
Anul XLVIII 2003

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

1

Redacţia: 3400 Cluj-Napoca, str. M. Kogălniceanu nr. 1 Telefon 405300

SUMAR – CONTENTS – SOMMAIRE

G. Şerban, A New Reinforcement Learning Algorithm ... 3

M. Vancea, A. Vancea, Scheduling Optimality for the Parallel Execution of Logic
Programs .. 15

D. Tătar, G. Şerban, Words Clustering in Question Answering Systems 23

M. Popa, G. M. Trîmbiţaş, Applications of Spatial Databases and Structures to the
Study of Miocene Deposits of Borod Basin .. 33

A. Oneţ, An approach on semantic query optimization for deductive databases 43

P.Haller, Scalable platform for multimedia group communication 55

D. Akume, The Loan-bank Contract: A Swap Option ... 65

D. Dumitrescu, C. Groşan, V. Varga, Stochastic Optimization of Querying
Distributed Databases I. Theory of four Relations Join .. 79

V. Niculescu, A Design Proposal for an Object Oriented Algebraic Library 89

RECENZII – REVIEWS – ANALYSES

D.A. Filip, Srdjan Stojanovic, “Computational financial mathematics using
Mathematica: optimal trading stocks and options”, Birkhäuser Verlag,
Boston-Basel-Berlin, 2003, XI+481 pages ... 101

D. Dumitrescu, Yorick Hardy, Willi-Hans Steeb, “Classical and Quantum
Computing with C++ and Java Simulations”, Birkhäuser Verlag,
Basel–Boston–Berlin, 2001 ... 103

Horia F. Pop, Brigitte Chauvin, Philippe Flajolet, Daničle Gardy, Abdelkader
Mokkadem Eds., “Mathematics and Computer Science II: Algorithms, Trees,
Combinatorics and Probabilities”, Birkhäuser Verlag, Basel-Boston-Berlin, 2002,
ISBN 3-7643-6933-7, 557 pages ... 105

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 1, 2003

A NEW REINFORCEMENT LEARNING ALGORITHM

GABRIELA ŞERBAN

Abstract. The field of Reinforcement Learning, a sub-field of machine learn-
ing, represents an important direction for research in Artificial Intelligence,
the way for improving an agent’s behavior, given a certain feed-back about
its performance. In this paper we propose an original algorithm (URU -
Utility-Reward-Utility), which is a temporal difference reinforcement learning
algorithm. Moreover, we design an Agent for solving a path-finding problem
(searching a maze), using the URU algorithm.
Keywords: Reinforcement Learning, Intelligent Agents.

1. Reinforcement Learning

Reinforcement Learning (RL) is the way of improving the behavior of an agent,
given a certain feedback about his performance.

Reinforcement Learning [3] is an approach to machine intelligence that combines
two disciplines to successfully solve problems that neither discipline can address
individually. Dynamic Programming is a field of mathematics that has tradition-
ally been used to solve problems of optimization and control. However, traditional
dynamic programming is limited in the size and complexity of the problems it can
address.

Supervised learning is a general method for training a parameterized function
approximator, such as a neural network, to represent functions. However, super-
vised learning requires sample input-output pairs from the function to be learned.
In other words, supervised learning requires a set of questions with the right an-
swers.

Unfortunately, there are many situations where we do not know the correct
answers that supervised learning requires. For these reasons there has been much
interest recently in a different approach known as reinforcement learning (RL).
Reinforcement learning is not a type of neural network, nor is it an alternative to
neural networks. Rather, it is an orthogonal approach that addresses a different,
more difficult question. Reinforcement learning combines the fields of dynamic

Received by the editors: December 10, 2002.
2000 Mathematics Subject Classification. 68T05.
1998 CR Categories and Descriptors. I.2.6[Computing Methodologies]: Artificial In-

telligence – Learning.

3

4 GABRIELA ŞERBAN

programming and supervised learning to yield powerful machine-learning systems.
Reinforcement learning appeals to many researchers because of its generality. In
RL, the computer is simply given a goal to achieve. The computer then learns
how to achieve that goal by trial-and-error interactions with its environment.

A reinforcement learning problem has three fundamental parts [3]:

• the environment – represented by “states”. Every RL system learns a
mapping from situations to actions by trial-and-error interactions with
a dynamic environment. This environment must at least be partially
observable by the reinforcement learning system;

• the reinforcement function – the “goal” of the RL system is defined using
the concept of a reinforcement function, which is the exact function of
future reinforcements the agent seeks to maximize. In other words, there
is a mapping from state/action pairs to reinforcements; after performing
an action in a given state the RL agent will receive some reinforcement
(reward) in the form of a scalar value. The RL agent learns to perform
actions that will maximize the sum of the reinforcements received when
starting from some initial state and proceeding to a terminal state. It is
the job of the RL system designer to define a reinforcement function that
properly defines the goals of the RL agent. Although complex reinforce-
ment functions can be defined, there are at least three noteworthy classes
often used to construct reinforcement functions that properly define the
desired goals;

• the value (utility) function – explains how the agent learns to choose
“good” actions, or even how we might measure the utility of an action.
Two terms were defined: a policy determines which action should be
performed in each state; a policy is a mapping from states to actions.
The value of a state is defined as the sum of the reinforcements received
when starting in that state and following some fixed policy to a terminal
state. The value (utility) function would therefore be the mapping from
states to actions that maximizes the sum of the reinforcements when
starting in an arbitrary state and performing actions until a terminal
state is reached.

In a reinforcement learning problem, the agent receives a feedback, known as
reward or reinforcement; the reward is received at the end, in a terminal state, or
in any other state, where the agent has exactly information about what he did
well or wrong.

2. A Reinforcement Learning Problem

Let us consider the following problem:
The Problem Definition

A NEW REINFORCEMENT LEARNING ALGORITHM 5

We consider an environment represented as a space of states (each state is
characterized by its position in the environment - two coordinates specifying the
X-coordinate, respectively the Y-coordinate of the current position).

The goal of a robotic agent is to learn to move in the environment from an initial
to a final state, on a shortest path (as number of transitions between states).

Notational conventions used in the followings are:
• M = {s1, s2, ..., sn} - the environment represented as a space of states;
• si ∈ M , sf ∈ M - the initial, respectively the final state of the environ-

ment (the problem could be generalized for the case of the environments
with a set of final states);

• h : M → P (M) - the transition function between the states, having the
following signification: h(i) = {j1, j2, ..., jk}, if, at a given moment, from
the state i the agent could move in one of the states j1, j2, ..., jk; we
will call a state j that is accessible from state i (j ∈ h(i)) the neighbor
(successor) state of i;

• the transition probabilities between a state i and each neighbor state j
of i are the same, P (i, j) = 1

card(h(i)) (we note with card(M) the number
of elements of the set M);

The Goal
The problem will consist in training the agent to find the shortest path to reach

the final state sf starting from the initial state si.
For solving this problem, we propose in the followings a reinforcement learn-

ing algorithm, based on learning the states’ utilities (values), in which the agent
receives rewards from interactions with the environment.

3. The URU Algorithm (Utility-Reward-Utility)

The algorithm described in this section is an algorithm for learning the states’
values, a variant of learning based on Temporal Differences [1].

The algorithm’s idea is the following:
• the agent starts with some initial estimates of the state’s utilities;
• during some training episodes, the agent will experiment some paths

from si to sf (possible optimal), updating, properly, the states’ utilities
estimations;

• during the training process the states’ utilities estimations converge to
the exact values of the states’ utilities, thus, at the end of the training
process, the estimations will be in the vicinity of the exact values.

We make the following notations:
• U(i) - the estimated utility of the state i;
• R(i) - the reward received by the agent in the state i.

The URU Algorithm

6 GABRIELA ŞERBAN

The algorithm is shown in Figure 1.

(1) Initialize the state utilities with some initial values;
(2) Initialize the current state with the initial state sc := si;
(3) Choose a state s neighbor of sc (s ∈ h(sc)), using some known action

selection mechanisms (ε-Greedy or SoftMax [2]), following the steps:
(a) determine the set of successors of the current state (m = h(sc));
(b) if the current state has no successors (m is empty), return to the

previous state (s := sc); otherwise go to step (c);
(c) select from m a subset m1 containing the states that were not visited

yet in the current training sequence;
(d) choose a state s from m1 using a selection mechanism.

(4) determine the reward r received by the agent in the state sc;
(5) if the current state is not final, then update the utility of the current

state as follows:

(1) U(sc) := U(sc) + α · (r + γ · U(s)− U(sc))

where α ∈ (0, 1) is a fixed parameter (the learning rate), and γ ∈ (0, 1)
is a fixed parameter (the reward factor).

(6) sc := s;
(7) repeat the step 3 until sc is the final state;
(8) repeat the steps 2-7 for a given number of training episodes.

Figure 1. The Reward-Utility-Reward (URU) Algorithm.

We have to make the following specifications:
• the training process during an episode has the complexity in the worst

case O(n2), where n is the number of the environment’s states;
• in a training sequence, the agent updates the utility of the current state

using only the selected successor state, not all the successors (the tem-
poral difference characteristic).

4. Case Study

It is known that the estimated utility of a state [1] in a reinforcement learning
process is the estimated reward-to-go of the state (the sum of rewards received
from the given state to a final state). So, after a reinforcement learning process,
the agent learns to execute those transitions that maximize the sum of rewards
received on a path from the initial to a final state.

If we consider the reward function as: r(s) = −1 if s 6= sf , and r(s) = 0,
otherwise, it is obvious that the goal of the learning process is to minimize the

A NEW REINFORCEMENT LEARNING ALGORITHM 7

number of transitions from the initial to the final state (the agent learns to move
on the shortest path).

For illustrating the convergence of the algorithm, we will consider that the
problem is one of learning the shortest path (the reward function is as we described
above), and the environment has the following characteristics:

• the environment has a rectangular form;
• at a given moment, from a given state, the agent could move in four

directions: North, South, East, West.
In the followings, we will enounce an original theorem that gives the conditions

for convergence of the URU algorithm.

Theorem 1. Let us consider the learning problem described above and which sat-
isfies the conditions:

• the initial values of the states’ utilities (the step (1) of the URU algorithm
described in Figure 1) are calculated as: U(s) = −d(s, sf) − 2, for all
s ∈ M , where d(s1, s2) represent the Manhattan distance between the
two states;

• γ ≤ 1
3

In this case, the URU algorithm is convergent (the states’ utilities are convergent
after the training sequence).

The Theorem 1 proving is based on the following lemmas:

Lemma 2. At the n-th training episode of the agent the following inequalities
hold: Un(i) ≤ −2, for all i ∈ M .

Lemma 3. At the n-th training episode of the agent the following inequalities
hold: |Un(i) − Un(j)| ≤ 1, for each transition from i(i 6= sf) to j made by the
agent in the current training sequence.

Lemma 4. The inequalities Un+1(i) ≥ Un(i) hold for all i ∈ M and for all n ∈ N ,
in other words the states’ utilities increase from a training episode to another.

Theorem 2 gives the equilibrium equation of the states’ utilities after applying
the URU algorithm.

Theorem 5. In our learning problem, the equilibrium equation of the states’ util-
ities is given by the following equation:

(2) U∗
URU (i) = R(i) +

γ

card(h(i))
·

∑

j successor of i

U∗
URU (j)

for all i ∈ M , where U∗
URU (i) represents the exact utility of the state i, obtained

after applying the URU algorithm. We note by card(M) the number of elements
of the set M .

8 GABRIELA ŞERBAN

5. An Agent for Maze Searching

5.1. General Presentation. The application is written in JDK 1.4 and imple-
ments the behavior of an Intelligent Agent (a robotic agent), whose purpose is
coming out from a maze on the shortest path, using the algorithm described in
the previous section (URU).

We assume that:

• the maze has a rectangular form; in some positions there are obstacles;
the agent starts in a given state and tries to reach a final (goal) state,
avoiding the obstacles;

• from a certain position on the maze the agent could move in four direc-
tions: north, south, east, west (there are four possible actions);

5.2. The Agent’s Design. The basis classes used for implementing the agent’s
behavior are the followings:

• CState: defines the structure of a State from the environment. This
class has methods for:

– setting components (the current position on the maze, the value of
a state, the utility of a state);

– accessing components;
– calculating the utility of a state;
– verifying if the state is accessible (does this contain or not an ob-

stacle).
• CList: defines the structure of a list of objects. The main methods of

the class are for:
– adding elements;
– accessing elements;
– updating elements.

• CEnvironment: defines the structure of the agent’s environment (it
depends on the concrete problem - in our example the environment is a
rectangular maze).

• CNeighborhood: the class that defines the accessibility relation be-
tween two states of the environment;

• CRLAgent: the main class of the application, which implements the
agent’s behavior and the learning algorithm.

The private member data of this class are:
– m: the agent’s environment (is a CEnvironment);
– v: the accessibility relation between the states (is a CNeighborhood);

The public methods of the agent are the followings:
– readEnvironment: reads the information about the environment

from an input stream;

A NEW REINFORCEMENT LEARNING ALGORITHM 9

– writeEnvironment: writes the information about the environ-
ment in an output stream;

– learning: is the main method of the agent, which implements the
URU algorithm; based on this algorithm, the agent updates the
utilities of the environment’s states.

– next: the agent determines the next state where to move (this is
made after the learning process took place).

Besides the public methods, the agent has some private methods used
in the method learning.

5.3. Experimental Results. For our experiment, we consider the environment
shown in Figure 2. The state marked with 1 represents the initial state of the
agent, the state marked with 2 represents the final state and the states filled with
black are containing obstacles (which the agent should avoid).

Figure 2. The agent’s environment

For the environment described in Figure 2, we use the URU algorithm, with
the following initial settings:

• γ = 0.9;
• α = 0.01;
• number of episodes = 10;
• as a selection mechanism, we choose the ε-Greedy selection, with ε=0.1.

The results obtained after the URU learning are presented in Table 1. The
states from the environment are numbered from 1 to 36, starting with the corner

10 GABRIELA ŞERBAN

Table 1. The states’ utilities after the training episodes with the
URU algorithm

State Episode Episode Episode Episode Episode Episode Episode Episode Episode Episode
1 2 3 4 5 6 7 8 9 10

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 -6.0000 -6.0000 -6.0000 -6.0000 -6.0000 -6.0000 -5.9710 -5.9422 -5.9422 -5.9422
3 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -4.9780 -4.9561 -4.9561 -4.9561
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 -3.0000 -2.9760 -2.9760 -2.9760 -2.9522 -2.9522 -2.9522 -2.9522 -2.9522 -2.9522
6 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000 -2.0000
7 -8.0000 -8.0000 -8.0000 -8.0000 -8.0000 -8.0000 -7.4610 -7.1124 -7.1124 -7.1124
8 -7.0000 -7.0000 -7.0000 -7.0000 -7.0000 -7.0000 -6.9640 -6.9267 -6.9267 -6.9267
9 -6.0000 -6.0000 -6.0000 -6.0000 -6.0000 -6.0000 -5.9650 -5.9303 -5.9303 -5.9303
10 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -5.0000 -4.9779 -4.9779 -4.9779
11 -4.0000 -3.9790 -3.9790 -3.9790 -3.9581 -3.9581 -3.9581 -3.9436 -3.9436 -3.9436
12 -3.0000 -3.0000 -3.0000 -3.0000 -2.9919 -2.9919 -2.9919 -2.9839 -2.9839 -2.9601
13 -9.0000 -9.0000 -9.0000 -9.0000 -9.0000 -9.0000 -8.3031 -7.8600 -7.8600 -7.8600
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
15 -7.0000 -7.0000 -7.0000 -7.0000 -7.0000 -7.0000 -6.9580 -6.9580 -6.9580 -6.9580
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
17 -5.0000 -4.9720 -4.9720 -4.9720 -4.9720 -4.9720 -4.9720 -4.9720 -4.9720 -4.9720
18 -4.0000 -3.9850 -3.9850 -3.9850 -3.9641 -3.9641 -3.9641 -3.9435 -3.9435 -3.9230
19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20 -8.3664 -8.3166 -7.7394 -7.7394 -7.6956 -7.6956 -7.6521 -7.6521 -7.0875 -7.0498
21 -7.9510 -7.9024 -7.8541 -7.8541 -7.8063 -7.8063 -7.7592 -7.7592 -7.7122 -7.6655
22 -6.9640 -6.9282 -6.8926 -6.8926 -6.8573 -6.8573 -6.8573 -6.8573 -6.8218 -6.7866
23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
24 -5.0000 -4.9720 -4.9720 -4.9720 -4.9442 -4.9442 -4.9442 -4.9167 -4.9167 -4.8893
25 -10.9300 -10.8584 -10.7872 -9.7732 -9.7732 -9.7105 -9.7105 -9.6483 -9.5865 -9.5233
26 -9.2171 -9.1601 -8.4560 -8.4138 -8.3629 -8.3214 -8.2712 -8.2303 -7.5718 -7.5273
27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
28 -7.9510 -7.9024 -7.8541 -7.8541 -7.8063 -7.7588 -7.7588 -7.7117 -7.6691 -7.6268
29 -6.9640 -6.9282 -6.8927 -6.8927 -6.8573 -6.8166 -6.8166 -6.7761 -6.7761 -6.7359
30 -6.0000 -5.9650 -5.9650 -5.9650 -5.9303 -5.9017 -5.9017 -5.8675 -5.8675 -5.8058
31 -11.9230 -11.8466 -11.7707 -10.5639 -10.5006 -10.4349 -10.3725 -10.3079 -10.2438 -10.1801
32 -10.9298 -10.9298 -10.8578 -10.7846 -10.7120 -10.6445 -10.5731 -10.5047 -10.4342 -10.4342
33 -9.9430 -9.9430 -9.8864 -9.8864 -9.8864 -9.1123 -9.1123 -9.0559 -9.0068 -9.0068
34 -8.9500 -8.9500 -8.9003 -8.9003 -8.9003 -8.2313 -8.2313 -8.1823 -8.1376 -8.0896
35 -7.9570 -7.9084 -7.8662 -7.8662 -7.8184 -7.7768 -7.7768 -7.7768 -7.7768 -7.7293
36 -7.0000 -6.9580 -6.9580 -6.9580 -6.9163 -6.8806 -6.8806 -6.8806 -6.8806 -6.8393

left-up, in order of the lines. On the columns are presented the estimated values
of the states’ utilities, during the training episodes.

From Table 1 it is obvious that the states’ utilities grow during the training
episodes. After the training, the agent will report the learned path (from the
initial to the final state), that is the path (6-1), (5-1), (5-2), (4-2), (4-3), (4-
4), (5-4), (5-5), (5-6), (4-6), (3-6), (2-6), (1-6). As a policy for moving in
the environment after the learning, we consider that, from a given state, the agent
will move to a neighboring state that was not visited yet, and having a maximum
utility (of course, to determine the policy, we could use some probabilistic action
selection mechanisms).

In order to illustrate the experimental results, we will give, in the followings,
graphical representations that confirm the theoretical results from the previous
sections. Figure 3 presents the change of the initial state’s utilities during the
training episodes (it is obvious that the utilities grow during the training).

A NEW REINFORCEMENT LEARNING ALGORITHM 11

Figure 3. The initial state’s utilities during the training process

Figure 4 presents the graphical representation of the states’ utilities on the first
training episode, and Figure 5 presents the graphical representation of the states’
utilities on the last training episode. Analyzing comparatively the two figures,
we observe that, for each state of the environment, the utilities grow during the
training.

In Figure 6 we present comparatively the states’ utilities on the first, the 10th
and the 5th training episode.

5.4. Experimental comparison between the URU algorithm and the TD
[1] (Temporal Difference) algorithm. In section 4 we illustrate that, in the
case of the learning problem in the environment shown in Figure 2, by applying
the TD algorithm the states’ utilities are not convergent. This fact is presented in
Table 2, where the utilities of the first five states during the training are described,
results obtained by applying the TD algorithm for our problem.

From Table 2 it is obvious that the states’ utilities have not a monotonic be-
havior, in other words, for some states the utilities increase, for other states the
utilities decrease along the training, which does not guarantee the convergence of
the algorithm.

12 GABRIELA ŞERBAN

Figure 4. The states’ utilities on the first training episode

Table 2. The states’ utilities after the training episodes with the
URU algorithm

State Episode Episode Episode Episode Episode Episode Episode Episode Episode Episode
1 2 3 4 5 6 7 8 9 10

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 -6.0000 -6.0000 -6.0000 -6.0002 -6.0002 -6.0002 -6.0002 -6.0002 -6.0202 -6.0202
3 -5.0000 -5.0000 -5.0000 -5.0200 -5.0200 -5.0400 -5.0400 -5.0400 -5.0600 -5.0600
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 -2.9900 -2.9801 -2.9703 -2.9703 -2.9703 -2.9606 -2.9606 -2.9606 -2.9510 -2.9510
...

6. Conclusions and Further Work

As we have mentioned in the previous sections, the URU algorithm is a variant
of a RL algorithm based on temporal differences (if γ = 1 URU becomes the
classical temporal difference learning algorithm - TD).

In comparison with the classical TD algorithm, the following remarks may be
considered. These follow naturally from the theoretical results described in Section
4):

• the states’ utilities grow faster in the URU algorithm than in TD algo-
rithm, in other words UURU (i) > UTD(i), for all i ∈ M , which means

A NEW REINFORCEMENT LEARNING ALGORITHM 13

Figure 5. The states’ utilities on the last training episode

that the URU algorithm converge faster to the solution than the TD
algorithm;

• in the case of our learning problem, as we proved in Theorem 1, for
γ = 1 (the TD algorithm), we cannot prove the convergence of the
states’ utilities.

Further work is planned to be done in the following directions:
• to analyze what happens if the transitions between states are nondeter-

ministic (the environment is a Hidden Markov Model [4]);
• to analyze what happens if the reward factor (γ) is not a fixed parameter,

but a function whose values depend on the current state of the agent.
• to develop the algorithm for solving path-finding problems with multiple

agents.

References

[1] Russell, S.J., Norvig, P.: Artificial Intelligence. A Modern Approach. Prentice-Hall, Engle-
wood Cliffs, NJ, 1995

[2] Sutton, R., Barto, A., G.: Reinforcement Learning. The MIT Press, Cambridge, England,
1998

[3] Harmon, M., Harmon, S.: Reinforcement Learning – A Tutorial, Wright State University,
http://www-anw.cs.umass.edu/∼mharmon/rltutorial/frames.html, 2000

14 GABRIELA ŞERBAN

Figure 6. The states’ utilities on the first, the 10th and the 5th
training episode

[4] Serban, G.: Training Hidden Markov Models – A Method for Training Intelligent Agents,
Proceedings of the Second International Workshop of Central and Eastern Europe on Multi-
Agent Systems, Krakow, Poland, 2001, pp. 267-276

Babeş-Bolyai University, Cluj-Napoca, Romania
E-mail address: gabis@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 1, 2003

SCHEDULING OPTIMALITY FOR THE PARALLEL
EXECUTION OF LOGIC PROGRAMS

MONICA VANCEA AND ALEXANDRU VANCEA

Abstract. Logic programming is the most widespread programming para-
digm used in artificial intelligence, a domain which needs intensive computing
resources. Parallel execution of logic programs is the most effective speedup
factor which can be applied for obtaining reasonable execution time in some
cases. Parallelizing compilers have the task to exploit the inherent parallelism
from the sequential programs having as the ultimate goal their efficient exe-
cution by means of building a time optimal schedule. These tools focus on the
inherent parallelism available at the level of the logic languages operational
semantics. Besides particular techniques for achieving optimal execution for
specific classes of logic programs, one question arises naturally: given an arbi-
trary logic program and a machine model which assumes sufficient but finite
resources, is it always possible to build a time optimal schedule ? This paper
defines the notion of time optimality and proves that in the general case, no
time optimal schedule can be built for a logic program, because there are
classes of logic programs which require infinite resources for accepting time
optimal schedules.

