
Anul XLVI 2001

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

2

Redacţia: 3400 Cluj-Napoca, str. M. Kogălniceanu nr. 1 Telefon 405300

SUMAR – CONTENTS – SOMMAIRE

G. Cimoca, Circular Fittings for FinitePlanar Point Sets .. 3

G. Şerban, A Reinforcement Learning Intelligent Agent .. 9

D. Dumitrescu, C. Groşan, M. Oltean, A New Evolutionary Adaptive
Representation Paradigm ... 19

F. Boian, An Efficiency Comparison of Different Java Technologies 29

T. Toadere, Flow in Network Modeling Time Tabling and Scheduling Problem 39

H. F. Pop, Principal Components Analysis Based on a Fuzzy Sets Approach 45

M. Lupea, Semantics for Constrained and Rational Default Logics 53

D. Avram, On Romanian Article Semantics ... 65

D. Suciu, ActiveCASE - Tool for Design of Concurrent Object-Oriented
Applications ... 73

I. Lazăr, Designing a Fault-Tolerant Jini Compute Server .. 81

V.A. Căuş, G. Micula, Numerical Solutions of Delay Differential Equations by
Nonpolynomial Spline Functions .. 91

D. Tătar, G. Şerban, A New Algorithm for Word Sense Disambiguation 99

RECENZII – REVIEWS – ANALYSES

B. Pârv, Mahmut Parlar, Interactive Operation Research with Maple. Methods
and Models, Birkhauser, 2000, ISBN 0-8176-4165-3 ... 109

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVI, Number 2, 2001

CIRCULAR FITTINGS FOR FINITE PLANAR POINT SETS

GHEORGHE CIMOCA

Abstract. Using the power of a point with respect to a circle, a (hopefully
new) circular fitting for a finite point set in R2 is proposed. Finally, necessary
and sufficient conditions for the collinearity and, respectively the concyclicity
of n (n ≥ 2, respectively n ≥ 3) distinct points in R2 are given.

1. Introduction

Twenty five years ago, while the writing of [6] was in progress, we needed an
algorithm to approximate a finite planar point set by an arc of a circle. The
generated points were located on a certain area (specifically the foot) of a gear-
tooth profile. At that moment we were not able to find any specific reference,
but using the least squares method we quickly fitted a first model, and we later
derived a second model as a minimax approximation problem [2]. The resulting
algorithms were good enough for the specific purpose. However, the uniqueness of
the solution was not assured because of the non-linearity of the normal equations
of the first model, respectively the non-linear non-convex programming problem
arisen in the second approach.

More recently, while designing a special disc milling cutter [1], we encountered
the same approximation problem. This time, the uniqueness of the approximation
circle was essential. Consequently, we returned to the old attempts and finally, by
figuring out a new approach, we arrived at a simple and, simultaneously, very suit-
able solution. The result might be known, although we haven’t found it mentioned
anywhere, not even in the regression “Bible” [4].

In the subsequent paragraph we shall present both the non-linear fit models [2]
and the new circular approximation technique for finite planar point sets.

2000 Mathematics Subject Classification. 65D10, 65J02.
1998 CR Categories and Descriptors. I.3.5[Computational Geometry and Object

Modelling].

3

4 GHEORGHE CIMOCA

2. Circular fittings of finite point sets in R2

Let S be a finite set of points in the Euclidean plane R2. Let us assume that S
contains at least 3 points, not all of them being collinear.

Our problem is to select a point C(x, y) ∈ R2 as the center of a circle, and a
positive number z as its radius, so that this circle best approximates the considered
point set S.

Related to our subject is the “minimum spanning circle” problem, in which
the smallest circle that encloses a given set of points is sought [5]. The smallest
enclosing circle is unique and is either the circumcircle of three extremal points of
the convex hull of the given point set, CH(S), or is defined by two of them as a
diameter. Hence, the algorithm based on the previous remark examines only the
extremal points of CH(S).

On the other hand, the “largest empty circle” problem (i.e., finding the largest
circle which contains no points of the set S) has neither a bounded nor a unique
solution. In order to avoid unboundedness, a certain restriction regarding the
center should be imposed. For instance, C ∈ CH(S) is presented in [5] as a
“necessary” condition, which is excessive and inaccurate. Restricting C so that it
belongs to any arbitrarily given compact subset of R2 would suffice. Anyway, the
uniqueness can’t be guaranteed.

Such problems frequently arise in industrial engineering — e.g., the siting of
emergency facilities (police stations, hospitals, &c.), the location of radio trans-
mitters, the positioning of a source of pollution or of a new business that is not
going to compete for territory with established rival outlets.

In contrast to the above-mentioned proximity (covers or gaps) problems, we
shall consider all the points of S by means of their “distances” to the circle in
question. The first two approximation models use the Euclidean distance from a
point to a circle, measured on the normal direction, whereas for the third model
the distance is replaced by the power of the point with respect to the circle. In
fact, these quantities are estimates of the errors.

Let S = {Pi(ai, bi) ∈ R2 ; i = 1, . . . , n}, where 3 ≤ n < ∞, Pi 6= Pj , for
i 6= j, i, j = 1, . . . , n, not all Pi being collinear.

Circular fit model I, using the least squares method. Minimize:
n∑

i=1

[
√

(x− ai)2 + (y − bi)2 − z]2

in respect with the real variables x, y, z, where 0 ≤ z ≤ M , M being a technological
restriction.

CIRCULAR FITTINGS FOR FINITE PLANAR POINT SETS 5

The normal equations are:
n∑

i=1

(x− ai)− z ·
n∑

i=1

x− ai√
(x− ai)2 + (y − bi)2

= 0,

n∑

i=1

(y − bi)− z ·
n∑

i=1

y − bi√
(x− ai)2 + (y − bi)2

= 0,

n · z −
n∑

i=1

√
(x− ai)2 + (y − bi)2 = 0.

Substituting

z =
1
n
·

n∑

j=1

√
(x− aj)2 + (y − bj)2

we obtain the following nonlinear system:
n∑

i=1

{(x− ai)[n ·Di(x, y)−
n∑

j=1

Dj(x, y)]} = 0,

n∑

i=1

{(y − bi)[n ·Di(x, y)−
n∑

j=1

Dj(x, y)]} = 0,

where D2
i (x, y) = (x− ai)2 + (y − bi)2.

Taking the barycenter of S as the initial approximation, the well-known Newton-
Raphson algorithm [3] works quite well. Some remarks concerning the circle
uniqueness appear in [2].

Circular fit model II, using the Chebyshev norm. Minimize:

max {
∣∣∣
√

(x− ai)2 + (y − bi)2 − z
∣∣∣ , i = 1, . . . , n}

in respect with the real variables x, y, z, where 0 ≤ z ≤ M .

Introducing a new variable u, the above problem can be reformulated as the
following mathematical programming problem:

Minimize u
subject to:

x2 + y2 − z2 − u2 − 2uz − 2xai − 2ybi + a2
i + b2

i ≤ 0, i = 1, . . . , n,

x2 + y2 − z2 − u2 + 2uz − 2xai − 2ybi + a2
i + b2

i ≥ 0, i = 1, . . . , n,

x ∈ R, y ∈ R, 0 ≤ z ≤ M, 0 ≤ u ≤ ε

where ε is a maximum admissible error.

More details on this method, called the Megiddo method, can be found in [5].

6 GHEORGHE CIMOCA

Now let’s remember that the number ρ = d2 − r2, where d is the distance from
a point P ∈ R2 to the center C of a circle of radius r, denoted by (C, r), is called
the power of the point P with respect to the circle. For any point lying outside
the circle (C, r) we have the inequality ρ > 0, and for all points lying inside that
circle we have ρ < 0. If P ∈ (C, r) we obviously have ρ = 0.

Using the power of a point with respect to a circle we can derive:

Circular fit model III. Minimize:

n∑

i=1

[(x− ai)2 + (y − bi)2 − z2]2,

in respect with the real variables x, y, z, where 0 < z ≤ M .

For this problem, the normal equations are:

n∑

i=1

(x− ai)[(x− ai)2 + (y − bi)2 − z2] = 0,

n∑

i=1

(y − bi)[(x− ai)2 + (y − bi)2 − z2] = 0,

n∑

i=1

[(x− ai)2 + (y − bi)2]− nz2 = 0.

Substituting

z2 =
1
n
·

n∑

j=1

[(x− aj)2 + (y − bj)2]

into the first two equations, we get the following system:
n∑

i=1

(x− ai){n[(x− ai)2 + (y − bi)2]−
n∑

j=1

[(x− aj)2 + (y − bj)2]} = 0,

n∑

i=1

(y − bi){n[(x− ai)2 + (y − bi)2]−
n∑

j=1

[(x− aj)2 + (y − bj)2]} = 0.

Apparently, this is a nonlinear system; yet, having performed all calculations,
we finally obtain a linear system with the following unique solution:

(1) x0 =
1
2
· B · E − C ·D

B2 −A · C

CIRCULAR FITTINGS FOR FINITE PLANAR POINT SETS 7

(2) y0 =
1
2
· B ·D −A · E

B2 −A · C
where

A =
n∑

i=1

n∑

j=1

(ai − aj)2 = 2 ·
n−1∑

i=1

n∑

j=i+1

(ai − aj)2,

B =
n∑

i=1

n∑

j=1

(ai − aj)(bi − bj) = 2 ·
n−1∑

i=1

n∑

j=i+1

(ai − aj)(bi − bj),

C =
n∑

i=1

n∑

j=1

(bi − bj)2 = 2 ·
n−1∑

i=1

n∑

j=i+1

(bi − bj)2,

D =
n∑

i=1

n∑

j=1

(ai − aj)(a2
i − a2

j + b2
i − b2

j) = 2 ·
n−1∑

i=1

n∑

j=i+1

(ai − aj)(a2
i − a2

j + b2
i − b2

j),

E =
n∑

i=1

n∑

j=1

(bi − bj)(a2
i − a2

j + b2
i − b2

j) = 2 ·
n−1∑

i=1

n∑

j=i+1

(bi − bj)(a2
i − a2

j + b2
i − b2

j),

and the radius of the circle is:

z0 =

√√√√ 1
n
·

n∑

i=1

[(x0 − ai)2 + (y0 − bi)2].

3. Remarks and consequences

The fit model using the power of a point can be successfully applied also to coni-
cal (elliptic, hyperbolic or parabolic) fittings for finite planar point sets. Moreover,
this model works very well in R3 to approximate a finite non coplanar point set
by a spherical surface.

We’ll end by mentioning the following obvious consequences:

Corollary 1. The points Pi(ai, bi) ∈ R2, i = 1, . . . , n, where 2 ≤ n < ∞ are
collinear if and only if:

{
n∑

i=1

n∑

j=1

(ai − aj)(bi − bj)}2 = {
n∑

i=1

n∑

j=1

(ai − aj)2} · {
n∑

i=1

n∑

j=1

(bi − bj)2}.

The condition can be used for checking the (non)collinearity in problems related
to certain geometrical data structures, such as the triangulations or the Voronoi
diagrams [5].

8 GHEORGHE CIMOCA

Corollary 2. The points Pi(ai, bi) ∈ R2, i = 1, · · · , n, where 3 ≤ n < ∞ are
concyclic if and only if:

n ·
n∑

i=1

[(x0 − ai)2 + (y0 − bi)2]2 = {
n∑

i=1

[(x0 − ai)2 + (y0 − bi)2]}2

where x0, y0 ∈ R are given by (1) and (2), respectively.

We believe the above condition could be exploited in computational geometry
as well.

References

[1] I. Bass, General equations of gear cutting tool calculations; Gear Technology, The Journal of
Gear Manufacturing, 2 (1985), pp. 20–23.

