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A NEW REAL TIME LEARNING ALGORITHM

GABRIELA ŞERBAN

Abstract. It is well known that all Artificial Intelligence problems require
some sort of searching [7], that is why search has represents an important
issue in the field of Artificial Intelligence. Search algorithms are useful for
problem solving by intelligent (single or multiple) agents. In this paper we
propose an original algorithm (RTL), which extends the Learning Real-Time
A* (LRTA*) algorithm [1], used for solving path-finding problems. This
algorithm preserves the completeness and the characteristic of LRTA* (a real-
time search algorithm), providing a better exploration of the search space.
Moreover, we design an Agent for solving a path-finding problem (searching
a maze), using the RTL algorithm.
Keywords: Search, Agents, Learning.

1. Introduction

One class of problems addressed by search algorithms is the class of path-finding
problems. Given a set of states (configurations), an initial state and a goal (final)
state, the objective in a path-finding problem is to find a path (sequence of moves)
from an initial configuration to a goal configuration.

In single-agent problem solving, the question is [7] that an agent is assumed
to have limited rationality, so, the computational ability of an agent is usually
limited. Therefore, the agent must do a limited amount of computations using
only partial information on the problem.

The A* algorithm ([2]), a standard search algorithm, extends the wavefront
of explored states from the initial state and chooses the most promising state
within the whole wavefront. In this case, at each step, the global knowledge of the
problem is required, that is why the computational complexity is considerable. So,
the task is to solve the problem by accumulating local computations for each node
in the graph (the search problem). These local computations can be executed
concurrently (the execution order can be arbitrary), so, the problem could be
solved both by single and multiple agents.
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4 GABRIELA ŞERBAN

2. Path-Finding Problem

A path-finding problem consists of the following components [7]:

• a set of nodes, each representing a state;
• a set of directed links, each representing an operator available to a prob-

lem solving agent (each link is weighted with a positive number repre-
senting the cost of applying the operator - called distance);

• a unique node called the start node;
• a set of nodes, each of which represents a goal state.

We call the nodes that have directed links from node i neighbors of node i.
The problem is to find a path from the initial state to a goal state. In the

followings we will refer to the problem of finding an optimal (shortest) path from
the initial state to a goal state (we call the shortest path the path having the
shortest distance to goal).

Notational conventions used in the followings are:

• h(s) - the shortest distance from node s to goal nodes;
• h’(s) - the estimated distance from node s to goal nodes;
• k(s,s’) - the distance (cost of the link) between s and s’.

3. Learning Real-Time A*

When only one agent is solving a path-finding problem, it is not always possible
to perform local computations for all nodes (for example, autonomous robots may
not have enough time for planning and should interleave planning and execution).
That is why the agent must selectively execute the computations for certain nodes.
The problem is which node should choose the agent.

A way is to choose the current node were the agent is located. The agent
updates the h’ value of the current node, and then moves to the best neighboring
node. This procedure is repeated until the agent reaches a goal state. The method
is called the Learning Real-Time A* algorithm [1].

The algorithm is described in Figure 1.

(1) Calculate f(j) = k(i, j) + h′(j) for each neighbor j of the current node i
(2) Update: Update the estimate of node i as follows:

(1) h′(i) := minjf(j)

(3) Action selection: Move to the neighbor j that has the minimum f(j)
value.

Figure 1. The Learning Real-Time A* algorithm.
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One characteristic of the algorithm is that the agent determines the next action
in a constant time. That is why this algorithm is called an on-line, real-time search
algorithm.

The function that gives the initial values of h′ is called a heuristic function. A
heuristic function is called admissible if it never overestimates (in the worst case,
the condition could be satisfied by setting all estimates to 0).

In LRTA*, the updating procedures are performed only for the nodes that the
agent actually visits. The following characteristic is known [1]:

• In a finite number of nodes with positive link costs, in which there exists
a path from every node to a goal node, and starting with non-negative
admissible initial estimates, LRTA* is complete, i.e., it will eventually
reach a goal node.

Since LRTA* never overestimates [7], it learns the optimal solution through
repeated trials. In this case, the values learned by LRTA* will eventually converge
to their actual distances along every optimal path to the goal node.

4. A Real-Time Learning Algorithm (RTL)

In fact, the behavior of the agent in the given environment can be seen as a
Markov decision process. Regarding LRTA* there are two problems:

(1) in order to avoid recursion in cyclic graphs, it should be retained the
nodes that have been already visited (with the corresponding values of
h’). Therefore, the space complexity grows with the total number of
states in the search space;

(2) what happens in some plateau situations - states in which, let us say,
exists more successor (neighbor) states with the same minimum value
for h’ (the choice of the next action is nondeterministic).

In the followings, we propose an algorithm (RTL) which is an extension of
the LRTA* algorithm, having some alternatives of solving the above presented
problems. We mention that the algorithm preserves the completeness of LRTA*.

The proposed solutions for the problems (1) and (2) are:
(1) we keep a track of the visited nodes, but we do not retain the values of

h’ for each node;
(2) in order to choose the next action in a given state, the agent determines

the set of states S (which were not visited by the agent) having a mini-
mum value for h’. If S is empty, the training fails, otherwise, the agent
chooses a random state from S as a successor state (this allows a better
exploration of the search space).

The idea of the algorithm (based on LRTA*) is the following:
• through repeated trials (training episodes), the agent tries some paths

(possible optimal) to a goal state, and retains the shortest one;
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• the number of trials is selected by the user;
• after a training trial there are two possibilities:

– the agent reaches a goal state; in this case the agent retains the
path and it’s cost;

– the learning process fails (the agent does not reach the final state,
because it was blocked).

• for avoiding cycles in the search space, the agent will not choose a state
that was visited before, only if it has a single alternative (it was blocked)
and it must return to the formerly visited state.

We make the following notations and assumptions:

• S = {s1, · · · , sn} - the set of states;
• si ∈ S - the initial state;
• G - the set of goal states;
• A = {a1, · · · , am} - the set of actions that could be executed by the

agent;
• we assume that the state transitions are deterministic - a given action in

a given state transitions to a single successor state (the Markov Model
is not hidden [8]);

• with the former assumption, the transitions between states (and their
costs’) could be retained as a function env : SxAxN → S - if s, s′ ∈ S,
a ∈ A and c ∈ N so that if the agent takes the action a in the state s he
reaches the state s′ with the cost c, then s′ = env(s, a, c);

• we will say that the state s′ is the neighbor of the state s iff ∃a ∈ A and
c ∈ N so that s′ = env(s, a, c);

• h’(s) - the estimated distance from state s to a goal node;
• we will say that the cost of the path s1

a1→ s2
a2→ · · · ak−1→ sk is C =∑k−1

i=1 ci, where si+1 = env(si, ai, ci) for all i = 1, · · · , k − 1.

The algorithm
The algorithm consists in a repeated update of the estimated values of the

states, until the agent reaches a goal state (in fact a training sequence). The
training is repeated for a given number of trials.

The algorithm is shown in Figure 2.
We have to mention that:

• we considered that if the agent finds in several trials the same optimal
solution, then it is very probable that the solution is the correct one,
and the training process stops;

• the time complexity (in the worst case) of the training process during
one trial is O(n2), where n is the number of states of the environment;

• the agent determines the next action in a real-time (the selection process
is a linear one);
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Repeat until the number of trials was exceeded or until the correct solution was
found

• Training:
(1) Initialization:

– sc (the current state):= si (the initial state)
– calculate the estimation of the current state h′(sc)

(2) Iteration:
Repeat until (sc ∈ G) or (the agent was blocked) or (the number
of visited states exceeds a maximum value)

(a) Update:
– for each state s′ neighbor of sc the agent calculates the

estimation of the shortest distance from s′ to a goal state

(2) f(s′) = c + h′(s′), s′ = env(sc, a, c)

– the agent determines the set of states M = {s”
1, · · · s”

k}
so that for all j = 1, · · · , k

(3) s”
j = argmins′{f(s′) | ∃a ∈ A, c ∈ N so that s′ = env(sc, a, c)}

(b) Action selection:
– if k = 1 (the agent has a single alternative to continue)

then the agent moves in the state s”
1;

– otherwise the agent determines from the set M a subset
M ′ of states that were not visited in the current training
sequence and chooses randomly a state from M ′.

Figure 2. The Real-Time Learning (RTL) algorithm.

• the space complexity is reduced (there are retained only the states from
the optimal path).

As in the LRTA* algorithm, if the heuristic function (the initial values of h’)
is admissible (never overestimates the true value -h′(s) <= h(s) for all s ∈ S-),
then we can easily prove that the RTL algorithm is complete, i.e, it will eventually
reach the goal [4] and h′(s) will eventually converge to the true value h(s) [6].

The proof of convergence is presented below:

Proof. Let h′n(s) be the estimation of the shortest distance from state s to a
final state, at the n-th training episode. Let hn(s) be the shortest distance from
state s to a final state, at the n-th training episode. Let en(s) = hn(s)− h′n(s) be
the estimation error at the n-th episode. We will prove that limnen(s) = 0, for all
s ∈ S, which will assure the convergence of the algorithm.
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Because h′ never overestimates h it is obvious that

(4) en(s) >= 0, for all n ∈ N, s ∈ S

From the updating step of the RTL algorithm (Figure 2) results that:

(5) h′n(s) = mins′{k(s, s′) + h′n(s′)}, s’ neighbor of s

for all s ∈ S, s visited by the agent in the current training sequence.
On the other hand, it is obvious that:

(6) hn(s) = mins′{k(s, s′) + hn(s′)}, s’ neighbor of s

for all s ∈ S.
Moreover, the real values of the shortest distance from a state s to goal are the

same in all the training episodes, so that:

(7) hn+1(s) = hn(s)

for all s ∈ S.
(8)
h′n+1(s) = hn(s), if s was not visited, otherwise, h′n+1(s) = mins′{k(s, s′)+hn(s′)}

From equations (7) and (8) results that:

(9) en+1(s)− en(s) = h′n(s)− h′n+1(s) <= h′n(s)− h′n(s′) <= 0

where s′ is neighbor of s and it is closer than s to a goal state (that is why it’s
estimation is less than the estimation of the current state).

From (4) and (9) results that en(s) is convergent to 0. In other words, if the
number of the training sequences is infinite, then the convergence of the algorithm
is guaranteed.

5. An Agent for Maze Searching

5.1. General Presentation. The application is written in Borland C and im-
plements the behavior of an Intelligent Agent (a robotic agent), whose purpose is
coming out from a maze on the shortest path, using the algorithm described in
the previous section (RTL).

We assume that:
• the maze has a rectangular form; in some positions there are obstacles;

the agent starts in a given state and it tries to reach a final (goal) state,
avoiding the obstacles;

• in a certain position on the maze the agent could move in four directions:
north, south, east, west (there are four possible actions);

• the cost of executing an action (move in one direction) is 1;
• as a heuristic function (initial values for h′(s)) we have chosen the Man-

hattan distance to the goal (it is obvious that this heuristic function is
admissible), which assures the completeness of the algorithm.
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In fact it is a kind of semi-supervised learning, because the agent starts with
an initial knowledge (the heuristic function) , so it has an informed behavior. In
the worst case, if the values of the heuristic function are 0, then the learning is
unsupervised, but the behavior of the agent becomes uninformed.

5.2. The Agent’s Design. For implementing the algorithm, we will represent
the following structures:

• a State from the environment;
• the Environment (as a linked list of States);
• a Node from the optimal path (the current State and the estimation h’

of the current state);
• the optimal path from a training sequence (as a linked list of Nodes).

The basis classes used for implementing the agent’s behavior are the followings:
• IElement: defines an interface for an element. This is an abstract class

having two pure virtual methods:
– for converting the member data of an element into a string;
– a destructor for the member data.

• CNode: defines the structure of a Node from the optimal path. This
class implements (inherits) the interface IElement, having (besides the
methods from the interface) it’s own methods for:

– setting components (the current state, the estimation of the current
state);

– accessing components.
• CState: defines the structure of a State from the environment. This

class implements (inherits) the interface IElement, having (besides the
methods from the interface) it’s own methods for:

– setting components (the current position on the maze, the value of
a state);

– accessing components;
– calculating the estimation h’ of the state;
– verifying if the state is accessible (contains or not an obstacle).

• CList: defines the structure of a linked list, with a generic element (a
pointer to IElement) as information of the nodes. The main methods of
the class are for:

– adding elements;
– accessing elements;
– updating elements.

• CEnvironment: defines the structure of the agent’s environment (it
depends on the concrete problem - in our example the environment is a
rectangular maze). The private member data of this class are:

– m: the environment, represented as a linked list (CList) of states
(CState);
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– si: the initial state of the agent (is a CState);
– sf: the final state from the environment (is a CState);
– l, c: the dimensions of the environment (number of rows and columns).

The main methods of the class are for:
– reading the environment from an input stream;
– setting and accessing components;
– verifying the neighborhood of two states in the environment.

• Agent: the main class of the application, which implements the agent’s
behavior and the learning algorithm.

The private member data of this class are:
– m: the agent’s environment (is a CEnvironment);
– l: the list of Nodes used for retaining the optimal path in the current

training sequence (is a CList);
The public methods of the agent are the followings:

– readEnvironment: reads the information about the environment
from an input stream ;

– writeEnvironment: writes the information about the environ-
ment in an output stream ;

– learning: is the main method of the agent; implements the RTL
algorithm.

Besides the public methods, the agent has some private methods used
in the method learning.

We notice that all the representations of data structures are linked, which means
that there are no limitations for the structures’ length (number of states).

5.3. Experimental Results. For our experiment, we considered the environment
shown in Figure 3. The state marked with 1 represents the initial state of the agent,
the state marked with 2 represents the final state and the states filled with black
contains obstacles (which the agent should avoid).

We repeat the experiment four times, because of the random character of the
action selection mechanism. The results after the experiments are shown in Table
1, 2, 3, 4 (in a solution the agent determines the moving direction from the current
state).

We notice that, in average, after 8 episodes, the agent finds the optimal path
to the final state.
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Table 1. First experiment

Number of episodes 8
The optimal solution East North North East North North East East East North

Episode Number of steps until the final state was reached
1 10
2 16
3 10
4 10
5 18
6 12
7 14
8 10

Figure 3. The agent’s environment

6. Conclusions and Further Work

The algorithm described in this paper is very general, could be applied in any
problem which goal is to find an optimal solution in a search space (a path-finding
problem).
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Table 2. Second experiment

Number of episodes 6
The optimal solution East North North East North North East East East North

Episode Number of steps until the final state was reached
1 16
2 10
3 14
4 10
5 10
6 10

Table 3. Third experiment

Number of episodes 14
The optimal solution East North North East North North East East East North

Episode Number of steps until the final state was reached
1 18
2 10
3 12
4 10
5 16
6 10
7 12
8 14
9 16
10 28
11 14
12 16
13 14
14 10

On the other hand, the application is designed in a way which allows us to
model (with a few modifications) any environment and any behavior of an agent.

Further work is planned to be done in the following directions:

• to analyze what happens if the transitions between states are nondeter-
ministic (the environment is a Hidden Markov Model [8]);

• to use probabilistic action selection mechanisms (ε-Greedy, SoftMax [5]);
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Figure 4. The number of steps/episode during the training processes

Table 4. Fourth experiment

Number of episodes 5
The optimal solution East East East North East East North North North North

Episode Number of steps until the final state was reached
1 12
2 10
3 12
4 10
5 10

• to combine the RTL algorithm with other classical path-finding algo-
rithms (RTA*);

• in which way the agent could deduce the heuristic function from the
interaction with it’s environment (a kind of reinforcement learning);

• to develop the algorithm for solving path-finding problems with multiple
agents.
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A NEW ALGORITHM FOR SOLVING SELF-DUAL LINEAR
OPTIMIZATION PROBLEMS

ZSOLT DARVAY

Abstract. Recently in [3] we have defined a new method for finding search

directions for interior point methods (IPMs) in linear optimization (LO).

Using one particular member of the new family of search directions we have

developed a new primal-dual interior point algorithm for LO. We have proved

that this short-update algorithm has also the O(
√

n log n
ε
) iteration bound,

like the standard primal-dual interior point algorithm. In this paper we de-

scribe a similar approach for self-dual LO problems. This method provides a

starting interior feasible point for LO problems. We prove that the iteration

bound is O(
√

n log n
ε
) in this case too.

1. Introduction

In this paper we discuss polynomial methods for LO. The first polynomial al-
gorithm for solving LO problems is the ellipsoid method of Khachiyan [6]. This
method is important from a theoretical point of view, but is not so efficient in
practice. An alternative variant was defined in 1984 by Karmarkar [5]. His projec-
tive method is the first IPM for LO. The field of IPMs has been very active since
1984. For an overview of results see the following books [1, 2, 10, 13, 14]. Let us
consider the LO problem in canonical form

min cT ξ

s.t. Aξ ≥ b,(P )

ξ ≥ 0,

Received by the editors: 2002.05.30.
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where A ∈ <m×k with rank(A) = m, b ∈ <m and c ∈ <k. The dual of this
problem is:

max bT π

s.t. AT π ≤ c,(D)

π ≥ 0.

It is well-known the following theorem.

Theorem 1.1 (strong duality) Let ξ ≥ 0 and π ≥ 0 so that Aξ ≥ b and
AT π ≤ c, in other words ξ is feasible for (P ) and π for (D). Then ξ and π are
optimal if and only if cT ξ = bT π.

This theorem implies that if (P ) and (D) have optimal solutions then

Aξ − z = b, ξ ≥ 0, z ≥ 0,

AT π + w = c, π ≥ 0, w ≥ 0,(1)

bT π − cT ξ = ρ, ρ ≥ 0

has also a solution, where z ∈ <m, w ∈ <k and ρ ∈ < are slack variables. Fur-
thermore, every solution of (1) provides optimal solutions of (P ) and (D). Let us
introduce the matrix M̄ and the vectors x̄ and s̄(x̄) as

M̄ =




0 A −b

−AT 0 c

bT −cT 0


 , x̄ =




π

ξ

τ


 , and s̄(x̄) =




z

w

ρ


 ,

where τ ∈ <. Consider the following homogeneous system

(2) s̄(x̄) = M̄x̄, x̄ ≥ 0, s̄(x̄) ≥ 0.

We mention that system (2) is the so-called Goldman-Tucker model [4, 12]. Let
n̄ = m + k + 1 and observe that the matrix M̄ ∈ <n̄×n̄ is skew-symmetric, i.e.
M̄T = −M̄ . Now we can state the following theorem.

Theorem 1.2 Consider the primal-dual pair (P ) and (D). Then we have
(1) If ξ and π are optimal solutions of (P ) and (D) respectively, then for

τ = 1 and ρ = 0 we obtain that x̄ is a solution of (2).
(2) If x̄ is a solution of (2), then we have τ = 0 or ρ = 0, thus we cannot

have τρ > 0.
(3) If x̄ is a solution of (2) and τ > 0, then ( ξ

τ , π
τ ) is an optimal solution of

the primal-dual pair (P )-(D).
(4) If x̄ is a solution of (2) and ρ > 0, then at least one of the problems (P )

and (D) are infeasible.
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Proof: The first statement follows from the strong duality theorem. To prove the
second one observe that

0 ≤ τρ = τbT π − τcT ξ = πT (τb)− τcT ξ = πT Aξ − πT z − πT Aξ − πT w ≤ 0.

Thus τρ = 0, and we get τ = 0 or ρ = 0. Using this result the third assertion
follows from Theorem 1.1. To prove the last statement suppose that both problems
are feasible and ρ > 0. Thus there exists ξ̂ ≥ 0 and π̂ ≥ 0 so that Aξ̂ ≥ b and
AT π̂ ≤ c. From ρ > 0 we get τ = 0, therefore Aξ ≥ 0 and AT π ≤ 0. Furthermore,
from ρ > 0 we obtain that bT π > 0 or cT ξ < 0. If bT π > 0 then

0 < bT π ≤ ξ̂T AT π ≤ 0,

and if cT ξ < 0 then
0 > cT ξ ≥ π̂T Aξ ≥ 0,

hence in both cases we have a contradiction. Thus the proof is complete.

In the next section we shall use the system (2) to accomplish the self-dual
embedding of the primal-dual LO pair.

