
Anul XLVII 2002

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

2

Redacţia: 3400 Cluj-Napoca, str. M. Kogălniceanu nr. 1 Telefon 405300

SUMAR – CONTENTS – SOMMAIRE

Zs. Darvay, A Weighted-Path-Following Method for Linear Optimization 3

G. Şerban, LASG - A Logic Architecture for Intelligent Agents 13

I. Cozac, Minimum Cost Path in a Huge Graph ... 23

C. Popescu, An Efficient ID-based Group Signature Scheme 29

G. Şerban, D. Tatar, A Word Sense Disambiguation Experiment for Romanian
Language ... 37

H. Todoran, The Road to Real Multimedia Databases - Emerging Multimedia Data
Types ... 43

M. Frenţiu, H. F. Pop, A Study of Dependence of Software Attributes using Data
Analysis Techniques .. 53

M. Vancea, A. Vancea, A Cost Model for the AND-Parallel Execution of Logic
Programs .. 67

I. Lazăr, On the Convergence of Asynchronous Block Newton Methods for
Nonlinear Systems of Equations ... 75

C. Ionescu, Fringed Quad-Trees: A New Kind of Data Structure 85

I. Tănase, Mathematical Models for Organizing Data Collections 99

[paper retracted] ... []

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 2, 2002

A WEIGHTED-PATH-FOLLOWING METHOD FOR LINEAR
OPTIMIZATION

ZSOLT DARVAY

Abstract. In a recent paper [4] we introduced a new method for finding
search directions for interior point methods (IPMs) in linear optimization
(LO), and we developed a new polynomial algorithm for solving LO prob-
lems. It is well-known that using the self-dual embedding we can find a
starting feasible solution, and this point will be on the central path. We
proved [3] that this initialization method can be applied for the new algo-
rithm as well. However, practical implementations often don’t use perfectly
centered starting points. Therefore it is worth analysing the case when the
starting point is not on the central path. In this paper we develop a new
weighted-path-following algorithm for solving LO problems. We conclude
that following the central path yields to the best iteration bound in this case
as well.

1. Introduction

In this paper we discuss a generalized form of path-following IPMs. The field of
IPMs is an active research area, since Karmarkar [8] has developed the first IPM
in 1984. For a survey of results see the following books [1, 2, 6, 11, 13, 14]. In
this paper we generalize the algorithm introduced in [4], and we develop a new
weighted-path-following algorithm. It is well known that with every algorithm
which follows the central path we can associate a target sequence on the central
path. This observation led to the concept of target-following methods introduced
by Jansen et al. [7]. A survey of target-following algorithms can be found in
[11] and [6]. Weighted-path-following methods can be viewed as a particular case
of target-following methods. These methods were studied by Ding and Li [5] for
primal-dual linear complementarity problems, and by Roos and den Hertog [10]
for primal problems. In this paper we consider the LO problem in the following

2000 Mathematics Subject Classification. 90C05.
1998 CR Categories and Descriptors. G.1.6. [Mathematics of Computing]: Numerical

Analysis – Linear programming.

3

4 ZSOLT DARVAY

standard form

min cT x

s.t. Ax = b,(P)
x ≥ 0,

where A ∈ <m×n with rank(A) = m, b ∈ <m and c ∈ <n. The dual of this
problem can be written in the following form

max bT y

s.t. AT y + s = c,(D)
s ≥ 0.

We assume that the interior point condition (IPC) holds for these probelms.
Assumption 1 (Interior point condition). There exist (x0, y0, s0) such that

Ax0 = b, x0 > 0,

AT y0 + s0 = c, s0 > 0.

Using the self-dual embedding method a larger LO problem can be constructed in
such a way that the IPC holds for that problem. Hence, the IPC can be assumed
without loss of generality. Finding the optimal solutions of both the original
problem and its dual, is equivalent to solving the following system

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(1)
xs = 0,

where xs denotes the coordinatewise product of the vectors x and s, hence

xs = [x1s1, x2s2, . . . , xnsn]T .

We mention that in this paper for an arbitrary function f , and an arbitrary vector
x we will use the notation

f(x) = [f(x1), f(x2), . . . , f(xn)]T .

The first and the second equations of system (1) serve for maintaining feasibility,
hence we call them the feasibility conditions. The last relation is the complemen-
tarity condition, which in IPMs is generally replaced by a parameterized equation,
thus we obtain

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(2)
xs = µe,

where µ > 0, and e is the n-dimensional all-one vector, hence e = [1, 1, . . . , 1]T . If
the IPC is satisfied, then for a fixed µ > 0 the system (2) has a unique solution.

A WEIGHTED-PATH-FOLLOWING METHOD FOR LO 5

This solution is called the µ-center (Sonnevend [12]), and the set of µ-centers for
µ > 0 formes the central path. The target-following approach starts from the
observation that the system (2) can be generalized by replacing the vector µe with
an arbitrary positive vector w2. Thus we obtain the following system

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(3)
xs = w2,

where w > 0. If the IPC holds then the system (3) has a unique solution. This
feature was first proved by Kojima et al. [9]. Hence we can apply Newton’s
method for the system (3) to develop a primal-dual target-following algorithm.
In the following section we present a new method for finding search directions by
applying Newton’s method for an equivalent form of system (3).

2. New Search-Directions

In this section we introduce a new method for constructing search directions by
using the system (3). Let <+ = {x ∈ < | x ≥ 0}, and consider the function

ϕ ∈ C1, ϕ : <+ → <+.

Furthermore, suppose that the inverse function ϕ−1 exists. Then, the system (3)
can be written in the following equivalent form

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(4)
ϕ(xs) = ϕ(w2),

and we can apply Newton’s method for the system (4) to obtain a new class of
search directions. We mention that a direct generalization of the approach defined
in [4] would be the following variant. The system (3) is equivalent to

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(5)

ϕ
(xs

w2

)
= ϕ(e),

and using Newton’s method for the system (5) yields new search directions. For
our purpose it is more convenient the first approach, hence in this paper we use
the system (4). Let us introduce the vectors

v =
√

xs and d =
√

xs−1,

and observe that these notations lead to

(6) d−1x = ds = v.

6 ZSOLT DARVAY

Suppose that we have Ax = b, and AT y + s = c for a triple (x, y, s) such that
x > 0 and s > 0, hence x and s are strictly feasible. Applying Newton’s method
for the system (4) we obtain

A∆x = 0,

AT ∆y + ∆s = 0,(7)
sϕ′ (xs) ∆x + xϕ′ (xs) ∆s = ϕ(w2)− ϕ (xs) .

Furthermore, denote
dx = d−1∆x, ds = d∆s,

and observe that we have

(8) v(dx + ds) = s∆x + x∆s,

and

(9) dxds = ∆x∆s.

Hence the linear system (7) can be written in the following equivalent form

Ādx = 0,

ĀT ∆y + ds = 0,(10)
dx + ds = pv,

where

(11) pv =
ϕ(w2)− ϕ(v2)

vϕ′(v2)
,

and Ā = Adiag(d). We also used the notation

diag(ξ) =

ξ1 0 . . . 0
0 ξ2 . . . 0

.
0 0 . . . ξn

 ,

for any vector ξ. In the following section we will develop a new primal-dual
weighted-path-following algorithm based on one particular search direction.

3. The Algorithm

In this section we let ϕ(x) =
√

x, and we develop a new primal-dual weighted-
path-following algorithm based on the appropriate search directions. Thus, making
the substitution ϕ(x) =

√
x in (11) we get

(12) pv = 2(w − v).

Now for any positive vector v, we define the folowing proximity measure

(13) σ(v, w) =
‖pv‖

2min(w)
=
‖w − v‖
min(w)

,

A WEIGHTED-PATH-FOLLOWING METHOD FOR LO 7

where ‖ · ‖ is the Euclidean norm (l2 norm), and for every vector ξ we denote
min(ξ) = min{ξi | 1 ≤ i ≤ n}. We introduce another measure

σc(w) =
max(w2)
min(w2)

,

where for any vector ξ we denote max(ξ) = max{ξi | 1 ≤ i ≤ n}. Observe that
σc(w) can be used to measure the distance of w2 to the central path. Furthermore,
let us introduce the notation

qv = dx − ds,

observe that from (10) we get dT
x ds = 0, hence the vectors dx and ds are orthogonal,

and thus we find that
‖pv‖ = ‖qv‖.

Consequently, the proximity measure can be written in the following form

(14) σ(v, w) =
‖qv‖

2min(w)
,

thus we obtain
dx =

pv + qv

2
, ds =

pv − qv

2
,

and

(15) dxds =
p2

v − q2
v

4
.

Making the substitution ϕ(x) =
√

x in (7) yields

A∆x = 0,

AT ∆y + ∆s = 0,(16) √
s

x
∆x +

√
x

s
∆s = 2(w −√xs).

Now we can define the algorithm.

Algorithm 3.1 Suppose that for the triple (x0, y0, s0) the interior point condition
holds, and let w0 =

√
x0s0. Let ε > 0 be the accuracy parameter, and 0 < θ < 1

the update parameter (default θ = 1

5
√

σc(w0)n
),

begin
x := x0; y := y0; s := s0;
w := w0;
while xT s > ε do begin

w := (1− θ)w;
Compute (∆x, ∆y, ∆s) from (16)
x := x + ∆x;
y := y + ∆y;
s := s + ∆s;

8 ZSOLT DARVAY

end
end.

In the next section we shall prove that this algorithm is well defined for the default
value of θ, and we will also give an upper bound for the number of iterations
performed by the algorithm.

4. Convergence Analysis

In the first lemma of this section we prove that if the proximity measure is
small enough, then the Newton process is strictly feasible. Denote x+ = x + ∆x
and s+ = s + ∆s the vectors obtained by a full Newton step, and let v =

√
xs as

usual.

Lemma 4.1 Let σ = σ(v, w) < 1. Then the full Newton step is strictly feasible,
hence

x+ > 0 and s+ > 0.

Proof: For every 0 ≤ α ≤ 1 let x+(α) = x + α∆x and s+(α) = s + α∆s. Hence

x+(α)s+(α) = xs + α(s∆x + x∆s) + α2∆x∆s

Now using (8) and (9) we find that

x+(α)s+(α) = v2 + αv(dx + ds) + α2dxds,

and from (10) and (15) we obtain

x+(α)s+(α) = (1− α)v2 + α(v2 + vpv) + α2

(
p2

v

4
− q2

v

4

)
.

Moreover (12) yields

v +
pv

2
= w,

and thus

v2 + vpv = w2 − p2
v

4
.

Consequently

(17) x+(α)s+(α) = (1− α)v2 + α

(
w2 − (1− α)

p2
v

4
− α

q2
v

4

)
,

thus the inequality x+(α)s+(α) > 0 certainly holds if
∥∥∥∥(1− α)

p2
v

4
+ α

q2
v

4

∥∥∥∥
∞

< min(w2),

A WEIGHTED-PATH-FOLLOWING METHOD FOR LO 9

where ‖ · ‖∞ denotes the Chebychev norm (l∞ norm). Using (13) and (14) we get
∥∥∥∥(1− α)

p2
v

4
+ α

q2
v

4

∥∥∥∥
∞
≤ (1− α)

‖p2
v‖∞
4

+ α
‖q2

v‖∞
4

≤

≤ (1− α)
‖pv‖2

4
+ α

‖qv‖2
4

= σ2 min(w2) < min(w2).

Hence, for any 0 ≤ α ≤ 1 we have x+(α)s+(α) > 0. As a consequence we observe
that the linear functions of α, x+(α) and s+(α) do not change sign on the interval
[0, 1]. For α = 0 we have x+(0) = x > 0 and s+(0) = s > 0 thus we obtain
x+(1) = x+ > 0 and s+(1) = s+ > 0, and this implies the lemma.

In the next lemma we prove that the same condition, namely σ < 1 is sufficient
for the quadratic convergence of the Newton process.

Lemma 4.2 Let x+ = x + ∆x and s+ = s + ∆s be the vectors obtaind after a full
Newton step, v =

√
xs and v+ = √

x+s+. Suppose σ = σ(v, w) < 1. Then

σ(v+, w) ≤ σ2

1 +
√

1− σ2
.

Thus σ(v+, w) < σ2, which means quadratic convergence of the Newton step.
Proof: From Lemma 4.1 we get x+ > 0 and s+ > 0. Now substitute α = 1 in
(17) and get

(18) v2
+ = w2 − q2

v

4
.

Using (18) we obtain

min(v2
+) ≥ min(w2)− ‖q2

v‖∞
4

≥ min(w2)− ‖qv‖2
4

= min(w2)(1− σ2),

and this realtion yields

(19) min(v+) ≥ min(w)
√

1− σ2.

Furthermore, from (18) and (19) we get

σ(v+, w) =
1

min(w)

∥∥∥∥
w2 − v2

+

w + v+

∥∥∥∥ ≤
‖w2 − v2

+‖
min(w) (min(w) + min(v+))

≤

≤ ‖q2
v‖

(2min(w))2
(
1 +

√
1− σ2

) ≤ 1
1 +

√
1− σ2

(‖qv‖
2min(w)

)2

=
σ2

1 +
√

1− σ2
.

Consequently, we have σ(v+, w) < σ2, and this implies the lemma.

In the following lemma we give an upper bound for the duality gap obtained after
a full Newton step.

10 ZSOLT DARVAY

Lemma 4.3 Let σ = σ(v, w). Moreover, let x+ = x+∆x and s+ = s+∆s. Then

(x+)T s+ = ‖w‖2 − ‖qv‖2
4

,

hence (x+)T s+ ≤ ‖w‖2.
Proof: From

x+s+ = w2 − q2
v

4
,

we obtain

(x+)T s+ = eT (x+s+) = eT w2 − eT q2
v

4
= ‖w‖2 − ‖qv‖2

4
,

and this proves the lemma.

In the following lemma we discuss the influence on the proximity measure of the
Newton process followed by a step along the weighted-path. We assume that each
component of the vector w will be reduced by a constant factor 1− θ.

Lemma 4.4 Let σ = σ(v, w) < 1 and w+ = (1− θ)w, where 0 < θ < 1. Then

σ(v+, w+) ≤ θ

1− θ

√
σc(w)n +

1
1− θ

σ(v+, w).

Furthermore, if σ ≤ 1
2 , θ = 1

5
√

σc(w)n
and n ≥ 4 then we get σ(v+, w+) ≤ 1

2 .

Proof: We have

σ(v+, w+) =
1

min(w+)
‖w+ − v+‖ ≤ 1

min(w+)
‖w+ − w‖+

1
min(w+)

‖w − v+‖ =

=
1

(1− θ)min(w)
‖θw‖+

1
1− θ

σ(v+, w) ≤ θ

1− θ

√
σc(w)n +

1
1− θ

σ(v+, w).

Thus the first part of the lemma is proved. Now let θ = 1

5
√

σc(w)n
, observe

that σc(w) ≥ 1, and for n ≥ 4 we obtain θ ≤ 1
10 . Furthermore, if σ ≤ 1

2 then
from Lemma 4.2 we deduce σ(v+, w) ≤ 1

4 . Finally, the above relations yield
σ(v+, w+) ≤ 1

2 . The proof of the lemma is complete.

Observe that σc(w) = σc(w0) for all iterates produced by the algorithm. Thus, an
immediate result of Lemma 4.4 is that for θ = 1

5
√

σc(w0)n
the conditions (x, s) > 0

and σ(v, w) ≤ 1
2 are maintained throughout the algorithm. Hence the algorithm is

well defined. In the next lemma we calculate an upper bound for the total number
of iterations performed by the algorithm.

A WEIGHTED-PATH-FOLLOWING METHOD FOR LO 11

Lemma 4.5 Assume that x0 and s0 are strictly feasible, an let w0 =
√

x0s0. More-
over, let xk and sk be the vectors obtained after k iterations. Then the inequality
(xk)T sk ≤ ε is satisfied for

k ≥
⌈

1
2θ

log
(x0)T s0

ε

⌉
.

Proof: After k iterations we get w = (1− θ)kw0. Using Lemma 4.3 we find that

(xk)T sk ≤ ‖w‖2 = (1− θ)2k‖w0‖2 = (1− θ)2k(x0)T s0,

hence (xk)T sk ≤ ε holds if

(1− θ)2k(x0)T s0 ≤ ε.

Taking logarithms, we obtain

2k log(1− θ) + log((x0)T s0) ≤ log ε.

Using the inequality − log(1− θ) ≥ θ we deduce that the above relation holds if

2kθ ≥ log((x0)T s0)− log ε = log
(x0)T s0

ε
.

The proof is complete.

For the default value of θ specified in Algorithm 3.1 we obtain the following theo-
rem.

Theorem 4.6 Suppose that the pair (x0, s0) is strictly feasible, an let w0 =
√

x0s0.
If θ = 1

5
√

σc(w0)n
then Algorithm 3.1 requires at most

⌈
5
2

√
σc(w0)n log

(x0)T s0

ε

⌉

iterations. For the resulting vectors we have xT s ≤ ε.

5. Conclusion

In this paper we have developed a new weighted-path-following algorithm for
solving LO problems. Our approach is a generalization of [4] for weighted-paths.
We have transformed the system (3) in an equivalent form by introducing a func-
tion ϕ. We have defined a new class of search directions by applying Newton’s
method for that form of the weighted-path. Using ϕ(x) =

√
x we have developed a

new primal-dual weighted-path-following algorithm, and we have proved that this
algorithm performs no more than

⌈
5
2

√
σc(w0)n log

(x0)T s0

ε

⌉

12 ZSOLT DARVAY

iterations. Observe, that this means that the best bound is obtained by following
the central path. Indeed, we have σc(w0) = 1 in this case, and we get the well-
known iteration bound

O

(√
n log

(x0)T s0

ε

)
.

If the starting point is not perfectly centered, then σc(w0) > 1 and thus the
iteration bound is worse.

References

[1] N. Andrei. Mathematical Programming. Interior Point Methods. Editura Tehnică, Bucureşti,
1999. (In Romanian).

[2] Zs. Darvay. Interior Point Methods in Linear Programming. ELTE, Budapest, 1997. (In
Hungarian).

[3] Zs. Darvay. A new algorithm for solving self-dual linear optimization problems. Studia Uni-
versitatis Babeş-Bolyai, Series Informatica, 47(1):15–26, 2002.

[4] Zs. Darvay. A new class of search directions for linear optimization. In Proceedings of Ab-
stracts, McMaster Optimizations Conference: Theory and Applications held at McMaster
University Hamilton, Ontario, Canada, page 18, August 1-3, 2002. Submitted to European
Journal of Operational Research.

[5] J. Ding and T.Y. Li. An algorithm based on weighted logarithmic barrier functions for linear
complementarity problems. Arabian Journal for Science and Engineering, 15(4):679–685,
1990.

[6] B. Jansen. Interior Point Techniques in Optimization. Complexity, Sensitivity and Algo-
rithms. Kluwer Academic Pubishers, 1997.

[7] B. Jansen, C. Roos, T. Terlaky, and J.-Ph. Vial. Primal-dual target-following algorithms for
linear programming. Annals of Operations Research, 62:197–231, 1996.

[8] N.K. Karmarkar. A new polinomial-time algorithm for linear programming. Combinatorica,
4:373–395, 1984.

[9] M. Kojima, N. Megiddo, T. Noma, and A. Yoshise. A Unified Approach to Interior Point
Algorithms for Linear Complementarity Problems, volume 538 of Lecture Notes in Computer
Science. Springer Verlag, Berlin, Germany, 1991.

[10] C. Roos and D. den Hertog. A polinomial method of approximate weighted centers fo linear
programming. Technical Report 89-13, Faculty of Technical Mathematics and Informatics,
TU Delft, NL-2628 BL Delft, The Netherlands, 1994.

[11] C. Roos, T. Terlaky, and J.-Ph. Vial. Theory and Algorithms for Linear Optimization. An
Interior Approach. John Wiley & Sons, Chichester, UK, 1997.

[12] Gy. Sonnevend. An ”analytic center” for polyhedrons and new classes of global algorithms
for linear (smooth, convex) programming. In A. Prékopa, J. Szelezsán, and B. Strazicky, ed-
itors, System Modelling and Optimization: Proceedings of the 12th IFIP-Conference held in
Budapest, Hungay, September 1985, volume 84 of Lecture Notes in Control and Information
Sciences, pages 866–876. Springer Verlag, Berlin, West-Germany, 1986.

[13] S.J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, USA, 1997.
[14] Y. Ye. Interior Point Algorithms, Theory and Analysis. John Wiley & Sons, Chichester,

UK, 1997.

Department of Computer Science, Babeş-Bolyai University, 1 M. Kogălniceanu St.,
RO-3400 Cluj-Napoca, Romania

E-mail address: darvay@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 2, 2002

LASG - A LOGIC ARCHITECTURE FOR INTELLIGENT
AGENTS

GABRIELA ŞERBAN

Abstract. It is well-known that one of the concrete architectures for intelli-
gent agents is the logic one. In our opinion, the symbolic representations for
the intelligent behavior are very important, and the logic approach is elegant
and has a pure semantic. The aim of this paper is to present a new logic ar-
chitecture for intelligent agents (LASG - a Logic Architecture based on Stacks
of Goals). This architecture combines the traditional logic architecture with
a planning architecture [3]. The advantages of the proposed architecture are
shown in the paper.
Keywords: intelligent agents, logic.

1. Introduction

The logic approach is a topic of Symbolic Artificial Intelligence and has its own
importance in the field of intelligent agents, even if it is well-known the contro-
versy between the traditional approach and the intelligent calculus in the field of
Artificial Intelligence.

Moreover, the only intelligence requirement we generally make for the agents is
that [2] they can make an acceptable decision about what action to perform next
in their environment, in time for this decision to be useful. Other requirements
for intelligence will be determined by the domain in which the agent is applied:
not all agents will need to be capable of learning, for example.

In such situations, a logic architecture is very appropriate, and offers, in our
opinion, a simple and elegant representation for the agent’s environment and de-
sired behavior.

According to the traditional approach [2], the symbolic representations are log-
ical formulae, and the syntactic manipulation corresponds to logical deduction, or
theorem proving.

In such a logic approach, the agent could be considered as a theorem prover(if φ
is a theory that explains how an intelligent agent should behave, the system might
generate a sequence of steps - actions - that leads to φ, in fact a proof for φ).

2000 Mathematics Subject Classification. 68T27.
1998 CR Categories and Descriptors. I.2[Computing Methodologies]: Artificial Intel-

ligence – Logic.

13

14 GABRIELA ŞERBAN

However, some disadvantages of the logic approach are:

• the computational complexity of a theorem proving process raises the
problem if the agents represented this way can really operate in time-
restricted environments;

• the process of decision making in such logic architectures is based on
the assumption that the environment does not change its structure, es-
sentially, during the decision process (a decision that is correct at the
beginning of the process, will be correct at the end of it, too);

• the problem of representation and reasoning in complex and dynamic
environments is an open problem, as well.

2. A Logic Architecture Based on Stacks of Goals (LASG)

We will consider, in the following, the case of an agent which goal is to solve a
given problem (to bring the problem from an initial to a final state), based on a
set of operators (rules) that could be applied on a given moment [4].

In a LASG architecture, we will use the declarative representation of the knowl-
edge.

Let L be a set of sentences from the first-order logic, and D = P(L) the set
of L-databases (the set of sets of L-formulae). In the model that we propose, the
internal state of the agent will be given by an element from D (for simplicity, we
will consider it as a formula in a conjunctive normal form).

2.1. Case Study: Searching a maze. In this section we will consider the fol-
lowing problem: we have a maze that has a rectangular form; in some positions
there are obstacles; a robotic agent starts in a given state (the initial state) and
tries to reach a final (goal) state, avoiding the obstacles; in a certain position on
the maze the agent could move in four directions: north, south, east, west (there
are four possible actions). We will assume that the dimensions of the maze are
known: M is the number of rows, N is the number of columns.

In the example that we choose, the environment (the maze) is not dynamic (it
suffers no modifications after the agent’s actions). However, this assumption is
not essential, it has no significant influence on the agent’s behavior.

We consider that:

• a position on the maze is identified by a pair (X, Y) (the line, respectively
the column);

• the left up corner of the maze is marked as the position (1, 1).

The four actions that the robotic agent could execute are the following:

NORTH(X, Y, M, N) - from the position (X, Y) the robot moves in the
north direction. The positions (X, Y) and (X-1, Y) must be into the maze and
must not contain obstacles.

LASG - A LOGIC ARCHITECTURE FOR INTELLIGENT AGENTS 15

EAST(X, Y, M, N) - from the position (X, Y) the robot moves in the east
direction. The positions (X, Y) and (X, Y+1) must be into the maze and must
not contain obstacles.

SOUTH(X, Y, M, N) - from the position (X, Y) the robot moves in the
south direction. The positions (X, Y) and (X+1, Y) must be into the maze and
must not contain obstacles.

WEST(X, Y, M, N) - from the position (X, Y) the robot moves in the west
direction. The positions (X, Y) and (X, Y-1) must be into the maze and must not
contain obstacles.

In order to specify both the conditions in which the operations hold and the
results of executing the operations, we will use the following predicates:

FREE(X, Y) - the position (X, Y) is free (does not contain an obstacle).
IN(X, Y) - the robotic agent is in the position (X, Y).
VALID(X, Y) - the position (X, Y) is valid (is into the maze).
POSSIBLE(X, Y) - the position (X, Y) is free and valid.