[2] G. Cimoca, Asupra aproximării prin arce de cerc a mulţimilor finite de puncte din plan,
Al II-lea Simpozion de informatică şi conducere, vol. II, C.T.C.E. Cluj-Napoca, 1977, pp.
104–106.

[3] W.S. Dorn, D.D. McCracken, Numerical Methods with FORTRAN IV Case Studies, Wiley,
New York, 1972.

[4] W. Mendenhall, T. Sincich, A Second Course in Statistics: Regression Analysis, Prentice
Hall, Upper Saddle River, New York, 1996.

[5] F.P. Preparata, M.I. Shamos, Computational Geometry: An Introduction, Springer Verlag,
New York, Heidelberg, 1985.

[6] I.A. Stoica, G. Cimoca, Interferenţa de sarcină a angrenajelor (Load Interference of Gears),
Editura Dacia, Cluj-Napoca, 1978.

S.C. SIMBOLIC, str. Bacău nr. 3, 3400 Cluj-Napoca, ROMÂNIA, tel: +40-64-431.333,
fax: +40-64-199.895, e-mail: ghcimoca@symbolic.com

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVI, Number 2, 2001

A REINFORCEMENT LEARNING INTELLIGENT AGENT

GABRIELA ŞERBAN

Abstract. The field of Reinforcement Learning, a sub-field of machine learn-
ing, represents an important direction for research in Artificial Intelligence,
the way for improving an agent’s behavior, given a certain feed-back about
his performance. In this paper we design an Intelligent Agent who learns
(by reinforcement) to play the ”Game 21”, a simplified version of the game
”Black -Jack”. The algorithm used for training the agent is the SARSA
algorithm.

Keywords: Artificial Intelligence, Reinforcement Learning, Intelligent
Agents.

1. Intelligent agents

An agent [1] is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through actions. One of the
task of an agent is to assist the user, achieving tasks in his place, or teaching the
user what he should do. An agent is characterized by:

• the architecture part, or the agent’s behavior - the action performed after
any given sequence of percepts;

• the program part, or the agent’s built-in part - the internal functionality
of the agent.

The aim of Artificial Intelligence is to design the agent program: a function
that implements the agent mapping from percepts to actions.

So, an artificial intelligent agent should be endowed with an initial (built-in)
knowledge and with the capability of learning. The learning capability ensures the
agent’s autonomy - the capability of deducing his behavior from its own experience.

An intelligent agent has a utility function, which measure the performance of
the agent’s actions. The utility is a function that associates a real number to an
agent’s state, as a measure of the state’s degree of success (a state preferred by
the agent in comparison with others has a bigger utility function).

2000 Mathematics Subject Classification. 68T05.
1998 CR Categories and Descriptors. I.2.6[Computing Methodologies]: Artificial In-

telligence – Learning.

9

10 GABRIELA ŞERBAN

As a conclusion, the intelligence of an agent is included in his program part.
At a given moment, the agent will choose the best way of action, as he was pro-
grammed to do it. In situations in which the program has incomplete information
(knowledge) about the environment in which the agent acts and lives, learning is
the only way for the agent to acquire the knowledge he needs in order to achieve
his task.

So, an important task is to design the program part of an intelligent agent, and
even more, to implement the capability of learning.

2. Reinforcement Learning

Reinforcement Learning (RL) [3] is an approach to machine intelligence that
combines two disciplines to solve successfully problems that neither discipline can
address individually: the fields of dynamic programming and supervised learning.
In RL, the computer is simply given a goal to achieve. The computer then learns
how to achieve that goal by trial-and-error interactions with its environment.

A reinforcement learning problem has three fundamental parts [3]:
• the environment - represented by ”states”. Every RL system learns a

mapping from situations to actions by trial-and-error interactions with
a dynamic environment. This environment must at least be partially
observable by the reinforcement learning system;

• the reinforcement function - the ”goal” of the RL system is defined us-
ing the concept of a reinforcement function, which is the exact function
of future reinforcements the agent seeks to maximize. In other words,
there exists a mapping from state/action pairs to reinforcements; after
performing an action in a given state the RL agent will receive some
reinforcement (reward) in the form of a scalar value. The RL agent
learns to perform actions that will maximize the sum of the reinforce-
ments received when starting from some initial state and proceeding to
a terminal state.

• the value (utility) function - explains how the agent learns to choose
”good” actions, or even how we might measure the utility of an action.
Two terms were defined: a policy determines which action should be
performed in each state; a policy is a mapping from states to actions.
The value of a state is defined as the sum of the reinforcements received
when starting in that state and following some fixed policy to a terminal
state. The value (utility) function would therefore be the mapping from
states to actions that maximizes the sum of the reinforcements when
starting in an arbitrary state and performing actions until a terminal
state is reached.

In a reinforcement learning problem, the agent receives a feedback, known as
reward or reinforcement; the reward is received at the end, in a terminal state, or

A REINFORCEMENT LEARNING INTELLIGENT AGENT 11

in any other state, where the agent has correct information about what he did well
or wrong.

2.1. Q-learning. Q-learning [3] is another extension to traditional dynamic pro-
gramming (value iteration) and solves the problem of the non-deterministic Markov
decision processes, in which a probability distribution function defines a set of po-
tential successor states for a given action in a given state.

Rather then finding a mapping from states to state values, Q-learning finds a
mapping from state/action pairs to values (called Q-values). Instead of having
an associated value function, Q-learning makes use of the Q-function. In each
state, there is a Q-value associated with each action. The definition of a Q-value
is the sum of the (possibly discounted) reinforcements received when performing
the associated action and then following the given policy thereafter. An optimal
Q-value is the sum of the reinforcements received when performing the associated
action and then following the optimal policy thereafter.

If Q(a, i) denotes the value of doing the action a in state i, R(i) denotes the
reward received in state i and Ma

ij denotes the probability of reaching state j
when action a is taken in state i, the Bellman equation for Q-learning (which
represents the constraint equation that must hold at equilibrium when the Q-
values are correct) is the following [1]:

(1) Q(a, i) = R(i) +
∑

j

max
a′

Q(a′, j)

or, equivalently

(2) Q(a, i) = R(i) + γ ·max
a′

Q(a′, j)

The temporal-difference approach requires no model of the environment, so the
update equation for TD Q-learning is:

(3) Q(a, i) = Q(a, i) + α(R(i) + max
a′

Q(a′, j)−Q(a, i))

which is calculated after each transition from state i to state j, and α ∈ [0, 1] is
called the learning rate.

2.2. Selection mechanisms. In this subsection we present two of the simplest
action-selection mechanisms (policies).
The Greedy and ε-Greedy policy. One of the simplest action-selection mechanism
is the Greedy mechanism and its extension ε -Greedy. This mechanism operates
this way:

• chooses the action with the maximum value Q(s,a), with the probability
1 - ε, if it exists;

• otherwise, chooses a random action.

12 GABRIELA ŞERBAN

The ε-Greedy methods are better than Greedy methods, because they allow
exploration and continue to improve their chances for recognizing the optimal
actions. The SoftMax policy. In a SoftMax policy, at the t-th game, action a will
be chosen with the probability:

(4)
e

Qt(a)
τ

∑n
b=1 e

Qt(b)
τ

where τ is a positive parameter called temperature. The high temperatures
make almost all actions to be equal-probable.

Low temperatures make a bigger difference between the selection probabilities
of actions. At the limit, when τ → 0, the SoftMax action selections behave like
Greedy action selections.

2.3. The SARSA Algorithm. SARSA is a reinforcement Q-learning algorithm,
which combines the advantages of Temporal difference learning and Monte Carlo
learning methods.

From the TD methods, the algorithm takes the advantage of learning at each
step, instead of waiting the end of an episode. From the Monte Carlo methods,
SARSA takes the advantage of going back and using the rewards obtained in
each state in order to update the values of the previous action-state pairs and
the capacity of functioning without the model of the environment in which the
learning takes place [4].

The idea of the SARSA algorithm [2]is to apply the Temporal Difference meth-
ods to the state-action pairs, in comparison with the classical methods, where this
methods are applied only to the states. So, the update equation for the action-state
pairs will be :

(5) Q(st, at) = Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]

This update is done after every transition from a nonterminal state st. If st+1

is terminal, then Q(st+1, at+1) is defined as 0. This rule uses every element of
the quintuple of events, st, at, rt+1, st+1, at+1, that make up a transition from one
state-action pair to the next. This quintuple gives rise to the name SARSA for
the algorithm.

The convergence properties of the SARSA algorithm depends on the nature
of the policy’s dependence on Q (one could use ε-Greedy or SoftMax policies).
SARSA converges with probability 1 to an optimal policy and action-value function
as long as all state-action pairs are visited an infinite number of times and the
policy converges in the limit to the Greedy policy.

The general form of the SARSA algorithm is given in Figure 1.

A REINFORCEMENT LEARNING INTELLIGENT AGENT 13

Initialize Q(s, a) arbitrarily
Repeat(for each episode)

Initialize s
Choose a from s using policy derived from Q(ε-Greedy, SoftMax)
Repeat(for each step of the episode):

Take action a, observe r, s′

Choose a′ from s′ using policy derived from Q(ε-Greedy, Soft-
Max)

Q(s, a) = Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]
s → s’;
a → a’;

until s is terminal

Figure 1. The SARSA Algorithm

3. The application “Agent 21”

3.1. General presentation. In this section we describe an Intelligent Agent
which learns by reiforcement to play the ”Game 21”. We propose a game with
two players: a dealer (which shares the cards) and an agent, in fact the computer
(which uses the SARSA algorithm for learning the game’s rules and which plays
against the dealer). The agent tries to win, obtaining a score (the sum of the
cards’ values) less or equal than 21, but greater than the dealer’s score.

The probabilistic nature of this game make it an interesting problem for testing
the learning algorithms, even if the learning of a good playing strategy is not
obvious.

Learning from a teacher (the supervised learning) is not useful in this game,
as the output data for a given state are unknown. The agent has to explore
different actions and to develop a strategy by selecting and retaining the actions
that maximize his performance.

The purpose of this application is to study the behavior of an agent, which
initially doesn’t know neither the rules nor the game’s goal, and to follow the way
for assimilating this goals.

After learning, the agent (the computer) wins about 54% of the games. This is
due to the fact that the ”Game 21” is a random game. The agent tries to manage
as well as he can with the cards received from the dealer.

14 GABRIELA ŞERBAN

As an observation, even if the game has a strong probabilistic characteristic,
after the training rounds the agent plays approximately identically or maybe even
better than a human player (which has a random playing strategy).

3.2. The application. The application is written in Visual Basic 6.0 and has two
parts:

• Learning, which trains the agent using the SARSA algorithm. Before
starting the learning process, the user can select:

– the number of episodes of the agent’s training and the number of
games per episode;

– the rewards obtained by the agent when he wins or looses, the values
for α and γ (the step size and the reducing factor from the basis
equation of the SARSA algorithm);

– the selection mechanisms (ε-Greedy or SoftMax). After the learning
process, the user can see a graphic that contains the percentage of
the games that the agent won and the values of the action-state
pairs.

• Game, which simulates the game between the agent and the dealer. Be-
fore starting the game, the user can select the score at which the dealer
stops, the strategy used by the agent. If the learning took place, the
current strategy can be selected and the agent will use the experience
from the training games, otherwise a random strategy can be selected
and the agent will play randomly.

3.3. The Agent’s design. The basis classes used for implementing the agent’s
behavior are the following:

• CGame - contains functions for starting the game, for calculating the
points, calls the functions for design the cards on the game table and at
the end of the game displays if a player wins or looses;

• CPlayer - contains the settings for the players: for the computer adds
the current strategy. In this class are called the functions for designing
the cards on the game table, for calculating the score. The main method
of the class is ComputerPlay, which implements the game function for
the computer;

– the computer applies the selected strategy. If the agent has gone
through all the training rounds, he will use his experience and will
apply the strategy used in the training rounds (ε-Greedy or Soft-
max).