2. Self-Dual Embedding

In this section we investigate a generalized form of the system (2). Our approach
follows the method proposed in [10]. Let us consider the LO problem

min q̄T x̄

s.t. M̄ x̄ ≥ −q̄,(SP )

x̄ ≥ 0,

where M̄ ∈ <n̄×n̄ is a skew-symmetric matrix, q̄ ∈ <n̄ and q̄ ≥ 0. Moreover, let

s̄(x̄) = M̄x̄ + q̄.

We are going to solve (SP ) with an IPM, thus we need starting feasible solutions,
so that x̄ > 0 and s̄(x̄) > 0. We say that in this case the problem (SP ) satisfies the
interior point condition (IPC). Unfortunately such starting feasible solution for the
problem (SP ) does not exist, but we can construct another problem equivalent to
(SP ) which satisfies the IPC. For this purpose let

r = e− M̄e and n = n̄ + 1,

where e denotes the all-one vector of length n̄. Furthermore, introduce the nota-
tions

M =
[

M̄ r

−rT 0

]
, x =

[
x̄

ϑ

]
and q =

[
0
n

]
,
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and consider the problem

min qT x

s.t. Mx ≥ −q,(SP )

x ≥ 0.

Observe that the matrix M is also skew-symmetric, and problem (SP ) satisfies
the IPC. Indeed, we have

M

[
e

1

]
+ q =

[
M̄ r

−rT 0

] [
e

1

]
+

[
0
n

]
=

[
M̄e + r

−rT e + n

]
=

[
e

1

]
.

We have used that the matric M̄ is skew-symmetric, thus eT M̄e = 0, and this
equality yields

−rT e + n = −(e− M̄e)T e + n = 1.

In order to solve the problem (SP ) we use an IPM. Let

s = s(x) = Mx + q,

and consider the path of analytic centers [11], the primal-dual central path

Mx + q = s,

xs = µe,
(3)

where µ > 0, and xs is the coordinatewise product of the vectors x and s, i.e.

xs = [x1s1, x2s2, . . . , xnsn].

In fact for an arbitrary function f , and an arbitrary vector x we will use the
notation

f(x) = [f(x1), f(x2), . . . , f(xn)]T .

It is well-known that if the IPC holds for the problem (SP ), then the system (3) has
a unique solution for each µ > 0. IPMs generally follow the central path by using
Newton’s method. In the next section we are going to formulate an equivalent
form of the central path, and we shall apply Newton’s method to obtain new
search directions.

3. A New Class of Directions

New search directions have been studied recently by Peng, Roos and Terlaky
[7, 9, 8]. In a recent paper [3] we have proposed a different approach for defining
a new class of directions for LO. In this section we propose a similar approach for
the self-dual problem (SP ). Thus, we introduce a new class of directions for the
problem (SP ). Let <+ = {x ∈ < | x ≥ 0}, and let us consider the function

ϕ ∈ C1, ϕ : <+ → <+,
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and suppose that the inverse function ϕ−1 exists. Then the system of equations
which defines the central path (3) is equivalent to

Mx + q = s,

ϕ

(
xs

µ

)
= ϕ(e).

(4)

Using Newton’s method for the system (4) we obtain new search directions for the
problem (SP ). Denote

v =
√

xs

µ
,

and assume that (x, s) > 0 and Mx + q = s, thus x is an interior feasible solution
of the problem (SP ). Applying Newton’s method for the system (4) we get

M∆x = ∆s,(5a)
s

µ
ϕ′

(
xs

µ

)
∆x +

x

µ
ϕ′

(
xs

µ

)
∆s = ϕ(e)− ϕ

(
xs

µ

)
(5b)

We introduce the notations

dx =
v∆x

x
, ds =

v∆s

s
.

We have

(6) µv(dx + ds) = s∆x + x∆s,

and

(7) dxds =
∆x∆s

µ
.

Consequently (5b) can be written in the following form

(8) dx + ds = pv,

where

pv =
ϕ(e)− ϕ(v2)

vϕ′(v2)
.

Now using that M is skew-symmetric we get

∆xT ∆s = ∆xT M∆x = −∆xT M∆x,

hence ∆xT ∆s = 0. Moreover, from (7) follows

dT
x ds = eT (dxds) =

1
µ

eT (∆x∆s) =
1
µ

∆xT ∆s = 0,

thus dx and ds are orthogonal. We shall use this relation later in the paper.
We conclude that in this section we have defined a class of search directions for
the problem (SP ). For this purpose we have used a function ϕ to transform the
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system (3) in an equivalent form. In the next section we shall consider a particular
member of this class of search directions. Thus we shall develop a new polynomial
algorithm for the self-dual problem (SP ).

4. The Algorithm

In the remaining part of the paper we assume that ϕ(x) =
√

x. Using this
function we present a new primal-dual interior-point algorithm for solving the
problem (SP ). Consequently, we obtain also a solution of (P ) and (D). In this
case applying Newton’s method for the system (4) yields

M∆x = ∆s,
√

s

µx
∆x +

√
x

µs
∆s = 2

(
e−

√
xs

µ

)
.

(9)

For ϕ(x) =
√

x we have

(10) pv = 2(e− v),

and we can define a proximity measure to the central path by

σ(x, µ) =
‖pv‖

2
= ‖e− v‖ =

∥∥∥∥e−
√

xs

µ

∥∥∥∥ ,

where ‖ · ‖ denotes the Euclidean norm (l2 norm). Let us introduce the notation

qv = dx − ds

Now using that the vectors dx and ds are orthogonal we obtain

‖pv‖ = ‖qv‖,
therefore the proximity measure can be written in the form

σ(x, µ) =
‖qv‖

2
.

Moreover, we have

(11) dx =
pv + qv

2
, ds =

pv − qv

2
and dxds =

p2
v − q2

v

4
.

The algorithm can be defined as follows.

Algorithm 4.1 Let ε > 0 be the accuracy parameter and 0 < θ < 1 the update
parameter (default θ = 1

2
√

n
).

begin
x := e; µ := 1;
while nµ > ε do begin

µ := (1− θ)µ;
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Compute ∆x using (9);
x := x + ∆x;

end
end.

In the next section we shall prove that this algorithm solves the linear optimization
problem in polynomial time.

5. Complexity analysis

In this section we are going to prove that Algorithm 4.1 solves the problem (SP )
in polynomial time. In the first lemma we investigate under which conditions the
feasibility of the full Newton step is assured. Let x+ = x + ∆x and

s+ = s(x+) = M(x + ∆x) + q = s + M∆x = s + ∆s.

Using these notations we can state the lemma.

Lemma 5.1 Let σ = σ(x, µ) < 1. Then the full Newton step is strictly feasible,
hence x+ > 0 and s+ > 0.

Proof: For each 0 ≤ α ≤ 1 introduce the notation x+(α) = x + α∆x and
s+(α) = s + α∆s. Then we have

x+(α)s+(α) = xs + α(s∆x + x∆s) + α2∆x∆s,

and from (6) and (7) we obtain

1
µ

x+(α)s+(α) = v2 + αv(dx + ds) + α2dxds.

Furthermore, from (8) and (11) we get

1
µ

x+(α)s+(α) = (1− α)v2 + α(v2 + vpv) + α2

(
p2

v

4
− q2

v

4

)
.

Using (10) we find that

v2 + vpv = 2v − v2 = e− (e− v)2 = e− p2
v

4
,

and this relation leads to

(12)
1
µ

x+(α)s+(α) = (1− α)v2 + α

(
e− (1− α)

p2
v

4
− α

q2
v

4

)
.

Evidently, the inequality x+(α)s+(α) > 0 is satisfied if
∥∥∥∥(1− α)

p2
v

4
+ α

q2
v

4

∥∥∥∥
∞

< 1,
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where ‖ · ‖∞ denotes the Chebychev norm (l∞ norm). We have
∥∥∥∥(1− α)

p2
v

4
+ α

q2
v

4

∥∥∥∥
∞
≤ (1− α)

‖p2
v‖∞
4

+ α
‖q2

v‖∞
4

≤

≤ (1− α)
‖pv‖2

4
+ α

‖qv‖2
4

= σ2 < 1.

Hence, for each 0 ≤ α ≤ 1 we have x+(α)s+(α) > 0. Consequently, the sign
of the continuous functions of α, x+(α) and s+(α) remains the same for every
0 ≤ α ≤ 1. Hence x+(0) = x > 0 and s+(0) = s > 0 yields x+(1) = x+ > 0 and
s+(1) = s+ > 0. This completes the proof.

In the following lemma we formulate a condition which guarantees the quadratic
convergence of the Newton process. We mention that in fact this requirement will
be identical to that one used in Lemma 5.1, namely σ(x, µ) < 1.

Lemma 5.2 Let σ = σ(x, µ) < 1. Then

σ(x+, µ) ≤ σ2

1 +
√

1− σ2
.

Hence, the full Newton step is quadratically convergent.

Proof: We deduce from Lemma 5.1 that the full Newton step is strictly feasible,
thus x+ > 0 and s+ > 0. Denote

v+ =
√

x+s+

µ
,

and observe that making the substitution α = 1 in (12) that equation becomes

(13) v2
+ = e− q2

v

4
.

Thus

(14) min(v+) =

√
1− 1

4
‖q2

v‖∞ ≥
√

1− ‖qv‖2
4

=
√

1− σ2,

where for each vector ξ we denote min(ξ) = min{ξi | 1 ≤ i ≤ n}. Furthermore,
(13) and (14) lead to

σ(x+s+, µ) =
∥∥∥∥

e− v2
+

e + v+

∥∥∥∥ ≤
1

1 + min(v+)
‖e− v2

+‖ ≤

≤ 1
1 +

√
1− σ2

∥∥∥∥
q2
v

4

∥∥∥∥ ≤
1

1 +
√

1− σ2

‖qv‖2
4

=
σ2

1 +
√

1− σ2
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Consequently, we have σ(x+s+, µ) < σ2, and this implies the lemma.

From the self-dual property of the problem (SP ) follows that the duality gap is

2(qT x) = 2(xT s),

where x is a feasible solution of (SP ), and s = s(x) is the appropriate slack vector.
For simplicity we also refer to xT s as the duality gap. In the following lemma we
analyse the effect of the full Newton step on the duality gap.

Lemma 5.3 Let σ = σ(x, µ) and introduce the vectors x+ and s+ such that
x+ = x + ∆x and s+ = s + ∆s. Then we have

(x+)T s+ = µ(n− σ2).

Thus (x+)T s+ ≤ µn.

Proof: Substituting α = 1 in (12) results in

1
µ

x+s+ = e− q2
v

4
,

and using this equation we get

(x+)T s+ = eT (x+s+) = µ(eT e− eT q2
v

4
) = µ(n− ‖qv‖2

4
) = µ(n− σ2)

This implies the lemma.

In the following lemma we investigate the effect on the proximity measure of a full
Newton step followed by an update of the parameter µ. Assume that µ is reduced
by the factor (1− θ) in each iteration.

Lemma 5.4 Let σ = σ(x, µ) < 1 and µ+ = (1− θ)µ, where 0 < θ < 1. We have

σ(x+, µ+) ≤ θ
√

n + σ2

1− θ +
√

(1− θ)(1− σ2)
.

Furthermore, if σ < 1
2 and θ = 1

2
√

n
then σ(x+, µ+) < 1

2 .

Proof: From (13) and (14) we deduce

σ(x+, µ+) =
∥∥∥∥e−

√
x+s+

µ+

∥∥∥∥ =
1√

1− θ

∥∥∥
√

1− θe− v+

∥∥∥ =

=
1√

1− θ

∥∥∥∥
(1− θ)e− v2

+√
1− θe + v+

∥∥∥∥ ≤
1√

1− θ(
√

1− θ + min(v+))

∥∥∥∥−θe +
q2
v

4

∥∥∥∥ ≤

≤ 1
1− θ +

√
(1− θ)(1− σ2)

(
θ
√

n +
∥∥∥∥

q2
v

4

∥∥∥∥
)
≤ θ

√
n + σ2

1− θ +
√

(1− θ)(1− σ2)
.
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Thus, the first part of the lemma is proved. Now observe that n = m + k + 2 ≥ 4,
hence for θ = 1

2
√

n
we get 1−θ ≥ 3

4 . Consequently, from σ < 1
2 follows σ(x+, µ+) <

1
2 . Thus the proof is complete.

From Lemma 5.4 we conclude that the algorithm is well defined. Indeed, the
requirements x > 0 and σ(x, µ) < 1

2 are maintained at each iteration. In the
following lemma we discuss the question of the bound on the number of iterations.

Lemma 5.5 Let xk be the k-th iterate of Algorithm 4.1, and let sk = s(xk) be
the appropriate slack vector. Then (xk)T sk ≤ ε for

k ≥
⌈

1
θ

log
n

ε

⌉
.

Proof: Using Lemma 5.3 we find that

(xk)T sk ≤ µkn = (1− θ)kµ0n = (1− θ)kn,

thus the inequality (xk)T sk ≤ ε is satisfied if

(1− θ)kn ≤ ε.

Now taking logarithms, we may write

k log(1− θ) + log(n) ≤ log ε,

and using the equation − log(1−θ) ≥ θ we observe that the above inequality holds
if

kθ ≥ log(n)− log ε = log
n

ε
.

Thus the proof is complete.

For θ = 1
2
√

n
we obtain the following theorem.

Theorem 5.6 Let θ = 1
2
√

n
. Then Algorithm 4.1 requires at most

O
(√

n log
n

ε

)

iterations.
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6. Concluding remarks

In this paper we have developed a new class of search directions for the self-
dual linear optimization problem. For this purpose we have introduced a func-
tion ϕ, and we have used Newton’s method to define new search directions. For
ϕ(x) =

√
x these results can be used to introduce a new primal-dual polynomial

algorithm for solving (SP ). We have proved that the complexity of this algorithm
is O

(√
n log n

ε

)
.
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A MODIFICATION OF THE CRAMER-SHOUP DIGITAL
SIGNATURE SCHEME

CONSTANTIN POPESCU

Abstract. Digital signatures have been used in Internet applications to pro-

vide data authentication and non-repudiation services. Digital signatures will

keep on playing an important role in future Internet applications. In this pa-

per we propose a secure digital signature scheme based on the Strong RSA

Assumption. Compared with the recent signature scheme by Cramer and

Shoup, public keys in our scheme are a bit smaller but the two schemes have

about the same computational efficiency.

Keywords: Signature schemes, efficiency, security, adaptively chosen

message attack, hash functions

1. Introduction

In 1976 Diffie and Hellman [4] devised the concept of public key cryptography
and showed that secret communication is possible without a prior exchange of a
secret key, as was necessary previously. Their ingenious idea was to use two dif-
ferent keys, a public key for encryption and a private key for decryption. Based
on this asymmetry, they further devised the concept of digital signatures. There
are two most well-known public key cryptosystems, the RSA scheme and the El-
Gamal scheme, which can provide both digital signature and data encryption. In
the following years, others realizations of digital signature schemes were proposed
[2], [3], [9], [15], [17]. The RSA scheme [16] can be used to provide both digital
signatures and public key encryption. Its security relies on the difficulty of fac-
torizing a modulus which is the product of two large primes. The algorithms of
ElGamal [5] can also provide digital signatures and public key encryption. These
rely on the difficulty of finding discrete logarithms in the field of integers modulo
a large prime p. Subsequent refinements have been made to the original ElGamal
schemes, particularly to the signature scheme. For example, the Digital Signature
Standard (DSS) algorithm [6] combines ElGamal signatures with a idea of Schnorr
[17] to increase efficiency and provide short signatures. More recently, the Elliptic
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1998 CR Categories and Descriptors. E.3 [Data]: Data Encryption.
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Curve Cryptosystems (ECC) [11], [12], [13], in which the difficulty of breaking the
system is based on the difficulty of computing a discrete logarithm over an elliptic
curve, has also been considered to become a standard in the IEEE P1363 project.

Since digital signature has one of the unique features associated with the public
key cryptography, digital signature has been used in security services to provide
non-repudiation services. For example, digital signature has been used in the Se-
cure Electronic Transactions (SET) standard [18] to provide security of electronic
transfers of credit and payment information over the Internet. Digital signature
has been adopted by many security protocols, such as SSL [19], to provide data
authentication and non-repudiation services.

In this paper we propose a digital signature scheme which is provably secure
against adaptive chosen message attacks [9]. This improves on recent results by
Gennaro et al. [8] in that we do not require that the involved hash function is
division intractable. Compared with the recent signature scheme by Cramer and
Shoup [3], public keys in our scheme are a bit smaller but the two schemes have
about the same computational efficiency.

2. The Model of a Signature Scheme

A user’s signature on a message m is a string which depends on m, on public
and secret data specific to the user and, possibly on randomly chosen data, in
such a way that anyone can check the validity of the signature by using public
data only. The user’s public data are called the public key, whereas his secret
data are called the secret key. Obviously we would like to prevent the forgery of
a user’s signature without knowledge of his secret key. In this section we give a
more precise definition of signature schemes and of the possible attacks against
them.

Definition 1. A digital signature scheme consists of three algorithms:
Gen: On input of a security parameter 1l this probabilistic algorithm output

the signer’s secret and public keys, x and y, respectively.
Sign: On input of the signer’s secret and public keys and a message m ∈ {0, 1}∗

this algorithm outputs a signature σ on m.
Verify: On input of a message m, a signature σ and the public key y of a

signer, the algorithm Verify outputs true or false.

A signature scheme must satisfy the following properties:

(1) Correctness: Signatures produced by the signer with Sign must be
accepted by Verify.

(2) Unforgeability: A signature scheme must be existentially unforgeable
under an chosen message attack. That is, we require that every attacker
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has a negligible probability of success in the following game. The at-
tacker is allowed to sequentially obtain signature on polynomially many
messages of his choosing (i.e., messages are allowed to depend on sig-
natures that the adversary has seen). He is then required to produce
as output a message m for which he did not receive a signature and a
second string σ. If Verify(m, σ, y) = true then the attacker is successful
and, hence, the signature scheme is vulnerable to existential forgery.

There are two specific kinds of attacks against signature schemes: the no-
message attack and the known-message attack. In the first scenario the attacker
only knows the public key of the signer. In the second one the attacker has access
to a list of message-signature pairs. According to the way this list was created, we
distinguish four subclasses of known-message attacks:

(1) The plain known-message attack : the attacker has access to a list of
signed messages, but he has not chosen them.

(2) The generic chosen-message attack : the attacker can choose the list
of messages to be signed. However, this choice must be made before
accessing the public key of the signer. We call attack generic because
the choice is independent of the signer.

(3) The oriented chosen-message attack : as above, the attacker chooses the
list of messages to be signed, but the choice is made once the public key
of the signer has been obtained. This attack is oriented against a specific
signer.

(4) The adaptively chosen-message attack : having knowledge of the public
key of the signer, the attacker can ask the signer to sign any message
that he wants. He can then adapt his queries according to previous
message-signature pairs.

We now classify the expected results of an attack:

• Disclosing the secret key of the signer. It is the most serious attack.
This attack is termed total break.

• Constructing an efficient algorithm which is able to sign any message.
This is called universal forgery.

• Providing a new message-signature pair. This is called existential
forgery. In many cases this attack is not dangerous, because the output
message is likely to be meaningless. Nevertheless, a signature scheme
which is not existentially unforgeable does not guarantee by itself the
identity of the signer. For example, it cannot be used to certify ran-
domly looking elements, such as keys.
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Definition 2. A signature scheme is secure if an existential forgery is computa-
tionally impossible, even under an adaptively chosen-message attack.

The first secure signature scheme was proposed by Goldwasser et al. [10] in
1984.

3. Number Theoretic Assumptions

This section reviews some cryptographic assumptions necessary in the subse-
quent design of our signature scheme.

The Strong RSA Assumption was independently introduced by Baric and Pfitz-
mann [1] and by Fujisaki and Okamoto [7]. It strengthens the widely accepted RSA
assumption that finding eth-roots modulo n, where e is the public and thus fixed
exponent, is hard to the assumption that finding an eth-roots modulo n for any
e > 1 is hard.

Definition 3 (Strong RSA Problem). Let n = pq be an RSA-like modulus and
let G be a cyclic subgroup of Z∗n of order lg. Given n and z ∈ G, the Strong RSA
Problem consists of finding u ∈ G and e ∈ Z>1 satisfying z ≡ ue(mod n).

