with global and
individual plans. In MOISE model three levels were identified:

• individual level - representing the behaviors that an agent is responsible
for when it adopts a role,

• social level - describing interconnections between roles and
• collective level - that represents the roles aggregation in large structures.

The organization-centered models usually concern only one direction of the two:
the system functioning, meaning system’s global plans or the system structure.
Although MOISE tries to concern about these two aspects, its main shortcomings
(for reorganization) are the lack of the concept of an explicit global plan and the
strong dependence among the structure and the functioning.

MOISE+ is a model conceived to assemble the three levels of the system in a
coherent MAS organizational description, suitable for the reorganization process.
This was accomplished by specifying the first two dimensions almost independently
of each other and after properly linking them by the deontic dimension (Hübner,
Sichman, Boissier, 2002).

Figure 2 shows how system global purpose can be achieved by constraining
agents’ behavior by organization’s structure but also providing them some tested
plans for goal achievement through organization functional specification. In this
way agents have some tested plans to follow, they have the choice of reasoning for
a plan to work together when there is no plan to be followed and this must not be

COORDINATION AND REORGANIZATION IN MULTI-AGENTS SYSTEMS, I 57

done each time they want to work together, because experience is stored in system
knowledge base.

Figure 2. The organization effects on MAS

Within MOISE+ platform three dimensions can de distinguished:
• structural dimension,
• functional dimension,
• deontic dimension.

3.1. Structural dimension. Within MOISE + three main concepts - roles, role
relations and groups - are used to build the individual, social, and collective struc-
tural levels of an organization.

The individual level is formed by the roles of the organization. A role means a
set of constraints that an agent ought to follow when it accepts to enter a group
playing that role. The constraints imposed by the role are defined in relation to
other roles (in the collective structural level) and in relation to global plans.

The social level is used to specify relations between roles, relations that di-
rectly constraint the agents. The relations between roles are called links and
are represented like predicates: link(s, d, t) where s is the link source, d is the
link destination and t is the link type that can be authority, communication or
acquaintance.

58 ALINA BACIU AND ADINA NAGY

These links are used to constrain agents after they have accepted to play a role.
The collective level imposes some constraints regarding the roles an agent can

play at the same time. The roles can be played only in a group already created.
A group is an instantiation of a group specification.

When specifying a group the following elements must be stated:
• roles that may be played in the group;
• sub groups the group has;
• links between the roles in the group;
• links that can exist between agents playing a role in the group and agents

playing different roles in other groups;
• compatibilities between the roles played by the same agent in the same

group and also in other groups;
• for each role- the maximum and minimum number of agents that can

play a role in the group in order it to be well formed;
• for each group - the minimum and the maximum number of subgroups

that can be created.

3.2. Functional dimension. The functional dimension describes how the global
goals are decomposed by plans and distributed to the agents by missions. At the
collective level, this means that there is a global plan decomposed in schema and
at the individual level there are missions that an agent may be committed to.

Each goal can be decomposed in sub-goals through plans, which may use three
operators: sequence (the sub-goals must be achieved one after the other), choice
(only one of sub-goals must be achieved) and parallelism (the sub-goals can be
achieved in parallel). At this level there is also an order for missions telling in
a given situation the success rate of each mission. Using this order the agents
may choose the mission that looks to be the most promising for the global goal
achievement.

3.3. Deontic dimension. Deontic dimension relates the structure and the func-
tioning dimensions describing the permissions and obligations from roles to mis-
sions at specified moments in time. The deontic dimension is thus a set of obliga-
tions and permissions for the agents playing different roles on schema decomposed
in missions.

A MOCA organizational system may allow for agents without any internal
content other than the ability to send and receive messages, to enter organization
(an agent enters an organization by endorsing a role in that given organization).
In MOISE+ nothing is said about the internal abilities or competences of agents
and the present architecture in not self-consistent.

Furthermore, it is beyond the scope of the quoted papers on MOISE+ to de-
scribe the instantiation process, and particularly the correspondences between the
competences of agents and the behaviors specified by the MOISE+ roles. This cor-
respondence between role competences and agents arises naturally within MOCA.

COORDINATION AND REORGANIZATION IN MULTI-AGENTS SYSTEMS, I 59

Therefor we consider that MOCA and MOISE+ could be seen as complemen-
tary approaches. MOCA gives a good operational semantics to the notions of
organizational structure, organization and role, together with a fully operational
platform. Notion of competence required from an agent to endorse a role is clearly
defined and the conditions where an agent is eligible to endorse a role are put.

MOISE+ describes the constraints for the role endorsement by agents, as well
as constraints about the cardinality of the final multi-agent system in order to
achieve the global goal of the organization. Another advantage is that conditions
for role compatibility within the same agent can be given because MOISE+ allows
specifying for every role, if it can be endorsed or not by an agent having other
given roles.

4. Conclusions

This paper presented the models MOCA and MOISE+ which are the basis for
a new multi-agent system model. This new model will be introduced in Part II.

References

[1] Amiguet, M., Müller, J-P., Báez, J, Nagy, A. 2002. The MOCA Platform: Simulating
the Dynamics of Social Networks, Workshop of Multi-Agent–based simulation, MABS’02,
Barcelona

[2] Amiguet, M. 2003. MOCA: un modèle componentiel dynamique pour les systèmes multi-
agents organisationnels, thèse de doctorat, Université de Neuchâtel (Switzerland)

[3] Baez, J. 2002. Extension et consolidation de la plate-forme organisationnelle MOCA,
mémoire de diplôme, Université de Neuchâtel (Switzerland)

[4] Barbuceanu, M., Lo, Wai-Kai. 2000. Integrating individual and social reasoning models for
organizational agents

[5] Ferber, J. 1999. Multi-Agent Systems, Addison Wesley
[6] Hannoun, M., Boissier, O., Sichman, J.S., Sayettat, C..1999. Moise : Un modèle organisa-

tionnel pour la conception de systèmes multi-agents, Editions Hermés
[7] Hübner, J.F., Sichman J.S., Boissier O. 2002 A Model for the Structural, Functional, and

Deontic Specification of Organizations in Multiagent Systems
[8] Olivier Gutknecht, O., Ferber, J. 2002. MadKit v2.0.1, LIRMM, Université Montpellier II,

2000, http://www.madkit.org
[9] Parunak, H., Odell, J. 2001.Representing social structures in UML, AOSE2001

[10] Odell, J., Parunak, H., Fleischer, M. 2003. The Role of Roles in Designing Effective Agent
Organizations, Software Engineering for Large-Scale Multi-Agent Systems, Alessandro Gar-
cia et al, LNCS, Springer

[11] Kumar, S., Cohen, P. R., Levesque, H. 2000. The Adaptive Agent Architecture: Achieving
Fault-Tolerance Using Persistent Broker Teams, Fourth International Conference on Multi-
Agent Systems (ICMAS-2000), Boston

[12] Mellouli, S., Mineau, G., Pascot, D. 2002. Multi-Agent System Design, ESAW’02, Engineer-
ing Societies in the Agents World, Madrid, Spain

[13] Nagy, A. 2002. Behaviorist organizational models for the MAS – a state of the art, Technical
Report, University of Neuchâtel, Switzerland

[14] Glasser, N., Morignot, P. 1997. The Reorganization of Societies of Autonomous Agents

60 ALINA BACIU AND ADINA NAGY

Faculty of Mathematics and Computer Science, Babes-Bolyai University of Cluj-
Napoca, Romania

E-mail address: alina baciu@yahoo.com

Institute of Computer Science and Artificial Intelligence, University of Neuchâtel,
Switzerland

E-mail address: adina.nagy@unine.ch

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 2, 2003

HIERARCHICAL CLUSTERING ALGORITHMS FOR
REPETITIVE SIMILARITY VALUES

DANA AVRAM LUPŞA, GABRIELA ŞERBAN, AND DOINA TĂTAR

Abstract. This paper presents a novel variant of the hierarchical clustering
from [2]. We tried to solve the problem of repetitive similarity values that
appears on distributional similarity values. Also we propose an algorithm to
build a similarity tree as a taxonomy that respects the hierarchical clusters
determined above.

1. Introduction

Bootstrapping semantics from text is one of the greatest challenges in natu-
ral language learning. Clustering nouns can be useful in construction of a set
of synonyms for word sense disambiguation, to perform query expansion in QA
systems [9], to build ontology from a text, in data mining, etc., especially for lan-
guages others than English, for which doesn’t exist a hierarchy such as WordNet
(as in Romanian language case). One very surprising approach is an unsupervised
algorithm that automatically discovers word senses from text.

Automatic word sense discovery has applications of many kinds. It can greatly
facilitate a lexicographer’s work and can be used to automatically construct corpus-
based similarity trees or to tune existing ones.

We study distributional similarity measures for the purpose of improving some
noun clustering methods [2]. We suggest two algorithms that obtain clusters and
similarity trees for nouns. Starting with hierarchical clustering algorithm, we con-
sider the case when the similarity values can repeat and suggest a method to
determine the taxonomy with respect of hierarchical clusters found by the hierar-
chical clustering algorithm.

This paper is organized as follows. In section 2, we present some methods that
extract words similarity from untagged corpus. A comparison among the precision
of the results is also made. Section 3 describes the agglomerative algorithm for
hierarchical clustering and it’s modified version. Some experimental results are also
shown. In section 4, we present the novel agglomerative algorithm for similarity
tree. We outline the similarity between the clustering algorithm and the similarity

Received by the editors: October 15, 2003.
2000 Mathematics Subject Classification. 62H3, 68Q25, 65Q55, 68R10, 68T50.
1998 CR Categories and Descriptors. I.2.7 [Artificial Intelligence]: Natural Language

Processing – Text analysis ; I.5.4. [Pattern Recognition]: Applications – Text processing .

61

62 DANA AVRAM LUPŞA, GABRIELA ŞERBAN, AND DOINA TĂTAR

tree for the experimental results considered. Finally, section 5 sketches applications
of the algorithm and discusses future work.

2. Word similarities

Semantic knowledge is increasingly important in NLP. The key of organizing
semantic knowledge is to define reasonable similarity measures between words. In
many papers the similarity between two words is obtained by the n-grams models
[11], by mutual information [3] or by syntactic relations [13]. One other way to
define this similarity is the vector space model [5, 12, 7] which we use in this
paper. The idea of vector-based semantic analysis is to understand the meaning of
a word one has to considering its use in the context of concrete language behavior.
The distributional pattern of a word is defined by the contexts in which the word
occurs, where context is defined simply as an arbitrarily large sample of linguistic
data that contains the word in question.

Syntactic analysis provides some potentially relevant information for clustering
[10]. For a corpus in Romanian language the relation predicate-object or subject-
predicate can be estimated after position: the object is almost always after the
predicate, the subject is before the predicate. So we replaced a syntactical analysis
by constructing context vectors as in Definition 2.

The reason for using narrow context windows as opposed to arbitrarily contexts
is the assumptions that the semantically most significant context is the immediate
vicinity of a word. That is, one would expect the words closest to the focus word
to be of greater importance than the other words in the text.

Definition 1. In AlgUnord algorithm ([2]) the vector
~wi =(w1

i , w2
i , · · · , wm

i)
is associated with a noun wi as following: let us consider that {v1, v2, · · · , vm} are
m verbs of a highest frequency in corpus. We define:

wj
i = number of occurences of the verb vj in the same context withwi

Let us remark that other vector-space models were used in the literature. For
example, in [1] is presented a hierarchy of nouns such that the vector ~wi =
(w1

i , w2
i , · · · , wm

i) associated with a noun wi is constructed as follows: wj
i = 1,

if the noun wj occurs after wi separated by the conjunction and or an appositive,
or else wj

i = 0 .

Definition 2. In AlgOrd algorithm ([2, 5]) the vector ~wi is associated with a noun
wi as following: for each verb vj is calculated a sub-vector (v−3

j , v−2
j , v−1

j , v+1
j , v+2

j , v+3
j)

where v−3
j =1 if vj occurs in a windows context of wi in the position -3 or v−3

j =0
else, and so far for v−2

j , v−1
j , v+1

j , v+2
j , v+3

j .
Finally, the vector ~wi is obtained by the concatenation, in order, of all sub-

vectors of verbs {v1, v2, · · · , vm}.

HIERARCHICAL CLUSTERING ALGORITHMS FOR REPETITIVE SIMILARITY VALUES63

Let us remark that in AlgOrd the number of components of the noun’s vector
~wi is 6 ×m, while in AlgUnord is m. The dimension of a window can be 4 (so
the subvectors for a verb vj are v−2

j , v−1
j , v+1

j , v+2
j) or 2 (and the subvectors are:

v−1
j , v+1

j). We will denote the windows in each case by 3+3, 2+2 or 1+1.
In both algorithms, if a noun wi occurs in more contexts, the final vector ~wi is

obtained as the average of all the context vectors.
Let us observe that the corpus does not have to be POS tagged or parsed and

that one can use a stemmer to recognize the flexional occurrences of the same word
(Romanian language is a very inflexional language).

Let us consider that the objects to be clustered are the vectors of n nouns,
{w1, w2, · · · , wn} and that a vector is associated with a noun wi as above.

The similarity measure between two nouns wa, wb is the cosine between the
vectors ~wa and ~wb [6]:

cos(~wa, ~wb) =

∑m
j=1 wj

a × wj
b√∑m

j=1 wj2

a ×
√∑m

j=1 wj2

b

and the distance (dissimilarity) is d(~wa, ~wb) = 1
cos(~wa, ~wb)

.
In Table 1 we present, comparatively, the precision of the clustering algorithms

for our clustering experiment.

AlgOrd (3+3) AlgUnord
non-hierarchical 63% 54%
hierarchical 45% 36%

Table 1. Precision of clustering algorithms for the proposed experiment

In the followings, we will consider the results of the studied hierarchical algo-
rithms (see Table 1). The decision was made to support the study of repetitive
similarity values. The similarity values are repetitive more significant for the hi-
erarchical algorithm than for the non-hierarchical ones.

The distributional similarity matrices obtained for the Romanian words: aso-
ciatie, durata, localitate, oameni, oras, organizatie, partid, persoana, perioada,
sat, timp by the considered hierarchical algorithms are presented in Table 2 and
Table3. For readability reasons the values shown are rounded to 9 decimal char-
acters.

The similarity values are repetitive, as shown in the Fig 1.
In what follows we will give an algorithm for hierarchical clustering, that handle

repetitive values.

3. New hierarchical clustering algorithm

Word clustering is a technique for partitioning sets of words into subsets of
semantically similar words and is increasingly becoming a major technique used in

64 DANA AVRAM LUPŞA, GABRIELA ŞERBAN, AND DOINA TĂTAR

Figure 1. Repetitive similarity values obtained by hierarhical
algorithm AlgUnord

a number of NLP tasks ranging from word sense or structural disambiguation to
information retrieval and filtering. In the literature [4], two main different types
of similarity have been used. They can be characterized as follows:

1. paradigmatic or substitutional similarity: two words that are paradigmati-
cally similar may be substituted one for another in a particular context. For ex-
ample, in the context I read the book , the word book can be replaced by magazine
with no violation of the semantic well-formedness of the sentence, and therefore
the two words can be said to be paradigmatically similar;

2. syntagmatic similarity: two words that are syntagmatically similar signif-
icantly occur together in text. For instance, cut and knife are syntagmatically
similar since they typically co-occur within the same context.