We notice that:

(1) POSSIBLE(X, Y) <=> FREE(X, Y)andV ALID(X, Y)

In such a logic representation, some logic declarations are valid. For example,

(2) not FREE(X, Y)andV ALID(X, Y) → not IN(X, Y)

(3) not FREE(X, Y) or not V ALID(X,Y) → not IN(X,Y)

As in a planning system, in a LASG architecture must be realized the following
functions:

(1) how to detect the best rule to apply, based on the best (possible heuristic)
information available;

(2) how to apply the chosen rule in order to compute the new problem’s
state;

(3) how to detect if a solution was found;
(4) how to detect if the system was blocked, in order to abandon the blocked

paths and the system’s effort to be directed in most interesting directions.

2.2. How to select the rules. The most used technique for choosing the ap-
propriate rules is to determine a set of differences between the desired final state
and the current state, and then to identify the relevant rules for reducing the dif-
ferences. If more rules are identified, a variety of heuristic information could be
exploited, in order to chose the rule to be applied. This technique is based on the
means-end analysis.

16 GABRIELA ŞERBAN

2.3. How to apply the rules. A possibility to apply the rules is to describe for
each possible action the changes that it brings to the state’s description. Moreover,
some declarations are needed, in order to state that the rest of the description
remains the same. A solution for this problem could be to describe a state as a set
of predicates representing the facts that are valid in the given state. Each state is
explicitly represented as an argument of the predicates. For example, we assume
that the current state S is characterized by the following predicate

(4) POSSIBLE(X, Y, S)and IN(X,Y, S)and POSSIBLE(X − 1, Y, S)

and the rule that describes the operator NORTH(X, Y) will be

(5) POSSIBLE(X, Y, S)and IN(X,Y, S)and POSSIBLE(X − 1, Y, S) →
IN(X − 1, Y,DO(NORTH(X, Y), S))

In the above equation DO is a function which specifies the state that results
after applying a given action in a given state.

For assuring the correctness of the deduction mechanisms, it will be necessary
a set of rules to describe those components of the states that are not affected by
the operators (the so named frame axioms). The advantage of this approach is
that a unique mechanism, the resolution, could realize all the operations needed
to describe the states. However, the disadvantage is the big number of axioms, if
the states’ descriptions are complex.

In the architecture that we propose in this section, the number of explicit frame
axioms that should be used is not so big.

Each operator will be described by a list of new predicates that the operator
makes true and a list of old predicates that the operator makes false. The two lists
are named ADD, respectively DELETE. Moreover, for each operator is specific a
third list, PRECONDITION, which contains all the predicates that must be true
in order to apply the operator. The frame axioms are implicitly specified in LASG.
Each predicate that is not included in the ADD or DELETE lists of an operator,
is not affected by that operator.

The LASG operators that correspond to the operations presented above are
shown in Figure 1. For simplicity, we numbered the four moving possibilities of
the robotic agent from a given position (X, Y) as follows: 1- North, 2 - East, 3 -
South, 4 - West. We also consider two vectors dx = (-1, 0, 1, 0) and dy = (0,
1, 0, -1) which gives the moves relative on line and column corresponding to the
four actions. Thus, the operator corresponding to the k-th move from the position
(X, Y) could be described as below:

The application of an operator O on a state S (given as a logic formula φ)
means that the predicates from the ADD list of the operator should be added in
φ. On the other hand, the return to the state before applying the operator O (the

LASG - A LOGIC ARCHITECTURE FOR INTELLIGENT AGENTS 17

O(X, Y, K)
P: POSSIBLE(X, Y) and IN(X, Y) and POSSIBLE(X+dx[k], Y+ dy[k])

A: IN(X+dx[k], Y+ dy[k])
D: IN(X, Y)

Figure 1. The operators’ description

backtracking) means that the predicates from the DELETE list of the operator
should be deleted from φ.

3. The LASG algorithm

The idea of the algorithm is to use a stack of goals (a unique stack that contains
both goals and operators proposed for solving those goals). The problem solver
is also based on a database that describes the current situation (state) and o set
of operators described by the PRECONDITION, ADD and DELETE lists. For
illustration, we will apply this method on the example shown in Figure 3.

At the beginning of the problem solving process, the stack of goals contains
IN(1, 3)

We have to find an operator which makes true the predicate from the top of the
stack (in other words, the predicate IN(1, 3) must appear in the ADD list of the
operator). We find (by variables’ bounding) two possibilities: the operator O(1,
2, 3) and O(2, 3, 1). We separate the initial stack into two stacks, we place in
the top of the corresponding stack (instead of IN(1, 3)) the operator that was
found and the predicates from it’s PRECONDITION list.

IN(2, 3) IN(1, 2)
FREE(2, 3) FREE(1, 2)
VALID(2, 3) VALID(1, 2)
O(2, 3, 1) O(1, 2, 3)
(1) (2)

For each stack, we repeat the operations described above with the predicate
from the top of the stack. At a given moment, there are four possibilities:

• in the top of the stack is an operator; in this case we remove it from the
top, and we retain the operator as part of the problem’s solution;

• the predicate from the top of the stack is true - in this case we remove
it from the top;

• the predicate from the top of the stack is false - in this case we have to
find operators that make the predicate true; we ramify the stack; we add
the operators (with their preconditions) in the stack;

18 GABRIELA ŞERBAN

• the predicate from the top of the stack can not be satisfied, which means
that the system was blocked; in this case we have to abandon the current
path, because it will not lead to a solution.

The operation is repeated until the stack became empty (a solution of the
problem was found), or until all the possibilities were blocked (in this case the
problem solving fails).

If we continue to apply the algorithm on our example, two solutions will be
reported:

1. O(4, 1, 1) 1. O(4, 1, 1)
2. O(3, 1, 1) 2. O(3, 1, 1)
3. O(2, 1, 2) 3. O(2, 1, 2)
4. O(2, 2, 2) 4. O(2, 2, 1)
5. O(2, 3, 1) 5. O(1, 2, 2)

In fact, the algorithm consists in a process of backward reasoning (we starts
from the final state), method known in the literature as a goal directed reason-
ing.

We assume that are given:

• SI (the initial state for the agent);
• SF(the final state that the agent tries to reach) - there could be a set of

final states;
• a set of operators O = {O1, O2, · · ·Ok} that are available to the problem

solving agent. For each operator Oi the agent knows the three lists:
PRECONDITION, ADD and DELETE.

The agent’s goal is to reach the final state SF, starting from the initial state
SI, keeping a history H of the visited states (H = {S1, S2, · · ·Sm}, where S1 = SI
and Sm = SF), or of the applied operators (H = {Oi,1, Oi,2, · · ·Oi,m−1}). In the
case that the problem has no solution, H will be empty.

The algorithm which determines a solution of the problem (if exists a solution)
is described in Figure 2.

The non-determinism of the step 4 from the above described algorithm has to
be implemented as a kind of search procedure (a limited depth-first search).

4. Comparison between LASG an the traditional logic architecture

The Logic Architecture based on Stack of Goals improves the traditional logic
architecture for intelligent agents, in the following directions:

• in comparison with the traditional logic architecture, which requires a big
number of frame axioms in order to realize a correct inference, the LASG
architecture reduce this number, and that is why the space complexity
is reduced;

LASG - A LOGIC ARCHITECTURE FOR INTELLIGENT AGENTS 19

(1) • we create a stack of goals S (the solution stack) that initially
contains the predicates that should be satisfied in the final state
SF. In other words, if the final state could be written as a con-
junction of logic sentences SF = φ1andφ2and · · · andφn}, then
S = {φ1, φ2, · · ·φn};

• SC (the current state):= SI (the initial state);
• H:=empty;

(2) If S is empty and the final state SF was reached, then the algorithm
stops and the final solution is reported; else, go to step 3;

(3) 3.1 If the top of the stack contains an operator Oi, on add the operator
in H, on remove the top of stack, on recalculate the current state SC at
which on add the predicates from the A list of the operator Oi; go to
step 2; else, go to step 3.2;

3.2 On choose the predicate from the top of the stack (φ1). If φ1

is satisfied in SC, we remove it from the top of the stack; go to step 2;
else, go to step 4;

(4) We look for the operator Oi (the operators, if are several) that makes φ1

true. If there are several operators Oi,1, Oi,2, · · ·Oi,s, on ramify the solu-
tion (on obtain s stacks) for j=1,s (for each of the s stacks) we
add on the top of the stack Sj the predicates from the PRECONDITION
list of the operator Oi,j ; go to step 3.

Figure 2. The algorithm to determine a solution in a LASG architecture

• because a limited depth-first search is used, the time complexity is, also,
reduced (a disadvantage of the traditional logic architecture is that the
computational complexity is big);

• the representation is very simple and elegant.

5. Experiment

Because the above described architecture is based on logic and because the
algorithm described in Figure 2 needs backtracking for finding all solutions, the
implementation was made in Visual Prolog. It is well-known that the declarative
programming languages (as Prolog) have a built-in control mechanism which allows
finding all the solutions of a problem.

We have to say that the stack (stacks) of goals that we have to create for
applying the algorithm (Figure 2) are retained implicitly by the control strategy
of Prolog (a mechanism which allows backtracking).

For applying the algorithm we consider the environment shown in Figure 3.
The positions filled with black on the maze contains obstacles.

20 GABRIELA ŞERBAN

Figure 3. The agent’s environment

5.1. The program. We implemented a Prolog program (Figure 4), which basic
non-deterministic predicate is path(Xi, Yi, Xf, Yf, M, N, L), having the flux
model (i, i, i, i, i, i, o), and the following signification for the arguments:

• Xi, Yi - the coordinates (line and column) of the initial position (the
starting position for the agent);

• Xf, Yf - the coordinates (line and column) of the final position (the
position that the agent tries to reach);

• M, N - number of lines and respectively columns of the maze;
• L - the list of positions visited by the agent for reaching SF starting

from SI (if the problem has no solution, the list will be empty).
For solving the problem, we considered a LASG architecture, we applied the

algorithm described in Figure 2, using the following auxiliary predicates:
• the non-deterministic predicate candidat(Xf, Yf, X, Y, M, N) (i,

i, o, o, i, i) generates a possible candidate to the solution at a given
moment: a state (X, Y) from which the agent could reach the current
state (Xf, Yf);

• the non-deterministic predicate solution(Xi, Yi, L1, L, M, N) (i, i, i,
o, i) collects the elements of a solution in L (L1 is the former generated
list).

The goal has the form
goal: path(4, 1, 1, 3, 4, 3, L)

and the solutions are two:
L=[[4, 1], [3, 1], [2, 1], [2, 2], [2, 3], [1, 3]]

LASG - A LOGIC ARCHITECTURE FOR INTELLIGENT AGENTS 21

Figure 4. The Prolog program

L=[[4, 1], [3, 1], [2, 1], [2, 2], [1, 2], [1, 3]]

6. Conclusions and further work

In a logic based architecture, the intelligent behavior is generated by a symbolic
representation of the environment and the agent’s behavior, and by a symbolic
manipulation of this representation.

In the logic based approach, the process of decisions’ applying is, in fact a
deduction, so the program part of the agent (the strategy of decisions’ applying)
is codified as a logic theory. That is why this approach is very elegant and has a
pure (logic) semantic.

Further work is planned to be done in the following directions:

• in which way some heuristic information could be used in order to reduce
the time complexity of the deduction process;

• in which way we can combine the traditional logic architecture with other
planning architecture (TWEAK, hierarchical planning architectures).

22 GABRIELA ŞERBAN

References

[1] Weiss, G. “Multiagent systems – A Modern Approach to Distributed Artificial Intelli-
gence”, The MIT Press, Cambridge, Massachusetts, London, 1999

[2] Wooldridge, M., “Agent-Based Software Engineering”, Mitsubishi Electric Digital Library
Group, London, 1997

[3] Rich, E., Knight, K. “Artificial Intelligence”, Mc Graw Hill, New York, 1991
[4] Winston, P., “Artificial Intelligence”, Addison Wesley, Reading, MA, 1984, 2nd ed

Babeş-Bolyai University, Cluj-Napoca, Romania
E-mail address: gabis@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 2, 2002

MINIMUM COST PATH IN A HUGE GRAPH

ION COZAC

Abstract. Suppose we have a weighted graph G = (V, E, c), where V is the

set of vertices, E is the set of arcs, and c : E → R+ is the cost function.

Determining a minimum cost path between two given nodes of this graph

can take O(m log n) time, where n = |V | and m = |E|. If this graph is huge,

say n ≈ 700000 and m ≈ 2000000, determining a minimum cost path can be

a serious time consuming task. So we must develop an algorithm that quickly

determines a path having the cost near the optimum one.

Keywords: minimum cost path, huge graph, strongly connected com-

ponent

1. Introduction

If we develop a route planning application, it is very important to use efficient
algorithms that determine a path between two distinct nodes. But what if the
application manages a huge graph? This is the case of a complete roads map of a
medium country, like Romania. In this case we simply ask to find a path that has
the cost near the optimum one, but this path must be found very quickly. A fast
algorithm is very important if the application is running on a server, and must
satisfy the requests that come from many users by Internet.

To develop the algorithm proposed in this paper, we need some remarks, such
as:

(i) each link (arc) can be either a main road or a secondary road;
(ii) the number of main roads (class MR) is very small as compared to the

secondary ones (class SR); suppose the cardinality of MR is 8-10% of the
cardinality of MR ∪ SR;

(iii) the number of vertices that belong to a main road (class MV) is very small as
compared to the number of vertices that belongs to a secondary road (class
SV); suppose the cardinality of MV is 8-10% of the cardinality of MV ∪SV ;

(iv) the main roads are uniformly scattered among the secondary ones.

2000 Mathematics Subject Classification. 05C40.
1998 CR Categories and Descriptors. G.2.2 [Mathematics of Computing]: Discrete

Mathematics – Graph Theory.

23

24 ION COZAC

We need to exploit the following idea (see figure 1). Given two distinct vertices
s and t, each of them being of SV type, we first determine a minimum cost path
from s to the nearest vertex s1 that is of MV type. We also determine a minimum
cost path from t to the nearest vertex t1 (reversing!) that is of MV type. Next
we determine a minimum cost path from s1 to t1, using only the main roads. The
solution of the problem is the union of these three paths. This algorithm is very
fast because:

• the paths from s to s1 and from t1 to t can be quickly determined: see
remark (iv);

• the path from s1 to t1 can also be quickly determined: see remarks (ii)
and (iii).

Figure 1. Examples of paths determined using the
NearOptimumPath algorithm. From A to C: A - B - C,
from C to D: C - I - D, from B to F : B - C - I - D - E - F

In order to use the algorithm sketched above, we have to prepare two supple-
mentary structures.

We scan the original graph to find all the vertices of MV type. Using these
nodes we build a partial subgraph that has only nodes of MV type and arcs of
MR type. Let this partial subgraph be Gs = (V s, Es). We also build the graph
Gi = (V, Ei) - the inverse graph of G, where the set Ei is defined as follows:

MINIMUM COST PATH IN A HUGE GRAPH 25

if (x, y) ∈ E then (y, x) ∈ Ei, id est, for each arc (x, y) from E we insert the
inverse arc (y, x) to Ei.

We describe below the proposed algorithm.
Algorithm NearOptimumPath;
Input. The original graph G, the inverse graph Gi, the partial subgraph Gs; two
distinct nodes s and t.
Output. Near optimum path from s to t.
begin

* if (s is not of MV type) then
determine, in graph G, using the algorithm of Dijkstra and selection trees,
a minimum cost path D1 from s to the nearest node s1 of MV type;
if (t is detected before reaching a node of MV type) then

stop: we found the searched path;
else (s is of MV type)

let s1 := s; D1 := ∅;
* if (t is not of MV type) then

determine, in graph Gi, using the algorithm of Dijkstra and selection trees,
a minimum cost path D2 from t to the nearest node t1 of MV type;

else (t is of MV type)
let t1 := t; D2 := ∅;

* determine, in graph Gs, using the algorithm of Dijkstra and selection trees,
a minimum cost path D3 from s1 to t1;

* report the union of these three paths: D := D1∪ reverse (D2) ∪D3;
end (algorithm).

When can we use this algorithm? The following theorem below answer this
question.

Theorem 1. The algorithm NearOptimumPath can find a path between any two
distinct vertices of the graph G if and only if G and Gs are both strongly connected.

Proof. These two conditions are obviously sufficient, and the graph G must also
be strongly connected. We have to prove that the graph Gs must also be strongly
connected. Indeed, suppose that the graph Gs is not strongly connected. It is
possible that the algorithm wrongly reports that there is no path between two
given nodes, even if such a path exists - the graph G is strongly connected. Let
examine the figure 2:

• one can find two distinct nodes s and t, each of them being of MV type,
but there is no path from s to t having only arcs of MR type;

• one can find two distinct nodes s and t, at least one being of SV type,
and the algorithm find two nodes s1 and t1, but there is no path from
s1 to t1 having only arcs of MR type. ¤

26 ION COZAC

Figure 2. The algorithm can not find any path from A to D or
from A to E, because the partial subgraph engendered by the arcs
(F, A) and (B,D) is not strongly connected

How quickly can we determine a path using this algorithm? The running time of
an implementation that uses this algorithm, as compared to the original Dijkstra’s
algorithm, is proportional to the percentage of the number of the main roads and
main vertices.

We saw that this method needs to arrange the information into an organized
structure to accelerate searching. This preprocessing phase is necessary because
queries will be performed repeatedly on the same graph; these are so called
repetitive-mode queries. How much time is needed to arrange the data for search-
ing? To answer this question we present below an algorithm that determines the
strongly connected components of a directed graph. This presentation is a review
of the algorithm presented in [3].
Algorithm StronglyConnectedComponents;
Input. A directed graph G = (V,E).
Output. An array C : the strongly connected components, each vertex being
marked with the component number that contains it.
begin

for (each vertex x ∈ V) do
Mk[x] := False;

Md := 0;
for (each vertex x ∈ V) do

MINIMUM COST PATH IN A HUGE GRAPH 27

if (Mk[x] = False) then
ScanMark(x);

Sort D on decreasing order, storing for each mark the associated vertex in X;
for (each vertex x ∈ V) do

C[x] := False;
Build the inverse graph G′ corresponding to the graph G;
nc := 0;
Warning ! The procedure ScanCnx manages the graph G′;

for (each vertex x ∈ X) do
if (C[x] = 0) then begin

nc := nc + 1; ScanCnx(x);
end

end (algorithm).
Procedure ScanMark(vertex x);
begin

Mk[x] := True;
for (each vertex y, successor of x) do
if (Mk[y] = 0) then ScanMark(y);

Md := Md + 1; D[x] := Md;
end (procedure).
Procedure ParcCnx (vertex x);
begin

C[x] := nc;
for (each vertex y, successor of x) do
if (C[y] = 0) then

ScanCnx(y);
end (procedure).

The determination of the strongly connected components of a directed graph
needs O(n log n + m) time, and building the inverse graph Gi and the partial
subgraph Gs takes O(m) time. So we have

Theorem 2. The supplementary structures used by the algorithm NearOptimumPath
are determined in O(n log n + m) preprocessing time.

We can use the following technique for a parallel architecture. The searching
process starts two execution threads: the first thread uses the algorithm NearOp-
timumPath, and the second thread uses the original Dijkstra’s algorithm. If one
of these two threads finds a path (which may be optimal or not), it must stop the
other thread. In this case we don’t need to impose a very restrictive condition: it
is not necessary that the partial subgraph Gs be strongly connected.

28 ION COZAC

References

[1] Michel Gondran, Michel Minoux, Graphes et algorithmes, Editions Eyrolles, Paris 1979.

[2] Harry R Lewis, Larry Denenberg, Data Structures and Their Algorithms, Harper Collins

Publishers, 1991.

[3] Dumitru Dan Burdescu, Analiza complexităţii algoritmilor, Editura Albastră, 1998.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald R. Rivest, Introduction to Algorithms,

MIT Press, Cambridge, Massachusetts, 1998.

“Petru Maior” University of Tg. Mureş

E-mail address: cozac@uttgm.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 2, 2002

AN EFFICIENT ID-BASED GROUP SIGNATURE SCHEME

CONSTANTIN POPESCU

Abstract. We present an efficient group signature scheme which make use
of elliptic curves identity-based signature scheme. The performance of the
generated group signature scheme is similar to the performance of the under-
lying ID-based signature scheme.

Keywords: Group Signature, ID-based Signature schemes, elliptic curves

1. Introduction

The concept of identity-based cryptography is due to Shamir [10]. An identity
based crypto-system [2, 10] is a system that allows a publicly known identifier
(email address, IP address, name) to be used as the public key component of a
public/private key pair in a crypto-system. The scheme assumes the existence of
a trusted authority whose sole purpose is to compute for each user the private
key associated with the identifier they want to use as public key. The scheme is
ideal for closed groups of users. Several ID-based signature schemes have been
proposed in the last years [7, 9, 10]. Some of these schemes use Elliptic Curve
(EC) algorithms and are therefore particularly efficient.

A group signature, introduced by Chaum and van Heyst [5], allows any member
of a group to digitally sign a document such that a verifier can confirm that it
came from the group but does not know which individual in the group signed
the document. The scheme assumes the existence of a group manager whose sole
purpose is to compute for each user a private key that the user should use when
signing a message on behalf on the group. A user verifies a signature with the
group public key that is usually constant and unique for the whole group (i.e.
independent of the members). Many group signature schemes have been proposed
[1, 3, 6, 8, 12]. However all of them are much less efficient that regular signature
schemes (such as DSA or RSA). Designing an efficient group signature scheme is
still an open research problem. In this paper we show that ID-based signature
schemes [7] can be used to implement an efficient group signature scheme. Such
group signature has the same performance than the performance of the ID-based

2000 Mathematics Subject Classification. 94A60.
1998 CR Categories and Descriptors. D.4.6. [Software]: Operating Systems – Security

and Protection.

29

30 CONSTANTIN POPESCU

signature scheme it is derived from. This makes our proposal very attractive since
it is probably the most efficient group signature scheme that exists today.

2. Identity-Based Signature Scheme

An identity based crypto-system [2, 10] is a system that allows a publicly known
identifier to be used as the public key component of a public/private key pair for
the purposes of digital signature [7, 9, 10], encryption [2] and key agreement [11].
The private key component is computed by the trusted authority and sends to the
corresponding node via a secure and authentic channel.

Definition 1. An identity based signature scheme is a digital signature scheme
specified by the following four algorithms:

SETUP: An algorithm, executed by the trusted authority, that takes a random
parameter l as input and generates from it system parameters and master key.
System parameters is publicly known, while master key is only known to the trusted
authority.

EXTRACT: An algorithm, executed by the trusted authority, that takes as
input system parameters, master key and an arbitrary IDi ∈ {0, 1}∗, provided by
a user, Ui, and returns a private key xi. IDi is an arbitrary string that is used as
a public key and xi is the corresponding private key.

SIGN: An algorithm that takes as input system parameters, xi and a message,
m ∈ {0, 1}∗ and returns a signature σ.

VERIFY: An algorithm that takes as input a message m ∈ {0, 1}∗ and its
signature σ, the system parameters and a public key IDi. VERIFY outputs 0 if
the signature is invalid and 1 if the signature is valid.

A secure ID-based signature scheme must at least satisfy the following proper-
ties:

Correctness: Signatures produced by a user using SIGN must be accepted by
VERIFY.

Unforgeability : It is computationally hard for everyone that do know the secret
key xi of Ui to forge his signatures. As a consequence, it must be computationally
hard for everyone to retrieve from system parameters the corresponding master
key.

Coalition-resistance: A colluding subset of users, that have received their pri-
vate key from the same trusted authority and system parameters, cannot generate
a valid signature that the trusted authority cannot link to one of the colluding
users.

3. ID-based Signatures from Pairings on Elliptic Curves

In this section we review the ID-based signature scheme from [7] which makes
use of bilinear pairings on elliptic curves.

AN EFFICIENT ID-BASED GROUP SIGNATURE SCHEME 31

3.1. Setup. We use the same notation as in [7]:

(1) We let G1 be an additive group of prime order q and G2 be a multiplica-
tive group of the same order q.

(2) We assume the existence of a bi-linear map ê from G1 ×G1 to G2 with
the property that the discrete logarithm problems in both G1 and G2

are hard. Typically, G1 will be a subgroup of the group of points on an
elliptic curve over a finite field, G2 will be a subgroup of the multiplica-
tive group of a related finite field and the map ê will be derived from the
Weil or Tate pairing on the elliptic curve.

(3) We also assume that an element P ∈ G1 satisfying ê (P, P) 6= 1G2 is
known. We refer to [2, 7] for a fuller description of how these groups,
maps and other parameters should be selected in practice for efficiency
and security.

(4) We let IDi be a string denoting the identity of a user Ui and H1, H2 and
H3 be public cryptographic hash functions. We require H1 : {0, 1}∗ →
G1, H2 : {0, 1}∗ → Zq and H3 : G1 → Zq.

(5) A trusted authority chooses a random integer s ∈ Zq which is a system-
wide master secret.

(6) We also assume that the value Ppub = s · P is publicly known.

3.2. Extract. A user’s public key for signature verification is QIDi = H1 (IDi),
while his secret key for signature generation is DIDi = s ·QIDi . These keys are the
same as in the encryption scheme of [7]. If desired, encryption and signature keys
can be separated simply by concatenating the string IDi with extra bits which
identify the keys’ intended functions.

3.3. Sign. To sign a message m ∈ {0, 1}∗, a user Ui uses the following algorithm:

• Chooses a random k ∈ Z∗q .
• Computes (R,S) ∈ G1 ×G1, where

R = k · P
S = k−1 (H2 (m) · P + H3 (R) ·DIDi

) .