1. Preliminaries

Logic programming is the most popular programming model used in the area of
artificial intelligence. When using huge knowledge based systems, acceptable run
time for receiving the output results can be obtained only by implementing parallel
execution among the tasks generated by the corresponding goals. So, parallel
logic programming is sometimes the only possibility to deal with the complexity
of some artificial intelligence problems and on the other hand can be an adequate
solution for many significant run time optimizations even for the actual solutions
[2, 4, 6, 10].

Parallelizing compilers try to automatically and efficiently exploit the paral-
lelism available in a given program, transforming the programs into their parallel

Received by the editors: January 15, 2003.
2000 Mathematics Subject Classification. 68M20, 68N17, 68Q10.
1998 CR Categories and Descriptors. D.1.6. [Software]: Programming Techniques –

Logic Programming; D.1.3. [Software]: Programming Techniques – Parallel Programming;
D.2.9. [Software]: Software Engineering – Cost Estimation; D.4.1. [Software]: Operating
Systems – Scheduling.

15

16 MONICA VANCEA AND ALEXANDRU VANCEA

versions taking into account the existing data dependences [5, 7]. Naturally, this
transformations must assure that the semantics are the same.

Definition. Two program codes are said to be semantic equivalent if one of
them can be obtained from the other by applying a sequence of data dependence
preserving transformations.

The vast majority of studies upon optimality assume that the machine model
has sufficient but limited resources, meaning that the architecture can run any
program for which the number of resources needed is bounded by some arbitrary
integer [1, 8, 9]. We will denote it further as R and we make some standard
assumptions about the operations to be scheduled: for simplicity, we assume,
without loss of generality, that any resolution step of an elementary clause takes
one machine cycle.

Informally, through optimal parallelization of a program code, we understand
obtaining a semantically equivalent (SE) version of it which manages at every
moment t to schedule in parallel the execution of all its independent operations.
That’s why we will characterize such a program code as time optimal. Thus, the
parallelization process is optimal if we obtain a SE time optimal program code.

Formally, we give below three alternative definitions of this concept.
Definition. A program code P is said to be time optimal if any of the

following statements is true:

a) for every operation w executed at moment t, there exists a dependence chain
of length t which ends at w;

b) every execution E of P is running in the shortest possible time with regard to
the P ’s data dependences;

c) the length of any execution E (interpreted as an execution path in the data
dependence graph of P) is the length of the longest data dependence chain
from P .

2. Forward execution

When dealing with conditional predicates at the level of some loopings (recur-
sive calls for example), static scheduling alone cannot assure processors workload
balance, due to possible strongly different execution times required by the different
branches of such a decision structure. In general, these tests can not be evaluated
at compile time, so a scheduler has no information on which can decide a proper
load balance for obtaining a reasonable efficiency.

That is why in branch intensive programs time optimality cannot be achieved
without forward execution of branches, that is executing everything it can be
executed (as the time optimality definition requires) on every branch in advance,
independently of the results of decision testing. This assures that no processor will
be idle and that after evaluating the decision, the results will already be there,
computed, thus contributing to a significant speedup.

OPTIMALITY OF PARALLEL EXECUTION OF LOGIC PROGRAMS 17

predicates
p(integer,integer,integer).
q(integer,integer,integer,integer).

clauses
p(X_init,Y_init,0) :- !. % starting values for the iterative loop
p(X,Y,N) :- N1 is N-1, p(X1,Y1,N1), q(X,Y,X1,Y1).
q(X,Y,X1,Y1) :- X1>Y1, Z is f(X1), X is g(Z), Y is e(X). (A)
q(X,Y,X1,Y1) :- X1<=Y1, X is h(X1), Y is e(X). (B)

Figure 1. Code sequence illustrating the use of forward execution

We can define forward execution as follows:
Definition. Let S be a clause which is resolution dependent on a test clause T

in a logic program code. During the execution of the program code, the clause S
is said to be forward executed if it will be scheduled before or concurrent with
the resolution of T .

This means that the system will do useless work for obtaining better results.
Thus, there will be execution histories for which S will execute but its result will
not contribute to the program’s final output in any way.

We illustrate below the potential benefits of applying forward execution for the
component clauses of a looping (recursive) predicate which has conditional clauses.
Let’s consider the code sequence from Figure 1, which illustrates a conditional
iterative process (the input-output flow patterns are p(o, o, i) and q(o, o, i, i) and
f , g, h and e are numeric functions).

The sequential execution of the N calls requires between 3N (if all calls will
choose the B branch) and 4N (if all calls will choose the A branch) machine
cycles (remember that we assumed for simplicity that every elementary clause
resolution takes one cycle). With forward execution 2N + 3 cycles are needed
(evident from table 1, where we reduced the 4 sequential iteration steps to a
compact 2 resolution steps iteration), so for large N values the method will improve
the runtime execution by a factor of 2. Obviously, the operations scheduled in a
time step are executed in parallel. In Table 1 we illustrate what we can call the
execution model of the looping predicate, in which a call requires two units of
time.

Let’s notice that, by forward execution, we compute z := f(xB) in advance on
the false branch (variant B, even if maybe the next iteration won’t take the true
branch path so no z value will be needed) and together with the test evaluation
we also compute in advance xA := g(z). However, if the test output is false we
do not need this values at all. So, time optimality is achieved by adding an extra
resources cost.

18 MONICA VANCEA AND ALEXANDRU VANCEA

Time step Scheduled operations
True branch False branch

1 test(x > y); z := f(x); xB := h(x);
2 xA := g(z) y := e(xB)
3 y := e(xA); z := f(xA)

4, 6, . . . , 2k xA := g(z) test(x > y) xB := h(xB)
5, 7, . . . , 2k + 1 y := e(xA); z := f(xA) y := e(xB); z := f(xB)

Recursive call on the Recursive call on the
(A) branch (True) (B) branch (False)

Table 1. Time optimal schedule with forward execution for the
code in Figure 1

Ideally, making abstraction of the real execution conditions, which may vary a
lot from case to case, the amount of parallelism which can be exploited is limited
only by the data dependences between the program’s statements (this defines the so
called inherent parallelism). Hardware resource constraints, such as processors
and memory, may be eliminated, at least in theory, because we always may add
extra technical components to overcome the lack of resources. That is why the
most widespread execution models assume as we mentioned finite but unlimited
resources.

3. Time optimality for logic programs containing conditional
clauses

We approached forward execution in section 2 because it is evident that for
obtaining a time optimal schedule we have to apply it. Anyway, we will show that
there are cases when a time optimal schedule cannot be built with finite resources.
This can happen because of the conditionals which are part of the body of a
recursive predicate, when one branch can prevent the forward execution of some
activities belonging to the other branch. Then, it can be the case that time optimal
scheduling (based on its definition) forces at some moment t the parallel execution
of much more statements than the R resources can afford so we will conclude that
no time optimal schedule can be built for general logic programs. Intuitively, we
observe that conditional predicates combined with data dependence restrictions
prevent the load balancing of the activities which have to be scheduled in parallel,
by means of forward execution and obbeying the definition of time optimality. This
makes the finite but unlimited R resources of our machine model to be insufficient
for building a time optimal schedule in the general case. This is because the
number of resources needed becomes a function of time t, an unbounded value,
even if we accept that any program run on our machine model will eventually finish
its execution. So, general practical optimal scheduling is an intractable problem.

OPTIMALITY OF PARALLEL EXECUTION OF LOGIC PROGRAMS 19

predicates
p(integer,integer,integer).
q(integer,integer,integer,integer,integer,integer,integer).

clauses
p(X_init,Y_init,Z_init,0) :- !. % start values for iterative loop
p(X,Y,Z,N) :- N1 is N-1, p(X1,Y1,Z1,N1), q(X,Y,Z,X1,Y1,Z1,N1).
q(X,Y,Z,X1,Y1,Z1,N1) :- Z1>Y1, Z is f(X1,N1), Y is e(X1,Z). (A)
q(X,Y,Z,X1,Y1,Z1,N1) :- Z1<=Y1, X is h(X1), Y is e(X,Z1). (B)

Figure 2. Code sequence illustrating a conditional iterative process

We will ellaborate more formally on this intuitive observations in the following,
taking a suitable example to illustrate our point of view.

Theorem 1. A general logic program has no time optimal schedule.
Proof. Let’s notice that if we find only one class of logic programs and only

one particular execution history for which no time optimal schedule can be built
then our result holds. Recall that we assumed that any resolution step requires
exactly one time unit and that the definition of a time optimal schedule requires
any operation to be executed immediately after its input data become available
(without any supplimentary resource access restriction). So, we can consider for
example the program code in Figure 2.

There, the input-output flow patterns are p(o, o, o, i) and q(o, o, o, i, i, i, i). Pred-
icate p is a iterative recursive predicate which associates at any iteration current
values for the variables X, Y and Z by calling the q predicate. Current X, Y and
Z values are computed using the X, Y and Z values from the previous iteration
(these previous values are identified in the above code by variables X1, Y 1 and
Z1 and they are passed as parameters from one iteration to the next by means of
the recursive call of the p predicate). We will identify some particular predicates
from the above code as follows:

S0 ≡ p(X,Y,Z,N); S1 ≡ Z is f(X1,N1); S2 ≡ X is h(X1);
S3 ≡ Y is e(X1,Z); S4 ≡ Y is e(X,Z1); T1 ≡ Z1>Y1; T2 ≡ Z1<=Y1;
Using these notations we can identify the following dependences:
S0 → S0 (recursive self-dependence for accomplishing the iterative pro-

cess);
S2 → S4 (output X from S2 is used as input in S4);
S1 → S3 (output Z from S1 is used as input in S3);
S2 → S1 (X1 used as input in S1 is in fact the output X from the S2

previous iteration);
S2 → S3 (X1 used as input in S3 is in fact the output X from the S2

previous iteration);

20 MONICA VANCEA AND ALEXANDRU VANCEA

S2 → S2 (iteration carried self-dependence – X1 used as an input parameter
for function h is in fact the output X from the previous iteration of the same
clause);

S1 → T1,T2 (the output Z from S1 is used as input in the tests T1 and T2);
S3, S4 → T1,T2 (the output Y from S3 or S4 is used as input in the tests T1

and T2);
We will refer further to a particular execution history, namely the one that takes

the (A) branch for the first n1 iterations (T1 evaluated to false and T2 evaluated
to true) and the (B) branch for the remaining n2 ones (T2 evaluated to false and
T1 evaluated to true), with n2 6 n1. So, N = n1 + n2. Taking into account
the identified dependences and considering that the R resources of our machine
model do not add any other execution restrictions, any time optimal execution
of our program code will need n1 + 3 time units (remember that we assume that
every execution step requires exactly one machine cycle – or time unit – and that
the definition of a time optimal schedule requires that any operation takes place
as soon as the inputs are available, with no resource constraints). This becomes
evident looking at Table 2 where we show which operations are executing at each
time step. It is easy to see the pattern for the first n1 iterations (recursive calls):
for each k, 2 6 k 6 n1, iteration k executes the clause xk := h(xk−1) (S2) at time
step k and the clause yk := E(xk, z) (S4) together with the test T2 at the time
step k + 1.

We must notice that in the meantime no statement is available for the forward
execution on the (A) branch, due to the fact that the first execution of S1 must
wait on the final value of X issued by the self dependent predicate S2 after the
n1 iterations on the (B) branch. This value for X will not change further at all
(we said that the next n2 iterations all will go on the (A) branch). So, we have
now the function f and the last value of X available (from the n1 time step),
making theoretically possible that all the bindings to the Z variables to be made
simultaneously (in the same time unit). This can be done if we apply scalar
expansion [3] for being able to retain every instance of Z in a separate memory
cell (remember that we have finite but sufficient resources). So, for a time optimal
execution we must have at the time step n1+1, n2+2 operations: the n2 bindings
for Z’s together with the last test of the first n1 iterations (T2) and the binding
yn1 := E(xn1, z). After we have all the Z values, the same reasons force us to
compute all the data dependent Y values of S3 in the next time step. We can do
this applying again scalar expansion for the Y values and knowing that we have
enough resources for this. So, for a time optimal execution we must have at the
time step n1 + 2, n2 + 1 operations: the n2 bindings for the Y instances and the
evaluation of the test T1. After that, the only remaining operations are the n2
tests T1 which all can be evaluated in the time step n1 + 3, because the values
being compared are now all available.

OPTIMALITY OF PARALLEL EXECUTION OF LOGIC PROGRAMS 21

Time step Scheduled operations
1 z > y0 x1 := h(x0)
2 y1 := E(x1, z) x2 := h(x1)
3 z > y1 y2 := E(x2, z) x3 := h(x2)
4 z > y2 y3 := E(x3, z) x4 := h(x3)

.
n2
.

n1− 1 z > yn1−3 yn1−2 := E(xn1−2, z) xn1−1 := h(xn1−2)
n1 z > yn1−2 yn1−1 := E(xn1−1, z) xn1 := h(xn1−1);

iteration i = n1
z1 := f1(xn1),

n1 + 1 z > yn1−1 yn1 := E(xn1, z) z2 := f2(xn1),
. . . , zn2 := fn2(xn1)

n1 + 2 z > yn1 yn1+1 := E(xn1, z1) yn1+n2 := E(xn1, zn2)
n1 + 3 z > yn1+1 z2 > yn1+2 zn2 > yn1+n2

Table 2. Time optimal schedule for the code sequence in Figure 2

So, our analysis reveals that any time optimal execution of the above program
code will need n1 + 3 time units. Also, we need

• n2 + 2 resources in the n1 + 1 time step;
• n2 + 1 resources in the n1 + 2 time step;
• n2 resources in the n1 + 3 time step.

The problem in this case is that the number of resources (processors) needed at
a time step is a function of that time step (Resources(n1+1) = n2+2 = N−n1+2).
But if we have N >> R with n1, n2 >> R also, this means that even with the
finite but sufficient resources that we considered in our machine model (the
largest assumption we can made anyway for practical purposes) we have not
enough resources available to schedule the required operations for an
optimal execution . So, no optimal schedule exists for the execution of the
above logic program code.

We conclude then, that in the general case, no time optimal schedule is guar-
anteed to be found for a given program considering finite resources. ¥

4. Conclusions and future work

We showed in section 3 that a time optimal schedule cannot be built with
finite resources for a general logic program. We informally characterized one class
of logic programs (namely those containing conditional predicates) that has no
time optimal schedule and explained why it is so. This was sufficient for proving

22 MONICA VANCEA AND ALEXANDRU VANCEA

that no time optimal schedule exists for a logic program in the general case. A
thorough analysis of logic program features which determine the conditions under
time optimal schedules exists is what we intend to do as future research.

References

[1] F.E.Allen, Program optimization , in Annual Review in Automatic Programming 5, In-
ternational Tracts in Computer Science and Technology and their Applications, vol.13,
Pergamon Press, Oxford, England, 1969, 239–307.

[2] K.A.M. Ali, R. Karlsson, OR-Parallel Speedups in a Knowledge Based System: on
Muse and Aurora, in FGCS’92, Tokyo, 1992.

[3] D.Bacon, S.Graham and O.Sharp, Compiler Transformations for High-
Performance Computing, in ACM Computing Surveys, vol.26, no.4, December 1994, 345–
420.

[4] R. Bahgat and S. Gregory, Pandora: Non-deterministic Parallel Logic Program-
ming , in G.Levi and M.Martelli, editors, Proc. of the 6th International Conference on Logic
Porgramming. MIT Press, 1990.

[5] Utpal Banerjee, Dependence Analysis, Kluwer Academic Publishers, 1997.
[6] K.L. Clark, S. Gregory, PARLOG: Parallel Programming in Logic, in A.C.M.

TOPLAS, Vol. 8, No.1, Jan. 1986.
[7] Grigor Moldovan, Alexandru Vancea, Monica Vancea, Data dependence testing

for automatic parallelization , Studia Univ. Babeş-Bolyai, Informatica, vol.II, no.1, 1997,
3–18.

[8] D. Padua and M. Wolfe, Advanced compiler optimizations for supercomputers, in
Communications of ACM, 29, 1986, 1184–1201.

[9] Alexandru Vancea and Monica Vancea, Efficient Parallel Code Generation for
nested for-loops, Seminar on Computer Science, Preprint no.2, 1997, 179–188.

[10] Monica Vancea, Executia paralela a programelor logice, Sesiunea de Comunicări
Ştiinţifice Economia României la orizontul anului 2000, 14-15 noiembrie 1998, Cluj-Napoca,
in Studii şi Cercetări Economice, vol. XXVIII–XXIX, 1988, 985–995.

Faculty of Economic Science, Babeş-Bolyai University, Cluj-Napoca, Romania
E-mail address: vancea@econ.ubbcluj.ro

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca,
Romania

E-mail address: vancea@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 1, 2003

WORDS CLUSTERING IN QUESTION ANSWERING SYSTEMS

DOINA TĂTAR AND GABRIELA ŞERBAN

Abstract. Clustering words can be useful in construction of a hierarchy of

hypernyms or a set of synonyms for languages different of English for which

doesn’t exist such hierarchy as WordNet (as in Romanian language case). A

such of hierarchy is very important in some problems of disambiguation [10],

as to perform automatic query expansion in a QA system for Romanian [7].

In this paper we we describe how a list of similar words with a given word

can be constructed. Some words and word-clusters similarity measures are

discussed.

The experiments are made using a Romanian corpus.

1. Introduction

Semantic knowledge is increasingly important in NLP. The key of organizing
semantic knowledge is to define reasonable similarity measures between words.
The purpose to develop a hierarchy of words based on a untagged corpus can
be realized by using hierarchical and non hierarchical clustering algorithms. In
many papers the similarity between two words is obtained by the n-grams models
[8], by mutual information [2] or by syntactic relations [9]. One other mode to
define this similarity is the vector-space model, which we use in this paper. In our
paper the vector ~wi is associated with a word wi as following: let us consider that
{v1, v2, · · · , vm} are m words of a high frequency in corpus. They can be of any
POS set including prepositions and conjunctions from the closed class of words.
The reason for this choice it is the known Zipf’s result that a small set consisting
of most frequent words can be used as framework for study of a natural language.

We define:

wj
i = number of occurences of the word vj in the same contextwith wi

(for a number of contexts).

Received by the editors: February 7, 2003.

2000 Mathematics Subject Classification. 68T50, 68Q32.
1998 CR Categories and Descriptors. I.2.7 [Computing Methodologies]: Artificial

Intelligence – Natural Learning Processing; G.3 [Mathematics of Computing]: Statistical

Computing.

23

24 DOINA TĂTAR AND GABRIELA ŞERBAN

Let us remark that other vector-space models were used in the literature. In
[1] is presented a hierarchy of nouns such that the vector ~wi = (w1

i , w2
i , · · · , wm

i)
associated with a noun wi is constructed as follows: wj

i = 1, if the noun wj occurs
after wi separated by the conjunction and or an appositive, or else wj

i = 0.
In [5], the vector ~wi = (w1

i , w2
i , · · · , wm

i)(where m = 2 × z) associated with a
word wi, is constructed as follows: wj

i = number of occurrences of a word in the
position j = 1 to z at left or z + 1 tom at right.

The paper is arranged as follows. Section 2 presents known clustering algo-
rithms [6]: agglomerative algorithm for hierarchical clustering and divisive non-
hierarchical k-means algorithm, adopted for our vector-space model. Section 3
proposes our variant for an agglomerative algorithm for hierarchical clustering
such that a single ”best” word is clusterized at a step. Section 4 describes how a
list of similar words with a given word can be constructed. In section 5 we pro-
pose an experiment for Romanian language and present comparatively the results
obtained by applying the clustering algorithms described in Section 2.

2. Clustering algorithms

Let us consider that the objects to be clusterized are the vectors of n words,
{w1, w2, · · · , wn}. A vector

~wi = (w1
i , w2

i , · · · , wm
i)

is associated with a word wi as above.
Let us observe that the corpus must not be POS tagged or parsed since we

are interested only of words and not of their syntactic role. However, we used
a stammer to recognize the flexional occurrences of the same word (Romanian
language is a very inflexional language).

The similarity measure between two words wa, wb is the normalised cosine

between the vectors ~wa and ~wb [4]:

sim(~wa, ~wb) = cos(~wa, ~wb) =

∑m
j=1 wj

a × wj
b√∑m

j=1 wj2

a ×
√∑m

j=1 wj2

b

.

Agglomerative algorithm for hierarchical clustering [6]

Input The set X = {w1, w2, · · · , wn} of n words to be clusterised,
the similarity function sim : X ×X → R.

Output The set of hierarchical clusters
C = {C1, C2, · · · , Cn, Cn+1, · · · , Cn+k}

WORDS CLUSTERING IN QUESTION ANSWERING SYSTEMS 25

begin
FOR i = 1 TO n DO Ci = {wi}
C = {C1, C2, · · · , Ck}
j := n + 1
WHILE | C |> 1 DO

(Cu∗ , Cv∗) := argmax(Cu,Cv)sim(Cu, Cv)
Cj = Cu∗ ∪ Cv∗

C = C \ {Cu∗ , Cv∗) ∪ {Cj}
j := j + 1

end

As similarity sim(Cu, Cv) we considered:

sim(Cu, Cv) =

∑
ai∈Cu

∑
bj∈Cv

sim(ai, bj)

| Cu | × | Cv | .

The clustering algorithm begins by considering each word in its own cluster and
ends when all the words are in the same cluster Call = Cn+k. Let us consider
{sn+1, sn+2, · · · , sn+k} the values of similarities such that si = sim(Cu∗ , Cv∗) and
(Cu∗ , Cv∗) has the same sense as in above algorithm. In other words, {sn+1, sn+2,

· · · , sn+k} are the values of similarities such that a new cluster Cj = Cu∗ ∪Cv∗ is
formed, j = n + 1 to n + k. The similarities {s1, s2, · · · , sn} are all set to 1.

The similarities {s1, s2, · · · , sn+k} are ordered decreasing from 1 (the similar-
ities in clusters Ci = {wi}, i = 1, · · ·n) to sn+k, the similarity in the cluster
Call = Cn+k, as they occur on the dendrogram.

Non-hierarchical clustering algorithm: k-means algorithm [6]

Input The set X = { ~w1, ~w2, · · · , ~wn} of n vector words to be
clusterised, the distance measure d : Rm×Rm → R, a function for computing the
mean µ : P → R, the coefficient σ.

Output The set of clusters C = {C1, C2, · · · , Ck}

begin
Select k initial centroids {~f1, ~f2, · · · , ~fk}
WHILE the diameter of a cluster ≥ σ DO

FOR all clusters Cj DO
Cj = {~xi | ∀~fl d(~xi, ~fj) ≤ d(~xi, ~fl)}

FOR all clusters Cj DO

26 DOINA TĂTAR AND GABRIELA ŞERBAN

~fj = ~µ(Cj)
end

As distance measure we considered:

d(~wa, ~wb) =
1

sim(~wa, ~wb)
and as centroid:

~µ(Cj) =
1

| Cj |
∑

~x∈Cj

~x

A diameter of a cluster we define as the distance between the least similar ele-
ments in a cluster.

3. An incremental algorithm for clustering

The following algorithm has the property that at the begin of the process it
arrange at a time only one word to an appropriate cluster.

For a word wi let N(wi) be the set of words wj such that sim(wi, wj) 6= 0. For
a set of words C, N(C) will denote

⋃
wi∈C N(wi). The set N(C) is similar with

the set of neighbours of C in [9] but there the problem is solved on a graph model.
Let C be a set of words from W and u ∈ N(C)\C.
We define

sim(u,C) =
∑

w∈C

sim(w, u).