Both types of similarity, computed through different methods, are used in the
framework of a wide range of NLP applications.

The agglomerative algorithm for hierarchical clustering that we intend to use
is part of the second category. The original hierarchical clustering algorithm [2, 6]
is described in what follows.

Agglomerative algorithm for hierarchical clustering

Input
The set X = {w1, w2, . . . , wn} of n words to be clusterised,
the similarity function sim : X ×X → R.

Output
The set of hierarchical clusters

HIERARCHICAL CLUSTERING ALGORITHMS FOR REPETITIVE SIMILARITY VALUES65

C = {C0
1 , C0

2 , . . . , Cn
j }

BEGIN
FOR i := 1 TO n DO

C0
i := wi

ENDFOR
step := 0
C0 :=

{
C0

1 , C0
2 , . . . , C0

n

}
C := C0

WHILE |C| > 1 DO
step := step + 1
C<step> := C<step−1>

(C<step>
u∗ , C<step>

v∗) :=
argmax

(C
<step>
u ,C

<step>
v)

sim(C<step>
u , C<step>

v), u <> v

C<step>
∗ := C<step>

u∗ ∪ C<step>
v∗

C<step> := (C<step> \ {C<step>
u∗ , C<step>

v∗ }) ∪ C<step>
∗

C := C ∪ C<step>

ENDWHILE
END

As similarity sim(Cu, Cv) we considered average -link similarity:

sim(Cu, Cv) =

∑
ai∈Cu

∑
bj∈Cv

sim(ai, bj)

| Cu | × | Cv | .

Taken as input the similarities from Table 2, the resulting hierarchical clusters
are shown in Fig 2 . The circles indicate the clusters at a certain moment and
the numbers indicate the step when the cluster was formed.

Figure 2. Results of agglomerative algorithm for hierarchical
clustering on experimental data set (table 2 and 3)

When the similarity values have many repetitive values, as shown in Fig 1, it
could be possible that the similarity between different clusters is the same. The

66 DANA AVRAM LUPŞA, GABRIELA ŞERBAN, AND DOINA TĂTAR

idea behind the new hierarchical clustering algorithm is to consider at each step
all the clusters that are closest to each other, as the similarity value is showing.
The new algorithm and some experimental results are presented in what follows.

Agglomerative algorithm for hierarchical clustering and repetitive
similarity values

Input
The set X = {w1, w2, . . . , wn} of n words to be clusterised,
the similarity function sim : X ×X → R.

Output
The set of hierarchical clusters
C = {C0

1 , C0
2 , . . . , Ck

nk
}

BEGIN
FOR i := 1 TO n DO

C0
i := wi

ENDFOR
step := 0
C0 :=

{
C0

1 , C0
2 , . . . , C0

n

}
C := {C0}
WHILE |C| > 1 DO

step := step + 1
C<step> := C<step>−1

smax := max
(C

<step>
u ,C

<step>
v)

sim(C<step>
u , C<step>

v)

FOR each (C<step>
u , C<step>

v) ∈ C × C , u <> v
IF smax := sim(C<step>

u , C<step>
v)

C<step>
∗ := C<step>

u ∪ C<step>
v

C<step> := C<step> \ {C<step>
u , C<step>

v } ∪ C<step>
∗

END IF
END FOR
C := C ∪ C<step>

ENDWHILE
END

Taken as input the similarity from table Table 2 and Table 3, with higher
rate repetitive value, the results are shown in Fig 3.

4. Algorithm to create a similarity tree with respect to
hierarchical clusters

Lexical semantics relations play an essential role in lexical semantics and inter-
fere in many levels in natural language comprehension and production. They are
also a central element in the organization of lexical semantics knowledge bases.

HIERARCHICAL CLUSTERING ALGORITHMS FOR REPETITIVE SIMILARITY VALUES67

Figure 3. Results of agglomerative algorithm for hierarchical
clustering on repetitive similarities on experimental data set (ta-
ble 2 and 3)

Two words W1 and W2 denoting respectively sets of entities E1 and E2, are in
one of the following four relations [4]:

identity: E1 := E2,
inclusion: E2 is included into E1,
overlapp: E1 and E2 have a non-empty intersection,

but one is not included into the other,
disjunction: E1 and E2 have no element in common.
These relations support various types of lexical configurations such as the

type/subtype relation.
We are interested in constructing a tree structure among similar words so that

different senses of a given word can be identified with different subtrees [8]. In
what follows we try to model the hierahical clustering algorithm to extract such
tree hierarchical structure that we call similarity trees or taxonomy.

For the similarity tree, unification of two clusters in the hierarchical algorithm
means to establish a link between two words from the two clusters that are the
most similar . The question is now: how to choose those two words when similarity
values between words are highly repetitive.

The solution is to find a way to filter the words from a cluster in order to get
only one.

The filters we propose are:
• Filter 1: word of maximum similarity

– choose among candidate words in the two clusters the pairs that
have maximum similarity among all pairs of words

• Filter 2: most important words in the cluster
– choose among candidate words in the two clusters the words that

have the sum of the similarities with the other words in the cluster
maximum

• Filter 3: most important words for the new cluster

68 DANA AVRAM LUPŞA, GABRIELA ŞERBAN, AND DOINA TĂTAR

– choose among candidate words in the two clusters the words that
have the sum of the similarities with all the other words in the two
clusters maximum

• Filter 4: most important words for the entire set
– choose among candidate words the words that have the sum of the

similarities with all the other words in the entire set maximum

If all those cannot identify a singular word, this indicates that similarity value
sets have too many repetitive values that cannot make a distinction among words
in some groups. Filtering can be repeatedly applied by using other similarity
values sets if it does not obtain an unique word.

Filter algorithm

Input
CW1 = {cw11, cw12, . . .} the set of words to be filtered
CW2 = {cw21, cw22, . . .} a set of words distinct to CW1
W : a set of words so that CW1 and CW2 are part of it

(the set of all considered words)
sim : W ×W → R the similarity function

Output
CW1 = {cw′, cw′′, . . .} : the filtered CW1

BEGIN
IF |CW1| > 1 /*** filter 1 ***/

msim1 := max{sim(c1, c2) | c1 ∈ CW1, c2 ∈ CW2}
CW1 := {c1 | ∃c2 ∈ CW2 so that msim1 = sim(c1, c2)}

ENDIF
IF |CW1| > 1 /*** filter 2 ***/

msim2 := max{∑cw2 sim(cw1, cw2) |
cw1 ∈ CW1, cw2 ∈ CW1, cw1 <> cw2}

CW1 := {cw1 | msim2 =
∑

cw2 sim(cw1, cw2),
cw1 ∈ CW1, cw2 ∈ CW1, cw1 <> cw2}

ENDIF
IF |CW1| > 1 /*** filter 3***/

msim3 := max{∑cw2 sim(cw1, cw2) |
cw1 ∈ CW1, cw2 ∈ (CW1 ∪ CW2, cw1 <> cw2}

CW1 := {cw1 | msim3 =
∑

cw2 sim(cw1, cw2),
cw1 ∈ CW1, cw2 ∈ (CW1 ∪ CW2), cw1 <> cw2}

ENDIF
IF |CW1| > 1 /*** filter 4 ***/

msim4 := max{∑cw2 sim(cw1, cw2) |
cw1 ∈ CW1, cw2 ∈ W, cw1 <> cw2}

CW1 := {cw1 | msim4 =
∑

cw2 sim(cw1, cw2),
cw1 ∈ CW1, cw2 ∈ W, cw1 <> cw2}

ENDIF

HIERARCHICAL CLUSTERING ALGORITHMS FOR REPETITIVE SIMILARITY VALUES69

END

Agglomerative algorithm for similarity tree

Input
The set W = {w1, w2, . . . , wn} of n words to be clustered,
S1 : W ×W → R main similarity function
S2, . . . , Sk : W ×W → R other similarity functions

Output
T similarity tree that respects clusters created by using
agglomerative hierarchical clustering algorithm

BEGIN
T := {}
FOR i := 1 TO n DO

Ci := {wi}
ENDFOR
C := {C1, C2, , Cn}
WHILE |C| > 1 DO

smax := max(Cu,Cv)sim(Cu, Cv), u <> v
FOR each (Cu, Cv) ∈ C × C, sim(Cu, Cv)) = smax and u <> v

FILTER(Cu, Cv , W , S1)
FILTER(Cv, Cu , W , S1)
i := 1
WHILE (i < k) AND (|Cu| > 1 OR |Cv| > 1)

C′u := Cu
IF |Cu| > 1

FILTER(Cu, Cv , W , Si)
ENDIF
IF |Cv| > 1

FILTER(Cv, C′u , W , Si)
ENDIF
i := i + 1

ENDWHILE
IF |Cu| > 1 OR |Cv| > 1

MESSAGE: ”Undecidable”
END ALGORITHM

ENDIF
/* Consider that Cu = {cw1′} and Cv = {cw2′} */
T := T ∪ (cw1′, cw2′)
C := (C \ {Cu, Cv}) ∪ {Cu ∪ Cv}

ENDFOR
ENDWHILE

END

70 DANA AVRAM LUPŞA, GABRIELA ŞERBAN, AND DOINA TĂTAR

The algorithm has the advantage of combining the clustering methods with the
filetring algorithm in order to obtain similarity trees.

Figure 4. Result of agglomerative algorithm for similarity tree
on experimental data set in Table 2 and 3 (hierarchical AlgOrd)

Let us construct similarity tree starting with the same similarity values set as
used for hierarchical clusters. For those similarity values, the taxonomy algorithm
needs supplementary similarity values. Taken as supplementary similarities those
from nonhierarchical AlgOrd algorithm, the algorithm is decidable and the two
similarity trees that are built for the hierarchical clusters presented above, looks
like in Fig 4. The big “F” symbol in the figures indicates links that were not
decidable without filtering.

5. Conclusions and future research

This paper gives two algorithms to determine hierarchical clusters and similarity
trees, starting from untagged corpus data.

We intend to use the method of extracting similarity trees from untagged corpus
for semiautomatic building of a IS-A hierarchy for Romanian languaage.

HIERARCHICAL CLUSTERING ALGORITHMS FOR REPETITIVE SIMILARITY VALUES71

A
p
p
en

d
ix a

so
c
ia

ti
e

d
u
ra

ta
lo

c
a
li
ta

te
o
a
m

e
n
i

o
ra

s
o
rg

a
n
iz

a
ti

e
p
a
rt

id
p
e
ri

o
a
d
a

p
e
rs

o
a
n
a

sa
t

ti
m

p
a
so

c
ia

ti
e

1
0
.9

6
7
0
7
4
1
5

0
.9

5
1
8
8
7
8
8

0
.9

8
4
1
1
2
0
5

0
.9

8
4
1
1
2
0
5

0
.9

8
4
1
1
2
0
5

0
.9

5
6
8
6
7
0
4

0
.9

7
8
1
2
6
0
0

0
.9

7
8
1
2
6
0
0

0
.9

9
1
8
1
7
3
1

0
.9

4
4
6
0
9
5
9

d
u
ra

ta
0
.9

6
7
0
7
4
1
5

1
0
.9

5
1
8
8
7
8
8

0
.9

6
7
0
7
4
1
5

0
.9

6
7
0
7
4
1
5

0
.9

6
7
0
7
4
1
5

0
.9

5
6
8
6
7
0
4

0
.9

6
7
0
7
4
1
5

0
.9

6
7
0
7
4
1
5

0
.9

6
7
0
7
4
1
5

0
.9

4
4
6
0
9
5
9

lo
c
a
li
ta

te
0
.9

5
1
8
8
7
8
8

0
.9

5
1
8
8
7
8
8

1
0
.9

5
1
8
8
7
8
8

0
.9

5
1
8
8
7
8
8

0
.9

5
1
8
8
7
8
8

0
.9

5
1
8
8
7
8
8

0
.9

5
1
8
8
7
8
8

0
.9

5
1
8
8
7
8
8

0
.9

5
1
8
8
7
8
8

0
.9

4
4
6
0
9
5
9

o
a
m

e
n
i

0
.9

8
4
1
1
2
0
5

0
.9

6
7
0
7
4
1
5

0
.9

5
1
8
8
7
8
8

1
0
.9

9
8
4
6
5
7
7

0
.9

9
8
9
3
6
1
6

0
.9

5
6
8
6
7
0
4

0
.9

7
8
1
2
6
0
0

0
.9

7
8
1
2
6
0
0

0
.9

8
4
1
1
2
0
5

0
.9

4
4
6
0
9
5
9

o
ra

s
0
.9

8
4
1
1
2
0
5

0
.9

6
7
0
7
4
1
5

0
.9

5
1
8
8
7
8
8

0
.9

9
8
4
6
5
7
7

1
0
.9

9
8
4
6
5
7
7

0
.9

5
6
8
6
7
0
4

0
.9

7
8
1
2
6
0
0

0
.9

7
8
1
2
6
0
0

0
.9

8
4
1
1
2
0
5

0
.9

4
4
6
0
9
5
9

o
rg

a
n
iz

a
ti

e
0
.9

8
4
1
1
2
0
5

0
.9

6
7
0
7
4
1
5

0
.9

5
1
8
8
7
8
8

0
.9

9
8
9
3
6
1
6

0
.9

9
8
4
6
5
7
7

1
0
.9

5
6
8
6
7
0
4

0
.9

7
8
1
2
6
0
0

0
.9

7
8
1
2
6
0
0

0
.9

8
4
1
1
2
0
5

0
.9

4
4
6
0
9
5
9

p
a
rt

id
0
.9

5
6
8
6
7
0
4

0
.9

5
6
8
6
7
0
4

0
.9

5
1
8
8
7
8
8

0
.9

5
6
8
6
7
0
4

0
.9

5
6
8
6
7
0
4

0
.9

5
6
8
6
7
0
4

1
0
.9

5
6
8
6
7
0
4

0
.9

5
6
8
6
7
0
4

0
.9

5
6
8
6
7
0
4

0
.9

4
4
6
0
9
5
9

p
e
ri

o
a
d
a

0
.9

7
8
1
2
6
0
0

0
.9

6
7
0
7
4
1
5

0
.9

5
1
8
8
7
8
8

0
.9

7
8
1
2
6
0
0

0
.9

7
8
1
2
6
0
0

0
.9

7
8
1
2
6
0
0

0
.9

5
6
8
6
7
0
4

1
0
.9

9
6
1
5
9
5
6

0
.9

7
8
1
2
6
0
0

0
.9

4
4
6
0
9
5
9

p
e
rs

o
a
n
a

0
.9

7
8
1
2
6
0
0

0
.9

6
7
0
7
4
1
5

0
.9

5
1
8
8
7
8
8

0
.9

7
8
1
2
6
0
0

0
.9

7
8
1
2
6
0
0

0
.9

7
8
1
2
6
0
0

0
.9

5
6
8
6
7
0
4

0
.9

9
6
1
5
9
5
6

1
0
.9

7
8
1
2
6
0
0

0
.9

4
4
6
0
9
5
9

sa
t

0
.9

9
1
8
1
7
3
1

0
.9

6
7
0
7
4
1
5

0
.9

5
1
8
8
7
8
8

0
.9

8
4
1
1
2
0
5

0
.9

8
4
1
1
2
0
5

0
.9

8
4
1
1
2
0
5

0
.9

5
6
8
6
7
0
4

0
.9

7
8
1
2
6
0
0

0
.9

7
8
1
2
6
0
0

1
0
.9

4
4
6
0
9
5
9

ti
m

p
0
.9

4
4
6
0
9
5
9

0
.9

4
4
6
0
9
5
9

0
.9

4
4
6
0
9
5
9

0
.9

4
4
6
0
9
5
9

0
.9

4
4
6
0
9
5
9

0
.9

4
4
6
0
9
5
9

0
.9

4
4
6
0
9
5
9

0
.9

4
4
6
0
9
5
9

0
.9

4
4
6
0
9
5
9

0
.9

4
4
6
0
9
5
9

1

T
a
b
l
e

2
.