• CPlayers - is the class for creating the players and setting the game
strategy for the dealer and the computer;

• CReinforcementLearning - the main class of the agent which imple-
ments the SARSA algorithm. Here the learning function for the agent is

A REINFORCEMENT LEARNING INTELLIGENT AGENT 15

implemented and the estimation function is updated. The main method
is Learn.

The learning strategy is very conservative: it stops if the score is greater then
11. Anyway, it is very interesting that the algorithm determines such a threshold
without knowing the game’s rules or it’s goal (only from experience and from
the obtained rewards). In fact, the SARSA agent learns to continue (to ask for
one more card) only if he is sure that this will not make him to loose. The
agent discovers from experience the double value of the ace, which determines the
following strategy: continues if the score is lower than 11 or he has an ace; stops
in all the other situations.

Figure 2

3.4. Experiment. Using the application “Agent 21” we accomplish the training
of the agent for the following settings:

16 GABRIELA ŞERBAN

• α = 0.01;
• γ = 0.9;
• the reward for winning the game = 1;
• the reward for loosing the game = -1;
• number of episodes = 500;
• number of games/episode = 100.

Figure 3. The game table with the agent’s training

During the learning process, the agent wins 27188 games and loses 22812 games,
that is a percentage of 54.376% of the won games. The graphic that contains the
percentage of the games that the agent won during the learning is shown in Figure
2.

After the training took place, the agent uses his experience and wins about 50%
of the the games (Figure 3).

A REINFORCEMENT LEARNING INTELLIGENT AGENT 17

Without training (with a random strategy), the agent won about 30% of the
games (Figure 4).

Figure 4. The game table without the agent’s training

4. Conclusions

The agent implemented using the SARSA algorithm in the ”Game 21” uses
an optimal strategy. These allows him to win about 50% of the games, because
of the strong random characteristic of the game. Knowing that, using a random
strategy, the computer wins only about 30%, it’s easy to notice the intelligence
degree obtained by the agent after learning. However, if a human player and an
agent, who assimilated the optimal strategy, play against the dealer, it can be
observed that the number of the games won by the human player is approximately
equal to the number of the games won by the agent.

18 GABRIELA ŞERBAN

Anyway, Reinforcement Learning represents an important way for improving
the performance and the behavior of an Intelligent Agent.

References

[1] S.J.Russell, P.Norvig: “Artificial intelligence. A modern approach”, Prentice-Hall Inter-
national, 1995

[2] R. Sutton, A. Barto: “Reinforcement Learning”, The MIT Press, Cambridge, London,
1998

[3] M. Harmon, S. Harmon: “Reinforcement Learning — A Tutorial”, Wright State Univer-
sity, www-anw.cs.umass.edu./ mharmon/rltutorial/frames.html, 2000

[4] A. Perez-Uribe, E. Sanchez: “Blackjack as a TestBed for Learning strategies in Neural
Networks”, Proceedings of the IEEE International Joint Conference on Neural Networks
IJCNN’98

Babeş-Bolyai University, Department of Computer Science, Cluj-Napoca, Romania
E-mail address: gabis@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVI, Number 2, 2001

A NEW EVOLUTIONARY ADAPTIVE REPRESENTATION
PARADIGM

D. DUMITRESCU, CRINA GROŞAN, MIHAI OLTEAN

Abstract. In this paper a new evolutionary paradigm is proposed. A tech-
nique called Adaptive Representation Evolutionary Algorithm (AREA) based
on this paradigm is designed. AREA involves dynamic alphabets for encod-
ing solutions. Proposed adaptive representation is more compact than bi-
nary representation. Mutation is the unique variation operator. Mutations
are usually more aggressive when higher alphabets are used. Therefore the
proposed encoding ensures an efficient exploration of the search space.

Numerical experiments seem to indicate that APA process better than
the best multiobjective evolutionary algorithms.

An AREA technique is used for solving multiobjective optimization
problems. The resulting algorithm is called Adaptive Pareto Algorithm (APA).

Keywords: Evolutionary Computation, Evolutionary Multiobjective
Optimization, Pareto Set, Higher Alphabet Encoding, Adaptive Representa-
tion.

1. Introduction

In this paper we propose a new evolutionary paradigm. An algorithm based on
this paradigm and using a powerful adaptive representation is designed. The al-
gorithm called Adaptive Representation Evolutionary Algorithm (AREA). AREA
technique operators are mutation and selection for survival.

Many multiobjective optimization techniques using evolutionary algorithms have
been proposed in recent years. Strength Pareto Evolutionary Algorithm (SPEA,
[9]), Pareto Archived Evolution Strategy (PAES, [4]), Pareto Envelope – based Se-
lection Algorithm (PESA, [1]), Nondominated Sorting Genetic Algorithm (NSGA
II, [3]) and SPEA II ([10]) are the best present-day Multiobjective Evolutionary
Algorithms (MOEAs).

Multi-alphabet representation proposed in this paper induces a powerful diver-
sity maintaining mechanism. For this reason AREA technique seems to be very
suitable for evolutionary multiobjective optimization purposes. Considered adap-
tive encoding allows solutions in the final population realizing a realistic picture
of Pareto frontier.

2000 Mathematics Subject Classification. 68T05.
1998 CR Categories and Descriptors. I.2.8 [Computing Methodologies]: Artificial In-

telligence – Problem Solving, Control Methods, and Search.

19

20 D. DUMITRESCU, CRINA GROŞAN, MIHAI OLTEAN

Numerical experiments with APA technique include several test functions rep-
utated as difficult ([2], [7]) and comparisons with the best MOEAs.

The paper is structured as follows: Section 2 is a short resume of the principal
recent evolutionary techniques for multiobjective optimization. Section 3 describes
the proposed algorithm. In Section 4 a comparison of the proposed approach with
some very efficient multiobjective evolutionary techniques is realized.

2. Recent MOEAs

In the last years a number of evolutionary algorithms for multiobjective opti-
mization have been proposed. Some of them will be shortly reviewed here.

2.1. Strength Pareto Evolutionary Algorithm. Zitzler and Thiele proposed
an elitist evolutionary algorithm called Strength Pareto Evolutionary Algorithm
(SPEA) ([9, 7]). The algorithm maintains an external population at every gen-
eration storing all nondominates solutions obtained so far. At each generation
external population is mixed with the current population. All nondominated solu-
tions in the mixed population are assigned fitness based on the number of solutions
they dominate. Dominated solutions are assigned fitness worse than the worst fit-
ness of any nondominates solutions. A deterministic clustering technique is used
to ensure diversity among nondominates solutions.

Pareto Archived Evolution Strategy
Knowles and Corne [4] proposed a simple evolutionary algorithm called Pareto

Archived Evolution Strategy (PAES). In PAES one parent generates by mutation
one offspring. The offspring is compared with the parent. If the offspring dom-
inates the parent, the offspring is accepted as the next parent and the iteration
continues. If the parent dominates the offspring, the offspring is discarded and
the new mutated solution (a new offspring) is generated. If the offspring and the
parent do not dominate each other, a comparison set of previously nondominated
individuals is used.

For maintaining population diversity along Pareto front, an archive of nondom-
inated solutions is considered. A new generated offspring is compared with the
archive to verify if it dominates any member of the archive. If yes, then the off-
spring enters the archive and is accepted as a new parent. The dominated solutions
are eliminated from the archive. If the offspring does not dominate any member
of the archive, both parent and offspring are checked for their nearness with the
solution of the archive. If the offspring resides in the least crowded region in the
parameter space among the members of the archive, it is accepted as a parent and
a copy is added to the archive.

2.2. Nondominated Sorting Genetic Algorithm. Deb and his students [3]
suggested a fast elitist Nondominated Sorting Genetic Algorithm (NSGA II). In
NSGA II, for each solution x the number of solutions that dominate solution x is
calculated. The set of solutions dominated by x is also calculated. The first front
(the current front) of the solutions that are nondominated is obtained.

A NEW EVOLUTIONARY ADAPTIVE REPRESENTATION PARADIGM 21

Let us denote by Si the set of solutions that are dominated by the solution
xi. For each solution xi from the current front consider each solution xq from
the set Si. The number of solutions that dominates xqis reduced by one. The
solutions that remain nondominates after this reduction will form a separate list.
This process continues using the newly identified front as the current front.

Let P (0) be the initial population of size N . An offspring population Q(t) of size
N is created from current population P (t). Consider the combined population:

R(t) = P (t) ∪ Q(t).
Population R(t) is ranked according nondomination. The fronts F1, F2, ... are

obtained. New population P (t+1) is formed by considering individuals from the
fronts F1, F2, ..., until the population size exceeds N . Solutions of the last allowed
front are ranked according to a crowded comparison relation.

NSGA II uses a parameter (called crowding distance) for density estimation for
each individual. Crowded distance of a solution x is the average side-length of the
cube enclosing the point without including any other point in the population. So-
lutions of the last accepted front are ranked according to the crowded comparison
distance.

NSGA II works as follows. Initially a random population, which is sorted based
on the nondomination, is created. Each solution is assigned a fitness equal to its
nondomination level (1 is the best level). Binary tournament selection, recom-
bination and mutation are used to create an offspring population. A combined
population is formed from the parent and offspring population. The population
is sorted according to the nondomination relation. The new parent population is
formed by adding the solutions from the first front and the followings until exceed
the population size. Crowding comparison procedure is used during the population
reduction phase and in the tournament selection for deciding the winner.

3. AREA technique

In this paper we propose a new evolutionary paradigm, The main idea is to al-
low each solution be encoded on a different alphabet. Moreover representation of
a particular solution is not fixed. Representation is adaptive and may be changed
during the search process as an effect of mutation operator, An adaptive represen-
tation evolutionary algorithm (AREA) based on the new paradigm is designed.

AREA technique proposed in this paper uses a fixed population. Each AREA
individual (chromosome) consists of a pair (x, B), where x is a string encoding
object variables and B specifies the alphabet used for encoding x.

B is an integer number, B > 2 and x is a string of symbols from the alphabet
{0, 1, . . . , B-1}. If B= 2, the standard binary encoding is obtained. The alphabet
over which x is encoded may change during the search process.

Mutation is the unique variation operator. For mutation, a random number
between 0 and 1 is uniformly generated for each position, including the last one, of
the chromosom. Each position (gene) value is modified with a mutation probability
(pm).

22 D. DUMITRESCU, CRINA GROŞAN, MIHAI OLTEAN

Mutation can modify object variables as well as last position (fixing the repre-
sentation alphabet). If the position giving B is changed, then the object variables
will be represented using symbols over the new alphabet, corresponding to the mu-
tated value of B. When the changing gene belongs to the object variable sub-string
(x – part of the chromosome), the mutated gene is a symbol randomly chosen from
the same alphabet.

4. APA method

In this section a new MOEA technique called Adaptive Pareto Algorithm (APA)
is proposed. APA relies on the AREA method previously described.

AREA uses a unique population. No external or intermediary population is
needed.

Initial population is randomly generated. Each individual is selected for muta-
tion, which is the unique variation operator. The offspring and parent are com-
pared. Dominance relation guides the survival.

If the offspring dominates the parent then the offspring enters the new popu-
lation and the parent is removed. If the parent dominates the offspring obtained
in ksuccessive mutations then another alphabet is chosen and the parent is repre-
sented in symbols over this alphabet. In this case only representation is changed
and the encoded solution does not change. Adaptive representation mechanism
and the survival strategy is generates an effective and efficient diversity preserving
mechanism.