Assumption 1 (Strong RSA Assumption). There exists a probabilistic polyno-
mial time algorithm K which on input 1lg outputs a pair (n, z) such that for all
probabilistic polynomial-time algorithms P , the probability that P can solve the
Strong RSA Problem is negligible.

Consequently, if n is a safe RSA-modulus (i.e., n = pq with p = 2p′ + 1,

q = 2q′ + 1 and p, q, p′, q′ all prime), it is more cautions to work in the subgroup
of quadratic residues modulo n, that is, in the cyclic subgroup QR (n) generated
by an element of order p′q′.

The next corollary shows that it is easy to find a generator g of QR (n): it
suffices to choose an element a ∈ Z∗n satisfying gcd (a± 1, n) = 1 and then to take
g = a2 mod n. We then have QR (n) =< g >.

Proposition 1. Let n = pq, where p 6= q, p = 2p′ + 1, q = 2q′ + 1
and p, q, p′, q′ all prime. The order of the elements in Z∗n are one of the set
{1, 2, p′, q′, 2p′, 2q′, p′q′, 2p′q′}. Moreover, the order of a ∈ Z∗n is equal to p′q′

or 2p′q′ if and only if gcd (a± 1, n) = 1.

Corollary 1. Let n = pq, where p 6= q, p = 2p′ + 1, q = 2q′ + 1 and p, q, p′, q′ all
prime. Then, for any a ∈ Z∗n such that gcd (a± 1, n) = 1, < a2 >⊂ Z∗n is a cyclic
subgroup of order p′q′.

The security of our digital signature scheme is based on the Strong RSA As-
sumption.
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4. Our Secure Digital Signature Scheme

This section describes a secure digital signature scheme based on the Strong
RSA Assumption. Let ε > 1 be a security parameter and let lp, lλ1 > lλ2 , lγ1 > lγ2

denote lengths. Define the integral ranges Λ =
[
2lλ1 − 2lλ2 , 2lλ1 + 2lλ2

]
and Γ =[

2lγ1 − 2lγ2 , 2lγ1 + 2lγ2
]

such that for all (x, e) ∈ Λ× Γ, we have 0 < x + 22lp < e.
Finally, let H : {0, 1}∗ → Λ be a collision-resistant hash function [14].

4.1. Key Generation. To generate his public and secret key, a signer runs the
following algorithm (Gen):

(1) Select random secret lp-bit primes p′, q′ such that both p = 2p′ + 1 and
q = 2q′ + 1 are also prime. Set the modulus n = pq.

(2) Chose two random elements a, a0 ∈ QR(n).
(3) The public key consists of the tuple (n, a, a0,H) .

(4) The corresponding secret key consists of (p′, q′).

4.2. Signature Generation. To sign a message m ∈ {0, 1}∗ a signer uses the
following algorithm (Sign):

(1) Choose a prime e ∈ Γ that was not used before.
(2) Choose a random integer r ∈ Λ.
(3) Compute x = H (m ‖ e ‖ r) and u = (axa0)

1/e ( mod n).
(4) Output the signature (u, e, r).

4.3. Signature Verification. Checking whether a tuple (u, e, r) is a valid signa-
ture on a message m ∈ {0, 1}∗ with respect to the public key n can be done as
follow (the algorithm Verify):

(1) Check whether (u, e, r) ∈ Z∗n × Γ× Λ.
(2) Compute x′ = H (m ‖ e ‖ r).
(3) Check whether ue ≡ ax′a0 ( mod n).
(4) Output the signature true if none of the checks failed.

5. Efficiency and Security Analysis

The cost of the Sign algorithm can be broken down into three components:

(1) Generation of a random prime e from the interval[
2lγ1 − 2lγ2 , 2lγ1 + 2lγ2

]
.

(2) Computation of its inverse e−1.
(3) Computation of u which requires 2 exponentiations: one full with e−1

and one small with x.
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The cost of the last step can be reduced by amending Gen to generate a0 as
a power of a, i.e., choose a random r′ ∈ Λ and compute a0 = ar′ . The value r′

would then become part of the secret key. This amendment allows us to avoid the
small exponentiation in the last step above, i.e., the signer would perform only
one full exponentiation with the exponent (x + r′) e−1.

The only possible drawback is the potential loss in the range of a0 since it is no
longer generated independently from a. However, we note that a similar speedup
was proposed by Cramer and Shoup [3] where it was claimed that, since, a is highly
likely a generator of QR (n), the distribution of the resultant public key does not
change significantly.

The cost of signature verification in our scheme is dominated by step 3 which
requires two exponentiations: one full to compute ue and one small to compute
ax′ . However, the verification equation can be changed to ue

(
a−1

)x′ ≡ a0 (mod n)
and hence the computation gets reduced to about one full exponentiation.

Next, we show that our signature scheme indeed satisfies the requirement for
a secure signature scheme according to Definition 1. The correctness property
follows from inspection of the scheme. It remains to prove the schemes security
against an adaptively chosen message attack. Similar to [8] we require that:

• For every H a collision-resistant hash function, all primes e ∈ Γ and
every two messages m1 and m2 the distribution H (m1 ‖ e ‖ r) and
H (m2 ‖ e ‖ r) induced be the random choice of r are statistically close.

• The Strong RSA Assumption holds in a world where there exists an
oracle that on input a message m, a prime e ∈ Γ and an x ∈ Λ outputs
an r ∈ Λ such that x = H (m ‖ e ‖ r).

Theorem 1. The signature scheme presented above is secure against adaptively
chosen messages attack under the Strong RSA Assumption and the further as-
sumption that there exists a family of hash functions {H} satisfying the above
requirements.

Proof.Assume that the attacker A queries signature for K messages and then
outputs a signature (u′, e′) on the message m′. We now show that if we take
control over the hash function, then we can use this attacker to break the Strong
RSA Assumption, i.e., we are given a z and an n and must find an w and v such
that wv ≡ z (mod n).

Let ((u1, e1, r1) , m1) , ..., ((uK , eK , rK) ,mK) denote the signature-message
pairs that are constructed during the interaction with A. In order for A to be
successful its output ((u′, e′, r′) , m′) must satisfy (u′, e′) 6= (ui, ei) for 1 ≤ i ≤ K.
Depending of whether ei - e′ for some i, there are two games to calculate a pair
(w, v) ∈ Z∗n × Z>1 satisfying wv ≡ z (modn) from which we randomly chose one
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each time then play with the attacker. As mentioned before, we are assuming that
there is an oracle that input a message m, a prime e ∈ Γ and an x ∈ Λ outputs an
r ∈ Λ such that x = H (m ‖ e ‖ r). The adversary is allowed to query this oracle
as well. The first of the two game goes as follows:

(1) Select x1, ..., xK ∈ Λ and e1, ..., eK ∈ Γ.
(2) Set a = z

Q
1≤l≤K el mod n.

(3) Choose a random r ∈ {0, 1}2lp and set a0 = ar mod n.
(4) For all 1 ≤ i ≤ K, compute ui = z(xi+r)

Q
1≤l≤K;l6=i el mod n.

(5) Start A, feed it the (ui, ei, ri), where we get ri from the oracle, and

eventually obtain
(

x′;
[
u′ =

(
ax′a0

)1/e′

mod n, e′, r′
])

with x′, r′ ∈ Λ

and e′ ∈ Γ.
(6) If gcd (e′, ej) 6= 1 for all 1 ≤ j ≤ K output fail and stop. Otherwise,

let ẽ = (x′ + r)
∏

1≤l≤K el. Since gcd (e′, ej) = 1 for all 1 ≤ j ≤ K, we
have gcd (e′, ẽ) = gcd (e′, (x′ + r)). Hence, by the extended Euclidean
algorithm, there exist α, β ∈ Z such that αe′ + βẽ = gcd (e′, (x′ + r)).
Therefore, letting w = zα (u′)β

mod n and v = e′/ gcd (e′, (x′ + r)) > 1
since e′ > (x′ + r) we have wv ≡ z (modn).

The previous game is only successful if A returns a new signature with
gcd (e′, ej) = 1 for all 1 ≤ j ≤ K. We now present a game that solves the
Strong RSA Problem in the other case, that is, when gcd (e′, ej) 6= 1 for some
1 ≤ j ≤ K. Note that gcd (e′, ej) 6= 1 means gcd (e′, ej) = ej since ej is prime.

(1) Select x1, ..., xK ∈ Λ and e1, ..., eK ∈ Γ.
(2) Choose a random j ∈ {1, ..., K} and set a = z

Q
1≤l≤K;l6=j el mod n.

(3) Choose a random r ∈ {0, 1}2lp and set uj = ar mod n and a0 = u
ej

j /axj

mod n.
(4) For all 1 ≤ i ≤ K, i 6= j, compute ui = z(xi+ejr−xj)

Q
1≤l≤K;l6=i,j el mod

n.
(5) Start A, feed it the (ui, ei, ri), where we get ri from the oracle, and

eventually obtain
(

x′;
[
u′ =

(
ax′a0

)1/e′

mod n, e′, r′
])

with x′, r′ ∈ Λ

and e′ ∈ Γ.
(6) If gcd (e′, ej) 6= ej output fail and stop. Otherwise, we have

e′ = tej for some t and can define b = (u′)t
/uj mod n if

x′ ≥ xj and b = uj/ (u′)t
mod n otherwise. Hence b ≡(

a|x′−xj|)1/ej ≡ (
z|ee|

)1/ej (modn) with ẽ = (x′ − xj)
∏

1≤l≤K;l 6=j el.

Since gcd
(
ej ,

∏
1≤l≤K;l 6=j el

)
= 1 it follows that gcd (ej , |ẽ|) =
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gcd (ej , |x′ − xj |). Hence, by the extended Euclidean algorithm, there ex-
ist α, β ∈ Z such that αej + β |ẽ| = gcd (ej , |x′ − xj |). Therefore, letting
u = zαbβ mod n and e = ej/ gcd (ej , |x′ − xj |) > 1 since ej > |x′ − xj |,
we have ue ≡ z (modn).

Consequently, by playing randomly one of game 1 or game 2 with A one can
solve the Strong RSA Problem. Since the latter is assumed to be infeasible, it
follows that no such attacker can exist.

We now compare our signature scheme with some recent results. The scheme
due to Gennaro et al. [8] is simpler and seemingly more efficient than our scheme.
The scheme is simpler since it appears as a true hash-and-sign scheme very close
to RSA. It uses a similar variation of the Strong RSA Assumption for the proof
of security as we do. However, their requirements for a suitable hash function are
non-standard, e.g., it is required to be division intractable.

An interesting sidenote is that the only practical realization of a suitable hash
function presented in [8] is the so-called chameleon hashing which outputs primes.
This yields a signature scheme that requires the signer to generate a random
looking prime. The cost of signing thus becomes roughly the same as in our
present scheme: generation of a large prime, computation of its inverse and a
single exponentiation. The cost of verification is one exponentiation plus the cost
of a message hash which is quite expensive due to the special hash function used.

Comparing our signature scheme to the one by Cramer and Shoup, we find that
are similar in many aspects of security properties and associated costs. The public
key size in our scheme is somewhat smaller than its counterpart in Cramer and
Shoup. The latter consists of a tuple (n, h, x, e′), where n is a modulus, h and x

are elements of QR(n) and e′ is a prime. In contrast, our scheme’s public key is a
tuple (n, a, a0,H), where n is a modulus, a and a0 are elements of QR(n) and H is
a hash function which is, incidentally, also needed in a Cramer and Shoup public
key. Thus, the size difference is due to the prime e′ in the latter. A Cramer-Shoup
signature is a tuple (y, y′, e) where e is a small prime, y′ ∈ QR(n) and y ∈ Z∗n,
i.e., both are n-bit integers. This is about the same as for our scheme. The cost
of signing in [3] amounts to generating a prime, computing its inverse and three
exponentiations of which two are small (each with an exponent from the range
of the underlying hash function) and one is full. Hence, the cost of signing is
somewhat higher in [3] than in our scheme. Signature verification in the Cramer
and Shoup translates into two small exponentiations which is a bit more efficient
than in our scheme.
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6. Conclusion

In this paper we proposed a digital signature scheme which is provably secure
against adaptive chosen message attacks. Compared with the recent signature
scheme by Cramer and Shoup [3], public keys in our scheme are a bit smaller but
the two schemes have about the same computational efficiency.
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BL-ALGEBRA STRUCTURE OF RGB MODEL

DAN NOJE AND MEDA TODOR

Abstract. The aim of this paper is to construct a BL-Algebra structure
over RGB Model of colours. First we determin a method to obtain t−norms
on RGB Model and their associate residuum from t−norms on unit interval
and their associate residuum. These triangular norms and their associate
residuums are used to construct the BL-Algebra structure over RGB model.

Keywords: RGB Model, T-Norms, BL-Algebras, Many-valued logic

Introduction

In a recent paper [6] V. Loia and S. Sessa studied the compression and decom-
pression of gray scale images using fuzzy relations in the Basic Logic over [0, 1].

In this paper we develop an algebraic structure on RGB model of colours [5]
that will lead us to consider compression and decompression of colour images.
Therefore, we consider that a colour of RGB model is an element of the set

RGB = {(r, g, b) | r, g, b ∈ [0, 2n − 1]} ,

where n represents the number of bits on which one colour component is stored in
computer’s memory.

In RGB set, r, g and b represents the red, green and respectively blue compo-
nent of the colour. For more details about RGB set see [7].

To construct the BL-Algebra over RGB we have to determin the t-norm and
its associate residuum over RGB.

We have to remind now, some notions used later.
A triangular norm t on real unit interval (for short t−norm) [1], [3] is a binary

operation,
t : [0, 1]2 → [0, 1],

such that t is commutative, associative, non-decreasing in both arguments and
t (0, x) = 0, t (x, 1) = x for any x ∈ [0, 1]. For brevity, we put t (x, y) = xty for all
x, y ∈ [0, 1].

The residuum of the t-norm t [2], [3] is a unique operation x →t y defined as

(x →t y) = max {z ∈ [0, 1] | xtz ≤ y}
2000 Mathematics Subject Classification. 03B50, 03G10, 08A70, 08A72.
1998 CR Categories and Descriptors. I.3.2 [Computing Methodologies]: Computer

Graphics – Graphic Systems.
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such that xtz ≤ y if and only if z ≤ (x →t y).
The following are the most famous t-norms used in fuzzy logic with the associate

residuum:
- Lukasiewicz t-norm

xty = max {0, x + y − 1} ,

(x →t y) = min {1, 1− x + y} .

- Gödel t-norm

xty = min {x, y} ,

(x →t y) =
{

1 if x ≤ y
y if x > y

.

- Goguen t-norm

xty = x · y,

(x →t y) =
{

1 if x ≤ y
y if x > y

.

The following properties hold:

(0.1) x ∧ y = xt (x →t y) ;

(0.2) (x →t y) ∨ (y →t x) = 1.

Following [4], a BL − Algebra L = (L,∧,∨, ?,→, 0, 1) is an algebra with four
binary operations such that for all x, y, z ∈ L:

1. (L,∧,∨, 0, 1) is a bounded distributive lattice;
2. (L, ?, 1) is a commutative semigroup having 1 as unit element;
3. x ∧ y = x ? (x → y) (divisibility);
4. z ≤ (x → y) if and only if x?z ≤ y (residuation because of 3., i.e. (x → y) =

∨{z ∈ L | x ? z ≤ y});
5. (x → y) ∨ (y → x) = 1 (prelinearity).
The properties (0.1), (0.2) guarantee that Lt = ([0, 1], min,max, t,→t, 0, 1) are

important examples of BL-algebras over [0, 1], where t is a continuous t-norm with
its residuum →t.
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1. T -Norms defined on RGB set

In this section we will develop a method to obtain from each t-norm defined on
unit interval [0, 1], a t-norm defined on RGB set.

We start with the construction of the t-norm and its associate residuum on one
component of RGB set. Applying this t-norm and its associate residuum on each
component we determin the t-norm and its associate residuum on RGB set.

Let [0, b] interval, where b = 2n − 1, be the set of values of one component of
RGB set.

Let us consider a one to one onto mapping f : [0, 1] → [0, b], defined as follows:

f (x) = b · x,

for any x ∈ [0, 1].
It is easy to see that its inverse mapping is f−1 : [0, b] → [0, 1], defined as

follows:
f−1 (x) =

x

b
,

for any x ∈ [0, b].
Let us consider a t-norm t and a binary operation T : [0, b]2 → [0, b], defined

for any x, y ∈ [0, b] as follows:

(1.1) xTy = f
(
f−1 (x) tf−1 (y)

)
.

Lemma 1.1. The binary operation T defined as above is a t-norm defined on [0, b]
interval.

Proof. It is easy to see that f−1 (x) ∈ [0, 1] for any x ∈ [0, b]. It follows that

f−1 (x) tf−1 (y) ∈ [0, 1]

and fulfills all the properties of a t−norms.
Since f is a linear mapping it follows that

f
(
f−1 (x) tf−1 (y)

) ∈ [0, b]

and fullfills all the properties of a t−norm.
Therefore T is a t−norm on [0, b] interval.
In what follows we will develop a similar method to obtain the associate residuum

of the t−norm defined on [0, b] interval.
The residuum of the t−norm T defined on [0, b] interval is the unique operation

defined for all x, y ∈ [0, b] as follows:

x →T y = max {z ∈ [0, b] | xTz ≤ y} .

Lemma 1.2. Let T be a t−norm defined on [0, b] interval. The binary operation
defined for all x, y ∈ [0, b] as follows:

(1.2) x →T y = f
(
f−1 (x) →t f−1 (y)

)
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is the residuum of t−norm T , where t represents the t−norm defined on unit
interval from which we have obtained the t−norm T as in (1.1).

Proof. Let x, y ∈ [0, b]. Since f and f−1 are non-decreasing functions we
have:

x →T y = max {z ∈ [0, b] | xTz ≤ y}

= f
(
max

{
u ∈ [0, 1] | f−1 (x) tu ≤ f−1 (y)

})

= f
(
f−1 (x) →t f−1 (y)

)
.

This completes the proof.
The equations (1.1) and (1.2) are used now to determine the form of the most

famous t−norms and of their associate residuums.

Example 1.3. Lukasiewicz type t−norm defined on [0, b] interval:

xTy = f
(
max

{
0, f−1 (x) + f−1 (y)− 1

})

= b ·max
{

0,
x

b
+

y

b
− 1

}

= max {0, x + y − b} ;

x →T y = f
(
min

{
1, 1− f−1 (x) + f−1 (y)

})

= b ·min
{

1, 1− x

b
+

y

b

}

= min {b, b− x + y} .

Example 1.4. Gödel type t−norm defined on [0, b] interval:

xTy = f
(
min

{
f−1 (x) , f−1 (y)

})

= b ·min
{x

b
,
y

b

}

= min {x, y} ;

x →T y = f
(
f−1 (x) →t f−1 (y)

)

Since f−1 is not a decreasing function it follows that:
(i) if x ≤ y ⇒ f−1 (x) ≤ f−1 (y). Therefor we get:

f−1 (x) →t f−1(y) = 1.
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Using equation (1.2) we obtain:

x →T y = f
(
f−1 (x) →t f−1 (y)

)

= f(1) = b.

(ii) if x > y ⇒ f−1 (x) > f−1 (y). Therefor we get:

f−1 (x) →t f−1 (y) = f−1 (y) .

Applying equation (1.2) we obtain:

x →T y = f
(
f−1 (x) →t f−1 (y)

)

= f
(
f−1 (y)

)
= y.

¿From (i) and (ii) it follows that:

x →T y =
{

b if x ≤ y
y if x > y

.

Example 1.5. Goguen type t−norm defined on [0, b] interval:

xTy = f
(
f−1 (x) · f−1 (y)

)

= b ·
(x

b
· y

b

)

=
x · y

b
;

The residuum is obtained in the same way as it was obtained the residuum of
Gödel t−norm. It has the following definition:

x →T y =
{

b if x ≤ y
y if x > y

.

Once we have determined the t−norm and its associate residuum on [0, b] in-
terval, we can determin the t−norm and its associate residuum on RGB set.

The t−norm T is defined on [0, b] interval, which represents one component of
RGB set. Therefore if we apply the t−norm T on each component of RGB set we
obtain the t−norm defined on it as follows:

Definition 1.6. For all x, y ∈ RGB, where x = (x1, x2, x3) and y = (y1, y2, y3),
we have:

xTRGBy = (x1Ty1, x2Ty2, x3Ty3, )
where T represents the t−norm defined on [0, b] interval as in (1.1).