Si
m

ila
ri

ty
da

ta
se

t
ob

ta
in

ed
fo

r
hi

er
ar

ch
ic

al
A

lg
O

rd
al

go
ri

th
m

a
so

c
ia

ti
e

d
u
ra

ta
lo

c
a
li
ta

te
o
a
m

e
n
i

o
ra

s
o
rg

a
n
iz

a
ti

e
p
a
rt

id
p
e
ri

o
a
d
a

p
e
rs

o
a
n
a

sa
t

ti
m

p
a
so

c
ia

ti
e

1
0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
3
2
1
1

0
.0

0
0
0
0
8
4
9

d
u
ra

ta
0
.0

0
0
0
0
8
4
9

1
0
.0

0
0
2
5
2
0
4

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
2
0
1
5

0
.0

0
0
2
5
2
0
4

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
0
8
4
9

0
.0

0
0
6
0
7
9
0

lo
c
a
li
ta

te
0
.0

0
0
0
0
8
4
9

0
.0

0
0
2
5
2
0
4

1
0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
2
0
1
5

0
.0

0
0
3
3
5
0
0

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
0
8
4
9

0
.0

0
0
2
5
2
0
4

o
a
m

e
n
i

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
2
0
1
5

1
0
.0

0
1
9
0
2
1
6

0
.0

0
3
6
4
9
6
3

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
9
6
2
7

0
.0

0
0
2
2
0
5
0

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
2
0
1
5

o
ra

s
0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
2
0
1
5

0
.0

0
1
9
0
2
1
6

1
0
.0

0
1
9
0
2
1
6

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
9
6
2
7

0
.0

0
0
2
2
0
5
0

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
2
0
1
5

o
rg

a
n
iz

a
ti

e
0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
2
0
1
5

0
.0

0
3
6
4
9
6
3

0
.0

0
1
9
0
2
1
6

1
0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
9
6
2
7

0
.0

0
0
2
2
0
5
0

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
2
0
1
5

p
a
rt

id
0
.0

0
0
0
0
8
4
9

0
.0

0
0
2
5
2
0
4

0
.0

0
0
3
3
5
0
0

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
2
0
1
5

1
0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
0
8
4
9

0
.0

0
0
2
5
2
0
4

p
e
ri

o
a
d
a

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
9
6
2
7

0
.0

0
0
0
9
6
2
7

0
.0

0
0
0
9
6
2
7

0
.0

0
0
0
2
0
1
5

1
0
.0

0
0
0
9
6
2
7

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
2
0
1
5

p
e
rs

o
a
n
a

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
2
0
1
5

0
.0

0
0
2
2
0
5
0

0
.0

0
0
2
2
0
5
0

0
.0

0
0
2
2
0
5
0

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
9
6
2
7

1
0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
2
0
1
5

sa
t

0
.0

0
0
0
3
2
1
1

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
0
8
4
9

0
.0

0
0
0
0
8
4
9

1
0
.0

0
0
0
0
8
4
9

ti
m

p
0
.0

0
0
0
0
8
4
9

0
.0

0
0
6
0
7
9
0

0
.0

0
0
2
5
2
0
4

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
2
0
1
5

0
.0

0
0
2
5
2
0
4

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
2
0
1
5

0
.0

0
0
0
0
8
4
9

1

T
a
b
l
e

3
.

Si
m

ila
ri

ty
da

ta
se

t
ob

ta
in

ed
fo

r
hi

er
ar

ch
ic

al
A

lg
U

n
or

d
al

go
ri

th
m

72 DANA AVRAM LUPŞA, GABRIELA ŞERBAN, AND DOINA TĂTAR

References

[1] S. A. Caraballo, Automatic construction of hypernym-labeled noun hierarchy from text,
Proceedings of ACL, 1999.

[2] D. Avram Lupşa, G. Şerban, D. Tătar, From noun’s clustering to taxonomies on a untagged
corpus, MPS-Mathematical Preprint Server: Applied Mathematics, 0309004, 2003.

[3] I. Dagan, L. Lee, F. C. N. Pereira, Similarity-based models of Word Cooccurences Probabil-
ities, MLJ 34(1-3), 1999.

[4] EAGLES Lexicon Interest Group, A. Sanfilippo, comp., EAGLES LE3-4244, Preliminary
Recommendations on Lexical Semantic Encoding, Final Report, 1999.

[5] S. Gauch, J. Wang, S. M. Rachakonda, A corpus analysis approach for automatic query
expansion and its extension to multiple databases, CIKM’97, Conference on Information
and Knowledge management, 1997.

[6] C. Manning, H. Schutze, Foundation of statistical natural language processing, MIT, 1999.
[7] J. Karlgren, M. Sahlgren, From words to understanding, CSLI 2001, pp 294-308, 2001.
[8] D. Lin, Automatic retrieval and clustering of similar words, COLING-ACL’98, Montreal,

1998.
[9] C. Oraşan, D. Tătar, G. Şerban, D. Avram, A. Oneţ, How to build a QA system in your

back-garden: application to Romanian, EACL 2003, Budapest, Hungary, 2003.
[10] V. Pekar, S. Staab, Word classification based on combined measures of distributional and

semantic similarity, EACL 2003, Budapest, Hungary, 2003.
[11] P. Resnik, Semantic Similarity in a Taxonomy: An information-Based Measure and its

Application to Problems of Ambiguity in Natural language, Journal of AI Research, 1998.
[12] M. Sahlgren, Vector-Based Semantic Analysis: Representing Word Meanings Based on Ran-

dom Labels, Proceedings of the ESSLLI 2001 Workshop on Semantic Knowledge Acquisition
and Categorisation, Helsinki, Finland, 2001.

[13] D. Widdows, A mathematical model for context and word meaning, Fourth International
Conference on Modeling and using context, Stanford, California, 2003.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Depart-
ment of Computer Science, Cluj-Napoca, Romania

e-mail adresses: davram@cs.ubbcluj.ro, gabis@cs.ubbcluj.ro, dtatar@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 2, 2003

SPATIAL VIEW OF 3D OBJECTS USING STEREOGRAMS

V. PREJMEREAN, S. MOTOGNA, AND V. CIOBAN

Abstract. We present a method to view in space a three-dimensional solid
body using polygonal representation. This method has been chosen because
it allows a visualization of a body without other instruments. We prefer
the screen visualization instead of paper visualization, because we can also
produce an animation, for example by rotating the body (arround the axis,
using the keyboard), increasing the image reality.

1. Introduction

There are several methods to visualize a body in space, in the way we see it in
reality. Stereograms allow such a view without other special instruments, just a
certain skill to view these objects.

A similar method, that can be easy applied, needs for visualization a pair of
glasses with different colored lens. The spatial view is based on the fact that
each eye sees the same body, but from a different angle, rotated. It’s obvious
that we have to draw two images simultaneously (one for each eye) and then to
distinguish them (each eye should see its corresponding image). This technique
can be found in some spatial geometry books, that also contain the glasses, and
the effect is quite spectacular. The stereograms have a totaly different functioning
principle (we shall see this difference in their construction), an object in space,
as in reality, having the third dimension (the depth). Unfortunately that bodies
are not moving! Working on the screen, this thing will become possible, and even
more, the user can obtain the desired move.

Either on paper or on screen the three-dimensional objects are drawn after they
have been transformed through a projection in a real (bidimensional) plane, then
a new transformation is applied through which the plane image is framed in a
window of the paper or of the screen. The screen image is no longer seen in space
(it is a plane image), we just imagine how the initial three-dimensional object
looks [5]. Oftenly the same plane image can lead to false interpretations (optical

Received by the editors: October 22, 2003.
2000 Mathematics Subject Classification. 68U05, 65D20.
1998 CR Categories and Descriptors. I.3.5 [Computer Graphics]: Computational Geom-

etry and Object Modeling – Curve, surface, solid, and object representations; I.3.7. [Computer
Graphics]: Three-Dimensional Graphics and Realism – Animation.

73

74 V. PREJMEREAN, S. MOTOGNA, AND V. CIOBAN

illusions) since the reverse transformation is not unique. In the following we will
refer to the screen representations, because these objects can be rotated arround
the coordinate axis using the keyboard, increasing the reality of the image. We
will argue why we have chosen the perspective projection instead of the parallel
one, besides the fact that is the real one. If we do not consider the animation, the
images (stereograms) can be printed and viewed in space, but statically.

2. The principle of Stereograms

Visualizing a stereogram doesn’t need any extra instrument, only a certain skill.
Practically, you need to look behind the screen (at a certain distance), each eye
seeing two pyramids, as in figure 1. When two of the four pyramids will overlap
(only three will be seen), the one from the middle will be seen in space.

Figure 1. An example of a stereogram

The two drawn objects will not be identical! If this would be the case, then the
middle object will be better seen, but not in space. This image will be plane too,
as a picture, in which we just imagine its depth, but we don’t see it in space, as in
reality. In order to have a spatial view, the two images must be different, similar
to reality when each eye sees the same image but from a different angle, allowing
to sense the third dimension, the depth. If the second object (the right-hand side
pyramid) would have been obtained rotating the first object arround the Oy axis
with some angle (assuming that the observation point is on Oz coordinate, that
expresses the depth), then the resulting object is not a stereogram. If we would
be able to see each object with the corresponding eye, then we will see the spatial
representation of the object. An easy method to achieve this purpose uses glasses
with different colour lenses, allowing to filter the image. The two objects will have
different colours corresponding to the lenses’ colours. This method has at least
two disadvantages: we need the special glasses, and we have only some types of

SPATIAL VIEW OF 3D OBJECTS USING STEREOGRAMS 75

viewable images (depending on colours). Even for this method, a certain skill in
visualizing the object is needed, different from person to person.

Our method overcomes the two disadvantages, being able to use all combina-
tions of colours in the image, just having some training to visualize the stereograms.

The principle of stereogram visualization is: the shorter the distance p between
two pixels is, the closer the point seen in space (in depth) is to the screen (distance
d), as shown in Figure 2. If we want this point to be farther to the observer (and
implicitely to the screen), then we must increase the distance between the two
points [1,2,3]. From Figure 2, we can easily deduce that:

d(p) = e× p/(g − p)

Figure 2. Visualizing a stereogram

From a practical point of view in constructing a stereogram, we are more in-
terested in the inverse function to determine where to put a pair of pixels on the
screen: which distance p do we need to obtain a desired depth d. The inverse
equation is:

p(d) = g × d/(d + e)

If we consider the identical pair figure, at a distance p0, then the composed
figure will be in a plane situated at the distance d0 = d(p0) = e× p0/(g− p0) from
the screen. But what we want is to have some points nearer, and some farther. If
we want to have a point in a farther plane, at the distance d = d0 + ∆d, we must
know how much we should increase the distance p0. So, we have to compute ∆p

76 V. PREJMEREAN, S. MOTOGNA, AND V. CIOBAN

∆p = p(d)− p(d0) = p(d0 + ∆d)− p0 = g × (d0 + ∆d)/(d0 + ∆d + e)− p0 =
= g × (e× p0/(g − p0) + ∆d)/(e× p0/(g − p0) + ∆d + e)− p0

and obtain it as an expression of pixels:

∆pp = [∆p×Nph/Dsh], where

Nph = the number of horizontal pixels

Dsh = horizontal size of the screen

The above equations also depend on the distances e and g:
• the distance e is in the range 50 to 70 cm (≈ 20”-25”);
• the distance g representing the stereographic ability of a pupil gauge,

with values around 6.5cm (2.56”).
It is necessary to note that the distance between to pixels from a pair is strictly

positive, and obviously could not exceed the pupil gauge: (0 < p = p0 + ∆p < g).
For example, if we want a distance of approximatively 5cm (≈ 2”), considering
the distance between two pixels of 0.042cm (0.0166”), then the initial value of p0

should be 120 pixels. If the stereographic ability of the user is good, then this
distance can be increased, without exceeding g, and if this stereographic quality is
low, then the decrease of the initial distance p0 is recommended, but not too much
in order to avoid the overlaping of the two images (in which case the stereogram
visualization is difficult).

3. The construction of a stereogram

Firstly, we will chose the screen windows according to the conditions mentioned
in the previous section. In the first window we will represent the first object in a
perspective projection, and in the second window the same object will be projected
modifiying the x coordinates corresponding to the depth view, as described above.

In figure 3, we considered an example in which we have increased the distance
AA′ and decreased the distance BB′, yielding to a move of the point A in a farther
plane and of point B in a nearer plane (AA′ > V V ′ > BB′). The resulting effect
is a triangle visible in space and no longer parallel with the screen.

One may notice that by decreasing the base AB we obtain a rotation of the
triangle in one direction, and by increasing the base we obtain the rotation in the
opposite direction, as shown in Figure 4.

We also mention that as much as we further the extremity of a segment from
the screen, the longer the segment becomes (in projection), as in the case of the
segment V B from the left image in Figure 4. This seems like an anomaly, because
in reality the farther the object is, the smaller it looks. In order to overcome this
effect we recommend the perspective projection by which the farther sides will be

SPATIAL VIEW OF 3D OBJECTS USING STEREOGRAMS 77

Figure 3. Construction of a surface

Figure 4. Rotation of a surface

drawn smaller, and when increasing their lenghts they do not exceed the lengths
of the nearer segments. Therefor, it is obvious why the perspective projection is
preferred for spatial view.

Practically, for the first figure from the stereogram we follow the standard steps
of representing a polyhedron:

(1) establish the screen window V1(u1, v1, u2, v2); for example
V iewport(200, 100, 300, 200);

(2) determine the real window (of the projected figure), namely the minimal
rectangle containing all the projections of the points;

78 V. PREJMEREAN, S. MOTOGNA, AND V. CIOBAN

(3) represent each segment (side) with its correponding characteristics: line
type, colour,...