APA algorithm
Proposed APA algorithm may be outlined as follows:

APA ALGORITHM:

begin
Set t = 0;
Random initializes chromosome population P (0);
Set to zero the number of harmful mutations for each individual in P(0);
while (t ¡ number of generations) do
begin
for k = 1 to PopSize do
Mutate the kth chromosome from P (t). An offspring is obtained.
If the offspring dominates the parent then the parent is removed and the offspring

is added to P(t+1);
else begin
Increase the number of harmful mutations for current individual;
If the number of harmful mutations = MAX HARMFUL MUTATIONS
then begin
Change the individual representation;
Set to zero the number of harmful mutations for the current individual;
endif
Add individual to P(t+1);

A NEW EVOLUTIONARY ADAPTIVE REPRESENTATION PARADIGM 23

endif
endfor;
Set t = t + 1;
endwhile;
end.
Despite its simplicity APA is able to generate a population converging towards

Pareto optimal set. Moreover, the diversity of the population is automatically
maintained without any specialized mechanism.

Proposed APA algorithm realizes a realistic picture of Pareto optimal set. Nu-
merical experiments emphasizes that for considered problems, APA technique is
more effective then best present-day MOEAs. Moreover, APA’s complexity is a
reduced one with respect to the MOEAs techniques considered for comparison.

5. Comparison of Several Evolutionary Multiobjective Algorithms

In this section complexity of the proposed APA technique is compared with the
complexity of several evolutionary multiobjective optimization algorithms (SPEA,
PAES and NSGA II).

Let us denote by m the number of objectives and by N the population size.
SPEA uses an internal and an external population. The fitness is assigned

differently to the individuals from these populations. A deterministic clustering
technique is used to reduce external population size the population diversity. The
complexity of this algorithm implementation is mN 2.

PAES uses a single parent, which generate an offspring. An archive, which
maintains the nondominated solutions, is created. Let be a the archive size. The
worst case complexity for the PAES is amN. Since the archive size is usually
proportional to the population size N,the overall complexity of the algorithm is
mN 2.

NSGA II computes for each individual x the number of solutions that dominates
it and the number of solution, which x dominates. NSGA II uses for this N2

computations. Identifying the fronts requires (in the worst case) N2 computations.
The overall complexity is (mN 2 + N2) or N2. So, the complexity may increase
from N to N2 (the worst case). Computation complexity for density estimation
is mN logN . For sorting the combined population 2N log(2N) computations are
necessary. Overall NSGA II complexity is thus mN 2.

APA uses a unique fixed size population. Each individual is considered for
mutation. This requires mN operations. The algorithm does not use a superposed
mechanism for diversity maintaining. Overall complexity of SMEA algorithm is
thus O(mN).

6. Numerical experiments

In this section we compare the performance of APA algorithm with the perfor-
mances of SPEA, NSGA II, PAES.

24 D. DUMITRESCU, CRINA GROŞAN, MIHAI OLTEAN

For this purpose by using six test functions introduced by Deb, Zitzler and
Thiele [7] are used.

6.1. Test functions. Each test function considered in this section is built by
using three functions f1, g, h. Biobjective function T considered here is

T (x) = (f1(x), f2(x)).
The optimization problem is:

{
Minimize T (x), where f2(x) = g(x2, . . . , xm)h(f1(x1), g(x2, . . . xm),

x = (x1, . . . , xm)

The five test functions used in this paper for comparison are:
Test function T1 is defined using the following functions:

f1(x1) = x1,
g(x2,xm) = 1 + 9 ·∑m

i=2 xi/(m− 1),
h(f1, g) = 1−

√
f1/g,

where m= 30 and xi ∈ [0,1] i = 1,2,. . . ,m.
Pareto optimal front for the problem T1 is convex and is characterized by the

equation
g(x) = 1.

Test function T2 is defined by considering the following functions:

f1(x1) = x1

g(x2,xm) = 1 + 9 ·∑m
i=2 xi/(m− 1)

h(f1, g) = 1− (f1/g)2

where m = 30 and xi ∈ [0,1], i = 1,2,. . . ,m.
Pareto optimal front is characterized by the equation

g(x)=1.
T2 is the nonconvex counterpart to T1.
Pareto optimal set corresponding to the Test function T3 presents a discreten

feature. Pareto optimal front consists of several noncontiguous convex parts. The
involved functions are:

f1(x1) = x1

g(x2,xm) = 1 + 9 ·∑m
i=2 xi/(m− 1)

h(f1, g) = 1−
√

f1/g − (f1/g) sin (10πf1)
where m= 30 and xi ∈ [0,1], i = 1,2,. . . m.

Pareto optimal front is characterized by the equation
g(x) = 1.

The introduction of the function sin in the expression of function h causes
discontinuity in the Pareto optimal front. However, there is no discontinuity in
the parameter space.

A NEW EVOLUTIONARY ADAPTIVE REPRESENTATION PARADIGM 25

The test function T4 contains 219 local Pareto optimal fronts and, therefore, it
tests the EA ability to deal with multimodality. The involved functions are defined
by:

f1(x1) = x1

g(x2,xm) = 1 + 10(m− 1) +
∑m

i=2 (x2
i − 10 cos(4πxi))

h(f1, g) = 1−
√

f1/g

where m = 10, x1 ∈ [0,1] and x2,. . . ,xm ∈ [-5,5].
Global Pareto optimal front is characterized by the equation

g(x) = 1.
The best local Pareto optimal front is described by the equation

g(x) = 1.25.
Note that not all local Pareto optimal sets are distinguishable in the objective

space.
f1(x1) = 1− exp(−4x1) sin6(6πx1)
g(x2,xm) = 1 + 9 · (∑m

i=2 xi/(m− 1))0.25

h(f1, g) = 1− (f1/g)2
The test function T5 includes two

difficulties caused by the nonuniformity of the search space. First, the Pareto op-
timal solutions are nonuniformly distributed along the global Pareto optimal front
(the front is biased for solutions for which f1(x) is neat one). Second, the density
of the solutions is lowest near the Pareto optimal front and highest away from the
front.

This test function is defined by using:
where m= 10, xi ∈ [0,1], i = 1,2,. . . m.

The Pareto optimal front is characterized by the equation
g(x) = 1

and is nonconvex.

6.1.1. Numerical comparisons. Several numerical experiments were performed with
APA. According to these experiments APA gives a good approximation of the
Pareto front for all considered test functions.

For both test functions T1 and T2, the differences between the four considered
algorithms are very small (see Figure 1 and Figure 2).

The difference between APA and the other algorithms is significant for test
function T4. APA gives the best arrangement on the front. Good solution distri-
bution is obtained also by NSGA II and SPEA. Solutions distribution realized by
NSGA II and SPEA are close to Pareto front. Moreover solution only distribution
supplied by APA is covers the real front.

For test function T5, APA also gives the best solution arrangement on the Pareto
front. PAES also gives distribution.

In these comparisons 25.000.000 function evaluations have been considered for
each algorithm. This ensures a realistic comparison of the algorithm outputs.

26 D. DUMITRESCU, CRINA GROŞAN, MIHAI OLTEAN

Figure 1. Results for test function T1. Pareto optimal front is convex

Figure 2. Results for test function T2. Pareto optimal front is nonconvex

Conclusions
In this paper a new evolutionary paradigm is proposed. An evolutionary algo-

rithm (AREA) based on the new paradigm is designed.
A new evolutionary algorithm (called APA) for multiobjective optimization is

also proposed. AREA uses a new, dynamic solution representation.
APA technique is compared with four well-known evolutionary multiobjective

optimization algorithms. The results show that APA performs better than con-
sidered algorithms.

A NEW EVOLUTIONARY ADAPTIVE REPRESENTATION PARADIGM 27

Figure 3. Results for test function T3. All considered algo-
rithms give a good approximation of the Pareto front

Figure 4. Results for test function T4. For test function T4,
APA gives the best arrangement on the Pareto front. NSGA II
and SPEA converge toward global Pareto front. PAES did not
converge to the global Pareto front

References

[1] Deb, K., Multi-objective genetic algorithms: Problem difficulties and construction of test
functions. Evolutionary Computation, 7(3), (1999), pp. 205-230.

[2] Deb, K., S. Agrawal, Amrit Pratap and T. Meyarivan, A fast elitist non – dominated sorting
genetic algorithm for multi-objective optimization: NSGA II. In M. S. et al. (Ed), Parallel
Problem Solving From Nature – PPSN VI, Berlin, (2000), pp. 849 – 858. Springer.

28 D. DUMITRESCU, CRINA GROŞAN, MIHAI OLTEAN

Figure 5. Results for test function T5

[3] Dumitrescu, D., Groşan, C., Oltean, M., Simple Multiobjective Evolutionary Algorithm,
Seminars on Computer Science, Faculty of Mathematics and Computer Science, Babeş-
Bolyai University of Cluj-Napoca, 2001, pp. 3-12.

[4] Knowles, J. D. and Corne, D. W., The Pareto archived evolution strategy: A new baseline
algorithm for Pareto multiobjective optimization. In Congress on Evolutionary Computation
(CEC 99), Volume 1, Piscataway , NJ, (1999), pp. 98 – 105. IEEE Press.

[5] Rudolph, G., On a multi – objective evolutionary algorithm and its convergence to the Pareto
set. Technical Report No. CI – 17/98, Department of Computer Science/XI, university of
Dortmund, (1998).

[6] Zitzler, E., Evolutionary algorithms for multiobjective optimization: Methods and Applica-
tions. Ph. D. thesis, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland. TIK
– Schriftenreiche Nr. 30, Diss ETH No. 13398, (1999), Shaker Verlag, Aachen, Germany.

[7] Zitzler, E., Deb, K. and Thiele, L., Comparison of multiobjective evolutionary algorithms:
empirical results. Technical report 70, Computer Engineering and Networks Laboratory
(TIK), Swiss Federal Institute of Technology (ETH), (1999), Zurich.

[8] Zitzler, E. and Thiele, L., Multiobjective evolutionary algorithms: A comparative case study
and the strength Pareto approach. IEEE Transaction on Evolutionary Computation 3 (4),
(1999), pp. 257 – 271.

[9] Zitzler, E. and Thiele, L., An evolutionary algorithm for multiobjective optimization: The
strength Pareto approach. Technical report 43, Computer engineering and Networks Labo-
ratory (TIK), Swiss Federal Institute of Technology (ETH), (1999), Zurich.

“Babeş-Bolyai” University, Faculty of Mathematics and Computer Science, 1 M.
Kogălniceanu Street, RO-3400 Cluj-Napoca, Romania

E-mail address: ddumitr|cgrosan|moltean@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVI, Number 2, 2001

AN EFFICIENCY COMPARISON OF
DIFFERENT JAVA TECHNOLOGIES

FLORIAN MIRCEA BOIAN

Abstract. Java and related technologies are very used for distributed ap-
plications today. In this moment, there are many Java technologies using the
client-server paradigm. Among these, the following are the most important:
Common Gateway Interface (CGI) [4,7], Servlets/JSP [1,10,12], JavaSpaces
[1,5,6] and Enterprise Java Beans (EJB) [1,2,8]. To choose one of these for
solving a problem (to implement a distributed application), the performances,
rapid development and robustness are important criteria. In this paper, we
present a run-time performance comparison between these technologies.

1. Introduction

Platform independence is an important argument for using Java technologies
instead others, (for example Microsoft’s) distributed technologies. Each of the
CGI, Servlet, JavaSpaces and EJB technologies has specific characteristics and
implementation difficulties. Theoretically, they are, equivalent: every application
implementation using a technology, from one of above, can be (theoretically) im-
plemented using any of the other three technologies.

Of course, from practical point of view there are significant differences. The
design and coding effort is relatively reduced for CGI, a little bit more significant
for Servlet, a medium one for JavaSpaces and quite impressive for EJB. Taking
into account the robustness, security and reliability, we have a reverse order: in
the top is EJB; on last position is CGI. It’s a difficult, and almost an impossible
task, to analyse an compare these technologies in a global and unitary manner.
Our opinion is that one has to solve and implement a (some) application(s) using
each of the above technologies. Then, make a comparison and behavior analysis
of the implementations vis--vis to a (some) criterion(s).