Here k−1 is the inverse of k in Z∗q .
• Output the signature (R,S) .

3.4. Verify. Checking whether a pair (R,S) is a valid signature on a message
m ∈ {0, 1}∗ with respect to the public key QIDi can be done as follow:

• Computes ê (U, V), where (U, V) is a purported signature on message m.
• Check whether ê (U, V) = ê (P, P)H2(m) · ê (Ppub, QIDi)

H3(R).
• The signature is accepted if these values in G2 match and rejected oth-

erwise.

32 CONSTANTIN POPESCU

4. Group Signature Scheme

A group signature, introduced by Chaum and van Heyst [5], allow any mem-
ber of a group to sign on behalf of the group. Group signatures are publicly
verifiable and can be verified with respect to a single group public key. Only a
designated group manager, can revoke the anonymity of a group signature and find
out the identity of the group member who issued a given signature. Furthermore,
group signatures are unlinkable which makes it computationally hard to establish
whether or not multiple signatures are produced by the same group member. At
the same time, no one, including the group manager, can misattribute a valid
group signature.

Group signature schemes are defined as follows. (See [4] for more details).

Definition 2. A group signature scheme is a digital signature scheme comprised
of the following:

(1) Setup: On input of a security parameter 1l this probabilistic algorithm
outputs the initial group public key PK and the secret key SK for the
group manager.

(2) Join: An interactive protocol between the group manager and a user
that results in the user becoming a new group member.

(3) Sign: An interactive protocol between a group member and a user whereby
a group signature on a user supplied message is computed by the group
member.

(4) Verify: An algorithm for establishing the validity of a group signature
given a group public key and a signed message.

(5) Open: An algorithm that, given a signed message and a group secret
key, determines the identity of the signer.

A secure group signature scheme must satisfy the following properties:
(1) Correctness: Signature produces by a group member using Sign must

be accepted by Verify.
(2) Anonymity : Given a signature, identifying the actual signer is compu-

tationally hard for everyone but the group manager.
(3) Unlinkability : Deciding whether two different signatures were computed

by the same group member is computationally hard.
(4) Unforgeability : Only group members are able to sign messages on behalf

of the group.
(5) Exculpability : Even if the group manager and some of the group members

collude, they cannot sign on behalf of non-involved group members.
(6) Traceability : The group manager can always establish the identity of the

member who issued a valid signature.
(7) Coalition-resistance: A colluding subset of group members cannot gen-

erate a valid group signature that cannot be traced.

AN EFFICIENT ID-BASED GROUP SIGNATURE SCHEME 33

5. Our Group Signature Scheme from a ID-based Signature

In this section we present how a ID-based signature scheme [7] can be used
to implement an efficient group signature scheme. If we consider that, in the ID-
based signature scheme [7], all users that get a private key (from their ID) from the
same system and master key parameters form a group, the concepts of ID-based
signatures and group signatures are very similar. In this description, the group
manager is also a trusted authority.

5.1. The scheme.
• Setup: The group manager executes the steps from the subsection 3.1.

The initial group public key is

PK = (q, P, Ppub, QIDi
, H1,H2,H3, ê)

and the secret key is SK = s.
• Join: Suppose now that a user Ui wants to join the group. We assume

that communication between the group member and the group manager
is secure, i.e., private and authentic. To obtain his membership certifi-
cate, each user Ui must perform the following protocol with the group
manager:

– The user Ui sends IDi to the group manager.
– The group manager computes Si = s ·QIDi and then Si is commu-

nicated secretly to the user Ui.
• Sign: In our scheme, IDi is the public component of a RSA signature

public/private key pair generated by the user itself. This public/private
key pair will be referred as (IDi, di) in the remainder of this paper. First,
the user Ui signs a message m ∈ {0, 1}∗ with its RSA private key di and
the corresponding RSA signature scheme:

SigRSA = mdi (mod n) ,

where n is an RSA-like modulus. Then, the group member Ui can gener-
ate anonymous and unlinkable group signatures on a message m ∈ {0, 1}∗
as follows:

– Chooses a random k ∈ Z∗q .
– Computes (R, S) ∈ G1 ×G1, where

R = k · P
S = k−1 (H2 (m) · P + H3 (R) · Si) ,

where k−1 is the inverse of k in Z∗q .
– The group signature Sig is then the concatenation of the previously

generated signatures SigRSA, (R, S) with the Ui’s public key IDi

Sig = mdi (mod n) ||xR||xS ||IDi

34 CONSTANTIN POPESCU

where xR is the x-coordinate of R and xS is the x-coordinate of S.
• Verify: First, a user verifies that the signature was generated by the

group by verifying using the algorithm specified in Section 3.4 that (R, S)
is valid and therefore the user Ui is an authorized member of the group:

ê (R,S) = ê
(
k · P, k−1 (H2 (m) · P + H3 (R) · Si)

)

= ê (P, H2 (m) · P + H3 (R) · Si)

= ê (P, P)H2(m) · ê (Ppub, QIDi
)H3(R)

where we have used the bi-linearity properties of ê. Second, a user verifies
that the signature was generated by Ui and not by the group manager
by verifying using the Ui’s public key IDi and the corresponding RSA
signature that SigRSA is valid:

m = SigRSAIDi (mod n) .

Since the group manager does not know the private key di it will not be
able to generate a valid SigRSA.

• Open: The group manager knows for each IDj the identity of the user
Uj that is associated with it. This binding is established during the Join
phase. As a result, it is easy for a group manager, given a message and
a valid group signature Sig, to determine the identity of the signer.

5.2. Security Considerations. In this section, we access the security of the
group signature scheme defined in Section 5 according to the security properties
defined in Section 4.

Correctness: This property is guaranteed since the ID-based signature scheme
[7] must guaranteed it too.

Unforgeability : This property is guaranteed since the ID-based signature scheme
[7] must guaranteed it too.

Anonymity : In our scheme, a group signature is the concatenation of the iden-
tity based signature with the user’s public key (i.e. ID). Therefore if the underlying
identity based signature provides anonymity and if the user’s public key does not
reveal any information about the user, anonymity is guaranteed by the group
signature scheme.

Unlinkability : In our scheme, a group signature is the concatenation of the
identity based signature with the user’s public key (i.e. ID). As a result, all the
signatures generated by a user will contains his public key. Therefore unlinkabil-
ity is not provided. However if the underlying identity-based signature provides
unlinkability and if a user uses a different public/private key pair for each signa-
ture, unlinkability is then provided. This solution might not be very practical if
the user has to sign a lot of messages (because it needs to get and store a lot of
public/private key pairs) but is acceptable otherwise.

AN EFFICIENT ID-BASED GROUP SIGNATURE SCHEME 35

Exculpability : In our group signature scheme, a group member can not sign
on behalf of other members because it does not know the other members’ private
keys. The group manager knows each users’ private key Si, but he do not knows
the users’ RSA private key di. Therefore, exculpability is provided.

Traceability : Since, in our proposal, the group manager generates each member
private keys from their public keys, it can easily identify the actual signer of a
valid signature by looking at the public key component in the group signature.
Traceability is therefore provided.

Coalition-resistance: This property is guaranteed since the ID-based signature
scheme [7] must guaranteed it too.

Our ID-based group signature scheme has a performance cost since it adds one
RSA signature. Furthermore even with this extra cost, we believe that our scheme
is still more efficient that any existing group signatures.

6. Conclusion

This paper describes an efficient group signature scheme from an elliptic curves
identity based signature scheme. The generated group signature can handle large
groups since the group public key and parameters are constant and do not depend
on the group members. The security of such a group signature depends on the
security of the ID based signature scheme it was derived from. The generated
group signature performance is similar to the performance of the underlying ID
based signature scheme.

References

[1] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik, A practical and provably secure
coalition-resistant group signature scheme, Advances in Cryptography, CRYPT0 2000, vol.
1880, Lecture Notes in Computer Science, Springer Verlag, pp. 255-270, 2000.

[2] D. Boneh and M. Franklin, Identity based Encryption from Weil pairing, Advances in Cryp-
tography CRYPT0 2001, Springer-Verlag, Lecture Notes in Computer Science, vol. 2139,
pp. 213-229, 2001.

[3] J. Camenisch, M. Stadler, Efficient group signature schemes for large groups, Advances in
Cryptology, CRYPTO’97, Lecture Notes in Computer Science, vol. 1070, Springer-Verlag,
1296, pp. 410-424, 1997.

[4] J. Camenisch and M. Michels, A group signature with improved efficiency, Advances in
Cryptography, ASIACRYPT’98, Springer-Verlag, Lecture Notes in Computer Science, vol.
1514, pp. 160-174, 1998.

[5] D. Chaum and E. Van Heyst, Group signatures, Advances in Cryptography, EURO-
CRYPT’91, Springer-Verlag, Lecture Notes in Computer Science, vol. 547, pp. 257-265,
1991.

[6] L. Chen and T.P. Pedersen, New group signature schemes, Advances in Cryptography,
EUROCRYPT’95, Springer-Verlag, Lecture Notes in Computer Science, vol. 950, pp. 171-
181, 1995.

[7] K. Paterson, Id-based signatures from pairings on elliptic curves, Tech. Rep., IACR Cryp-
tology ePrint Archive: Report 2002/004, http://eprint.iacr.org/2002/004/, 2002.

36 CONSTANTIN POPESCU

[8] C. Popescu, Group signature schemes based on the difficulty of computation of approximate
e-th roots, Proceedings of Protocols for Multimedia Systems (PROMS 2000), Poland, pp.
325-331, 2000.

[9] R. Sakai, K. Ohgishi, and M. Kasahara, Cryptosystems based on pairing, Proceedings of
Symposium on Cryptography and Information Security, Japan, Okinawa, pp. 26-28, 2000.

[10] A. Shamir, Identity-based cryptosystems and signature schemes, Advances in Cryptography,
CRYPTO’84, Springer-Verlag, Lecture Notes in Computer Science, vol. 196, pp. 47-53, 1984.

[11] N. P. Smart, An Identity based Authenticated Key Agreement Protocol based on
the Weil Pairing, Tech. Rep., IACR Cryptology ePrint Archive: Report 2001/111,
http://eprint.iacr.org/2001/111/, 2001.

[12] Y.M. Tseng and J.K. Jan, A novel id-based group signature, Workshop on Cryptology and
Information Security, Tainan, pp. 159-164, 1998.

University of Oradea, Department of Mathematics, Str. Armatei Romane 5, Oradea,
Romania

E-mail address: cpopescu@uoradea.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 2, 2002

A WORD SENSE DISAMBIGUATION EXPERIMENT FOR
ROMANIAN LANGUAGE

GABRIELA ŞERBAN AND DOINA TĂTAR

Abstract. The task of disambiguation is to determine which of the senses of

an ambiguous word is invoked in a particular use of the word [5, 8]. It is known

that the statistical methods produce high accuracy results for semantically

tagged corpora [2]. Also, Word Net is a good source of information for WSD

[3, 4]. Since for Romanian language does not exist neither a corpus nor

something similar with WordNet, we make an experiment for WSD, using an

algorithm for WSD [8], which requires only information that can be extracted

from untagged corpus. This algorithm learns to make predictions based on

local context with only a few labeled contexts and many unlabeled ones.

Keywords: Word sense disambiguation, corpus.

1. Introduction

In [9], Yarowsky observed that there are constraints between different occur-
rences of contextual features that can be used for disambiguation. Two such
constraints are one sense per discourse and one sense per collocation. These mean
that the sense of a target word is highly consistent within a given discourse (doc-
ument) and the contextual features (nearby words) provide strong clues to the
sense of a target word.

Notational conventions used in the following are: w is the word to be disam-
bigued (target word), s1, · · · , sK are possible senses for w, c1, · · · , cI are contexts
of w in a corpus, v1, · · · , vJ are words used as contextual features for disambigua-
tion of w. The contextual features v1, · · · , vJ occur in a fixed position near w, in a
window of fixed length, centered or not on w (“unrestricted collocations”, in [6]).

Received by the editors: November, 20, 2002.

2000 Mathematics Subject Classification. 68T50, 68Q32.

1998 CR Categories and Descriptors. I.2.7. [Computing Methodologies]: Artificial

Intelligence – Natural Learning Processing; G.3. [Mathematics of Computing]: Statistical

Computing.

37

38 GABRIELA ŞERBAN AND DOINA TĂTAR

A Naive Bayes Classifier (NBC) realizes the calculus of the sense s′, which
for the target word w and a given context c satisfies the relation [5]: s′ =
argmaxsk

P (sk | c) = argmaxsk

P (c|sk)
P (c) P (sk) = argmaxsk

P (c | sk)P (sk). The
Naive Bayes assumption is that the contextual features are all conditional inde-
pendent. This is not generally true, but there is a large number of cases in which
the algorithm works well. Concerning the probabilities P (vj | sk) and P (sk), these
are calculated from a labeled (annotated) corpus. In our algorithm the probabili-
ties P (vj | sk) are re-estimated until all the contexts are solved.

2. A Bootstrapping Algorithm (BA) for WSD

The BA algorithm begins by identifying a small number of training contexts.
This could be accomplished by hand tagging with senses the contexts of w for
which the sense of w is clear because some seed collocations [9, 10] occur in these
contexts (for a detailed description of the BA algorithm see [8]).

The notational conventions are as above: C = {c1, c2, · · · cI} are contexts (win-
dows) of w, as obtained with query w and with an on-line corpus tool (at us htdig
and a Romanian corpus). Each ci has the form: ci = w1, · · · , wt, w, wt+1, · · · , wz

where w1, w2, · · · , wt, wt+1, · · · , wz are words from the set {v1, · · · , vJ} and t and
z are selected by user.

Let us consider that the words V = {v1, · · · , vl} ⊂ {v1, · · · , vJ}, where l is small
(for example 2) are surely associated with senses for w, such that the occurrence
of vi in the context of w determines the choice of a sense si for w (one sense per
collocation). Here {s1, · · · , sl} is a subset of {s1, · · · , sK}.

These rules can be done generally as a decision list:

(1) if vi occurs in a context c of w then the sense of c is si, si ∈ S

So, from the set of contexts obtained as query results, some contexts can be
solved.

For our algorithm, we define a relation δ ⊂ W × P (W), where W is the set of
all words and P (W) is the power set of W . If w ∈ W is a word and c ∈ P (W)
we say that (w, c) ∈ δ if w ∈ c or, else, if exists a word w1 ∈ c so that the words
w and w1 have the same gramatical root (particularly c is a context).

So, a corresponding decision list has the following form:

(2) if (v, c) ∈ δ and v has the sense si then the sense of the context c is si

A WORD SENSE DISAMBIGUATION EXPERIMENT 39

3. The Application for Words Disambiguation

The application is written in Visual C++ 6.0 and its goal is to find the correct
sense for a given word (the target word) in some given contexts using the algorithm
described in section 2.

3.1. Experiment. Our aim is to use the BA algorithm for the romanian language,
to disambiguate the word poarta in some contexts obtained with an on-line corpus
tool (at us htdig and a Romanian corpus).

We make the following specifications:

• the target word poarta has, in romanian language, four possible senses
(two nouns and two verbs);

• we experiment our algorithm starting with 38 contexts for the target
word;

• we start with 6 words as contextual features for the disambiguation.

The input text file for our experiment is the following:

- the target word
poarta
- the senses of the target word
casa fotbal haine raspundere
- the words used as contextual features for the disambiguation and the indexes

of the corresponding sense of the target word
lemn 1 casa 1 minge 2 blugi 3 raspundere 4 semnatura 4
- the contexts of the target word

• Respectivul Popa Nicolae Ioan a prezentat jandarmului de la poarta
un buletin de identitate cu seria B.C., nr. 718609, aceasta in timp ce
adevaratul Ioan Popa

• De cand s- a instalat in scaun ultimul primar, frenezia imperecherilor
politice este de nestavilit. Se poarta negocieri secrete sau fatise, se nasc
scenarii avortate dupa nici 24 de ore, se lanseaza nume alaturate te miri
carei constructii politice

• hotul, natang in ce priveste alegerea modalitatii de a sustrage date de
stricta confidentialitate, dar abil in a scoate pe poarta unei institutii,
aflate in regim de paza militarizata, ditamai calculatorul

40 GABRIELA ŞERBAN AND DOINA TĂTAR

• avand rezolutia catre dl. consilier de stat Mihai Surcel, o dovedeste o
alta adresa anexata la dosar, care este datata 15 aprilie 1999, poarta
(cum se vede si in facsimilul alaturat) antetul Guvernului Romaniei,
cabinetul primului-ministru, poarta semnatura sefei de cabinet Camelia
Andrusenco si este destinata secretarului de stat Liviu Ionescu, din Min-
isterul de Interne

• Luptatorii SIAS s-au oprit din actiune la poarta unei ferme unde s-a
refugiat infractorul, pe motiv ca nu aveau mandat de perchezitie

• ...

The accuracy of the BA algorithm in the proposed experiment is 60%. We note
that the accuracy of the disambiguation algorithm is calculated with the following
formula

(3) A =
number of correctly solved contexts

number of contexts

The experiment at Hearst (1991) shows that to achieve a high precision in word
sense tagging, the initial set must be large (20–30 occurrences for each sense).

We have to mention that, in our experiment, we associated a single occurrence
for each sense. On the other hand, we observe that if the number of words used as
contextual features for the disambiguation and the number of contexts grow, the
accuracy of the BA algorithm grows, too.

3.2. Experimental Comparison with the NBC Algorithm. In the case of
the algorithm described in section 2 (BA–Bootstrapping Algorithm), the relation
δ described in Equation 2 is very important. In order to illustrate the efficiency of
the BA algorithm (with an without δ), we ran at the same time the NBC algorithm
for the experiment proposed in subsection 3.1. We note that “BA without relation”
is the BA algorithm (Section 2), in which a decision list has the form described in
Equation 1.

The comparative experimental results obtained are shown in Figure 1. In Figure
1, we give, for each algorithm, a graphical representation of accuracy/context.
More exactly, for a given algorithm, for the i-th context we represent the accuracy
(see Equation 3) of the algorithm for the first i contexts. From Figure 1, it is
obvious that the most efficient is the BA algorithm with the relation δ (at each
step, the BA algorithm’s accuracy is maximum).

A WORD SENSE DISAMBIGUATION EXPERIMENT 41

Figure 1. The comparative experimental results

4. Further Work

Further work is planned to be done in the following directions: for assuring
a better efficiency of the disambiguation, we plain to retain in a database the
results of the learning process. We plain to study our approach in the context of
combining labeled and unlabeled data with Co-Training as in [1]. Our own goal is
to solve with our method the disambiguation for a query in a future QA-system
in Romanian which is now in construction.

References

[1] A. Blum, T. Mitchell: Combining Labeled and Unlabeled Data with C-Training. Proceedings

of the 11th Annual Conference on Computational Learning Theory (1998) 92–100

[2] G. Escudero, L. Marquez, G. Rigau: Boosting applied to WSD. ACML,Barcelona, Spain

(2000)

[3] R. Mihalcea, D. Moldovan: An iterative Approach to WSD. Proceedings of FLAIRS (2000)

[4] R. Mihalcea, D. Moldovan: A method for WSD of unrestricted text. Proceedings of the 37th

Annual Meeting of the ACL, Maryland, NY (1999)

[5] C. Manning, H. Schutze: Foundation of statistical natural language processing. MIT (1999)

[6] T. Pedersen, R. Bruce: Knowledge Lean WSD. Proceedings of the Fifteenth National Con-

ference on AI. Madison, WI (1998)

[7] P. Resnik, D. Yarowsky: Distinguishing Systems and Distinguishing sense: new evaluation

methods fot WSD. Natural Language Engineering, 1 (1998)

42 GABRIELA ŞERBAN AND DOINA TĂTAR

[8] D. Tatar, G. Serban: A new algorithm for WSD. Studia Univ. Babes-Bolyai, Informatica.

2 (2001) 99–108

[9] D. Yarowsky: Hierarchical Decision Lists for WSD. Kluwer Academic Publishers (1999)

[10] David Yarowsky: Unsupervised Word Sense Disambiguation Rivaling Supervised Methods.

Proceedings of ACL’95 189–196

Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: gabis@cs.ubbcluj.ro, dtatar@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 2, 2002

THE ROAD TO REAL MULTIMEDIA DATABASES –
EMERGING MULTIMEDIA DATA TYPES

HOREA TODORAN

Abstract. This paper describes our view on multimedia data types, which
are the fundamentals of real multimedia database management systems. Most
of the research efforts in previous work have been focused on audio-visual data
and their impact on the design and implementation of multimedia systems.
We also take into account the emergence of new media (generically called ’non
audio-visual media’), which have the potential to revolutionize the human-
computer interaction and bring multimedia database management systems in
a new era.

Keywords: Multimedia databases, Multimedia data types, Digital
smell, Digital taste, Digital touch

1. Introduction

Because of both the complexity of the term ”multimedia” and the diversity of
the application fields of the database technology, multimedia database management
systems (MMDBMS) have different meanings for different groups of users. They
are often identified by CD-ROMs storing multimedia information, or by video-on-
demand systems allowing users to choose a movie from a database and play it on
their own screens, or by document-imaging systems, or by other types of database
systems (relational, object-relational, object-oriented, spatial) able to manipulate
multimedia elements [Khoshafian96]. All of these illustrate important features of
the multimedia database technology, but none of them is exhaustive.

In the referenced literature, a real MMDBMS should be able to:
(1) Operate with at least all the audio-visual multimedia data types (as

defined in this paper);
(2) Fulfill all the requirements of a real database management system (data

persistence, transactions, concurrency control, system recovery, queries,
versioning, data integrity, data security, expandability);

(3) Manipulate huge data volumes (virtually no restriction concerning the
number of multimedia structures and their size);

(4) Allow interaction with the user;

2000 Mathematics Subject Classification. 68P15.
1998 CR Categories and Descriptors. H.2.4. [Information Systems]: Database Manage-

ment – Systems.

43

44 HOREA TODORAN

(5) Retrieve multimedia data based on their content (attributes, features
and concepts);

(6) Efficiently manage data distribution over the nodes of a computer net-
work (distributed architecture).

Fostered by the development of specific input and output devices, new, non
audio-visual digital media emerge. ’Digital smell’, ’digital taste’ and ’digital touch’
will become reality and will radically improve the human-computer interaction of
the future. Computer-generated multimedia presentations will not be limited to
image and sound as they are today. Instead, they will have a greater impact on
user’s perceptions, allowing for a computer-controlled ambient.

In terms of multimedia databases, the emergence of non audio-visual digital me-
dia will lead to new storage, retrieval and presentation challenges. Consequently,
the definition of a real MMDBMS will have to be reconsidered, i.e. adapted to the
new challenges. A first attempt is made in the next sections of this paper.

The rest of this paper is organized as follows: The next section gives an
overview of the audio-visual multimedia data types, which are indispensable in
a real MMDBMS. Emerging ’non audio-visual media’ are introduced in section 3,
together with specific devices and possible evolutions. Our first definition of a real
MMDBMS is given in section 4. Then, we conclude and present future work.

2. Overview of adudio-visual multimedia data types

2.1. Minimal data type requirements for MMDBMS. Most of the DBMS
developed in the last years which claim to be multimedia, have the capacity to
operate with only one data type. Even if this only data type is video, audio or
image, a system of this kind cannot be considered as a real multimedia database
system (MMDBMS).

For example, image database management systems, even if they are able to deal
with very large collections of

images and to offer advanced techniques for content-based retrieval (e.g. the
PIQ system, described in [18, 19, 3]), are not real multimedia database manage-
ment systems, because of their limitation to only one data type. In our opinion,
the same is true for video database systems, which offer advanced techniques for
storing, archiving, querying and visualizing digital video – e.g. the VideoSTAR
system, developed by the Norwegian Institute for Technology [5, 6], the HER-
MES/AVIA prototype from GMD Darmstadt [22, 7] and MMVIS from Michigan
University [14, 4].

We do not intend to diminish the extremely important contribution that the
above-mentioned systems and the related research bring to the development of
various techniques, successfully used in the management of multimedia data.

Nonetheless, we believe that:
Statement 1:
A multimedia database management system (MMDBMS) must be able to operate

with at least all of the following basic audio-visual multimedia data types: text,
image, graphics, audio and video.

REAL MULTIMEDIA DATABASES 45

Let us define the set of basic audio-visual multimedia data types for further use
and explain what does it mean for a DBMS to be able to operate with a specific
data type.

Definition 2 - Set of basic audio-visual MM data types
The set of basic audio-visual multimedia data types (BAVT) is defined as:
BAVT = {TEXT, IMAGE, GRAPHICS, AUDIO,
VIDEO}
Definition 3 - Operate with an abstract data type
A DBMS is able to operate with a specific abstract data type (ADT) when

instances of the ADT can be manipulated (i.e. created, updated, deleted, retrieved)
independently from other types of data, by means of their own specific techniques.

By way of combination of BAVT objects, new complex objects, which are mul-
timedia them selves, can be created to be recognized and manipulated by the
system.

2.2. Classification of audio-visual data types. Taking into account their time-
dependency, audio-visual multimedia data are divided in two main categories, as
follows:

Definition 4 - Discrete and continuous data
Data not depending on a time scale are called discrete data or static data .
Data depending on a time scale are called continuous data or dynamic

data .
Text, graphics and image are discrete data, while audio and video are continu-

ous.
Continuous data are more complex than discrete data, which implies the use of

much better compression/decompression algorithms and more sophisticated oper-
ations for their interpretation and manipulation (see [24, 8, 15]).