The second figure is drawn in a similar way, with the following differences:

(1) establish the screen window V2(u1 + p0, v1, u2 + p0, v2), such that:
• u2 < u1 +p0 to avoid windows intersection (and consequently figure

overlaping);
• p0 < g such that the distances between two pair-pixels is less than

the pupil gauge;
for example: V iewPort(340, 100, 440, 200), so p0 = 140;

(2) the real window computed before is preserved, since the body and the
projections characteristics remain unchanged;

(3) represent each side of the body, performing the necessary corrections
for the x coordinate of each pixel based on the z coordinate value of
the corresponding point (assuming that the observer is on the positive
semi-axis Oz). These corections can be made either increasing the hor-
izontal distances between the pixels representing the vertexes without
exceeding the distance g, either decreasing these distances, taking care
not to overlap the left figure, that will affect the ”readability” of the
stereogram.

Let P (x, y, z) ∈ <3 be the point we want to represent, and its projection
P ′(x′, y′) ∈ <2 will be determined in the following way:

x′ = x× (δ − q)/(δ − z)
y′ = y × (δ − q)/(δ − z)

where δ represents the distance of the observer from the origin Obs(0, 0, δ), on
the positive semi-axis Oz, and q represents the distance of the projection plane
from the origin, that is parallel with the plane xOy. These conditions skip any
other geometrical ransformations [4,5], and allow future rotations of the body,
such that it can be put into a certain desired position. We have also taken into
consideration that the observer should be placed at a considerable distance from
the figure (greater than the biggest side of the figure) such that the body will not
be represented too irregular, but also not too big, when the projection will seem
like a parallel one.

The pixel P”(u, v) ∈ V2 from the declared screen window obtained through
window transformation is given by:

u = (x′ − x1)/(x2 − x1)× (u2 − u1) + u1 + p0

v = (y′ − y1)/(y2 − y1)× (v2 − v1) + v1

for a screen window V2(u1 +p0, v1, u2 +p0, v2) and a real window W (x1, y1, x2, y2),
already determined for the first figure.

SPATIAL VIEW OF 3D OBJECTS USING STEREOGRAMS 79

In order to have a spatial view we must apply a depth corection, yielding to the
point PS(u−∆pP , v).

Although the computing equations have been presented in section 2 (including
for ∆pP) and can be used, we consider that is much simpler to make a direct
corection, based on the coordinate z of the point P using the following formula:

∆pP = (z −min{zi})/∆z × k

where:
• ∆z is the height:

(∆z = max{zi|Pi(xi, yi, zi) ∈ V } −min{zi|Pi(xi, yi, zi) ∈ V })1
• k is the depth amplification constant, for example 1.5. This constant

can be determined either by objective factors (the ratio ∆x/∆z), either
subjective factors: the distances g and e from Figure 2.

This correction is applied only in one direction because ∆pP ∈ [0, k], so it allows
just to see some points nearer to the screen. In order to view them farther, we will
modify the equation in the following way, taking care not to exceed the distance
e:

∆pP = ((z −min{zi})/∆z × 2− 1)× k, so ∆pP ∈ [−k, k]

If the observation will be performed in front of the screen (as we will explain
later), then the windows can be choosen as the two halves of screen (left and right),
and k can be greater, for example 50. If this constant is too big, for example 100,
then certain points are formed to closer to the observer and the figure is more
difficult to be seen. This kind of visualization also require changing the sign of the
constant, and therefor of the correction.

It is possible to apply a corection such that the distance between the objects
could be modified, in order to give a kind of freedom to the application regarding
the observation ability of users. The final horizontal coordinate of a pixel will be:

u′ = u−∆pP −Npo

where Npo represents the closing distance, expressed in pixels.
The depth correction can be applied even before the window transformations,

in the projection plane, in the following way:
x′ = x−∆pR, with

∆pR = u−1(((z −min{zi})/∆z × 2− 1)× k)
where u−1 is the inverse transformation, from screen window V2(u1+p0, v1, u2+

p0, v2) into the real window W (x1, y1, x2, y2):

x′ = (u− u1 − p0)/(u2 − u1)× (x2 − x1) + u1.

1V represents the set of body vertexes

80 V. PREJMEREAN, S. MOTOGNA, AND V. CIOBAN

Of course, in this situation, the depth correction will not be applied in the
screen window, so:

u′ = u−Npo.

The effect is more signifying if we draw three pyramids: the initial one, one on
the left and one on the right at different distances. Seen with one eye, there will be
six images: two of them will overlap, and will be seen in space (in the middle), and
two will be simple, in plane, visible on sides. As a consequence, there will be four
pyramids, the middle ones in space and not at the same distance, the left one will
rotate in the reverse direction and its projection is incorrect drawn (the farther side
is seen longer, therefor incorrect). In order to have a valid representation we must
modify the equation for the left pyramid with + yielding the point (PS(u+∆pP , v))
obtaining the same direction (see Figure 4) and a correct projection.

Figure 5. Bodies at different distances

An interesting remark is that if we apply different values of Npo, then the two
pyramids (which now will be rotated simultaneously, and in the same direction,
and will be correctly visualized through a perspective projection) will no longer
be in the same plane (one will be closer to the observer than the other one), and
even more will have different dimensions (surprinsingly, the farther pyramid will
look bigger, contrary to what be would probably expect), as shown in Figure 5.

An even more interesting possibility is to visualize a stereogram in front of the
screen (not in the back, as in our previous examples), as shown in figure 6. This
case offers the great advantage of visualizing a stereogram represented on a big
surface (for example, projected on a wall), where it is obvious that the distance p
is greater than the pupil gauge g.

If we want to visualize the figure in front of the screen, then the projection
corrections will be applied inversely to the back screen representation, namely
positively for the right figure: PS(u + ∆pP , v)) and negatively for the left figure:

SPATIAL VIEW OF 3D OBJECTS USING STEREOGRAMS 81

Figure 6. Pyramides in front of the screen

PS(u−∆pP , v)). The effect is somehow stronger, since the objects are clearer and
nearer.

Figure 7. Visualization in front of the screen

4. Performing Animation

It is well known that animation helps understanding a spatial image, since
the dynamic projection is an important factor in increasing its reality. The fact
that the image is rotating, for example the pyramid is rotated arround its height,
helps us imaginaing this pyramid in space, even without representing it as a 3-
dimensional object, since a nearer point is rotated in one direction and a farther
one in rotated in the opposite direction. This effect is increased even more in case
of a stereogram, yielding to a better visualization of the image.

In certain cases it is more convenient to allow the user the possibility to ma-
nipulate the represented object through rotations, using the keyboard:

82 V. PREJMEREAN, S. MOTOGNA, AND V. CIOBAN

• the keys O and P to rotate the object arround the Oy axis with some
angle α (not too big), in one direction, respectively in the other direction;

• the keys Q and A to rotate the object arround the Ox axis with some
angle β in one direction, respectively in the other direction;

• the keys S and D to rotate the object arround the Oz axis with some
angle γ in one direction, respectively in the other direction;

In order to simulate the increase of the rotation speed, that can be performed
arround the weight centers, the angles α, β and γ can be automatically increased
after each rotation. In this way, holding one key, after we visualized the body in
space, this will be rotated correspondingly to the pressed keys faster and faster.
The coordinates of the point G, arround which we execute the rotation, can be
determined as the arithmetic mean of the body vertexes. The rotation will be
executed arround some lines parallel with the axis, that cross through the point
G. This rotation can also help us to visualize the stereogram.

In order to have a continous move of the body we use two active and two visual
pages for alternative draw and visualization of the images.

As a final remark, we note that in observing a stereogram at the beginning
everything seems “foggy” and then it becoms more clearer, as some real objects
we could touch. This observation is easier for a trained viewer, so “Good luck!”.

5. Remarks

The article contains figures in black and white, losing some image quality, and
of course its animation. That’s why we have put the examples from this article on
the web page of the publishing journal: http://www.cs.ubbcluj.ro/∼studia-i.

References

[1] A.A. Kisman, Random Dot Stereograms, Kinsman Physics P.O. Box 22682, Rochester, N.Y.,
1992.

[2] V. Prejmerean, V. Cioban, 3D Images Simulation through Stereograms, Research Seminars,
Seminar on Computer Science, Preprint 2/1996, pp. 75-78.

[3] V. Prejmerean, Modelling Stereograms by Matrix Grammars, Research Seminars, Seminar on
Computer Science, Preprint 2/1997, pp. 173-178.

[4] V. Prejmerean, Computer Graphics and Image Processing(in, Universitatea de Nord Baia-
Mare, Facultatea de Ştiinţe, 2000.

[5] A. Watt, 3D Computer Graphics, University of Sheffield, Addison Wesley, England, 1993.

Babeş-Bolyai University, Department of Computer Science, RO-400084 Cluj-Napoca,
Romania

E-mail address: per@cs.ubbcluj.ro

E-mail address: motogna@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 2, 2003

ON INDIVIDUAL PROJECTS IN SOFTWARE ENGINEERING
EDUCATION

MILITON FRENŢIU, IOAN LAZĂR, AND HORIA F. POP

Abstract. A study of the individual projects is performed and some thoughts

on the importance and the development of these projects are given. The

projects are written by second year undergraduate students as a requirement

in their curriculum, and by graduate students working for their companies,

for comparison. The principal components method is used as Data Analysis

Technique. Some consequences on the education activity are considered.

Keywords: Student Projects, Education, Software Engineering, soft-

ware metrics, measurement, data analysis technique. fuzzy clustering

1. Introduction

Undergraduate computing courses having a project component (that attemps
to convey some of the aspects of a real-life development project) often concentrate
on the final product, rather than the process by which it is achieved [17]. However,
it is important that the students should see the necessity of all phases of the life-
cycle of a project, they must be accustomed to produce the documents for all these
phases. We think it is important for undergraduate students their first project be
process-oriented activity.

There are two projects in the curricula of undergraduates in Computer Science
at Babes-Bolyai University. First is an individual project, and a second is a Team
project in the third year. Both projects are closed projects [13]. Also, it is supposed
that each student will conceive an application connected to the diploma work at
the end of studies (fourth year). The aim of individual projects at the Babes-Bolyai
University is to give the students the opportunity to accomplish a simple project
fulfilling all the steps of the life-cycle [5]. It is planned in the third semester,
after the students have learned Algorithms and Pascal programming in the first

Received by the editors: December 10, 2003.

2000 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.3 [Software] : Software Engineering – Coding

Tools and Techniques; I.5.1 [Computing Methodologies] : Pattern Recognition – Models –

Fuzzy set ; G.3 [Mathematics of Computing] : Probability and Statistics – Data analysis.

83

84 MILITON FRENŢIU, IOAN LAZĂR, AND HORIA F. POP

semester, and Object-oriented programming (in C++), and Data Structures in
the second semester.

The subject runs in the first semester of the second year, and is the first project
done by an undergraduate student. It is a small project, of about a few hundreds
up to 3000 statements. The main purpose is to make the students accustomed to
finalize a project and to write all needed documents: requirements, specification,
design, code, testing, and user manual, and, very important, to obey the deadlines.
Summarising, the main objectives of the individual projects are:

• going through all steps of the life-cycle;
• observing the deadlines;
• writing a clear documentation for all steps;
• verifying and validating the program; inspections and reviews are con-

sidered very important means of eliminating errors;
• showing to the students when their programs are insufficiently tested.

The project extends over a fourteen week semester and in each week there is
one hour practicum session in a computer laboratory. Students are also expected
to complete an extra work at home to meet the requirements of the subject.

At every deadline the student have to deliver the corresponding document [5].
Missed deadlines are penalized; it is considered a decrease of the grade for the
corresponding activity by one point for every late week.

Individual project features (document outlines) and the included aspects (each
to be completed by students in two weeks) are:

Requirements specification: a conceptual model, functional requirements,
user interface requirements, error handling;

Design specification: system architecture, and detailed module specifi-
cation;

Test plan: a system level testing plan, a detailed unit test plan, and test
results;

Coding: correct translation of the design and commented source code;
User manual: an introduction, general principles for using the software,

tutorial on how to use the software, a list of software’s functions and
simple installation instructions;

Project evaluation: comments on the quality of the actual product (what
was done well and what could be improved in future projects).

A complete documentation for each of the above mentioned phase is required to
support the undergo software engineering process.We require a clear and complete
documentation from the students, and we consider this as one of the main gain
acquired by students through this project. Their attention has to be turned from
immediate coding to correct approach of all life-cycle phases, with an accent on

ON INDIVIDUAL PROJECTS IN SOFTWARE ENGINEERING EDUCATION 85

complete and accurate specification and clear and correct design. Is well known
that the most difficult errors, and their greatest part, as well, are not due to bad
coding, but to incorrect design. We must convince the students by all means that
a serious programmer is not the one that starts coding immediately as he gets the
requirements. Good programming means not jumping any step of the life cycle, a
good design is crucial for the next project, and the documents are needed for the
entire activity as early as possible.

An important activity required to the students was the inspection of the docu-
ments written by their colleagues. It is known [6, 10, 14] that many shortcomings
of the software process may be eliminated by inspecting all the steps of the life-
cycle, starting with the requirements. This activity persuades the students on the
necessity and importance of documments for all phases, and gets them accustomed
to analyse other people’s documents. Therefore, forcing the students to inspect
the documents of other people is important not only for software engineering pro-
fession, but also for education. By inspection, students have the opportunity to
see how others think and write programs, and to discover some of their errors.
Also, the teacher has the possibility to discuss with the students about errors,
shortcomings and difficulties, to improve the software process by various discus-
sions and questions about them. The teacher has the possibility to provide to
students a better way of solving problems, to force them to elliminate defects, and
to improve their ways of programming.

Some important ‘real-life’ project features [12] are: (a) working with real users,
(b) developing a working prototype, (c) completing a running system and (d)
writing a formal verification and validation report. This individual project does
not address the issues of ‘real-life’ projects, but it is mainly educationally oriented.
The students do participate, during their third year of academic studies, to a group
project which is ‘real-life’ oriented.

2. Observed attributes and Data collection

The study is based on 28 finished programs produced by second year under-
graduate students as part of their requirements curriculum, and other 8 real prod-
ucts produced by graduates students at their software companies. The observed
attributes were estimated by master students attending the course “Software Met-
rics”. Certainly the measures associated to the attributes are the subjective eval-
uations of these master students about the corresponding attributes. We may
accept that the postgraduate students are not experienced programmers, but they
have finished a similar project three years earlier, and other two projects in their
third and fourth year. Many of them are also working for software companies.
Moreover, their evaluation was inspected by the first author and a few corrections
were made (where obviously erroneous evaluations have been noticed).