The best node u′ from a set Q of words, which can be added to the set C,
denoted Best(C, Q), is the node which maximizes sim(u,C):

Best(C, Q) = argmaxu∈Q∩N(C)\Csim(u,C).

Our hierarchical algorithm differs of the above hierarchical algorithm by the
fact that in a step we form a new cluster by adding to a cluster C of the only word
Best(C, Q).

The algorithm is:
Input The set X = {w1, w2, · · · , wn} of n words to be clusterised,

the similarity function sim : X ×X → R.

Output The set of hierarchical clusters
C = {C1, C2, · · · , Cn, Cn+1, · · · , Cn+k}

WORDS CLUSTERING IN QUESTION ANSWERING SYSTEMS 27

begin
FOR i = 1 TO n DO Ci = {wi}
C = {C1, C2, · · · , Cn}
Q = X

j := n + 1
WHILE Q 6= ΦDO

s = argmaxk=1,··· ,j−1Best(Ck, Q)
u′ = Best(Cs, Q)
Cj = {u′} ∪ Cs

C = (C \ {Cs}) ∪ {Cj}
Q = Q\{u′}
j := j + 1

end

Let us remark that after all words from X (Q initial) are clustered, the algorithm
stops.

Let us mention that our algorithm consider only a sense of a word u and for it
exists only a cluster C such that u = Best(C, Q). Of course this is not the case
for polysemous words. In [9] is established that if G is a graph of words build
on the base of a symmetric syntactic relation, and G\w is the subgraph which
results from the removal of w, then the connected components of the subgraph
G\w correspond to the senses of the word w. The above algorithm can be adopted
in this sense, the symmetric relation being sim.

Once that some measure of similarity between words are established, we can
begin a new process of divisive splicing in clusters. We seek to partition the set W

of words into two subsets W1, W2 of the same size so that the similarity between
W1, W2 is minimal: that means that

(W1,W2) = argminV1,V2

∑

wi∈V1

∑

wj∈V2

sim(w1, w2)

An algorithm for implement a such of partition is a variant of hill-climbing
search ([3]): after guessing an initial partition (W1,W2) we exchange two words
between W1 and W2 if the exchange minimize

∑
wi∈V1

∑
wj∈V2

sim(w1, w2). We
stop when no further decrease is possible.

4. The list of similar words for a given word

Input The set of hierarchical clusters C = {C1, C2, · · · , Cn, Cn+1, · · · ,

, Cn+k} (as above), the set of similarities {s1, s2, · · · , sn+k}, a word w ∈ X

28 DOINA TĂTAR AND GABRIELA ŞERBAN

Output The lists Elem and SimDecr containing the elements in X in
decreasing order of similarity with w and the sequence of these similarities.

begin
Set j = 1, Elem(1) = w and SimDecr(1) = 1
FOR i=n+1 TO n+k DO

IF w ∈ Ci (Ci = {Ci,1, · · · , Ci,pi
}) THEN

FOR t=1 TO pi DO
IF not(Ci,t ∈ Elem) THEN

j := j + 1
Elem(j) = Ci,t ; SimDecr(j) = si

end

A corresponding algorithm for calculating the list of similar words for a given
word can be imagined using the k-means algorithm : for each word w, the words
in the same cluster (let say C), in order of distances to w, begin the list. That list
contains then the words from the others clusters, in order of distance (the inverse

of similarity) from C. The similarity is: sim(Cu, Cv) =
∑

ai∈Cu

∑
bj∈Cv

sim(ai,bj)

|Cu|×|Cv| .

5. Results and evaluation

5.1. Applications. In this section we want to show how the clustering process
(based on the algorithms described in the previous section) works.

The first application uses the non-hierarchical clustering algorithm (NHCA -
section 2), the second uses the hierarchical clustering algorithm (HCA - section
2).

Both NHCA and HCA are written in JDK 1.4. The aim is to clusterize a set
of words.

The NHCA algorithm starts with a set of contexts, a set of words having a
maximum frequency in the given contexts and with a set of ”focus” words (terms)
used in the clustering process. As a result of the clustering, the algorithm reports
a set of clusters (in a cluster will be the similar words - the words having similar
senses).

The process starts with a set of initial clusters (based on the focus words), and
after that, learns, based on the information obtained from the initial contexts to
clusterize the set of words.

We have to notice that the set of terms used for the clustering is very important
(this was shown experimentally).

The HCA algorithm starts with the same initial information as NHCA, except
the set of terms. As a result of the clustering, the algorithm reports, for each word

WORDS CLUSTERING IN QUESTION ANSWERING SYSTEMS 29

w, a cluster that will contain the similar words with w, in descending order after
their similarities.

Because in the HCA algorithm the process does not depend on a set of focus
words, the clustering result is more exact than the result of NHCA algorithm.

It is obvious, for both algorithms, that if the number of contexts grow, the
clustering’s precision grows, too (this is shown experimentally).

The initial information, for both algorithms, is read from a text file.

5.2. The applications design. The basis classes used for implementing the two
applications are the same; differs only the clustering algorithm. The main classes
are:

• CList: defines the type the structure of a list of objects, having methods
for:

– adding an object in the list;
– accessing elements from the list;
– updating elements from the list;
– returning the dimension of the list;

• CLine: defines the structure of a list having as elements real values (is
defined using the CList class);

• CContext: defines the structure of a list having as elements words (is
defined using the CList class);

• CLine: defines the structure of a list having as elements lists with real
values (is defined using the CList class);

5.3. Experimental results. In this section we propose an experiment for the
Romanian language: the aim is to clusterize a set of words (to group the words
after the similarity of their meanings). We have applied both the NHCA and the
HCA algorithms.

We mention that we used a set of 26 contexts. We also note that if we grow
the number of contexts, the clustering’s precision grow.

The initial information (the set of words to be clusterized, the contexts, the
focus words) is read from a text file having the following structure:

the words to be clusterized
oameni oras durata timp partid persoana localitate perioada orga-

nizatie sat asociatie
a set of words that the clustering process is based on (at us, these are words

having a maximum frequency in the contexts)
de in la sa care ca pe munca premier
the contexts

30 DOINA TĂTAR AND GABRIELA ŞERBAN

(1) indreptatirea la masurile reparatorii prevazute de prezentul ar-
ticol este conditionata de continuarea activitatii ca persoana
juridica pana la intrarea in vigoare a prezentei legi sau de im-
prejurarea ca activitatea lor

(2) In vederea desfasurarii anchetei disciplinare, salariatul va fi
convocat in scris de persoana imputernicita de catre conduca-
torul unitatii sa realizeze ancheta

(3) Memoriul a ajuns la scoala din localitate, la primarie, la pre-
fectura si la Insepectoratul Scolar al judetului Harghita

(4) Totodata, la Conel, persoanele detasate la unitati din alta lo-
calitate, precum si cele delegate in afara locului de munca au
castiguri uriase

(5) ...

the focus words
persoana localitate perioada organizatie

After applying the NHCA algorithm, we obtained the following clusters:

Cluster 1 timp partid persoana sat
Cluster 2 oras localitate
Cluster 3 durata perioada
Cluster 4 oameni organizatie asociatie

As a measure for evaluation of the NHCA algorithm we propose the precision
of the clustering, defined as follows:

(1) P =

∑k
i=1

ni

Ni

k

where k is the number of clusters, ni is the number of words correctly placed
in the i-th cluster, and Ni is the total number of words placed in the i-th cluster.

We mention that for our experiment, the precision of the NHCA algorithm is
93%.

For the same set of words to clusterize, we have applied the HCA algorithm.
The result obtained for the word asociatie is given in Table 1 (each word is

followed by its similarity with the given word)
We mention that we ran the clustering algorithms on bigger data sets (10000

contexts), 200 words to clusterize an the results are very good.
We also mention that this clustering applications are part of a QA system that

is developed for the Romanian language [7].

WORDS CLUSTERING IN QUESTION ANSWERING SYSTEMS 31

Word Similarity
asociatie 1.0
oameni 0.8498365855987975
oras 0.6255587777150006
localitate 0.6255587777150006
organizatie 0.6255587777150006
timp 0.6255587777150006
persoana 0.6255587777150006
sat 0.6255587777150006
durata 0.5183688447475575
perioada 0.5183688447475575
partid 0.31611039139928965

Table 1. The result of applying the HCA algorithm for the word asociatie

6. Conclusion and future directions

The above algorithms must be connected with the word sense disambiguation
algorithms [10] to work well with ambiguity. A WSD algorithm must be run to
distinguish between two (or more) different senses of a polysemic word. In this
case, the different occurrences of senses correspond to different words.

We intend to evaluate the QA system [7] by expanding of query terms, word by
word, with most similar words in the lists.

We intend to use the similarity between two words to disambiguating a group
of two words: it is well known that two polysemic words are better disambiguated
when they occur together (for example doctor and nurse which are both polysemic
[8]).

References

[1] S. A. Caraballo, “Automatic construction of hypernym-labeled noun hierarchy from text”,

Proceedings of ACL, 1999.

[2] I. Dagan, L. Lee, F. C. N. Pereira, “Similarity-based models of Word Coocurences Prob-

abilities”, MLJ 34 (1–3), 1999.

[3] Y. Even-Zohar, D. Roth, D. Zelenko, “Word prediction and Clustering”,

http://citesser.nj.nec.com/even-zohar99word.html

[4] D. Jurafsky, J. Martin, “Speech and language processing”, Prentice Hall, 2000.

[5] J. Karlgren, M. Sahlgren, “From words to understanding”, CSLI 2001, pp. 294–308.

[6] C. Manning, H. Schutze, “Foundation of statistical natural language processing”, MIT,

1999.

[7] C. Orăşan, D. Tătar, G. Şerban, D. Avram, A. Oneţ, “How to build a QA system in your

back-garden: application to Romanian”, EACL ’03, Budapest, April 2003.

32 DOINA TĂTAR AND GABRIELA ŞERBAN

[8] P. Resnik, “Semantic Similarity in a Taxonomy: An information-Based Measure and its

Application to Problems of Ambiguity in Natural language”, Journal of AI Research,

1998.

[9] D. Widdows, B. Dorow, “A graph model for unsupervised lexical acquisition”.

[10] G. Şerban, D. Tătar, “Word Sense Disambiguation for Untagged Corpus: Application

to Romanian Language”, Proceedings of CICLing 2003 (Intelligent Text Processing and

Computational Linguistics), Mexico City, Mexic, Lecture Notes in Computer Science N

2588, Springer-Verlag, 2003, pp.270-275.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-Napoca,

Romania

E-mail address: dtatar@cs.ubbcluj.ro, gabis@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 1, 2003

APPLICATIONS OF SPATIAL DATABASES AND STRUCTURES
TO THE STUDY OF MIOCENE DEPOSITS OF BOROD BASIN

MIRELA POPA AND MARIA GABRIELA TRÎMBIŢAŞ

Abstract. In this paper we apply spatial database and structure to render

the paleo-relief of the Borod Basin. The boreholes data are stored in a spatial

database. For the effective surface rendering we use local-Shepard interpola-

tion with variable radius, based on a spatial grid and Delaunay triangulation.

The generated pictures are more realistic compared to picture generated by

mean of other methods.

1. Local Shepard Interpolation

The classical Shepard operator (see [19]) defined by

(1) (Sn,µf) (x) =
n∑

k=0

wk(x)f(xk)

(2) wk(x) =
|x− xk|−µ

n∑
k=0

|x− xk|−µ

,

where |.| denotes the Euclidean norm in Rs, and X = {x0, x1, . . . , xn} ⊂ Rs is a
set of n + 1 pairwise distinct points, requires a large amount of computation. The
volume of computation can be reduced replacing the weight functions given by (2)
with the so called Franke-Little weights:

(3) w̄k(x) =

(R− |x− xk|)µ
+

Rµ|x− xk|µ
n∑

i=0

(R− |x− xi|)µ
+

Rµ|x− xi|µ

Received by the editors: February 10, 2003.

2000 Mathematics Subject Classification. 65D05, 65D18.
1998 CR Categories and Descriptors. G.1.1 [Mathematics of Computing]: Numerical

Analysis – Interpolation formulas; H.2.8 [Information Systems]: Database Management –

Spatial databases and GIS .

33

34 MIRELA POPA AND MARIA GABRIELA TRÎMBIŢAŞ

(see [14, 12, 13]). In (3), R is a given positive real constant, and the + subscript
denotes the positive part. Thus we obtain the local Shepard-operator :

(4)
(
S̄L

n,µf
)
(x) =

n∑

k=0

w̄k(x)f(xk).

This operator reproduces the values of f in xk and has the degree of exactness
equal to zero, that is reproduces the constant.

In order to increase the degree of exactness one tries to replace the values
f(xk) with the values of an interpolation operator: Taylor [9, 11, 8, 3, 10, 6],
Lagrange [4, 5, 6], Hermite [1, 5, 6], Birkhoff [2, 5, 6], least square approximation
[18, 16, 17, 21] and even spline[6]. The operators obtained in this way are called
combined Shepard operators.

In this paper we are interested in simple local Shepard operator, given by (4).

2. Spatial data structures

In order to compute the various local Shepard-type interpolants we are in-
terested to report efficiently the point located into the ball B(x,R). The naive
approach (computing dk = |x − xk| and checking dk < R) needs a time O(n) for
each point x. Computational geometry techniques and data structures allow us to
perform this task in polylogarithmic time.

Let P := {p1, . . . , pn} be a set of point from Rs and Reg a region from the same
space. A s-dimensional range searching problem asks for the points from P lying
inside the query region Reg. If the region is a hyperparallelopiped, i.e. Reg =
[x1, x

′
1] × · · · × [xs, x

′
s], then we have an orthogonal range-searching problem. If

Reg is a ball from Rs, we have a circular range searching problem. Our approach
is to solve a simpler orthogonal range searching problem instead the circular range
searching (since this approach eliminates a large number of points) and then to
check the reported points.

One of the most used data structure for orthogonal range query is the range
tree[7]. A solution based on range tree is given in [20].

Another solution is inspired from a paper of Renka[18] and presented exten-
sively in [21]. The smallest bounding box containing the interpolation nodes∏s

k=1

[
xk

min, xk
max

]
is partitioned into an uniform grid of cells, having NR cells

on each dimension. Each cell points to the list of point indices contained in that
cell. Such an example for the 2D case is given in Figure 1. The algorithm 1
describes the creation of the data structure. If the second argument NR is not
provided, we can initialize it with a default value; Renka suggests in [16]

NR = b(N/3)1/ dimc.
The orthogonal range searching is easy to implement using this data structure

(the algorithm 2): first the cell which must be scanned are determined (i.e. the cell

APPLICATIONS OF SPATIAL DATABASES AND STRUCTURES 35

1

2

3

4
5

6

 1, 4, 6
 3, 5

 2 []

Figure 1. A 2D grid of cell and its representation

which intersects the searching domain), and then the list of points corresponding
to that cell are concatenated. The points from the outer cells which lie outside
the searching range must be eliminated.

Algorithm 1 Creating the cell grid

Input: the set of N points P , the number of cells, NR (optional);
Output: a grid of cell LCELL, each containing the list of points in the cell
set all cells to nil;
{compute the cell sizes}
dc1 := min(NR, bx1

max − x1
minc+ 1);

...
dcs := min(NR, bxs

max − xs
minc+ 1);

for K := N downto 1 do
{find the cell}
i1 := min(NR, bxk

1 − x1
minc+ 1);

...
is := min(NR, bxk

s − xs
minc+ 1);

add K to the list LCELL(i1, . . . , is);
end for

Now we are able to compute the local Shepard interpolant on a set of points X:

• build the spatial data structure;
• for each point x in X

36 MIRELA POPA AND MARIA GABRIELA TRÎMBIŢAŞ

– perform the orthogonal range searching into the hypercube centered
in x and with the radius R

– apply formulas (3) and (4).

Algorithm 2 The orthogonal range searching

PTLIST := nil;
{determine the outer cells, i. e. the scan limits}
imin1 := max(1, b(liminf1 − x1

min)/dc1c+ 1);
imax1 := min(NR, b(limsup1 − x1

min)/dc1c+ 1)
...
imins := max(1, b(liminfs − xs

min)/dcsc+ 1);
imaxs := min(NR, b(limsups − xs

min)/dcsc+ 1)
for i1 := imin1 to imax1 do

...
for is := imins to imaxs do

JL := LCELL(i1, . . . , is);
if the cell (i1, . . . , is) is peripheral then

remove the points which lay cell outside the searching range from JL;
end if
concatenate PTLIST and JL

end for
...

end for

This approach has a drawback: the accuracy tends to decrease into the areas
where the interpolation nodes are sparse. We can avoid this situation, allowing
the radius R to vary with k: the radii are chosen such that the ball B(x,R)
contains at least Nw nodes. Thus, instead of an orthogonal range searching we
perform a Nw-th nearest neighbor search of xj and x, respectively. This can be
done scanning the grid in a circular fashion starting with the cell containing x. In
order to facilitate the scanning we can associate a Boolean indicator to each cell,
which is true when the cell was already scanned.

3. The geological data

Borod Depression is located in the western part of the Apuseni Mountains,
being bordered by Plopisului Mountains in the north and by Padurea Craiului in
the south.

This depressionary area was formed about 12-16 million years ago, during the
Badenian, along a fault located on the northern border, in contact with the Plopis

APPLICATIONS OF SPATIAL DATABASES AND STRUCTURES 37

Figure 2. Geological boreholes

Mountains. Subsequently it represented a sedimentary basin where a thick suc-
cession of sediments (200-1000m) was accumulated.

The Neogene deposits representing the filling of the basin were assigned to three
different formations: Borod Formation (Badenian), Cornitel Formation (Sarma-
tian), and Beznea Formation (Pannonian) [15]. Each formation (unit) consists of
banks of rocks with a variable thickness, separated according to well-established
criteria.

This area was investigated during the last three decades by using geological
drilling (Figure 2. Geological studies based on borehole data imply the drawing
of:

• longitudinal and transversal geological profiles
• Isogram maps (isobath and isopachyte)
• 3-D modelling of the paleorelief at various levels (basement and top of

the formations);

For each borehole the database contains the following information:

- The borehole ID;
- The abscissa and the ordinate of the borehole;
- From one to four z-coordinates representing the borehole depth, corre-

sponding to Basement, Badenian, Sarmatian, and Pannonian age.

38 MIRELA POPA AND MARIA GABRIELA TRÎMBIŢAŞ

The graphical representations offer a suggestive image on the specific features
of the basin formation and on its evolution in time. In the previous decades the
graphs – except for the 3-D – were performed manually. This stage was partly
overcome due to attempts to electronic processing of data, including 3-D modelling.
It is worth to mention that on an international level, computer graphics is currently
a common tool in geological sciences.

Our previous trials to draw 3-D block diagrams by using other types of operators
were not satisfactory. On the contrary, the method presented in the paper clearly
evidences the fractured areas (faults), the space arrangement of the geological
blocks, and the relationships among the various formations. The modelling of the
paleoenvironment at the basement level evidences the fault along the northern
border that shaped the basin formation. In the same time, the sets of faults that
shaped the pre-Neogene deposits (older than 65 million years) are also noticeable.
The graphs obtained for the top of the formations (Borod-yellow, Cornitel-green,
and Beznea-magenta) suggest the presence of some faults that have influenced also
the geological structure of these deposits. Some of these faults represent older,
basement-related ones that were subsequently reactivated; others are younger and
were probably generated by petrographical discontinuities in the deposits that
form the cover (Figures 3, 4).

A “scaled” reconstruction of a sedimentary basin at different stages of its evo-
lution is an extremely useful tool in the geological research. 3-D block diagrams
represent the most suggestive image of a basin at various formation stages if the
method of interpolation of data between different drill locations used was based
on the suitable operators.

The variable radius (range) local Shepard operator based on a rectangular net-
work (grids) as well as the Delaunay triangulation definitely provide a more sug-
gestive image on the spatial relationship between geological blocks.

The graph already presented are build on a rectangular grid. A more useful
and realistic manner is to generate surfaces over a polygonal convex area. This
can be achieved using a triangular grid the Delaunay triangulation (see [7]). The
idea is to consider a polygonal area and a sufficiently large number of points in
this area; we compute the function values on these points and then the Delaunay
triangulation for this set of points. The membership of a point to a region is
easily performed with this data structure. Finally, we render the surface on the
triangular grid computed in this way.

Figures 5 and 6 give such representations for the surfaces given in Figures 3
and 4, respectively.

APPLICATIONS OF SPATIAL DATABASES AND STRUCTURES 39

Figure 3. Representation: Basement – red, Badenian (top of
Borod Formation) – yellow, Sarmatian (top of Corniţel Forma-
tion) – green

Figure 4. Representation: Basement – red, Badenian (top of
Borod Formation)– yellow, Sarmatian (top of Corniţel Formation)
– green, Pannonian (top of Beznea Formation) – magenta

4. Conclusions

The variable radius Shepard interpolation is a feasible approach for scattered
data interpolation. Using spatial data structures leads us to efficient algorithms

40 MIRELA POPA AND MARIA GABRIELA TRÎMBIŢAŞ

Figure 5. Representation of the surfaces from Figure 3 using
Delaunay triangulation

Figure 6. Representation of the surfaces from Figure 4 using
Delaunay triangulation

for computing such interpolation operators and rendering the corresponding oper-
ators.

The method is also suitable from application point of view. It provides a more
suggestive image on the spatial relationship between geological blocks and reveals
some faults which other previous trials cannot reveal.

APPLICATIONS OF SPATIAL DATABASES AND STRUCTURES 41

References

[1] Gh. Coman. Shepard operators of Hermite-type. Rev. Anal. Numér. Théor. Approx, 26:103–

111, 1997.

[2] Gh. Coman. Shepard operators of Birkhoff-type. Calcolo, 35(4):197–204, 1998.

[3] Gh. Coman and L. Ţâmbulea. A Shepard-Taylor approximation formula. Studia Univ.

“Babeş-Bolyai”, XXXIII(3):65–73, 1988.

[4] Gh. Coman and R. Tr̂ımbiţaş. Shepard operators of Lagrange-type. Studia Univ. “Babeş-

Bolyai”, Mathematica, XLII(1):75–83, 1997.

[5] Gh. Coman and R. Tr̂ımbiţaş. Bivariate Shepard interpolation. “Babeş-Bolyai” University,

Faculty of Mathematics and Computer Science, Seminar on Numerical and Statistical Cal-

culus, Preprint, (1):41–83, 1999.

[6] Gh. Coman and R. Tr̂ımbiţaş. Combined Shepard interpolation. East Journal of Approxi-

mation Theory, 7(4):471–483, 2001.

[7] Mark de Berg, Mark van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational

Geometry, Algorithms and Applications. Springer Verlag, Berlin, Heidelberg, New York,

Tokio, 1997.

[8] B. Della Vecchia and G. Mastroianni. Pointwise estimates of rational operators based on

general distribution of knots. Facta Universitatis, Ser. Math. Inform., 6:63–72, 1991.

[9] B. Della Vecchia and G. Mastroianni. Pointwise Simultaneous Approximation by Rational

Operators. Journal of Approximation Theory, 65:140–150, 1991.

[10] B. Della Vecchia and G. Mastroianni. On functions approximations by Shepard-Type opera-

tors - a survey. In Approximation theory, wavelets and applications, Maratea, 1994, volume

454 of Ser. C, Math. Phys. Sci., pages 335–346, Dordrecht, 1995. NATO Adv. Sci. Inst.,

Kluwer Acad. Publ.