We are able to determin now the associate residuum of t−norm TRGB defined
on RGB set. Applying the residuum →T on each component of RGB set we
obtain the associate residuum of t−norm TRGB defined as follows:
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Definition 1.7. For all x, y ∈ RGB, where x = (x1, x2, x3) and y = (y1, y2, y3),
we have:

x →TRGB
y = (x1 →T y1, x2 →T y2, x3 →T y3, )

where →T represents the associate residuum of t−norm T defined on [0, b] interval
as in (1.2).

2. The BL-algebra over RGB set

Once determined the t−norm TRGB and its associate residuum →TRGB we can
go further to develop a BL-algebra over RGB set.

First it is necessary to define the supremum and the infimum of two elements of
RGB set. In what follows we will follow the same steps as in the case of t−norm
TRGB .

We start with the construction of these two binary operations on [0, b] interval,
which represents one component of RGB set, using the operations defined on unit
interval.

Let ∨ be the supremum and ∧ the infimum of two elements defined on unit
interval. Then we define the supremum ∨[0,b] and the infimum ∧[0,b] of any two
elements x, y from [0, b] interval as follows:

(2.1) x ∨[0,b] y = f
(
f−1 (x) ∨ f−1 (y)

)
;

(2.2) x ∧[0,b] y = f
(
f−1 (x) ∧ f−1 (y)

)
;

where f and f−1 are the functions defined in the previous section.
Applying ∨[0,b] and ∧[0,b] on each component of RGB set, we obtain the supre-

mum and the infimum on RGB set defined as follows:

Definition 2.1. For all x, y ∈ RGB, where x = (x1, x2, x3) and y = (y1, y2, y3),
we have:

(2.3) x ∨RGB y =
(
x1 ∨[0,b] y1, x2 ∨[0,b] y2, x3 ∨[0,b] y3

)
;

(2.4) x ∧RGB y =
(
x1 ∧[0,b] y1, x2 ∧[0,b] y2, x3 ∧[0,b] y3

)
;

where ∨[0,b] and ∧[0,b] represents the supremum and the infimum defined on [0, b]
interval as in (2.1) and (2.2).

In what follows we will check some properties of supremum and infimum defined
on RGB set that will be used later.

Lemma 2.2. For any x, y ∈ RGB, where x = (x1, x2, x3) and y = (y1, y2, y3),
the following properties hold:

(2.5) x ∧RGB y = xTRGB (x →TRGB y) ;
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(2.6) (x →TRGB
y) ∨RGB (y →TRGB

x) = 1RGB ,

where 1RGB = (b, b, b) .

Proof. It is enough to prove that the above properties hold on each component
of RGB set.

To prove first property, we use equation (2.2) and we obtain:

x1 ∧[0,b] y1 = f
(
f−1 (x) ∧ f−1 (y)

)
,

and from equation (0.1) it follows:

x1 ∧[0,b] y1 = f
(
f−1 (x) t

(
f−1 (x) →t f−1 (y)

))
.

Using now the equations (1.1) and (1.2) we get:

x1 ∧[0,b] y1 = f
(
f−1 (x1) tf−1

(
f

(
f−1 (x1) →t f−1 (y1)

)))

= f
(
f−1 (x1) tf−1 (x1 →T y1)

)

= x1T (x1 →T y1) .

For the proof of the second property, by (1.2) and (2.1) we have:

(x1 →T y1) ∨[0,b] (y1 →T x1) = f
(
f−1 (x1 →T y1) ∨ f−1 (y1 →T x1)

)

= f
(
f−1

(
f

(
f−1 (x1) →t f−1 (y1)

)) ∨ f−1
(
f

(
f−1 (y1) →t f−1 (x1)

)))

= f
((

f−1 (x1) →t f−1 (y1)
) ∨ (

f−1 (y1) →t f−1 (x1)
))

.

Using the equation (0.2) we get:

(x1 →T y1) ∨[0,b] (y1 →T x1) = f (1) = b.

This completes the proof.
In what follows we introduce the BL-algebra structure over RGB set.
Let 0RGB = (0, 0, 0) and 1RGB = (b, b, b) be two constants from RGB set, then

Lemma 2.3. The structure (RGB,∧RGB ,∨RGB , TRGB ,→TRGB
, 0RGB , 1RGB) is

a BL-algebra.

Proof. To prove that (RGB,∧RGB ,∨RGB , TRGB ,→TRGB , 0RGB , 1RGB) is a
BL-algebra, we have to show that the following properties hold:

(i) (RGB,∧RGB ,∨RGB , 0RGB , 1RGB) is a bounded distributive lattice;
(ii) (RGB, TRGB , 1RGB) is a commutative semigroup having 1RGB as unit ele-

ment;
(iii) x ∧ y = xTRGB (x →TRGB y) (divisibility);
(iv) z ≤ (x →TRGB y) iff xTRGBz ≤ y;
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(v) (x →TRGB
y) ∨RGB (y →TRGB

x) = 1RGB .
The properties (i) and (ii) are obvious. The properties (iii) and (v) are proved

in Lemma 2.2. The property (iv) follows from the definition of the associate
residuum of the t−norm t defined on unit interval and from the mode in which we
have obtained the t−norm TRGB and its associate residuum →TRGB

from it.
Once defined a BL-algebra structure on RGB model we can start to use it in

image compression and decompression, but this is the subject of a next paper.
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DARR – A THEOREM PROVER FOR CONSTRAINED AND
RATIONAL DEFAULT LOGICS

MIHAIELA LUPEA

Abstract. Default logics represent an important class of the nonmonotonic
formalisms. Using simple by powerful inference rules, called defaults, these
logic systems model reasoning patterns of the form ”in the absence of infor-
mation to the contrary of. . . ”, and thus formalize the default reasoning, a
special type of nonmonotonic reasoning. In this paper we propose an auto-
mated system, called DARR, with two components: a propositional theorem
prover and a theorem prover for constrained and rational propositional default
logics. A modified version of semantic tableaux method is used to implement
the propositional prover. Also, this theorem proving method is adapted for
computing extensions because one of its purpose is to produce models, and
extensions are models of the world described by default theories.

1. Introduction

One of the first formalizations of nonmonotonic reasoning was classical default
logic, proposed by Reiter [6]. This logic system is based on first-order logic and
introduces a new kind of inference rules called defaults. Defaults are used to
draw conclusions by making implicit assumptions in the absence of information.
Default logic is nonmonotonic because conclusions derived can be later invalidated
by adding new information.

A default theory (D,W) consists of W, which is a set of consistent formulas of
first-order logic (the facts) and a set of default rules D. The formulas of W are the
axioms of the theory and a default rule has the form1:d = α:β

γ , where α, β, γare
formulas of first order logic,α is the prerequisite (Precond(d)) of the default d, β
is the justification (Justif(d)) of the default d and γ is the consequent (Conseq(d))
of the default d.

In the paper we will use the notations: Justif(D)=
⋃

d∈D Justif(d), Prereq(D)=⋃
d∈D Prereq(d), Concl(D)=

⋃
d∈D Concl(d).

1991 Mathematics Subject Classification. 03B70, 68T27, 68T37.
1998 CR Categories and Descriptors. I2 [Artificial Intelligence] Deduction and Theorem

Proving – nonmonotonic reasoning and belief revision.
1Due to the (semi) representability results for these versions of default logic, we use in this

paper only defaults with at most one justification (unitary default theories).
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Informally, an extension for a default theory is a set of formulas derived from
W using the standard inference rules of classical logic and the defaults. Formulas
belonging to an extension are called nonmonotonic theorems, that means default
conclusions of the default theory, which are not necessarily true, only plausible. A
default theory may have zero, one or more classical extensions. The set of defaults
used in the construction of an extension is called the set of generating defaults for
the considered extension.

A default d = α:β
γ can be applied and thus derive γ if α is believed and it is

consistent to assumed β.
Different variants (justified, constrained, rational) of default logic try to provide

an appropriate definition of consistency condition for the justifications of the de-
faults, and thus to obtain many interesting and useful formal properties for these
logic systems.

There are three computational problems specific to default logics:

Search problem: finding the extensions of a default theory.
Decision problems:

(1) deciding whether a formula belongs to at least one extension of a
default theory (credulous perspective of the default reasoning);

(2) deciding whether a formula belongs to all extensions of a default
theory (skeptical perspective of the default reasoning).

Automated theorem proving for default logics has began with solving the de-
cision and searching problems for particular default theories: normal [6], ordered
seminormal, and then was extended to general theories. The well known classi-
cal theorem proving methods: resolution, semantic tableaux method, connection
method, were incorporated and adapted in the automated systems for default
logics to solve specific tasks.

We will enumerate some of the automated reasoning system for default logics:

• DeReS [2] computes classical extensions for stratified default theories,
using a semantic tableaux propositional prover.

• Exten [1] is based on an operational approach for computing classical,
justified and constrained extensions.

• GADEL [5] uses the principles of genetic algorithms for computing
classical extensions.

• Xray [9] represents an approach of the query-answering problem in con-
strained and cumulative default logics.

The aim of this paper is to introduce theoretical aspects regarding theorem
proving in constrained and rational default logics and to describe an automated
system implemented in C++, called DARR, for these variants of default logic.
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2. Constrained and rational default logics

Constrained default logic was introduced by Schaub [7]. The consistency con-
dition is a global one and it is based on the observation that in commonsense
reasoning we assume facts, we memorize our assumptions and we verify that they
do not contradict each other. The actual extension is embedded in a consistent
context where are retained all the assumptions (justifications) used in the reasoning
process.

Due to the global consistency condition, the constrained logic is strong regular,
semi-monotonic, strongly commits to assumptions and guarantees the existence of
extensions.

Theorem 2.1 [8]: Let (D,W) be a default theory and let E, C be sets of
formulas. (E=actual extension,C=context) is a constrained extension of (D,W) if
and only if:

E=Th(W ∪ Conseq(D’)) and C=Th(W ∪Justif(D’) ∪ Conseq(D’))
for a maximal set D’⊆D such that D’ is grounded in W and W∪Justif(D’)∪Conseq(D’)
is consistent.

This theorem states that the reasoning process formalized by constrained default
logic is guided by a consistent context generated by a strong regular set of defaults.
We observe that a default theory has always a constrained extension because D’=∅
is grounded in W, W is consistent and thus ∅ can be a set of generating defaults.

Rational default logic was developed in [4] as a version of classical default logic
for solve the problem of handling disjunctive information. The property of rational
default logic is that defaults with mutually inconsistent justifications are never used
together in constructing an extension of a default theory.

This logic system is strongly regular but does not guarantee the existence of
extensions, is not semi-monotonic and does not commit to assumptions.

Theorem 2.2: Let (D,W) be a default theory and let E and C be sets of
formulas. (E=actual extension, C=context) is a rational extension of (D,W) if
and only if:

E=Th(W ∪ Conseq(D’)) and C=Th(W ∪ Justif(D’) ∪ Conseq(D’))
for a maximal D’⊆D such that D’ is grounded in W and are satisfied the following
conditions:

(i) W ∪ Concl(D’) ∪ Justif(D’) is consistent
(ii)∀d ∈ D\D’ we have: W ∪ Concl(D’) ∪ {¬Precond(d)} is consistent or
W ∪ Concl(D’) ∪ Justif(D’ ∪{d}) is inconsistent
This theorem provides a necessary and sufficient criteria for the existence of a

set of generating defaults of a rational extension. If condition (i) is satisfied by a
set D’, but condition (ii) is not satisfied, D’ cannot be a set of generating defaults
for a rational extension.

Proof: For proving theorem 2.2 we will use the original definition of a rational
extension.
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Definition 2.1 [4]: Let (D,W) be a default theory, let X be a subset of the set
D of defaults and let S be a set of formulas.

1. We define XS =
{

α
γ |α:β1,...,βn

γ ∈ X, S ∪ {¬βi} is inconsistent, 1 6 i 6 n
}

.
2. A set X of defaults is active with respect to W and S if it satisfies the

conditions:
(i) Justif(X)=∅ or Justif(X)∪ S is consistent;
(ii) Prereq(X)⊆ ThXS (W),

where ThXS (W) is the deductive closure of W using classical inference rules and
the monotonic rules fromXS .

We denote by A(D,W,S) the set of all subsets of the defaults in D which are
active with respect to W and S. ∅ ⊆ A(D,W,S). MA(D,W,S) is defined as the set
of all maximal elements in A(D,W,S).

The set E of formulas is a rational extension for the theory (D,W) if E=ThXE (W),
where X∈ MA(D,W,E).

We observe that X is the set of generating defaults in this original definition of
rational extensions.

The proof of this theorem consists in showing the following:

• Condition (i) from definition 2.1 and condition (i) from theorem 2.2 are
equivalent, with the meaning: the reasoning context is consistent.

• Condition (ii) from definition 2.1 is equivalent with the condition of
groundness for the set of generating defaults.

• Condition (ii) from theorem 2.2 is equivalent with the necessity to be
maximal-active (from definition 2.1) for the set of generating defaults.

The proofs of these equivalencies are immediate.
The set D’ from the theorems above is the set of generating defaults for the

extension (E,C). Thus, both types of extensions are deductive closures of the set
W (explicit content) and the consequents of D’.

The relationships between constrained and rational extensions are as follows:

• the set of rational extensions coincide with the set of constrained ex-
tensions for the class of seminormal theories (all defaults have the form
d = α:β∧γ

γ );
• every rational extension is a constrained extension of the same theory.

3. A theorem prover for propositional logic, based on a modified
semantic tableaux method

The aim of the proposed propositional theorem prover is to verify the consis-
tency/inconsistency of a propositional formula/set of formulas and to provide a
model in the case of consistency. We will use at implementation level the symbols
for the logical operations: ∼ (¬), &(∧), |(∨), > (→), −(↔).
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This theorem prover is based on a modified version of the semantic tableaux
method. We will use the same representation for a tableau, like the function TP
[Schw90], as a set of sets of literals, but the construction of the tableau is different.

The semantic tableau ∪n
i=1{∪ni

k=1{aik}} has n branches and corresponds to
the disjunction of its branches. The i-branch of the tableau is a set of literals:
∪ni

k=1{aik}and represents the conjunction of its literals. The tableau corresponds
to a formula with the disjunctive normal form ∨n

i=1 ∧ni

k=1 aik. If a branch contains
a literal and its negation, we say that the branch is closed, otherwise the branch
is open. If all the branches of a tableau are closed, the tableau is closed, otherwise
the tableau is open.

All the open subtableaux of a semantic tableau T are called the openings of T.
The new idea is to construct the semantic tableau of a formula from its postfix

form. Traversing the postfix form from left to right, using a stack mechanism
to memorize partial semantic tableaux (corresponding to the subformulas of the
formula), and applying operations to the tableaux, the construction of the semantic
tableau is very simple and efficient.

Definition 3.1: Let denote by Tsem(F) the semantic tableau attached to
formula F. We compute Tsem(F) as follows:

Tsem(a) = {{a}}, where ‘a’ is a propositional literal;
Tsem(∼F) = ∼Tsem(F), ‘∼’ is negation
Tsem(F & G) = Tsem(F) & Tsem(G), ‘&’ is conjunction
Tsem(F | G) = Tsem(F) | Tsem(G), ‘|’ is disjunction
Tsem(F > G) = Tsem(F) > Tsem(G), ‘>’ is logical implication
Tsem(F – G) = Tsem(F) - Tsem(G), ‘-‘ is logical equivalence
Definition 3.1 can be extended for computing the semantic tableau of a set of for-

mulas as follows: Tsem({F1,F2,. . . ,Fn}) = Tsem(F1)*Tsem(F2)*. . . *Tsem(Fn),
where T1*T2 =T1&T2.

Definition 3.2: Let T1 = ∪n
i=1{∪ni

k=1{aik}}and T2 = ∪m
j=1{∪mj

k=1{bjk}} be two
semantic tableaux. We define the operations ∼, &, |, >, - for semantic tableaux
as follows:
∼T1={{∼ x1, ...,∼ xn} | xi ∈ ∪ni

k=1{aik}, i = 1, ..., n}
T1 | T2 ={∪ni

k=1{aik} | i=1,. . . ,n} ∪ {∪mi

k=1{bik}| i=1,. . . ,m}
T1 & T2={∪ni

k=1{aik} ∪ ∪mj

k=1{bjk} | i=1,2,. . . ,n, j=1,. . . ,m}
T1 > T2 = ∼T1 | T2 and T1 – T2 = (T1 > T2 ) & (T2 > T1)
Example 3.1: Formula F=∼(a&b)|c&∼d has the postfix form ab&∼cd∼&|.

Its semantic tableau, Tsem(F), is calculated step by step traversing the postfix
form from left to right:
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symbol partial semantic tableaux stack
‘a’: T1=Tsem(a)={{a}}, st tab=(T1)
‘b’: T2=Tsem(b)={{b}}, st tab=(T2,T1)
‘&’: T3=T1 & T2={{a}}&{{b}}={{a, b}}, st tab=(T3)
‘∼’: T4=∼T3=∼{a&b}}={{∼a },{∼b}}, st tab=(T4)
‘c’: T5=Tsem(c)={{c}}, st tab=(T5,T4)
‘d’: T6=Tsem(d)={{d}}, st tab=(T6,T5,T4)
‘∼’: T7=∼T6=∼{{d}}={{∼d}}, st tab=(T7,T5,T4)
‘&’: T8=T5 & T7={{c}}&{{∼d}}={{c,∼d}}, st tab=(T8,T4)
‘|’: T9=T4 |T8={{∼a},{∼b}} | {{c,∼d}}=

= {{∼a},{∼b},{c,∼d}}, st tab=(T9)

Tsem(F)=T9={{∼a},{∼b},{c,∼d}}
The semantic tableaux method is a refutation method:

• formula F is valid (tautology) ⇐⇒ formula ∼ F is inconsistent ⇐⇒
Tsem(∼ F ) is a closed tableau;

• formula F is consistent ⇐⇒ Tsem( F ) is an open tableau;
• formula G is deductible from the set {F1,. . . ,Fn} ⇐⇒ {F1,. . . ,Fn,∼ G}

is inconsistent ⇐⇒ Tsem(F1)*. . . * Tsem(Fn) * Tsem(∼ G) is a closed
tableau.

The main data structures used to implement the concepts: formula, set of for-
mulas, semantic tableau, branch of a tableau are: stiva, lista, formula, mult formula,
ramura and tabela.

4. Implementation of DARR – a theorem prover for propositional
constrained and rational default logic

We will consider in this paper only the case of propositional language as the
underlying language for the default theories.

For easy access to the connection between the literals and the default where
they belong, in the construction of a tableau all the literals are indexed as follows:

• the superior index is: f (literal from W) or j (literal from justifications)
or c (literal from consequents).

• the inferior index is the number of the default where it belongs or is 0 if
the literal belongs to the set of facts.

Adding indices to the literals from a semantic tableau we obtain an indexed
semantic tableau, and we denote it by Tsem ind.

The basic idea in computing constrained/rational extensions is to consider a
maximal set X of formulas, X = W ∪ Concl(D) ∪ Justif(D), that characterize
the reasoning process (the facts, the consequents of the defaults and the justifica-
tions of the defaults) and then to supress the literals from defaults responsible for
contradictions.
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The candidates for the sets of generating defaults for extensions correspond to
the openings in W of the indexed semantic tableau Tsem ind(X).

All variants of default logic have in common the following property: the sets of
generating defaults for extensions are grounded in the set of facts.

Definition 4.1: Let W be a set of formulas and let D be a set of closed defaults.
We define the sequence of sets (Ri)i>0 as follows: R0 = ∅ and

Ri+1 = Ri ∪
{

d =
α : β

γ
|d ∈ D and W ∪ Concl(Ri)| = α

}
, i > 0.

The set D is grounded in W, if and only if D =
∞⋃

i=0

Ri.

D baza =
∞⋃

i=0

Ri is the maximal subset of D, grounded in W and can be cal-

culated using algorithm Submult max baza(W,D,D baza), which implements the
above definition.

Using theorems 2.1 and 2.2 we can develop the following algorithm for comput-
ing all constrained and rational extensions of the default theory (D,W ).