86 MILITON FRENŢIU, IOAN LAZĂR, AND HORIA F. POP

The postgraduate students form a Master group in “Component-Based Pro-
gramming” that studies the subject “Software Metrics”. The definitions of the
above considered attributes were given there, and they are inspired by, and can be
found in the literature [2, 9, 14]. As an exercise they had to evaluate one project
as a requirement for their seminaries at “Software Metrics”, and theirevaluation
was discussed with the first author of this paper. The analysed projects of the
undergraduate students were seen beforehand and graded by some other teaching
assistants and their grades are not influenced by this study.

Therefore, students involvement is twofold. On one side the undergraduate
students of the second year learned to specify, design, code and test a complete
program, on the other side, the master students learned to analyse software doc-
uments, to measure software attributes. Data collection is an important software
measurement activity, and, since it is not easy to obtain access to real projects,
this was another possibility to get used to evaluate software attributes. And we
remarked it was a very useful activity, since the master students were very critical
about the analysed projects, about the clarity of the documents and of the design,
about the absence of the comments in the code. And they remembered they had
the same shortcommings three years earlier.

The projects were analysed observing the attributes given in Table 1.

A1 requirements description A18 number of classes

A2 good specification A19 number of methods for all classes

A3 function points A20 changeability (modifiability)

A4 clarity of design A21 structuredness

A5 correctness of design A22 testability

A6 completness of design A23 reliability

A7 diagrams of design A24 efficiency

A8 modules specification A25 extensibility

A9 algorithms description A26 adaptability

A10 lines of code A27 clarity of documentation

A11 no. of comments A28 maintainability

A12 good use of comments A29 simplicity

A13 good use of free lines A30 usability

A14 indentation A31 portability

A15 good names A32 quality

A16 readability A33 average of weighted methods per class

A17 comprehensibility A34 depth of inheritance

Table 1. The attributes observed for the software projects analysis

The attributes A10 and A11 were automatically measured by computer. All the
others were estimated by master students attending the course “Software Metrics”.

ON INDIVIDUAL PROJECTS IN SOFTWARE ENGINEERING EDUCATION 87

All metrics have the values in the interval [0, 10], where 0 is for ”very bad” (or
not present at all), and 10 for “excellent”.

Certainly, these grades are subjective estimates on the projects. Nevertheless,
we consider that the dependence between attributes is preserved in these data,
and the strong dependence between almost all attributes and the knowledge of the
authors (reflected in A34) is preserved. We may use these data and the results
to draw some useful conclusions on the organisation of the software development
process and the way it may be improved.

The attribute A12 refers to the documentation done by comments. It takes into
account if the specification of each module is reflected through comments, if the
meaning of each variable and object is explained by comments, if the invariants
and other important explanations are given by comments.

3. Data Processing

We have analyzed a data set composed of 36 projects, characterized by 34 soft-
ware metrics attributes. The 36 projects consist of 28 educational undergraduate
projects and 8 real projects (namely, 12, 13, 21, 25, 28–31). In order to save the
editorial space, the whole data set, as well as complete computational results, are
not published here, but are available from the authors1

We have run a few experiments in order to detect the proper relations among
the data. We were interested in studying the fuzzy cluster substructure of the
data set, as well as the fuzzy cluster substructure of the set of attributes [16]. A
special note with respect to attributes 18, 19, 33 and 34. These are characteristic
to object-oriented approached projects, and are not relevant for other projects.
As such, we have considered our study in two scenarios: on one side, we have
considered the value of these attributes to be zero for the projects without object-
orientedness. On the other side, we have marked the values of these attributes as
missing.

In the first case we have used the Fuzzy Divisive Hierarchic Algorithm, with the
Euclidean metric [15], and in the second case we have used the optimal completion
strategy as outlined in [7], but in the same framework of the Fuzzy Divisive Hier-
archic Algorithm. The results in the two cases are practically identical, allowing
us to consider as reasonable fact to assign a value of zero to an object-oriented
attribute in the case of a non-object-oriented project.

The final defuzzyfied hierarchy corresponding to the optimal fuzzy cluster sub-
structure of the set of projects is described in Table 2. We remark grouping of all
student projects in subclasses of the class 1.1.1, and the separation of the industrial

1The primary data is not given here, but can be seen, together with full data analysis

results, at the web address http://www.cs.ubbcluj.eo/ mfrentiu/articole/project3.html.

88 MILITON FRENŢIU, IOAN LAZĂR, AND HORIA F. POP

projects in the other classes, along patterns of similarity to the student projects.
Thus, projects 12, 13, 21, 25 have been grouped as class 1.1.2, as the most similar
projects to the student group; project 31 forms class 1.2.1, and projects 28 and
30 form class 1.2.2, both classes considered more distant to the student group.
Finaly, project 29 forms class 2., showing a clear separation of the whole set of
projects. On the other side, the student projects have been further divided, the
most notable split being among projects 3, 5, 7, 8, 15, 32–34, 36 (class 1.1.1.) and
1, 2, 4, 6, 9–11, 14, 16-20, 22-24, 26, 27, 35 (class 1.2).

Class Members

1.1.1.1.1.1. 5 8

1.1.1.1.1.2. 3 15 33

1.1.1.1.2.1.1. 7

1.1.1.1.2.1.2.1. 34

1.1.1.1.2.1.2.2. 36

1.1.1.1.2.2. 32

1.1.1.2.1.1. 1 17 20

1.1.1.2.1.2.1.1.1. 26

1.1.1.2.1.2.1.1.2. 35

1.1.1.2.1.2.1.2. 6 27

1.1.1.2.1.2.2. 9 16 22 23

1.1.1.2.2.1.1.1. 18

1.1.1.2.2.1.1.2. 2

1.1.1.2.2.1.2.1. 11

1.1.1.2.2.1.2.2. 14 19

1.1.1.2.2.2.1.1. 24

1.1.1.2.2.2.1.2. 4

1.1.1.2.2.2.2. 10

1.1.2.1.1. 13

1.1.2.1.2. 25

1.1.2.2.1. 12

1.1.2.2.2. 21

1.2.1. 31

1.2.2.1. 30

1.2.2.2. 28

2. 29

Table 2. Final defuzzyfied partition corresponding to the opti-
mal fuzzy cluster substructure of the set of projects

The final defuzzyfied hierarchy corresponding to the optimal fuzzy cluster sub-
structure of the set of attributes is given in Table 3(a). The attributes given in

ON INDIVIDUAL PROJECTS IN SOFTWARE ENGINEERING EDUCATION 89

paranthesis are not clear-cut members of those classes, but have relevant fuzzy
membership degrees so that they should be taken into account, as well.

We first remark that quite a large number of attributes have not been split.
The attributes 1, 2, 4–9, 13–17, 20–32 (class 1.1.1.1.1) may actually correspond
to a single inherent property of programming projects, property that is expressed
through more different attributes. Other than these attributes, attribute 12 has
membership degree 0.42 (as compared to 0.56, the membership degree to its class
(!)), and attribute 33 has membership degrees of 0.27 (as compared to 0.30, the
membership degree to its class (!)).

Other than this large class, we identify a few relevant groups: the most signif-
icant separation is of attribute 10 (class 2), the program size (lines of code). At
the next level, we identify attribute 11 (class 1.2.2), associated to the program
size as well (lines of comments), and attribute 19 (class 1.2.1), representing the
total number of methods. A supporting member of class 1.2.1 is attribute 3, with
quite a relevant membership degree of 0.30 (as compared to 0.70, the membership
degree to its class).

On the other side of the tree, we identify the class 1.1.1.1.2 (formed by attributes
12 – comments accuracy, 33 – weighted methods per class, and 34 – depth of
inheritance; attribute 7 is supporting member, with a membership degree of 0.30,
as compared to the membership degree of 0.69 to its class); class 1.1.1.2 (attribute
18 – number of classes); class 1.1.2 (attribute 3 – function points; attribute 19
is a supporting member, with a membership degree of 0.33, as compared to the
membership degree of 0.67 to its class).

In order to verify the relevance of the attributes in the presence or absence of
industrial projects, we have removed the industrial projects from our attributes
classification. The results are given in Table 3(b). As in the precedent case, the
attributes given in paranthesis are not clear-cut members of those classes, but have
relevant fuzzy membership degrees so that they should be taken into account, as
well.

We remark an extremely similar hierarchical clustering structure. If we consider
the shared attributes (i.e. those with mixed mebership degrees), the similarity is
even higher. Thus, the main group of attributes, 1, 2, 4–9, 12–17, 20–32, formerly
the class 1.1.1.1.1, forms now the class 1.1.1.1.

As well, the attributes 18, 19, 33, 34, formerly roughly with classes 1.1.1.1.2 and
1.1.1.2, form now the class 1.1.1.2. This class has the attribute 12 as a supporting
member, with a membership degree of 0.30 (as compared to the membership degree
to its own class, 0.69).

We may conclude that industrial projects have a marginal, even insignificant
influence on the classification of the project attributes, confirming the overall in-
fluence of knowledge level to the way people approach the software process.

90 MILITON FRENŢIU, IOAN LAZĂR, AND HORIA F. POP

On the other side, by taking into account the supporting members of fuzzy
classes, we may finally consider five main groups of attributes:

• 10 (lines of code);
• 11 (lines of comments);
• 3, 19 (program complexity);
• 18, 33, 34 (object-oriented attributes);
• 1, 2, 4-9, 12-17, 20-32

Even if only few projects out of a total of 36 are object-oriented, three of the
four object-oriented attributes group together (18, 33, 34), and the fourth, the
total number of methods for all classes (19), is consistently grouped together with
the function points (3), both showing an impact of the overall program complexity.

Class Members

1.1.1.1.1. 1 2 4 5 6 7 8 9 13 14 15 16

17 20 21 22 23 24 25 26 27

28 29 30 31 32 (12, 33)

1.1.1.1.2. 12 33 34 (7)

1.1.1.2. 18

1.1.2. 3 (19)

1.2.1. 19 (3)

1.2.2. 11

2. 10

Class Members

1.1.1.1. 1 2 4 5 6 7 8 9 12 13 14 15

16 17 20 21 22 23 24 25 26

27 28 29 30 31 32 (12)

1.1.1.2. 18 19 33 34 (12)

1.1.2. 3 (19)

1.2. 11

2. 10

(a) (b)
Table 3. Final defuzzyfied partition corresponding to the opti-
mal fuzzy cluster substructure of the set of attributes: (a) with
all the 36 projects considered; (b) only with the undergraduate
projects

Figure 1 presents the 2D projection of the set of 36 projects along the first
two principal components, as determined using the well-known Principal Compo-
nents Analysis applied to the correlation matrix. The figure clearly displays three
categories of projects: the two isolated industrial projects (25 and 29), a second
well-separated group of industrial projects (12, 13, 21, 28, 30, 31) and the homoge-
nous group of student projects. It is important to note that the main group of
educational projects presents a clear linear trend, supporting the conclusion that
most of the considered attributes correspond to a single factor, identified as the
overall level of knowledge of the student.

ON INDIVIDUAL PROJECTS IN SOFTWARE ENGINEERING EDUCATION 91

Figure 1. Principal Components Analysis of the set of 36
projects. The set is projected along the first two principal di-
rections

4. Conclusions

In this paper we aimed to comparatively study educational and industrial
projects. We acknowledge the fact that there are different factors contributing
to these projects. On one hand, the purpose of educational projects is to train
students into approaching a problem in an ordered manner. As such, the students
will have to use different knowledge gathered at different classes. On the other
hand, the purpose of industrial projects is to produce final software products that
solve a real problem, required by a real customer, and distributed to the real world.
These differences among the purposes of the two groups of projects contribute to
their grouping in different fuzzy classes.

As it has been expected, the fuzzy clustering procedure confirms that all the
qualitative attributes are dependent on the programmers general knowledge, the
main such factor.

It is interesting to remark that, generally, the set of attributes have been split
along the lines of object-orientedness. Apparently, the object-oriented software
metrics are consistent with the function points attribute; the two size attributes

92 MILITON FRENŢIU, IOAN LAZĂR, AND HORIA F. POP

group closely, while all the others are grouped in a single class, allowing us to
conclude that the students follow in the same manner all the programming rules
and habits they are taught. We conclude that the object-oriented software metrics
attributes measure, actually, the complexity of the object-oriented project. It is,
thus, needed to concentrate on providing object-oriented attributes that measure
the quality of an object-oriented project, as well.

We have analyzed software products made by undergraduate students. We
are confident that the results cannot be extrapolated to large software systems.
But they can certainly be used towards a better students formation and may be
used as effective didactic materials, especially with the “Software Metrics” course.
Even if we insist with the first year students on the necessity to develop their own
programming style, to obey a few important programming rules [4], the students
are skeptical, they are simply happy that their programs “work”, they do not like
to write comments, or to insist on a good design and Pseudocode algorithms, or
documentation.

By analyzing the primary data, we may observe that students do not like writ-
ing comments. However, a certain progress is remarked from one generation of
students to the subsequent: the necessity of comments appears strongly with this
year’s students as opposed to the last year’s and two years’ ago [3].

As well, we remark that undergraduate students refrain from writing complete
documentations. Their documents are generally superficial, written on short no-
tice, only to fulfill a requirement lined out by the professor. The students do not
generally consider writing project documentations as part of their natural thinking
process, required in order to produce effective projects. As well, project documen-
tations are often mixed, in the sense that ideas that are naturally part of the
design and implementation process are included in the specification documenta-
tion. Nevertheless, at the end of the activity the majority of the students consider
that the main gain obtained through this project is understanding the importance
of, and learning to write a complete documentation.

Completely different is the approach of real projects programmers (in our study,
graduate students) on the necessity of a complete and correct documentation, its
usefulness, and the effect of an adequate programming style on final projects.

We remark that the theoretical and practical knowledge of the average student
has improved from one generation to the other. This is a confirmation of the suc-
cess of our stepwise approach towards students education of projects development.

We observe that very few undergraduate students practice object-oriented pro-
gramming. They have learned it in the second semester of the first year, but are
not used to practice it, or they do not feel its necessity or advantages. Why is it
so, is a natural question we must try to answer.

ON INDIVIDUAL PROJECTS IN SOFTWARE ENGINEERING EDUCATION 93

We consider useful to provide the students with an effective model, possibly
the best project of the previous generation. On the other side, it may be useful
to consider as project topics for a part of the students, the requirement to work
on improving projects already written by students of the previous generation.
This should be a step in the right direction, of improving students knowledge on
developing projects.

The continuous improvement of the educational process is the ultimate purpose
and goal of any teacher. And aquiring correct habits of developing a programming
product is one of the major issues a computer science graduate will have to face.
On the other side, a thorough study of the process of projects development, and
complete data collection and its accurate interpretation should become a part of
our educational activity.

We intend for the next year to improve these projects, asking to the new gener-
ation to maintain the existing projects, correcting the possible discovered errors,
adding new functions, and adapting them to the changing environments.

Acknowledgements

We are acknowledging the support of postgraduate students of the group “Com-
ponents Based Programming” for theirhelp in analysing the projects.

References

[1] M. Fagan, Design and Code Inspections to Reduce Errors in Program Development, IBM

Systems Journal, 15 (3), 1976.