The main features and concepts related to the basic audio-visual multimedia
data types are described in [15, 10, 20].

2.3. Generated media. In [15, 11] some other multimedia data types are de-
scribed, which are called generated media. They are different kinds of computer-
generated presentations, the most popular being animation and music.

If they are stored in audio or video files, then there is practically no difference
between generated media, on the one hand, and audio and video data, on the other
hand. Yet, if they are generated during the presentation (real-time), using specific
devices and instruments, we assert that they must be treated as distinct media.

Let us now give our definition for generated media:
Definition 5 - Generated media (GM)
Generated media are computer-generated real-time multimedia presentations

based on human-computer interaction.

GM ⊃ {ANIMATION, MUSIC}
The main advantage of the generated media over audio and video data resides in

a much better interaction with the user, which is crucial in the case of MMDBMS.

46 HOREA TODORAN

Generated media are interactive media. Their manipulation requires simultaneous
control of devices and efficient interpretation of user-generated interrupts.

In terms of Definition 4 generated media are continuous, as long as they essen-
tially depend on a time scale.

2.4. Speech. Due to the recent development of advanced techniques for speech
recognition and speech understanding (see [12, 13, 21]), speech data are likely to
be treated independently from audio data.

The main difference between speech recognition and speech understanding re-
sides in the fact that the latest implies action taken by the system in response
to the vocal command of the user. Current speech recognition systems have bet-
ter than 95% accuracy and the errors that might occur are very easy to correct.
Speech understanding is more complex, especially when the semantic of the com-
mand plays an important role.

Speech is also a continuous medium.

2.5. Synthesis of audio-visual data types. Based on the previous definitions,
a synthetic view on audio-visual media is presented in the table bellow:

BAVT GM Sp.
Discrete
media

TEXT
GRAPHICS
IMAGE

Continuous
media

AUDIO
VIDEO

ANIMATION
MUSIC

SPEECH

Table 1. Table 1: Audio-visual data types

3. Emerging non audio-visual multimedia data types

Most of the research in the field of human-computer interaction has been fo-
cused, until recent years, solely on audio-visual technologies. Up to a certain point,
this can be explained by the natural evolution of the human societies, built on the
communication between their members, which is mainly based on signes (writing)
and sounds (oral communication). Television, the most important mass-media of
the last century, is also made of image and sound. Therefore, more and more
sophisticated audio and video devices have been developed by the electronic in-
dustry, followed by the associated software tools. This evolution has also had a
great impact on the database technology, leading to the development of today’s
MMDBMS.

But, as far as human beings are endowed with five senses, why concentrate
the whole effort only on two of them? Why not trying to further improve the
human-computer interaction by means of adding the strength of smell, taste and
touch? A positive answer is given by the development, in the last few years, of
a new generation of hardware devices and software applications, which we briefly

REAL MULTIMEDIA DATABASES 47

describe in the next subsections of this paper. They will lead to the emergence of
new media, that are non audio-visual and that will probably have the same impact
on human-computer interaction as audio-visual media have had in the early 1980s.

To what extent will affect the new non audio-visual media the database field is
almost impossible to accurately predict. However, we give our vision on the con-
sequences of the new non audio-visual media for the multimedia database design
and implementation.

3.1. Olfactory input and output interfaces. Olfactory and tasting interfaces
seem to be the least developed among the human-computer interaction technolo-
gies. This is mainly due to the lack of useful applications, comparing with the
other sense-based technologies. However, the use of scents and taste in military
(chemical and biological warfare detectors), medicine (surgical training) and elec-
tronic commerce (sample of groceries, cosmetics, household products) has fostered
the research on olfactory and tasting systems in the last few years.

There are two types of olfactory interfaces, briefly described below: olfactory
input interfaces and olfactory delivery (output) systems.

Olfactory input interfaces, also called electronic noses, are used to collect and
interpret odours (very useful in product quality control and warfare detectors).
There are three basic approaches to this kind of input devices:

gas chromatography: separation, identification and determination of chem-
ical components in a complex mixture using the differences in migration
rates among the sample components;

mass spectrometry: detects patterns of the molecules using the differ-
ence in mass-to-charge ratio of ionised atoms;

chemical sensor arrays: based on the multisensing principle, in which
the distributed response of an array of chemical sensors is used to identify
the constituents of a gaseous environment (eg. ENOSE by JPL and
Caltech).

Olfactory delivery systems are a combination of at least four different processing
steps: odour storage (liquid, gels, microencapsulation), odour selection, evacuation
and cleaning of exhaled air and odour display. Olfactory delivery systems are
already available for the consumer market – e.g. the SENX scent device from
TriSenx (http://www.trisenx.com).

The Sniffman portable scent system from Ruetz Technologies (Germany) has
already been adapted for a multimedia entertainment application – Duftkino - the
smell cinema (http://www.duftkino.de). “One Day Diet” is the first movie for
the nose (“ein Film für die Nase”), allowing audience also to smell the action.

France Télécom R&D and the Burgundy wine industry association (BIVP) are
creating a website that lets visitors take an olfactory stroll through the famous
vineyards of Burgundy. Aromas, pictures and sounds will be brought together to
recreate the atmosphere of the vineyards.

3.2. Tasting interfaces. Tasting systems, frequently called electronic tongues,
mimic their natural counterparts, being already able to distinguish between sweet,

48 HOREA TODORAN

sour, salty and bitter1, and having the potential to respond to a dazzling array
of subtle flavours. Even more, e-tongues can also ”taste” cholesterol levels in
blood, cocaine concentration in urine, or toxins in water, which means that they
can return both qualitative and quantitative results. Most of the applications of
electronic tongues are in the field of quality control (flavours, beverages, fragrances,
pharmaceuticals) and medicine (blood and urine tests).

Recent examples of e-tongue prototypes include:
The e-tongue prototype developed at University of Texas2 is made of polymer

microbeads positioned on a silicon chip of about 1cm2 and arranged in tiny pits
to represent taste buds. Each pit is marked with dye to create a RGB color bar,
which changes when in contact with a chemical. A camera connected to a computer
examines the colors and performs a RGB analysis to determine what tastes are
present.

The “Astree Liquid & Taste Analyzer” produced by Alpha-MOS (Web address
http://www.alpha-mos.com). This analyses a liquid matrix using sensor reactions
and different statistical pattern recognition techniques to classify tastes. It was
the first tasting system commercially available.

The hand-held device produced by Antonio Riul at Embrapa Instrumentação
Agropecuária in São Carlos, Brazil (http://www.embrapa.br). It is able to detect
low levels of impurities in water and discriminate between Cabernet Sauvignons
of the same year from two different wineries, and between those from the same
winery but different years. It can also spot molecules such as sugar and salt at
concentrations too low for human detection [1].

3.3. Haptic interfaces. Haptic interfaces are devices that measure the motion
of, and provide sensory stimulus to, the users’ hands and fingers. A haptic device
provides information to the computer based on the device’s position (the way a
mouse does) and stimulates users’ sense of touch by supplying output in the form
of force feedback and tactile, or haptic, feedback. Haptic devices make it possible
for users to “touch”, feel, manipulate, create, and/or alter with their own hands
and fingers, objects presented on computer displays as if they were real physical
objects. This is done by carefully calculating the forces one would feel when
touching a real object and then presenting these forces to users by using the force
feedback and tactile display capability of a haptic device. When done properly,
this creates the illusion of “touching” the object.

Haptic interfaces can be used to train physical skills such as those jobs requiring
specialized hand-help tools (e.g. surgeons, astronauts, mechanics), to provide
haptic-feedback modelling of three dimensional objects without a physical medium
(such as automobile body designers working with clay models), or to mock-up
developmental prototypes directly from CAD databases (rather than in a machine
shop).

1Recently, a fifth candidate basic taste was identified: umami, the taste of monosodium
glutamate, characteristic of protein-rich foods (http://www.umami.it)

2Further information at: http://weewave.mer.utexas.edu/MED files/MED research/
MEMS chem snsr/beads/bead sensor.html

REAL MULTIMEDIA DATABASES 49

Based on the interaction between de user and the machine, haptic devices can
be classified as:

Finger-based: attached to user’s finger and responding to its movements.
Examples include PHANToM (developed at MIT, but commercialised by
SensAble), the pen based device from University of Washington, Rutgers
Masters (RM-I, RM-II), Feelit Mouse by Immersion.

Hand-based: users interact with the device by grasping a rigid tool. The
machine gives the human arm the sensation of forces associated with
various arbitrary manoeuvres. Prototypes have been developed at sev-
eral universities (Carnegie Mellon, McGill, Northwestern, Rutgers and
so on); commercial products: TouchSense by Immersion, Cyberglove and
CyberTouch of Virtual Tech.

Exoskeletal: track the movements of user’s arm, shoulder or even of the
whole body, allowing high interactivity, but at extremely high prices.
These machines are mostly used in medicine, for people with disabili-
ties, and military. Examples of commercially available products include
Cybergrasp by Virtual Technologies, Dextrous Arms and Hands from
Sarcos, Arm Master by Exos.

Inherently passive devices (or intelligent assist devices): these are
passive, therefore safe, robots for direct physical interaction with hu-
man operators within shared environments. They use intelligent micro-
controllers, servo-motors and an advanced ”sense/process/actuate” con-
trol concept to quantify the speed and direction of motion that the user
wants. This information is then processed and the proprietary algo-
rithms direct the movement of the device, no time lapse between the
machine’s sensing and its response being noticed by the operator (see
http://cobot.com).

Besides force feedback, other tactile display technologies include:

Vibration: Vibration can be used to transmit information about texture,
puncture, slip, and impact. Since vibrations often are sensed as being
diffuse or unlocalised, a single vibrating device for each finger or skin
area is often sufficient.

Thermal display: Thermal perceptions of an object are based on a com-
bination of thermal conductivity, thermal capacity, and temperature.
This enables users to infer material composition as well as temperature.

Small-scale shape or pressure distribution: The most frequently used
devices have an array of closely spaced pins that can be raised or lowered
individually against the skin to approximate a shape. To conform to the
human ability to perceive tactile sensations, the pins must be spaced
within a few millimetres of one another.

Other tactile display technologies: These include electrorheological de-
vices (materials that use a “smart” fluid which can change viscosity in
an electrical field) combined with sensors, electrocutaneous stimulators

50 HOREA TODORAN

(using electrodes to stimulate cutaneous nerve endings), ultrasonic fric-
tion displays, and rotating disks for creating the sensation of slip. The
MEMICA prototype from Rutgers University is a good example.

While online scent services are almost ready to be launched on the market, taste
and touch seem to be harder to address.

3.4. Steps towards the integration of smell, taste and touch in real
MMDBMS. In our view, the first and very important step is to increase the
number of application areas for digital smell, taste and touch and gain public ac-
ceptance. In [9] possible uses of computer-generated scent are revealed, both in
the public spaces (malls, theme parks, retail spaces) and the individual sphere
(high-end gamers, aromatherapy to enhance memorization and learning, ubiqui-
tous computing, individuals with special needs – blind, deaf). For this to happen,
low-cost standardized devices are needed.

Taking into account the experience gained in image, audio and video, the next
step will probably be to develop specialized databases. We presume that smell
databases, taste databases and touch databases will evolve separately and specific
storage devices, querying techniques and presentation methods will be built for
each of the three media. Because of the wide effort required for such systems to
be put together, it is very realistic for any research team to focus on only one of
these non audio-visual media at a time.

The process of integration of digital smell, taste and touch in a real MMDBMS
will most likely continue in the form of a multimedia federated database system. By
means of wrappers diverse audio-visual data sources have been already integrated
in coherent systems where high-performance query optimization is achieved (see
[2, 17]). The same strategy is likely to be adopted by developers also in the case
of emerging non audio-visual media rather then building new multimedia systems
from scratch. A great challenge will be to send these media across networks, which
requires infrastructure upgrading.

On the top of a MMDBMS that also includes smell, taste and touch, amazing
five-senses multimedia applications will be built.

4. Our first definition of a real MMDBMS

In the view of the topics discussed above, we give our first definition of a real
MMDBMS, which is an extension of various definitions found in the referenced
literature:

Definition 6: Real MMDBMS
A real multimedia database management system has the following characteris-

tics:
(1) (Data types) Is able to operate with the following multimedia data types:

(a) basic audio-visual data types: TEXT, GRAPHICS, IMAGE, AU-
DIO, VIDEO;

(b) generated media: ANIMATION, MUSIC;
(c) SPEECH
(d) non-audio-visual data types: SMELL, TASTE, TOUCH

REAL MULTIMEDIA DATABASES 51

(2) (Database features) Fulfill all the requirements of a real database manage-
ment system (data persistence, transactions, concurrency control, system
recovery, queries, versioning, data integrity, data security, expandabil-
ity);

(3) (Storage) Manipulate huge data volumes (virtually no restriction con-
cerning the number of multimedia structures and their size);

(4) (Interaction) Allow interaction with the human operator through all the
five senses;

(5) (Queries) Retrieve multimedia data based on their content (attributes,
features and concepts);

(6) (Distribution) Efficiently manage data distribution over the nodes of a
computer network (distributed architecture).

Note: This definition is likely to change in the future, according to advanced
results in digital smell, taste and touch.

5. Conclusions and future work

In this paper we have discussed a basic aspect of real multimedia database man-
agement systems: the multimedia data types. We have had a brief overview of the
audio-visual multimedia data types, which we have defined and classified. Then,
we have presented various input and output technologies, which foster the emer-
gence of new multimedia data types, called here “non audio-visual data types”:
smell, taste, touch. Integrating these new data types in multimedia database sys-
tems is a very difficult task. We have imagined three incipient steps. We have also
given our first definition of a real MMDBMS.

In the future we plan to analyse the opportunity of building smell database and
then integrating smell into federated multimedia database management systems.

6. Acknowledgements

Dr. Thomas Skordas is acknowledged for contributions to this paper and for
giving me a first view on real human-computer interaction.

References

[1] Ball, Philip – “Electronic tongue has a good taste”, Nature Science Update, 9 January 2002.
http://www.nature.com/nsu/020107/020107-3.html

[2] Berthold, Henrike – “A Federated Multimedia Database System”, Proc. ACM Multimedia
’99 Doctoral Symposium, Orlando, Florida, 1999.

[3] K. Beyer, J. Goldstein, R. Ramakrishnan and U. Shaft – “When is Nearest Neighbor Mean-
ingful?”, Proc. ICDT, 1999.

[4] Hibino, Stacie Lynn – “MultiMedia Visual Information Seeking (MMVIS): A Multimedia
Interactive Visualization Environment for Exploration and Spatio-Temporal Analysis of
Video Data”, PhD thesis, Michigan University, Ann Arbor, 1998.

[5] Hjelsvold, Rune – “Video Information Contents and Architecture”, Proceedings of the 4th
International Conference on Extending Database Technology, Cambridge, 1994.

[6] Hjelsvold, Rune; Roger Midtstraum and Olav Sandsta, “Searching and Browsing a Shared
Video Database”, Proceedings of the 1995 International Workshop on Multi-Media Database
Management Systems, 1995.

52 HOREA TODORAN

[7] Hollfelder, Silvia; Everts, André; Thiel, Ulrich – “Designing for Semantic Access: A Video
Browsing System”, in Proc. of IEEE Int. Conf. On Multimedia Computing and Systems
(ICMCS), 1999.

[8] Kamath, Mohan; Ramamritham, Krithi; Towsley, Don – “Continuous Media Sharing in
Multimedia Database Systems”, Proc. of the 4th International Conference on Database
Systems for Advanced Applications (DASFAA’95), Singapore, 1995.

[9] Kaye, Joseph Nathaniel – “Symbolic Olfactory Display”, PhD Thesis, MIT Media Lab, May
2001. http://web.media.mit.edu/∼jofish

[10] Khoshafian, Setrag; Baker, Brad -, “Multimedia and Imaging Databases”, Morgan Kuaf-
mann Publ., USA, 1996.

[11] Klas, W., Aberer, K. - “Multimedia Applications and Their Implications on Database Arhi-
tecture”, GMD Technical Report, Darmstadt, Germany, 1995.

[12] *** - “Emerging technologies that will change the world – The Technology Review
Ten”, Massachusetts Institute of Technology’s magazine of Innovation, Jan/Feb 2001.
http://www.technologyreview.com.

[13] *** - “Voice recognition improves - but still suffers from selective hearing”, 16 Jan 2001.
http://www.msnbc.com/news/516591.asp.

[14] Nwosu, C. K.; Thuraisingham, B.; Berra, P.B. – “Multimedia Database Systems, Design
and Implementation Strategies”, Kluwer Academic Publishers, USA, 1996.

[15] Rakow, Thomas C.; Neuhold, Erich J.; Löhr, Michael – “Multimedia Database Systems –
The Notions and the Issues”, in G. Lausen, editor, Tagungsband GI-Fachtagung Daten-
banksysteme in Büro, Technik und Wissenschaft (BTW, Informatik Aktuell, p. 1-29,
Springer, March 1995.

[16] Rakow, Thomas C.; Klas, Wolfgang; Neuhold, Erich J. – “Research on Multimedia Database
Systems at GMD-IPSI”, IEEE Multimedia Newsletter 4(1): 41-46, April 1996.

[17] Roth, Mary Tork; Özkan, Fatma; Hass, Laura M. – ”Cost Models DO Matter: Provid-
ing Information for Diverse Data Sources in a Federated System”, Research Report, IBM
Research Division, IBM Almaden Research Center, San Jose, California, 1999.

[18] Shaft, Uri; Ramakrishnan, Raghu – ”Data Modeling and Querying in the PIQ Image
DBMS”, Bulletin of the IEEE Computer Science Technical Committee on Data Engineering,
1996.

[19] Shaft, Uri; Ramakrishnan, Raghu - ”Content-Based Queries in Image Databases”, Data
Engineering Bulletin, February 1997.

[20] Smeureanu, Ion; Drulă, Georgeta – “Multimedia – concepte şi practică”, CISON Publishers,
Bucharest, 1997 (in Romanian).

[21] Sumedha Kshirsagar, Chirs Joslin, Won-Sook Lee, Nadia Magnenat-Thalmann, ”Personal-
ized Face and Speech Communication over the Internet”, in IEEE Virtual Reality 2001.

[22] Thiel, Ulrich; Hollfelder, Silvia; Everts, André – “Multimedia Management and Query Pro-
cessing Issues in Distributed Digital Libraries: A HERMES Perspective”, Proceedings of
9th International Workshop on Database and Expert Systems Applications (DEXA 98),
August 26-28, 1998; Vienna, Austria, Los Alamitos, California: IEEE Computer Society,
1998, pp. 84-89.

[23] “Towards Natural Human Computer Interaction”, Jorge Santos (European Commission,
DG Information Society), 29 June 2000.

[24] TURAU, Volker; RAKOW, Thomas C. – “A Schema Partition for Multimedia Database
Management Systems”. http://www.gmd.de

[25] Ţâmbulea, Leon – “Structuri de date şi bănci de date”, “Babeş-Bolyai” University, Cluj-
Napoca, Romania, 1992 (in Romanian).

Faculty of European Studies, Babes-Bolyai University, Cluj-Napoca
E-mail address: htodoran@euro.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 2, 2002

A STUDY OF DEPENDENCE OF SOFTWARE ATTRIBUTES
USING DATA ANALYSIS TECHNIQUES

MILITON FRENŢIU AND HORIA F. POP

Abstract. The dependence between software attributes is studied, using the
projects written by second year students as a requirement in their curriculum.
The dendrogram, factorial analysis and principal components methods are
used as Data Analysis Technique. Also, some consequences on the education
activity are considered.

Keywords: software metrics, measurement, fuzzy clustering, data anal-
ysis techniques, education

1. Introduction

The main purpose of Software Metrics is to evaluate the needed resources and to
improve the Software development process [6]. Software Metrics are also useful to
evaluate the quality of a software product [15]. And, as we show and in this paper,
Software Metrics are useful in education. The future programmer will respect an
adequate programming methodology if he is thaught to do so.

The dependence between some software product attributes was discussed by
many authors [1, 2, 8, 9, 20]. The effect of programming style on some software
product attributes was analysed in [7]. Here we consider again this problem, taking
in account 29 software attributes and using the Principal Components Method to
study the dependence between these attributes.

The fact that code indentation increases software programs readability has been
recognized and underlined for a long time [11, 14]. This was later proved by other
authors through statistical experiments [16, 17, 19]. Also, it was proved [16] that
excessive indentation is useless, that the best result for increasing readability is
obtained when 2–4 spaces are used for indentation.

Oman and Cook [17] showed through an experiment that maintenance was
performed better by the subjects that had to maintain their programs in book
format, than those that had traditional programs. Also, they showed that the

2000 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.3 [Software] : Software Engineering – Coding

Tools and Techniques; I.5.1 [Computing Methodologies] : Pattern Recognition – Models –
Fuzzy set ; G.3 [Mathematics of Computing] : Probability and Statistics – Data analysis.

53

54 MILITON FRENŢIU AND HORIA F. POP

use of typographic style reduces the maintenance effort, improving programmer
performance and program comprehension.

There is a close dependence between the clarity, readability and correctness of
a program [7]. We all expect that a strong correlation exists between comprehen-
sibility and good design, and this is confirmed again by our experiment. A study
of licence examination results based on fuzzy clustering, showing the relationships
to programming habitudes is presented in [9].

We have observed that there is a strong dependence between almost all consid-
ered attributes. We will try to explain the reason in the Conclusion part of this
paper.

2. The experiment

The study is based on 29 projects produced by second year undergraduate
students as part of their requirements curriculum. These projects were analysed
observing the attributes described in Table 1, and the primary data is given in
Table 2.

Attribute Description Attribute Description
A1: requirements description A16: readability
A2: good specification A17: comprehensibility
A3: function points A18: changeability (modifiability)
A4: design clarity A19: structuredness
A5: design correctness A20: testability
A6: design completeness A21: reliability
A7: design diagrams A22: efficiency
A8: modules specification A23: extensibility
A9: algorithms description A24: adaptability
A10: LOC A25: documentation clarity
A11: no. of comments A26: documentation completeness
A12: good use of comments A27: maintainability
A13: good use of free lines A28: simplicity
A14: indentation A29: quality
A15: good names

Table 1. Attributes description

The attributes A10 and A11 were measured automatically by computer. All
the others were estimated by postgraduate students. All metrics have the values
in the interval [0, 10], where 0 stands for “very bad” (or not present at all), and
10 for “excellent”. These values are the impressions of the students about the
corresponding attributes. Certainly, these values are subjective, but we consider

DEPENDENCE OF SOFTWARE ATTRIBUTES USING DATA ANALYSIS 55

that this fact does not affect the dependency between the attributes, all values
for a project being given by the same person. After all, “subjective measures are
cheap and worth using” [5]. Also, we may accept that the postgraduate students
are not experienced programmers, but they have finished a similar project three
years ago, and another two projects in their third and fourth year. More, half of
them are working at Software companies.

These students form a Master group that study the subject “Software Met-
rics”. The definitions of the above considered attributes were given there. These
definitions and are inspired from and can be found in [6].

The attribute A12 refers to the documentation done by comments. It is not
based on the number of comment lines of the programs. We may write as many
comment lines as we like and sometimes the comments contradict the code, or do
not reflect what the code does. The measure for this attribute takes in account
if the specification of each module is reflected through comments, if the meaning
of each variable and object is explained by comments, if the invariants and other
important explanations are given by comments.

In [7] a measure for comprehensibility was defined by

(1) m(comprehensibility) = w1 ·m(readability) + w2 ∗m(design)

where w1 = 0.4, and w2 = 0.6, and

(2) m(readability) = [m(comments)+m(indentation)+m(names)+m(spaces)]/4

If we want to verify this hypothesis we may use Chi-square test for our data.
For this we must compute the sum

χ2 =
n∑

i=1

(ci − di)2

where ci are the observed values for comprehensibility, and di are the computed
values using the formula (1). We have considered here that m(design) is the
average of m(A3) and m(A7) since the clarity of design and the needed diagrams
affect comprehensibility. For 28 degrees of freedom, the critical value of χ2 at
0.05 level of probability is 41.34. The computed value for our experiment is 7.56,
therefore the test is passed.

3. Study of variables dependence

3.1. Correlation Matrix. First of all, the correlation coefficients for all pairs
(Ai, Aj) were computed1.

We remark a strong dependence between almost all pairs of attributes. We may
observe that the largest correlation coeficients are cor(A3, A10) = 0.98, cor(A2,

1Due to space restrictions, the correlation matrix and other results are not printed in this
paper. Instead, they are available, together with all other numerical data, on Internet, at the
address http://www.cs.ubbcluj.ro/∼mfrentiu/articole/projdat.html.