In the present paper, we solve a unique problem: a counter. Four implementa-
tions were made: CGI, Servlet, JavaSpaces and EJB. For these implementations,
we analyse a single criterion: run-time aspect, both in the server part and client
part.

In the next section, the test problem is presented. In the following four sections,
the specific architecture and particularities for each implementation are presented.

2000 Mathematics Subject Classification. 68M14.
1998 CR Categories and Descriptors. C.2.4 [Computer Systems Organizations]:

Computer-Communication Networks – Distributed Systems.

29

30 FLORIAN MIRCEA BOIAN

In the last section, some numerical results, comparison between these implemen-
tations and some conclusions are presented.

2. The experiment problem: a counter

Most programs for Internet applications are designed using the client / server
paradigms and their extensions [3,9]. For our experiments, we use some counter
implementations. Particularly, in Internet there are many counters. For example,
many Web pages have counters for measuring the total number of accesses to them.
The systems for voting popularity pages are based also to counters.

For our purpose, a counter is a pair of the following form:

(name, value),

where name is a string – the name of the counter – and value is the value of the
counter – a positive integer.

There are two operations, defined as follows (like Java method prototypes):
void counterInit(String name, int initValue);

int counterAccess(String name);

counterInit creates the counter name and sets its initial value to intValue.
counterAccess increments, for the counter name, the current value and returns
it. Usually, the arithmetic overflow is ignored.

The distributed counter architecture is presented in Figure 1.

Figure 1. Distributed counter

We adapt the counter implementation so that we obtain the run-times per
operation, for client and for server. In the first step, the client invokes the server
to create the counter. For our goals, the counterAccess returns the run-time –
in milliseconds.

The algorithm for the main step, in both the client and server, is presented in
Table 1.

The experiment, for each technology, uses two hosts, the same for all technolo-
gies: one for the client – only one – and the other for the server. The above
algorithms run, without interrupt and without sleeps, waits and so on, for few
hours. The connection between hosts was made directly, without any gateways,
proxy-s or other related entities. The hosts were run only necessaries services for
the experiment.

From time to time, the client saves on a local file, the following information
(times are in milliseconds):

• average server time for a counterAccess;

AN EFFICIENCY COMPARISON OF DIFFERENT JAVA TECHNOLOGIES 31

Table 1

Client Server

for (; ;) { // loop forever

ti = theCurrentTime
connect to server

ts = counterAccess

close connection
tf = theCurrentTime

use ti, ts, tf for statistics
save, from time to time
the intermediate statistics
on a local file

}

for (; ;) { // loop forever

wait for connection
ti = theCurrentTime

open access from counter
access the counter from the

external support
increment the value
save the counter to this

external support
close access to counter

tf = theCurrentTime
return (tf - ti)

}

• average client time for a counterAccess;
• maximum server time for a counterAccess;
• maximum client time for a counterAccess;
• minimum server time for a counterAccess;
• minimum client time for a counterAccess;
• total server time spend for all counterAccess;
• total client time spend for all counterAccess;
• total connected time for client: the above time plus the time spent for

computed statistics and save intermediate results;
• total number of connections.

The code sources used in the experiment can be accessed at the home page
of the author: http://www.cs.ubbcluj.ro/∼florin. For a uniform approach,
and independently of technology, the clients are Java standalone applications, of
course, very similar.

The client runs under Windows 2000 Pro, using an AMD K7 (Athlon) at 1GHz,
with 512RAM. The server runs under Linux RedHat 7.2, also an AMD K7 (Athlon)
at 1GHz, with 512RAM.

3. CGI: features and specifics

The Common Gateway Interface (CGI) [4,7] is a standard for interfacing exter-
nal applications with information servers, such as HTTP or Web servers. A plain
HTML document that the Web daemon retrieves is static, which means it exists
in a constant state: a text file that doesn’t change. A CGI program, on the other
hand, is executed in real-time, so that it can output dynamic information. Since

32 FLORIAN MIRCEA BOIAN

a CGI program is executable, it is basically the equivalent of letting the world run
a program on your system, which isn’t the safest thing to do. Therefore, there are
some security precautions that need to be implemented when it comes to using
CGI programs. Probably the one that will affect the typical Web user the most is
the fact that CGI programs need to reside in a special directory, so that the Web
server knows to execute the program rather than just display it to the browser.
This directory is usually under direct control of the webmaster, prohibiting the
average user from creating CGI programs. Interested reader can find details about
CGI in [4,7].

For our experiment, the CGI architecture is presented in Figure 2.

Figure 2. CGI architecture

The java standalone client sends to the CGI, using URLConnection, the name
of the file using the POST method.

The CGI program was developed in ANSI C. For each connection, it opens the
(binary) file name having only 4 bytes, in fact an int. Then it reads the value,
increments it, rewrites it again and then close the file.

The response is a Content-type: text/plain and is the server time, in ASCII
form.

4. Servlet: features and specifics

Servlets are the answer of Java technology’s to CGI programming [1,10,11,12].
They are programs that run on a Web server and build Web pages. Java servlets
are more efficient, easier to use, more powerful, more portable, and cheaper than
traditional CGI and than many alternative CGI-like technologies.

As known, for using servlets, a servlet container is necessary. We use the Tomcat
container - today a reference servlet container (and free distributable and license
free).

For our purposes, only a simple architecture is necessary, so we use only the
web facilities offered by the Tomcat 4.x version. Of course, for an important and
consistent application, the interfce between Tomcat and Apache Web server must
be use.

For our experiment, the Servlet architecture is presented in Figure 3.
The java standalone client sends to the servlet, using URLConnection, the name

of the file using the POST.
The servlet implements the doPost method. Using the HttpServletRequest

parameter, the name of the counter is obtained, reading an object String. For
each connection, as in the case of CGI, does it open the (binary) file name having
only 4 bytes, in fact an int. Then reads the value, increments, rewrites again and
then closes the file.

AN EFFICIENCY COMPARISON OF DIFFERENT JAVA TECHNOLOGIES 33

Figure 3. The servlet architecture

The response is a Content-type: application/octet-stream. It contains the
serialization form for an Integer object, having the server time in it.

5. JavaSpaces: features and specifics

An important class of distributed applications is based on the JINI technology.
JINI is the Sun’s solution for creating common, everyday, networking appliances
that just “plug and work”. Fundamentally, JINI is using in an extensive manner
the RMI (Remote Method Invocation) [1,12] Java technology. A programming
model/infrastructure JINI enables building/deploying of distributed systems or-
ganized as federations of services. A service can be a hardware or software com-
ponent, a common channel, a user, a disk drive which can offer a storage service
and so on. Once part of a federation, a service can be used by other services or
clients

An important particular application of JINI is JavaSpaces [5].
A JavaSpaces server is called space, and holds entries (typed groups of objects)

in it. A distributed Java Spaces application has a space, and a lot of clients that
access this space. There are three main operations over space:

write: put an object in space using a special Entry object - a container
for the objects from space;

read: get a copy for an object from space. Look it up using template
entries, using fields with values (exact matching) and null for wildcards.
The object is found by associative methods. If such an object is not in
the space, the client waits until such object put in the appearance in the
spaces.

take: similar with read, find an object from space and move the object
from space into the client program.

Therefore, an elegant paradigm for distributed programming and concurrent
programming is provided. All operations are transaction security. Entries written
to a space are leased (using JINI leasing). For short, a JavaSpaces acts as a “shared
memory” for distributed processes. We can preserve any kinds of objects in space,
with elaborate “data structures” in them.

For our experiment, the java source of the objects from the spaces is defined as
follows:

public class ObjectCounter implements Entry {
public String name;
public Integer counter;

34 FLORIAN MIRCEA BOIAN

public ObjectCounter() {
}//ObjectCounter.ObjectCounter
public ObjectCounter(String name) {

this.name = name;
}//ObjectCounter.ObjectCounter
public ObjectCounter(String name, int counter) {

this.name = name;
this.counter = new Integer(counter);

}//ObjectCounter.ObjectCounter
public Integer increment() {

this.counter = new Integer(counter.intValue() + 1);
return counter;

}//ObjectCounter.increment
}//ObjectCounter

The ObjectCounter() is mandatory for JavaSpaces Technology. The method
ObjectCounter(String name, int counter) is used for the init part and the
method ObjectCounter(String name) is repeatedly used for take and rewrite
objects in the space. The JavaSpaces architecture for this application is presented
in Figure 4.

Figure 4. The JavaSpaces architecture

The time for a client access includes the operations setSecurityManager, con-
struct a LookupLocator object, define a ServiceRegistrar object and lookup
the space object. (For details, see [1,6]).

After that, we consider part of the server time, and its current standalone
actions are:
template = new ObiectContor(NameOfTheCounter);
counter = (ObjectCounter)space.take(template, null, Long.MAX_VALUE);
Integer i = counter.increment();
space.write(counter, null, Lease.FOREVER);

6. EJB: features and specifics

Enterprise JavaBeans (EJB) [2,8,12] are a container-based component architec-
ture that allow you to easily create secure, scalable and transactional enterprise
applications. Developed as session beans, entity beans, or message-driven beans,
EJBs are the critical business objects in any J2EE application. The 2.0 version of
the specification for EJB introduces important improvements to the bean-managed
(BMP) and container-managed (CPM) models for entity persistence.

AN EFFICIENCY COMPARISON OF DIFFERENT JAVA TECHNOLOGIES 35

Our experiment uses the 2.0 CPM model for the counter implementation. The
important parts of the Java source excerpt are given below. Firstly, the remote
interface is:

import javax.ejb.*;
import java.rmi.*;
public interface Counter extends EJBObject {

int increment() throws RemoteException, FinderException;
}//Counter

The home interface is:
import java.io.*;
import java.rmi.*;
import javax.ejb.*;
public interface CounterHome extends EJBHome {

Counter create(String name, int value)
throws RemoteException, CreateException;

Counter findByPrimaryKey(String name)
throws RemoteException, FinderException ;

}//CounterHome

The main part of the Entity bean is:
import javax.ejb.*;
import java.rmi.*;
public abstract class CounterBean implements EntityBean {

private EntityContext context;

public abstract String getName();
public abstract void setName(String name);
public abstract int getValue();
public abstract void setValue(int value);

public int increment() throws RemoteException, FinderException{
long ti = System.currentTimeMillis();
int i = getValue();
setValue(i+1);
return((int)(System.currentTimeMillis()-ti));

}//CounterBean.increment

- - - - - - - - - - - - - -

}//CounterBean

The main part of the standalone client is:
- - - - - - - - - - - - - -

Context initial = new InitialContext(env);
Object ref = initial.lookup("aliasCounter");
CounterHome counterHome = (CounterHome) PortableRemoteObject.narrow(

ref, CounterHome.class);
Counter counter = counterHome.findByPrimaryKey("nameOfCounter");
ts = (long)counter.increment();

- - - - - - - - - - - - - -

36 FLORIAN MIRCEA BOIAN

The EJB architecture for this application is presented in Figure 5.

Figure 5. The EJB architecture

7. Time comparisons

For comparing these technologies, from the run-time point of view, we made
many experiments. At http://www.cs.ubbcluj.ro/∼florin there is an archive
with files having results and program sources. CGI, Servlet and JavaSpaces, codes
run in the same conditions, for about 8 hours. EJB was experiment only for 1
hour.

In the following table, we present the run-times after run about 1 minute, 10
minutes, 30 minutes, 1 hour, 4 hours and 8 hours. After each 1000 tests, the client
programs verify if the moments of saving results appeared or not. For this reasons,
the times for total connections have some differences between our intention to save
the results and the real moments to save.