[2] N.E. Fenton, Software Metrics. A Rigorous Approach, Int. Thompson Computer Press,

London, 1995.

[3] M. Frentiu, H.F. Pop, The Study of Dependence of Software Attributes using Data Analysis

Techniques, Studia Universitatis Babes-Bolyai, Informatica, 47 (2), 2002, 53–60.

[4] M. Frentiu, On programming style, Technical report, Babes-Bolyai University, Department

of Computer Science, http://www.cs.ubbcluj.ro/ mfrentiu/articole/style.html

[5] M. Frentiu, H.F. Pop, Documents produced at the individual project,

Tehnical report, Babes-Bolyai University, Department of Computer Science,

http://www.cs.ubbcluj.eo/ mfrentiu/articole/project.html

[6] T. Gilb, D. Graham, Software Inspection, Addison-Wesley, 1993

[7] R.J. Hathaway, J.C. Bezdek, Fuzzy C-Means Clustering of Incomplete Data, IEEE Trans-

actions on Systems, Man, Cybernetics, Part B: Cybernetics, 31 (5), 2001, 1062–1071.

[8] C. Ho-Stuart, R. Thomas, Laboratory Practice with Software Quality Assurance. Proc. of

the 1996 International Conference on Software Engineering: Education and Practice, IEEE,

1996, 220–225.

[9] ISO 9126, Information Technology – Software Product Evaluation – Quality Characteristics

and Guidelines for their Use, http://www.iso.org

[10] J.C. Knight, E.A. Myers, An Improved Inspection Technique, Comm. ACM, 36 (11), 1993,

51–61.

[11] O. Laitenberger, A Survey on Software Inspection Technologies, Handbook

94 MILITON FRENŢIU, IOAN LAZĂR, AND HORIA F. POP

[12] W.W. McMillan. What Leading Practitionners Say Should Be Emphasized in Students’

Software Engineering Projects, IEEE, 1999, 177–185.

[13] M. Newby, An Empirical Study Comparing the Learning Environments of Open and Closed

Computer Laboratories, Journal of Information Systems Education, 13 (4), 303–314.

[14] D.L. Parnas, A.J. van Schowen, S. Po Kwan, Evaluation of Safety-critical Software,

Comm.A.c.M., 33(6), 1990, 636–648.

[15] H.F. Pop, Intelligent Systems in Classification Problems, Ph.D. Thesis, Babes-Bolyai Uni-

versity, Faculty of Mathematics and Computer Science, Cluj-Napoca, 1995.

[16] H.F. Pop, SAADI: Software for fuzzy clustering and related fields, Studia Universitatis

Babes-Bolyai, Series Informatica 41 (1), 1996, 69–80.

[17] V.E. Veraart, S.L. Wright, Experience with a Process-driven Approach to Software Engi-

neering Education. Proc. of the 1996 International Conference on Software Engineering:

Education and Practice, IEEE, 1996, 406–413.

[18] H. Younessi, D.D. Grant, Using CMM to Evaluate Student SE projects. Proc. of the 1996

International Conference on Software Engineering: Education and Practice, IEEE, 1996,

386–391.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, RO-400084

Cluj-Napoca, Romania

E-mail address: mfrentiu@cs.ubbcluj.ro

E-mail address: ilazar@cs.ubbcluj.ro

E-mail address: hfpop@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 2, 2003

COMPLEXITÉ ALGEBRIQUE DES ALGORITHMES
GÉOMETRIQUES — LE PROBLÈME D’INTERSECTIONS D’UN

ENSEMBLE DE SEGMENTS

RADU-LUCIAN LUPŞA

Abstract. Il est connu qu’un problème difficile dans l’implantation des algo-
rithmes géometriques est le calcul exact des points d’intersection des droites
ou des courbes, ainsi que l’évaluation des prédicats géometriques. D’un part,
il s’agit du fait que, si les calcules sont inéxactes, il est possible qu’un al-
gorithme se comporte complètement imprevisible. D’autre part, beaucoup
d’algorithmes ne traitent pas explicitement les cas particuliers dégénérés.

On étudie dans cet article le cas de l’algorithme de Balaban pour trouver
les intersections d’un ensemble de segments, du point de vue de l’evaluation
des prédicats géometriques.

1. Introduction

L’article étudie les problèmes liés à l’evaluation des predicats et au traitement
des cas dégénérés. Le cas étudié est celui de l’algorithme de Balaban pour trouver
les intersections du’un ensemble de segments.

Le reste de l’introduction presente l’algorithme de Balaban [1], y compris les
définition dont on a besoin à la suite. Puis, on présente l’étude de l’auteur sur les
solution au problème des cas dégénérés, au problème de lévaluation des prédicats
et finalement une comparaison des performances.

Quelques notations et définitions:
Si les ordonées des extremités d’un segment ne nous interrèsse pas, le segment

sera noté (l, r), où l et r sont les abscises des extrémités gauche, respectivement
droite.

On appelle verticale une droite verticale passant par une extrémité de segment.
La verticale v est donc la droite x = v.

On appelle bande une partie du plan délimitée par deux verticales.
On dit qu’un segment (l, r) :

• est interieur pour la bande (b, e) si l > b et r < e;
• traverse la bande (b, e) si l ≤ b et r ≥ e.

Received by the editors: December 10, 2003.
2000 Mathematics Subject Classification. 68U05.
1998 CR Categories and Descriptors. I.3.5: [Computer Graphics]: Computational

Geometry and Object Modeling – Geometric algorithms, languages, and systems.

95

96 RADU-LUCIAN LUPŞA

On note Intb,e(S1, S2), où S1 et S2 sont des ensembles quelquonques de segments
l’ensemble des pairs (s1, s2) ∈ S1×S2 de segments qui s’intersectent dans la bande
(b, e).

Une liste de segments qui intersectent une verticale v est triée par rapport
à cette verticale si elle est triée dans l’ordre croissante des ordonée des points
d’intersection entre les segments de la liste et la verticale v.

Enfin, on appelle un escalier un triplet (b, e, Q) où (b, e) est une bande et Q est
un ensemble de segments qui traversent la bande (b, e) et ne s’intersectent pas à
l’interieur de la bande (l’ensemble Q doit être trié d’après la règle ci-dessus par
rapport aux verticales b et e (l’ordre est la même par rapport aux deux)).

Pour trouver les intersections à l’interieur d’une bande elementare (sans extrémitées
de segments à l’interieur), on utilise l’algorithme suivant:

procedure ChercherDansBande(b, e, L, R)
Diviser(b, e, L, Q, L′)
if Q = ∅

then R := L
else

trouver et ecrire Intb,e(Q, L′)
ChercherDansBande(b, e, L′, R′)
Fusioner(b, e, R′, Q, R)

endif
end

Ici:
• Diviser(b, e, L,Q, L′) divise la liste L triée par rapport à la verticale b

dans l’escalier maximal (au sens d’inclusion d’ensembles) (b, e, Q) et la
liste restante L′.

• Fusioner(b, e, R′, Q,R) fusione la liste R′ triée par rapport à la verticale
e avec l’escalier (b, e,Q) en sortant la liste R triée par rapport à e.

Ainsi ChercherDansBande divise la liste initiale L en deux, Q et L′; maintenant

Intb,e(L,L) = Intb,e(L′, L′) ∪ Intb,e(L′, Q) ∪ Intb,e(Q,Q)

où Intb,e(Q,Q) = ∅ et Intb,e(L′, L′) est trouvé par l’appel récursiv.
Il faut remarquer aussi que Diviser obtient aussi les positions des segments de

L′ dans l’escalier Q, de maniere que les intersections d’un segment de L′ avec les
marches de Q puissent être trouvées en balaiant Q à partir de la position donnée
par Diviser dans les deux sens jusqu’à trouver une marche qui n’intersecte pas le
segment.

Passons maintenant à l’algorithme principal. Balaban décrit au fait deux al-
gorithmes, dont le premier est un peu plus simple, mais asimptotiquement sub-
optimal (complexité O(n log2 n+k), où n est le nombre de segments et k le nombre
d’intersections), et le deuxième est optimal (O(n log n+k)) mais plus compliquée.

L’algorithme sub-optimal est le suivant

COMPLEXITÉ ALGEBRIQUE DES ALG. GÉOMETRIQUES 97

begin
L := {le segment qui commence sur la première verticale}
I :=l’ensemble initial moins L moins le segment qui

finit sur la derniere verticale
ChercherDansArbre(première vert., dernière vert., L, I, R)

end
avec:

procedure ChercherDansArbre(b, e, L, I,R)
if b et e consecutives

then ChercherDansBande(b, e, L, R)
else

c :=la verticale qui divise en deux l’ensemble
des verticales comprises entre b et e

Diviser(b, e, L, Q, L1)
trouver Intb,e(Q,L1)
I1 := {s ∈ I|s interieur pour (b, c)}
ChercherDansArbre(b, c, L1, I1, R1)
s :=le segment dont une extremit
if s commence sur c

then L2 := R1 ∪ {s}
else L2 := R1 \ {s}

endif
I2 := {s ∈ I|s interieur pour (c, e)
ChercherDansArbre(c, e, L2, I2, R2)
trouver Intb,e(Q, I)
Fusioner(b, e, R2, Q, R)
trouver Intb,c(Q,R2)

endif
end

Dans cet algorithme, la seule operation qui demande un temps plus grand que
O(n log n + k) est trouver Intb,e(Q, I), car elle nécesite une recherche binnaire de
la position de chaque segment de I dans Q. Pour éviter ceci, la solution consiste
à garder les positions des segmentes de I trovée dans les appels récursives de
TreeSearch; en ce but il faut garder des rélations entre les escaliers générés au
differents niveaux d’appel de TreeSearch.

2. Cas particuliers et dégénérées

Le premier problème à l’implantation de cet algorithme est le fait que l’algorithme
ne traite pas éxplicitement les cas particuliers:

• si l’intersection de deux segmentes se trouve exactement sur une verti-
cale;

98 RADU-LUCIAN LUPŞA

• si le point d’intersection se trouve sur une extremité de segment;
• si deux extremités de segment se trouvent sur la même verticale;
• si un segment est vertical;
• si deux segments se superposent (ont la même droite-support).

A ce point il est utile de regarder un peu la preuve de correction de l’algorithme.
On s’apperçoit alors que les démandes sur les prédicats sont les suivantes:

(1) Si deux segments ne s’intersectent pas dans une bande, alors leur ordre
relative sur les verticale gauche et droite doit être la même;

(2) Si un segment est localisé entre deux marches mi et mi+1 d’un éscalier
Qb,e et il n’intersecte ni mi, ni mi+1, alors il ne doit intersecter aucune
autre marche de Qb,e;

(3) Un segment ne peut intersecter que des marches consecutives d’un même
escalier.

Prenons ces cas un à la fois.
Si le point d’intersection se trouve exactement sur une verticale, il suffit de

considerer q’il se trouve “un peu à droite” ou “un peu à gauche”, donc dans
une des deux bandes délimitées par la verticale en question. Mettons-le donc à
gauche. Maintenant pour garder la cohérence, si deux degmentes s’intersectent sur
une verticale, il faut mettre en premier sur la liste triée celui qui se trouvera en
premier sur la verticale suivante (car ils ne s’intersecteront plus dans la bande de
droite), c’est-à-dire le premier en ordre trigonométrique dans le demi-plan droit.

Maintenant si le point d’intersection cöıncide avec une extrémité, il se trou-
vera donc sur une verticale, et conformement au paragraphe precedent il va être
consideré dans la bande de gauche. S’il cöıncide avec l’extremité droite du seg-
ment, il va être traité comme s’il était à l’intereur; par contre s’il cöıncide avec
l’extremité gauche il ne sera pas vu car le segment n’existe pas dans la bande
gauche. Ce cas d’intersection doit donc être tarité lors de l’insertion du segment
sur la liste de segments correspondante à cette verticale. Remarque: si au moment
de l’insertion l’autre segment est une marche, l’intersection sera vue normalement
par l’algorithme.

S’il existe plusieurs extrémités de segment sur la même verticale, il y a deux
solutions: soit on considere des bandes de longueur zero, soit on prépare la liste
triée des extrémitées (avec les segments correspondants) et on la fusione avec la
liste des segments associés à la verticale. J’ai pris la deuxiéme approche. En
faisant ainsi, le traitement d’une verticale ne consiste plus seulement à ajouter ou
effacer un segment (obtenir la liste L2 à partir de la liste R1), mais à fusioner
la liste L1 avec la liste des segments qui commencent sur la verticale traitée et a
effacer par la même occasion les segments qui finissent sur la verticale traitée. En
même temps, on garde une liste de segments verticaux, qu’on met au jour chaque
fois qu’on rencontre une extrémité d’un segment vertical.

Enfin, le dernier problème concerne le cas où deux segments partagent la même
droite support et leur intersection est un segment. Pour les segments verticaux,
ceci n’est pas dérangeant, leur intersection etant trouvée lors du traitement de la

COMPLEXITÉ ALGEBRIQUE DES ALG. GÉOMETRIQUES 99

verticale sur laquelle ils se trouvent. Si, au contraire, les segments sont obliques
ou horizontals, ils s’intersectent dans plusieurs bandes en agrandisant le nombre
d’intersections et donc le temps de calcule. (n segmentes superposés peuvent
donner ainsi jusqu’à 1

6 (2n3 + n) “points” d’intersection). Dans ce cas on peut
considerer qu’il s’intersectent toujours en un seul point; soit ce point le point le
plus à droite de l’intersection. L’ordre de ces segments sur une liste associée à une
verticale n’a pas alors d’importance.

3. Evaluation des prédicats

Il est connu que les algorithmes géométriques sont très sensibles aux erreurs
numériques; d’ici la nécessité de faire les calcules exactes, ou au moins que les
valeurs de vérité des divers predicats évalués pendant l’execution de l’algorithm
soit cohérentes; sinon il y a le risque que la réponse de l’algorithme ne soit ni même
une approximation du résultat reel, ou même que l’algorithme ne s’arrête pas.

Les calcules exactes d’autre part sont chères car non supportés directement par
le materiel de l’ordinateur. Et dans tous les cas, plus longue soit la réprésentation,
plus long est le temps de calcule. L’opération la plus chère en terme de démande de
chiffres significatives sur la réprésentation etant la multiplication, on voit l’interrêt
de réduire le plus possible le dégrée des polinômes qui apparaissent dans l’evaluation
des prédicates.