56 MILITON FRENŢIU AND HORIA F. POP

Prj 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

1 6 5 38 5 6 5 6 2 0 759 268 6 8 7 5 6 5 4 4 4 3 5 5 4 6 5 5 6 4
2 6 7 97 6 6 7 5 6 4 2695 22 2 8 5 5 5 5 5 5 4 4 4 5 4 4 5 4 4 4
3 8 8 145 8 8 8 7 9 3 3550 575 7 7 5 5 6 7 5 6 5 5 6 6 6 7 7 6 5 5
4 6 6 58 3 6 5 4 1 0 1600 0 0 5 3 5 4 4 5 5 5 4 5 6 5 5 6 5 6 5
5 8 8 80 7 7 6 7 5 2 2144 130 5 8 8 7 8 7 8 9 8 7 7 7 7 8 7 8 7 7
6 9 9 159 9 8 8 7 6 2 4027 200 6 9 9 5 7 7 7 7 6 7 8 6 7 7 7 6 6 6
7 6 6 61 8 7 7 6 6 2 1649 6 1 9 8 5 5 6 6 8 7 7 9 6 6 7 7 6 6 6
8 9 8 29 7 8 8 6 4 6 653 0 0 6 8 5 5 5 4 4 6 5 4 3 3 5 5 3 5 5
9 9 8 60 7 8 8 7 5 1 1542 0 0 3 8 5 5 7 5 5 5 5 4 6 6 6 6 5 4 5
10 8 9 47 8 7 7 8 8 1 1164 5 1 8 4 5 5 7 5 5 7 5 5 6 7 7 6 5 7 6
11 7 7 90 8 7 7 5 6 2 2816 108 4 7 6 7 7 7 5 7 8 6 6 5 5 8 7 5 7 6
12 8 8 59 7 7 7 6 8 1 1145 68 3 7 5 6 6 6 6 6 5 5 6 6 5 8 7 6 5 5
13 8 8 74 8 8 9 8 9 1 1880 8 1 9 8 7 7 7 7 8 7 7 8 8 7 9 8 7 7 8
14 7 6 68 7 7 8 7 6 5 1680 0 0 7 6 5 5 6 6 7 6 6 7 6 5 8 7 7 6 7
15 8 7 35 7 8 8 6 9 9 715 0 0 4 5 5 4 6 8 7 7 7 8 8 7 8 8 7 8 7
16 6 6 34 6 7 7 6 4 5 780 32 2 6 3 6 5 5 5 5 6 5 5 6 5 7 6 5 6 5
17 9 8 55 8 8 8 8 9 2 1460 30 2 9 7 8 7 8 7 8 8 7 8 7 8 7 7 7 8 8
18 9 8 45 8 8 8 5 8 0 871 0 0 9 9 8 7 6 9 9 8 8 9 8 8 8 7 8 9 9
19 8 9 57 8 9 7 8 8 8 1553 0 0 9 7 8 7 7 6 8 9 8 8 8 8 7 7 8 4 8
20 9 8 49 9 9 8 8 9 6 1289 15 1 9 7 8 7 8 7 9 9 8 9 9 7 8 8 8 9 9
21 9 9 61 9 8 9 8 9 8 1466 4 0 6 7 6 6 7 8 7 9 8 8 8 6 8 7 7 8 8
22 8 7 60 6 7 9 6 6 9 1653 0 0 4 3 8 4 5 5 5 9 8 7 4 4 6 6 5 5 6
23 9 9 86 8 9 9 8 9 7 2105 120 3 8 5 8 7 7 7 7 8 8 8 7 7 9 8 8 7 8
24 8 7 37 7 8 7 7 4 8 752 6 0 9 3 9 6 7 6 6 8 7 8 7 6 9 8 7 7 7
25 8 8 57 7 7 8 8 8 5 1680 192 5 8 7 7 7 8 7 8 6 7 7 7 6 7 8 7 7 7
26 7 6 34 5 6 6 6 2 0 605 38 2 8 7 6 6 6 4 5 4 4 5 5 5 6 7 5 6 6
27 6 6 28 6 7 7 6 3 0 526 6 0 5 5 7 5 5 5 6 6 5 6 5 6 5 5 5 6 5
28 7 6 32 7 7 6 6 3 0 914 0 0 7 6 5 5 5 6 6 6 7 7 7 6 7 7 6 7 6
29 7 7 39 7 8 7 8 7 0 778 153 4 7 7 7 7 7 7 7 6 7 8 7 7 7 7 7 7 7

Table 2. The attribute values for 35 projects

A27) = 0.97, cor(A20, 21) = 0.95, cor(A25, 26) = 0.95. The first one is expected,
since the size of the product strongly depends of the atribute A3 (function points).

3.2. Dendrogram. A dendrogram is a tree that depicts a hierarchical dependence
between the attributes, starting from the correlation matrix [12, 13]. Since we refer
downwards to this dendrogram, we have drawn it and it can be seen at the above
mentioned address (see Figure 1).

3.3. Factorial Analysis. A factorial analysis [21] was also performed. The result
of this analysis is printed below in Tables 3.a, 3.b and 3.c.

DEPENDENCE OF SOFTWARE ATTRIBUTES USING DATA ANALYSIS 57

Figure 1. Dendrogram for 29 software attributes

To explain the attributes with the probability 0.60 we need two factors, and the
relation between attributes and these factors is given in Table 3.a.

Only the attributes A3, A10, A11, and A12 depend more on the second factor
than on the first one. All the others depend on the first factor, and we consider
this factor the general knowledge of the students. The second “factor” is not a
single factor, as can be seen analysing the dendrogram. This dendrogram clearly
highlights that A3 and A10 are grouped together, A11 and A12 are also grouped
together, but these two groups have quite a low dependency.

We have repeated the factorial analysis for a probability of 0.70 (see Table 3.b).
At this level three factors are needed, but, still, the attributes A3, A10, A11, A12,
A13, A14 depend stronger on “the second factor”. The third factor influences the
attributes A1–A8, which characterise the design of the projects.

For the probability 0.80 we need six factors. Now, the second one influences
the attributes A3 and A10, and we consider it “the complexity of the problem”.
The attributes that depend stronger on the third factor are A1, A2, A4, A5, A6,
A7, and A17. We can see that the dendrogram classifies these attributes together,
in the following subtree: [(((1, 2), 5), ((4, 8), 6)), (7, 17)]. We remark that these

58 MILITON FRENŢIU AND HORIA F. POP

0.60 0.70 0.80
Attr. F1 F2 C F1 F2 F3 C F1 F2 F3 F4 F5 F6 C

1 0.65 0.24 0.48 0.30 0.12 -0.76 0.68 0.21 0.04 -0.85 0.11 0.07 0.10 0.79
2 0.59 0.44 0.54 0.24 0.32 -0.77 0.75 0.15 0.22 -0.85 0.12 -0.05 0.13 0.82
3 0.01 0.86 0.73 -0.10 0.82 -0.30 0.77 0.00 0.92 -0.20 0.06 -0.34 -0.05 0.95
4 0.73 0.41 0.7 0.47 0.31 -0.67 0.76 0.40 0.28 -0.72 0.20 0.01 0.16 0.81
5 0.78 0.14 0.62 0.45 0.02 -0.74 0.75 0.39 0.00 -0.77 -0.07 0.08 0.20 0.78
6 0.57 0.14 0.34 0.11 0.00 -0.88 0.78 0.20 0.27 -0.76 -0.26 0.25 -0.04 0.79
7 0.63 0.29 0.48 0.44 0.21 -0.52 0.51 0.30 -0.26 -0.73 0.02 -0.38 0.23 0.79
8 0.73 0.33 0.64 0.44 0.23 -0.71 0.74 0.49 0.22 -0.70 -0.09 -0.09 -0.02 0.78
9 0.38 -0.20 0.18 -0.03 -0.31 -0.70 0.58 0.11 0.11 -0.42 -0.80 0.28 0.16 0.77
10 0.00 0.81 0.66 -0.10 0.78 -0.29 0.70 -0.02 0.95 -0.16 0.04 -0.27 0.00 0.93
11 -0.17 0.79 0.65 -0.08 0.81 0.06 0.66 -0.06 0.37 -0.04 -0.02 -0.85 -0.04 0.82
12 -0.15 0.84 0.72 0.03 0.88 0.19 0.80 -0.05 0.37 0.05 0.19 -0.87 0.15 0.89
13 0.40 0.37 0.30 0.59 0.39 0.11 0.52 0.32 0.11 -0.02 0.42 -0.28 0.65 0.68
14 0.30 0.37 0.23 0.38 0.37 -0.03 0.29 0.15 0.14 -0.28 0.94 0.06 0.09 0.82
15 0.64 -0.17 0.44 0.57 -0.21 -0.27 0.44 0.35 -0.19 -0.22 -0.26 0.09 0.86 0.86
16 0.56 0.55 0.62 0.68 0.54 -0.08 0.76 0.37 0.09 -0.29 0.47 -0.43 0.66 0.93
17 0.72 0.48 0.75 0.60 0.41 -0.47 0.75 0.44 -0.01 -0.66 0.16 -0.42 0.32 0.86
18 0.83 0.06 0.70 0.80 0.01 -0.31 0.73 0.86 0.16 -0.27 0.17 0.17 0.02 0.87
19 0.84 0.18 0.73 0.87 0.14 -0.22 0.83 0.81 0.22 -0.21 0.28 0.09 0.33 0.91
20 0.80 -0.20 0.68 0.55 -0.30 -0.59 0.73 0.49 0.07 -0.42 -0.28 0.43 0.51 0.86
21 0.90 -0.06 0.81 0.67 -0.15 -0.60 0.83 0.68 0.19 -0.44 -0.15 0.36 0.35 0.91
22 0.86 -0.01 0.75 0.83 -0.06 -0.30 0.79 0.84 0.16 -0.19 -0.02 0.19 0.33 0.88
23 0.82 -0.02 0.67 0.84 -0.05 -0.22 0.75 0.88 -0.14 -0.25 0.07 -0.05 0.01 0.86
24 0.79 0.15 0.64 0.79 0.11 -0.24 0.70 0.73 -0.06 -0.35 0.30 -0.07 0.13 0.75
25 0.77 0.11 0.61 0.72 0.05 -0.33 0.63 0.75 -0.02 -0.30 -0.19 -0.18 0.21 0.74
26 0.78 0.14 0.63 0.75 0.09 -0.31 0.66 0.82 0.04 -0.27 -0.18 -0.20 0.15 0.80
27 0.88 0.08 0.78 0.89 0.04 -0.25 0.86 0.87 -0.01 -0.25 0.00 -0.09 0.29 0.90
28 0.65 -0.18 0.46 0.76 -0.18 -0.01 0.61 0.75 -0.24 -0.04 0.11 0.05 0.12 0.64
29 0.96 -0.09 0.92 0.85 -0.16 -0.43 0.93 0.76 -0.10 -0.42 0.06 0.22 0.38 0.94

(a) (b) (c)

Table 3. Factorial analysis for a probability of 0.60, 0.70, and
0.80 respectively

attributes are those connected to the design (similarily to the case of probability
0.70), plus the comprehensibility!

But there are other factors, the fourth one that strongly influences the attribute
“indentation”, the fifth one, that influences the attributes A11, A12 (comments),
and the sixth one influences A13, A15, A16 (mainly the readability of programs).

3.4. Principal Components Analysis. Principal Components Analysis (PCA)
is designed to reduce the number of variables that need to be considered to a small

DEPENDENCE OF SOFTWARE ATTRIBUTES USING DATA ANALYSIS 59

number of axes called the principal components, that are linear combinations of
the original variables. The new axes lie along the directions of maximum variance
thus containing most of the information. PCA provides an objective way of finding
attributes of this type so that the variation in the data can be accounted for as
concisely as possible. Moreover, due to this space rotation, PCA is often used as a
dimensionality reduction method: very few principal components provide a good
coverage of all the original variables.

PCA has been applied on the set of variables (i. e. the transpose of the original
data set) in order to produce a visual representation of the variables. Table 4
describes the reduction coefficients produced by considering the 29 software at-
tributes and 29 student projects, and Figure 2 presents the scores corresponding
to the first two principal components.

No. Eigenvalue Successive diff. Proportion Cummulative prop.
1 28.8374 28.6766 0.994392 0.994392
2 0.160824 0.160002 0.00554565 0.999938
3 0.000821365 0.000529606 2.83229e-005 0.999966
4 0.000291759 9.32732e-005 1.00606e-005 0.999976
5 0.000198485 4.18986e-005 6.84432e-006 0.999983
6 0.000156587 3.55741e-005 5.39954e-006 0.999989
7 0.000121013 6.58028e-005 4.17285e-006 0.999993

Table 4. Reduction coefficients for 29 software attributes and 29
student projects (the remaining eigenvalues are less than 0.0001,
and less important)

From an analysis of Figure 2 we remark the three isolated points (corresponding
to software attributes A3, A10 and A11). Because of the agglomeration of points
in the remaining region, we will repeat the procedure, but this time will ignore the
three above mentioned attributes. The results are depicted in Table 5 and Figure
3.

3.5. Fuzzy Hierarchic Clustering. The theory of fuzzy sets was introduced in
1965 by Lotfi A. Zadeh [22] as a natural generalization of the classical set concept.
Let X be a data set, composed of n data items characterized by the values of s
characteristics. A fuzzy set on X is a mapping A : X → [0, 1]. The value A(x)
represents the membership degree of the data item x ∈ X to the class A. The
advantage of this approach is that it allows a data item x to be a member of more
classes, with different membership degrees, according to certain similarity criteria.

Clustering algorithms based on fuzzy sets have proved their superiority due to
their ability to deal with imprecise sets, imprecisely-defined boundaries, isolated
points, and other delicate situations. The class of fuzzy clustering algorithms based

60 MILITON FRENŢIU AND HORIA F. POP

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-30 -25 -20 -15 -10 -5 0 5

P
C

 2

PC 1

Figure 2. Representation of scores corresponding to PC1 and
PC2 for 29 software attributes

on fuzzy objective functions [3] provides a large share of geometrical prototypes
and combinations thereof, to be used according to the data substructure. On the
other hand, the Fuzzy Divisive Hierarchical scheme [4, 18] provides an in-depth
analysis of the data set, by deciding on the optimal subcluster cardinality and the
optimal cluster substructure of the data set.

The visual representations in Figures 2 and, especially, 3 enable us to further
analyse the attributes set. Due to the obvious linear structure of the data, we
consider the Fuzzy Divisive Hierarchic Clustering (FDHC) algorithm with linear
prototypes. In order to fully understand the relationships between the software
attributes, we have used both the original set of 29 software attributes, as well
as the smaller set of 26 attributes, where attributes A3, A10 and A11 have been
ommitted.

The classification tree and the final binary partition produced by FDHC with
linear prototypes using the set of 29 normalized attributes are depicted in Figure
4.

The classification tree and the final binary partition produced by FDHC with
linear prototypes using the set of 26 normalized attributes are depicted in Figure
5. The corresponding fuzzy membership degrees to the classes from the final fuzzy
partition are displayed in Table 6.

DEPENDENCE OF SOFTWARE ATTRIBUTES USING DATA ANALYSIS 61

No. Eigenvalue Successive diff. Proportion Cummulative prop.
1 15.77 11.0031 0.543793 0.543793
2 4.7669 2.66606 0.164376 0.708169
3 2.10084 0.720066 0.0724429 0.780612
4 1.38078 0.34621 0.047613 0.828225
5 1.03457 0.272993 0.0356747 0.863899
6 0.761573 0.168301 0.0262612 0.890161
7 0.593272 0.090646 0.0204577 0.910618
8 0.502626 0.109051 0.0173319 0.92795
9 0.393575 0.0607744 0.0135716 0.941522
10 0.332801 0.0378924 0.0114759 0.952998
11 0.294909 0.0311804 0.0101693 0.963167
12 0.263728 0.0901184 0.00909408 0.972261
13 0.17361 0.00443054 0.00598655 0.978247
14 0.169179 0.0390419 0.00583377 0.984081
15 0.130137 0.0416428 0.0044875 0.988569
16 0.0884946 0.0165013 0.00305154 0.99162
17 0.0719933 0.0172449 0.00248253 0.994103
18 0.0547483 0.0127307 0.00188787 0.995991
19 0.0420176 0.0133489 0.00144888 0.99744
20 0.0286687 0.00901874 0.000988575 0.998428
21 0.0196499 0.00936073 0.000677584 0.999106
22 0.0102892 0.00124848 0.0003548 0.999461
23 0.00904073 0.00496486 0.000311749 0.999772
24 0.00407587 0.00154728 0.000140547 0.999913
25 0.00252859 0.00252859 8.71928e-005 1
26 2.5631e-016 1.55938e-016 8.83826e-018 1
27 1.00372e-016 6.85124e-016 3.4611e-018 1
28 -5.84752e-016 9.65261e-017 -2.01639e-017 1
29 -6.81278e-016 -6.81278e-016 -2.34923e-017 1

Table 5. Reduction coefficients for 26 software attributes and 29
student projects

By analysing the Figures 4 and 5, we remark that the cluster substructure of
the set of attributes became more detailed after the three isolated attributes (A3,
A10, A11) have been removed. This is consistent with the preceding remark on
the quality of the PCA projection obtained without the same three atttributes, as
we can see from Figures 2 and 3.

A completely different remark may be drawn by analysing Table 6. We see there
that many of the attributes have very close fuzzy membership degrees to the four

62 MILITON FRENŢIU AND HORIA F. POP

-6

-4

-2

 0

 2

 4

 6

 8

-6 -4 -2 0 2 4 6 8 10 12 14 16

P
C

 2

PC 1

Figure 3. Representation of scores corresponding to PC1 and
PC2 for 26 software attributes

1
.1

1
.2

.1

1
.2

.2

2
.1

2
.2

Class Members
1.1. 1 2 4 5 6 7 12 13 14 15 16 17
1.2.1. 3 18 19 22 23 24 25 26 27
1.2.2. 8 9 20 21 28 29
2.1. 11
2.2. 10

Figure 4. Classification tree and final partition for the set of 29
normalized attributes

final classes. More specifically, 10 attributes, out of the total of 26 (A7, A8, A14,
A15, A20, A23, A24, A25, A26, A28), have dominant fuzzy memberships between
0.25 and 0.35. Because of this very strong fuzziness, these attributes should be
considered as being shared by all the four classes. They do not contribute to
shaping the cluster substructure, and, effectively, will be associated to a fifth
class, a sort of ’unclassified’ class. Out of the remaining 16 attributes, ten have
membership degrees between 0.30 and 0.50 (A4, A5, A6, A17, A18, A19, A21,
A22, A27, A29), four have membership degrees between 0.50 and 0.80 (A1, A2,
A13, A16) and only two have membership degrees between 0.80 and 1.00 (A9,

DEPENDENCE OF SOFTWARE ATTRIBUTES USING DATA ANALYSIS 63
1
.1

1
.2

2
.1

2
.2

Class Members
1.1. 8 9 15 19 20 21 22 28
1.2. 13 18 23 24 27 29
2.1. 1 2 5 6
2.2. 4 7 12 14 16 17 25 26

Figure 5. Classification tree and final partition for the set of 26
normalized attributes (without A3, A10 and A11)

Attr. 1.1. 1.2. 2.1. 2.2.

1 0.0975649 0.0962468 0.640445 0.165744
2 0.110721 0.130625 0.559055 0.199599
4 0.146171 0.165414 0.336343 0.352072
5 0.0959909 0.100097 0.455519 0.348393
6 0.112062 0.121853 0.49245 0.273635
7 0.175628 0.206314 0.297583 0.320475
8 0.254044 0.246184 0.249927 0.249846
9 0.997947 4.30E-05 0.000966477 0.0010432
12 0.00224497 0.00176989 0.000225756 0.995759
13 0.0122362 0.513947 0.217884 0.255933
14 0.219962 0.228581 0.273131 0.278326
15 0.284285 0.278515 0.229546 0.207654
16 0.12194 0.137694 0.238524 0.501841
17 0.148125 0.168134 0.257769 0.425972
18 0.278445 0.362585 0.244657 0.114314
19 0.384798 0.308419 0.179179 0.127605
20 0.315049 0.292766 0.211903 0.180283
21 0.380813 0.378577 0.1516 0.0890098
22 0.376193 0.313267 0.177344 0.133196
23 0.30867 0.347824 0.22084 0.122666
24 0.239836 0.29741 0.3165 0.146254
25 0.251962 0.22761 0.244006 0.276423
26 0.226493 0.244955 0.259432 0.26912
27 0.323874 0.381824 0.207184 0.0871175
28 0.297997 0.295768 0.233317 0.172919
29 0.377936 0.400709 0.149011 0.0723431

Table 6. Fuzzy membership degrees to the final partition for the
set of 26 normalized attributes (boldfaces indicate the member-
ship degree to the major defuzzified class)

A12). These last 16 attributes form, actually, the core of the data substructure.
The final partition, modified as described, is presented in Table 7.

64 MILITON FRENŢIU AND HORIA F. POP

Class Members
1.1. 9 19 21 22
1.2. 13 18 27 29
2.1. 1 2 5 6
2.2. 4 12 16 17
(unclassified) 7 8 14 15 20

23 24 25 26 28

Table 7. Final partition for the set of 26 normalized attributes,
modified by isolating the attributes with dominant fuzzy mem-
bership degrees between 0.25 and 0.35

We also conclude that our fuzzy clustering analysis shows three different kinds
of attributes, based on the fuzzy membership distributions. The first main set of
attributes is formed by the three strongest attributes removed in the first instance
and the two attributes with very large membership degrees (A3, A9, A10, A11,
A12). These attributes, also forming the core of the 29 attributes classification
(as we see from Figure 4), are the best separated attributes. A second set of
attributes correspond to the attributes having resonably high fuzzy membership
degrees, and is formed by the attributes from classes 1.1, 1.2, 2.1 and 2.2 from
Table 7, other than A9 and A12. These attributes have been classified with a high
degree of certainty, but are not as crisp as those in the first set. Finally, the set of
‘unclassified’ attributes, as presented in Table 7, have fuzzy membership degrees
distributed almost evenly between the four fuzzy classes, suggesting that they
are not quite suitable to help discriminating among the analysed set of student
projects.

4. Concluding remarks

As we expected, very few correlation coefficients are close to zero, and this
shows that there is a strong dependence between almost all attributes. As the fac-
torial analysis proved, with the exception of the three above mentioned attributes,
plus A9 and A12, these attributes are dependent on the general knowledge of the
programmers, which is the main factor that influences all attributes. But there
are other factors, and the factorial analysis revealed the complexity of the solved
problems and the “discipline”, i. e. the wish and habituation of respecting the
methodology of programming; it is not sufficient to know it, we must respect it.
We may conclude that a good programming style and a correct programming habit
must be taught in parallel.

Also, we must observe some anomalies, and, for educational purposes, take some
measure to eliminate them. First, we can observe that the smallest coefficients
correspond to the comments (second column), and one factor of factorial analysis

DEPENDENCE OF SOFTWARE ATTRIBUTES USING DATA ANALYSIS 65

is strongly connected to this attribute. By analysing the primary data, we may
observe that students do not like writing comments (9 projects out of 29 have no
comments at all)! We all know that software documentation is generally poor,
often the only information we have is the source code, and we see the reason.

As was observed earlier [9], “the indentation rules are much better obeyed.
There is one more reason for this. At all lectures, when the teachers write algo-
rithms or code, they respect these rules in all lines. But only sometimes they write
comments.” But, also, we must observe a progress: the students are more aware
than one year ago [7] that they must write comments in their programs.

We have analysed Software products made by undergraduate students. We are
confident that the results cannot be extrapolated to large software systems, but
they may be used to provide better instruction for the students, and may be used as
effective didactic materials, especially for the course on “Software Metrics”. Even
if at the level of the first year of study we insist on the necessity of a personal style
in programming, and of fulfilling a series of important rules [7, 8], the students
are skeptical, they are happy that their programs “work”. They do not like to
write comments, or to insist on a good design and Pseudocode algorithms, or
documentation.

The masters students have seen completely differently the necessity to have a full
and correct documentation, its usefulness, the effect of an adequate programming
style on the final software products.

By studying the primary data obtained by the masters students we have ob-
served for four projects large discordances between attributes A3 (function points)
and A10 (size). By making a more careful analysis of these projects we noticed
that they are actually incomplete, since they have only fully implemented a part of
the functions required at the specification phase. By not being finalised projects,
they have been eliminated from the subsequent data manipulation phases. But
this fact in itself underlined another usefulness of assesment of these attributes, as
well as the necessity of having some adequate tools for student projects assesment.

Acknowledgements

We would like to acknowledge the support of postgraduate students of the group
“Component Based Programming” for their help in analysing the projects.

References

[1] Ronald Baecker, Aaron Marcus, Design Principles for the Enhanced Presentation of Com-
puter Program Source Text, CHI’86 Proceedings, 51–58.

[2] Victor R. Basili, Richard W. Selby, David H. Hutchens, Experimentation in Software Engi-
neering, IEEE Transactions on Software Engineering, Vol. Se-12 (1986), no.7, 733–743.

[3] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press,
New York, 1981.

[4] D. Dumitrescu, Hierarchical pattern classification, Fuzzy Sets and Systems 28 (1988), 145–
162.

66 MILITON FRENŢIU AND HORIA F. POP

[5] A. Dunsmore, M. Roper, A Comparative Evaluation of Program Comprehension Measures,
EfoCS-35-2000, Department of Computer Science, University of Strathelgde, Glasgow, 2000.

[6] N.E. Fenton, Software Metrics. A Rigorous Approach, Int. Thompson Computer Press,
London, 1995.

[7] M. Frenţiu, On programming style – program correctness relation, Studia Univ. Babes-
Bolyai, Series Informatica 45, 2 (2000), 60–66.

[8] M. Frenţiu, The Impact of Style on Program Comprehensibility, “Babeş-Bolyai” University
of Cluj-Napoca, Research Seminar on Computer Science, 2002, pp. 7–12

[9] M. Frenţiu, H. F. Pop, A study of licence examination results using Fuzzy Clustering tech-
niques, Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Research
Seminars, Seminar on Computer Science, 2001, 99–106.