[11] R. Farwig. Rate of Convergence of Shepard’s Global Interpolation Formula. Math. Comp,

46(174):577–590, 1986.

[12] R. Franke. Scattered data interpolation: Tests of some methods. Math. Comp., 38:181–200,

1982.

[13] R. Franke and G. M. Nielson. Smooth interpolation of large sets of scattered date. Interna-

tional Journal for Numerical Methods in Engineering, 15:1691–1704, 1980.

[14] R. Franke and G. M. Nielson. Scattered Data Interpolation and Applications: A Tutorial

and Survey. In D. Roller H. Hagen, editor, Geometric Modeling - Methods and Applications,

Berlin, Heidelberg, New York, 1990. Springer Verlag.

[15] Mirela Popa. Lithostratigraphy of the Miocene Deposits in the Eastern Part of Borod Basin

(North-Western of Romania). Studia Universitatis “Babeş-Bolyai”, Geologia, XLV(2):95–

103, 2000.

[16] R. J. Renka. Algorithm 660, QSHEP2D: Quadratic Shepard Method for Bivariate Interpo-

lation of Scattered Data. ACM Transactions on Mathematical Software, 14(2):149, 1988.

[17] R. J. Renka. Algorithm 661, QSHEP3D: Quadratic Shepard Method for Trivariate Interpo-

lation of Scattered Data. ACM Transactions on Mathematical Software, 14(2):151, 1988.

[18] R. J. Renka. Multivariate Interpolation of Large Sets of Scattered Data. ACM Transactions

on Mathematical Software, 14(2):139–148, 1988.

[19] D. Shepard. A Two Dimensional Interpolation Function for Irregularly Spaced Data. In

Proc. 23rd Nat. Conf. ACM, pages 517–523, 1968.

[20] M. G. Tr̂ımbiţaş and R. Tr̂ımbiţaş. Range searching and local Shepard interpolation.

In Al. Lupaş, editor, Proceedings of Romanian-German Seminary (ROGER) 2002, pages

279–292, Sibiu, 2002.

42 MIRELA POPA AND MARIA GABRIELA TRÎMBIŢAŞ

[21] M. G. Tr̂ımbiţaş. Combined Shepard-least square operators – Computing them using spatial

data structures. Studia Univ. “Babeş-Bolyai”, Mathematica, XLVII(4):119–128, 2002.

Department of Geology, Babeş-Bolyai University, 1, Kogălniceanu St., RO-3400

Cluj-Napoca, Romania

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 1, Kogălniceanu

St., RO-3400 Cluj-Napoca, Romania

E-mail address: gabitr@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 1, 2003

AN APPROACH ON SEMANTIC QUERY OPTIMIZATION FOR
DEDUCTIVE DATABASES

ADRIAN ONEŢ

Abstract. In this article we present a learning method to obtain rules for
the semantic query optimization in deductive databases. Semantic query
optimization can dramatically speed up deductive database query answering
by knowledge intensive reformulation. We will present a learning method for
rules that will help to semantically optimize queries for deductive databases.i
We tried to change the algorithm in [2] to work for deductive database as well
in this direction we propose a method for an approximate cost evaluation for
deductive database predicates.

1. Introduction.

The semantic query optimization (SQO) is based on the use of the semantic
rules, as it is There is no river trough Carei city. Using these rules, we can
reformulate the queries in lower cost ones, for example: Which are the cities that
are in the Carei neighborhood? (in the following we will consider that two cities are
neighbors if there exists a river that connects these two cities). Using the semantic
rules we can answer this query even without accessing the deductive database, so
we will obtain a 100% cost reduction. Average savings from 20 to 40 percents are
reported in the literature.

Unlike other systems, conceived for deriving rules from one database table,
the Hsu&Block inductive method [2] of learning can learn semantic rules from a
database with several relations (and, in our case, by using several base or derived
predicates). For instance, if we consider a database that contains three relations
pupils, bachelor grades, coordinator, the bachelor grades can concord with the
papers coordinator (e.g. All who have Mestereanu as coordinator obtained grades
superior to 9 at the bachelor exam). The learning algorithm can select the relevant
ways from the disjunction of two or more predicates (which is often made by
the user). By using the semantic relations that describe some regularities in the
disjunction of two or more predicates, our optimizer will be more than efficient

Received by the editors: March 15, 2003.
2000 Mathematics Subject Classification. 68U35.
1998 CR Categories and Descriptors. I.2.1 [Computing Methodologies]: Artificial In-

telligence – Appplications and Expert Systems.

43

44 ADRIAN ONEŢ

in the diminution of more complex queries execution price. We need to underline
that this mechanism is profitable in a static database (without many updating in
the extensional database as well as in the intensional one).

2. The semantic query optimization

The semantic query optimization is applied to different database types. Al-
though the basic pattern of the semantic optimization refers only to the conjunc-
tive queries, it can also be extended to other types, more complex. The general
idea is that the complex queries can be decomposed in one or more conjunctive
queries; after that the system can apply the semantic optimization of these queries.
In this chapter we’ll focus only on the conjunctive queries.

For an easier comprehension, we’ll use the following knowledge database:
The extensional database structure:
Town [Name, Components]
Descriptions [Type Component, Description]
Integration [Component, Type Component]
Fraternity [Name Town1, Name Town2, Date]

with the following meaning: the relation town contains the name and the dif-
ferent components in this town (e.g. the town: Bucharest has the component:
Art Museum). The second relation, descriptions, obtains, for each component
type a description of the respective town (e.g. if the component Art Museum
belongs to the component type Historical Objective - according to the relation in-
tegration - and if in the relation description we have the tuple: Type Component:
Historical Objective Description: Tourism, than we can say that Bucharest town
is a touristic town). As we have already shown, the relation integration tells us
to which type component belongs a component by a transitivity relation. Finally,
the relation fraternity gives us information about towns which are united, such
as the date when they established the fraternity.

The intensional database structure: (in order to describe the intensional data-
base, we maintain the Prolog syntax regarding to the variables and constants
name)

objectives(Locality, Objective) :-
town(Locality, Component),

type objective(Component, Type component),
descriptions(Type component, Objective).

type objective(Component, Type component) :-
integration(Component, Type component).

type objective(Component, Type component) :-
integration(Component, Type component1),

type objective(Type component1, Type component).

AN APPROACH ON SEMANTIC QUERY OPTIMIZATION FOR DEDUCTIVE DATABASES45

We consider the following data in the extensional database:
Town
CAREI CASTLE
CAREI PARK
TURDA FACTORY
CLUJ SQUARE
CLUJ BOTANIC GARDEN
DEJ FACTORY

Descriptions
HISTORICAL OBJECTIVE TOURISM
WORKS POLLUTION
GREEN SAPCES BEAUTY
COMMERCIAL PLACES BUSINESS

Integration
CASTEL MONUMENT
MONUMENT HISTORICAL OBJECTIVE
FACTORY WORKS
PARK GREEN SPACES
SQUARE COMMERCIAL PLACES
BOTANIC GARDEN GREEN SPACES

Fraternity
CAREI DEJ
TURDA CLUJ
CLUJ DEJ

The main principle of the semantic query optimization is based on finding the
equivalent queries for the initial query, but at a lower cost. The construction of
the equivalent queries with the initial query is realized by using some semantic
rules, which will be learned by the system from the previous queries. By a lower
cost of the queries we understand a real cost approximation (the exact calculus of
the cost would determine the diminution of the algorithm efficiency).

The difference between the syntactic optimization and the semantic one consists
in using the semantic knowledge for expanding the search field for the semantic op-
timization. The conventional syntactic optimizations search the cheaper equivalent
queries from the logical point of view for the initial queries [5] (the optimizations
which re-sort literals/constraints belong to this category). The semantic optimiza-
tion, on the other hand, searches the queries with the lowest cost equivalent to
the initial query, by giving some semantic information. That is why, this type of
optimization has a bigger search field and the lowest cost is also more probable
comparing to the queries obtained by the syntactic optimization.

46 ADRIAN ONEŢ

3. The learning model

In this sequence we try to present a learning model of the semantic rules (model
presented in [2]). The figure 1 shows the database organization with a semantic
optimizer and a learning system. The optimizer uses the semantic rules in order
to optimize the queries and to send the optimized queries to rule on the deductive
database in order to find the result. When the deductive database is dealing with
a complex query (we mean expansive), the optimizer connects the learning system
to learn a set of rules which are to be used for the optimization of other similar
queries. The system will learn gradually sets of rules used for optimization.

Query
optimizer

intensional DB

extensional DB

Learning
system

query reformulated query

deductive database

rule bank

Fig.1 The structure of a knowledge database with a semantic optimizer

In the figure 2 there is a simple example of such a learning/optimization pattern.
This model consists in two components [Chun95], a learning inductive component
and an operational one. A query will call the learning component; afterward
the system will apply an inductive learning algorithm to induct an alternative
query of the initial query, but at a lower cost. Afterwards, the operationalization
component, using the initial query and the alternative query learned, deduce a set
of semantic rules.

In this example, the tuples from the relation are considered positive or negative
depending of the query satisfaction or non satisfaction. The alternative query will

AN APPROACH ON SEMANTIC QUERY OPTIMIZATION FOR DEDUCTIVE DATABASES47

have to cover only the positive instances of the relation, thus the response to the
alternative query will be the same as for the main query.

(A2£0)Ù(A3=2)

A1 A2 A3

A 1 2

B 1 2

Z 0 2

-

-

+

EDB

Alternative query

A1=Z

((A 2 £ 0) Ù (A 3 = 2)) Û (A 1 = Z)

((A 2 £ 0) Ù (A 3 = 2)) Û (A 1 = Z)

(A 1 = Z) Þ(A 3 = 2)

(A 1 = Z) Þ (A 2 £ 0)
o p e r a t i o n a l i z a t i o n

I n d u c t i v e d e s c r i p t i o n
f o r m a t i o n

q u e r y s a m p l e

e q u i v a l e n t q u e r i e s r u l e s t o b e l e a r n e d

Fig.2 A learning pattern

Given a set of queries considered positive or negative, the problem of finding a
description which covers only the positive instances, is named supervised inductive
learning [2]. The more difficult problem is to compare the cost of different queries
(when choosing the most appropriate semantic rule). If we use a calculus of the
real cost, this optimization algorithm could not justify its objectives (the cost of
such a calculus is big enough, sometimes even impossible to calculate). In this
chapter we propose less expansive method which approximates the cost of such
queries.

The operationalization component deduces semantic rules by using two equiva-
lent queries. These two queries consist in two phases. In the first one, the system
transforms the equivalence of the two queries into Horn clauses. For instance,
given the queries: (A2 ≤ 0)∧ (A3 = 2) and the equivalent query A1=’Z’, they will
be transformed in two clauses:
1)(A2 ≤ 0) ∧ (A3 = 2) ⇒ A1 =′ Z ′

2)A1 =′ Z ′ ⇒ (A2 ≤ 0) ∧ (A3 = 2)
The second rule can be expanded again in order to satisfy the Horn clause syntax:
3)A1 =′ Z ′ ⇒ (A2 < 0)
4)A1 =′ Z ′ ⇒ (A3 = 2)

After transformation, we obtain the rules 1), 3) and 4) which satisfy our syn-
tactic demands. In the second phase, the system tries to compress the antecedents

48 ADRIAN ONEŢ

of these rules for reducing their cost. Thus, if the rules have more than one an-
tecedent, can be used the greedy minimal cover algorithm in order to eliminate
the respective constraints. The minimal cover problem is to find a sub-set from a
collection of sets, thus the reunion of the sub-set sets is equal to the reunion of all
sets. Denying both of the first rule parts, we obtain:
¬(A1 =′ Z ′) ⇒ ¬(A2 ≤ 0) ∨ ¬(A3 = 2)

Thus, for the clause 1), we have the following problem: given a set collection
which satisfy ¬(A2 ≤ 0) ∨ ¬(A3 = 2) find the minimum number of sets which
satisfy ¬(A1 =′ Z ′). If we suppose that the minimum set of the sets which covers
¬(A1 =′ Z ′) is ¬(A2 ≤ 0), then, in this case we can also eliminate ¬(A3 = 2) from
the rule and, after the clause denying, we obtain: (A2 ≤ 0) ⇒ A1 =′ Z ′

4. Alternative query learning

In this sequence, we present an inductive learning method of the alternative
queries with reduced cost. In the figure 1, it was given an example with only
one predicate, but, usually, the deductive databases consist in more predicates
(the basic databases as well as the derived ones), and the queries structure often
implies relations of the join type. The inductive learning model described is able
to learn conjunctive queries at reduced cost from the deductive databases with
more predicates.

Before describing the model, we have to introduce two terms that describe the
queries obtained, such as: internal disjunctions (constraints over one attribute
value), join constraints (they specify a constraint over one or several attributes
from different predicates) [4].

The learning model is an extension of the greedy algorithm which learns internal
disjunctions from one database created with one table, algorithm proposed by
Haussler [3]. This algorithm starts from an empty hypothesis of the concept to
be learned, then continues by constructing a set of candidate constraints which
respect all the positive instances, in order to choose the most promising constraints
by using one heuristic function such gain/cost, which is added to the hypothesis.
This process is repeated until negative instance doesn’t satisfy the hypothesis.

The algorithm has as entrance the Q query and the predicates from the deduc-
tive database. We call the base relation the relation that must be accessed for
the initial queries. If the output attributes of the query are connected to different
predicates, then the base relation is the relation resulted from the join of these
relations. For example, if, in our case, we consider the query What towns have as
main objective the beauty the base relation would be given by the predicate ob-
jectives, the tuples of this relation (the ones marked by + are those who satisfy
the query):

AN APPROACH ON SEMANTIC QUERY OPTIMIZATION FOR DEDUCTIVE DATABASES49

Objectives
CAREI TOURISM
CAREI BEAUTY +
TURDA POLLUTION
CLUJ BUSINESS
CLUJ BEAUTY +
DEJ POLLUTION

Initially, the system determines the base relation of the entrance query, then it
marks its instances as being positive or negative (an instance will be marked as
positive if it satisfies the query, and as negative on the contrary)

Algorithm Learning alternative queries
Input: Q- entrance query, DDB - deductive database
Output: AQ - alternative query
Let r = base relation for Q
Let AQ = ® - alternative query
Let C = ® - candidate constraints set

It builds candidate constraints for r and added to C
Repeat

Evaluates the rapport gain/cost of the constraints from C
Let c = the constraint with the lowest value for gain/cost from C
if gain(c)>0 then
add c to AQ
C = C - c
if AQ⇔Q then return AQ
else
if c is a constraint of the join type on the new relation r’ then
build candidate constraints for r’ and it is added to C

end if
end if

end if
until gain(c) = 0

return failure - because it wasn’t found AQ equivalent to Q
end algorithm

In this algorithm we still have to explain how the constraints were built and
how the calculus of the heuristic function gain/cost was made.

5. Building the candidate constraints

For every attribute from the base relation, the system can build an internal dis-
junction, as well as a candidate constraint, by generalizing the positive instances

50 ADRIAN ONEŢ

attributes value. For the query given as example for the first attribute from the
base relation we have the following values: Carei, Cluj, and, if we consider the
second attribute, we have the value beauty. Similarly, the system can also consider
the constraints of join type as well as the candidate constraints if it consists in all
the positive instances. If, for example, we have join between objectives and fra-
ternity, we’ll obtain the relation (we marked with + the instances which satisfy
the query)

Objectives⊗Fraternity
CAREI TOURISM CAREI DEJ
CAREI BEAUTY CAREI DEJ +
TURDA POLLUTION TURDA CLUJ
CLUJ BUSINESS CLUJ DEJ
CLUJ BEAUTY CLUJ DEJ +

We can notice that this kind of relation can help us finding a candidate con-
straint, for example for the second attribute of the predicate fraternity, we have,
for all the positive instances the value DEJ (we have to consider, of course, the
cost as well, but in most of the cases, the cost of one join is lower then the cost of
traversal of one relation of the join [6]).

6. The evaluation of the candidate constraints

Once built the set of the candidate constraints, we will have to establish which is
the most promising one and to add it to the hypothesis (see the algorithm). To do
it, we’ll have to evaluate the gain/cost value for each constraint, where by gain we
mean the number of excluded negative instances. For the basic predicates there is
one set of algorithms that approximate the cost function of their physical structure
[5],[6]); in the case of derived predicates, their cost estimation is more difficult.
We’ll present as follows an estimation method for the cost of these predicates (the
costs also depend, of course, on the basic predicates access).

The cost estimation method is a rewriting method. Consequently, we add a
new basic predicate estimated cost(predicate, cost) whose argument is the
predicate, that is the estimated cost of the given predicate. The algorithm con-
sists in the modification of the tuples corresponding to the relation function of the
introduced relations (thus, as it is no longer necessary to access these predicates
when calculating, but only to consult the relation corresponding to the predicate
estimated cost). Initially, for each derived predicate, will exist a corresponding
tuple with the initial value is 1. For our example, we will have:

estimated cost
objectives 1
type objective 1

AN APPROACH ON SEMANTIC QUERY OPTIMIZATION FOR DEDUCTIVE DATABASES51

The next step consists in rewriting the rules so that they can evaluate the ap-
proximated cost of a predicate. To do this, we’ll have to add another attribute
to every derived predicate and that will represent the cost. Thus, this cost will
increase at every call of the clause function of the dimensions of the relations cor-
responding to the other predicates and function of the dimension of the relations
corresponding to the basic predicates (here we can optimize by introducing other
parameters such as indexes [5]) which compose the respective clause. Thus, for
our example, we’ll have the following intensional database (after rewriting):

objectives(Locality, Objective, Cost objectives) :-
town(Locality, Component),

type objective(Component, Type component, Cost type objective),
descriptions(Type component, Objective).

Cost objectives=dim town * Cost type objective * dim description.
type objective(Component, Type Component, Cost type objective) :-

integration(Component, Type Component),
Cost type objective=dim integration.

type objective(Component, Type Component, Cost type objective) :-
integration(Component, Type Component1),

type objective(Type Component1, Type Component,
Cost type objective intermediary),

Cost type objective = dim integration *Cost type objective intermediary.
Where dim town, dim description, dim integration are some variables repre-

senting the cost of the access to the relations: Objective, Description, and Integra-
tion. All that remains to do is to memorize the results in the relation corresponding
to the predicate estimated cost, which can be realized by using an update pred-
icate (by updating one predicate value cost we’ll understand the change with the
cost biggest value) of the tuples at the call of each predicate. This is not recom-
mended because there can exist internal predicates which are not called explicitly
by the query, but called only by other predicates whose cost is not evaluated. That
is why, we have chosen (for now - in the future, we are counting on finding a better
solution) to integrate this update predicate in every clause, corresponding to the
heading predicate. Thus, for the previous example, we have (supposing that the
update predicate is named cost update(predicate, cost)):
objectives(Locality, Objective, Cost objectives) :-

town(Locality, Component),
type objective(Component, Type Component, Cost type objective),

description(Type Component, Objective),
Cost objectives=dim town * Cost type objective * dim description,

Cost update(objectives, Cost objectives).
type objective(Component, Type Component, Cost type objective) :-

52 ADRIAN ONEŢ

integration(Component,Type Component),
Cost type objective= dim integration,

Cost update(type objective, Cost type objective).

type objective(Component, Type Component, Cost type objective) :-
integration(Component,Type Component1),

type objective(Type Component1, Type Component, Cost type objective inter),
Cost type objective = dim integration * cost type objective inter,

Cost update(type objective, Cost type objective).

The predicate Cost update/2, as we have specified, will change the predicate
(the first parameter) cost value (the second parameter) in the relation correspond-
ing to the predicate estimated cost/2, only if the cost value given by the second
parameter is bigger then the value found in the relation.

This algorithm works very good for the systems whose evaluation is bottom-
up (it ignores the parameters link); in the top-down case, there are differences
between the cost of a predicate which has no linked parameter and the cost of
a predicate which has all the parameters linked. That is why, for the top-down
evaluation systems, we change the previous algorithm so that this evaluation still
makes the difference between the parameters different ways of linking. The modi-
fication consists in adding a new attribute to the relation estimated cost/3 that
tells us for what link type the cost is calculated. Consequently, in our example,
the relation contains initially:

estimated cost
objectives bb 1
objectives bf 1
objectives fb 1
objectives ff 1
type objective bb 1
type objective bf 1
type objective fb 1
type objective ff 1

We can notice that we only considered the parameters that entered in the initial
relation. The clauses will be also modified, meaning that we will add one parameter
from the list type to each derived predicate. This parameter will tell us about the
way that the link is realised for the predicate, at that moment; thus, the way of a
variable link also depends on the way that the previous predicate was evaluated.
Our intensional base will be as follows:

objectives(Locality, Objective, Cost objectives, Link Objectives) :-
town(Locality, Component),

type objective(Component, Type Component, Cost type objective, [b,f]),
descriptions(Type Component, Objective),

AN APPROACH ON SEMANTIC QUERY OPTIMIZATION FOR DEDUCTIVE DATABASES53

Cost objectives=dim town * Cost type objective * dim descriptions,
Cost update(objectives, Cost objectives, Link Objectives).

type objective(Component, Type Component, Cost type obj, Link type obj) :-
integrare(Component, Type Component),

Cost type obj= dim integrare,
Cost update(type objective, Cost type obj, Link type obj).

type objective(Component, Type Component, Cost type obj, Link type obj):-
integration(Component,Type Component1),

value(2,Link type obj,L),
type objective(Type Component1,Type Component,Cost type obj inter,[b,L]),

Cost type obj = dim integration*cost type obj inter,
Cost update(type obj, Cost type obj,Link type obj).

We used the value/3 predicate that indicates the way of link of the parameter
given by number by the first argument from the link list given as the second
argument, and the third argument will make us return to the respective value.
For example, the predicate value/3 description will be:
value(1,[A|],A).
value(N,[|T],A):- succ(N1,N), value(N1,T,A).

At every derived predicate call, we’ll also have to precise the way of parameters
linking (for instance, the query What are the towns that have as principal objective
beauty is described as follows: ?:- objectives(Town, beauty, Cost, [f,b])).

We notice that, in this case, the cost update predicate has three arguments
(was also added the link list - a tuple from estimated cost is once identified by
the predicate name and by the way of the parameters linking).

In this algorithm constants were used for the cost of the relations corresponding
to the main predicates, these constants are calculated according to the formula
described by [6].

After this modification of the database, the cost calculus for the candidate
constraints is no longer an issue, because we have already calculated these costs
in the estimated cost relation; thus, using one traversal of this relation, we can
determine every derived predicate that belongs to a candidate constraint.

7. The search in the candidate constraints domain

When a join type constraint is chosen, a new relation is introduced in the
candidate constraints domain. The system can choose to add new constraints on
the account of the new relation from the hypothesis or to consider the attributes
of the old relation. When a join type constraint is added, the domain is devised in
two levels, if to the new introduced relation constraints a new join type constraint
is added; then, the domain will be devised in three levels and so on. The exhaustive
evaluation of the gain/cost for all the candidate constraints is not at all practical
when we deal with a big and complex database. The system introduce by [2] prefers

54 ADRIAN ONEŢ

the model that favors the candidate constraints of the new introduced relation.
Thus, when a join type constraint is selected, the system will consider only those
candidate constraints from the new level, until the system builds a hypothesis
that covers all the positive instances and no negative instance (that means that
it achieved its purpose), or until it can not find other constraints that have a
positive cost on that level. In the last case, the system returns to the previous
level, continuing searching. This evaluation method was chosen because a join
type constraint is less probable chosen from the rest of the constraints (usually,
the join constraints have a bigger cost); if this constraint was chosen, it means
that the rest of the constraints have a very high cost or a negative gain.