Min. Parameter CGI Servlet JavaSpaces EJB
1 TotalClient

TotalServer
MinimumClient
MinimumServer
MaximumClient
MaximumServer
AverageClient
AverageServer
NumberOfTests
TotalConnectClient

132901
9671
10
0
410
398
14
1
9000
132941

130338
93260
0
0
231
153
14
10
9000
130398

151057
72045
30
20
540
160
50
24
3000
151067

256569(43171)
20(22)
161(80)
0(0)
1092(571)
10(4)
256(43)
0(0)
1000(400)
256579(43612)

10 TotalClient
TotalServer
MinimumClient
MinimumServer
MaximumClient
MaximumServer
AverageClient
AverageServer
NumberOfTests
TotalConnectClient

663214
65752
10
0
611
597
15
1
44000
663354

670645
471949
0
0
250
173
13
9
49000
670805

694078
311208
30
10
2974
230
53
23
13000
694178

705275
60
150
0
1092
10
235
0
3000
705305

AN EFFICIENCY COMPARISON OF DIFFERENT JAVA TECHNOLOGIES 37

30 TotalClient
TotalServer
MinimumClient
MinimumServer
MaximumClient
MaximumServer
AverageClient
AverageServer
NumberOfTests
TotalConnectClient

1868597
266662
10
0
881
857
15
2
117000
1868817

1863150
1310745
0
0
251
246
13
9
136000
1863500

1892922
855115
30
10
2974
390
54
24
35000
1893102

2068375
201
150
0
1742
11
229
0
9000
2068465

60 TotalClient
TotalServer
MinimumClient
MinimumServer
MaximumClient
MaximumServer
AverageClient
AverageServer
NumberOfTests
TotalConnectClient

3672722
433542
10
0
982
961
15
1
234000
3673022

3670319
2611931
0
0
321
311
14
10
260000
3670959

3682746
1656224
30
10
3025
390
54
24
67000
3682996

3745356
351
150
0
2674
11
234
0
16000
3745536

240 TotalClient
TotalServer
MinimumClient
MinimumServer
MaximumClient
MaximumServer
AverageClient
AverageServer
NumberOfTests
TotalConnectClient

14460504
2015054
10
0
1001
984
16
2
903000
14461685

14458049
9953004
0
0
401
311
13
8
1111000
14460173

14475715
6532319
30
10
3085
421
54
24
264000
14476456

480 TotalClient
TotalServer
MinimumClient
MinimumServer
MaximumClient
MaximumServer
AverageClient
AverageServer
NumberOfTests
TotalConnectClient

28558686
3223970
10
0
1001
984
15
1
1839000
28865617

22400298
14725660
0
0
6399
6390
13
9
1625000
29642314

28861269
12946711
30
10
3085
3034
54
24
527000
28862612

However, EJB performance is very dependent on the underlying configuration.
For example, informal tests (http://www.JBoss.org) show that on the same PC
box, it can run twice as fast under Windows 2000 / Sun JVM than under Linux 2.2
/ Sun JVM. Linux users probably already know that linux does not support real

38 FLORIAN MIRCEA BOIAN

threads. Under heavy load, JBoss will for example crash with 200 concurrent users
under linux, whereas it can handle 1000 of them on the same box with Windows
2000. Of course, if you use Apache or Jetty in front of JBoss to handle the thread
pooling, this will not be a problem.

In our experiment, EJB randomly crashes on Linux, between 100 to 400 tests.
In the first cell from EJB in the above table, we write in brackets, our results after
400 tests.

The main parameter in which we are interested is the average time client. From
this point of view, our conclusion is:

• For this kind of applications, the Servlet technology is optimal. We
consider that 13 millisecond is a good average time client.

• The CGI technology have a nearly performance, 15 millisecond is a value
nearly of the Servlet technology. The difference is due to the fact that
CGI uses much more system resources than Servlet [10].

• JavaSpaces is an elegant solution, but its performance is about 3 times
sluggish than Servlet and CGI technologies.

• EJB technology is a robust one, but only if it use a professional EJB
server (as JBoss or BEA for example) with a professional operating sys-
tem (as Solaris, for example).

Thus, for simple distributed applications, with very frequent rate of use but with
simple security restrictions we recommend to the use a Servlet or CGI technologies.
JavaSpaces and EJB are recommended to be use only for large applications, with
a medium frequency of use and with high security and transactional restrictions.

References

[1] Ayers D. et. al. Professional Java Server Programming Wrox Press, 1999
[2] Bodoff S. et.al. The J2EE Tutorial. Sun Microsistems, 2001
[3] Boian. F.M. Distributed programming in Internet (Romanian) Blue ed. Cluj, Romania, 1998
[4] Breedlove et. al. Web Programming Unleashed. Sams.het, 1996, http://sams.mcp.com
[5] Edwards W.K Core Jini. Prentice Hall, 1999
[6] Halter S.L. JavaSpaces Example by Example. Prentice Hall, 2002, http://www.phptr.com
[7] Kim E. et. al. CGI Programming Unleashed. Sams.het, 1996, http://sams.mcp.com
[8] Roman E. Mastering Enterprinse JavaBeans and the Java 2 platformWilley, 1999
[9] Umar A. Object Oriented Client / Server Internet Environments. Prentice Hall, 1997

[10] * * * http://http://www.coreservlets.com
[11] * * * http://jakarta.apache.org
[12] * * * http://java.sun.com/

University ”Babeş-Bolyai”, Cluj-Napoca, Romania
E-mail address: florin@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVI, Number 2, 2001

FLOW IN NETWORK MODELING TIME TABLING AND
SCHEDULING PROBLEM

TEODOR TOADERE

Abstract. In this paper a new model for solving the Time Tabling and
Scheduling problem by determining the maximal flow in a specified trans-
portation network is proposed. This transportation network is also related to
an assignment problem where n-uples must be determined instead of pairs,
as with the classical assignment problem.

The network is based on a multipartite graph, whose set of vertices
is formed by the source, the sink and subsets with elements to be placed
in schedule. The subsets contain: the disciplines, the professors, the class
of learners (students, pupils, . . .), the classrooms and time duration of the
activities.

1. Ford-Fulkerson algorithm

We suppose that the Ford-Fulkerson algorithm is well known but we will de-
scribe it in Pseudocode. For this purpose we will define the “ecarts” graph attached
to a transportation network from the source to the sink, and to a compatible flow.

As it is known, the flow φ in the network G = (X, U), is called compatible flow
if 0 ≤ φu ≤ cu, ∀u ∈ U .

Definition 1.1. Let G = (X, U) be a graph. To each compatible flow φ =
(φ1, . . . , φm)t the “ecarts” graph G(φ) = (X,U(φ)) is attached. The set of edges
(arrows) is built in the following mode: ∀u = (i, j) ∈ G, u+ = (i, j) ∈ U(φ) if
φu < cu and u− = (j, i) ∈ U(φ) if φu > 0. The capacities for edges are cu− φu for
u+ and φu for u−.

The capacities for edges from G(φ) are called residuals capacities. The capacity
(i.e. min

∑
e∈W c(e)) for each path w from G(φ) is called the path residual capacity.

The following result based on Ford-Fulkerson algorithm is well known. The
result may help us to find out a maximal flow in a transportation network.

Theorem 1.1. [1] Let φ̄ be a flow from the source s to sink t, in a transportation
network. Let G(φ) be, also, the attached “ecarts” graph. Then, the flow φ̄ is
maximal if and only if there is no path from source s to sink t, in G(φ).
Algorithm 1.1. Ford-Fulkerson algorithm. [2]:

2000 Mathematics Subject Classification. 05C38.
1998 CR Categories and Descriptors. G.2.2 [Mathematics of Computing] : Discrete

Mathematics – Graph Theory; Path and Circuit Problems.

39

40 TEODOR TOADERE

(a) Initializations;
k:=0;
Suppose φ0 a compatible flow, e.g. φ0 = (0, 0, . . . , 0).

(b) Halt criterium:
If ∃µk a path from s to t in G(φk)

Then goto (c)
Else stop; φk is optimal flow.

(c) Let ε be the residual capacity for µk;

φk+1
u =





φu + ε, u+ ∈ µk or u = 0
φu − ε, u− ∈ µk, for u ∈ U
φu, otherwise

k:=k + 1;
goto (b).

For the existence of µk, a path in the “ecarts” graph G(φk) and for its determi-
nation (and also for determination of the value of ε) we may use two procedures
[2]:

p1) From G(φk) a tree is built such that the root is s and the other vertices are
the vertices from G(φk) . We may use a procedure to mark the vertices and
then we may find out the residual capacity for a path form s.

p2) Without building the “ecarts” graph G(φk):
Each j ∈ X has a label (e1, e2, e3) such that: e1 ∈ X ∪ {0}; e2 ∈ {+,−};

e3 ∈ R+, with the following meaning:
• if e2 = + and e1 = i, then ∃u = (i, j) ∈ G and ∃µ ∈ G(φk), path from s

to j and the last edge is u+ = (i, j), its capacity is e3.
• if e2 = − and e1 = i, then ∃u = (j, i) ∈ G and ∃µ ∈ G(φk), path from s

to j and the last edge is u− = (i, j), its capacity is e3.

The source s is labeled with (0, +, maxint). The main iteration of this “labeled”
procedure consists in:

repeat
k:=0;
for each labeled i ∈ X do

if ∃j ∈ X (not labeled) such that u = (i, j) ∈ U and φu < cu,
then one assigns to j the label (i, +,min{e3(i), cu − φu}); k:=1;

endif;
if ∃j ∈ X (not labeled) such that u = (j, i) ∈ U and φu > 0,

then one assigns to j the label (i,−,min{e3(i), φu}); k:=1;
endif;

endfor;
until (t is labeled) or (k=0);

If t is labeled at the end of this algorithm then we find the path µk = (dp, dp−1, . . . , d1),
from s = dp to t = d1, using the values of e1. One starts from e1(t), so:

FLOW IN NETWORK MODELING TIME TABLING AND SCHEDULING PROBLEM 41

p := 1;
d1:= t;
while dp 6= s do

p:= p + 1;
dp:=e1(dp−1);

endwhile;
The final value of ε is equal to e3(t).
The other final condition, k = 0, shows us that there is no path in G(φk).

2. Flow in Network Modeling Time Tabling and Scheduling Problem

In few words the Time Tabling and Scheduling Problem is:
Data: • the set of disciplines;

• the set of professors;
• the set of classes of learners (students, pupils, . . .);
• the set of classrooms (rooms);
• the days and the time periods for activities planning;
• the dependences between the all five previous sets.

Requirements: A schedule than every element from every set must be
well found:
• all of disciplens must be planned;
• every professor can realize the weekly hours number;
• all of classes (students, pupils, . . .) must be in schedule;
• all of rooms must be optimally used.

A schedule can be interpreted as a string of information (or as a database).
From it may be extracted:

• the schedule of all classes (students, pupils, . . .);
• the schedule of all professors;
• the schedule of all rooms.

A record (a position in this schedule) must contain: the date, the time, the
discipline, the room, the class and the professor.

Suppose that we can encode the time periods of a week. For example: suppose
that all activities (courses, seminars, laboratories, . . .) last two hours (120 min-
utes). One can count the pair hours between 8 and 20 from Monday to Friday.
One count 5 days x 6 period = 30 values (the attribute Hour). On the other hand
the class of students, pupils, . . . can be encoded (the attribute Class). A similar
codification can be done for each discipline (the attribute Discipline). From each
pair Class-Discipline one identifies the professor.

This activity of making the schedule is modeling like a maximal flow problem
in a special graph. Than, the elements of the previous sets will be considered as
vertices. Will be five types of vertices:

• Disciplines;
• Professors;

42 TEODOR TOADERE

• Class (students, pupils, . . .);
• Rooms;
• Hours.

A record (a position in the schedule) can be interpreted as a path in this special
graph and contains vertices from every type.