[10] Don Gesink, Software Metrics – The Art of Measuring Software Qual-
ity, 1995, http://www.interex.org/pubcontent/interact/apr95/pp56.html and
http://www.interex.org/pubcontent/interact/oct95/05softqu/softqu.html

[11] D. Gries, The Science of Programming, Springer Verlag, Berlin, 1981.
[12] John W. Harbaugh, Daniel F.Merriam, Computer applications in stratigrafic analysis, John

Wiley & Sons, NewYork, 1968.
[13] G. Lazarovici, M. Frenţiu, Methods for Automated Classification Use in Archaeology. An

Application to Neolithic Graves and Ornaments, First Romanian Conference on the Appli-
cation of Physics Methods in Archaeology, Cluj-Napoca, 5–6 November 1987.

[14] H.F. Ledgard, Programming Proverbs for Fortran Programers, Hayden Book Company, Inc.,
New Jersey, 1975.

[15] Steve McConnell, Software Quality at Top Speed, Software Development, 1996,
http://www.construx.com/stevemcc

[16] Richard J. Miara, Joyce A. Musselman, Juan A. Navarro, and Ben Shneiderman, Program
Indentation and Comprehensibility, Comm. A.C.M., 26 (1983), no.2, 861–867.

[17] Paul W. Oman and Curtis R. Cook, Typographic Style is More than Cosmetic,
Comm.A.C.M., 33 (1990), no. 4, 506–520.

[18] H.F. Pop, SAADI: Software for fuzzy clustering and related fields, Studia Universitatis
Babeş-Bolyai, Series Informatica 41, 1 (1996), 69–80.

[19] Armstrong A. Takang, Penny A. Grubb and Robert D.Macredie, The effects of comments
and identifier names on program comprehensibility: an experimental investigation, Journal
of Programming Languages, vol. 4 (1996), 143–167.

[20] Iris Vessey, Ron Weber, Some Factors Affecting Program Repair Maintenance: An Empirical
Study, Comm. A.C.M., 26 (1983), no. 2, 128–134.

[21] S.Watanabe, H.Haven, Karhunen-Loeve expansion and Factor analysis. Theoretical remarks
and applications, in Transactions of the Fourth Prague Conference on Information Theory,
Statistical Decision Functions, Random Processes, Prague 1967.

[22] L.A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338–353.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, RO-3400
Cluj-Napoca, Romania

E-mail address: mfrentiu@cs.ubbcluj.ro, hfpop@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 2, 2002

A COST MODEL FOR THE AND-PARALLEL EXECUTION OF
LOGIC PROGRAMS

MONICA VANCEA AND ALEXANDRU VANCEA

Abstract. Almost all the results regarding the automatic parallelization of

logic programs assume ideal execution environments, focusing only on im-

plicit parallelism detection and not taking into account practical computing

system overheads. Trying to overcome such a drawback, we propose in this

paper a cost model for the AND-parallel execution of logic programs, which

is able to insert at compile time some cost functions which will estimate at

run time the parallel execution costs involved. The cost functions are de-

fined based on the particular computing system properties combined with

the parallelization process features. If the conditions evaluated by these cost

functions are met, the program is allowed to proceed in parallel. If not, it

means that parallel execution may even require extra time compared with the

sequential execution, so the code will be executed sequentially. We believe

that our model is of a very practical importance allowing the run time envi-

ronment to take the adequate decision with respect to the possibility of AND

parallel execution of the (implicit) parallelism present in the logic programs.

1. Preliminaries

Automatic parallelization is the most suitable technique at the moment for
exploiting the inherent parallelism from programs written in logic programming
languages [Sehr92].

Among the parallel execution models employed at the level of logic programming
languages, the AND parallel model raises the most complex problems [Chass84,
Herm89, Lin88]. That is because this model is confronted with data dependence re-
lations that appear frequently between the subgoals of a clause [Chang85, Shen92].
That is why, even if from a technically point of view we succeed to solve the ac-
tual automatic parallelization problem, the practical costs assumed by such an
action (involving intensive data dependence testing followed by the generation of
the equivalent parallel code) could be prohibitive.

2000 Mathematics Subject Classification. 68Q17, 68Q10, 68M20.
1998 CR Categories and Descriptors. D.1.6. [Software]: Programming Techniques –

Logic Programming; D.1.3. [Software]: Programming Techniques – Parallel Programming;

D.2.9. [Software]: Software Engineering – Cost Estimation; H.3.4. [Information Systems]:

Information Storage and Retrieval – Performance evaluation.

67

68 MONICA VANCEA AND ALEXANDRU VANCEA

When developing and analyzing parallel logic execution models we assume in
general an ideal execution environment, making abstraction of a significant number
of supplimentary practical costs (overheads). As examples of such overheads we
mention here the task creation overhead, the time cost of task switching between
processors, communication costs etc. The drawbacks implied by such practical
execution factors may lead not only to the diminishing of the parallel execution
performance, but even to a parallel execution time much greater than the cor-
responding sequential one! If such a situation is met, then parallel processing
becomes an inappropriate decision for the program’s execution.

In logic programming these issues are much more present in the case of AND
parallelism where the possible data dependencies and their management may imply
significant costs compared to other types of logic parallelism (like OR parallelism
for example where such issues are not so critical [Chass94, Lusk90]).

These are the reason for which we propose in this paper a cost model for the
AND parallelization of a sequential logic program. By applying this model we can
estimate if the implied parallelization effort and the envisioned execution costs
may keep also in practice the theoretical advantages of the parallel execution on
the sequential one.

More exactly, we will propose a cost model for deriving sufficient con-
ditions for deciding if the AND parallel execution of a particular logic
program is an appropriate decision .

Execution costs control can’t be performed entirely as a compile time activity
because in the general case these costs depend on the input data. On the other
hand, a cost analysis performed entirely at run time risks to conclude non parallel
execution in a great number of practical cases, taking into account a too large run
time overhead. So, our strategy will be to divide in a reasonable way the workload
between compile time and run time phases.

We will define and generate some cost functions at compile-time. Their mission
will be to estimate at run time the total cost of parallel execution relatively to the
particular size and nature of the input data, information which will be known at
that moment, so possible of be practically taken into account.

2. Definitions and notations

Let S be the goal which we want to be analyzed and let suppose that it is
composed of the (sub)goals (s1, . . . , sn) so S = (s1, . . . , sn). For the goal S we
denote by:

• Cseq – the cost of its sequential execution;
• Cpar – the cost of its parallel execution.

And we denote by Ci the execution cost for the si goal.

A COST MODEL FOR PARALLEL EXECUTION OF LOGIC PROGRAMS 69

The sequential execution of the goal S may be performed only in one way,
implying only obbeying the sequential execution order of goals s1, . . . , sn for the
constituent subgoals. The parallel execution however, may be performed in many
ways, its particular history and development depending on many influences, among
these being the number of available processors, the implemented scheduling and
memory allocation techniques etc. So when we refer to the cost of the sequential
execution it is obvious what we mean, because this is a unique value at the level of
a particular computing system. But we cannot refer to a single well defined value
when we refer to the cost of the parallel execution, because it can follow diverse
paths, one particular execution being selected upon some dynamic criteria.

For this reason and for our analysis to be enough general we will denote by
Cpar the maximum cost of all possible parallel execution alternatives, that is, the
cost of the most costly parallel execution possibility for goal S.

Our analysis intends to establish if the subgoals s1, . . . , sn justify their parallel
execution. More exactly, from the viewpoint of the parallel execution opportunity,
the cost analysis has to verify if the relation Cpar 6 Cseq holds or not.

Because of the way in which a parallel execution proceeds (as mentioned above
based first of all on dynamic decisions) we cannot really compute the value Cpar,
but we have to estimate and/or approximate it (the notion of execution time itself
assumes that the exact relation between Cpar and Cseq can be established only
after the execution of goal S).

We must decide further the approximation technique to be used. Let Csup
par be

an upper limit for the parallel execution cost (in fact we already assumed that
Cpar = Csup

par) and let C inf
seqbe a lower limit for the sequential execution (the cost of

the fastest possible sequential execution of the goal S).
Let’s notice that if we succeed to prove for S that Csup

par 6 C inf
seq then the same

relation holds trivially between the actual execution times also, so running in
parallel the subgoals s1,. . . ,sn is a correct decision. Mathematically, the relation
Csup

par 6 C inf
seq becomes a sufficient condition for having Cpar 6 Cseq, so Csup

par 6
C inf

seq is a sufficient condition for the decision to run in (AND) parallel
the subgoals of a given goal.

70 MONICA VANCEA AND ALEXANDRU VANCEA

3. Model description

We assume that we have k processors available for the execution of the n sub-
goals of the S goal.

Definition 3.1. We define the processor’s average computing load as
beeing the value ==

mddn/ke, i.e. the number of subgoals that a processor must
solve on the average.

Definition 3.2. We define as an upper bound of the total cost of the parallel
execution

C
sup
par = <sup

c +T
sup
par

where <sup
c is an upper bound for the creation cost of the tasks associated with

the clause’s subgoals (we will call it the task creation overhead) and T sup
par is an

upper bound for the parallel execution time taken by the goal S.

<sup
c is an architecture dependent value which can be experimentally determined.

In general, such a value is a constant or a function depending on some parameters
such as the number or size of the input data, the number of manageable tasks etc.
We want in the following to approximate the value T sup

par .
Let T

sup
i be an upper limit for the execution time of the goal si and let T sup

max =
max (T sup

1 , . . . T sup
n). Obviously, we have then

T
sup
par 6 m T

sup
max

Also, for every subgoal we have

T
sup
i = P

sup
i + C

sup
i

where P
sup
i represents the scheduling overhead for the goal si (the time passed

between the corresponding task creation and the actual starting of its execution)
and C

sup
i denotes the effective run-time cost for the goal si, without taking into

consideration task creation overhead or the scheduling overhead.
Regarding the T inf

seq value, this can be approximated as follows:

T
inf
seq = T

inf
s1

+ . . . + T
inf
sn

,

where T inf
seq(si)

denotes a lower bound for the cost of si‘s sequential execution (the
best sequential execution for this subgoal).

All the above reasoning can be resumed by the following lemma.

Lemma 3.3. If the following relation holds

P
sup + C

sup
par 6 T

inf
s1

+ . . . + T
inf
sn

A COST MODEL FOR PARALLEL EXECUTION OF LOGIC PROGRAMS 71

then we have also Csup
par 6 C inf

seq.

This result can be further relaxed as we will show in the theorem 3.5.

Definition 3.4. By goal execution overhead we denote the total time taken
by the corresponding task creation plus the time taken by the scheduling overhead
for a particular goal, that is

<e = <c +<P

where the goal scheduling overhead is approximated by <P = =md ·P sup
i .

The main result of this section is presented in theorem 3.5. and it establishes
some sufficient conditions for the AND parallel execution of a logic program’s
clauses.

Theorem 3.5. Let (s1,. . . ,sn) be the S goal’s subgoals and let m = =md. If
among these subgoals there exists at least m+1 goals such as ∀i = 1,. . . , m+1,
<e 6 T inf

si
, then we have Cpar 6 Cseq.

Proof . If we have at least m+1 subgoals such that ∀i = 1,. . . , m+1, <e 6 T inf
si

then it follows that we have at least one subgoal sj , j = m+1,. . . , n, such that
<e 6 T inf

sj
, from where we conclude that even more it holds

<e 6 T
inf
sm+1

+ . . . + T
inf
sn

6 Tsm+1 + . . . + Tsn

By adding to the both members the running time for the goals 1. . .m we obtain

(1) <e + Ts1 + . . . + Tsm
6 Ts1 + . . . + Tsm

+Tsm+1 + . . . + Tsn

Let’s recall that m = =md (the average computation load for a processor)
indicates the average number of subgoals that will be sequentially processed by a
processor during the parallel execution of the initial goal.

Because relation (1) holds for any m subgoals for which the execution time is
present as a term in the left hand side, it holds in particular also for the case in
which those m subgoals are those with the longest execution time. In this latter
case, the left hand side of the inequality (1) obviously represents an upper bound
for the parallel execution time of the initial goal S (because the parallel execution
will take maximum the time taken by the sequential execution of the longest m
subgoals at a processor plus the goal execution overhead for the entire S goal). It
follows that we have

C
sup
par 6 Ts1 + . . . + Tsm + Tsm+1 + . . . + Tsn

72 MONICA VANCEA AND ALEXANDRU VANCEA

but the right hand side is nothing else than the sequential execution cost of the
goal S, so we have

C
sup
par 6 C

inf
seq

which shows that the conditions which we gave as hypothesis are truly sufficient
conditions for the AND parallel execution of logic programs.

Example 3.6. Let’s consider the following program code sequence:

q([], []).
q([H|T], [X|Y]) :-

X is H + 1,
q(T,Y).

r([], []).
r([X|RX], [X2|RX1]) :-

X1 is X * 2,
X2 is X1 + 7,
r(RX,RX1).

We will consider as an estimation of the execution cost (or more precisely as a
unit of measure for this cost) of a goal the number of resolution steps required for
proving it. Then the execution costs for the predicated q and r may be estimated
upon the following cost functions:

Cost q(n) = 2n + 1
Cost r(n) = 3n + 1

We consider the AND parallel goal . . . q(X,Y) & r(X). . . expressed as in [Herm91]
in which the argument list represents the set of the input arguments and not the
arity of those predicates.

Based on the results of the theorem 3.5 the initial code sequence can be trans-
lated to

. . . length(X, LX), cost q is LX2=1, cost r is LX3+1,
(cost q > Re(q), cost r > Re(r) → q(X,Y) & r(X); q(X,Y), r(X)),. . .

where Re(q) and Re(r) denote respectively the parallel goal execution overhead
and cost q and cost r represent the sequential execution costs for goals q and r
respectively. The adnotation of the initial code sequence with such a condition
allows in this moment to decide at run time whether or not to AND parallel execute
the goals that follow the tested condition.

To conclude: the practical usefullness of our results from theorem 3.5 resides
in the possibility to apply source code transformations at compile time which will
insert the necessary tests to be performed at run time. These tests will decide
upon the adequacy of running in AND parallel the adnotated sequence of goals.

A COST MODEL FOR PARALLEL EXECUTION OF LOGIC PROGRAMS 73

4. Conclusions

Ideal execution environments are assumed when methods for automatic paral-
lelization of logic programs are studied. In developing such methods, the focus
is directed towards implicit parallelism detection and only very few models are
taking into account the costs implied by practical computing system overheads.
Estimating such costs are nevertheless of a critical importance because we can
meet situations in practice for which parallel execution would be more time con-
suming than the equivalent sequential one. That is why we proposed in this paper
a cost model for the AND-parallel execution of logic programs, which using adno-
tations capabilities inserts at compile time some cost functions which will perform
at run time a good estimation of the parallel execution costs involved. The cost
functions are defined and generated based on the computing system properties
and on parallelization process features. If at run time the conditions evaluated
by these cost functions are met, the program is allowed to proceed in parallel. If
not, it means that parallel execution will not provide the expected speedup, so the
code will be executed sequentially. We believe that our model is a very practical
one, allowing the run time environment to take the adequate decision with respect
to the possibility of AND parallel execution of the (implicit) parallelism present
in the logic programs.

References

[Chang85] J-H. Chang, A.M. Despain, D. DeGroot, And-Parallelism of Logic Pro-
grams based on Static Data Dependency Analysis, in Digest of Papers of
COMPCON, Spring 1985, pp. 218–225.

[Chass94] J. Chassin de Kergommeaux, P. Codognet, Parallel Logic Programming
Systems, in ACM Computing Survey, vol.26, no.3, Sept.94, pp. 295–336.

[Herm89] M.V. Hermenegildo, F. Rossi, On the Corectness and Efficiency of Inde-
pendent AND-Parallelism in Logic Programs, in Proc. of the 1989 North
American Conf. on Logic Programming, 1989, pp. 369–389.

[Herm91] M.V. Hermenegildo and L.Greene, The &-prolog System: Exploiting In-
dependent And Parallelism, New Generation Computing, 9 (3, 4), 1991
pp. 233–257.

[Lin88] Y. J. Lin, V. Kumar, AND-parallel execution of Logic Programs on a
shared Memory Multiprocessor: A Summary of Results, in Fifth Inter-
national Logic Programming Conference, Seatle, WA, 1988, pp. 1106–
1120.

74 MONICA VANCEA AND ALEXANDRU VANCEA

[Lusk90] E. Lusk, S. Haridi, D.H.D. Warren et. al., The Aurora OR-Prolog Sys-
tem, New Generation Computing, vol.7, no.2,3, 1990 pp. 243–273.

[Sehr92] D.C. Sehr, Automatic Parallelization of Prolog Programs, Ph.D. disser-
tation, Univ.of Illinois at Urbana-Champaign, 1992.

[Shen92] K. Shen, Exploiting Dependent And-Parallelism in Prolog: The Dy-
namic, Dependent And-Parallel Scheme, in Proc. Joint Int’l. Conf.
and Symp. On Logic Prog. MIT Press, 1992, pp. 717–731.

Faculty of Economic Science, Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: vancea@econ.ubbcluj.ro

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca,

Romania

E-mail address: vancea@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 2, 2002

ON THE CONVERGENCE OF ASYNCHRONOUS BLOCK
NEWTON METHODS FOR NONLINEAR SYSTEMS OF

EQUATIONS

IOAN LAZĂR

Abstract. Convergence of asynchronous block Newton methods for solving
nonlinear systems of equations of the form F (x) = 0 are studied. Suffi-
cient conditions to guarantee their local convergence are given. Our analysis
emphasizes the connection between the conditions on F involved in local con-
vergence theorems for sequential and synchronous block Newton’s method,
and our settings for asynchronous block Newton methods. Our results are
similar to the results of Szyld and Xu, obtained in an asynchronous nonlinear
multisplitting context.

Keywords: numerical analysis, iterative methods, nonlinear system of
equations, Newton methods

1. Introduction

Consider the parallel solution of nonlinear systems of equations of the form

(1) F (x) = 0,

where F = (f1, . . . , fn) : Ω ⊆ Rn → Rn is a nonlinear operator. Newton’s method
is based on the approximation F (x) ≈ F (xk) + F ′(xk)(x − xk), and is given by
the iteration

(2) xk+1 = xk − F ′(xk)−1F (xk),

for k = 0, 1, . . ., where x0 is an initial guess.
Each linear system (2) can be solved in parallel using some kind of block it-

erative methods [10]. Block iterative methods are studied using the concept of
multisplittings [10] and the application of block iterative methods for solving the
systems (2) at each Newton step k was considered in [14].

The application of the concept of multisplittings directly to the nonlinear system
(1) were considered in [6] and [2] These methods are called parallel synchronous
nonlinear multisplitting methods. The methods are called synchronous in the sense

2000 Mathematics Subject Classification. 65H10, 65Y05.
1998 CR Categories and Descriptors. G.1.0 [Numerical analysis] General: parallel al-

gorithms; G.1.5 [Numerical analysis] Roots of Nonlinear Equations: Iterative methods, Con-
vergence, Systems of equations.

75

76 IOAN LAZĂR

that all processors have to wait at some synchronization point before proceeding
to the next iteration.

The asynchronous nonlinear multisplitting methods were considered in [1] and
[12], i.e. methods where no synchronization barrier is present (see [5, 3, 7] for some
general discussions on asynchronous methods). Bahi et all [1] studied asynchronous
nonlinear multisplitting methods in a general context for nonlinear fixed point
problems, while Szyld and Xu [12] studied these methods for problems of the form
(1), and extended the study to the case of overlapping blocks, i.e., certain variables
are updated by more than one processors.

Our framework presented here is similar to the framework used by Xu [15] for
the study of asynchronous block quasi-Newton methods. Our analysis emphasizes
the connection between the conditions on F involved in local convergence theo-
rems for sequential and synchronous block Newton’s method, and those used for
asynchronous block Newton methods.

This paper is organized as follows: in section 2 we give a brief review of block
Newton methods, a computational model for asynchronous block (Newton) meth-
ods and a corresponding mathematical model. The main result is presented in
section 3, after a brief review of the tools used or study both synchronous and
asynchronous cases. Finally some connections with different asynchronous block
Newton type methods are discussed.

2. Asynchronous Block Newton Methods

Suppose F and x are conformally partitioned as follows F = (F1, . . . , FL),
x = (x1, . . . , xL), where xi = (xi1 , . . . , xini

) ∈ Rni and Fi : Rn → Rni , i =
1, . . . , L. Suppose the partition Si = {i1, . . . , ini

}, i = 1, . . . , L is chosen such that
∪L

i=1Si = {1, . . . , n} and Si ∩ Sj = ∅ for i 6= j, i, j = 1, . . . , L.
The system (1) can be rewritten

(3) Fl(x1, . . . , xl, . . . , xL) = 0, l = 1, . . . , L.

and we consider the following nonlinear block method. Given initial values x =
(x1, . . . , xL), repeat the following procedure until convergence

For l = 1, . . . , L

(4)
{

Solve for y in Fl(x1, . . . , xl−1, y, xl+1, . . . , xL) = 0,
Set xl = y.

In (4) the order in which the block are updated could be arbitrary. The classical
nonlinear block-Jacobi method and block-Gauss-Seidel method [4, 11] are special
cases of such methods. For the purpose of parallel processing the nonlinear block-
Jacobi method is nearly ideal, since up to L processors can each perform one of
the iterations in (4). Such iterations are synchronous in the sense that to begin the
computation of the next iterate, each processor has to wait until all processors have
completed their current iteration. By removing the synchronization and letting
the pocessors continue their calculations according to the information currently
available, we obtain asynchronous parallel methods.

ON ASYNCHRONOUS BLOCK NEWTON METHODS 77

Let the Jacobian of F be partitioned conformally with x, and define

F ′(x) =

∂F1(x)
∂x1

. . . ∂F1(x)
∂xL

.
∂FL(x)

∂x1
. . . ∂FL(x)

∂xL

 , ∂Fi(x)

∂xj
=

∂fi1 (x)

∂xj1
. . .

∂fi1 (x)

∂xjnj

.
∂fini

(x)

∂xj1
. . .

∂fini
(x)

∂xjnj

 ,

The block diagonal matrix of F ′(x) is denoted by

D(x) = diag(
∂F1(x)

∂x1
, . . . ,

∂FL(x)
∂xL

).

Using the above notations, one Newton step applied to the system (4) and
starting from the initial value x is

(5) yl = xl −
(

∂Fl(x)
∂xl

)−1

Fl(x).

Note that when solving (5) we are only interested in the components xl corre-
sponding to Sl. This means we work with a system of dimension nl, although the
initial system (1) is of dimension n. The evaluation of Fl(x) in (5) is dependent
on the entire vector x, that is the processor solving the equation (5) needs the
components evaluated by other processors.

2.1. Computational Model. Denote the (approximate) solution of Fl(x1, . . .,
xl−1, y, xl+1,. . .,xL) = 0 by yl = Gl(x), l = 1, . . . , L. Applying one step of Newton
method gives the operator defined by (5).

Assume we are working with a (shared memory) parallel computer with L pro-
cessors and associate a block of components with each processor. Then a parallel
variant of (3) can be implemented as in Algorithm 1. If the processors would
wait for each other to complete each run through the loop we would get a parallel
synchronous implementation of the procedure (3).

Here the processors continue the loop by collecting the needed vectors computed
by the other processors according to the information available at the moment. A
computational model for the asynchronous block method can be written as the
pseudocod of Algorithm 1 shows.

Since the processors do not wait for each other, the processors get out of phase
due to different run times for each loop. At a given time point, different processors
will have achieved different number of iterations. In this context, the iteration
number k in (2) looses its meaning.

Using a direct linear solver for step 4 in Algorithm 1, for exemple an LU factor-
ization of F ′, we obtain the asynchronous block Newton method

4’a: Factor F ′l (x) = LU
4’b: Solve LUs = −Fl(x)
4’c: yl := xl + s

Any other appropriate factorization such as QR or Cholesky could be used as well.

78 IOAN LAZĂR

Algorithm 1 Pseudocode for the lth processor (l = 1, . . . , L). x represents the
initial guess xj , j = 1, . . . , L. x and convergence are global variables written in
common memory.

1: read(converge)
2: while not converge do
3: read(x)
4: yl = Gl(x)
5: xl := yl; overwrite(xl)
6: read(converge);
7: end while

2.2. Mathematical Model. In order to analyse the asynchronous computational
model presented in Algorithm 1 we consider a counter k which is updated every
time a new vector is computed by some processor and let x0

l = x0, l = 1, . . . , L.
Let Ik ⊆ {1, . . . , L} denotes all updated block components, then the asynchro-

nous block Newton iteration is defined by

(6) xk+1
i =

{
x

si(k)
i −

(
∂Fi(u)

∂xi

)−1

Fi(u) for i ∈ Ik,

xk
i for i /∈ Ik,

for i ∈ {1, . . . , L}, k = 0, 1, . . ., where u = (xs1(k)
1 , . . . , x

sL(k)
L).

The iteration counts si(k), i = 1, . . . , L indicate the iteration, prior to k, when
the ith block component was computed.

Let S = {(s1(k), . . ., sL(k)) ∈ NL}k∈N where N = 0, 1, . . . denotes the set of
natural numbers. The standard assumptions for I = {Ik}k∈N and S are:

(7) ∀i ∈ {1, . . . , L}, ∀k ∈ N, si(k) ≤ k,

(8) ∀i ∈ {1, . . . , L}, lim
k→∞

si(k) = ∞,

(9) ∀i ∈ {1, . . . , L}, the set {k ∈ N|i ∈ Ik} is infinite.