Algorithm 4.1:
Calcul ext restrictii rationale(D,W)

begin
We construct the semantic indexed tableau:

T= Tsem ind(W) *Tsem ind(Justif(D))* Tsem ind(Concl(D)).
We compute all the subsets S1, ..., Sn of D, such that the semantic tableaux:

Tsem ind(W)* Tsem ind(Concl(Si))*Tsem ind(Justif(Si)), i=1,. . . , n
are open.
We eliminate from S1, ..., Sn the sets that are not maximal and we obtain
the sets R1, ..., Rn′ of defaults.
for i=1,. . . ,n’ do

Submult max baza(W,Ri,R′i)
endfor
print “(Th(W∪Concl(R′i)),Th(W∪Concl(R′i)∪Justif(′Ri))) i=1,. . . ,n’ are
all constrained extensions, R′i are the set of generating defaults”
if the theory (D,W) is semi-normal

then print “(Th(W∪Concl(R′i)),Th(W∪Concl(R′i)∪Justif(R′i))) i=1,. . . ,n’
are all rational extensions, R′i are the set of generating defaults”

else
for i=1,. . . ,n’ do

// we verify if R′i is maximal active with respect to W and Th(W∪Concl(R′i))
ind=0
while (ind==0 and not alld ∈ D\R′i are chosen) do

We chose a new d ∈ D\R′i
if (Tsem(W) *Tsem(Concl(R′i))*Tsem(Justif(R′i∪{d}) is open
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and Tsem(W) *Tsem(Concl(R′i))*Tsem({∼Precond(d)) is closed)
then ind=1

endif
endwhile
if ind==1

then print “R′i cannot generate a rational extension ”
else print “(Th(W∪Concl(R′i)),Th(W∪Concl(D′

i)∪Justif(R′i))) is
a rational extension and R′i is its set of generating defaults”.

endif
endfor

endif
end

Accepting alternative possibilities for extending a default theory characterizes
the credulous reasoning. The commonsense reasoning is the human model of rea-
soning, by making default assumptions for overcoming the lack of information.
This type of reasoning belongs to the credulous perspective of the reasoning.

Skeptical reasoning is imposed in prediction problems because the nonmono-
tonic consequences cannot be later modified, which means that derived formulas
does not depend on the alternative assumptions made during the reasoning pro-
cess. It is considered irrational to have the possibility to chose one belief or another
one if they are contradictory.

The specific of the problem will decide the appropriate perspective for the non-
monotonic reasoning used to solve the problem.

According to theorem 3.1 from [3] the skeptical nonmonotonic theorems of
the theory (D,W) belong to the set: Thn

D,∩(W)=Th(W∪{∨k
i=1 ∧ni

j=1 ci
j}) where

Concl(Ri)={ci
1, c

i
2, ..., c

i
ni
}, i=1,. . . ,k, and R1, ..., Rk are all the sets of generating

defaults for the extensions of type n=res (constrained) or n=rat (rational).
If all extensions are calculated, the problem of membership to all extensions is

reduced to a derivability problem in classical logic.
Algorithm 4.2:
Verif consec sceptica (f, D, W, mult reg gen)

begin
// mult reg gen={R1, ..., Rk} from algorithm 4.1, Concl(Ri)={ci

1, c
i
2, ..., c

i
ni
},

i = 1, .., k
if Tsem(W) *Tsem({∨k

i=1 ∧ni
j=1 ci

j})* Tsem({∼f}) is closed
then print “f is a skeptical nonmonotonic consequence of the theory

(D,W)”
else print “f is not a skeptical nonmonotonic consequence of the theory

(D,W)”
endif

end
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The theorem prover for constrained and rational default logics is obtained by
implementing the concepts: indexed tableau, default, default theory and the algo-
rithms proposed above.

5. Conclusions

In this paper we have proposed a theorem for global characterization of rational
extensions using the set of generating defaults and we have developed algorithms
for solving the theorem proving problems specific for constrained and rational
default logics.

The tight relationship between constrained and rational default logics was the
reason to implement an automated theorem prover, called DARR, for both of these
logic systems. The theorem prover proposed for propositional logic creates and
manipulates in a very efficient and elegant way the semantic tableaux, using oper-
ators. A modified version of semantic tableaux method was adapted for computing
constrained and rational extensions of a default theory.

References

[1] G.Antoniou, A.P.Courtney, J.Ernst, MA.Williams: A System for Computing Constrained
Default logic Extensions. Logics in Artificial Intelligence, JELIA’96, Lecture Notes in Arti-
ficial Intelligence, 1126, 1996, pp. 237–250.

[2] P.Cholewinski, W.Marek si M.Truszczynski: Default reasoning system DeReS. Proceedings
of KR-96, Morgan Kaufmann, 1996, pp. 518–528.

[3] M.Lupea: Nonmonotonic inference operations for default logics. ECIT 2002, Iasi, Romania,
Symposium on Knowledge-based Systems and Expert Systems, pp. 1–12.

[4] A.Mikitiuk, M.Truszczynski: Rational default logic and disjunctive logic programming, ı̂n
A. Nerode, L.Pereira, Logic programming and non-monotonic reasoning, MIT Press, 1993,
pp. 283–299.

[5] P.Nicolas, F.Saubion, I.Stephan: Genetic Algorithms for Extension Search in Default Logic,
8-th International Workshop on Non-Monotonic Reasoning (NMR2000).

[6] R.Reiter: A logic for default reasoning. Journal of Artificial Intelligence, 13, 1980, pp. 81–
132.

[7] T.H.Schaub: Considerations on default logics. Ph.D. Thesis, Technischen Hochschule Darm-
stadt, Germany, 1992.

[8] T.H.Schaub: The Automation of Reasoning with Incomplete Information. Springer-Verlag
Berlin, 1997.

[9] T.H.Schaub: XRay system: An implementation platform for local query-answering in de-
fault logics. Applications of Uncertainty Formalisms, Lecture Notes in Computer Science,
vol 1455, Springer Verlag, 1998, pp. 254–378.

[10] C.B.Schwind: A tableaux-based theorem prover for a decidable subset of default logic. 10-th
International Conference on Automated Deduction. Lecture Notes in A.I. 449, 1990.
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THE CURVES ENCODING

VASILE PREJMEREAN AND SIMONA MOTOGNA

Abstract. In this paper we present an image description model that uses
picture description language, and Bezier interpolation. We study 3-type im-
ages (represented by closed curves that conserve the critical points), giving
modelling techniques, and also the coresponding algorithm. Our goal is to
obtain a minimal description Πl-word of the smooth curves that aproximate
the initial given curves.

1. Introduction

In this paper we present a method of encoding the 3-type images (according to
the classification given in [7]) using Πl -words to describe a set of critical points
to which a Bezier interpolation is applied ([3,6,9]).

A 3-type image, described using a finite numbers of lines and curves, can be
approximated through a 4-type image, described through a finite number of points
in a cartesian rectangular system. The approximation consists of connecting the
closest points to a curve c ⊂ R2, points with integer coordinates, obtaining [5]:

MPc(c) = {Apr(P )|P ∈ c}, Apr : R2 → Z2

These points can also be described by Πl-words.
Decoding means the operation of obtaining the curve closed to the initial one,

and will be performed through interpolation, namely Bezier interpolation ([3,6,9]),
of the points described by the Πl-words.

Bezier interpolation has been chosen because the resulting curves will be smooth,
based on the two basic properties of these curves: they cross the initial and final
points and are tangent to the initial and final segments determined by the first,
respectively the last two points [7].

The curve we want to encode (and approximate) is divided in several curves,
each of them initially described by a string of critical points, of length at most
7, according to the lemma 2.2 from [8]. In order to mark the breaking points
of the curve, we will extend the description language Π∗ (where the alphabet

2000 Mathematics Subject Classification. 68Q45, 68T10.
1998 CR Categories and Descriptors. I.5.2 [Computing Methodologies]: Pattern

Recognition – Design Methodology.
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Figure 1. The transformations for the two image types

Π = {r, u, l, d} stands for the commands right, up, left, down) to the language
Π∗| , where Π| = Π ∪ {|}, the command “|” representing the cut of the curve.
These strings of length bigger than 7 will be reduced, eliminating some of them
such that the curve resulted from interpolating the remaining points will preserve
the critical points, thus approximating in an accurate way the given curve. The
algorithm 2.1 tries to reduce the number of points such that it won’t exceed 6.
Since after elimination some points may no longer be neighbours, the description
cannot be done through Π|, and the language Πl = Π| ∪ {↑, ↓} will be needed,
allowing points selection from a path traversed on the 4 directions.

2. The Set of Critical Points and Bezier Aproximation

From now on we will focus on 3-type images formed from closed curves, for
example a system of level curves on a map as in Figure 2. The encoding of this
image will be obtained by processing each curve; we will follow the process for the
exterior curve, and the others will be treated similarly.

We will apply a rectangular network to the curve under study, such that every
point from the curve (pixel from the image) will have two coordinates (x, y).

The string containing the centers of the squares that are crossed by the given
curve will form the string of critical points (marked by small circles in Figure 3).
The string of critical poits may start from anywhere, but it is more convenient
to choose a starting point S such that together with its neighbouring points, they
will be colinear. The explanation lies in the fact that S will also be the final point
and the curve will be smooth, since a bezier curve is tangent to the starting and
ending segments.

If this desirable situation is not possible, namely there aren’t any three neigh-
bour colinear points, then we will use a smoother network, halving the distance
between horizontal and vertical lines and choosing one of the following situations:
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Figure 2. An example of a 3-type image

Figure 3. The string of critical points corresponding to a curve

a: re-compute the set of critical points and search a new starting point S;
b: insert a new point between any two neighbour points, at the middle

distance between them; in this way any three succesive points will be
colinear, and any point can be selected as start;

With this string of critical points we may approximate the given curve through
a Bezier interpolation curve. The resulting curve (see Figure 4) will not be exactly
what we’ve expected, since it does not approximate too well the initial curve. It
does not preserve the critical points as shown in Figure 4.
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Figure 4. Initial curve and the one obtained through interpolation

Applying a new approximation we will get further to the initial curve C0, al-
though it will be desirable to obtain the same CB , constant from now on.

Remark 2.1 : One may notice that if from the set MPC
of critical points we

obtain the curve CB applying a transformation T , and from the curve CB we obtain
the same set MPC

of critical points applying a transformation T1, then these two
transformations represent each others inverses (T1 = T−1 and T = T−1

1 ):

C0 → MPC

T→ CB
T−1

→ MPC

T→ CB ...

The possibility of reducing the number of critical points is studied for each
subcurve (the example from Figure 5 studies the curve between S4 and S1). In
figure 6 you may notice that removing the 4 critical points denoted by ”x” we
obtain a Bezier approximation curve that satisfies the two proposed properties.

In order to obtain the desired approximation curve we will apply Bezier al-
gorithm for each subsequence, and the resulting curve is obtained unifying the s
curves (in Figure 5 we have 4 curves divided by the points S1, ..., S4 determined
by these subsequences: CB(P ) = Bezier(P 1

1 , ..., P 1
n1) ∪ Bezier(P 2

1 , ..., P 2
n2) ∪ ... ∪

Bezier(P s
1 , ..., P s

ns), where Mk
PC

= {P k
1 , ..., P k

nk} is the set of critical points ob-
tained for the curve k applying algorithms similar to the ones we will describe
below.

The result can be further improved if we can reduce even more the number of
points, even if we choose other points, not just removing the initial ones. In the
following, we will study this posiibility, trying to reduce the number of remaining
points (the nine points from figure 6 can be reduced to the five points from figure
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Figure 5. Dividing the curve

Figure 6. Reducing the number of critical points

7, denoted P1, P2, ..., P5. On this specific example, the curve description can be
obtained using only five interpolation points.

There are some remarks to be made analyzing figure 7: the initial point P1

and the final point P5 must be preserved, the second point P2 and the penulti-
mate point P4 must be on the same direction with the old points (in order to
satisfy the smoothness property). The point P3 had been choosen such that the
obtained curve preserves the critical points (meaning also that be obtain a valid
approximation of the given curve).
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Figure 7. Approximation using 5 points

Algorithm 2.1
The following algorithm tries to find the points P1, ..., Pn that describe the

Bezier approximation curve corresponding to the given critical points Q1, ..., Qm,
starting from 2, 3,..., 6 points. If we don’t succeed, the curve must be divided
again (recommended to).

Begin
Input Q1, Q2, ..., Qm;

if (Q1, Qm) can describe the curve then n:=2;
Output Q1, Qm

else
if exists a point R such that (Q1, R,Qm) can describe the curve

then n:=3;
Output Q1, R, Qm

else
if exist 2 points R,S such that (Q1, R, S, Qm) can describe the curve

then n:=4;
Output Q1, R, S,Qm

else
n:=5;

P1 := Q1;Pn := Qm;
Find (P2 on direction Q1 → Q2) and (Pn−1 on direction Qm → Qm−1) and

Find (P3 in the domain (P1, Pn) depending on (P2, Pn−1));
if Ok(Q1, Q2, ..., Qm, P1, P2, ..., Pn)) then Output P1, ..., Pn

else
n:=6;

P1 := Q1;Pn := Qm;
Find (P2 on direction Q1 → Q2) and (Pn−1 on direction Qm → Qm−1) and

Find (P3 and P4 in the domain (P1, Pn) depending on (P2, Pn−1));
if Ok(Q1, Q2, ..., Qm, P1, P2, ..., Pn)) then Output P1, ..., Pn
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else write(’The curve must be divided‘)
End.

We present an analysis of the performed steps:
a) For n = 2 - it is very simple, because it is easy to verify if the segment Q1Qm

is horizontal or vertical and traverse the critical point.
b) For n = 3 - we must verify if the triangle Q1RQm is rectangular or not, and the

critical points are preserved (there are two possibilities R(x1, ym) or R(xm, y1)
).

c) For n = 4 - is not dificult to find the points R(= P2) and S(= P3), because R
must have the coordinates (x1, y) or (x, y1) and S must have the coordinates
(xm, y) or (x, ym), where x ∈ (x1, xm) and y ∈ (y1, ym). There are the four
possibilities presented in figure 8.

Figure 8. The 4 cases using 4 approximation points

d) For n = 5 - one can easy see that if we use only the four points P1, P2, P4, P5

to approximate the curve from figure 7 we obtain a curve like the one from
figure 8 c). Then, we need a point (like P3, from figure 7) to ”drag” the curve.
Finally, the points P1, P2, P3, P4, P5 approximate correctly the given curve.
If we consider the case c) from figure 8, finding P2(x1, y) on direction Q1 → Q2

means to find a value y < y1, because Q1 have the coordinates (x1, y1) and
Q2 have the coordinates (x2 = x1, y2) and analogues, finding Pn−1(x, ym) on
direction Qm → Qm−1 means to find a value x > xm, because Qm have the
coordinates (xm, ym) and Qm−1 have the coordinates (xm−1, ym−1 = ym). The
search of the desired points P1 and Pn−1 is performed alternatively increasing
(or decreasing) the coordinate y starting from the initial value y1 ± 1, and
the coordinate x starting from xm ± 1 until the desired points are obtained
or an imposed maximum value is overflow (i.e., x1, respectively ym). Finding
P3(x, y) in the domain (P1(x1, y1), Pn(xm, ym)) means to find a value x such
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that xm < x < x1 and a value y such that ym < y < y1 (for our case c) from
figure 8).

e) For n = 6 - the points P1, P2, P5, P6 will be constructed like P1, P2, P4, P5 (see
case n=5) and after that we need two points P3(x, y) and P4(x′, y′) in the
domain (P1(x1, y1), Pn(xm, ym)) with the same properties like above (like P3

for n=5).
f) For n > 6 - it is more efficient to cut the curve and to apply this procedure on

each of the parts.
The number of curves in which the initial curve is decomposed can be reduced

in the following way (as in Figure 9):
• eliminating some cutting points: existing colinear points that would solve

the problem correctly;
• searching certain critical points even outside the domain (less points).

Figure 9. The curves obtained with 6 points

As shown in Figure 9a, if during interpolation we consider all points, then the
obtain curve does not preserve the critical points (the three colinear points from
the bottom), but the six points from Figure 9b preserve the curve.

The two interpolation pointsfrom the bottom are needed in order to ”drag“ the
curve through the uncovered critical points. The point P3 is inside the domain
and is needed in order to cover the critical point that remained uncoverd by the
curve from figure 9a.

Searching the points P2, P3, P4, P5 is quite a difficult problem, if we take into
account the eficiency of the algorithm, because the points P2 and P5 must be
searched in the form: P2(x1, y1 + Dy), P5(xm −Dx, y1) and the points P3(x3, y3)
and P4(x4, y4) must be searched in the domain:

(min(X),max(X))× (min(Y ),max(Y )),

where X = {x1, x2, x5, x6} and Y = {y1, y2, y5, y6}
Then, the searching algorithm has the following structure:
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Algorithm 2.2
(1) for Dx := 1 to LimX do
(2) for Dy :=1 to LimY do
(3) for x3 := min(X) to max(X) do
(4) for y3 := min(Y) to max(Y) do
(5) for x4 := min(X) to max(X) do
(6) for y4 := min(Y) to max(Y) do
(7) if Ok(P,Q) then output P

where P = (P1, P2, ..., P6),Q = (Q1, Q2, ...Qm)
This algorithm determines all solutions, but is inefficient due to the six loops.

The optimizing of this algorithm can take into consideration that we may be
satisfied with only some of the solutions or even with one solution in exachang to
a more efficient search.

A first direction for optimization is to unify the loops from lines 3 and 4, respec-
tively from lines 5 and 6. In this way, the search of the points P3, P4 is restricted
on the directions in which the critical points haven’t been covered (in our example,
to the rigth, respectively upwards). Now, the lines 3 to 6 will be replaced with:

For Dr:=1 To Lr Do
For Du:=1 To Lu Do

In this situation, in our example, the points P3 and P4 will be search in the
form P3(x2 + Dr, y1), respectively P4(x5, y5 − Du). Of course, applying such a
strategy does not assure that all solutions will be obtained. This example will
generate two solutions: the one in figure 9b and from figure 10a. The other three
solutions from figure 10 (b,c,d) are not on that direction and we have to extend
the search to a neighbourhood (inside the domain) of the points P3 and P4, if we
haven’t obtained any solution.

Figure 10. Other curves obtained with 6 points

In order to appreciate how close a Bezier curve Bezier(P ) is to the set of critical
points Q, we define the distance δ(P, Q) as:

δ(P, Q) = Nr.Minus + Nr.P lus

where:
• Nr.Minus represents the number of critical points uncovered by the

approximation curve Bezier(P )
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• Nr.P lus represents the number of extra points covered by the approxi-
mation curve (/∈ Q)

Then, the distance δ(P, Q) is the cardinal of the simetric difference (∆) between
the set of representative points for the Bezier curve (CB) corresponding to the
determined points P ) and the set of given critical points (MPC

= Q):

δ(P, Q) = |{Apr(B)|B ∈ Bezier(P )} ∆ Q|
For example, if we consider the approximation from figure 11, obtained for

Dx = 4(P5(7, 7)), Dy = 5(P2(5, 4)), Dr = 2(P3(7, 4)) and Du = 1(P4(7, 8)), the
distance is δ(P,Q) = 2 + 1 = 3, since the points (5,5) and (7,5) are not covered,
and the point (6,6) should not be included.

Figure 11. An example of approximation

If we study the minimal values obtained for the pairs (Dy, Dx) from table
2.1 we can notice that for (Dy,Dx) ∈ {(6, 3), (6, 4), (6, 5)} there exist solutions,
because the minimal values for the distance δ are zero. These minimal values are
obtained choosing P3 in the neighbourhood of P2, respectively choosing P4 in the
neighbourhood of P5. Another remark is that these values are grouped in a zone,
to which if we get farther, then the values increase.

This remark gives the possibility to limit the values LimX and LimY from the
loops (1) and (2), since the more we get farther from the zero positions, the more
the values of distances increase.

Even more, if we re not interesting in obtaining all solutions and one soltuion
is enough (as the approximation problem was initially stated), for example the
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Min(δ) Dx: 1 2 3 4 5 6
Dy: 1 12 10 10 8 8 8

2 8 8 8 6 6 6
3 6 6 6 6 6 6
4 4 4 4 4 5 5
5 6 4 3 2 3 4
6 2 2 0 0 0 4
7 8 3 2 1 1 3

Table 1. The distances obtained for the given curve

position (6,3), then the search should not parse the entire matrix, but the domain
(1, 1) × (6, 3), so LimX = 3 and LimY = 6. The search can be performed
succesively adding square matrixes, in the order given in table 2.2. One may
notice that in the fifth column (or even earlier) the values of δ increases upwards,
so it is possible to quit searching the solution in that zone and move to the next
line.