8. Conclusion

In this article we have shown that the knowledge required for semantic query
optimization can be learned under the guidance of the input queries. We have de-
scribed a method to approximate the query execution cost in deductive databases.
We can use this method in the inductive learning algorithm described by [2] for
semantic query optimization in deductive databases. A limitation of this semantic
query optimization approach is that there is no mechanism to deal with changes
in the deductive database. This problem can be solved as follows: when the de-
ductive database is changed, a maintenance system will be used to update the rule
bank so that there will remain only those rules which respects the updates made
to the deductive database.

References

[1] Weidong Chen : “Query Evaluation in Deductive Databases with Alternating Fixpoint
Semantics”, ACM Transactions on Database Systems vol. 20/3, 1995, pp. 239-287.

[2] Chun-San Hsu, Craig A. Knoblock: “Using inductive learning to generate rules for se-
mantic query optimization”, Advances in Knowledge Discovery and Data Mining, 1996,
pp. 425-445.

[3] Haussler,D:“Quantifying Inductive Bias: AI Learning Algrithms and Valiant’s Learning
Framework.”,Artificial Intelligence 36, 1988, pp. 177-221.

[4] Raghu Ramakrishnan:“Database Management Systems”, WCB McGraw Hill, 1998.
[5] Jeffrey D. Ullman: “Principles of Databases and Knowledge-Base Systems, Vol I: Classical

Database Systems”, Computer Science Press, New York, 1988.
[6] Jeffrey D. Ullman: “Principles of Databases and Knowledge-Base Systems, Vol II: The

new technologies”, Computer Science Press, New York, 1989.
[7] S. Ceri, G. Gottlob, L. Tanca: “Logic Programming and Databases”, Springer-Verlag

Berlin Heidelberg 1990.
[8] L. Warshaw, Daniel P. Miranker: “Rule-Based Query Optimization, Revisited”,CIKM,

1999, pp. 267-275

Department of Computer Science, Faculty of Mathematics and Computer Science,
Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: adrian@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 1, 2003

SCALABLE PLATFORM FOR MULTIMEDIA GROUP
COMMUNICATION

PIROSKA HALLER

Abstract. The main aim of this paper is the development of a middle-
ware platform, which will create the common abstracting level for different
distributed media forming a communication group. The innovation of the
presented platform consists in connecting two major aspects – the scalable
architecture and the management of the quality parameters. In the same
time the middleware platform has to be independent from the multimedia
application that use it, and can run distributed on different platform.

We define an extended object model following the recommendation of
the reference model, as basis for middleware service level. The proposed
distributed and hierarchical architecture for different services offers more ex-
tensibility and efficiency to the application. But this architecture is part of
the middleware and is transparent for the user level.

The proposed new architecture and measurement based management
policies, make possible the continuous adaptation of the quality parameters to
the modification of the requirement or the system resources at the application
level, even if the network level not support guaranteed services.

Keywords: Distributed multimedia system, middleware platform, group
communication, quality of services.

1. Introduction

The development of the interactive and distributed multimedia applications has
introduced two new requirements, support for group communication and quality
of services (QoS). The existing solutions on the level of the communication system
cannot be adapted to this kind of multimedia applications. On the one hand the
structure of the communication group may continuously modify, and the modifica-
tions of a terminal will affect all the members of the group. On the other hand the
reservation-based quality of services will continuously block the unused resources,
as it is very hard to estimate the requirements from the beginning. The advan-
tage of the adaptive algorithms against of the algorithms based on reservation is
evident.

Received by the editors: March 15, 2003.
2000 Mathematics Subject Classification. 68M14.
1998 CR Categories and Descriptors. D.2.11 [Software engineering]: Software architec-

tures – domain specific architectures .

55

56 PIROSKA HALLER

Presently the solutions follow two different directions. On the one hand the
creation of several adaptive applications which would assure the transfer of the
multimedia data even if the communication subsystem does not guarantee the
quality of services[2,8], using different buffering and differentiated encoding tech-
niques, but unfortunately they work on a relatively homogenous infrastructure.
The other direction represents the extending of the communication subsystem
with quality parameter maintaining services (Diffserv, Intserv), but this requires
the modification of the infrastructure. Generally there are no integral solutions for
maintaining the quality parameters for end-to-end connections on the application
level. The effective usage of the services newly offered by the operation systems
and by the communication subsystem is very difficult on the application level and
it is necessary to create middleware platforms.

We suggest the creation of an middleware platform with a hierarchical and dis-
tributed structure, that will manage the communication groups for multimedia
applications, providing the real time data access and the synchronous presenta-
tion of the data resulted from a distributed system. The proposed platform was
implemented in collaboration with INTEGRASOFT in the HERMIX project.

The fundamental requirements that are impose for this platform represent the
scalability of the system and the quality parameter management for end-to-end
connections. The quality parameters management will control the distribution
of the resources depending on the requirements, but based on globally optimal
criteria, assuring in the same time the auto adaptation of the whole system at the
modifications in a single node.

2. The Object Model

The computational point of view of the proposed platform corresponds to the
RM-ODP[1] standard and defines the system as a set of location independent
objects connected through explicit connections[4]. The objects can be accessed
through the interfaces that can be message or stream type.

From engineering point of view the system may be considered as a set of termi-
nal node objects forming communication groups. The terminal objects represent
location independent entities that will be treated uniformly as encapsulated ob-
jects. These may vary in terms of granularity from a single communication media
(for ex. text), to more types of communication media (for ex. video, audio, text,
graphics, file), or to any number of identical media (for ex. 20 video streams). In
fact a terminal node may be an interactive user presenting data required from the
server, a file server, a database server, an audio or video broadcasting source, a
monitoring point or any other combination of source and presentation objects.

The terminal objects represent a set of source objects, presentation objects,
timer objects and a coordination object that is capable of generating, of processing
and of interpreting scenarios[fig 1]. These scenarios represent temporal constrains
between different types of data[7]. The terminal objects may implement two types

SCALABLE PLATFORM FOR MULTIMEDIA GROUP COMMUNICATION 57

scenario interpreter

group messages
communication

system messages
communication

audio stream
communication

video stream
communication

timer

event
event

t1

video
presentation

τ τ

audio
presentation

pipe

graphic
presentation

a1

v1

a2

v2

a3

v3

an–2

vn–2

an–1

vn–1

an

vn

Figure 1. The structure of the terminal node

of communication: stream or message. The stream communication class may
transmit notification events when receiving or transmitting a package based one
the frame’s time stamp, to the classes that have been registered for a certain event.
Through this mechanism the synchronization or the presentation is supported
according to certain scenarios. Each media will have its own communication object
that will be dynamically created by the middleware platform.

Each terminal object has to contain message type communication objects rep-
resenting the link to the middleware platform that provide the support for the
management of the communication. The messages may be of different type: ad-
ministration, system, error or group and will be transmitted asynchronously.

3. The Internal Structure

The middleware platform represents a set of services grouped in different mod-
ules: authentication, group management, quality parameters management, stream
management.

The proposed platform has an open architecture, allowing for the integration
of new services in case these correspond to the extended model. These modules
may be created and dynamically loaded by the central manager object depending
on the connection parameters specified in the terminal objects.

The central manager object is an object having a hierarchical structure, includ-
ing different distributed active objects (group manager, terminal manager, stream
manager, and QoS manager), communicating through messages[fig 2].

The active objects will include processing elements that support the parallel
processing through the threads and will manage the communication channels for a
subgroup of nodes, but only for a single media. Each active object will have a con-
trol object that will manage the rest and have a link to the hierarchically superior

58 PIROSKA HALLER

active object. The management consists in the creation, suspending, resuming or
destroying of threads according to the occurrence of an internal activation con-
dition, with the received message or the notification event received. In case the
resources are no longer sufficient or the capacity of a resource is exceed, it may
initiate the creation of a new active object similar or hierarchically subordinated
anywhere in the distributed system.

Each object will have a permanent connection with the hierarchically superior
object where it will be registered together with the type of interface it implements.
This hierarchically superior object will be polled in order to localize another active
object to which it is to establish the connection. Thus there is the possibility that
an object to be moved or replicated depending on the dynamic modification of
the loading of the system. This hierarchical structure will be created according
to the requirements of the infrastructure, but it will not be physically related
to it. Unlike the models in which the controllers are to be distributed in the
network nodes[9], the suggested system will be distributed depending on the load
and the capacity of the resources, providing thus the scalability of the system. It
will allow a best response time for the system, even if the interconnection system
varies dynamically.

3.1. Active objects. Considering the requirements of the multi-point communi-
cation for the management of the quality parameters, for the real time synchro-
nization and their insufficient implementation on the operating system level we
propose the usage of the active objects for the creation and the controlling of the
multi-point communication. In the followings we will define the internal behavior
of the active objects that compose the middleware platform, their distribution and
the relationship between them.

3.1.1. Access manager. The security services (authentication and authorization)
will be handled by the access management object, which is a centralized object
linked to a database and which will be created together with the central manager
object wherever in the distributed system and with which communicate trough
asynchronous messages. It is a two level security system, each group having at-
tached a set of rights related to the administration of the group and to the access
modes for different types of media, and similarly each registered terminal may
have a set of rights. The module may use the security system of another platform
or of the operating system. In case the access rights for the terminal are dynami-
cally changed the access management object will send notification messages to the
terminal manager.

3.1.2. Terminal manager. The central manager as a result of the connection re-
quest received from the terminal node dynamically creates the terminal manager
and a message type bi-directional communication will be established with it for
the transfer of the system messages. At the connection of a terminal the central

SCALABLE PLATFORM FOR MULTIMEDIA GROUP COMMUNICATION 59

M. group

M. group

M. group

M. sgroup

M. group

M. term. Pipe

Pipe

Pipe M. term.Pipe

QoS

Data
baze

QoS

QoS

QoS

Registry

Controller

Controller

Controller

Controller

Authentication

Terminal TerminalTerminalTerminalTerminal

Monitor Monitor

Timer

Timer

Timer

Timer

Monitor

Monitor

QoS Manager

Stream Controller Stream Controller

Gestionare Stream

Central Manager

Stream
Mesaj

Figure 2. The middleware platform

manager object will initiate its authentication and all the data related to the rights
and the terminal access will be stored locally in the terminal manager so that it
should take over the verification task for the connected terminal. The terminal
node will present a set of requested operations together with the requested transfer
rate for these operations, and this value may be specified as an admission interval.
The terminal manager will store the data related to the selected connection media
together with the communication parameters. In case there are no explicit val-
ues specified for the quality parameters the terminal manager will generate these
values based on certain qualitative options or priorities expressed by the terminal
node and based on the monitored capacity. In order to implement the quality
management system each channel will be characterized by the quality parameters
such as the transfer rate, the delay, the jitter and the error rate. This transfor-
mation function of the quality parameters (linguistically expressed) in values or
admissible intervals may influence the performance of the whole system.

3.1.3. Group manager. As the terminal nodes will be organized on discussion
groups, for each of them a group manager object is created dynamically, that

60 PIROSKA HALLER

will administer and will distribute the group messages as text, whiteboard and
graphics, transmitted on connections different from the ones used by the system
messages. The group manager will have separate data connections implemented
through message communication objects for each terminal with traffic monitoring.
Even for asynchronous message traffic there are prescribed transfer rates. The
group manager will have handled the administration of the members of the list,
respectively the verification functions of the rights for the group. It will commu-
nicate with the access manager object in order to obtain the list of rights and the
eventual dynamical alterations that occur. It will send notification messages to
the stream manager objects in case the structure of the group changes, in case
a member is added to the group or is removed or in case a terminal changes its
options related to the communication media.

3.1.4. Stream manager. The stream manager objects represent a set of special
active objects handling the creation and the control of the stream data transfer
among the terminals for a certain type of media.

The creation of different subtypes for different media is necessary as the con-
trol algorithms and the distribution of the data differs very much depending on
the media type. In case the large number of communication groups requires it,
more similar distributed stream manager object instances may be created, being
registered at the central manager.

The stream manager object will have a bi-directional connection with each ter-
minal implemented through stream communicators, through which it will receive
data from the terminals and will distribute them to the members of the group.
The data transfer has to respect the quality parameters established by local qual-
ity manager system, so that embedded controller and monitoring objects will be
used. The timer objects will correlate the activity of the monitors and controllers,
respectively will guarantee for the temporal constrains imposed for the continuous
communication media[fig 2]. The controller objects will implement different tech-
niques in order to reduce the sending rate depending on the attributes of the media,
such as: filtering, reducing the frames, mixing, differentiated compressions. Each
stream manager object is directly connected to the quality parameter manager
object, where the monitoring data is regularly sent to and where the prescribed
values are obtained for the data-receiving rate from the terminal nodes respec-
tively for the data sending rates. The local quality parameter manager objects
will handle the parameter administration inside a group, creating thus a hierar-
chical coordination structure. In the same time they will communicate with the
quality parameters manager object, in order to send feedback messages in case the
prescribed values cannot be satisfied with implemented algorithms. These mes-
sages initiate the re-negotiation of the prescribed values and the modification of
the control algorithm parameters.

SCALABLE PLATFORM FOR MULTIMEDIA GROUP COMMUNICATION 61

3.2. Quality parameters management. The architecture of the QoS manage-
ment services includes the central QoS manager, the monitors and controllers
distributed in the terminal objects and stream controllers. The role of the central
manager unit is to determine the optimal requirement for the whole system, start-
ing with the terminal’s demand, but take in consideration the system constrains.
This module monitoring the QoS parameters for the communication group based
on messages received from the distributed QoS monitors across the communication
units. The parameter value represents an average and takes in consideration in
negotiation or renegotiations phases.

When a new terminal connecting for group send a messages with required QoS
parameters and guaranteed capacities for all communication media. The parame-
ters are defined at minimum and maximum values. Due of the policies implemented
in the QoS manager, it renegotiates the required parameters with the new user of
with the all members of the group in case of global QoS violation. When the user
leave the group, or explicit change the required QoS the optimal value for QoS
parameters for all media and for all members are recalculated.

Lets note with m the number of the terminals, with n the number of media, the
output rate to send date from terminal j to media i with rij , and the input rate to
receive date in node j to media i with qij . If Uj is the total guaranteed transfer
capacities for the terminal node j, and Gi the total guaranteed transfer capacities
for the stream controller i, we can write the following inequalities, that should be
satisfied:

n∑

i=1

rij +
n∑

i=1

qij ≤ Uj , j = 1,m,

m∑

j=1

rij +
m∑

j=1

qij ≤ Gi i = 1, n (1)

We define the cost function, that minimize the difference between the prescribed
input rate qij and the sum of the output rate q∗ij from the other terminals (that
affect also the delay, and the lost of the packets), respectively minimize the dif-
ference between the prescribed output rate rij and the required output rate r∗ij .
To obtain a more equilibrated solution we introduce the weight coefficients for
the terms of the cost function. In this way we can define priorities in the system
and can attach cost for some strident requirement. Lets note with pijthe weight
coefficients for input rate and with cij the weight coefficients for output rate.

f(r, q) =
n∑

i=1

m∑

j=1

pij

(
qij − q∗ij

)2 +
n∑

i=1

m∑

j=1

cij

(
rij − r∗ij

)2

(2)

The central QoS manager unit guarantees the global optimality and prevents
the dominance of a group of terminals solving the quadratic optimization problem

62 PIROSKA HALLER

minimizing the cost function (2) with inequality constrains (1)using inertia control-
ling methods [5]. When the structure of the group are changed, or the monitoring
units detects change in the network capacities, the manager unit recalculate the
optimal prescribed values. To prevent the system oscillation, the recalculation of
the optimal parameters is initiated only if the modifications of the capacities are
exceeding some threshold.

Using weight coefficients can obtain a more equilibrated requirement, at optimal
cost. The weight coefficients can be defined by the user as extra cost to obtain the
prescribed value near the required value, or can be generated by the manager unit
according with the system loading. The user can modify the required values, or
specify new priorities in system, or new qualitative option and the system should
be adapt to the modification of the parameters.

We present some results, for one group with 22 users and 3 type of media
(video/audio, shared graphics, file). Starting from the measured capacities and
required transfer rate we calculate the optimal output transfer rate for each users
on each media. The left diagram (figure 3) presents the results if the weight
coefficients are equal. We can remarque the dominance of the high capacities
channels. The slow channels can’t send data, they only receive. Using the weight
coefficients, where the costs are proportional with the capacities also the weak
channels can send data (right diagram of figure 3). But the weight coefficient
could be modified dynamically by the users with administrative rights.

The QoS manager unit offer a lot of services that accept the perceptive pa-
rameters like image dimension, image quality or audio quality level, and assign
priorities for different media in accordance with the user choice. These qualita-
tive parameters are transform in quantitative parameters need by the optimization
problem. The introduction of the weight coefficient proportional with the costs in
the criteria function allows for a better equilibrium of the system.

The calculated values will then be transmitted to the quality parameters man-
ager objects distributed in the stream manager objects which will treat them as
prescribed values and following it there will be selected the control algorithms cor-
responding to each local controller in part in order to maintain the rate and the
delays in the prescribed limits.The proposed stream controller act as a classical
numerical control unit, that generate an output at the required values, controlled
the input and used the feedback values from the output. Under the assumption,
that the network can not guarantee the required values for the delay, rate and jit-
ter, and the operating system scheduling is non real-time, the presented solution
assure the adaptation of the parameters in continuous way[6].

The most important role besides the controllers pertains to the monitoring
objects that will be distributed in the terminal nodes as well. In case it is necessary
the monitoring nodes may be distributed in the physical communication nodes as
well, following the communication infrastructure.

SCALABLE PLATFORM FOR MULTIMEDIA GROUP COMMUNICATION 63

0 22 44 66
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 Rezults

R
at

e
va

lu
es

−
(b

yt
e/

se
c)

Video whiteboard file channels

Request
Optimal

0 22 44 66
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 Rezults

R
at

e
va

lu
es

−
(b

yt
e/

se
c)

Video whiteboard file channels

user capacities in kbyte/sec:

822 172 441 806 810 649 834 809 835 780 805
52 80 837 836 6 818 836 744 296 614 810

Figure 3. The calculated optimal rate values

The monitoring of the system will include the classical communication param-
eters such as the transfer rate, delay, jitter, and the parameters specific to the
active objects, such as the package loss due to the pipes dimension, compression
factor, the temporary deviation from the prescribed value.

4. Conclusion

The proposed scalable architecture allows for the creation of certain application
that will handle the connection of certain distributed terminal nodes – the number
of which varies dynamically on a large scale, which will form the communication
groups that will be configured and reconfigured dynamically. The management of
the quality parameters will include the possibility to specify these requirements
deterministically, probabilistically and stochastically. It will also include a support
for the static and dynamical administration of the quality parameters, including
the specification, admission negotiation and re-negotiation of the parameters, the
controlling and the allocation of the resources, the monitoring of the system, in-
dependently of the degree it is guaranteed on the operating system’s level.

On the other hand considering the platform as a classical distributed control
system in which each type of media will be controlled by a controller object that
will maintain the outgoing rate prescribed by the quality management system,
controlling the incoming rate and monitoring the perturbations in the system,
represents a very new approach. The quality management system will dynamically
modify the temporal constrains for an object in order to maintain the optimality
of the whole system, and in case it is necessary it will initiate the replication of

64 PIROSKA HALLER

the respective object. The proposed mathematical model allows the continuous
adapting of the parameters to the modifications of the system.

References

[1] G. Blair, J. B. Stefani: Open Distributed Processing and Multimedia. Addison Wesley,
England, 1998.

[2] G. Coulson: A Distributed Object Platform Infrastructure for Multimedia Application.
Computer Communications Vol 21, No 9, July 1998, 802–818, 1998.

[3] R. Davison, J. Hardwicke: A New Architecture for Open and Distributed Network Man-
agement. H. Zuidweg et al. (Eds.): IS&N’99, LNCS 1597, pp. 25-37. Springer-Verlag Berlin
Heidelberg 1999.

[4] D. Duke, I. Herman, M. S. Marshall: PREMO A Framework for Multimedia Middleware,
Specification, Rationale, and Java Binding. LNCS nr 1591, Springer Verlag 1999.

[5] P. Gill, W. Murray, M. Saunders, M. Wright: Inertia Controlling Methods for General
Quadratic Programming. SIAM Review, vol 33, No. 1, 1–36, 1991.

[6] P. Haller: Contributii la implementarea sistemelor multimedia distribuite, PhD thesis Uni-
versity of Cluj-Napoca, 2002 Cluj-Napoca Romania.

[7] S. Ing, S. Rudkin: Simplifying Real-Time Multimedia Application Development Using Ses-
sion Descriptions. H. Zuidweg et al. (Eds.): IS&N’99, LNCS 1597, pp. 305-314, Springer-
Verlag Berlin Heidelberg 1999

[8] B. Li: AGILOS: A Middleware Control Architecture for Application-Aware Quality of Ser-
vice Adaptations, phD thesis University of Illinois at UrbanaChampaign, 2000 Urbana,
Illinois

[9] B. Li, W. Kalter, K. Nahrstedt. A Hierarchical Quality of Service Control Architecture for
Configurable Multimedia Applications. in Journal of High-Speed Networks, Special Issue on
QoS for Multimedia on the Internet, IOS Press, Vol. 9, pp. 153–174, 2000.

Petru Maior University Târgu-Mures, Romania, 1, Nicolae Iorga St., 4300 Târgu-
Mures, Romania
40-265-211838

E-mail address: phaller@upm.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 1, 2003

THE LOAN-BANK CONTRACT: A SWAP OPTION

D. AKUME

Abstract. This review paper discusses financial options of the European
type, particularly swap options and their pricing using the modified Black
Model(1976). It also discusses the theory and modelling of Contractual Sav-
ing for Housing1 as practiced by German ”Bauparkassen”. After a discussion
of both Option Pricing and Loan Banking, the last part of this paper reveals
that a loan-bank contract is in actual fact a financial option on an amortiza-
tion swap. The outlook aims at the valuation of such a swaption.

Keywords: Loan-bank, contract, option, swap, swaption.

1. Introduction

In this paper, we present a scientific perspective of loan banking by linking it
to one of the cornerstones of modern Mathematical Finance, the theory of option
pricing. The more seasoned users are fairly au fait with swaps and swaptions as
forms of financial options1.

The present survey paper was stimulated by the analysis of loan banking [25],
done in collaboration between German ”Bausparkassen” and the Center for Ap-
plied Computer Science, Cologne (ZAIK).

Firstly, we illustrate the mathematical valuation of swaps and swaptions follow-
ing the modified Black Model2 of 1976 for European options. Secondly, we review

Received by the editors: May 5, 2003.
2000 Mathematics Subject Classification. 91B28, 00A69, 46N10.
1A (Put)Call option (See Peter Reissner (1991), [24], page 23) gives its holder the right

without obligation to (sell)purchase an underlying asset (to)from the writer at a predetermined
price (strike price, K), on or before an agreed future date (expiry date T).

An American option is that which permits its holder to exercise the aforementioned right
on or before the expiry date. Otherwise it is known as European option.

Boundary conditions for a European call (CE) and a European put (PE) option at expiry
are as follows:

CE = max{VT −K; 0} = (VT −K, 0)+

PE = max{K − VT ; 0} = (K − VT , 0)+,

whereby VT is the spot price of the underlying asset at expiry date T .
2Here follows the Black formula (see also Biermann, [4], page 159):

Call = B(0, T)[F ·N(d1)−K ·N(d2)]

Put = B(0, T)[K ·N(−d2)− F ·N(−d1)]

65

66 D. AKUME

the theory and practice of Contractual Saving for Housing as practiced by German
”Bausparkassen”[25], and present the model of a typical, discrete transaction. Fi-
nally, we analyse the loan-bank contract, compare it to a swaption and infer that
it is a swaption on an amortization swap3

2. Interest Rate Swaps (IRS)

Definition 1. An interest rate swap (IRS4) is a contractual agreement entered
into between two counterparties under which they agree to exchange fixed for vari-
able interest rates (mostly LIBOR5) periodically, for an agreed period of time
based upon a notional amount of principal. The principal amount is notional be-
cause there is no need to exchange actual amounts of principal. Equally, however,
a notional amount of principal is required in order to compute the actual cash
amounts that will be periodically exchanged.