Dans le cas de l’algorithme de Balaban, les prédicates décrits dans la section
precedante sont basée sur les trois suivants (<x signifie “l’abscise du premier point
est plus petite que celle du deuxième et <y signifie la même chose sur l’ordonée):

(1) étant donées 2 points, p1 et p2, est-ce que p1 <x p2 ?
(2) étant donées 3 points, est-ce que p3 se trouve à gauche, sur ou à droite

de la droite p1p2 (orientée de p1 vers p2)
(3) étand donées 5 points p0 . . . p4 tels que {q} = p1p2∩p3p4, est-ce que p0 <x

q (q est inconnu et il n’est pas nécessaire de le connâıtre éxplicitement)?
En supposant une réprésentation cartesienne des points, l’évaluation des trois

prédicats ci-desus est equivalente á trouver le signe d’un polynôme de degrée 1,2
respectivement 3, irreductible. Pour évaluer ledit signe, il faut en principe travailler
avec des nombres ayant 3 fois plus de chiffres que les coordonées des points. Mais
dans [2] il est montré que l’evaluation “presque exacte” du predicate 3 est possible
en travaillant en réels (IEEE 754 [5]) double-précision, les coordonées des points
étant simple-précision. Ce “presque exacte” veut dire que si le signe calculé du
polynôme est −1 alors le signe réel est aussi −1; même chose pour +1; mais si le
signe calculée est 0 alors on ne sait rien sur le signe réel.

4. Les performances

Dans le tableau ci-dessous sont marqués les temps de calcul utilisés (sur le même
ordinateur) par l’algorithme näıf et l’algorithme sub-optimal et l’algorithme opti-
mal de Balaban en utilisant chacun les predicates géométriques de la bibliothèque

100 RADU-LUCIAN LUPŞA

CGAL [3] (qui utilisent a leur tout les rationnels en précision illimitée de la bib-
liotheque LEDA [4]) et des predicates écrits en utilisant les réels double-précision.

Les exemples de test ont été génerés soit aléatoirement, soit (pour les dernières
4) sous la forme d’une grille carrée.

Méthode Nr. Nr. Temps Temps Temps Temps Temps
génération seg. pairs näıf sub-opt opt sub-opt opt

CGAL CGAL dbl-prec dbl-prec
aléat 100 215 1 1 4 1 1
aléat 200 886 3 3 11 1 2
aléat 800 14113 45 29 97 8 24
aléat 2000 6869 — 28 129 7 29
aléat 5000 43184 — 122 550 28 125
aléat 2000 89352 — 47 99
aléat 5000 555640 — 261 382
grille 800 2281 15 1 1 1 1
grille 1800 5221 84 1 1 1 1
grille 5000 14701 — 2 2 4 2
grille 20000 59401 — 9 8 16 8

Table 1. Temps d’execution (en secondes) pour (en l’ordre)
l’algorithme näıf, l’algorithme sous-optimal avec les prédicats im-
planté par CGAL, l’algorithme optimal avec les prédicats CGAL,
l’algorithme optimal avec les prédicats évalués en double-précision
et l’algorithme optimal avec les prédicats en double precision

On voit facilement que pour des exemples de taille raisonnable, l’algorithme
sous-optimal asimptotiquement se comporte nettement mieux, le gain d’un facteur
log n (7–13 dans les exemples ci-dessus) étant contrebalancé par la perte due aux
complications de l’algorithme. Il faut remarquer aussi le gain de vitesse obtenu en
remplaceant les rationnels en précision illimité (bibliothéque LEDA) par les réels
double-precision de la machine.

References

[1] I. Balaban, An Optimal Algorithm for Finding Segment Intersections, Proceedings of the
Eleventh Annual Symposium on Computational Geometry, Vancouver, Canada, June 5-
7, 1995, pg. 211-219

[2] Jean-Daniel Boissonnat, Franco P. Preparata, Robust Plane Sweep for Intersecting Seg-
ments, Rapport de recherche no. 3270 septembre 1997, Institut National de Recherche en
Informatique et en Automatique

[3] http://www.cgal.org/

[4] http://www.mpi-sb.mpg.de/LEDA/leda.html

[5] http://grouper.ieee.org/groups/754/

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, RO-400084
Cluj-Napoca, Romania

E-mail address: rlupsa@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 2, 2003

PROFESSOR DOINA TĂTAR AT HER SIXTIES

MILITON FRENŢIU

Professor Doina Tătar was born on April 26th, 1943 in Curtea de Argeş, Argeş
County. After finishing secondary school in Sibiu, in 1961, she studied at the
Babeş-Bolyai University of Cluj. She graduated in Mathematics in 1966.

Immediately after graduation she was named assistant at the University of
Craiova, in the Electronics Department. She worked at this university until 1991.
In 1990 she became assistant professor at this University. In 1991 she moved in
Cluj-Napoca, where she got a position at the Babes-Bolyai University, Department
of Computer Science.

Professor Doina Tatar obtained her PhD in Mathematics in 1975, at University
of Bucharest, under the supervision of Prof. Dr. Paul Constantinescu.

She has a succesful activity in Computer Science. Her main interests are the
Foundamentals of Computer Science, Formal Languages, Automata Theory, Logics
and Automated Proof Theory, Rewriting Systems, Computational Linquistics. She
published 62 researh papers and two books, as can be seen in the appendices.

Prof. Tătar has introduced in the curricula the lectures on “Natural Language
Processing” and “Automated Theorems Proving and Rewriting Systems”. The
lectures taught by Prof. Tătar are characterised by a high scientific level, being
at the world level of these fields, and they have an important contribution to the
didactic process. She has supervised a large number of B.Sc. and Master theses,
as well as the students scientific research activity. Many of her former disciples
have successfully continued doctoral studies abroad, a few of them being today
faculty members or researchers with their universities.

So, she is remarked as an eminent scientist and pedagogue, at the same time,
with true love and devotion for her students.

Now, on celebrating her 60th birthday, we wish her Many Happy Returns of
the Day and a long life in health and happiness.

Received by the editors: October 15, 2003.

101

102 MILITON FRENŢIU

Appendices

1. Papers published in jurnals

(1) Tătar Doina: “Entropia-criteriu cantitativ al stilului”, Studii şi cercetări
lingvistice”, nr 6, 1967, pp 221–231.

(2) Belea Constantin, Tătar Doina: “Sinteza optimală neliniară a unor sis-
teme de conducere automată cu obiective liniare”, Analele Universităţii
din Craiova, 1970, nr. 1, pp 191-203.

(3) Tătar Doina: “Câteva algoritme de optimizare la nivel operativ”, Analele
Universităţii din Craiova, 1976, nr 4, pp 49–53.

(4) Tătar Doina: “Metodologia sistemului informatic teritorial al zonei Ama-
radia”, Analele Universităţii din Craiova, 1976, nr 1, pp50-56.

(5) Tătar Doina: “Asupra cercetării şi prelucrării automate a informaţiei
privind populaţia”, Analele Universităţii din Craiova, 1976, nr 1, pp56-
64.

(6) Tătar Doina: “Prelucrarea automată a datelor de fundamentare a studi-
ului privind recrutarea forţei de muncă”, Analele Universităţii din Craiova,
1981, nr 12, pp80-84.

(7) Tătar Doina: “Utilizarea schemelor de recursie in structurarea pro-
gramelor”, Buletinul Universităţii din Braşov, 1981, seria C, vol.XXIII,
pp13-20.

(8) Tătar Doina: “Program schemes and associated languages”, Bulletin
Mathematique de la Societe Math. R. S. Roumanie, 29(77) (1985), no.
2, 161–166.

(9) Tutunaru Marcela, Mihăilescu Ion, Tătar Doina: “Change of the na-
ture of skin absorbtion during CO2 -laser beam irradiation of a metallic
target”, Optica applicata, Belgia, vol 16, nr 3, 1986, pp209-214.

(10) Tătar Doina, Tătar Liviu, Tutunaru Marcela: ”Calcularea coeficientului
de absorbţie a radiaţiei laser”, Analele Universităţii din Craiova, 1984,
nr 2, pp88-94.

(11) Tătar Doina: “Some remarks about the theory of transformational gram-
mars”, Revue roumaine de linguistique, tom XXXII, nr 2, 1987, pp137-
141.

(12) Tătar Doina: “Equivalent criteria for recursive programs”, Studii şi
Cercetări Matematice, 38 (1986), no. 1, pp72-78.

(13) Tătar Doina: “Asupra schemelor monadice”, Studii şi Cercetări Matem-
atice, 39 (1987), no. 5, pp455-461.

(14) Tătar Doina: “Using a syntactic grammar associated with a recursive
scheme in the study of programs”, Studii şi Cercetări Matematice, 40
(1988), no. 4, pp337–347.

PROFESSOR DOINA TĂTAR AT HER SIXTIES 103

(15) Tătar Doina: “Normalized rewriting systems and applications in the
theory of programs”, Analele Univ. Bucuresti, Seria Matematica, 1989,
no. 2, pp76–80.

(16) Tătar Doina: “A new method for the proof of theorems”, Studia Univer-
sitatis “Babes-Bolyai”, Seria Mathematica, 36 (1991), no. 3, pp83–95.

(17) Tătar Doina: “Logical state transition systems as finite automata”, Sci-
ence Research seminars, Seminar on Computer Science, preprint 5, 1992.

(18) Tătar Doina: “Term rewriting systems and completion theorems prov-
ing”, Studia Universitatis “Babes-Bolyai”, Seria Mathematica, 1992,
pp117–127.

(19) Tătar Doina, Lupea Mihaela: “A note on non-monotonic logics”, Studia
Universitatis “Babes-Bolyai”, Seria Mathematica, nr3, 1993, pp109-115.

(20) Tătar Doina: “Logical grammars and unfold transformations of logic
programming”, Studia Universitatis “Babes-Bolyai”, Seria Mathemat-
ica, nr3, 1994, pp75-83.

(21) Tătar Doina: “Logical grammars as a tool for studying Logic Program-
ming”, Studia Universitatis “Babes-Bolyai”, Seria Mathematica, nr.3,
1994, pp 83-95.

(22) Dumitrescu Dan, Tătar Doina: “Normal forms of fuzzy formulas and
their minimization”, Fuzzy Sets and Systems 64 (1994), nr.1, 113–117.

(23) Tătar Doina: “Automated theorem proving with semantic tableaux”,
Research seminar in Computer Science, Preprint nr. 2, 1995, pp 27-36.

(24) Tătar Doina: “Buchberger algorithm in theorem proving”, Analele Uni-
versităţii “A.I.Cuza”, seria Informatica, 1995, pp85-92.

(25) Tătar Doina: “Unification based and orient-object based approaches to
grammars”, Research seminar in Computer science, nr2, 1996, pp63-74.

(26) Tătar Doina: “Logical grammar as grammatical view of logic program-
ming”, Analele Universităţii Bucuresti, Seria mat-inf, XLV, 1996, 2, pp3-
12.

(27) Tătar Doina: “Compiling definite clause grammars”, Studia Universi-
tatis “ Babes-Bolyai”, Seria Informatica, vol I, nr1, 1996, pp45-56.

(28) Tătar Doina, Varga Viorica: “Simplification of magic-set rules by logic
grammars”, Studia Universitatis ”Babes-Bolyai”, seria Informatica, vol
I, nr2, 1996, pp 19-30.

(29) Tătar Doina: “Feature structures in NLP”, Research Seminar in Com-
puter Science, nr. 3, 1998, pp93-104.

(30) Tătar Doina, Dumitrescu Adina: “Reasoning with frame - based and
object - oriented knowledge”, Studia Universitatis “Babes-Bolyai”, Seria
Informatica, 1997, nr.2, pp 13-24.

(31) Tătar Doina, Câmpan Sorana: “Incomplete databases and constraint
logic programming”, Studia Universitatis “Babes-Bolyai”, Seria Infor-
matica, 1997, nr1, pp63-77.

104 MILITON FRENŢIU

(32) Tătar Doina, Lupea Mihaela: “Indexed grammars and unification gram-
mars”, Studia Universitatis “Babes-Bolyai”, Seria Informatica, 1998, nr
1, pp39-46.

(33) Tătar Doina, Şerban Gabriela: “Well-typedness in logic programming
with types”, Studia Universitatis “Babes-Bolyai”, Seria Informatica, 1998,
nr.2, pp27-36.

(34) Tătar Doina: “Unification grammars in natural language processing”, in
“Recent topics in mathematical and computational linguistics”, Editors:
C. Martin-Vide, G. Paun, Ed. Academiei, 2000, pp289-300.

(35) Tătar Doina, Oltean Mihai: “Theorem proving and DNA computing”,
Studia Universitatis “Babes-Bolyai”, Seria Informatica, 1999, nr 1, pp62-
72.

(36) Oneţ Adrian, Tătar Doina: “Semantic representation of quantitative
natural language sentences”, Studia Universitatis “Babes-Bolyai”, Seria
Informatica, 1999, nr 2, pp99-109.

(37) Oneţ Adrian, Tătar Doina: “Order-sorted logic for knowledge repre-
sentation with application in NLP”, Research Seminar on Computer
Science, 2000, pp75-84

(38) Oneţ Adrian, Tătar Doina: “The semantic representation of NL sen-
tences. A theoretical and practical approach”, Bulletin for Applied and
Computing Mathematics, ISBN 0133-3526, vol XCIII, 2001, pp195-204.

(39) Duda Adrian, Şerban Gabriela, Tătar Doina: “Training Probabilistic
Context-Free Grammars as Hidden Markov Models”, Studia Universi-
tatis “Babes-Bolyai”, Seria Informatica, 2000, nr 1, pp17-30.

(40) Tătar Doina, Avram Dana: “Phrase Generation in Lexical Functional
Grammars and Unification Grammars”, Studia Universitatis “Babes-
Bolyai”, Seria Informatica, 2000, nr 1, pp69-78.

(41) Oneţ Adrian, Tătar Doina: “Semantic Analysis in Dialog Interfaces”,
Studia Universitatis “Babes-Bolyai”, Seria Informatica, 2000, nr 1, pp79-
88.

(42) Tătar Doina, Şerban Gabriela: “Term rewriting systems in logic pro-
gramming and functional programming”, Studia Universitatis “Babes-
Bolyai”, Seria Informatica, 2000, nr 2, pp87-94.

(43) Tătar Doina: “Feature Structures in NL interfaces”, Analele Univ Timisoara,
vol XXXVIII, nr 2, 2000, pp179-191

(44) Oneţ Adrian, Tătar Doina: “ Intensional Logic Translation for Quantita-
tive Natural Language Sentences”, Studia Universitatis “Babes-Bolyai”,
Seria Informatica, 2001, nr 1, pp41-54.

(45) Tătar Doina, Şerban Gabriela: “A new algorithm for word sense dis-
ambiguation”, Studia Universitatis “Babes-Bolyai”, Seria Informatica,
2001, nr 2, pp99-108.

PROFESSOR DOINA TĂTAR AT HER SIXTIES 105

(46) Şerban Gabriela, Tătar Doina: “A Word Sense Disambiguation Exper-
iment for Romanian Language”, Studia Universitatis “Babes-Bolyai”,
Seria Informatica, 2002, nr 2, pp37-43

(47) Tătar Doina, Şerban Gabriela: “Word clustering in QA systems”, Studia
Universitatis “Babes-Bolyai”, Seria Informatica, 2003, nr 1, pp 23-33

(48) Şerban Gabriela, Tătar Doina: “An improved algorithm on word sense
disambiguation”, Advances in Soft Computing, Ed. Springer, “Inteligent
Information Processing and Web Mining”, Editors M.A.Klopotek, S.
Wierzchon, K. Trojanowski, pp 199-209.