The next definitions are similar to those considered by El Tarazi in [13] and will
be used in our proofs.

We define the sequence {s(k)}k∈N ⊂ N by

(10) s(k) = min
i

si(k).

We obtain immediately from (7) and (8)

(11) s(k) ≤ k and lim
k→∞

s(k) = ∞.

ON ASYNCHRONOUS BLOCK NEWTON METHODS 79

Suppose that (7)–(9) are satisfied, then we can define an increasing sequence
{kl}l∈N having the properties

(12)
⋃

0≤s(k)≤k<k0

Ik = {1, . . . , L},

(13)
⋃

kl≤s(k)≤k<kl+1

Ik = {1, . . . , L}.

The proofs given by Baudet [3] and El Tarazi [13] for general asynchronous
iterations use the sequence {kl} defined above. This sequence says that the asyn-
chronous iteration (6) updates all block components at least once at the steps
k0, k1,

If kl+1 − kl = L for all l, we get a synchronous block Gauss-Seidel iteration,
and if the sequence of differences {kl+1 − kl} is bounded then we get a partially
asynchronous algorithm.

3. Local Convergence

3.1. Synchronous Newton Methods. The standard assumptions on F in syn-
chronous (or sequential) case are:

(C1): Equation (1) has a solution x∗.
(C2): F ′ : Ω → Rn×n is Lipschitz continuous on Ω, with Lipschitz con-

stant γ, i.e., ‖F ′(x)− F ′(y)‖ ≤ γ‖x− y‖, for all x, y ∈ Ω.
(C3): F ′(x∗) is nonsingular.

These assumptions can be weakened without sacrificing convergence results pre-
sented here. However the classical result on quadratic convergence of Newton’s
method requires them.

The main result concerning the local convergence of Newton’s method is pre-
sented in the next theorem.

Theorem 3.1. [11] Let the standard assumptions (C1)–(C3) hold. Then there are
K > 0 and δ > 0 such that if ‖x0−x∗‖ < δ then the Newton iterates {xk} defined
by (2) converge q-quadratically to the solution x∗ of (1).

The convergence results on Newton’s method follow from the basic results given
in Lemma 3.2 and 3.3 (a variant of Banach lemma).

Lemma 3.2. [11] Assume F satisfies (C2). Then for all x, y ∈ Ω,

(14) ‖F (y)− F (x)− F ′(x)(y − x)‖ ≤ γ

2
‖x− y‖2.

In the context of Theorem 3.1, the inequality (14) is used to obtain the estimates

(15) ‖xk+1 − x∗‖ ≤ K‖xk − x∗‖2, k = 0, 1,

80 IOAN LAZĂR

Lemma 3.3. [11] Let A,C ∈ Rn×n, A nonsingular and ‖A−1‖ ≤ α1, ‖C −A‖ ≤
α2 with α1α2 < 1. Then C is a nonsingular matrix, and

‖C−1‖ ≤ α1

1− α1α2
.

The hypothesis of theorem 3.1 does not give sufficient conditions for solving
subsystems Fl(x) = 0, l = 1, . . . , L of the system F (x) = 0, since the subsystem
Fl(x) = 0 is solved only in respect to the components of block l.

The asynchronous iteration (6) is more close related to other Newton type
methods which consider some splitting of the Jacobian,

(16) F ′(x) = B(x)− C(x).

and iterative processes

(17) xk+1 = xk −B(xk)−1F (xk), k = 0, 1,

The Newton-SOR and Newton-Jacobi belong to this family of iterative processes.
Ortega and Rheinboldt establish the following result concerning the iteration (17).

Theorem 3.4. [11] Let the standard assumptions (C1)–(C3) hold, and suppose
B : Ω → L(Rn) is continuous in x∗, B(x∗) is nonsingular and ρ(B(x∗)−1(F ′(x∗)−
B(x∗))) < 1. Then {xk} defined by (17) and (16) converges q-linearly to x∗ with
q-order ρ(B(x∗)−1(F ′(x∗)−B(x∗))).

3.2. Weighted maximum norms. The assumptions (C1) and (C2) are also nat-
urally for asynchronous block Newton method. The condition (C3) will be replaced
by the following sufficient conditions which guarantee the existence of solutions of
the subsystems and local convergence of the asynchronous method:

(C3’): All the matrices ∂Fi(x
∗)

∂xi
, i = 1, . . . , L are nonsingular, and

ρ(|D(x∗)−1(F ′(x∗)−D(x∗))|) < 1.

Remarks. (a) (see also [15]) Conditions (C1) and (C2) are standard for New-
ton methods, and (C3’) is natural for the convergence of asynchronous methods.
Consider the linear case, where F (x) = Ax − b and F ′(x) = A. If there exists
A−1 then (C3’) is necessary and sufficient for the convergence of the asynchronous
block methods for the linear system F (x) = 0.

(b) Condition (C3’) is also similar to the main requirement for the convergence
given in the theorem 3.4, ρ(B(x∗)−1(F ′(x∗)−B(x∗))) < 1.

(c) (see also [15]) Condition (C3’) holds when the Jacobian matrix F ′(x∗) is an
H-matrix, since F ′(x∗) = D(x∗) − (D(x∗) − F ′(x∗)) is an H-splitting of F ′(x∗).
Moreover, (C3’) is equivalent to F ′(x∗) being an H-matrix if each block has only
one component.

By the theory of nonnegative matrix, condition (C3’) is quivalent to

(C3”): All matrices ∂Fi(x
∗)

∂xi
, i = 1, . . . , L are nosingular, and there exists

ρ0 < 1 and a vector w > 0 such that

‖D(x∗)−1(F ′(x∗)−D(x∗))‖w < ρ0.

ON ASYNCHRONOUS BLOCK NEWTON METHODS 81

The weighted maximum norms used in (C3”) are defined as follows. Let w ∈ Rn,
w > 0 and A ∈ Rn×n be partitioned conformally with x, then we define

(18) ‖x‖w = max{‖xi‖wi
, 1 ≤ i ≤ L} = max{ |xij

|
wij

, 1 ≤ j ≤ ni, 1 ≤ i ≤ L}.

and the induced matrix norm ‖A‖w = max{‖Ax‖w

‖x‖w
: x ∈ Rn \ {0}}.

We return to the subsystems (5). Starting from x and applying one step of the
Newton method for the ith block, we are interested to estimate

(19)
‖yi − x∗i ‖wi

= ‖xi − x∗i −
(

∂Fi(x)
∂xi

)−1

Fi(x)‖wi

= ‖
(

∂Fi(x)
∂xi

)−1 [
Fi(x∗)− Fi(x)− ∂Fi(x)

∂xi
(x∗i − xi)

]
‖wi

As we can see from the right hand side of (19), the Lemma 3.2 cannot be applyed
directly as for the sequential Newton method.

In order to obtain a similar lemma we can extend the weighted matrix norms
for rectangular matrices as follows,

‖(Ai1, . . . , AiL)‖wi = max{‖(Ai1,...,AiL)x‖wi

‖x‖w
: x ∈ Rn \ {0}},

‖Aij‖wi = max{‖Aijxj‖wi

‖xj‖wj
: xj ∈ Rnj \ {0}}.

We immediately have,

‖Aii(Ai1, . . . , AiL)‖wi ≤ ‖Aii‖wi · ‖(Ai1, . . . , AiL)‖wi ,

‖|A|‖w = ‖A‖w, ‖|(Ai1, . . . , AiL)|‖wi = ‖(Ai1, . . . , AiL)‖wi ,

‖A‖w = max{‖(Ai1, . . . , AiL)‖wi
, 1 ≤ i ≤ L},

‖Aij‖wi
≤ ‖(Ai1, . . . , AiL)‖wi

, 1 ≤ i ≤ L.

These extensions were considered by Xu [15]. The following lemma will play a
similar role for asynchronous block Newton methods as the lemma 3.2 for sequen-
tial Newton methods.

Because of the norm equivalence in finite dimensional spaces we can consider
that the norm used in (C2) is the weighted norm ‖ · ‖w, where w is the vector
defined in (C3”).

Lemma 3.5. [15] Under the conditions (C1), (C2) and (C3’) we have

(20) ‖∂Fi(x)
∂xi

− ∂Fi(x∗)
∂xi

‖wi ≤ γ‖x− x∗‖w, ∀x ∈ S(x∗, ε),

and there exists ε > 0 such that S(x∗, ε) ⊂ Ω and

(21) ‖
(

∂Fi(x∗)
∂xi

)−1 (
∂Fi(x)
∂x1

, . . . ,
∂Fi(x)
∂xi−1

, 0,
∂Fi(x)
∂xi+1

, . . . ,
∂Fi(x)
∂xL

)
‖wi ≤ ρ0,

82 IOAN LAZĂR

(22)
‖xi − x∗i −

(
∂Fi(x

∗)
∂xi

)−1

Fi(x)‖wi

≤ ρ0‖x− x∗‖w + γ
2 ‖

(
∂Fi(x

∗)
∂xi

)−1

‖wi
· ‖x− x∗‖2w,

for all i = 1, . . . , L, x ∈ S(x∗, ε).

3.3. Asynchronous Newton Method. The next theorem represents the main
result of the paper.

Theorem 3.6. Let the assumptions (C1), (C2) and (C3’), and also the conditions
(7)–(9) hold. Then there exists δ > 0 such that if x0 ∈ S(x∗, δ) then the sequence
generated by asynchronous block Newton method converges to x∗.

Moreover, for l = 0, 1, . . ., we have

(23) ‖xk − x∗‖w ≤ rl‖x0 − x∗‖w, ∀k ≥ kl,

where K > 0, r := ρ0 + Kδ < 1, and the sequence {kl}is defined by (12)–(13).

Proof. We proceed in two steps: first we show that the sequence generated by
asynchronous block Newton method is well defined and then it converges.

We consider β > 0 such that

‖F ′(x∗)‖w ≤ β, ‖(∂Fi(x∗)
∂xi

)−1‖wi
≤ β, i = 1, . . . , L.

First part. We choose δ > 0 such that the matrices ∂Fi(x)
∂xi

, i = 1, . . . , L are
nonsingular for all x ∈ S(x∗, δ). From (20),

‖∂Fi(x)
∂xi

− ∂Fi(x∗)
∂xi

‖wi ≤ γ‖x− x∗‖w, ∀x ∈ Ω,

and by (C3’) there exists ∂Fi(x
∗)

∂xi

−1
. Let δ > 0 be such that the hypothesis of

Banach lemma 3.3 hold, so there exists ∂Fi(x)
∂xi

−1
, for all x ∈ S(x∗, δ). Now we

choose δ small enough such that the assumptions of Lemma 3.5 also hold.
We show that if x0 ∈ S(x∗, δ) then the sequence {xk} remains in S(x∗, δ).

Suppose that for all j, 0 ≤ j ≤ k, ‖xj − x∗‖w ≤ ‖x0 − x∗‖w.
Let u = (xs1(k)

1 , . . . , x
sL(k)
L). For i ∈ Ik,

(24)

‖xk+1
i − x∗i ‖wi = ‖xsi(k)

i − x∗i − ∂Fi(u)
∂xi

−1
Fi(u)‖wi

= ‖xsi(k)
i − x∗i − ∂Fi(x

∗)
∂xi

−1
Fi(u)‖wi+

‖∂Fi(x
∗)

∂xi

−1 − ∂Fi(u)
∂xi

−1‖wi · ‖Fi(u)‖wi

Since

(25)
‖Fi(u)‖wi = ‖Fi(u)− Fi(x∗)‖wi ≤ ‖F (u)− F (x∗)‖w

≤ ‖F (u)− F (x∗)− F ′(x∗)(u− x∗)‖w + ‖F ′(x∗)(u− x∗)‖w

≤ γ
2 ‖u− x∗‖2w + β‖u− x∗‖w,

ON ASYNCHRONOUS BLOCK NEWTON METHODS 83

(26) ‖∂Fi(x
∗)

∂xi

−1 − ∂Fi(u)
∂xi

−1‖wi
= ‖∂Fi(x

∗)
∂xi

−1
(∂Fi(x

∗)
∂xi

− ∂Fi(u)
∂xi

)∂Fi(u)
∂xi

−1‖wi

≤ β2γ‖u− x∗‖w

we get
(27)
‖xk+1

i − x∗i ‖wi
≤ [

ρ0 +
(
βγ(1

2 + β2) + β2γ2‖u− x∗‖w

) ‖u− x∗‖w

] ‖u− x∗‖w

= (ρ0 + K‖u− x∗‖w) ‖u− x∗‖w,

where K = βγ(1
2 +β2)+β2γ2δ. Again, if necessary, we choose δ small enough such

that r := ρ0 + Kδ < 1, then (27) gives ‖xk+1
i − x∗i ‖wi

≤ ‖x0 − x∗‖w, for i ∈ Ik.

On the other hand, if i /∈ Ik then the ith component is not modified, xk+1
i = xk

i ,
and from the induction hypothesis it follows ‖xk+1

i −x∗i ‖wi
≤ ‖x0−x∗‖w, for i /∈ Ik.

The last two inequalities together with the norm definitions implies

‖xk+1 − x∗‖w ≤ ‖x0 − x∗‖w,

that means the sequence {xk} generated by the asynchronous method is well de-
fined and remains in S(x∗, δ) if x0 ∈ S(x∗, δ).
Second part. Let {kl} be the sequence defined by (12) and (13). We show by
mathematical induction that for all l ∈ N

(28) ‖xk − x∗‖w ≤ rl‖x0 − x∗‖w, ∀k ≥ kl.

hence {xk} is convergent, since r = ρ0 + Kδ < 1.
Let l = 0. From the definition of {kl} it follows

∀k ≥ k0, ∀i ∈ {1, . . . , L}, there exists j : 0 ≤ s(j) ≤ j < k

such that xk
i = xj+1

i and i ∈ Ij .

Using (27) we get ‖xk
i − x∗i ‖wi = ‖xj+1

i − x∗i ‖wi ≤ r‖x0− x∗‖w, for i ∈ {1, . . . , L},
and by the definition of weighted norms, ‖xk − x∗‖w ≤ r1‖x0 − x∗‖w ≤,∀k ≥ k0.

Now, suppose for fixed l ∈ N we have

‖xk − x∗‖w ≤ rl‖x0 − x∗‖w, ∀k ≥ kl.

Using again the definition of {kl} we get

∀k ≥ kl+1, ∀i ∈ {1, . . . , L}, there exists j : kl ≤ s(j) ≤ j < k

such that xk
i = xj+1

i and i ∈ Ij .

Let u = (xs1(j)
1 , . . . , x

sL(j)
L). Using again (27), ‖xk

i − x∗i ‖wi
= ‖xj+1

i − x∗i ‖wi
≤

r‖u − x∗‖w = r‖xsp(j)
p − x∗‖wp , where p is an index for which the last equality

holds (according to the definition of the norm ‖ · ‖w). Since sp(j) ≥ kl, it follows
that ‖xsp(j)

p − x∗‖wp ≤ rl‖x0 − x∗‖w and the proof is complete.
Remark Under the assumptions of Theorem 3.6, the asynchronous block New-

ton method converges with a rate of convergence (see [3]).

R = lim inf
k→∞

[(− log ‖xk − x∗‖)/k] ≥ ρ0.

84 IOAN LAZĂR

If F and F ′ are computed innacurately then the asynchronous iteration (6)
becomes, for i ∈ Ik,

(29) xk+1
i = x

si(k)
i −

(
∂Fi(u)

∂xi
+ ∆(u)

)−1

(Fi(u) + ε(u)),

where u = (xs1(k)
1 , . . . , x

sL(k)
L). A similar local convergence theorem can be shown

for an asynchronous block Newton perturbed method defined by (29) (see [9]). As
in the sequential case [8], one can use Newton perturbed method to derive local
convergence results for other Newton methods (e.g. chord method).

References

[1] Jacques Bahi, Jean-Claude Miellou, and Karim Rhofir. Asynchronous multisplitting meth-
ods for nonlinear fixed point problems. Numerical Algorithms, 15:315–345, 1997.

[2] Zhong-Zhi Bai, Violeta Migallon, Jose Penades, and Daniel B. Szyld. Block and Asynchro-
nous Two-Stage Methods for Midly Nonlinear Systems. Num. Math., 82:1–21, 1999.

[3] Gérard M. Baudet. Asynchronous iterative methods for multiprocessors. J. Association for
Computing Machinery, 25:226–244, 1978.

[4] Dimitri P. Bertsekas. Distributed Asynchronous Computation of Fixed Points. Prentice Hall,
Englewood Cliffs, New Jersey, 1989.

[5] D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and its Applications, 2:199–
222, 1969.

[6] Andreas Frommer. Parallel Nonlinear Multisplitting Methods. Numerische Mathematik,
56:269–282, 1989.

[7] Andreas Frommer and Daniel B. Szyld. On Asynchronous Iterations. J. Computational and
Applied Mathematics, 123:201–216, 2000.

[8] C.T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM Publications,
1995.

[9] Ioan Lazǎr. On Asynchronous Two-Stage Newton Iterative Methods. Rev. Anal. Numér.
Théor. Approx. submitted.

[10] D.P. O’Leary and R.E. White. Multi-Splitting of Matrices and Parallel Solution of Linear
Systems. SIAM J. Alg. Disc. Meth., 6:630–640, 1985.

[11] J.M. Ortega and W.G. Rheinboldt. Iterative Solutions of Nonlinear Equations in Several
variables. Academic Press, New York, 1970.

[12] Daniel B. Szyld and Jian-Jun Xu. Convergence of Some Asynchronous Nonlinear Multisplit-
ting Methods. Numerical Algorithms, 25:347–361, 2000.

[13] Mouhamed Nabih El Tarazi. Some Convergence Results for Asynchronous Algorithms. Num.
Math., 39:325–340, 1982.

[14] R.E. White. Parallel Algorithms for Nonlinear Problems. SIAM J. Alg. Disc. Meth., 7:137–
149, 1986.

[15] Jian-Jun Xu. Convergence of Partially Asynchronous Block Quasi-Newton Methods for Non-
linear Systems of Equations. J. Computational and Applied Mathematics, 103:307–321, 1999.

Babeş-Bolyai University, Faculty of Mathematics and Informatics, Cluj-Napoca,
str. M. Kogǎlniceanu 1

E-mail address: ilazar@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 2, 2002

FRINGED-QUADTREES: A NEW KIND OF DATA STRUCTURE

CLARA IONESCU

Abstract. In our everyday life we have to deal with different problems that,

in most cases, need new data structures. At first sight, these structures do

not look like any known data structure. This paper presents a data structure

wehave called “fringed-quadtree”. This structure is a tree with nodes that

may be roots or leaves. A root-node may have at most four leaves. These trees

may be built considering some rules that are presented in the paper. Due

to the specific queries, the pointers will be ascending for the root-nodes and

descending for the leaves. The time complexity of the described algorithms

is logarithmic or linear and the memory space needed has the order O(n).

1. Introduction

Data from database management systems are processed using special software
programs. These have a lot of tools, but, in order to retrieve data, the users
often need to create data structures, which will maintain the hierarchy between
the elements and will perform searching as quick as possible. For example, the
well-known multilevel marketing systems (MLM) are working on basis of various
rules. These systems need to be able to retrieve records based on some hierarchy,
(which are not stored explicitly in the database) in order to calculate the financial
rights of persons from the system.

In this paper we present the fringed-quadtree, designed in order to have a
suitable data structure for such a database. The quadtree, in a conventional
approach, is a tree structure where every node may have at most four descendents.
It was introduced for spatial data by Finkel and Bentley [Fink74].

This paper is organized as follows. We first define (section 2) the requirements
of the model and the issues that must be considered in choosing a representation.
This depends on the nature of the queries involving them, and on the type of
operations that must be performed to answer them. Section 3 describes the man-
ner of the building of such quadtrees. We discuss the implementation issues of
the building in the subsection 4.0.1. For implementation we propose appropriate

2000 Mathematics Subject Classification. 68P05, 68P20.
1998 CR Categories and Descriptors. E.1 [Data]: Data Structures; H.2.1 [Information

Systems]: Database Management – Logical Design.

85

86 CLARA IONESCU

search structures, for example balanced binary search trees [Adel62], [Knut73],
[Wirt76] or B-trees [Come79]. Section 4 describes possible query types, and sub-
section 4.0.2 presents their implementations. Section 5 evaluates the performances
of the algorithms (the storage and execution time requirements).

2. Problem Description

We will build a data structure having the following properties:
(1) Based on some specific rules, the elements are grouped in buckets. A

bucket consists of at most five elements.
(2) The data associated to the nodes follows a hierarchy depending on the

time-factor (the insertion time) and the parent-node.
(3) The structure contains two types of links (pointers) between its elements.

The first link type specifies the parent of a given element. Obviously,
each node has a single such pointer. The second link type is used for
pointing to the descendents of a node; this is a child -type link. There will
be four such pointers for each node, because they are used for retrieving
the elements in the bucket corresponding to a parent-node.

(4) The structure contains two types of nodes: roots and leaves. We define
a root as a node that is referred as parent by at least one node, and a
leaf as a node that is not referred as parent by any node in the structure.
The proper tree-structure consists of root-nodes, where each root is the
nucleus of its own bucket. Such abucket may contain at most four other
nodes that are leaves. These leaves are “hanged on the root like some
fringes”.

(5) The dynamics used for building the structure leads to a quad-tree spanned
(using the pointers) from its bottom part to its upper part, because only
the parent pointers may be linked between the root-type nodes of the
tree.

(6) When a new element is inserted, its parent must be given. This way, the
hierarchical position of the new node is specified. The insertion of a new
element may cause some changes in the bucket of its parent, as follows:
(a) If the parent is a leaf, then the new node becomes a leaf and takes

the place of its own parent. After this “replacement”, the parent
pointers do not change, but the parent of the inserted node is no
longer the child of a node (a leaf), but it becomes a root; hence, it
is now a node in the quad-tree.

(b) If the element is not the first leaf of its parent, it becomes one of
the children (leaves) of the parent.

It follows that we have a quad-tree that is built based on ascending pointers
and each node may have at most four descending pointers. We may notice that

FRINGED-QUADTREES: A NEW KIND OF DATA STRUCTURE 87

a node may be referred as parent by five nodes, but the first such node “leaves”
the parent’s bucket. The specificity of the dynamic used for building the buckets
consists in the fact that the first child Z of a leaf Y becomes a child of the node
X that referred Y as its child. Hence, the parent of a leaf may be the node that
contains the leaf in its bucket, or another root on the parent pointers path.

3. Building Fringed-Quadtrees

Initially, the structure consists of a single element, denoted by A. By convention,
A is the only node predefined having root-type from the beginning. The bucket
of the first element is built in a slightly different manner than the other buckets
because the first element of the tree does not have a parent. Hence, it will be
directly referred as parent by at most four nodes.

We suppose that, at each moment of time, only one node referring a certain
parent may be inserted. Due to the fact that each existing node may be specified
as parent, at a certain moment of time, the number of insertions may be equal to
the number of nodes in the tree that do not have complete buckets.

Let we see the way a bucket is built. After building the first bucket, no more
leaves having as direct parent the root of the bucket may be inserted. The structure
of the buckets may change because when new insertions are performed, the existent
leaves are replaced by their own new leaves.

We denote by X0 the first node that refers X as its parent and by Xi, i = 1 . . . 4
the other nodes that refer X as their parent. The first child X0 of X became child
of the parent of X, and because A has no parent, A0 does not exist. We denote
the first child of Xi by Xi0, the others four children by Xij , j = 1 . . . 4. For a
better view of the notes we will rename the nodes wich became of root-type.

(1) The root A becomes the parent of the first leaf A1.

A A1

Figure 1: The first two nodes

(2) A is referred as the parent of the new node A2. A1 has a leaf, so it is
referred as the parent of A10; at this moment A1 gains its independence
and leaves the bucket of A, becoming a root (B). A10, its first child,
becomes a leaf of A.

(3) A refers to A3 as its child; B (formerly A1) is referred as parent by B1

and A2 is referred as parent by A20; A2 gains its independence and leaves
the bucket of A becoming a root (C); A20 becomes a leaf of A. A10 is

88 CLARA IONESCU

A2 B A A10

Figure 2: A1 becomes a root (B)

referred as parent by A100; A10 also gains independence and leaves the
bucket of A becoming a root (D); its first child, A100, becomes a leaf of
A.

A20 B A A100

A3

B1 C D

Figure 3: The structure has eight nodes; the bucket of A contains three

leaves and the bucket of B contains one leaf; C and D do not yet have any

leaf. A, B, C and D are root-nodes.

(4) A4 is the new child of A, B2 is the new child of B, C1 is the new child of
C and D1 is the new child of D; then, A100 is referred as parent by A1000

and leaves the bucket of A, becoming a root (E), and A1000 becomes a
leaf of A. A20 is referred as the parent by A200; A20 becomes the root F
and A200 becomes a leaf of A. A3 is referred as parent by A30; it becomes
a root (G) and A30 becomes a leaf of A; B1 is referred as parent by B10,
so it becomes a root (H) and B10 becomes a leaf of B.

The first loop ends here (the bucket of A is complete). One should
not substitute “complete” with “finalized”, because this term refers only
to the number and it does not refer to the content of the bucket. A may
not be referred as parent by any new node, but the content of its bucket
changes due to the leaves of the leaves of A.

(5) We suppose that, in the next step, all nodes (except A, because its bucket
is complete), roots and leaves, are referred as parents by new elements.