Searching order Dx: 1 2 3 4 5 6
Dy: 1 1 4 9 16 25 -

2 2 3 8 15 24 -
3 5 6 7 14 23 -
4 10 11 12 13 22 -
5 17 18 19 20 21 -
6 26 27 28 ... ... -
7 - - - - - -

Table 2. The searching order - first version

Of course, a Branch and Bound algorithm will be more suitable, especially
since we have already defined a distance δ to the solution (if δ(P, Q) =) then P
is a solution). We will characterize a state through the components Dx, Dy, d1

and d2. The ditance d1 represents the computation step, and d2 = δ(Dx, Dy).
The initial state will be (1, 1, 1, δ(1, 1)), and the final state will be characterized
by δ = 0(d2 = 0).

From a current state (choosen from the set of active states, where the minimum
of the sum d1 +d2 is obtained) we will generate two active states (Dx+1, Dy, d1 +
1, δ(Dx + 1, Dy)) and (Dx, Dy + 1, d1 + 1, δ(Dx,Dy + 1)), and this current state
will become pasive. The steps to be performed can be studied in table 2.3, and
it is also easy to remark that the solution will be obtained in 8 steps. If the set
of active states become empty, such that no new selection of a current state can
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be performed, then the problem has no solution. In order to end the algorithm in
such a case we must specify a limit LimX for Dx and a limit LimY for Dy.

Searching order Dx: 1 2 3 4 5 6
Dy: 1 1+12 2+10 10 8 8 8

2 2+8 3+8 8 6 6 6
3 3+6 4+6 6 6 6 6
4 4+4 5+4 6+4 4 5 5
5 5+6 6+4 7+3 2 3 4
6 2 7+2 8+0 0 0 4
7 8 8+3 2 1 1 3

Table 3. The searching order - Branch and Bound approach

A last remark is that in the case in which there are more than one active state
with the same minimal value for d1 + d2, we will choose the one for which d2 is
minimal. As shown in table 2.3, at the step 7 we have ”preferred“ the state (2,5,6,4)
(or (3,4,6,4)) although the state (2,3,4,6) has the same value for d1+d2 = 10, since
is closer to the solution (d2 approximates the distance between a state and the
final state). Even if we would have choosen the other state, the algorithm gives
the desired solution, but an extra step would have been performed, and then come
back and choose the ”preferred” state.

3. Using Π-words to describe pictures of 3-type

In this section, we present a model of approximating a curve using a picture
description language. At the beginning, we will use the alphabet Π = {r, u, l, d} to
describe the movement of the pen on the four directions, then we will extend the
commands alphabet to Π| = Π∪{|} (where | denotes an interuption of the sequence
ofcritical points) in order to define the cuts of a curve; eventually, this alphabet
will be enhanced with two more commands pen-up and pen-down Πl = Π|∪{↑, ↓},
in order to avoid (eliminate) certain points, reducing the number of critical points
that will be interpolated obtaining an approximation curve.

If we consider the example from figure 5, then the Π-word w ∈ Π∗ is:
w = lluulullluu uurruururr rrdrdrrrdrdrdrd dldlllldldll

The insertion positions, corresponding to the possible interuption points (points
between two colinear points), can be anywhere between two identical commands(characters).
If this is not possible or is not convenient, then the word w can be easily modi-
fied doubleing each character. In this manner, the curve can be described starting
from any point and can be interrupted at any moment, since any three consecutive
points are colinear. The description word becomes:

w′ = l4u2(u2l2)2l4u8r4u2(u2r2)2r6(d2r2)2r4(d2r2)3d4l2d2l8(d2l2)2l2.
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Since our example doesn’t need any network or command word doubleing, we
will work from now on with the word w (not w’).

Since the command sequence is circular [1], we can execute it from any position,
and then come back to the beginnign of the string and execute the remaining
commands. The start command will be a character that has a predecessor (left
neighbour) equal to it (the points must be colinear).

Even more, for a selected string, marked with interruption commands, denoted
| and that will cut the string into substrings, corresponding to the curves that
forms the given closed curve; for example, the Π|-word that describe the curve
from figure 5 is

w = lluulullluu|uurruururr|rrdrdrrxrdrdrdrd|dldlllldldll
we can introduce avoiding commands (eliminating critical points), that will

preserve the quality of the curve. (the smoothness and the critical points).
We can use the alphabet Πl that allows the construction of Πl-words (contain-

ing two more symbols ↑= pen− up and ↓= pen− down) : Πl = {r, u, l, d, |, ↑, ↓}.
These words will describe a sequence of points that determines a curve by Bezier
interpolation. This means that a set of Πl-words describes curves that compose
a 3-type image. The Πl-word for the curve from figure 6 is d ↑ l ↓ dl ↑ l ↓ ll ↑
d ↓ ld ↑ l ↓ l, and for the curve from figure 7 the Π-word is ↑ d2 ↓ d ↑ l7u ↓
u ↑ d3r ↓ r ↑ l2 ↓ l. An even simpler description convention can be used, if the
points are rare, as in our example, if we remove the sequence that denote a point
of the form ↓ τ ↑ (where τ ∈ Π) and replace it with a single command character
(for example ↓), that attach the current point to the sequence of interpolation
points. This means that, implicitely, the movement of the pen is done ”without
drawing“, and when a ↓ command is met, the current point will be stored. We
could also consider that these characters are present at the beginning and at the
end of the description word. In the example from figure 7, the description word
may be ↓ d3 ↓ l7u2 ↓ d3r2 ↓ l2 ↓ l3 ↓ or if we give up the first and last character,
we obtain a reduced description: w = d3 ↓ l7u2 ↓ d3r2 ↓ l2 ↓ l3.

Reducing the number of critical points also implies the preserving of the initial
points, so the fixed point problem for a new approximation (curves convergence)
is solved.
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UML MODEL CHECKING
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Abstract. Correctness against the UML definition has to be a prerequisite
for every UML model. In terms of programming languages this requirement
is stated: “the precondition for every application is to be syntactically and
semantically correct against the language specification”. The objective of
this paper is to go over the state of the art in this domain highlighting some
drawbacks in the UML 1.4 AO and WFR1. The XMI adoption as a standard
format for UML models transfer opened the way to verifying the level at which
different UML tools comply with the UML semantics. Taking into account
that existing OCL tools do not implement all the functionalities required
for efficient UML model checking, we have designed and implemented an
OCL evaluator2. The possibility to check every UML Model stored in XMI
format, a repository fully compliant with UML 1.4, including all the AO,
the possibility to evaluate the WFR, MR3 and BCR4, are among the main
features of our tool.

Key words: UML 1.4, OCL, UML model checking, CASE Tools, AO,
WFR, OCL evaluator

1. The UML model correctness

UML model correctness is certainly a very important aspect unfortunately ig-
nored by many specialists in the modeling domain. How else could we possibly
explain a series of errors found in different UML models, which the user is not
warned about after the check?

By model correctness, we understand the correctness of the model against the
modeling language. For UML this means satisfying the WFR. Further, after the
WFR have been passed, the BCR have to be syntactically and semantically correct.
Asking that different kinds of applications comply with a set of Methodological
Rules, may extend the concept of “correctness”. An aspect related with model
checking is the moment at which the check is performed. In this paper, we are
referring to key moments in the application’s life cycle; for example the moment
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when the design model is automatically turned into code, the moment right be-
fore the end of modeling, the moment before exporting the model to another tool
etc. The importance of model validation in the above-mentioned key moments
is unanimously recognized. For example, in his paper “Consistency Checking”
[Moore2000], Michael Moors states: “. . . during model editing, the model will fre-
quently be syntactically incorrect, and the tool needs to be able to allow for syntac-
tical incorrectness in this mode.” The Amigos also call this “Inconsistent models
for work in progress,” because “the Final model must satisfy various validity con-
straints to be meaningful.”

To understand better the value of UML models correctness, we suggest you
reflect over the syntactic and semantic correctness of an application against the
implementation language. In this later case, the existence of errors does not allow
you to build the application. The process will be interrupted at compile or link
time. Using the existent CASE Tools, the errors identified in the analysis or design
models, do not interrupt the development process immediately. Consequently,
errors are transferred to the next model produced in the software lifecycle. This
implies a bigger amount of time and money spent on application development.

2. State of the art

To test UML model correctness, at least all the WFR must be evaluated. Nat-
urally the “precondition” for the above statement is: The WFR have to be correct
and complete (in other words, they have to cover at least all the important seman-
tic features of the UML model elements).

The usage of formalisms such as script languages or formal languages (different
from OCL) has some drawbacks. In order to be rigorous, we have to demonstrate
for each WFR, the equivalence between its specification in OCL and its speci-
fication in the used formalism. (Supposing that WFR are correctly specified in
OCL). Another problem, even more embarrassing, can appear when the checks
are done using a UML CASE tool. This is because even in the best case (when
the CASE Tool repository fully implements the UML metamodel), the tools don’t
allow the user to create some model elements or to declare certain relationships
among the existent model elements. The most used CASE Tools – Rational Rose,
Together, Poseidon, etc. haven’t yet implemented: the Inheritance Relationship
among packages, the Permission Relationship between packages (including stan-
dard stereotypes for this relationship), the Collaboration ModelElement, and other
concepts defined in UML 1.4. Moreover, the Repository Interface for the above-
mentioned tools is pretty different from the interface formed by joining the get and
set operations defined for the UML metamodel classes and the AO. (Our position
is that a minimal UML repository interface should include at least the AO and
the set and get operations)

Among the existent CASE Tools offering OCL support (http://www.klasse.nl
/ocl) neither Argo (Poseidon) nor Use or ModelRUN don’t provide user access
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to the tool repository by means of AO. Consequently they do not support UML
model checking in a straightforward manner.

In some UML papers, and particularly in [Richters 2000] there are mentioned
different drawbacks of the UML AO and WFR. Most of them are syntactic and
semantic errors. Unfortunately, there are also some conceptual errors. In the
following, we will try to focus on this category of errors.

We noticed that the UML 1.4 “static semantics”, expressed using OCL expres-
sions, contains a lot of errors. Consequently, we will try to find the rationale of
this situation and propose some solutions.

3. The LCI OCL Evaluator

Because the main objective of this paper is OCL, AO and WFR, we will not
insist on our tool architecture. Below we roughly present how to use our checker.

As we can see in Figure 1, the main components of this tool are: the reposi-
tory, the XML reader, the OCL/UML Type System, the syntactic analyzer, the
semantic analyzer, the evaluator and the GUI.

First, the user has to load the model, the UML 1.4 metamodel (both expressed
in XMI format) and the WFR or other constraints or operations specifications,
expressed in a text with the “.ocl” extension. The succession of these three oper-
ations does not matter.

Before beginning the checking process, the user has to verify the OCL expres-
sions syntactically and semantically. In case of semantic errors, the tool offers
the possibility to do a partial evaluation. In this process, the type of expressions
located before the error can be calculated.

The next step consists in identifying the model element(s) to be checked next
against an OCL constraint. Finally, the last step consists in constraint evaluation.
As we mentioned before (in case of semantic errors), the user has the possibility
to evaluate the whole expression or parts of them.

For the moment we are, the user has just the possibility to modify the OCL
expressions. To correct (change) the UML models, he has to use the UML CASE
Tools and to save the modified models in XMI format, in order to do a new check.
To evaluate dynamically the OCL constraints we intent to translate the OCL
specifications in a programming language (Java, C++ etc.) and to generate auto-
matically the code for the UML models. Concerning the methods code, this will
be write by hand or generate automatically using the State Transition Diagrams
or Object Diagrams.

Taking into account the aspects mentioned in the previous section, one of our
main objectives was to support the user in checking UML models. In order to
do this, the OCL constraints and specifications can be evaluated both at the
metamodel and model level.
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4. Errors in AO specifications

First of all we will analyze the operation pair contents, allContents, defined in
the Namespace context.

As is very well mentioned in [Richters 2000] both operations have the same
specification in English and in OCL. A first observation we made is that the spec-
ification below, can not be evaluated because the stop condition is not explicitly
mentioned.

contents: Set(ModelElement)
contents = self.ownedElement->union(self.namespace.contents)
In order to evaluate the contents AO defined in the Namespace context, we

propose:
contents = if self.namespace->isEmpty then self.ownedElement else
self.ownedElement->union(self.namespace.contents) endif
We found this specification clearer even in case of implementing manually in

the UML 1.4 API repository. The second remark concerns the expressiveness of
the operation’s name, directly connected to the contents “specification” in English
language. “The operation contents results in a Set containing all ModelElements
contained by the Namespace”.

For us, the above operation, return the Set of ModelElements visible (potential
servers) in a Namespace if we do not take into account the dependency relationship
among the Namespace and other server Namespaces.

Analyzing the UML AO, we notice that the above operation is redefined in the
Classifier context and in the Package context, where the inherited elements are
tacked into consideration. The specifications are identical in both cases. Taking
into account that both Classifier and Package are descendents of GeneralizableEle-
ment, our opinion is that it would be better to define allContents operation only
in GeneralizableElement. In this case, the conflict existent in Subsystem, do to
a multiple inheritance of allContents operation both from Classifier and Package
disappear.

The operation is equally redefined in Collaboration, in order to rejected the
elements specialized in descendants. In this case, the potential conflict due to a
multiple inheritance of allContents operation in the GeneralizableElement is solved
due to the above mentioned redefinition.

Another example is provided by the specification of allFeatures AO. In this case,
there is discordance between the “specification” (description) made in English lan-
guage and those made in OCL. In [UML 1.4] is stated: “The operation allFeatures
results in a Set containing all Features of the Classifier itself and all its inherited
Features.”, the OCL specification being:

allFeatures =
self.feature->union(self.parent.oclAsType(Classifier).allFeatures)
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We can simply notice that in the OCL specification the ancestors’ private fea-
tures had not been eliminated. The correct specification can be (the reject opera-
tion can also tacked into consideration):

allFeatures = self.feature->union(self.parent.oclAsType(Classifier)
.allFeatures->select(f | f.visibility=#public or f.visibility=#protected))
The allFeatures is a very important specification because she is used in allOper-

ations, allMethods and allAttributes AO and in different WFR.
allContents = self.contents->union(self.parent.allContents->select(e |
e.elementOwnership.visibility = # public or e.elementOwnership.visibility =
# protected))

5. Errors in WFR

In the following we will analyze the WFR using the above mentioned AO,
beginning with the WFR[4] defined in the Association context.

The connected Classifiers of the AssociationEnds should be included in the Names-
pace of the Association, or be Classifiers with public visibility in other Namespaces
to which the Namespace of the Association has “access” Permissions.

self.allConnections->forAll(r | self.namespace.allContents->includes
(r.participant)) or
self.allConnections->forAll(r | self.namespace.allContents->excludes
(r.participant) implies
self.namespace.clientDependency->exists(d | d.oclIsTypeOf(Permission) and
d.stereotype.name = ’access’ and
d.supplier.oclAsType(Namespace).ownedElement->select(e |
e.elementOwnership.visibility = #public)->includes(r.participant) or
d.supplier.oclAsType(GeneralizableElement).
allParents.oclAsType(Namespace).ownedElement->select(e |
e.elementOwnership.visibility = #public)->includes(r.participant) or
d.supplier.oclAsType(Package).allImportedElements->select(e |
e.elementImport.visibility = #public)->includes(r.participant)))
Apart from the specification form, we notice that the classifiers inherited were

taken into consideration twice. These because the association’s Namespace has to
be a Package and, as we mentioned in the previous section, in the Package, the
allContents operation had been redefined in order to include the inherited elements.

allContents = self.contents->union(self.parent.allContents->select(e |
e.elementOwnership.visibility = #public or e.elementOwnership.visibility =
#protected))
More, the Permission relationships having the stereotype ‘friend’ and ‘import’

have not been taken into consideration. In this case, our proposal is to define in
the Package context an allVisibleElements AO in order to return all the elements
able to be used as servers in that Package. This AO will be useful to check all the
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relationships defined in that Package and to calculate the potential servers for the
features of Classifiers defined in this Package.

context Package::allVisibleElements():Set(ModelElement)
post:
let clDepSuplElem(d: Dependency): Set(ModelElement)= d.supplier->asSequence
->first.oclAsType(Package).ownedElement
let clDepStName(d: Dependency):String = d.stereotype->asSequence->first
.name in
allVisibleElements() = self.allContents->union(self.clientDependency->
select(oclIsKindOf(Permission))->iterate(cD ; acc:Set(ModelElement)=Set{} |

if (clDepStName(cD)=’import’ or (clDepStName(cD)=’access’))
then acc->union(clDepSuplElem(cD)->select(e | e.oclIsTypeOf(Classifier)

and e.elementOwnership.visibility=#public))
else if (clDepStName(cD)=’friend’)

then acc->union(clDepSuplElem(cD)->select(oclIsTypeOf(Classifier)))
else acc->union(Set{})

endif
endif))

In this case, the Association WFR[4] will be:
context Association
inv WFR 4:
(self.namespace.allVisibleElements.oclAsType(Classifier)->asSet)
->includesAll(self.connection->iterate(ae ; acc:Set(Classifier)=Set{} |
acc->including(ae.participant)))
In order to support our proposal, we will analyze now, the BehavioralFeature

WFR[2].
“[2] The type of the Parameters should be included in the Namespace of the

Classifier.”
self.parameter->forAll(p | self.owner.namespace.allContents->includes
(p.type))
It is very clear that in this case, the classifiers visible by means of relationships

declared among the classifier’s package and other packages were not be tacked into
consideration. The above proposed allVisibleElements AO is proving to be useful
in this context also.

Another aspect worth to be analyzed is the Class WFR[2].
“A Class can only contain Classes, Associations, Generalizations, UseCases, Con-

straints, Dependencies, Collaborations, DataTypes, and Interfaces as a Namespace.”
context Class
inv WFR 2:
self.allContents->forAll->(c | c.oclIsKindOf(Class) or c.oclIsKindOf(Association)

or c.oclIsKindOf(Generalization) or
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c.oclIsKindOf(UseCase) or c.oclIsKindOf(Constraint) or
c.oclIsKindOf(Dependency) or c.oclIsKindOf(Collaboration) or
c.oclIsKindOf(DataType) or c.oclIsKindOf(Interface))
Concerning this WFR there are at lest two observations to do. Firstly, suppos-

ing that this WFR really has a role, the invariant is incomplete because at least
the Realisation relationships between an interface and a Classifier, the Derivation
relationships and the AssociationClasses were forgotten.

Due to the above mentioned lacks (errors) if we will evaluate this WFR[2], for
classes included in simple UML models, like the model presented in Figure 2, the
evaluation result will be fail as you can see in Figure 3.

We suppose that the followings WFRs are straightly connected with the above
mentioned WFR. “[1] A Component may only contain other Components in its
namespace.”

context Component
inv WFR 1:
self.allContents->forAll(c | c.oclIsKindOf(Component))
“[2] A DataType cannot contain any other ModelElements.”
context DataType
inv WFR 1:
self.allContents->isEmpty
Taking into account that both Component and DataType are Classifier’s descen-

dants the evaluation of these WFR will fail even for the simplest UML models.
Analyzing the last three WFR, the following question arises: “What is the role,
of these invariants?” In order to eliminate this kind of unpleasant situations, we
suggest that in similar cases to describe (using the English language) the meaning
of each WFR.

The lasts WFR we will analyze in this paper, are the WFR[4] and WFR[5]
defined in the Classifier context.