(49) Avram Lupşa Dana, Şerban Gabriela, Tătar Doina: “From noun clusters
to taxonomies on untagged corpora”, Mathematical Preprint Server as
MPS, Applied Mathematics, 0309004, 12 sept. 2003

(50) Avram Lupşa Dana, Şerban Gabriela, Tătar Doina: ”Hierarhical clus-
tering algorithms for repeating similarity values”, Studia Universitatis
“Babes-Bolyai”, seria Informatica, 48, 2, 2003, 65–76.

2. Papers published in proceedings of conferences

(1) Tătar Doina: “Descompunerea grafurilor in raport cu operaţiile alge-
brice”, Lucrările colocviului de matematici aplicate, noiembrie 1972, pp
197-206.

(2) Tătar Doina: “Ordonanţare prin programare liniară”, Lucrările colocvi-
ului de matematici aplicate, noiembrie 1972, pp 207-215.

(3) Tătar Doina: “Optimizarea programelor prin intermediul schemelor re-
cursive”, Primul Simpozion naţional de teoria sistemelor, Craiova, mai
1980, pp253-260.

(4) Tătar Doina: “Scheme program şi limbaje asociate”, Al doilea simpozion
national de teoria sistemelor, Craiova, mai 1982, vol. III, pp 321-332.

(5) Tătar Doina: “Limbaje echivalente şi scheme program”, Colocviul de
teoria probabilităţilor şi cercetări operaţionale, Craiova, Noiembrie 1982,
pp 189-197.

(6) Tătar Doina: “Notă asupra sintezei automatelor finite”, Simpozionul
“Odobleja”, Universitatea din Craiova, 1982, pp 49-53.

(7) Tătar Doina: “Gramatici utilizate in teoria compilarii”, Simpozionul
“Tehnici moderne de calcul in economie”, 16-17 mai 1986, pp 88-91.

(8) Tătar Doina: “Aplicatii ale limbajelor formale in teoria programelor”,
Simpozionul “Tehnici moderne de calcul in economie”, 16-17 mai 1986,
pp 91-94.

(9) Tătar Doina: “Proprietati de punct fix ale schemelor recursive şi ecuatii
de limbaje”, Primul Colocviu naţional de limbaje, logică şi lingvistică
matematică, Braşov, 5-7 iunie, 1986, pp 209-215.

(10) Tătar Doina: “Condiţii de terminare in teoria schemelor recursive”, Sim-
pozionul National INFO - Iasi, 9-10 octombrie 1987, pp 68-74.

106 MILITON FRENŢIU

(11) Tătar Doina: “Utilizarea gramaticii sintactice asociată unei scheme re-
cursive”, Simpozionul de utilizarea metodelor şi tehnicilor moderne de
calcul in economie, Craiova, 9-10 octombrie, 1987, pp 68-74.

(12) Tătar Doina: “Derecursivarea programelor prin unificări in sisteme de
rescriere”, Al doilea Colocviu naţional de limbaje, logică şi lingvistică
matematică, Braşov, 2-3 iunie, 1988,pp225-235.

(13) Tătar Doina: “ A new method for the proof of theorems”, Al treilea
Colocviu naţional de limbaje, logică şi lingvistică matematică, Braşov,
23-25 mai, 1991, pp 111-121.

(14) Tătar Doina: “Buchberger algorithm in theorem proving”, Proceedings
of ROSYCS’93, 12-13 nov, Iaşi, pp490-501.

(15) Tătar Doina: “Attribute grammars and Logic programming with types”,
Proceedings ROSYCS’96, Iasi, mai 1996, pp 57-69.

(16) Dumitrescu Dan, Tatar Doina, Mureşan Leila, Dumitrescu Adina: “A
class of residuated lattices connected with fuzzy set theory”, Proceedings
of IFSA’97, Praga, 1997, pp227-231.

(17) Tătar Doina, Dumitrescu Adina: “Reasoning with frame-based and
object-oriented knowledge”, Acceptată la conferinţa SEKE’97 (Soft-
ware engineering and knowledge engineering), June 18-20,1997, Madrid,
Spania.

(18) Tătar Doina, Zaiu Diana: “Unification based and object-oriented based
grammars”, Proceedings of LACL’97 (Logical aspects of Computational
Linguistics), pp 65-70, Nancy, France, 22-24 sept 1997.

(19) Tătar Doina, Zaiu Diana: “Feature structures in NLP and object-oriented
logic”, Proceedings of International Conference SPECOM’97, Cluj-Napoca,
27-30 oct 1997, pp 31-37.

(20) Tătar Doina: “Feature structures in NL interfaces”, Proceedings of In-
ternational Conference SYNASC 2000, 4-6 oct.2000, Univ. Timisoara -
RISC-Linz, pp82-86.

(21) Şerban Gabriela, Tătar Doina: “Word Sense Disambiguation for Un-
tagged Corpus: Application to Romanian Language”, Lecture Notes
in Computer Science nr 2588, Ed. Springer, pp 270-275, CICLing-
2003, Fourth International Conference on Intelligent Text Processing
and Computational Linguistics, February, 2003, Mexico City, Mexico.

(22) Tătar Doina: “Feature structures in NL interfaces”, SYNASC 2000,
Timisoara, 4-6 oct. 2000. Proceedings of SYNASC 2000, International
Workshop on Symbolic and Numeric Algorithms on Scientific Comput-
ing, Univ. of the West- RISC -Johannes Kepler University LINZ, pp
82-85.

(23) Şerban Gabriela, Tătar Doina: “Word Sense Disambiguation for Un-
tagged Corpus: Application to Romanian Language”, CICLing-2003,

PROFESSOR DOINA TĂTAR AT HER SIXTIES 107

International Conference on Intelligent Text Processing and Computa-
tional Linguistics, February, 2003, Mexico, pp 270-275.

(24) Oraşan Constantin, Tătar Doina, Şerban Gabriela, Avram Dana, Oneţ
Adrian: “How to build a QA system in your back-garden: application
for Romanian”, EACL, 12-17 April 2003, Budapest, pp 139-142.

(25) Şerban Gabriela, Tătar Doina: “An improved algorithm on word sense
disambiguation”, Proceedings of IIS 2003, Zakopane, Polland, June 2-5,
2003, pp 199-209.

(26) Avram Lupşa Dana, Şerban Gabriela, Tătar Doina: “From noun clusters
to taxonomies on untagged corpora”, Preprint in Computer Science,
Dept. of CS, University “Babes-Bolyai”, 2003, in curs de apariţie.

(27) A. Oneţ, D. Tătar: “Automated syntactic parse for English Language”,
trimisă la conferinţa LREC (Languages REsourses and Computation),
Barcelona, mai 2003.

(28) R. Mihalcea, V. Năstase, D. Tătar: “A Web-based collaboration frame-
work for building multilingual semantic networks”, trimisă la LREC,
Barcelona, mai 2003.

(29) D. Lupşa, G. Şerban, C. Orăşan, D. Tătar: “Comparative evaluation of
automatically derived hierarchies for a Romanian QA system”, trimisă
la LREC, Barcelona, mai 2003.

3. Papers presented at national or international conferences

(1) Tătar Doina: “Câteva probleme ale algoritmizării procedeelor de cal-
cul pentru calculatoare medii şi mici”, Sesiunea cadrelor didactice de la
Universitatea din Craiova, mai 1968.

(2) Tătar Doina: “Unele aspecte ale conducerii optimale dupa principiul
maximului”, Sesiunea cadrelor didactice de la Universitatea din Craiova,
mai 1968.

(3) Tătar Doina: “Utilizarea retelelor de transport in rezolvarea problemelor
de programare liniara”, Sesiunea cadrelor didactice de la Universitatea
din Craiova, mai 1970.

(4) Tătar Doina: “Aplicarea teoriei distribuţiei in studiul sistemelor liniare”,
Sesiunea cadrelor didactice de la Universitatea din Craiova, mai 1971.

(5) Tătar Doina: “Asupra unei probleme de ordonanţarea producţiei”, Sim-
pozionul de utilizarea metodelor şi tehnicilor moderne de calcul in economie,
Craiova, noiembrie, 1973.

(6) Tătar Doina: “Proprietăţi cibernetice ale sistemelor economice”, Colocviul
de matematici aplicate, Craiova, noiembrie 1974.

(7) Tătar Doina: “Limbaje formale dependente şi independente de context”,
Sesiunea cadrelor didactice de la Universitatea din Craiova, noiembrie
1976.

108 MILITON FRENŢIU

(8) Tătar Doina: “ Posibilitatea de diagnostic automat in endocrinologie”,
Simpozion de integrarea antropologiei şi geneticii medicale in soluţionarea
problemelor de demografie teritoriala, Craiova, mai 1975.

(9) Tătar Doina: “Asupra structurii unei baze de date de antropologie”,
Simpozion de Integrarea antropologiei şi geneticii medicale in soluţionarea
problemelor de demografie teritorială, Craiova, mai 1975.

(10) Tătar Doina: “Posibilităţi de optimizare a programelor”, Colocviul de
matematici aplicate, Craiova, octombrie 1980.

(11) Tătar Doina: “Criterii echivalente pentru programe recursive”, Sim-
pozionul de organizare ştiinţifică a activităţii economice, Craiova, mai
1982.

(12) Tătar Doina: “Sisteme de rescriere şi demonstrarea automata a teo-
remelor”, Zilele Academice Clujene, “Informatica şi aplicaţiile sale”,
Cluj-Napoca, mai 1992.

(13) Tătar Doina: “Groebner basis in the proof of theorems”, Simpozionul
national ROSYCS’93, Iasi, 12-13 nov 1993.

(14) Tătar Doina: “Teste standard in logica predicatelor”, Zilele Academice
Clujene, “Informatica şi aplicaţiile sale”, Cluj-Napoca, octombrie 1993.

(15) Tătar Doina: “Inferenţa tipurilor in programarea logică”, Zilele Aca-
demice Clujene, “Informatica şi aplicatiile sale”, Cluj-Napoca, octombrie
1995.

(16) Tătar Doina: “Buchberger algorithm in theorem proving”, Simpozionul
naţional ROSYCS’95, Iasi, nov 1995.

(17) Tătar Doina: “Automated theorem proving with semantic tableaux”, In-
ternational Conference PAP’96 (Practical Application of Prolog), Lon-
dra, 26-28 aprilie, 1996.

(18) Tătar Doina: “Semantica programării logice nonstandard”, Al doilea
Simpozion Naţional al stiintelor cognitive, 2-4 mai 1996, Universitatea
“Babes-Bolyai”, Cluj-Napoca.

(19) Tătar Doina, Zaiu Diana: “Unification based and object-oriented based
grammars”, LACL’97 (Logical aspects of Computational Linguistic),
Nancy, France, 22-24 sept,1997.

(20) Tătar Doina: “Unificare şi constrângeri in prelucrarea limbajului nat-
ural”, Zilele Academice Clujene, “Informatica şi aplicaţiile sale”, Cluj-
Napoca, 10 iunie, 1998.

(21) Tătar Doina, Oneţ Adrian: “Automated definite clause grammara com-
piling”, Simpozionul national ROSYCS’98, Iasi, 28-29 mai 1998

4. Books

(1) Tătar Doina: “Inteligenţă artificială: demonstrarea automată, prelu-
crarea limbajului natural”, Editura Albastră, Microinformatica, 2001,
ISBN 973-9443-99-0, 230 pg.

PROFESSOR DOINA TĂTAR AT HER SIXTIES 109

(2) Tătar Doina: “Inteligenţă artificială. Aplicaţii in prelucrarea limbajului
natural”, Editura Albastră, Microinformatica, 2003, ISBN 973-650-100-
0, 249 pg.

5. Manuals

(1) Tătar Doina, Tutunea Ion: “Bazele Informaticii I”, Reprografia Univer-
sităţii din Craiova, 1978, 178 pages.

(2) Tătar Doina, Bereanu Constantin: “ Caiet de lucrari in limbajele Basic
şi Fortran”, Reprografia Universităţii din Craiova, 1979, 120 pages.

(3) Tătar Doina: “Bazele Informaticii II.”, Reprografia Universităţii din
Craiova, 1981, 175 pages.

(4) Tătar Doina: “Curs de Bazele Informaticii.”, Reprografia Universităţii
din Craiova, 1988, 185 pages.

(5) Tătar Doina: “Bazele matematice ale calculatoarelor”, Reprografia Uni-
versităţii “Babes-Bolyai”, 1993, 190 pages.

(6) Tătar Doina: “Bazele matematice ale calculatoarelor”, Reprografia Uni-
versităţii “Babes-Bolyai”, 1999, 196 pages.

(7) Tătar Doina: “Bazele matematice ale calculatoarelor”, Reprografia Uni-
versităţii “Babes-Bolyai”, 2004, to appear.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, RO-400084
Cluj-Napoca, Romania

E-mail address: mfrentiu@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLIX, Number 1, 2004

APOLOGY ON PLAGIARISM PAPERS

THE EDITORS

Since the preceding issue has been send to print we have found out, and have
been informed by more interested readers that the following papers are plagiates:

• D. Marcu, The Chromatic Number of Triangle-Free Regular Graphs,
Studia Universitatis Babeş-Bolyai Series Informatica, 47 (1), 2002, p.
54–56.

• D. Marcu, A Note on the Chromatic Number of a Graph, Studia Uni-
versitatis Babeş-Bolyai Series Informatica, 47 (2), 2002, p. 105–106.

• D. Marcu, A Note on the Chromatic and Independence Number of
a Graph, Studia Universitatis Babeş-Bolyai Series Informatica, 48 (2),
2003, p. 11–16.

According to practices currently in place, these papers have been reviewed, as
always, by a panel of two experts. They have made all possible effort to ensure the
scientific quality and accuracy of the papers submitted to the journal. However,
we are not always able to verify the originality of every paper submitted, and, as
usually, this rests with the responsibility of the author.

After a careful consideration, we have decided to retract the papers under
scrutiny; the papers will be marked as such on the journal web page. As we
have lost the confidence in Mr. Dănuţ Marcu, the author of these plagiates, we
have decided to ban Mr. Marcu from publishing in our journal.

We are apologizing to the international scientific community for this situation.
Despite this, we are ensuring our readers that we are continually working to ensure
a high scientific quality for our journal. As such, they may continue to consider
our journal as the journal of their choice.

The Editors

Faculty of Mathematics and Computer Science, Department of Computer Science,
Babes-Bolyai University, 400084 Cluj-Napoca, Romania

E-mail address: studia-i@cs.ubbcluj.ro

Received by the editors: May 15, 2004.

112

	00_contents
	1-Serban
	3-Varga
	4-Dumitrescu
	5-Dumitrescu
	6-Dumitrescu
	7-Baciu
	8-Lupsa
	9-Motogna
	10-Frentiu
	11-Lupsa
	12-Tatar60