Figure 5 shows the bucket of A has the same number of elements,
but A1000 was replaced by A10000, A200 was replaced by A2000, A30 was
replaced by A300 and A4 was replaced by A40. Simultaneously, the sizes
of the buckets of B, C, D, E, F , G, H increase and the leaves that
became roots are I, J , K, L, M , N , P , O.

One may notice that at each step the number of nodes is increased by the
number of root type nodes not having complete buckets and the leaves.

FRINGED-QUADTREES: A NEW KIND OF DATA STRUCTURE 89

A200 B A A1000

A30

B10 C

D

A4

B2 C1

D1 E F G H

Figure 4: The links between the nodes after the fourth step of the inser-

tions. There are eight roots (A, B, C, D, E, F , G, H) and eight leaves

(A1000, A200, A30, A4, B10, B2, C1, D1).

A2000
B

A

A10000

A300
B100

C D

A40

B20

C10 D10

E F1

B3

C2 D2

E1 F G G1 H H1

I L J K M N P O

Figure 5: The leaves I, J , K, L, M , N , P , O became roots

The place (position) of an inserted node depends only on the node referred as
parent by the node.

Obviously, the order in which the insertions are performed is not necessarily
the same as in the example. It is possible to have some nodes referred as parents
at most five times in a row and others to stay leaves for a long time.

90 CLARA IONESCU

4. Possible Queries

First of all, the problem of building such a structure must be considered.
Without reducing the generality, we may suppose that the information corre-

sponding to a node is contained in a field called name. When designing such a
data structure it is obvious that the possible queries that may be performed on
the database modelled using this structure have to be considered. It is known
that searching queries must be supported by such a database. We suppose that
all queries, except for insertions, are performed on a single name. The insertion
is performed using a search (we look for a node that has as field name the value
specified as the parent of the new node); hence, two names will be given (for the
new node and for the parent).

There are many types of queries, such as:

(1) Given a name, check whether it exists or not in the database.
(2) Given a name, find the name of its parent.
(3) Given a name, check whether it corresponds to a root or to a leaf; if it

corresponds to a leaf, find the content of its bucket (the names of the
leaves).

(4) Given a name, find all nodes that are ancestors of a node specified by
its name. The ancestors of a node are the parent of the parent (the
grandparent), the parent of the grandparent, etc., until the first inserted
node is reached.

(5) Given a name, find all the names of the nodes for which the node corre-
sponding to the name is an ancestor.

At first sight, the structure may be viewed as groups of five elements where we
should know the root of each group. We might keep the roots in an alphabetically
sorted list and keep trace of the children. In this way, the hierarchy hidden in the
model is lost. From a logical point of view, this hierarchy is due to the fact that
each node is inserted in the structure as a child of another node. But, here there
are no “bosses” and no “subordinates”.

In addition, the first child Z of a node Y is “given” to the node X that referred
to Y as one of its children. From the logical point of view, X is on a superior
level with respect to Y , hence Z and Y become “siblings”, even if it looks like Z
should be a descendent of Y . Hence, an implementation that uses tree-like data
structures in which child-type pointers are used, does not correspond to the real
situation from a logical point of view.

We propose an implementation that allows the buckets to be part of the struc-
ture (the content of the buckets is changeable) and also allows the hierarchy to be
saved.

FRINGED-QUADTREES: A NEW KIND OF DATA STRUCTURE 91

The root-nodes are maintained in a tree-like structure in which each node rep-
resents a bucket consisting in at least one and at most five nodes. For a node,
we have the information field (name) and six pointers. One of them points to
the parent specified when the node was inserted. The other five are child-type
pointers. The first of them points to the node that was replaced at the insertion
time. The other four point to the leaves (the other nodes in the bucket).

The tree-like structure is a quad-tree because each bucket consists in five nodes,
one of them being the root of the bucket; hence, each node has at most four
“descendents”.

4.0.1. Building Fringed-Quadtrees. Implementation. We describe the way the quad-
tree is built based on a sequence of insertions. The following figures show the
insertions presented in the example from section 3.

At the first step A1 is inserted as child of A. For the node A the parent pointer
is nil and child [1] will point to A1. The other child-type pointers are nil. For the
node A1, parent points to A and the other pointers are nil. We use the following
convention: the pointer corresponding to the first child of A points to A, in order
to have a value different than nil.

 A

A1

Figure 6: The first step

name parent child [0] child [1] child [2] child [3] child [4]
A nil A A1 nil nil nil
A1 A nil nil nil nil nil

For the node A the second child-type reference appears: child [2] points to A2.
The node A2 is created in the same way as the node A1 at the previous step. Due
to the fact that A1 refers to A10 as its first child, the pointer from the node A to
A1 is replaced by a pointer to A10. Obviously, parent of the node A10 points to
A1. The node A1 remains unchanged because its parent remains A. Its child-type
pointers are nil because there are no leaves in its bucket.

92 CLARA IONESCU

A2 B

A

A10

Former A1

Figure 7: The second step

name parent child [0] child [1] child [2] child [3] child [4]
A nil A A10 A2 nil nil

B (formerly A1) A A10 nil nil nil nil
A2 A nil nil nil nil nil
A10 B nil nil nil nil nil

A3 is inserted as a leaf of A, so child [3] of the node A points to A3. B (formerly
A1) receives its first leaf B1 (the first node that referred it as parent became a leaf
of A at the previous step), hence child [1] of the node B points to B1. The pointer
parent of the node B1 points to B (the former A1). A20, the first descendent of A2

is inserted so, child [2] of the node A points to A20. The node A2 (now C) remains
unchanged, its parent field still points to A. A child of A10 (A100) is inserted,
hence the field child [1] from A is changed; now, it points to A100. The node A100

is created in such a way that its parent field points to A10 (now D).

A20 B

A

A100 A3

B1

C

D

Former A1
Former A2

Former A10 (its parent is A1= B)

Figure 8: There are four root-type nodes and four leaves

FRINGED-QUADTREES: A NEW KIND OF DATA STRUCTURE 93

name parent child [0] child [1] child [2] child [3] child [4]
A nil A A100 A20 A3 nil

B (formerly A1) A D B1 nil nil nil
C (formerly A2) A A20 nil nil nil nil
D (formerly A10) B A100 nil nil nil nil

A3 A nil nil nil nil nil
B1 B nil nil nil nil nil
A20 C nil nil nil nil nil
A100 D nil nil nil nil nil

At the next step, we suppose that each of the eight nodes in the structure is
referred as parent by a new node that must be inserted. The tree has the pointers
presented in the following table:

name parent child [0] child [1] child [2] child [3] child [4]
A nil A A1000 A200 A30 A4

B A D B10 B2 nil nil
C A G C1 nil nil nil
D B H D1 nil nil nil

E (formerly A3) A A30 nil nil nil nil
F (formerly B1) B B10 nil nil nil nil
G (formerly A20) C A200 nil nil nil nil
H (formerly A100) D A1000 nil nil nil nil

A4 A nil nil nil nil nil
B2 B nil nil nil nil nil
C1 C nil nil nil nil nil
D1 D nil nil nil nil nil
A30 E nil nil nil nil nil
B10 F nil nil nil nil nil
A200 G nil nil nil nil nil
A1000 H nil nil nil nil nil

One may notice that the bucket of A is complete, that is A cannot have any
more leaves that refer it as parent. But, when elements referring as parents the
leaves of A are inserted, the new elements replace the leaves of A, becoming part
of the bucket.

In order to clarify the way the fringed quad-tree is built, the next table presents
an extra optional step.

94 CLARA IONESCU

name parent child [0] child [1] child [2] child [3] child [4]
A nil A A10000 A2000 A300 A40

B A D B100 B20 B3 nil
C A G C10 C2 nil nil
D B H D10 D2 nil nil

E (formerly A3) A M E1 nil nil nil
F (formerly B1) B N F1 nil nil nil
G (formerly A20) C P G1 nil nil nil
H (formerly A100) D Q H1 nil nil nil
I (formerly A4) A A40 nil nil nil nil
J (formerly B2) B B20 nil nil nil nil
K (formerly C1) C C10 nil nil nil nil
L (formerly D1) D C10 nil nil nil nil

M (formerly A30) E A300 nil nil nil nil
N (formerly B10) F B100 nil nil nil nil
P (formerly A200) G A2000 nil nil nil nil
Q (formerly A1000) H A10000 nil nil nil nil

B3 B nil nil nil nil nil
C2 C nil nil nil nil nil
D2 D nil nil nil nil nil
E1 E nil nil nil nil nil
F1 F nil nil nil nil nil
G1 G nil nil nil nil nil
H1 H nil nil nil nil nil
A40 I nil nil nil nil nil
B20 J nil nil nil nil nil
C10 K nil nil nil nil nil
D10 L nil nil nil nil nil
A300 M nil nil nil nil nil
B100 N nil nil nil nil nil
A2000 P nil nil nil nil nil
A10000 Q nil nil nil nil nil

We recall that in this example we considered all possible insertions that may be
performed at each moment of time even if this is not compulsory.

We now present an image of the fringed-quadtree described in the previous
table. For a better view, the parent pointers of the leaves were removed.

FRINGED-QUADTREES: A NEW KIND OF DATA STRUCTURE 95

N

A

A10000 A2000 A300 A40

B

B100 B20 B3

C

C10 C2

E

E1

I

D

D10 D2

F

F1

J G

G1

K

H

H1

L

M

N N

Figure 9: The fringed-quadtree

Due to the hierarchy established by the parent pointers, the spanning must be
performed from the bottom side to the upper-side of the quad-tree. The spanning
may be optimised if data is inserted in a search structure such as a balanced binary
searching tree or a B-tree [Ione91]. This means that the memory space needed to
store a node increases due to the new pointers that refer to the search structure
and other needed fields (for example, the factor of balance).

4.0.2. Queries implementation. We suppose that we have as searching key the
field name of the nodes.

(1) For the first type of query we must check whether a given name is con-
tained in the database. A search for this name will be performed in the
search structure.

(2) For the second type of query we must retrieve the parent of a given node.
If the node is in the search structure, than the name field of the node
referred by the pointer parent is returned.

(3) For the third type of query we must establish whether a node is a root
or a leaf. If, for that node, we have child [0] = nil, it follows that the

96 CLARA IONESCU

node is a leaf; otherwise, the node is a root. This type of query also
asks the children of a root (the bucket content) to be retrieved. For
a leaf, the algorithm halts here. For a root, the names of the nodes
referred by the pointers child [i], i = 1 . . . 4 are returned. Obviously, it is
not compulsory to have acomplete bucket, so will be returned the nodes
pointed by child [i] 6= nil.

(4) For the fourth type of query we must retrieve all the ancestors of a given
node identified by its name.
(a) We retrieve the given node (query of first type).
(b) After finding the node we “climb” the tree until we reach the node

having the value nil for the parent pointer. All the names of the
nodes on the “way-up” are returned.

(5) For the fifth type of query we must retrieve all the nodes having as one
of the ancestors a node identified by its name. Apparently, this is the
inverse of the previous query where all the ancestors of a node had to
be found. A closer look leads to the conclusion that, in fact, this is not
an inverse, but a generalization. We must find paths that link a node
(not the “oldest” ancestor) to certain nodes for which we do not know
the names.
(a) At the first step we retrieve the node corresponding to the name

and return it.
(b) If the pointer child [0] has the value nil, the node is a leaf and the

algorithm halts.
(c) Otherwise, we return all the nodes that refer (directly or not) the

node child [0] as parent, which means we recursively call the algo-
rithm for the node referred by child [0]. For the pointers child [i],
we “climb”, using the parent pointers, until we reach a pointer to a
child of the current node. At the next step we apply the spanning
algorithm for this node.

1: procedure Spanning(r)
2: write rˆ.name
3: if rˆ.child [0] 6= nil then
4: Spanning(rˆ.child [0])
5: for i = 1, 4, 1 do
6: if rˆ.child [i] 6= nil then
7: p ← rˆ.child [i]
8: while pˆ.parent 6= r do
9: p ← pˆ.parent

10: end while

FRINGED-QUADTREES: A NEW KIND OF DATA STRUCTURE 97

11: Spanning(p);
12: end if
13: end for
14: end if
15: end procedure

5. Complexity Analysis

The memory space needed has the order of magnitude O(n) because for each
element we need a node. For the implementation we do not necessarly have to
use dynamic memory allocation. We might build a database in which the records
contain (apart from the corresponding information) six pointers. For the actual
implementation we should find an efficient way to store the leaves (the nodes
having all child-type pointers set to nil). This is not a waste of time because in
a fringed quad-tree there may be 4n/5 leaves.

Analysing the algorithms for the first three types of queries, it follows that the
first step has a time complexity of O(log n), the time needed for a search in a
structure similar to a balanced binary search tree [Ione91].

For the fourth query we have an algorithm running in O(log n+h) time, where
h is the number of nodes returned. For the last query the algorithm runs in
O(log n + m) time, where m is the number of nodes having the given node as
ancestor. It follows that the algorithms for the fourth and fifths type of query
have the order of magnitude O(n) for the worst case.

For the fourth type of query the worst case is finding the ancestors of the only
leaf in a fringed-quadtree in which all nodes (except for the leaf) have exactly one
child (all the nodes of the fringed-quadtree must be returned).

For the fifth type of query the worst case is finding all the nodes having the
fringed-quadtree root as ancestor (all the other nodes in the fringed-quadtree must
be returned).

6. Further work

In this paper we described operations such insertion, search and several types of
queries. Since deletion of a leaf-type node is trivial and the deletion of a root-type
node is not allowed in the real model, we did not consider for the moment this
operation. Obviously, we must be able to delete records from any kind of data-
base, so the next issue will be to find a way of records deletion from a database
implemented with fringed-quadtrees, without loosing the hierarchy. While devel-
oping the application, we will try to optimize as much as possible all the details
regarding the implementation of the fringed-quadtrees.

98 CLARA IONESCU

References

[Adel62] Adelson-Velskii, G.M., Landis, E.M.: An algorithm for the organisation of in-

formation, Soviet Mathematics Doklady, 3:1259-1263, 1962.

[Come79] Comer, D.: The ubiquitous B-tree, ACM Computing Surveys 11, 2 (June 1979),

121–137.

[Fink74] Finkel, R.A., i Bentley, J.L.: Quad trees: A data structure for retrieval on com-

posite keys, Acta Informatica, 4:1-9, 1974.

[Ione91] Ionescu, C., Zsakó, I. Structuri arborescente cu aplicaţiile lor, Editura Tehnică,

Bucureşti 1991.

[Knut73] Knuth, D.E.: The Art of Computer Programming, vol.I, Fundamental Algorithms,

Second Edition, Addison-Wesley, Reading, MA, 1973.

[Wirt76] Wirth, N.: Algorithms + Data Structures = Programs, Prentice Hall, 1976.

Babeş-Bolyai University, Cluj-Napoca, Romania

E-mail address: clara@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVII, Number 2, 2002

MATHEMATICAL MODELS FOR ORGANIZING DATA
COLLECTIONS

ILEANA TĂNASE

Abstract. Mathematical organisation of data collections is based on three
models: vector processing, logical and probabilistic. Vector processing model,
materialised in the SMART system implementation has the best mathemat-
ical basis. In this model entities and queries have a vectorial representation
and some similarities can be established between them based on the com-
parison of attached vectors. The similar entities will have answers for the
same requests and will be searched together. On this observation the cluster
hypothesis of van Rijbergen and Sparck is based. This hypothesis suggests
detecting entities class as a way for increasing the efficiency of the search.

Key words: similarity measure, dissimilarity measure, clustering, cri-
terion function.

1. Introduction

Mathematical organisation of data collections is based on three models: vector
processing, logical and probabilistic. Vector processing model [4,5], materialised
in the SMART system implementation has the best mathematical basis. In this
model entities and queries have a vectorial representation and some similarities
can be established between them based on the comparison of attached vectors.
The similar entities will have answers for the same requests and will be searched
together. On this observation the cluster hypothesis of van Rijbergen [7] and
Sparck [6] is based. This hypothesis suggests detecting entities class as a way for
increasing the efficiency of the search.

Consider a data collection X = {x1, x2, . . . , xd}. Each entity xj is identified by
one or more index terms. Each entity xj is represented by a d-dimensional vector:

Xj = (xj
1, x

j
2, . . . , x

j
d),

where the values of xj
i are restricted to 0 and 1 (xj

i equals 0 if the i-th index terms
is not assigned to the entity, and it equals 1 only if it is assigned to the entity).

2000 Mathematics Subject Classification. 62H30.
1998 CR Categories and Descriptors. I.5.3. [Computing Methodologies]: Pattern

Recognition – Clustering.

99

100 ILEANA TĂNASE

For a better performance in retrieval of entities it is useful that entities be clus-
terised according to appropriate criteria. A space of entities could be represented
as in Figure 1.

Figure 1. Collection and prototype representation

One must take into account that entities of the same class centre have sim-
ilar characteristics. Thus, the best retrieval performance must be obtained for
data collections consisting of individual compact classes, but with great distance
between class prototypes.

Splitting a space of entities into classes can be done using several determinist
classifying methods. These methods are mainly optimisation procedures of some
criterion functions. In order to build a criterion function we may consider that each
class is represented by a geometrical prototype. In the vector processing model [4,
5], in which classes have an approximately spherical shape, the prototypes will be
points in the Euclidean Rd space.

2. Similarity measures

Let X be the space of entities to be classified. A similarity measure over X is
a function S : X ×X → R, which satisfies the following axioms:
a) S(x, y) > 0, ∀x, y ∈ X,
b) S(x, y) = S(y, x),∀x, y ∈ X,
c) S(x, x) = S(y, y) > S(x, y), ∀x, y ∈ X, x 6= y.

The most used similarity measure in vector processing model is considered the
angle cossinus between two vectors:

S1 =
< x, y >

‖x‖ · ‖y‖ =
xT y

‖x‖ · ‖y‖
But as shown before, the vectors x, y have binary components. When all the

characteristics are binary, there is a set of well known similarity measures. These

MATHEMATICAL MODELS FOR ORGANIZING DATA COLLECTIONS 101

measures are based on the following values:

s =
d∑

i=1

xi · yi,

which represents the number of index terms that simultaneously exist in x and y,
in the same way:

t =
d∑

i=1

(1− xi)(1− yi),

represents the number of index terms which simultaneously miss from the x and
y entities,

u =
d∑

i=1

xi(1− yi),

represents the number of index terms that exist in x, but they miss from y,

v =
d∑

i=1

yi(1− xi),

represents the number of index terms that exist in y, but they miss from x.
It is easy to show that:

s + t = xT x

and
s + v = yT y

Taking account of the prior features, the meaning of the following similarity
measures is easy to understand [2]:

S2 =
s

s + 1
2 (u + v)

,

S3 =
s

s + 2(u + v)
,

S5 =
st− uv

st + uv
.

3. The criterion function

Let X = {x1, x2, . . . , xp} be the entities set that must be classified. Our aim
is to find the cluster structure of the given set. The cluster structure of the set
X can be done by a partition P = {A1, A2, . . . , An} of X. Each member of the
partition P will correspond to an entity class. Using a similarity measure we can
build a criterion function. The classification problem is reduced to an optimization
problem.

102 ILEANA TĂNASE

Each Ai class can be represented by a prototype Li, and denote by L =
{L1, L2, . . . , Ln}. Consider the representation of the P partition. In the vec-
tor processing model the classes have almost spherical shape and a class prototype
will be a point in Rd. This point is the same with the centre of the class, as shown
in Figure 1.

A dissimilarity measure on X is a function D : X ×X → R, that satisfies the
following axioms:
a) D(x, y) > 0, ∀x, y ∈ X,
b) D(x, x) = 0, ∀x ∈ X,
c) D(x, y) = D(y, x), ∀x, y ∈ X.

The criterion function (J) may be defined as [2]:

(1) J(P, L) =
n∑

i=1

∑

x∈Ai

D(x, Li),

where D is a dissimilarity measure (for instance, a distance on Rd).

4. The n-mean algorithm

The n-mean algorithm is a very popular clustering technique. The following
dissimilarity measure is considered:

D(x, y) = ‖x− y‖2.
The dissimilarity between a point x and the Li prototype can be interpreted as

error when the point x is approximated by the class prototype Li. This dissimi-
larity can be written down as follows:

D(x, Li) = ‖x− Li‖2.
The criterion function will be in this case:

(2) J(P,L) =
n∑

i=1

∑

x∈Ai

‖x− Li‖2.

Using the notation:

(3) Aij =
{

i, xj ∈ Ai

0, otherwise,

the criterion function will be:

(4) J(P, L) =
n∑

i=1

p∑

j=1

Aij

∥∥xj − Li

∥∥
2

.

Taking into account that in Euclidian space, the scalar product has the form

〈x, y〉 = xT My,

MATHEMATICAL MODELS FOR ORGANIZING DATA COLLECTIONS 103

where M is a symmetrical and positive defined matrix, the criterion function
becomes:

(5) J(P, L) =
n∑

i=1

p∑

j=1

Aij(xj − Li)T M(xj − Li).

From the minimum condition

(6)
∂J(P, L)

∂P
= 0, i = 1, . . . , n ,

we have

(7) −2
p∑

j=1

AijM(xj − Li) = 0, i = 1, . . . , n .

But the matrix M is nonsingular. Thus we obtain:

(8)
p∑

j=1

Aijx
j −

p∑

j=1

AijLi = 0, i = 1, . . . , n .

From (8) we obtain:

(9) Li =

p∑
j=1

Aijx
j

p∑
j=1

Aij

i = 1, . . . , n.

But pi =
p∑

j=1

Aij represents the number of elements of the class Ai. Li can also

be written as:

(10) Li =
1
p

∑

x∈Ai

x.

We can now see that the prototype Li is the mass centre of the Ai class. The
representation L = {L1, L2, . . . , Ln}, where Li is given by (9) induces a new par-
tition. This partition is obtained using the nearest neighbour (NN) rule.

If

(11)
∥∥xj − Li

∥∥ <
∥∥xj − Lk

∥∥ , k = 1, . . . , n, k 6= i

then xj is assigned to the class Ai.
We may also write:

(12) Aij =
{

1, if
∥∥xj − Li

∥∥ 6
∥∥xj − Lk

∥∥ ,∀k 6= i
0, otherwise

The n-mean algorithm consists of applying iteratively the equalities (9) and
(12), starting from an initial partition of the set X. This partition can be arbitrarily
chosen.

104 ILEANA TĂNASE

As a conclusion, we may say that determinist clustering methods allow the
entities arrangement into classes which verify the following conditions:
a) the similarity between entities in a class is high;
b) the average similarity between class centres is low.

References

[1] Chang Y.K., Cirillo C., “Evaluation of feedback retrieval using modified freezing, residual
collection, and test and control groups”, Englewood Cliffs, Prentice Hall Inc., 1991

[2] Dumitrescu D., “Mathematical principles of Classification Theory”, Ed. Academiei Române,
Bucuresti, 1999

[3] Popovici M., Rican G., ”Proiectare si implementare software”, Teora, 1998
[4] Salton G., “Automatic Information Organization and Retrieval”, McGraw-Hill, New York,

1975
[5] Salton G., Yang C.S., “Contribution to the theory of indexing”, American Elsevier, New

York, 1980
[6] Sparck J., “Automatic Keyword Classification for Information Retrieval”, Butterworts, Lon-

don, 1981
[7] van Rijsbergen C.J., “Information retrieval”, Butterworths, London, 1982
[8] Wong A., “An investigation of the effects of differnt indexing methods on the document space

configuration”, Cambridge, England, 1987
[9] Veryard R., “Information modelling – practical guidance”, Prentice Hall, 1992

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLIX, Number 1, 2004

APOLOGY ON PLAGIARISM PAPERS

THE EDITORS

Since the preceding issue has been send to print we have found out, and have
been informed by more interested readers that the following papers are plagiates:

• D. Marcu, The Chromatic Number of Triangle-Free Regular Graphs,
Studia Universitatis Babeş-Bolyai Series Informatica, 47 (1), 2002, p.
54–56.

• D. Marcu, A Note on the Chromatic Number of a Graph, Studia Uni-
versitatis Babeş-Bolyai Series Informatica, 47 (2), 2002, p. 105–106.

• D. Marcu, A Note on the Chromatic and Independence Number of
a Graph, Studia Universitatis Babeş-Bolyai Series Informatica, 48 (2),
2003, p. 11–16.

According to practices currently in place, these papers have been reviewed, as
always, by a panel of two experts. They have made all possible effort to ensure the
scientific quality and accuracy of the papers submitted to the journal. However,
we are not always able to verify the originality of every paper submitted, and, as
usually, this rests with the responsibility of the author.

After a careful consideration, we have decided to retract the papers under
scrutiny; the papers will be marked as such on the journal web page. As we
have lost the confidence in Mr. Dănuţ Marcu, the author of these plagiates, we
have decided to ban Mr. Marcu from publishing in our journal.

We are apologizing to the international scientific community for this situation.
Despite this, we are ensuring our readers that we are continually working to ensure
a high scientific quality for our journal. As such, they may continue to consider
our journal as the journal of their choice.

The Editors

Faculty of Mathematics and Computer Science, Department of Computer Science,
Babes-Bolyai University, 400084 Cluj-Napoca, Romania

E-mail address: studia-i@cs.ubbcluj.ro

Received by the editors: May 15, 2004.

112

	00_contents
	1-Darvay
	2-Serban
	3-Cozac
	4-Popescu
	5-SerbanTatar
	6-Todoran
	7-FrentiuPop
	8-Vancea
	9-Lazar
	10-Ionescu
	11-Tanase