“[4] The name of an Attribute may not be the same as the name of an opposite
AssociationEnd or a ModelElement contained in the Classifier.”

context Classifier
inv WFR 4:
self.feature->select(a | a.oclIsKindOf (Attribute))->forAll(a |
not self.allOppositeAssociationEnds->union(self.allContents)->collect(q | q.name)
->includes(a.name))
“[5] The name of an opposite AssociationEnd may not be the same as the name

of an Attribute or a ModelElement contained in the Classifier.”
context Classifier
inv WFR 5:
self.oppositeAssociationEnds->forAll(o | not self.allAttributes->
union(self.allContents)->collect(q | q.name)->includes(o.name))
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Even a brief inspection shows us an abusive use of allContents AO. Our state-
ment is based on the fact the WFR do not have to forbid legal situations accepted
in object-oriented programming languages like those showed in Figures 4 & 5.
More, the last two WFRs, offer us the possibility to highlight the importance of
an explicit rule for naming features in UML. This rules have to state explicit that
in descendants, the features names are formed prefixing the name feature with
“NamespaceName::” for example, if we define in the class A an attribute named
“a1”, in the class B, this attribute will be called “A::a1”. We supposed that the
class A was defined in the same package with the class B. If the class A was defined
in another package P2, in the class B, the attribute a1 inherited from the class A
will be called “P1::A::a1”. If in the class B, there are not other attributes named
a1, than the attribute defined in the class A can receive the alias a1. Taking into
account that a possible name conflict among the attributes defined in a class and
the associationEnds attached to the associations connecting this class, can appear
only in the execution model (obtained by translating in code the UML design
model), the two above mentioned WFR, can be joined in the following WFR:

context Classifier
inv WFR 4:
self.feature->select(a | a.oclIsKindOf (Attribute))->forAll(a |
not self.oppositeAssociationEnds.name->includes(a.name))

Figure 1. The UML model

In order to illustrate the above-mentioned statements, we will evaluate the Clas-
sifier WFR [4] and [5]: “The name of an Attribute may not be the same as the name
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Figure 2. WFR 4 Evaluation in the context of class A

of an opposite AssociationEnd (or a ModelElement contained in the Classifier)1” us-
ing two different formalisms: Rose Script language and OCL.

This because the above-mentioned WFR can be expressed using the Rational
Rose Script Language (see next section). If we try to specify (using the Rose Script
Language) the Stereotype, Interface, Component, Collaboration WFR, this will not
be possible due to the fact that the REI2 dose not offer access to their required
information.

In the case of “access violation”, the situation is somewhat similar. As men-
tioned in [Moore2000]: “An access violation occurs when a class in one package
references a class in another package in the absence of an import relationship
between the two packages. An access violation will also occur when a package
references a class from another package, whose export control is set to Protected,
Private, or Implementation. In such cases, the presence of an import relation-
ship between the two packages has no bearing. All references to implementation
classes from different packages are sited as violations. Rose provides a very nice
GUI for these kinds of inconsistencies – Report: Show Access Violations shows a

1The brackets are used to highlight that the inclusion of ModelElements different from
attributes is incorrect, as we shall prove in Section 5

2Acronym for Rational Rose Extensibility Interface
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list of violations created by generalizations, ”realize” relationships, dependencies,
and ”instantiates” relationships. But it does not show violations created by
association classes or types.”

In order to explain the above-mentioned Rose function (menu) limits, let us
consider two different packages P1 and P2, placed at the same level in the model.
Let’s define class A in package P1, and class B in package P2. Set the visibility
of A in package P1 as being private and assume that B uses A. Irrespective of the
existence of a dependency relationship between P2 and P1, the function “Report
Access Violation” doesn’t mention this error. Moreover, all the WFR that use the
Permission relationship cannot be expressed in Rose Script Language because Rose
does not implement this UML relation.

Consequently, the Rose Script Language supports evaluation only of some WFR.
Unfortunately even in cases when the WFR specification can be implemented in
the script language, it is inefficient as compared to its OCL specification.

6. WFR evaluation using Rose Script Language

The OCL Tools mentioned at http://www.klasse.nl/ocl, offer a little part
of the functionalities needed to check UML Models. Consequently, in UML CASE
tools, checks are usually done using different script languages. The model infor-
mation accessible by means of script languages is arbitrarilydetermined by each
tool provider.

The typical example is offered by Rational Rose, the UML most widely used
and known CASE Tool. Consequently, in order to compare the script language
support against OCL language support in checking UML models, we wrote the
following script, used to check the UML Classifier WFR [4&5] in Rose.
’---------------------------------------------------------------------------

’Classifier_WFR_[4&5]

’Verifies the above Well-Formedness Rule

’Description:

’[4] The Name of an Attribute may Not be the same As the Name of an opposite

’AssociationEnd.

’OCL Expression:

’ allAttributes.name->excludesAll(allOppositeAssociationEnds.name)

’---------------------------------------------------------------------------

Sub AllNonPrivateAttributes(theClass As Class,

ByRef resultAttrs As AttributeCollection)

’add the non private attributes of the current class

Dim attrs As New AttributeCollection

Set attrs = theClass.Attributes

For i = 1 To attrs.Count

If (attrs.GetAt(i).ExportControl <> rsPrivateAccess) And

(Not resultAttrs.Exists(attrs.GetAt(i)))

Then resultAttrs.add attrs.GetAt(i)
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End If

Next i

’now the attributes of the superclasses

Dim sc As ClassCollection

Set sc = theClass.GetSuperclasses

If sc.Count > 0 Then

For i = 1 To sc.Count

Call AllNonPrivateAttributes(sc.GetAt(i), resultAttrs)

Next i

End If

End Sub

Sub AllOppositeAssociationEnds(theClass As Class,

ByRef resultAssocEnds As RoleCollection)

’add the opposite association ends of the current class

Dim assocEnds As New AssociationCollection

Set assocEnds = theClass.GetAssociations

For i = 1 To assocEnds.Count

If Not

resultAssocEnds.Exists(assocEnds.GetAt(i).GetOtherRole(theClass))

Then resultAssocEnds.add assocEnds.GetAt(i).GetOtherRole(theClass)

End If

Next i

’now the opposite association ends of the superclasses

Dim sc As ClassCollection

Set sc = theClass.GetSuperclasses

If sc.Count > 0 Then

For i = 1 To sc.Count

Call AllOppositeAssociationEnds(sc.GetAt(i), resultAssocEnds)

Next i

End If

End Sub

Sub AllAttributes(theClass As Class, ByRef resultAttrs As AttributeCollection)

Dim theAttrs As AttributeCollection

’get all non private attributes of this class and it’s superclasses

Call AllNonPrivateAttributes(theClass, resultAttrs)

Set theAttrs = theClass.Attributes

’add the private attributes of the current class

For i = 1 To theAttrs.Count

If (theAttrs.GetAt(i).ExportControl = rsPrivateAccess) Then

resultAttrs.add theAttrs.GetAt(i)

Next i

End Sub
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Function checkWFR(theClass As Class) As Boolean

Print "Class: " & theClass.Name

’Get allAttributes

Dim allAttrs As New AttributeCollection

Call AllAttributes(theClass, allAttrs)

Print "Attributes: "

’print allAttributes - additional operation result;

For i = 1 To allAttrs.Count

Print ,allAttrs.GetAt(i).name

Next i

’Get allOppositeAssociationEnds

Dim allOpEnds As New RoleCollection

Call AllOppositeAssociationEnds(theClass, allOpEnds)

’print allOppositeAssociationEnds - additional operation result;

Print "Association Ends: "

For i = 1 To allOpEnds.Count

Print ,allOpEnds.GetAt(i).name

Next i

’compare the names of the attributes and of the opposite association ends

Print

For i = 1 To allAttrs.Count

For j = 1 To allOpEnds.Count

If allAttrs.GetAt(i).name = allOpEnds.GetAt(j).name Then

Print "WFR[4&5] Failed !"

Print ,"Attribute ’" & allAttrs.GetAt(i).name &

"’ = Association End ’" &

allOpEnds.GetAt(j).name & "’"

checkWFR = false

Exit Function

End If

Next j

Next i

Print "WFR[4&5] Passed ! "

checkWFR = True

End Function

Sub Main

Dim selectedClasses As ClassCollection

Set selectedClasses = RoseApp.Currentmodel.GetSelectedClasses()

’check the rule against the selected classes

If selectedClasses.Count = 0 Then

MsgBox "No classes selected!"

Exit Sub

End If

’open the viewport and print the results
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Viewport.Open

For i = 1 To selectedClasses.Count

Print "--------------------------------------------------"

Dim aClass As Class

Dim ruleResult As Boolean

Set aClass = selectedClasses.GetAt(i)

ruleResult = checkWFR(aClass)

Print "--------------------------------------------------"

Print

Next i

End Sub

Evaluating the above script, for the UML Model presented in Figure 2, when
class A is selected, we will obtain:

Figure 3. Script Evaluation Result

As we can notice, the result is correct. Even if we take into account just the
“Function checkWFR(theClass As Class) As Boolean” (considering that the infor-
mation furnished by subroutines is offered by REI), we notice that the WFR OCL
specification (see Section 5) is by far more compact and clear than the above WFR
script code.

As mentioned in the previous section, using script languages has some draw-
backs. First of all, we cannot express all the WFR specified in UML. More, REI
doesn’t offer all the information accessible by means of AO. Even in cases when
the specification is possible by means of script language, this proved to be cum-
bersome.

Of course, the WFR semantic correctness represents the precondition which
needs to be fulfilled in order to do the above-mentioned checks. This “precondi-
tion” cannot be evaluated in the absence of adequate OCL Tool support. This
doesn’t have to be restrained to the syntactic and semantic WFR checking. It is
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mandatory that the OCL tools support the full evaluation of the OCL expressions
expressed at the metamodel level. In the next section, we will present the results
obtained using our OCL evaluator.

7. WFR evaluation using OCL

In the NEPTUNE IST 1999-20017 Research Project framework, we designed
and implemented a tool having as first goal UML model checking. In order to
support the tool’s independence with respect to UML CASE tools, two main de-
cisions were taken: to use the exchange format for UML models (XMI) and OCL
as the rule language. The tool takes the UML models saved in XMI format and
checks their correctness against WFR. Compared with USE tool and experience
presented in [Richters2000] our tool supports complete UML model checking, en-
abling the user to take into account all the WFR. (The WFR and AO semantic
errors reported in [Richters2000] are type-checking errors). The errors discussed
below are “design” errors.

In order to provide the opportunity to do some comparisons between the Rose
Script Language and OCL, we will analyze the Classifier WFR [4] and [5].

[4] The name of an Attribute may not be the same as the name of an opposite
AssociationEnd or a ModelElement contained in the Classifier.

self.feature->select(a | a.oclIsKindOf(Attribute))->forAll(a |
not self.allOppositeAssociationEnds->union(self.allContents)->collect(q | q.name)
->includes(a.name))
[5] The name of an opposite AssociationEnd may not be the same as the name

of an Attribute or a ModelElement contained in the Classifier.
self.oppositeAssociationEnds->forAll(o | not self.allAttributes->
union (self.allContents)->collect(q | q.name )->includes(o.name))
A simple analysis of these two rules gives us the opportunity to notice their

similarity. From the informal point of view, in the description made in natural
language only the phrase topic is changed. Concerning the OCL specification, in
[4] only the attributes defined in the Classifier are taken into account. On the
contrary, in [5] the attributes defined in the ancestors are also included. Our
opinion is that this second solution is correct. However some corrections have to
be made.

First of all, both in WFR[4] and [5], as mentioned in [Richters2000], we no-
tice that from the type checker point of view, the expression self.allAttributes-
>union(self.allContents) is erroneous because we try to join a Set(Attributes) with
a Set(ModelElements). In order to solve this semantic error, the solution proposed
at http://www.db.informatik.uni-bremen.de/∼mr is to change the order of
operation. A more careful analysis of the above WFR shows us that the OCL
expressions contain redundancies. The expression:

forAll(a | not self.allContents->union(self.allAttributes)->collect(q | q.name)->
includes(a.name))
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is equivalent with:
forAll(a | not allAttributes.name->union(allContents.name) ->includes(a.name)).
Now the WFR is semantically correct and can be evaluated. For the UML model

presented in Figure 2, the evaluation will fail (see Figure 3). Analyzing Figure 3,
we find the reason. The Boolean attribute b, declared in class C1, is included in
the set allAttributes, computed for class A, but the visibility of b is private, so
it shouldn’t be included in that set. As we can see, in Figure 4, this mistake
was discarded; removing all private attributes defined in the classifier’s ancestors.
In fact the correct strategy is to do this correction in the Classifier’s allFeatures()
AO. Taking into account its usage, this represents a very important correction
in the AOs. The change will be automatically propagated in allAttributes() and
allOperations().

Figure 4. Another UML model

Solving the above-mentioned problem, another error will occur. This new error
is determined by the reunion allAttributes.name->union(allContents.name). As you
can see, the set allContents.name includes ‘b’, the name of the inner class declared
in class A(see Figure 2 – the Rational Rose browser). As a consequence, the WFR
evaluation will fail due to the name conflict between the associationEnd b and the
inner class b. The above reunion is erroneous because it forbids modeling legal
situations found in programming languages such as Java, C++, etc. Moreover,
oppositeAssociationEnds has to be replaced by allOppositeAssociationEnds because,



86 DAN CHIOREAN ET.AL.

due to inheritance, the associationEnds declared in the classifier’s ancestors are
accessible.

Taking into account all the above suggested corrections, we can now write the
Classifier’s WFR[4]:

allOppositeAssociationEnds.name->excludesAll(allAttributes.name).

Figure 5. WFR [5] Evaluation

This last proposed specification covers equally the initial Classifier’s WFR[4]
and WFR[5]. It is even more concise and clear as compared to the textual speci-
fication and can be directly evaluated; a big advantage.

In order to understand the use of our OCL evaluator, we mention that the UML
1.4 metamodel is automatically loaded every time when the evaluator is launched.
The next mandatory activities are the loading of the OCL file and the UML user
model. Their order does not matter. The third mandatory activity is the OCL file
(expression) compilation, followed by the context specification. In Figures 3 and
4, the first two lines of the output pane mark successful compilation. In the third
line, successful loading of the UML model is signaled. Finally in the fourth line,
the context specification is noticed. In both the above-mentioned figures, the last
output pane line shows the results of the invariants evaluation. In Figure 3 the lines
5-8 illustrate the evaluation of oppositeAssociationEnds, allAttributes.name, allCon-
tents.name allAttributes.name->union(allContents.name), respectively. In Figure 4,
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Figure 6. Proposed WFR [4&5] Evaluation

the lines 5-6 show the evaluation result for: allOppositeAssociationEnds.name and
allAttributes.name. The possibility to evaluate different specification “chunks” is
very useful in debugging OCL expressions.

8. Conclusions and future work

In this paper we tried to analyze the state of the art in the UML model-checking
domain. Our research demonstrated that today, for this activity, the appropriate
formalism should be by far OCL. Using script languages is also possible. As we
showed, this last formalism has different drawbacks. The experience we acquired
in the NEPTUNE Research Project showed that in order to be efficient, the OCL
tools have to support the evaluation of expressions. The syntactic and semantic
errors like those mentioned in other papers are not sufficient. Moreover, the access
to the UML metamodel is mandatory. Evaluating UML 1.4 AO and WFR gives
us the opportunity to find a lot of conceptual errors. The space of this paper does
not allow us to mention all of them. Equally important, we identified redundant
OCL specifications and some WFR not yet mentioned in the UML specification.
Specifying AO and WFR has many solutions. It is very important to find the
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simplest and clearest ones. In order to check UML models, the AO and WFR
completeness and correctness represent a precondition. Consequently, our results
offer support for the accomplishment of this “precondition”. At least, as far as we
are concerned, we don’t know similar results published in other scientific papers.
We are now trying to identify all the errors in the AO and the WFR and to describe
solutions for all of them.
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DIAGRAM DESIGN IN OCL EVALUATOR

HORIA CHIOREAN

Abstract. OCL Evaluator is a tool developed by the Computer Research
Laboratory of the Babes-Bolyai University (LCI), designed for checking UML
models stored in XMI format. The main purpose of this software is that of
checking (verifying). The general use case scenario is: the user designs his
application using a case tool like Rational Rose, Together, etc. Once this
design faze is finished, the user has a model for the problem. This model
is exported using the same case tool or some other program into an XMI
document. The XMI document is inputted into our tool and verified. These
verifications are done according to certain rules, that can be very complex
and are grouped into several categories.

On the other hand, once errors are reported for a model, it’s natural
to allow the user to correct these errors. This is where the diagrams “kick
in”. Diagrams can simplify very much the process of error correcting, because
they can provide a visual representation for a model.

The problem was to implement these diagrams in OCL Evaluator, using
the Java programming language.

1. Achievements regarding OCL

The Object Constraint Language (or OCL) first appeared in 1997 as part of
UML’s 1.1 specification. OCL is a formal language used to express constraints.
These typically specify invariant conditions that must be satisfied by the system
being modeled.

Although it has been developed some years ago, very little support has been
given to OCL in the sense that there are very few software tools that give the
user the possibility to check his/hers model using the object constraint language.
Well known CASE tools, such as Rational Rose, have plugins that allow certain
verifications to be done using OCL, but these plugins are by no means enough in
order to use OCL’s the full power.
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2. The importance of UML diagrams

A diagram (in general) could be considered a graphical representation of certain
elements together with their relations. The reason why diagrams are so important
is because they provide a graphical representation for a system (or for a part of
the system). Having such a representation, makes it a lot easier to understand
how that system works.

The Unified Modeling Language (or UML) is, as its name states, a modeling
language. In other words, it is a language that is used to design models for
problems. (by problems, we mean software problems, that can be solved using an
Object Oriented approach) It is natural for such a language to have diagrams in
its specification and therefore UML (in the 1.4 specification), defines the following
kinds of diagrams:

(1) Static Structure Diagrams – class diagram and object diagram.
(2) Use Case Diagrams – the use case diagram.
(3) Interaction Diagrams – collaboration diagram and sequence diagram.
(4) State Charts Diagrams – the state chart diagram.
(5) Activity Diagrams – the activity diagram.
(6) Implementation diagrams – the component diagram and the deployment

diagram.

Each of these diagrams contains several elements and relations, according to
their type, that are abstract elements defined in UML’s specification. (elements
like classes, actors, use cases, messages, objects, associations, etc) Each and every
one of those, has a graphical notation like: rectangles for classes, lines for associ-
ations, ovals for use cases, etc, graphical notations that are used in a diagram.

The diagrams should give the user the possibility of representing only parts of
the model or the model in it’s entirety. This means that a diagram should have
the following features:

(1) To allow one or more elements to be represented in more then one di-
agram. In other words, an element can be represented in multiple dia-
grams.

(2) Deleting one/more elements from a diagram, without affecting the model.
(3) Undo/Redo functionalities.
(4) Element filtering – this is a very important feature, because it allows

the user to see only the part of that element that he is interested in.
Plus it can simplify a great deal the situation when you have very large
diagrams.

Most of the well known CASE tools: Rational Rose, Together, Use, etc. support
diagrams, but each has their drawbacks.
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3. Our solution: UML diagram design in OCL Evaluator using
JGraph

We developed the only tool, OCL Evaluator, that is based on the object con-
straint language, with the sole purpose of providing efficient support for model
checking. Although there are several OCL compilers out there (like the Dresden
OCL Compiler or IBM’s OCL Compiler), none provide an adequate user interface
and are therefore very difficult to use. OCL Evaluator is based on our own OCL
compiler, but also has an extensive user interface that facilitates the process of
checking. Moreover, the user not only has the possibility of checking a system,
but also to correct that system based on eventual errors.

In this context, it was decided that to include a graphical representation of
a system, by means of diagrams, was very important because firstly, it would
facilitate the checking process a great deal by giving a visual representation and
secondly, no other OCL software had this facility.

Although only class diagrams and use case diagrams have been implemented,
most of these diagrams have a thing in common: they can be looked at similar to
a graph. In other words, the structure of a diagram is similar to that of a graph
where the objects are vertices (cells) and the relations between them are edges.

Therefore, when it was decided to include diagrams in the OCL Evaluator,
there were 2 options: either to implement a graphical library from scratch or to
use an existing graph library and to modify it so that it would fulfill the need of
representing a good UML diagram. The later was chosen in the end and the graph
library chosen was JGraph (http://www.jgraph.com) .

JGraph is a freeware, Java based library, used to represent graphs. The inten-
tion behind it, is to provide a freely available and fully Swing compliant implemen-
tation of a graph component. As a Swing component for graphs, JGraph is based
on the mathematical theory of networks, called graph theory, and the Swing user
interface library, which defines the architecture. By combining these two, JGraph
becomes a Swing user interface component used for visualizing graphs.

The design of the JGraph is similar to that of a Swing component. In other
words, besides the fact that JGraph is a Swing component (because it subclasses
JComponent), its architecture is based on Swing Model View Controller (or MVC).