The first proposed model attaches to the Time Tabling and Scheduling Problem
a multipartite graph. This graph has five partitions:

• the first partition contains the disciplines;
• the second partition contains the professors;
• the third partition contains the classes (students, pupils,);
• the fourth partition contains the classrooms;
• the final partition contains the hours.

In this case for each professor, each discipline, each class, each room there is a
corresponding vertex in that graph. For each hour (or two hours = 120 minutes)
we have a vertex in graph in the hours partition as, for example:

• Monday: the time 10-12 is labeled with 2;
• Wednesday: the time 14-16 is labeled with 16, and so on.

There will be 30 vertices (5 days x 6 periods of time / each day). If we would like
to solve the Time Tabling and Scheduling Problem for a school of pre-university
level one can consider 60 vertices for 60 hours (5 days x 12 periods of time / each
day).

The vertices with compatibilities with some activities will be connected. For
example, every discipline is taught by a subset of the set of professors, every
professor do some activities only with certain classes of students, every room must
be available at certain hours weekly.

In addition to the five partitions of vertices, we have two vertices: s for source
and t for sink. An example is shown in Figure 1.

Figure 1. A multipartite graph example

FLOW IN NETWORK MODELING TIME TABLING AND SCHEDULING PROBLEM 43

As we see, every discipline is connected to a subset of professors-vertices. For
example: discipline D1 can be taught only by professors P1 and P2; the capacity
value between vertices D5 and P4 is cD5P4 .

Every professor can teach a subset of classes of learners. For example: Professor
P4 may teach only classes C3 and C4; the capacity value between vertices P4 and
C4 is cP4C4 .

Every class of learners may carry its activities in certain rooms. For example:
C1 carries its activities only in R1 and R2. The capacity value between vertices
C4 and R3 is cC4R3 .

Finally, every classroom will be connected to the available hours. For example:
R1 is related to H1, . . . , H30; the capacity value between vertices R1 and H30 is
cR1H30 .

The source s is connected to every discipline-vertex and the sink t is connected
to every hour-vertex.

Denotation:
G = (V, E) – the network (the graph attached to the problem);

V – the set of vertices;
E – the set of edges;

R = (G, s, t, c) – the transportation network;
s – the source;
t – the sink;
c – c : E → R+, c(i) = the capacity of edge i, ∀i ∈ E.

The capacities will be built such that:

• if a professor P must teach c hours for a discipline D then the edge
between D and P has the capacity equal to c (cD,P = c);

• if a professor P must do c activity hours with a class C then the edge
between P and C has the capacity equal to c (cP,C = c);

• for every edges between a class C and a classrooms R, the capacity is at
least

∑
e∈Γ−1(C) c(e); the maximal may be either 30 or 60;

• the capacities attached to the edges between classrooms-vertices and
hours-vertices will be set to 1 or 2;

• every edge form source s to discipline D has the capacity cs,D equal to
the number of weekly-hours;

• the edges between every hour H and the sink vertex t have the capacity
cH,t = 1.

An example with one discipline (D1), two professors (P1, P2), two classes (C1,
C2), two classrooms (R1, R2) and three hours (H1, H2, H3) is depicted in Figure
2.

Every path from s to t may be a position in schedule because the path locates
the discipline, the professor, the class, the classroom and the time.

Now, for the schedule determination we solve the problem with Ford-Fulkerson
algorithm, by determining the maximal flow in the network R = (G, s, t, c). The
maximal flow between s and t is found out by successive selection of certain paths in

44 TEODOR TOADERE

Figure 2. A specific example

the ecarts graph. Every selected path from s to t is a position in the schedule. For
every edge of these paths, the capacity equals to the capacity minus the residual
capacity.

When obtaining the maximal flow in the schedule, all the schedule positions
have been set. Now the schedule is realized.

3. Conclusions and Improvements

By using the method presented above a schedule variation is determined, which
depends on the selection order of the path in the ecarts graph.

If an optimization of the produced schedule is needed, we suggest that to the
transportation network defined above some extra edges, called inhibitory edges,
should be added. These edges define the schedule restrictions, e.g. if a certain
professor is not available at specific hours, an inhibitory edge will be added be-
tween those professor-vertex and hour-vertex. As another example, if some classes,
some activities may not take place, an inhibitory edge will be added between the
corresponding vertices. When using the Ford-Fulkerson algorithm, the paths with
inhibitory edges will not be selected. Then, the network will be represented by
using the two types of edges, e.g. two adjacent matrices or a matrix with values
equal the edges capacity, or zero, if no edge exists, or -1 for an inhibitory edge.
Each solver may decide on the data representation of the network defined by the
model described for the scheduling problem.

References

[1] Ford, L.R. Jr., Network-flow theory, The Rand Corporation, 1956, pp. 293
[2] Toadere, T., Grafe: Teorie, algoritmi şi aplicaţii, Editura Albastră, Cluj, 2001

Department of Computer Science, “Babeş-Bolyai” University, 1 M. Kogălniceanu
St., RO-3400 Cluj-Napoca, Romania

E-mail address: toadere@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVI, Number 2, 2001

PRINCIPAL COMPONENTS ANALYSIS BASED ON A FUZZY
SETS APPROACH

HORIA F. POP

Abstract. As with any other multivariate statistical method, Principal Com-
ponents Analysis is sensitive to outliers, missing data, and poor linear cor-
relation between variables due to poorly distributed variables. As a result
data transformations have a large impact upon PCA. This paper introduces
a powerful approach to improve PCA: robust fuzzy PCA algorithm (FPCA).
The matrix data is fuzzified, thus diminishing the influence of the outliers.

1. Introduction

Several statistical methods for the analysis of large quantities of data have been
applied to scientific problems during the last decades. One of these methods,
principal component analysis (PCA) showed special promise for furnishing new
and unique insights into the data interactions.

PCA is designed to reduce the number of variables that need to be considered
to a small number of indices (axes) called the principal components, that are linear
combinations of the original variables. The new axes lie along the directions of
maximum variance such that containing most of the information. PCA provides
an objective way of finding indices of this type so that the variation in the data
can be accounted for as concisely as possible.

In the case of an n-dimensional problem, often the number of components
needed to describe, say 90% of the sample variance is less than n, so that PCA es-
sentially affords one a technique whereby the dimensionality of the variable space
can be reduced, i.e., it is a dimension reduction method. It may well turn out
that usually two or three principal components provide a good summary of all
the original variables. Moreover, PCA offers a second important tool for multidi-
mensional analysis that derives, in fact, from its original application in the social
sciences and from which it took its name. In other words, PCA can also reveal
those underlying factors or combinations of the original variables that principally

2000 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. I.5.1 [Computing Methodologies] : Pattern

Recognition – Models – Fuzzy set ; G.3 [Mathematics of Computing] : Probability and Sta-
tistics – Data analysis .

45

46 HORIA F. POP

determine the structure of the data distribution and that not infrequently are re-
lated to some real influencing factors in the sample population. An important
issue in PCA is the interpretation of components, to help determine after the re-
duction of the observation space, which initial variables has the greatest shares in
the variance of particular principal components. This information can be obtained
using coefficients of determination (loadings) established between the components
and the initial variables.

2. Principal Components Analysis (PCA)

PCA is based on eigenanalysis of the covariance or correlation matrix. Let us
consider a data set X = {x1, . . . , xp}, and its covariance matrix M :

(1) Mij =
1

p− 1

p∑

k=1

(xk
i − x̄i) · (xk

j − x̄j), i, j = 1, . . . , n.

Let us also consider the ortonormal eigenvectors ei of the matrix M , and the
corresponding eigenvalues λi (i = 1, . . . , n).

The principal components of the data set X appear as linear combinations of
the original variables in the form

(2) PCi = ei
1y

1 + ei
2y

2 + · · ·+ ei
nyn,

where yi represents the i-th original variable (yi
j = xj

i), and ei
j represent the j-th

element of the eigenvector ei of the matrix M .
A constraint that (ei

1)
2 + (ei

2)
2 + · · ·+ (ei

n)2 = 1 is imposed on all components.
The constraint is introduced in order to ensure that V ar(PCi) cannot be increased
by simply increasing any of the ei

j values.
From the orthonormality of e1, e2, . . . , en it follows that

(3)

eiT · ei = 1, for any i ∈ {1, . . . , n}
eiT · ej = 0, for any i, j ∈ {1, . . . , n}, i 6= j
eiT ·M · ei = 1, for any i ∈ {1, . . . , n}
eiT ·M · ej = 0, for any i, j ∈ {1, . . . , n}, i 6= j,

and

(4) M = λ1e
1e1T + λ2e

2e2T + · · ·+ λnenenT .

where T denotes the transposing operation.
The basic property of the new variables is their lack of correlation. We have

that

(5) Var(eiX) = λi, for i = 1, . . . , n

and

(6) Cov(eiX, ejX) = 0, for i, j = 1, . . . , n, i 6= j.

PRINCIPAL COMPONENTS ANALYSIS BASED ON A FUZZY SETS APPROACH 47

The first principal component PC1 is that linear combination of sample values
for which the “scores” have maximum variation. The second component PC2 has
scores that are uncorrelated with the scores for PC1. Among the many linear
combinations with this property we select the one which has maximum variation
among its scores. The third component PC3 is defined to be that linear com-
bination which has the maximum variation among all those combinations whose
scores are uncorrelated with the scores of the first two components. Subsequent
components are defined analogously.

Principal component analysis as any other multivariate statistical methods are
sensitive to outliers, missing data, and poor linear correlation between variables,
due to poorly distributed variables. As a result, data transformations have a large
impact upon PCA [3].

One of the most illuminating approach to robustify PCA appears to be the
fuzzification of the matrix data by diminuishing in this way the influence of the
outliers.

3. Fuzzy Principal Components Analysis (Fuzzy PCA)

Fuzzy clustering is an important tool to identify the structure in data. In
general, a fuzzy clustering algorithm with objective function can be formulated as
follows: let X = {x1, . . . , xn} ⊂ Rp be a finite set of feature vectors, where n is the
number of objects (measurements) and p is the number of original variables, xj

k =
[xj

1, x
j
2, . . . , x

j
p]T and L = (L1, L2, . . . , Ls) be a s-tuple of prototypes (supports)

each of which characterizes one of the s clusters; a partition of X into s fuzzy
clusters will be performed by minimizing the objective function [2]:

J(P, L) =
s∑

i=1

n∑

j=1

(Ai(xj))md2(xj , Li),

where P = {A1, . . . , As} is the fuzzy partition, Ai(xj) ∈ [0, 1] represents the
membership degree of feature point xj to fuzzy cluster Ai, m > 1 is the fuzziness
index, and d(xj , Li) is the distance from the feature point xj to the prototype of
the cluster Ai. If Li are defined as points in the Rp Euclidean space, the distance
d may be defined as the Euclidean distance.

According to the choice of prototypes and the definition of the distance measure,
different fuzzy clustering algorithms are obtained. If the prototype of a cluster is
a point — the cluster center — it will produce spherical clusters; if the prototype
is a line it will produce tubular clusters, and so on. Also, elements with a high
degree of membership in the i-th cluster (i.e. close to the cluster’s center) will
contribute significantly to this weighted average, while elements with a low degree
of membership (far from the center) will contribute almost nothing.

Due to the problem at hand, we will consider that the fuzzy set is characterized
by a linear prototype, denoted L(u, v), where v is the center of the class and u, with

48 HORIA F. POP

‖u‖ = 1, is the main direction. This line is also called the first principal component
of the set, and its direction is given by the unit eigenvector u associated with the
largest eigenvalue λmax of, for example, the covariance matrix C = (Cij), formed
by the elements

(7) Cij =

p∑

k=1

A(xk)m · (xk
i − x̄i) · (xk

j − x̄j)

p∑

k=1

A(xk)m

, i, j = 1, . . . , n.

where x̄i is the arithmetic mean of the i-th variable, m > 1 is the fuzziness
index. The settings above mean that the fuzzy set A is characterized by the
linear prototype PC1 produced considering the fuzzy covariance matrix C.