2.1. Concepts. An IRS is an agreement of specified duration between two par-
ties (Swap partners or Counterparties) for the exchange of interest rate payments
relative to a nominal value (Notional Principal Amount) at predetermined periods
of time. That is, counterparty A makes fixed interest payments to Counterparty B
at specific time intervals. On the other hand, A receives from B variable payments
relative to an agreed reference interest rate 6.

Counterparty B receives fixed interest payments (receiver position), That is to
say, B pays variable. On the other hand, A makes fixed interest payments (payer
position), That is, A receives variable payments in the swap. Variable and fixed
coupon payments occur in predetermined time intervals. It is however stressed here
that in practical terms, the dates of variable and fixed payments may not always
coincide. If one denotes the variable cashflow interval7 with ∆t , the interest rate
of reference would be agreed upon at time t, with the cashflow occurring at time
t + ∆t. Cashflows on both sides coinciding would mean the net value being paid
to the beneficiary.

with

(1) d1 =
ln F

K
+ 1

2
σ2T

σ
√

T
, d2 =

ln F
K
− 1

2
σ2T

σ
√

T
,

whereby N(.) is the gaussian distribution, B(., .) is the discount function and F is the future
price (see also [19]) for details also of the Black/Scholes model.

3In actual fact a swaption, since it is an option on a future swap.
4In this paper the terms Interest Rate Swap and Swap are used interchangeably.
5London Interbank Offered Rate
6Rauleder (1993), [23], page 11.
7Rauleder (1993), [23], page 13: in the case of the variable cashflow interval being smaller

than the fixed, fixed and variable cashflows will fall apart at certain dates.

THE LOAN-BANK CONTRACT: A SWAP OPTION 67

2.2. Application of Interest Rate Swaps. Interest rate swaps have been widely
used by the larger corporate institutions for some time as an efficient off-balance
sheet method to manage interest rate exposure arising from their assets and lia-
bilities. For example, a floating-rate borrower who expects a rise in interest rates
can swap his floating rate obligation to a fixed rate obligation, thus locking in his
future cost. Should he subsequently decide that rates have peaked, and that the
trend is reversing, the interest obligation could be swapped back to a floating rate
basis, thereby gaining advantage from the anticipated fall in rates.

Swaps are particularly useful in the restructuring of risk in an investment. Even-
tual interest rate risks can be hedged away with swaps. It is for this reason that
swaps have become so important in financial management.

2.3. Swap Pricing Model. Pricing8 a swap means determining the fixed interest
rate Rfix of the swap (swap rate) such that, the value of the swap is zero at time
t = 0.

It is clear from the definition that a swap is equivalent to a portfolio of two
bonds, one short and the other long, one a fixed-rate bond and the other a floating
rate bond9.

Let 0 < t1 < · · · < tn represent the reset dates of the swap.
The price of a Floating Rate Note (FRN) is always equal to the nominal value

L10 at time t = 0 irrespective of reset interval. Therefore the floating payment
Xv at time t = 0 is the difference between L and the present value of the nominal
value11.

Xv = L−B(0, tn)L = L (1−B(0, tn)) ,

whereby B(.,.) is the discount factor for the interval (t, T) as introduced in [19],
page 2. Total fixed payment Xf at time t = 0 is a series of fixed payments at fixed
interest rate Rfix

Xf =
n∑

i=1

B(0, ti)Rfix(ti − ti−1)L

The pricing of a swap is reduced to the problem of determining Rfix, such that
the following equation holds:

n∑

i=1

B(0, ti)Rfix(ti − ti−1)L = L (1−B(0, tn))

8See B. Luderer; O. Zuschanke, [20], for a rigorous treatment of Swap-Pricing.
9Rauleder, [23], page 97; R. Kohn, [15].
10Rauleder (1993), [23], page 97.
11Unlike for a normal bond, the nominal value L is notional Capital, thus never actually

changes hands.

68 D. AKUME

3. Swaptions

A swaption is a combination of the following two financial instruments: Interest
Rate Swap (IRS) and Option.

Swaptions first came into vogue in the mid-1980s in the US on the backof struc-
tured bonds tagged with a callable option issued by borrowers. With a callable
bond, a borrower issues a fixed-rate bond which he may call at par from the in-
vestor at a specific date(s) in the future. In return for the issuer having the right
to call the bond issue at par, investors are offered an enhanced yield. Bond issuers
often issue an IRS in conjunction with the bond issue in order to change their
interest profile from fixed to floating. Swaptions are then required by the issuer
as protection to terminate all or part of the original IRS in the event of the bonds
being put or called.

Definition 2. A Swaption12 (Swap Option) reserves the right for its holder to
purchase a swap at a prescribed time and interest rate in the future (European
Option).

The holder of such a call option has the right, but not the obligation to pay
fixed in exchange for variable interest rate. Therefore, this option is also known
as ”Payer Swaption”. The holder of the equivalent put option has the right, but
not the obligation to receive interest at a fixed rate (Receiver Swaption) and pay
variable.

3.1. Applications of Swaptions. Actually, a swaption is an option on a forward
interest rate. Like interest rate swaps, swaptions are used to mitigate the effects of
unfavorable interest rate fluctuations at a future date. The premium paid by the
holder of a swaption can more or less be considered as insurance against interest
rate movements. In this way, businesses are able to guarantee risk limits in interest
rates.

For instance, a five year swaption expiring in six months is the same as an
option to contract a swap in six months time, and the swap will be valid for five
years. To further buttress the point, an example is in order:

3.1.1. Example: Consider the case of a firm that will start servicing its debt six
months from now. The debt is serviceable within five years, at a floating interest
rate payable every six months.

This firm can protect itself against rising interest rates by purchasing a payer
swaption. By paying a premium, the firm obtains the right to recive variable
payments (mostly LIBOR) to pay a predetermined fixed interest rate eg. 12% p.a.
for a five year period. The swap begins six months from now (expiry date of the
Swaption).

There will be two possible outcomes at the expiry date:

12Peter Reissner (1991), [24], page 23.

THE LOAN-BANK CONTRACT: A SWAP OPTION 69

(1) The market swap rates are higher than 12%: The option is exercised
and its holder is able to satisfy his variable interest rate commitment at
a rate below the market interest rate. Our firm thus gains.

(2) The market swap rate is below the strike rate: The swaption is not
exercised and the firm turns to lower interest rates in the market.

3.2. Pricing Swaptions With The Black-Model. Notation

T – expiry date of Option
F – forward swap rate
B(0, ti) – discount factor from date ti,

down to 0
Xv – variable interest rate
Xf – fixed interest rate
σ – volatility of swap
K – Strike rate
Rfix – Market swap rate at time T

The input parameter σ is obtained from market data13.
Let t1 < · · · < tn represent the coupon dates for the swap and t0 = T .
In deriving a pricing formula, we look at the swap underlying the swaption. The

swap begins on the expiration date (T) of the swaption - this coincides with the first
cashflows - and ends at time tn. The swap comprises payments at floating interest
rate Xv and payments at fixed interest rate Xf , relative to the n cashflows14.

The variable interest rate payments are based on a benchmark (mostly LIBOR)
at time tk, a notional principal amount L and n interest periods (ti − ti−1)

The fixed payments are based on the strike rate K, as well as same notional
principal amount and periods.

At each date ti, the interest rate Rfix shall be compared with the Strike rate
K.

3.2.1. Pricing Model for European Swaptions. In case Rfix > K, the fixed interest
payer gets paid a balance of L · (Rfix − K) · (ti − ti−1). Otherwise this balance
goes to the variable interest payer.

The swap rate Rfix satisfies the following equation(see Section 2.3)

(2)
n∑

i=1

B(T, ti)Rfix(ti − ti−1)L = (1−B(T, tn))L

13[24], page 48 : historic or implicit Volatility.
14Robert V. Kohn, [15].

70 D. AKUME

The left hand side of the above equation represents the value of the fixed payments
at the rate of Rfix as of time T . The right hand side, on the other hand, represents
the value of variable payments. Take note that the present value at variable interest
rate will be equal to the notional principal amount.

The holder of an European swaption has the right to pay the fixed rate K and
to receive a floating rate (payer swaption). In the case that Rfix > K, it means
for the holder a value of

Xv −Xf = (1−B(T, tn))L−
n∑

i=1

B(T, ti)K(ti − ti−1)L

=
n∑

i=1

B(T, ti)Rfix(ti − ti−1)L−
n∑

i=1

B(T, ti)K(ti − ti−1)L

= (Rfix −K)
n∑

i=1

B(T, ti)(ti − ti−1)L

The ith term corresponds to the value of an European call option with expiry
date T and coupon date ti

L(ti − ti−1)(Rfix −K)+,

whereby Rfix is as introduced in section 2.3.
According to the Black Model (1976), the option value at time 0 as shown in

footnote 1 is as follows:

B(0, ti)(ti − ti−1)L[F ·N(d1)−K ·N(d2)],

whereby F is the forward swap rate and

d1 =
ln F

K + 1
2σ2T

σ
√

T
, d2 =

ln F
K − 1

2σ2T

σ
√

T
= d1 − σ

√
T .

d1 and d2 remain as in (1). The forward swap rate F is obtained from (2), by
replacing B(T, ti) with F (T, ti) = B(0,ti)

B(0,T) .
The value of the swap CE itself is the summation over all individual call options,

i.e. over all i. And we get:

CE = LA[FN(d1)−KN(d2)],

whereby

A =
n∑

i=1

B(0, ti)(ti − ti−1)

THE LOAN-BANK CONTRACT: A SWAP OPTION 71

For an European receiver swaption in like manner, if K > Rfix the the following
holds:

Xf −Xv =
n∑

i=1

B(T, ti)K(ti − ti−1)L− (1−B(T, tn))L

=
n∑

i=1

B(T, ti)K(ti − ti−1)L−
n∑

i=1

B(T, ti)Rfix(ti − ti−1)L

= (K −Rfix)
n∑

i=1

B(T, ti)(ti − ti−1)L

The ith term corresponds to the value of an European put option with expiry
date T and coupon date ti.

L(ti − ti−1)(K −Rfix)+

According to the Black Model (1976), the option value at time 0 as shown in
footnote 1 is as follows:

B(0, ti)(ti − ti−1)L[K ·N(−d2)− F ·N(−d1)],

whereby F, d1, d2 are as defined above, d1 and d2 are as introduced in (1). The
forward swap rate F is obtained from (2) by substituting15 B(T, ti) with F (T, ti) =
B(0,ti)
B(0,T) .

The swap value PE is the summation over all individual put options, i.e. over
all i. And we get:

PE = L ·A[K ·N(−d2)− F ·N(−d1)],

whereby

A =
n∑

i=1

B(0, ti)(ti − ti−1)

4. Loan Banking

4.1. Concepts. The idea behind loan banking can be illustrated with the follow-
ing example:

Assuming that there are ten individuals each of who wants to build a house
of the same size with none of them having sufficient capital to do so. If each of
them saves ten percent of the required amount per year, each would be capable
of building after ten years. However, if these individuals get together, the first
person will already build after one year. In the subsequent nine years he will be
busy amortizing his loan, so that the second person builds after two years etc. By
so doing, the average waiting time to build is reduced from 10 to 5.5 years.

15Robert V. Kohn, [15].

72 D. AKUME

The idea of getting together to form a building cooperative16 is the basis upon
which loan banking is founded.

Loan banking started in the United Kingdom in the late 18th. century in the
form of closed cooperatives. These Building Societies as they were called had a
limited number of members though.

4.2. Contractual Saving for Housing. Under this scheme, this loan bank offers
loans to individuals and corporate bodies for the following purposes:

(1) construction and acquisition of a home
(2) renovation and completion of building projects
(3) purchase of building plots

However, to be eligible for such a lone, the aspirant has to open a savings
account at Loan Bank. The Contractual Saving for Housing thus offers the owner
of the contract a whole range of opportunities related to ownership of a real estate.
The loan bank offers different types of contracts which generally evolve in the same
trend.

The evolution of the contract can be classified into four phases - the contracting
phase, the saving phase, the disbursement phase and the amortizing phase:

• Contracting phase:The owner signs the contract with the loan bank.
The contract is a savings agreement for building purposes and locks
conditions such as savings sum17 and tariff18. The saving agreement
also spells out the interest rate on saving and interest rate on loan. An
inial deposit is paid in during this phase.

• Saving phase: The owner pays deposits in their saving account dur-
ing this period. The goal of this phase is to fulfil the minimum re-
quirements19 that would make the contract eligible for the next phase
(disbursement).

• Disbursement phase: Disbursement20 takes place upon fulfillment of
minimum requirements and on condition that the loan bank has the
means21 available.

16The terms building society, loan bank, building cooperative are used in this paper
interchangeably.

17amount to be saved by customer plus loan to be obtained from building society as specified
in the contract upon opening of account.

18Interest rates may differ depending on tariffs. Moreover, the fee charged upon conclusion
of the contract, waiting period for contract maturity etc. also vary.

19As a rule, a minimum period of saving and a minimum amount to be saved are set in the
loan agreement.

20The owner of the contract gets paid the contract sum (saving in account plus loan).
21Contracts are ranked and disbursed according to evaluation number. The evaluation

number of a contract is an assessment of the intensity of saving with time =
∫ T
0 savings(t)dt, t

being time.

THE LOAN-BANK CONTRACT: A SWAP OPTION 73

The owner of a contract that is eligible for disbursement has the op-
tion of either accepting disbursement, deferring disbursement or termi-
nating the contract (i.e. desists from taking loan)22. One of the reasons
for terminating the contract at this stage could be the availability of a
cheaper loan in the capital market.

• Loan amortizing phase: Systematic reimbursement of loan plus in-
terest23 levied on loan.

In an attempt here to model the aforementioned loan banking operations mathe-
matically, a discrete model is chosen, given that in reality, financial transactions
take place in discrete time steps [25].

Parameters for Building Society are an aggregate of those for individual con-
tracts that make up the cooperative.

4.3. Individual Contract Model. Transactions involving a contract can be di-
vided into four main phases as follows: Opening of account, saving, assignment,
loan.

4.3.1. Contracting and Saving. Upon opening of an account, the contract is signed
between the bank and the customer. This contract spells out contract conditions
such as contract volume tariff etc.

The account once opened, the saving phase begins and money is subsequently
saved in the account.

The following relationship exists for the savings S of customer i at time t :

Si(t) = Si(t− 1) + Pi(t) + Ii(t),

whereby Si(t), for instance, denotes the cumulative Savings of customer or account
i in year t. In the same logic, I is cumulative interest rate and P , cumulative
deposit made in the account in the course of the year. The following relationship
holds for the interest:

Ii(t) =
n∑

j=1

Ii(tj)

Ii(tj) =
p

n

(
Si(t− 1) +

j∑

k=1

Pi(tk)

)
j = 1, . . . , n.

p is interest rate per annum and t1 < · · · < tn are discrete depositing periods
within a year.

The saving phase of account i begins soon after opening of the account at time
t = tb,i and ends upon assignment t = ta,i. At time t = ta,i, the owner of account
i gets his entire saving plus loan paid out to him/her, except the owner decides to
wait.

22The contract gets paid just its savings.
23The loan agreement contract already guarantees a fixed interest rate for the loan.

74 D. AKUME

Generally, the following system of equations describes the saving phase (t stands
for yearly periods, tj stands for periods under one year, tb,i−1 stands for the period
prior to signing the contract):

Si(tb,i − 1) = 0

Si(t) = Si(t− 1)(1 + p) +
n∑

j=1

(
Pi(tj) +

j−1∑

k=1

p

n
Pi(tk)

)

t = tb,i, . . . , ta,i

If at any point in time tclose a customer decides to terminate the contract, their
saving is paid out to him/her.

4.3.2. Disbursement. an account that fulfils certain minimum requirements (is is
going to be spelt out below) and whose eligibility coefficient lies above the target
eligibility coefficient becomes eligible for disbursement. That is, such an account
is paid back its savings plus loan amount. The payment of the loan for an account
automatically causes the transition into the next phase i.e., the loan phase. The
disbursement date, depending on the tariff in question, is also determined by
the following three factors: The minimum waiting period, the minimum saving
coefficient and the minimum eligibility coefficient.

• Eligibility: an assessment of the intensity of saving with time =∫ T

0
savings(t)dt, t being time.

• Savings coefficient: savings in an account as a fraction of total nominal
amount of accounts not yet approved for loan.

• Waiting period: After signing up with the loan bank, you are not
eligible for a building loan until after saving a certain stipulated period
of time .

4.3.3. The Loan Phase. This is the phase during which the loan is amortized. The
net loan comprises the nominal amount minus saving. The net loan is paid out to
the customer. This net loan is the amount to be amortized.

The customer pays a fixed amount, the amortizing amount (AA) at regular
intervals (as agreed) to the cooperative. This so called amortization amount com-
prises the loan reimbursement plus interest on loan 24 (LI). This amounts to the
following model for periods under one year tj :

LIi(tj) =
q

n
· Loani(tj−1),

Loani(tj) = Loani(tj−1) + LIi(tj)−AAi(tj),

24The method interest payment varies from tariff to tariff.

THE LOAN-BANK CONTRACT: A SWAP OPTION 75

q being the fixed interest on loan. The remaining loan for each new period is
obtained by subtracting the mount so far amortized from the foregoing loan plus
the interest so far paid:

Loani(t) = (1 +
q

n
)n · Loani(t− 1)−

n∑

j=1

(1 +
q

n
)n−jAAi(tj).

The contract is automatically terminated when the entire loan is amortized.

4.4. Aggregate Model. The parameters required in the mathematical modelling
of the building cooperative are outlined as follows:

• saving;
• loan;
• payment into account (during saving phase);
• interest and amortization payments (during loan phase);
• saving payout;
• loan payout;
• interest on saving;
• interest on loan.

With this in mind, a simple generalized model for a loan bank operating on a
single tariff is set up. Let the number of customers be N , the number of periods
in a year be n. The following relationships involving savings and loans is set up:

S(t) =
N∑

i=1


Si(t− 1)(1 + p) +

n∑

j=1

(Pi(tj) +
j−1∑

k=1

p

n
(Pi(tk))




Loan(t) =
N∑

i=1

(
(1 +

q

n
)n · Loani(t− 1)−

n∑

i=1

(
(1 +

q

n
)n−jAAi(tj)

))

The savings and interest during saving phase is also modelled as follows:

S(t) =
N∑

i=1

Si(t)

and

I(t) =
N∑

i=1

Ii(t)

The rest of the cooperative-wide aggregate parameters such as interest on savings
and interest on loan are similarly computed from sum of individual accounts.

Here are a few more parameters that are required in modelling such a cooper-
ative:

• level of fresh business;
• unassigned lot(liquidity);

76 D. AKUME

• assigned lot;
• liquidity coefficient;
• available lot.

The unassigned lot (UL(t)) at time t is the overall saving Sin all accounts that
are in the saving phase.

UL(t) =
N∑

i=1

Si(t),

tb,i ≤ t ≤ ta,i.

The assigned lot (AL(t)) at time t is the overall sum of amounts in all accounts
that have been assigned.

AL(t) =
N∑

i=1

NAi(t),

ta,i ≤ t ≤ te,i.

whereby te,i is the final date.
Computing the target eligibility coefficient: A target eligibility coefficient

is usually set for the period under consideration.
One however has to know first of all, how much resource is available for assign-

ment. This so called available lot (AvL)is computed as a function of the savings
and loan of that period. To the saving is added the deposit and in-coming interest
payments that is expected upon assignment time. From the saving is also sub-
tracted the saving payout as well as interest on saving. The loan is subtracted the
amortization amount and to it is added loan payout.

AvL(t) = S(t) + P (t)− I(t)− Loan(t) + AA(t)− SP (t)− LoanP (t),

whereby SP (t) stands for saving payout and LoanP (t) for loan payout.
The target eligibility coefficient is determined, based on the available lot. All

customers fulfilling the minimum requirements are sorted in descending order of
eligibility coefficient. This list is assigned until the available lot gets finished. The
eligibility coefficient of the last assigned account is the target eligibility coefficient.

In order to be able to follow-up cooperative development, the liquidity ratio
([16] and [17]) could be used to assess the development of the cooperative. certain
parameters have been suggested in the past. The liquidity ratio represents the
ratio of total loans to total saving.

Liquidity ratio(t) =
Loan(t)

S(t)

It should be in the best interest of the cooperative to keep this ratio < 1, otherwise
she would have to go borrowing. And as you know, borrowing is expensive.

THE LOAN-BANK CONTRACT: A SWAP OPTION 77

5. The Loan Contract As Swaption

A contract that effectively gets disbursed at the disbursement phase does enter
the loan phase and pays interest on the entire building loan at a fixed predeter-
mined interest rate. During the loan phase, such a contract cannot take advantage
of lower interest rates in the financial market without having to terminate the con-
tract.

The fact that the customer may terminate the contract at the disbursement
phase and desist from taking the loan, and instead obtain the loan from elsewhere
at a lower rate, makes this contract similar to an option on a forward interest rate
swap or swaption of the European type. Remember that the holder of a swaption
has the right to choose between the market rate and the contractual interest rate
at expiry25. Therefore this is an option on an amortizing swap.

Definition 3. An amortizing swap is usually an interest rate swap in which the
notional principal for the interest payments declines during the life of the swap.

The notional principal amount in this case is the building loan in its amortizing
phase. In the same vein, the expiry date of the option is the disbursement date
of the loan contract. And there is an option on the contractual loan rate at the
disbursement date.

6. Outlook

This author intends, in his future research, to set up a mathematical pricing
model for forward amortization swaps as discussed above for loan-bank contracts.

References

[1] F. Black, The Pricing of Commodity Contracts, in Journal of Financial Economics,3, 1976,
167-179.

[2] F. Black, E. Derman and W. Toy, A One-Factor Model of Interest Rates and its Application
to Treasury Bond Options, Financial Analysts Journal, Jan-Feb, 1990, 33-39.

[3] F. Black, M. Scholes, The Pricing of Options and Corporate Liabilities, in Journal of Po-
litical Economics,81, 1973, 637-654.

[4] B. Biermann, Die Mathematik von Zinsinstumenten, Oldenbourg Verlag, 1999, Mnchen.
[5] R.R.Jr. Bliss, E.I. Ronn, Arbitrage-Based Estimation of Nonstationary Shifts in the Term

Structure of Interest Rates, Journal of Finance, 44, 1989 London, 591-610.
[6] M. Bs, Optionsbewertung und Kapitalmarkt, Verlag Josef Eul, Bergisch Gladbach/Kln, 1990.
[7] E. Crow, K.E. S Shimizu, Lognormal Distributions, Theory and Applications, Marcel Dekker

Inc., 1988.
[8] F. Fabozzi, Bond Markets, Analysis and Strategies, Prentice-Hall, New Jersey, 1989.
[9] B. Ganter, R. Wille, Formale Begriffsanalyse: Mathematische Grundlagen, Springer, Berlin,

Heidelberg, 1996.
[10] F. Heitmann, Bewertung von Zinsfutures, Diplomarbeit am Instutut fr Entscheidungstheorie

und Unternehmensforschung, Universitt Karlsruhe(TH), Januar (1992), Fritz Knapp Verlag,
Frankfurt am Main 1992.