Figure 1 shows, according to [1], the diagram of a JComponent (JTree), which
shows the way in which the MVC pattern is applied.

On the diagram, you clearly see all the participants (except the controller):
the component itself - JTree, its UI (which has the responsibility of rendering
the component) - TreeUI, and its model which encapsulates all the information –
DefaultTreeModel. The control in Swing MVC is encapsulated in the UI-delegate,
which is in charge of rendering the component in platform-specific manner, and
mapping the events from the user interface to transactions, that are executed on
the model.
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Figure 1. JTree MVC architecture

The JGraph component inherits this basic setup from the JComponent class
and its UIdelegate, which implements the ComponentUI abstract class.

As in the case of text components, the split between platform-dependent and
non-platform Design and Implementation of JGraph dependent attributes, is im-
plemented using the concept of views, which are independent from the elements
that appear in the model.

In Swing’s text components, the elements of the model implement the Element
interface, and for each of these elements, there exists exactly one view. These
views, which implement the View interface, are either accessed through a mapping
between the elements and the views, or through an entry point called root view,
which is referenced from the text component’s UIdelegate.

JGraph has an analogous setup, with the only difference that a graph view is
referenced by the JGraph instance. The cells of the graph model implement the
GraphCell interface, which is JGraph’s analogy to the Element interface. The
cell views implement the CellView interface, in analogy to Swing’s View interface.
The cell views are either accessed through the CellMapper mechanism, or through
the graph view, which is an instance of the GraphView class. However, since the
GraphView class works together with other classes, the analogy with Swing’s text
components is more helpful to understand the separation between the cell and the
view.

In contrast to text components, where the geometric attributes are stored in
the model only, JGraph allows to store such attributes separately in each view,
thus allowing a graph model to have multiple graphic configurations, namely one
for each attached view.

Figure 2 shows JGraphs’s model view controller diagram, according to [1].
The key elements in a JGraph are the GraphCells. These cells are inserted into

the GraphModel and using the GraphUI they are given a visual representation.
There a 3 kinds of GraphCells: Vertexes, Edges and Ports. While vertexes and
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Figure 2. JGraph MVC

edges are the common elements of a graph, the port is new concept. In JGraph,
a port is connection point for an edge. Ports are added as children to vertexes,
providing a way for an edge to connect to a vertex. The graphical representation
of a GraphCell is achieved using CellView. CellView is the base class for all the
special views such as: VertexView, PortView and EdgeView.

The graph cell has 2 very important attributes: it holds a reference to an Object
(referred to as the user object) and it has a corresponding View. This view is in
fact an instance of the JGraph’s CellView interface and it also holds a reference
to a Renderer (which normally is a subclass of JComponent). This renderer is
responsible for the painting. For each cell in the graph model, there exists exactly
one cell view in each graph view, which has its own internal representation of the
graph model. The renderers are instantiated and referenced by the cell views.

Renderers are based on the idea of the TreeCellRenderer class from Swing, and
on the Flyweight design pattern. The basic idea behind this pattern is to “use
sharing to support large numbers of fine-grained objects efficiently.”

Because having a separate component for each CellView-instance would be ex-
pensive, the component is shared among all cell views of a certain class. A cell
view therefore only stores the state of the component (such as the color, size etc.),
whereas the renderer holds the component’s painting code (for example a JLabel
instance – in the case of Vertex).

The CellViews are painted by configuring the renderer, and painting the latter
to a CellRendererPane , which may be used to paint components without the
need to add them, as in the case of a container. The renderers in JGraph are
used in analogy to the renderer in JTree, just that JGraph provides more than
one renderer, namely one for each type of cell. Thus, JGraph provides a renderer
for vertices, one for edges, and one for ports. For each subtype of the CellView
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interface, by overriding the getRenderer method, you may associate a new renderer.
The renderer should be static to allow it to be shared among multiple instances of
a class.

The renderer itself is typically an instance of the JComponent class, with an
overridden paint method that paints the cell, based on the attributes of the passed-
in cell view. The renderer also implements the CellViewRenderer interface,
which provides the getRendererComponent method to configure the renderer. Ac-
cording to [1], Figure 3 shows the architecture of the renderers.

Figure 3. JGraph’s renderers

The three default implementations of the CellViewRenderer interface are the
VertexRenderer, EdgeRenderer and PortRenderer classes.

4. Our solution

There were 2 main challenges in using this library: firstly fixing some bugs that
were present in the implementation of JGraph (the most important of which being
an annoying flicker when dragging cells) and secondly, adapting JGraph so that it
could be used for UML diagrams.

There were two main bugs in JGraph 1.0:
(1) When dragging a cell or an edge, or when changing the size of a cell,

there would be a visible and annoying flicker on the screen.
(2) When trying to bend an edge, the connection point would not be inserted

correctly. (bending edge is achieved by adding connection points to an
edge and dragging those points).

Fixes:
(1) The overlay() method in the BasicGraphUI class did not use Swing’s

double buffering technique, this begin the reason for the flicker. The
method was modified so that the painting would be done in an off-screen
buffer and only after that displayed on screen.

(2) The OnMouseClick() method in the EdgeHandler class did not make
correctly the calculations about the location of the control point.
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In the current implementation of the Evaluator, the diagrams were implemented
graphically by using the JDektopPane and JInterFrame Swing classes. This meant
that a diagram would contain an instance of a JGraph and this instance would
actually work as a canvas for JInternalFrame. This design allows (and so in should)
the existence of multiple diagrams.

Figure 4 shows what the diagrams look like (when they are empty).

Figure 4. Diagram Overview in OCL Evaluator

Each element in a diagram, would have to be a cell in a graph. However, because
JGraph’s support for cells was limited to only one kind of cell - the Vertex, which
is a rectangle with an optional text in the center, the cells implemented by us
were: Class Cell, Package Cell, Actor Cell and UseCase cell.

Because JGraph uses the Factory method to create views for each type of cell,
(this is achieved trough a method called createView in the JGraph class), we
sub-classed JGraph and created our own DiagramGraph. This class represents
the graph behind the diagram and it’s responsible for creating the correct views
for each kind of cell. We didn’t implement a new GraphModel because the one
provided by the library (DefaultGraphModel) was general enough for what we
needed.

Therefore, we implemented only the necessary types of cells. Each one of Class
Cell, Use Case Cell, Package Cell and Actor Cell represents the graph cell, and
holds the user object.

Every custom cell, also has a corresponding view related to it, as shown in
Figure 6:

Every renderer, has an appropriate paint() method. This method will be in-
voked by BasicGraphUI, when the rendering mechanism takes place. This is the
place where we wrote the code that displays each cells according to its abstract
counterpart from UML 1.4. The cell class holds a reference to an object for the
model (the object which it represents). So when the paint() method is invoked by
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Figure 5. Diagram Cells implemented for OCL Evaluator

the view, the user object is accessed, and the painting is done according to the in-
formation extracted from this object. For example, in order to draw a class, before
drawing it’s outline (the rectangle), we take the name of the class, its attributes
and methods from the object (which must be an instanceof Classifier), and draw
them using the drawString() and drawImage() methods from java.awt.Graphics.
This painting mechanism is used for every kind of cell, the only difference being
the user object and the shape of the cell (shape which conforms to the UML 1.4
specification).

In addition to the having a view, we implemented two other classes for our
cells. The first one called GProperty and encapsulates the graphical property for
that cell – meaning the fill color, the outline color, the title font size, the body
font size, etc. The second one is called AbstractFilter and represents a filter. This
filter has been only implemented for ClassCell, and it allows the filtering of classes
according to the visibility of the attributes and methods.

Holding a model element as a user object, provides greater flexibility in the sense
that when this user object, which is always an instance of the Element interface
from UML1.4, is modified, a simple repaint is enough to visualize the change in
all the corresponding diagrams.

As far as the relations between elements are concerned, in any kind of UML
diagram, these relations are represented by straight lines with possible decorations
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Figure 6. Custom Views and Renderers

Figure 7. A class diagram

at the extremities. Already JGraph already had the support for this, there were
two important issues that were solved:
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(1) An Association in UML, besides being represented as a straight line, also
has several additional text labels that indicate the role names and the
multiplicity of that association. Therefore we implemented text labels
that could be set at the end of the edge. Although these labels are not
tied to the edge, by double clicking an edge, they will gather around that
edge.

(2) See Figure 8.

Figure 8. Diagram with an Association Class

An Association Class in UML is represented with a dashed line that connects a
class with an association. This meant that we had to connect a cell with an edge
using a second edge. We stated previously that the key to connecting edges are
the ports. These ports act as a sort of “glue” in the sense that they keep edges
connected. However, in the JGraph library the only cells that are allowed to have
ports are the vertexes.

So, we needed some sort of hybrid edge that allowed the addition of ports
as children on one hand, but would still have the capability to connect to ver-
texes together. We solved this problem by creating 2 special classes (with their
corresponding views): SpecialEdge and SpecialPort, which extend DefaultEdge
respectively DefaultPort. However, SpecialEdge’s view class - SpecialEdgeView is
similar to the view of a vertex making SpecialEdge therefore both an edge and a
vertex. Figure 9 illustrates this.

The OCL evaluator is divided in 5 major parts, as shown in Figure 10.
You can create a diagram by right-clicking in the browser on the desired parent

for the diagram (a package usually), and from the pop-menu selecting New. In
order to add elements to the diagram, you can achieve this in 2 ways:
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Figure 9. The Special Cells

Figure 10. OCL Evaluator Overview

(1) Dragging and dropping an element from the browser onto the diagram,
in which case the element will be represented graphically according to
its information.

(2) Using the toolbar to create new elements/relations.
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5. Conclusions and future work

OCL Evaluator is not yet in a release version. It’s still in beta version. How-
ever, several extensions of our project are possible such as: using OCL to verify
components and using OCL for checking XMI documents.

Of course that the two types of diagrams that were implemented, although they
are the most “fundamental diagrams”, are not enough for a competitive tool. New
diagrams will be implemented as the project extends. However, because JGraph’s
extensibility is limited, a decision will have to be taken whether to continue using
this library, or to implement a new one.
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A PROPERTY SHEET

SORIN MOLDOVAN

Abstract. The graphical user interfaces (GUI) are very important today.
There is no application without designing a friendly, easy to understand and
accessible environment, both for beginners and for expert users. The aim
of this article is to analyze some aspects specific to graphical interfaces pro-
vided by CAD and CASE tools and to offer a solution for the programmers
developing components for such a tool in JAVA programming language. This
solution is illustrated in the design and implementation of a property sheet
used to display general and specific properties for the UML entities the user
works with.

1. Why such a component?

The objects with which the user operates are, most of the time, complex and
vast, having lots of attributes (properties). For example, Visual Basic users, when
they create a form, have to manage, for each graphical component, a large list
of properties (name, position, color, font, text, etc.). It would be a good idea if
these characteristic attributes of an object were grouped in several categories. At
a certain moment, the user is not interested in all the properties, but only in some
of them. Therefore, some categories should be summarized, rather than detailed.
Through this facility, we can dynamically control the level of detail at which we
study the object and also have a custom view upon an object.

Another aspect is related to editing the attribute values together with their
validation. By referring again to the example about the Visual Basic forms, we
notice that attributes such as name, position, can have an infinite (or at least very
large) domain of values. For editing these attributes, we will use controls of type
TextField (they may be specialized for alpha-numeric or only numeric values, or
may have additional constraints). Some other properties can only have a finite
domain of values (sometimes very small – for example, the visibility can be either
True or False). In this case, instead of the user providing a value as input and
then checking if the value is valid or not, the component will provide a list of
values (which will cover the whole domain), and the user will choose one of these
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possible values. For properties such as the used font, editing is more complex and
we will open a dialog (probably a system dialog). Between some objects there
are dependency relationships (object1 “owned by” object2, for instance). If the
properties window of object1 has the “Owner” property with a value of object2,
then in some cases we can navigate the relationship from object1 towards object2
through the property sheet.

In the framework of the OCL Evaluator project the need of such property sheet
occurred. In addition to the model browser and diagrams which offer a view upon
the whole project or a part of it, one may have the possibility to inspect a certain
element and to modify its state. It acts as a view and a controller on the UML
model. Figure 1 illustrates how class properties are displayed. What this example
does not reveal is the possibility to edit each property using a specific control
depending of the kind of information the property contains.

Figure 1. The property sheet in a CASE tool
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The implementation of the property sheet was realized in JAVA programming
language using the Swing package. First of all, we present the main technique we
used.

2. Classic Model-View-Controller (MVC) Architecture

The MVC Architecture is designed for applications that need to provide multiple
vies of the same data. MVC separates applications into three types of objects:

Model: Maintain data and provide data accessor methods; is the applica-
tion object.

Views: Paint a visual representation of some or all of a model’s data
Controller: Defines the way the user interface reacts to user input.

Models are responsible for maintaining data; for example a notepad application
would store the current document’s text in a model. Models typically provide
methods to access and modify their data. Model also fires events to registered
views when a model is changed, and the views respond by updating themselves
based on the model change.

Views are responsible for providing a visual representation of some portion of
a model’s data. For example, a notepad application would provide a view of the
current document by displaying some or all of the text stored in the model.

Controllers handle events for views. Swing listeners (such as mouse and action
listeners) are MVC controllers. The notepad application mentioned previously
would have mouse and key listeners that made changes to the model or view as
appropriate.

Before MVC, user interface designs tended to consider these objects together.
MVC decouples them to increase flexibility and reuse. MVC is a powerful design
for a number of reasons. First, multiple views and controllers can be plugged into
a single model, which is the basis for Swing’s pluggable look and feel.

Second, a model’s views are automatically notified when the model is changed,
changing a model property in one view results in subsequent updates of the model’s
other views.

Third, because model is not dependent upon views, models do not have to be
modified to accommodate new types of views and controllers.

We will refer to MVC architecture when we’ll describe the interaction between
the property sheet and the UML model.

Swing MVC is a specialized version of classic MVC meant to support pluggable
look and feel instead of applications in general. Swing lightweight components
consist of the following objects:

• a model that maintains a component’s data;
• a UI delegate that is a view with listeners for handling events;
• a component that extends JComponent class.
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Swing models translate directly to classic MVC models. The components del-
egate their look and feel to a UI delegate. UI delegates correspond to a view-
controller combination in classic MVC. Controllers are referred to as listeners from
here on.

Taking into account the Swing MVC architecture we describe how we have
create the JTreeTable class used in our view component upon the UML model.

3. JTreeTable

A TreeTable is a combination of a Tree and a Table – a component capable of
both expanding and contracting rows, as well as showing multiple columns of data.
The Swing package does not contain a JTreeTable component, but it is fairly easy
to create one by installing a JTree as a renderer for the cells in a JTable.

In Swing, the JTree, JTable, JList, and JComboBox components use a single
delegate object called a cell renderer to draw their contents. In fact it is the view
from the MVC pattern. A cell renderer is a component whose paint() method is
used to draw each item in a list, each node in a tree, or each cell in a table. A
cell renderer component can be viewed as a “rubber stamp”: it’s moved into each
cell location using setBounds(), and is then drawn with the component’s paint()
method.

By using a component to render cells, you can achieve the effect of displaying a
large number of components for the cost of creating just one. By default, the Swing
components that employ cell renderers simply use a JLabel, which supports the
drawing of simple combinations of text and an icon. To use any Swing component
as a cell renderer, all you have to do is create a subclass that implements the ap-
propriate cell renderer interface: TableCellRenderer for JTable, ListCellRenderer
for JList, and so on.

4. Rendering in Swing

Here’s an example of how you can extend a JCheckBox to act as a renderer in
a JTable:

public class CheckBoxRenderer extends JCheckBox
implements TableCellRenderer {

public Component getTableCellRendererComponent(JTable table,
Object value, boolean isSelected,
boolean hasFocus, int row, int column) {

setSelected(((Boolean)value).booleanValue()));
return this;

}
}
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5. How the example program works

The code showed above shows how to use a JTree as a renderer inside a JTable.
This is a slightly unusual case because it uses the JTree to paint a single node
in each cell of the table rather than painting a complete copy of the tree in each
of the cells. We start in the usual way: expanding the JTree into a cell render
by extending it to implement the TableCellRenderer interface. To implement the
required behavior or a cell renderer, we must arrange for our renderer to paint just
the node of the tree that is visible in a particular cell. One simple way to achieve
this is to override the setBounds() and paint() methods, as follows:

public class TreeTableCellRenderer extends JTree
implements TableCellRenderer {

protected int visibleRow;
public void setBounds(int x, int y, int w, int h) {

super.setBounds(x, 0, w, table.getHeight());
}
public void paint(Graphics g) {

g.translate(0, -visibleRow * getRowHeight());
super.paint(g);

}
public Component getTableCellRendererComponent(JTable table,

object value,
boolean isSelected,
boolean hasFocus,
int row, int column) {

visibleRow = row;
return this;

}
}

As each cell is painted, the JTable goes through the usual process of getting the
renderer, setting its bounds, and asking it to paint. In this case, though, we record
the row number of the cell being painted in an instance variable named visibleRow.
We also override setBounds(), so that the JTree remains the same height as the
JTable, despite the JTable’s attempts to set its bounds to fit the dimensions of
the cell being painted.

To complete this technique we override paint(), making use of the stored variable
visibleRow, an operation that effectively moves the clipping rectangle over the
appropriate part of the tree. The result is that the JTree draws just one of its
nodes each time the table requests it to paint.

In addition to installing the JTree as a renderer for the cells in the first column,
we install the JTree as the editor for these cells also. The effect of this strategy
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is the JTable then passes all mouse and keyboard events to this “editor” – thus
allowing the tree to expand and contract its nodes as a result of user input.

Figure 2. TreeTable Architecture

6. A different editor for each row

We mentioned above that this component has a specific editor depending on the
values domain range. So we subclass DefaultCellEditor and name it TableCellEd-
itor. This class knows what editor is responsible for editing of a row. A private
member editors contains in a HashSet all the editors used. It is not necessary for
each row to provide an editor. If a row has no editor associatd a default editor is
provided.

We add a method to this class: selectEditor(MouseEvent e). This method (in-
voked by isCellEditable(EventObject anEvent) and shouldSelectCell(EventObject
anEvent)) calculate the row being edited and sets the editor member to the core-
sponding editor (from the hash set).
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Invocation of a method of the TableCellEditor (which is set as the CellEditor
for the second column of the view) leads to invocation of the same method upon
the selected editor.

7. Interaction between UML model and the property sheet

To acquire the information from the UML model to be displayed a hierarchy
of adapter classes is created. This is similar with the metamodel class hierarchy.
These classes have a method getProperties(Element element) for gathering proper-
ties and a method propertyChanged(GProperty prop) responsible for modification
of properties of the current object (in our tool this responsibility is delegated a
class who performs all operations upon the model). This method also made some
check upon the new value of the attribute. It returns true if the update was
successfully and false otherwise.

The steps performed when the properties of an element need to be shown are
(notice the use, once more, of the MVC pattern):

• setting up the target element;
• invocation of the updateView method;
• creation of a new PropertyModel used by the JTreeTable to display the

information;
• gathering information (after an adapter class of the UML element is

created “P. . . ”); interogation of the model;
• creation of nodes using the collected properties (root node is created

with the target element as argument and is never displayed); creating
the view;

• editors for each property are set up; setting the controllers.

8. Conclusions and further developments

The goal of this article was to present a solution for developing graphical com-
ponents used to inspect the treats of objects which the user operates. Even if the
example above is from the CASE tools world we tried to provide a solution which
can be very easy adapted to any kind of application. In terms of MVC, only the
model has to be updated to correspond to the needs of the application. (One has
to subclass and full implement the TreeTableModel interface – see Figure 2).

A very important point about the property sheet is the graphical aspect. In
this version this is quite simple. Its improvement will increase also the quality.
These are some aspects that can be improved:

• Adding colours. It is useful to color attributes listed with different colors
to easily differentiate between them (e.g. In the class properties, the
color of inherited features may differ from the color of the ones defined
by the class). Also, the attributes that cannot be modified may have a
specific color to suggest they are read-only.
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• Attaching icons to the leafs of the tree to provide additional information
of the property (e.g. The features may have attached icons to illustrate
their visibility).

• A pop-up menu context dependent and keyboard shortcuts to improve
the editing proces of the model.
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