25The expiry date in this case would be the the date of disbursement.

78 D. AKUME

[11] T.S.Y. Ho, S.B. Lee, Term Structure Movements and Pricing Interest Rate Contingent
Claims, Journal of Finance, 41, 1986, 1011-1029.

[12] J. Hull, Options,Futures and Other Derivative Securities, Englewood Cliffs, New Jer-
sey:Prentice Hall 1989.

[13] J. Hull, A. White, On Derivatives, Risk Publications, London, 1996.
[14] B. Knab, R. Schrader, I. Weber, K. Weinbrecht, B. Wichern Mesoskopisches Simulation-

smodell zur Kollektivfortschreibung, Center for Applied Computer Science, Report 97.295,
1997.

[15] R.V. Kohn, Derivative Securities - Section 11, http://www.math.nyu.edu/faculty/kohn/
derivative.securities/section11.pdf

[16] H. Laux, Entwicklung der Bauspartechnischen Kennzahlen bei den privaten und den
oeffentlich-rechtlichen Bausparkassen bis 1989, in: Blaetter der Deustchen Gesellschaft fuer
Versicherungsmathematik e.V., XVI.1(1): Pages 37 - 60, April 1991

[17] H. Laux, Verlauf der Bauspartechnischen Kennzahlen in an- und auslaufenden Tarifbestaen-
den des Bausparens, in: Blaetter der Deustchen Gesellschaft fuer Versicherungsmathematik
e.V., XVI.3(3): Pages 365 - 371, April 1992

[18] W. Lehmann, Die Bausparkassen, Fritz Knapp Verlag, Frankfurt am Main, 1965.
[19] B. Luderer, D. Akume Einige Aspekte der Bewertung von Swaptions, Technische Universi-

taet Chemnitz, Fakultaet fuer Mathematik, Preprint 2001-15.
[20] B. Luderer, O. Zuschanke, Ein einheitlicher Zugang zum Pricing von Swaps, Preprint 2000-

14, TU Chemnitz.
[21] R.F.M.L. Obermann, Zinsrisikopotential-Kennziffer zur Quantifizierung des Zinsrisikos von

Zinsswaps, -Futures und -Optionen, Fritz Knapp, Frankfurt am Main, 1990.
[22] Z.E. Prisman, Pricing Derivative Securities, Academic Press, 2000.
[23] R. Rauleder, Bewertung, Anwendungsmglichkeiten und Hedginsstrategien von Swaptions,

Fritz Knapp Verlag, Frankfurt am Main, 1994.
[24] P. Reiner, Zur analytischen Bewertung von Zinsoptionen, Verlag Peter Lang GmbH, Frank-

furt/Main, 1991.
[25] I.M. Vannahme, Clusteralgorithmen zur mathematischen Simulation von Bausparkollek-

tiven, doctoral thesis, University of Cologne, Cologne, 1996.
[26] G.-W. Weber, Mathematische Optimierung in Finanzwirtschaft und Risikomanagement -

diskrete, stetige und stochastische Optimierung bei Lebensversicherungen, Bausparvertrgen
und Portfolios, lecture held at Chemnitz University of Technology, summer semester 2001.

[27] P. Wilmott, S. Howison, J. Dewynne, The Mathematics of Financial Derivatives, Cam-
bridge, 1995.

[28] P. Wilmott, Week 9: The Black-Scholes Solution And The ”Greeks” ,
http://www.ph.qmw.ac.uk/∼oleg/Week9.pdf

Computer Science Department, University of Buea, P.O. Box 63, Buea, Cameroon
E-mail address: daniel.akume@minesup.gov.cm

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 1, 2003

STOCHASTIC OPTIMIZATION OF QUERYING DISTRIBUTED
DATABASES I. THEORY OF FOUR RELATIONS JOIN

D. DUMITRESCU, C. GROŞAN, AND V. VARGA

Abstract. Stochastic query optimization problem for multiple join is ad-
dressed. In Part I two sites model of Drenick and Smith (1993) is extended
to four relations stored at four different sites. Our model leads to a special
kind of nonlinear optimization problem (P). It is proved (Theorem 5.1) that
this problem has at least one solution. In Part II an ad hoc constructive
model for solving problem (P) is proposed. In Part III a new evolution-
ary technique is used for solving problem (P). Results obtained by the two
considered optimization approaches are compared.

Keywords: Distributed Databases, Query Optimization Problem, Ge-
netic Algorithms, Evolutionary Optimization, Adaptive Representation.

1. Introduction

The ability of distributed systems for concurrent processing motivates the dis-
tribution of a database in a network. The query optimization problem for a single
query in a distributed database system was treated in great detail in the liter-
ature. Many algorithms were elaborated for minimizing the costs necessary to
perform a single, isolated query in a distributed database system. Some methods
can be found in Özsu and Valduriez (1999), Date (2000). Most approaches look
for a deterministic strategy assigning the component joins of a relational query to
the processors of a network that can execute the join efficiently and determine an
efficient strategy for the data transferring.

A distributed system can receives different types of queries and processes them
at the same time. Query processing strategies may be distributed over the pro-
cessors of a network as probability distributions. In this case the determination of
the optimal query processing strategy is a stochastic optimization problem. There
is a different approach to query optimization if the system is viewed as one which
receives different types of queries at different times and processes more than one
query at the same time.

Received by the editors: May 15, 2003.
2000 Mathematics Subject Classification. 68P15, 68T99.
1998 CR Categories and Descriptors. C.2.4 [Computer Systems Organization]:

Computer-Communication Networks – Distributed Systems; H.2.4 [Information Systems]:
Database Management – Systems.

79

80 D. DUMITRESCU, C. GROŞAN, AND V. VARGA

The multiple-query problem is not deterministic; the multiple-query-input stream
constitutes a stochastic process. The strategy for executing the multiple-query is
distributed over the sites of the network as a probability distribution. The “deci-
sion variables” of the stochastic query optimization problem are the probabilities
that component operators of the query are executed at particular sites of the
network.

Drenick and Smith (1993) extend the state-transition model proposed by Lafor-
tune and Wong (1986) and the original multiprocessing model (see Drenick and
Drenick, 1987, Drenick, 1986). The main objective of the state-transition model
is to give globally optimal query-processing strategies. Drenick and Smith (1993)
treat the single-join model, the general model for the join of two relations and
a multiple-join with three relations, which are stored at two different sites. The
stochastic model for the join of three relations, which are stored at three different
sites is presented in Varga (1998) and Varga (1999).

Stochastic query optimization problem leads to a nonlinear programming prob-
lem, which is a specific one. General models of sequential and parallel operation for
the specified type queries are treated in Varga (1999). Stochastic query optimiza-
tion model using semijoins is presented in Markus, Morosan and Varga (2001).

The aim of this paper is to extend the stochastic model to the join of four
relations. In Section 2 the case when the relations are stored at four sites is con-
sidered. The stochastic query optimization problem in case of four relations leads
to a constrained nonlinear optimization problem. Considering the complexity of
obtained nonlinear problem two complementary methods for solving this problem
are proposed. Theorem 5.1 proves, that the nonlinear optimization problem has
at least one solution. In Part II of the paper a constructive method for solving
the nonlinear programming problem is given.

Due to the successfully application in the recent past of the evolutionary algo-
rithms for solving very difficult optimization problems evolutionary methods seem
to be quite appealing for solving our optimization problem. We will consider evo-
lutionary techniques based on a dynamic representation (Dumitrescu, Grosan and
Oltean, 2001, Grosan and Dumitrescu, 2002). This technique called Adaptive Rep-
resentation Evolutionary Algorithm (AREA) is described in Part III. The results
obtained by applying these different approaches are presented in Part III. Two
sets of values for constants are used in these experiments. Solutions are nearly
the same. The CPU time required for solving the optimization problem by using
evolutionary algorithm is less than the CPU time required by the constructive
method.

2. Four relations join

Consider four relations stored in different sites of the distributed database. The
join of these four relations will be defined in the context of stochastic model of

STOCHASTIC OPTIMIZATION OF QUERYING DISTRIBUTED DATABASES I 81

Drenick and Smith (1993). Consider relations A, B, C, D stored at the sites 1,2,3
and 4 respectively.

Denote by Q4 the single-query type consisting of the join of four relations:

Q4 = A ./ B ./ C ./ D.

Initial state of relations referenced by the query Q4 in the four-site network is the
column vector defined as:

s0 =




A
B
C
D




where the i-th component of the vector s0 is the set of relations stored at site i,
i ∈ {1, 2, 3, 4} at time t= 0.

Initial state s0 is given with time-invariant probability

p0 = p(s0)

i.e. p0 is the probability that relation A is available at site 1, relation B at site 2,
relation C at site 3, and relation D at site 4. The four relations are not locked for
updating or are unavailable for query processing for any other reason. We assume
that the input to the system consists of a single stream of type Q4.

For the purpose of stochastic query optimization we enumerate all logically valid
joins in the order in which they may be executed. Let us suppose that Q4 has
three valid execution sequences:

Q4S1 = (((A ./ B) ./ C) ./ D),

Q4S2 = ((A ./ B) ./ (C ./ D)),

Q4S3 = (A ./ (B ./ (C ./ D))).

Sequence Q4S1 can be applied if

A ∩B 6= ∅.
So the join

B′ = A ./ B

is executed before the join
C ′ = B′ ./ C.

The last executed join will be

D′ = C ′ ./ D.

The sequence Q4S2 is adequate for parallel execution.

82 D. DUMITRESCU, C. GROŞAN, AND V. VARGA

3. Stochastic query optimization model

The system that undergoes transition in order to execute the join of four rela-
tions is described in this section as in Drenick and Smith (1993). The strategy for
executing the multiple join is distributed over the sites of the network. Conditional
probabilities are associated with the edges of the state-transition graph. Execut-
ing a multiple join is equivalent to solve a optimization problem. This problem
is referred as stochastic query optimization model. Theorem 3.1 states, that the
stochastic query optimization model for the multiple join query defines a nonlinear
optimization problem.

We exemplify with the execution of the join Q4S1.
The state-transition graph for sequence Q4S1 is given in Figure 1. For one

state of the state-transition graph the ith line contains the relations stored at site
i. We will associate a transition probability to each transition arc of the state-
transition model. Let pij denote the conditional, time-invariant probability that
the system undergoes transition from state si to state sj . Given the initial state
s0, we can execute the first step of Q4S1transferring relation B from site 2 to site
1, or transferring relation A from site 1 to site 2.

Figure 1. State-transition graph for the join Q4S1 of four relations

STOCHASTIC OPTIMIZATION OF QUERYING DISTRIBUTED DATABASES I 83

States of the transition graph are labeled as sij , where j is the step in computing
the multiple join andi denote the number of the selected strategy within the step.

Using the first strategy the system undergoes transition from state s0 to the
state s11 with probability p0,11. The system may choose the second strategy with
probability p0,21 when the system undergoes transition to state s21.

In order to compute
C ′ = B′ ./ C,

if the system is in state s11 relation B′ may be transferred from site 1 to site 3 or
relation C from site 3 to site 1 and similar for the other states of the state-transition
graph.

With respect to the stochastic query optimization model we can state the fol-
lowing Theorem.
Theorem 3.1 The stochastic query optimization model for the multiple join query
of type Q4 defines a nonlinear optimization problem.
Proof : We will associate the join-processing times with the nodes of the state-
transition graph and communication times to the arcs of the graph. Let Ti(X)
denote the total processing time required for computing in state i.

So we have:
T11(B′) = c21 (B) + t1 (A ./ B),
T12(C ′) = c31 (C) + t1 (B′ ./ C),
T32(C ′) = c32 (C) + t2 (B′ ./ C),
T13(D′) = c41 (D) + t1 (C ′ ./ D),
T33(D′) = c43 (D) + t3 (C ′ ./ D),
T53(D′) = c42 (D) + t2 (C ′ ./ D),
T73(D′) = c43 (D) + t3 (C ′ ./ D),
T21(B′) = c12 (A) + t2 (A ./ B), (3.1)
T22(C ′) = c13 (B′) + t3 (B′ ./ C),
T42(C ′) = c23 (B′) + t3 (B′ ./ C),
T23(D′) = c14 (C ′) + t4 (C ′ ./ D),
T43(D′) = c34 (C ′) + t4 (C ′ ./ D),
T63(D′) = c24 (C ′) + t2 (C ′ ./ D),
T83(D′) = c34 (C ′) + t4 (C ′ ./ D).
Denote by cij(R) the time required to transfer the relation R from site i to

site j. ti (E) denotes the necessary time to calculate the expression E in the site
i. The expected delay due to computing the join is the product of the delay and
the corresponding transition probability. The mean processing time τi at site i
can be obtained by summing for each state for which there is something to work
in the site i, the product of the necessary time for processing multiplied by the
probability that the system is in the corresponding state.

Let us suppose that input queries of type Q4 arrive at the system at average
intervals of length δ and successive inputs are statistically independent. It is
reasonable to require that none of the processors in the network be allowed to

84 D. DUMITRESCU, C. GROŞAN, AND V. VARGA

take longer on the average than the period δ to execute its task. If it did, the
cumulative delay at each site could increase indefinitely due to queuing, requiring
infinite buffer storage at each site. The system may be regarded as overloaded if
the mean processing time τi is permitted to exceed δ at any site.

Such overload can be avoided if the following inequalities hold:

τi ≤ ∆ < δ,

where ∆ represents a common upper bound on τi for each processor i in the
network.

In order to maximize the system query-processing capacity

λ =
1
δ

the system’s mean interarrival time ∆ may be minimized, where

(δ −∆) > 0,

is chosen sufficiently large to provide adequate buffer storage requirements.
The mean processing times τi, i = 1, 2, 3, 4 are expressed as:

τ1 = T11(B′)p0,11 + T12(C ′)p0,11p11,12 + T13(D′)p0,11p11,12p12,13,

τ2 = T21(B′)p0,21 + T32(C ′)p0,21p21,32 + T53(D′)p0,21p21,32p32,53 (3.2)
τ3 = T22(C ′)p0,11p11,22 + T42(C ′)p0,21p21,42 + T33(D′)p0,11p11,22p22,33

+ T73(D′)p0,21p21,42p42,73,

τ4 = T23(D′)p0,11p11,12p12,23 + T43(D′)p0,11p11,22p22,43

+ T63(D′)p0,21p21,32p32,63 + T83(D′)p0,21p21,42p42,83.

Therefore the stochastic query optimization problem for the query Q4S1 is given
by:

(P1)





minimize ∆1

subject to:
τi ≤ ∆1, i = 1, 2, 3, 4

p0,11 + p0,21 = 1,
p11,12 + p11,22 = 1,
p21,32 + p21,42 = 1,
p12,13 + p12,23 = 1,
p22,33 + p22,43 = 1,
p32,53 + p32,63 = 1,
p42,73 + p42,83 = 1,

p0,11, p0,21, p11,12, p11,22, p21,32, p21,42, p12,13 ∈ [0, 1] ,

p12,23, p22,33, p22,43, p32,53, p32,63, p42,73, p42,83 ∈ [0, 1] .

STOCHASTIC OPTIMIZATION OF QUERYING DISTRIBUTED DATABASES I 85

This concludes the proof.
The obtained problem (P1) is a constrained nonlinear optimization problem. In

the next section we propose a constructive approach for solving the optimization
problem (P1).

4. Stochastic query optimization problem

Let us consider the following notations:
h1(z1, z2, . . . , z14) = c1z1 + c2z1z3 + c3z1z3z7,
h2(z1, z2, . . . , z14) = c4z2 + c5z2z5 + c6z2z5z11, (4.1)
h3(z1, z2, . . . , z14) = c7z1z4 + c8z2z6 + c9z1z4z9 + c10z2z6z13,
h4(z1, z2, . . . , z14) = c11z1z3z8 + c12z1z4z10 + c13z2z5z12 + c14z2z6z14,

where z1 = p0,11,
z2 = p0,21,
z3 = p11,12,
z4 = p11,22,
z5 = p21,32,
z6 = p21,42,
z7 = p12,13,
z8 = p12,23,
z9 = p22,33,
z10 = p22,43,
z11 = p32,53,
z12 = p32,63,
z13 = p42,73,
z14 = p42,83.
Expressing z2k−1, k = 1, 2, . . . , 7, from equality restrictions of problem (P1) we

have:

z2k−1 = 1− z2k.

By replacing z2k−1, k = 1, 2, . . . , 7, in the inequalities of (P1)

τi ≤ ∆i,

the problem (P1) can be rewritten as the next optimization problem (P2):

(P2)





minimize ∆1

subject to:
f1(x1, x2, . . . , x7) ≤ ∆1,
f2(x1, x2, . . . , x7) ≤ ∆1,
f3(x1, x2, . . . , x7) ≤ ∆1,
f4(x1, x2, . . . , x7) ≤ ∆1,

x1, x2, . . . , x7 ∈ [0, 1] .

86 D. DUMITRESCU, C. GROŞAN, AND V. VARGA

The number of relations and sites in one distributed database can be different.
Resulting nonlinear optimization problem has different number of variables and
constraints. Therefore we have to generalize problem (P2) for an arbitrary number
of relations and sites.

Let us consider p continous functions

f1, ..., fp : [0, 1]n → R+,

where p is the number of sites in the distributed database and fi, (i = 1, . . . , p)
represents the mean processing time at site i.

Our optimization problem (P2) may be generalized to the following optimization
problem (Pp).

(Pp)





minimize ∆1

subject to:
f1(x1, x2, . . . , xn) ≤ ∆1,
...
fp(x1, x2, . . . , xn) ≤ ∆1,

x1, x2, . . . , xn ∈ [0, 1] .

5. General optimization framework

In this section problem (Pp) is considered as an instance of a more general
framework. The new framework is necessary for establishing conditions under
which problem (Pp) has a solution.

Let (X, d) be a compact metric space and

f1, ..., fp : X → R+

be continuous strictly positive functions.
Consider the next generic optimization problem:

(P)





minimize y, y ∈ R

subject to:
x ∈ X, (X is a compact metric space),

y > 0,

f1(x) ≤ y,
...
fp(x) ≤ y.

With respect to problem (P) we can state the following Theorem. For proving it
some concepts and results are needed (see for instance Rudin, 1976).
Theorem 5.1: Problem (P) has at least one solution.

STOCHASTIC OPTIMIZATION OF QUERYING DISTRIBUTED DATABASES I 87

Proof. Let X is be compact metric space and f : X → R be the function defined
as

f(x) = max{f1(x), ..., fp(x)}.
Since function f is continuous and X is a compact metric space, according to
the Weierstrass theorem, there exists a point x0 ∈ X such that x0 is the global
minimum of the function f, i.e.

f(x0) = min
x∈X

f(x).

We have to prove that

f(x0) = min y.

Let us suppose that it exists y0 ∈ R∗+ such that

f(x0) > y0,

and y0 satisfies the inequalities from the problem (P) for x∗0 ∈ X, i.e.:

f1(x∗0) ≤ y0

...

fp(x∗0) ≤ y0.

From these inequalities we obtain

f(x∗0) = max{f1(x∗0), ..., fp(x∗0)}
≤ y0

< f(x0).

But this contradicts the assumption that x0 ∈ X is the global minimum of the
function f . Therefore the assumption concerning the existence of a value y0 such
that

f(x0) > y0

is false. This completes the proof. ¤

6. Conclusions

Stochastic optimization model of querying distributed databases, presented by
Drenick and Smith (1993), is extended to the join of four relations. These four
relations are stored in four different sites. Theorem 3.1 states, that the stochastic
query optimization problem in case of four relations leads to a constrained nonlin-
ear programming problem. The problem of querying the distributed database is
generalized for p sites. General constrained nonlinear problem (P) is formulated.
Theorem 5.1 proofs that problem (P) has at least one solution.

88 D. DUMITRESCU, C. GROŞAN, AND V. VARGA

Acknowledgments: We are grateful to professors Cs. Varga and M. Frentiu
for their valuable suggestions and to the Journal’s anonymous reviewers for useful
observations.

References

[1] C. J. Date (2000): An Introduction to Database Systems, Addison-Wesley Publishing Com-
pany, Reading, Massachusetts.

[2] R. F. Drenick (1986): A Mathematical Organization Theory, Elsevier, New York.
[3] P. E. Drenick, R. F. Drenick (1987): A design theory for multi-processing computing systems,

Large Scale Syst. Vol. 12, pp. 155-172.
[4] P. E. Drenick, E. J. Smith (1993): Stochastic query optimization in distributed databases,

ACM Transactions on Database Systems, Vol. 18, No. 2, pp. 262-288.
[5] D. Dumitrescu, C. Grosan, M. Oltean (2001): A new evolutionary adaptive representation

paradigm, Studia Universitas “Babes-Bolyai”, Seria Informatica, Volume XLVI, No. 1, pp.
15-30.

[6] C. Grosan, D. Dumitrescu (2002): A new evolutionary paradigm for single and multiobjec-
tive optimization, Seminar on Computer Science, “Babes-Bolyai” University of Cluj-Napoca.

[7] J. Kingdon,L. Dekker (1995): The shape of space, Technical Report, RN-23-95, Intelligent
System Laboratories, Department of Computer Science, University College, London.

[8] S. LaFortune, E. Wong (1986): A state transition model for distributed query processing,
ACM Transactions on Database Systems, Vol. 11, No. 3, pp. 294-322.

[9] T. Markus, C. Morosanu, V. Varga (2001): Stochastic query optimization in distributed
databases using semijoins, Annales Universitatis Scientiarum Budapestinensis de Rolando
Eötvös Nominatae Sectio Computatorica 20, pp. 107-131.

[10] M. T. Özsu, P. Valduriez (1991) : Principles of Distributed Database Systems, Prentice-Hall.
[11] R. Ramakrishnan (1998): Database Management Systems WCB McGraw-Hill.
[12] W. Rudin(1976): Principles of Mathematical Analysis, McGraw-Hill, New York.
[13] J. D. Ullman (1988): Principles of Database and Knowledge-Base Systems, Vol. I-II, Com-

puter Science Press.
[14] V. Varga (1998): Stochastic optimization for the join of three relations in distributed

databases I. The theory and one application, Studia Universitas “Babes-Bolyai”, Seria In-
formatica, Volume XLIII, No. 2, pp. 37-46.

[15] V. Varga (1999): Stochastic optimization for the join of three relations in distributed
databases II. Generalization and more applications, Studia Universitas “Babes-Bolyai”, Se-
ria Informatica, Volume XLIV, No. 1, pp. 55-62.

E-mail address: ddumitr@cs.ubbcluj.ro

E-mail address: cgrosan@cs.ubbcluj.ro

E-mail address: ivarga@cs.ubbcluj.ro

Department of Computer Science, Faculty of Mathematics and Computer Science,
Babeş-Bolyai University, Cluj-Napoca, Romania

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 1, 2003

A DESIGN PROPOSAL FOR AN OBJECT ORIENTED
ALGEBRAIC LIBRARY

VIRGINIA NICULESCU

Abstract. Object oriented programming and design patterns introduce a
high level of abstraction that allows us to implement and work with math-
ematical abstractions. Classic algebraic libraries, based on imperative pro-
gramming, contain subalgorithms for working with polynomials, matrices,
vectors, etc. Their big inconvenience is the dependency on types. For exam-
ple, a polynomial can be built over any kind of algebraic unitary commutative
ring (R, +, ∗), and we have to define a different set of procedures that imple-
ment the common operations with polynomials, for every such ring.

We propose here an object oriented approach for designing an algebraic
library, based on design patterns, which remove this inconvenient. The big
advantage of this approach is given by the creational design patterns, specif-
ically Abstract Factory and Singleton. They introduce significant flexibility
and abstractness. Thus, we may work with abstract algebraic structures,
such as: groups, rings, fields, etc., like mathematicians do.

Keywords: OOP, design, patterns, algebraic structures, abstracness

1. Introduction

During the time, many algebraic libraries, which contain subalgorithms for
working with polynomials, matrices, vectors, etc., have been built [7, 8, 2].

The big inconvenience of classic imperative algebraic libraries is their depen-
dency on the types. For example, an polynomial can be built over any kind of
algebraic unitary commutative ring (R, +, ∗), and we have to define a different set
of procedures that implement the common operations with polynomials, for every
such ring.

Some other approaches are based on generic programming[8]. This may repre-
sent a solution but it has some inconveniences:

Received by the editors: May 20, 2003.
2000 Mathematics Subject Classification. 98A70,11C08,11C20.
1998 CR Categories and Descriptors. D.1.5 [Software]: Programming Techniques –

Object-oriented Programming; D.3.3 [Software]: Programming Languages – Language Con-
structs and Features; E.2 [Data]: Data Storage Representations.

89

90 VIRGINIA NICULESCU

• Not all object oriented languages have mechanisms for genericity, and
those having these mechanisms – like STL of C++ – don’t offer the
possibility to constrain the parameterized types to any explicit condi-
tions. (Still, in the “Generic Java” proposals, the parametric types may
be constrained to some conditions[10], but GJ is yet not used.)

• A parameterized matrix multiplication routine could be written and in-
stantiated for matrices over integers, rationals, maybe real and complex
numbers, numbers in Z/mZ and so on. But, this will produce the com-
plete multiplication code for each type, in the executable.

Object oriented programming and design patterns form a very good framework
for implementing a general algebraic library. We analyze here an object oriented
approach for designing an algebraic library, based on design patterns, which re-
move the inconvenient of type dependency. We will create abstract classes that
implement general abstract algebraic structures, and we will use Abstract Factory
design pattern for building the special values.

Object oriented programming has been used before for designing some algebraic
libraries [8], but the difference is given by the usage of creational design patterns.
In this way, we can build not only a flexible numerical algebraic library, but a
general abstract algebraic library.

2. Creational Design Patterns

Creational design patterns abstract the instantiation process. They are based on
composition and inheritance. They allow us to make the pass from the hardcoding
of a fixed set of behaviors towards defining a smaller set of fundamental behaviors
that can be composed into any number of more complex ones. Thus, creating
objects with particular behaviors requires more than simply instantiating a class.
Five creational design patterns are considered to be classic: Abstract Factory,
Prototype, Factory Method, Builder and Singleton [5].

We need, for our library, to use some special values, such as null and unity
elements, in some classes where we don’t know the concrete type of the special
values. So, we have to create them by using special methods.

For example, building a general class for a polynomial does not have to be
dependent on the coefficient types. So, we will use a general abstract type for the
coefficients. But for the implementation of the class polynomial, we need to work
with the special values 0 and 1.

Abstract Factory, Factory Method, and Prototype design pattern may be used
for our purpose, and we analyse which one is more appropriate.

Factory Method is not appropriate for building the library, because it imposes
the derivation of new classes for the main algebraic structures. For example, for a

A DESIGN PROPOSAL FOR AN OBJECT ORIENTED ALGEBRAIC LIBRARY 91

polynomial, the purpose is to define in our library a completely defined class, and
let the user to use it for any appropriate coefficient type.

The Prototype pattern may be used with some advantages. The Prototype pat-
tern imposes only that every type defines a method clone, that allow an element
to be copied. The advantage is that using the Prototype pattern leads to fewer
classes than using the Abstract Factory pattern, but the structuring of the library
would not be so good.

So, we have chosen the Abstract Factory design pattern. Different factory
classes that define creational methods for the special values are defined, such as:
GroupFactory, FieldFactory, etc.

Factory classes may use Singleton pattern, in order to allow a single factory
instance for each type.

3. The Design Scheme

We start from a general algebraic element: AlgElem, which is implemented as
an interface with no methods. We define the interfaces corresponding to algebraic
elements, starting from their definition.

3.1. Basic structures. A very well known and used basic algebraic structure is
the group. We define consequently an interface GroupElem that extends AlgElem
(Figure 1). This interface contains a method isZero() that allows us to verify
if an element is the identity element or not, a method for the computation of
the opposite for an element, and a method for the operation +. The method
isAddCommutative() will be defined to return true or false, depending on the
concrete case. If it is possible, this method should be defined static, and implicitly
returning false.

Rings are other basic algebraic structures, and corresponding to them, we
define three interfaces: RingElem, UnitaryRingElem, DivisionRingElem, and
FieldElem (Figure 1). For fields, which are commutative division rings the corre-
sponding interface is FieldElem.

The method isMultiplyCommutative() returns true or false in the ring
classes, and always true for the field classes.

The method isInvertible() returns always true for DivisonRingElem and
FieldElem objects. Similarly, the method isMultiplyCommutative() always re-
turn true, in the classes implementing the FieldElem interface.

3.2. Polynomials. Now we consider the set of all polynomials – R[X], over a
commutative ring with identity (R, +, ·). R[X] is a subring with identity of the
ring (RN,+, ·), where RN is the set of all functions with the domain N and codomain
R.

92 VIRGINIA NICULESCU

Figure 1. The class diagram for the basic structures

Corresponding to these, we consider two interfaces derived from the interface
UnitaryRingElem: Polynomial and DivisionPolynomial (Figure 2).

The method division has some strong preconditions, assuring that the neces-
sary conditions for polynomials division are satisfied.

A DESIGN PROPOSAL FOR AN OBJECT ORIENTED ALGEBRAIC LIBRARY 93

Figure 2. The class diagram for polynomials

To implement a concrete class for the ADT Polynomial, we have to choose the
representation of the data. There are two classic ways for representation:

• using an array of coefficients;
• using a list of monoms.

We may also consider other storage formats, and, as well, we may introduce
storage format abstraction level like in [8]. This would mean creating another
abstract class StorageFormat, from which the specialized storage format classes
are derived. Bridge and Iterator patterns have to be used in this case.

In order to better illustrate the associated factory classes, we will consider in this
presentation only these two kinds of storage, and we will use simple inheritance.

Using the first representation, the operation of coefficient selection is very fast,
because of the direct access. The second one is very useful for the implementation
of sparse polynomials.

94 VIRGINIA NICULESCU

Corresponding to each of them we define two concrete implementation classes
– ArrayPolynomial,
ArrayDivisionPolynomial and LinkedPolynomial, LinkedDivisionPolynomial.

The coefficients type is also UnitaryRingElem, and so the Composition pattern
is used here.

3.3. Matrices and Vectors. We start from the definition of the vector space.

Definition 1 (Vector Space). A vector space over a field K is an abelian group
(V, +) together with a so-called external operation

· : K × V, (k, v) 7→ k · v,

satisfing the following axioms:
(1) k · (v1 + v2) = k · v1 + k · v2;
(2) (k1 + k2) · v = k1 · v + k2 · v;
(3) (k1 · k2) · v = k1 · (k2 · v);
(4) 1 · v = v

Theorem 1. Let V be a vector space over K and n ∈ N∗. Then V n has a
structure of a vector space over K, where the operations are defined by

(v1, . . . , vn) + (v
′
1, . . . , v

′
n) = (v1 + v

′
1, . . . , vn + v

′
n),

k(v1, . . . , vn) = (kv1, . . . , kvn),

where k ∈ K and (v1, . . . , vn), (v
′
1, . . . , v

′
n) ∈ V n.

For vectors implementation, we will consider the vector space, for which V =
Wn, n ∈ N∗, where (W,+) is an abelian group. Corresponding to it, we build a
class Vector (Figure 3). The method
scalarProd(FieldElem) corresponds to the external operation.

We may consider the matrices to be elements of the vector space Wnm(K) =
Mmn(K). The corresponding class is SimpleMatrix.

If the elements of the matrices are unitary ring elements ((W,+, ·) forms a
unitary ring), we can define a product operation between two matrices A and B

that respect the following property: cols(A) = rows(B) = n. The product matrix
C is defined by:

c(i, j) =
n∑

k=0

a(i, k) · b(k, j).

For this case, we defined a class Matrix derived from the class SimpleMatrix
(Figure 3).

Some specific operations can be defined for matrices, such as computation of
the rank.

A DESIGN PROPOSAL FOR AN OBJECT ORIENTED ALGEBRAIC LIBRARY 95

Figure 3. The class diagram for Vectors and Matrices

Square matrices with elements from a unitary ring (R, +, ·) form also a unitary
ring (Figure 3). On square matrices we may introduce many specific operations,
such as computation of the determinant, and of the inverse matrix, etc. The class
SquareMatrix is derived from the class Matrix, and it has specific methods.

96 VIRGINIA NICULESCU

Figure 4. The class diagram for the basic factories

For matrices, we may also consider two classic ways for data representation,
corresponding to dense and to sparse matrices:

• using a bi-dimensional array of elements;
• using a list of triples.

Corresponding to these representation, we have two kinds of concrete classes for
matrices (Figure 3). Like for the polynomials case, Composition design pattern is
also used for vectors and matrices.

3.4. Other Structures and Classes. The library may be extended with many
other structures and classes.

For example, we can add a general abstract class named AlgebraicSystem,
which allows the user to solve a n × n algebraic system. The concrete classes
derived from it, will implement some concrete solving methods.

3.5. Factories. For simetry, we define an empty interface AlgFactory, which is
the root of factories hierarchy.

The interface GroupFactory declare only one method: createZero():AlgElem.
The interface FieldFactory extends the interface GroupFactory, and adds a new

A DESIGN PROPOSAL FOR AN OBJECT ORIENTED ALGEBRAIC LIBRARY 97

Figure 5. The class diagram for some concrete factories

method: createOne():AlgElem. We have chosen the name FieldFactory, be-
cause fields are much more used, but this interface will be also used for the unitary
and division rings.

In order to solve the problem of creation for the special value 0 and 1, the
implementations of the class Polynomial has to use a FieldFactory instance.
For example, one constructor of the class Polynomial creates an null polynomial.
To create a null polynomial, we have to create a null coefficient, and we can do this
by using the method createZero() of a class that implements FieldFactory.

The concrete classes for matrices also have to use a GroupFactory. Square
matrices classes need for the creation of identity matrices, both methods of a
FieldFactory.

98 VIRGINIA NICULESCU

Polynomial p1 = new ArrayPolynomial(RealFactory.getInstance());
Polynomial p2 = new LinkedPolynomial(ComplexFactory.getInstance());

Figure 6. The creation of null polynomials over R and over C

Matrix m1 = new LinkedMatrix(10,10, RealFactory.getInstance());
Matrix m2 = new ArrayMatrix(10,10, ComplexFactory.getInstance());

Figure 7. The creation of two 10× 10 matrices over R and over C

Matrix m = new ArraySquareMatrix(10,
new ArrayPolynomFactory(RealFactory.getInstance()))

Figure 8. The creation of a null 10× 10 matrix over R[X]

GroupFactory and FieldFactory are basic factories. We may define some other
specialized factories, such as: PolynomFactory, MatrixFactory (Figure 5).
These classes create the null and the unity values for polynomials, and matrices.
These factories extend GroupFactory and FieldFactory, but in the same time
they use these interfaces for creation of their basic elements. Their constructors
receive a GroupFactory or a FieldFactory instance, which is used in the functions
createZero(), or createOne().

For concrete examples, concrete factories have to be built, and examples are
given for the real and complex numbers: RealFactory and ComplexFactory.
These concrete factories may implement Singleton[5] pattern.

4. Implementation

Any object oriented language can be chosen.
We have chosen Java because is an almost pure object oriented language, which

offers many advantages. We have been very interested in having a good and
simple mechanism for exception handling. We need it because there are many
preconditions that impose different types of verification – for example, the necessity
of checking if a parameter instance has a specific type. Our implementation in Java,
define a main package named Algebra, which has some subpackages: Factories,
BasicStructures, and Structures.

A DESIGN PROPOSAL FOR AN OBJECT ORIENTED ALGEBRAIC LIBRARY 99

5. Concrete Examples

Let’s consider that we need to work with polynomials with coefficients’ types:
real and complex. First, we define two classes Real and Complex, which implement
FieldElem interface. Also, two factory classes has to be built: RealFactory and
ComplexFactory, which implement the interface FieldFactory. The code showed
in the Figure 6 illustrates the creation of two null polynomials: one over the R
and another over the C.

Similarly, we can work with matrices with elements of type real and complex,
without creating any other class (Figure 7).

But, we can also work with matrices that have polynomial elements, like it is
showed in the Figure 8.

6. Conclusions and Future Work

We have defined here a design scheme for a general algebraic library. The
design scheme is based on object oriented programming, and it offers generality
and flexibility. The Abstract Factory and Singleton creational design patterns,
and some other design patterns, such as Composition, have been used.

The library is designed in a way that offers the user the possibility of working
with general algebraic structures without concerning about the types dependencies.

Some general abstract algebraic structures and also some basic concrete alge-
braic structures have been designed. The users may define, without any problems,
other algebraic structures based on the abstract ones. Also, existing algebraic
structures may be combined and used in different ways. These are possible mainly
because of using creational design patterns.

The fact that OOP allows us to describe problems in the terms of the problem
space, rather than the terms of the solution space[3], is very well emphasized here.
We can work and reasoning with mathematical abstractions as: groups, fields,
rings, . . .

This design scheme represents the first step for developing a general algebraic
library; in the next step we intend to introduce the storage format abstraction
level, which is based on Bridge and Iterator patterns. We intend to combine the
storage format abstraction level with Abstract Factory pattern, in a way in which
the factory will be also responsible for the creation of the specialized storage.

References

[1] Arnold, K., Holmes, D., Gosling, J., The Java Programming Language, Addison-Wesley,
2000.

[2] BLAS Technical Forum, Document for the BAsic Linear Algebra Subprograms,
http://www.netlib.org/blas/blast-forum/

100 VIRGINIA NICULESCU

[3] Eckel, B., Thinking in Java, http://www.EckelObjects.com, 2000.
[4] Eriksson, H.E., Penker, M. UML Toolkit, Wiley Computer Publishing, 1997.
[5] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design Patterns: Elements of Reusable

Object Oriented Software, Addison-Wesley, 1995.
[6] Gilbert, J., Elements of Modern Algebra, PWS-Kent, Boston, 1992.
[7] LAPACK++: A Design Overview of Object Oriented Extensions for High Performance Lin-

ear Algebra, In Proceeedings of SuperComputing’93, pg. 162-171, IEEE Computer Society
Press, 1993.

[8] Luján, M., Freeman, T. L., Gurd, J. R., OoLaLa: an Object Oriented Analysis and De-
sign of Numerical Linear Algebra, In the Proceedings of Conference on Object-Oriented
Programming, Systems, Languages, and Applications – OOPSLA 2000.

[9] Musser, D.R., Scine A., STL Tutorial and Reference Guide: C++ Programming with Stan-
dard Template Library, Addison-Wesley, 1995.

[10] Myers A.C., Bank J.A., Liskov Barbara, Parameterized Types for Java, Proceadings of the
24th ACM Symposium on the Principles of Programming Languages, Paris, 1997.

Department of Computer Science, Faculty of Mathematics and Computer Science,
Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: vniculescu@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 1, 2003

SRDJAN STOJANOVIC, “COMPUTATIONAL FINANCIAL
MATHEMATICS USING MATHEMATICA: OPTIMAL TRADING

STOCKS AND OPTIONS”, BIRKHÄUSER VERLAG,
BOSTON-BASEL-BERLIN, 2003, XI+481 PAGES

DIANA ANDRADA FILIP

The book consists in 481 pages i.e. 8 chapters, a bibliography and an index and
includes CD-ROM. Srdjan Stojanovic taught the course on Financial Mathematics
at the University of Cincinnati since 1998 and at Purdue University during the
academic year 2001-2002. This book is an expanded version of those courses, built
with the help of the students during the time when Srdjan Stojanovic taught them
computational financial mathematics and MATHEMATICAR programming.

A very interesting and very actual book, because now, the computer make
an integrand part of our life. The author, himself, underlines in the Introduc-
tion, that the book is addressed to students and professors of academic programs
in financial mathematics (like computational finance and financial engineering).
Anyway, the mathematical background would be Calculus, Differential Equations
and Probability, but varies according to the objectives of the reader. The book
is, as recommends the author, divided in some parts according to the required
mathematical level as follows: the basics (for the Chapters 1-4), intermediate level
(the Chapters 5 and 7), advanced level (for the Chapters 6 and 8).

In the Chapter 1, Cash Account Evolution, ordinary differential equations
are solving with MathematicaR, and symbolic and numerical solutions of ODEs
are presented.

The Chapter 2, Stock Price Evolution, explains to the reader what are stocks
and then presents the stock price modeling, i.e. some stochastic differential equa-
tions. An other aim of this chapter is to be acquainted with Itô calculus and with
multivariable and symbolic Itô calculus. Also, some relationship between SDEs
and PDEs are presented.

In the Chapter 3, European Style Stock Options, the first paragraph deals
with the notion of stock option. Then, the Black and Scholes PDE and hedging
are presented and the Black and Scholes PDE are symbolically solved. Also, the
generalized Black and Scholes formulas are presented.

In the Chapter 4, Stock Market Statistics, the stock market data import and
manipulation are presented. Then, the chapter deals with the volatility estimates,

Received by the editors: April 15, 2003.

101

102 DIANA ANDRADA FILIP

i.e. scalar case, and also deals with the appreciation rate estimates (the scalar
case) and the statistical experiments (Bayesian and non-Bayesian). In the same
chapter, the vector basic price model statistics and the dynamic statistics, like the
filtering of conditional Gaussian processes, are treated.

In the Chapter 5, Implied Volatility for European Options, the option
market data is presented. After that, the Black and Scholes theory is made obvious
vs. market data (the implied volatility) and then, the numerical PDEs, the optimal
control and the implied volatility are studied.

The Chapter 6, American Style Stock Options, deals with the american
options, the obstacle problems and presents the general implied volatility for amer-
ican options.

Very important, the Chapter 7, Optimal Portfolio Rules, presents the utility
of wealth, the Merton’s optimal portfolio rule derived and implemented, the port-
folio rules under appreciation rate uncertainty, the portfolio optimization under
equality constraints, the portfolio optimization under inequality constraints.

In the Chapter 8, Advanced Trading Strategies, the reduced Monge-Ampère
PDEs of advanced portfolio hedging and the hypoelliptic obstacle problems in
optimal momentum trading are presented.

As we have already said, the book is accompanied by a CD-ROM, but the
book is not a software product. Informations about further developments might
be available at the web site CFMLab.com. The reader may direct comments to
the same address.

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca,
Romania

E-mail address: dafilip@math.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 1, 2003

YORICK HARDY AND WILLI-HANS STEEB, “CLASSICAL
AND QUANTUM COMPUTING WITH C++ AND JAVA

SIMULATIONS”, BIRKHÄUSER VERLAG,
BASEL-BOSTON-BERLIN, 2001

DAN DUMITRESCU

Scientific computing is not numerical analysis, the analysis of algorithms, high
performance computing or computer graphics. It consists instead of the combina-
tion of all these fields and others to craft solution strategies for applied problems.
It is the original application area of computers and remains the most important.
From meteorology to plasma physics, environmental protection, nuclear energy,
genetic engineering, symbolic computation, network optimization, financial appli-
cations and many other fields, scientific applications are larger, more ambitious,
more complex, and more necessary. More and more universities introduce a De-
partment of Scientific Computing or a Department of Computational Science. The
components of this new department include Applied Mathematics, Theoretical
Physics, Computer Science and Electronic Engineering.

Classical and Quantum Computing provides a self-contained, systematic
and comprehensive introduction to all the subjects and techniques important in
scientific computing. The style and presentation are readily accessible to under-
graduates and graduates. A large number of examples, accompanied by complete
C++ and Java code wherever possible, cover every topic.

Features and benefits:

• comprehensive coverage of the theory with many examples;
• website with programs and support is given at “http://issc.rau.ac.za”

“http://issc.rau.ac.za”;
• topics in classical computing include Boolean algebra, gates, circuits,

latches, error detection and correction, neural networks, Turing ma-
chines, cryptography, genetic algorithms;

• for the first time, genetic expression programming is presented in a text-
book topics in quantum computing include mathematical foundations,
quantum algorithms, quantum information theory;

• hardware used in quantum computing.

Received by the editors: April 15, 2003.

103

104 DAN DUMITRESCU

This book serves as a textbook for courses in scientific computing and is also
very suitable for self-study. Students, professionals and practitioners in computer
science, applied mathematics and physics will benefit from using the book and the
included software simulations.

Department of Computer Science, Faculty of Mathematics and Computer Science,
Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: ddumitr@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVIII, Number 1, 2003

BRIGITTE CHAUVIN, PHILIPPE FLAJOLET, DANIÈLE
GARDY, ABDELKADER MOKKADEM EDS., “MATHEMATICS

AND COMPUTER SCIENCE II: ALGORITHMS, TREES,
COMBINATORICS AND PROBABILITIES”, BIRKHÄUSER

VERLAG, BASEL-BOSTON-BERLIN, 2002, ISBN 3-7643-6933-7,
557 PAGES

HORIA F. POP

This book features a collection of original papers situated at the cross-roads of
Mathematics and Computer Science, representing the Proceedings of the Interna-
tional Colloquium of Mathematics and Computer Science, held at the University
of Versailles-St-Quentin, in September 18–20, 2002. The issue is centered around
topics of large interest, as Combinatorics, Random Graphs and Networks, Al-
gorithms Analysis and Trees, Branching Processes and Trees, Applied Random
Combinatorics. The book has 557 pages, and provides 34 papers written by 60
authors, distributed among five distinct chapters of mathematics and computer
science.

Combinatorics is the starting point of many researches of discrete models. A
few important results are presented, concerning map colouring problems, a theory
of walks, ECO-systems, planar maps.

Ramdon Graphcs and Networks have been the subject of intense study for fourty
years. A few results concern an analysis of triangle-free graphs on breadth-first
search, random maps and random graphs, colouring random graphs, aproximabil-
ity of paths colouring problems, monimal spanning trees.

Analysis of Algorithms and Trees. Trees appear as data structures in a variety
of domains, like data processing, data compression, information retrieval, symbolic
computation. Among the published studies, we remind the analysis of the new
suffix search tree data structure, the analysis of the Quickfind algorithm, a study
of digit statistics in a variety of number representation systems.

Brancing Processes and Trees. Branching processes are the probabilistic coun-
terparts of the combinatorial theory of trees. The published studies include anal-
yses of random trees, random walks, stable weighted branching processes.

Applied random combinatorics. A few papers present implications of random
combinatorics to many other areas of science: the parking problem, sensitivity

Received by the editors: May 15, 2003.

105

106 HORIA F. POP

of Boolean functions to input noise, new results in learning theory, nierarchically
structured databases, and a study of the number of spanning tres in structured
graphs.

This book illustrates numerous ramifications of the theory of random discrete
structures throughout mathematics and computer science. The book serves both
as a reference text and as a smooth introduction to many aspects of interest both
to mathematicians and computer scientists. It is an outstanding tool and a main
information source for a large public in applied mathematics, discrete mathemat-
ics and computer science, including researhcers, teachers, graduate students adn
engineers.

Department of Computer Science, Faculty of Mathematics and Computer Science,
Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: hfpop@cs.ubbcluj.ro

	00_contents
	01Serban
	02Vancea
	03SerbanTatar
	04Trimbitas
	05Onet
	06Haller
	07Akume
	08Varga
	09Niculescu
	10BookRevFilip
	11BookRevDumitrescu
	12BookRevPop