We wish to determine the particular membership degrees A(x) such that the first
principal component is best fitted along the items of the data set X. The algorithm
proposed in this paper is a natural extension of the Fuzzy 1-Lines Algorithm [5].

Let us denote by α the membership degree corresponding to the farthest outlier.
For the moment we consider that α is a value preset by the user. The membership
degrees A(x) will be produced using the following mechanism:

Algorithm Determine Fuzzy Memberships(α):
(1) Initialize A(x) = 1, for all x ∈ X;
(2) Determine the linear prototype L(u, v): u is the eigenvector correspond-

ing to the largest eigenvalue of the matrix C computed as in (7); v is
the weighting center of the fuzzy cluster A, weighted by the m-th power
of the membership degrees:

v =

n∑

j=1

A(xj)m · xj

n∑

j=1

A(xj)m

;

(3) Determine the new fuzzy membership degrees A(xj):

A(xj) =

α

1− α
α

1− α
+

(
d2(xj , L)

) 1
m−1

;

(4) if the new fuzzy set is close enough to the old one, then Stop and return
the new fuzzy set; else go to Step 2.

The algorithm suggested above depends on the input variable α. As opposed
to the general case, we now do have a way to determine the best value for α. Of

PRINCIPAL COMPONENTS ANALYSIS BASED ON A FUZZY SETS APPROACH 49

course, we are interested to find fuzzy membership degrees that contribute to pro-
ducing a better fitted first principal component along the data set. But, since the
eigenvalue associated to a principal component describes the scatter of data along
that component, we are also interested in producing a first principal component
characterised by an eigenvalue that is as large as possible. As a consequence, we
will prefer that particular value of α that maximizes the eigenvalue associated to
the first principal component.

Because of the fact that we are interested in real-world applications of this
algorithm, an exact value of α is not required. Instead, we will simply work
through a loop between 0 and 1, with a step to be chosen by the user, and select
the value of α that maximizes our criterion. The produced algorithm follows:

Algorithm Determine Best Alpha():
(1) Initialize step as appropriate; initialize α0 = 0 and λ0 = 0;
(2) Set α = step, the first value to be considered;
(3) Call Determine Fuzzy Memberships(α) with the current value of α,

and determine the optimal fuzzy membership degrees A(x);
(4) Using the fuzzy membership degrees determined above, compute the

matrix C as in (7), and compute the eigenvalue λ corresponding to its
largest eigenvector (i. e. the first principal component);

(5) If λ > λ0 then set λ0 = λ and α0 = α;
(6) Increment α by step; if α < 1 then resume from Step 3; else stop, and

return α0 as the optimal value for α.
Now we have all the prerequisites for writing the algorithm. We will call this al-

gorithm Fuzzy (first component) Principal Component Analysis (FPCA):
Algorithm FPCA():

(1) Determine the optimal value of α by calling Determine Best Alpha();
(2) Call Determine Fuzzy Membership(α) with the value of α computed

above, and determine the optimal value of the fuzzy membership degrees;
(3) Using the fuzzy membership degrees determined above, compute the

matrix C as in (7), and compute its eigenvalues and eigenvectors; these
are the fuzzy principal components and the corresponding scatter values.

4. Experiments

We have selected for our experiments the set of 48 Roman pottery sherds pre-
sented in [1] and analysed in [4].

4.1. PCA on Roman pottery data. The principal components produced using
Classical PCA on Roman pottery data are depicted in Table 1, together with their
associated eigenvalues.

Based on these values, we build reduction coefficients corresponding to different
dimensionality reduction criteria. These reduction coefficients show the amount

50 HORIA F. POP

of original information explained by keeping only a limited number of variables or
principal components, and are depicted in Table 2.

Eigenvalue Eigenvector
3.04969 -0.288946 -0.523259 0.352801 0.32056 -0.410301 -0.466635 0.171429
2.13202 -0.250928 -0.0121934 0.450562 -0.49078 0.306824 -0.301171 -0.555131
0.906438 0.787617 -0.104202 0.285086 -0.320179 0.0265746 -0.278653 0.326587
0.530287 -0.206816 -0.336004 0.218458 0.0857632 0.715959 0.266077 0.453712
0.193831 0.0999946 0.550648 0.651976 0.491662 0.00155423 0.136672 -0.0360862
0.135622 0.421228 -0.496785 -0.0255271 0.402459 0.144139 0.209852 -0.590197
0.0521156 -0.0547764 -0.228659 0.343225 -0.377891 -0.451031 0.693099 0.0171312

Table 1. Loadings of the principal components and their asso-
ciated eigenvalues, for the classical PCA

Variables Eigenvalue Successive Proportion Cummulative
difference proportion

1 3.04969 0.917665 0.435669 0.435669
2 2.13202 1.22558 0.304574 0.740244
3 0.906438 0.376152 0.129491 0.869735
4 0.530287 0.336456 0.0757552 0.94549
5 0.193831 0.0582092 0.0276901 0.97318
6 0.135622 0.083506 0.0193745 0.992555
7 0.0521156 0.0521156 0.00744509 1
Table 2. Reduction coefficients for the classical PCA

4.2. Fuzzy PCA on Roman pottery data. The principal components pro-
duced using Fuzzy PCA on Roman pottery data are depicted in Table 3, together
with their associated eigenvalues. The optimal value of the α index has been
determined to be 0.01.

Based on these values, we build reduction coefficients corresponding to different
dimensionality reduction criteria. These reduction coefficients show the amount
of original information explained by keeping only a limited number of variables
or principal components, and are depicted in Table 4. The scores of the first two
principal components are displayed in Figure 1.

By comparing Tables 1 and 3, we remark a larger value for the first eigenvalue
as computed in the case of the Fuzzy PCA method. This shows an ability of the
Fuzzy PCA method to get a better fit for the first principal direction among the
data set.

A similar conclusion may be drawn by an analysis of Tables 2 and 4, with respect
to the different reduction coefficients. For example, the cummulative proportion
is 0.435669, 0.740244 and 0.869735 (for the first, the first two, and the first three
variables, respectively) in the case of classical PCA, and 0.952995, 0.967357 and

PRINCIPAL COMPONENTS ANALYSIS BASED ON A FUZZY SETS APPROACH 51

Eigenvalue Eigenvector
5.10731 0.0282576 0.524877 -0.458777 -0.279638 0.299205 0.4783 -0.341669
0.076967 0.858295 0.0479117 0.181638 0.198671 0.0109479 0.128092 0.414782
0.0561507 -0.189394 -0.166621 0.0940642 0.121235 0.885688 0.0541047 0.354191
0.0439734 -0.396615 0.5612 0.0312381 0.267516 -0.267034 0.183698 0.591742
0.0311047 0.25096 0.592121 0.594966 -0.0673231 0.206804 -0.390974 -0.17963
0.0286412 -0.0314195 0.079254 -0.183425 0.877202 0.0802429 -0.0962796 -0.417007
0.0150737 0.0734132 -0.150373 0.599232 0.148506 -0.0734878 0.745667 -0.171598

Table 3. Loadings of the principal components and their asso-
ciated eigenvalues, for FPCA

Variables Eigenvalue Successive Proportion Cummulative
difference proportion

1 5.10731 5.03034 0.952995 0.952995
2 0.076967 0.0208163 0.0143616 0.967357
3 0.0561507 0.0121773 0.0104774 0.977834
4 0.0439734 0.0128687 0.00820519 0.986039
5 0.0311047 0.00246344 0.00580395 0.991843
6 0.0286412 0.0135676 0.00534429 0.997187
7 0.0150737 0.0150737 0.00281266 1

Table 4. Reduction coefficients for FPCA

0.977834 in the case of fuzzy PCA. This shows a better capability to concentrate
the more information in less principal components, for the case of fuzzy PCA.

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

FP
C

 2

FPC 1

Figure 1. Scores of the first two principal components of Roman
pottery data using FPCA

52 HORIA F. POP

5. Conclusions

A fuzzy principal component analysis (FPCA) method for robust estimation of
principal components has been described in this paper. The efficiency of the new
algorithm was illustrated on a data set of 48 Roman pottery sherds. The FPCA
method achieved better results mainly because it is more compressive than classical
PCA. For the case of a two component model, FPCA accounts for 96.74% of the
total variance, and PCA accounts only for 74.02%. Since much more classical
principal components would be needed to account for the same total variance as
two fuzzy principal components, the fuzzy PCA becomes a much more desirable
data analysis tool.

This, together with a sharper data separation, encourages the further research
on fuzzy principal components analysis, as well as the fuzzification of other im-
portant data analysis techniques.

References

[1] Aruga, R., Mirti, P., Casoli, A., Application of Multivariate Chemometric Techniques to
the Study of Roman Pottery (Terra Sigillata), Anal. Chim. Acta 276 (1993), 197–205.

[2] Dumitrescu, D., Sârbu, C., Pop, H. F., A Fuzzy Divisive Hierarchical Clustering Algo-
rithm for the Optimal Choice of Sets of Solvent Systems, Anal. Lett. 24 (1994), 1031–1054.

[3] Hubert, M., Rousseeuw, P. J., Verboven, S. A, Fast Method for Robust Principal Com-
ponents with Applications to Chemometrics, Chemom. Intell. Lab. Syst. 60 (2002), 101–111.

[4] Pop, H. F., Dumitrescu, D., Sârbu, C., A Study of Roman Pottery (terra sigillata) Using
Hierarchical Fuzzy Clustering, Anal. Chim. Acta 310 (1995), 269–279.

[5] Pop, H. F., Sârbu, C., A New Fuzzy Regression Algorithm, Anal. Chem. 68 (1996), 771–
778.

Department of Computer Science, Babeş-Bolyai University, 1 M. Kogălniceanu St.,
RO-3400 Cluj-Napoca, Romania

E-mail address: hfpop@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVI, Number 2, 2001

SEMANTICS FOR CONSTRAINED AND RATIONAL DEFAULT
LOGICS

MIHAIELA LUPEA

Abstract. The default nonmonotonic reasoning was formalised by a class
of logical systems: default logics (classical, justified, constrained, rational),
based on the same syntax which utilises nonmonotonic inference rules: de-
faults, but with different semantics for the defaults. In this paper we intro-
duce a uniform semantic characterisation for the constrained and rational ex-
tensions of a default theory. This characterisation is an operational approach
of the nonmonotonic reasoning that is viewed as a successive application of
the applicable defaults. During the reasoning process can be observed the
interaction between the defaults and the reasoning context. The graphical
interpretation associated to the semantic characterisation of extensions illus-
trates the type of applicability: cautious (for constrained extensions) and
hazardous (for rational extensions) of the defaults and some formal proper-
ties: semi-monotonicity, regularity, existence of extensions, commitment to
assumptions of these variants of default logic.

1. Introduction

An important part of commonsense reasoning is default reasoning, which means
drawing conclusions in the absence of complete information using default assump-
tions. This type of reasoning is nonmonotonic because the conclusions (formulas
which are only plausible, not necessarily true) inferred can be later invalidated
by adding new facts. Reiter [6] introduced nonmonotonic inference rules called
defaults, which permit reasoning on the basis of “the lack of evidence to the con-
trary”. The classical default logic was the first logical system that formalizes the
default nonmonotonic reasoning.

A default theory is a pair (D, W), where W is a set of consistent formulas from
first order logic and D is a set of default rules. W contains the facts (axioms) of
the theory and D contains general rules that might have exceptions. A default
rule has the form1:d = α:β

γ , where α, β, γare formulas of first order logic,α is the
prerequisite (Prereq(d)) of the default d, β is the justification (Justif(d)) of the
default d and γ is the consequent (Conseq(d)) of the default d.

In this paper the followin g notations will be used: Justif(D)=
⋃

d∈D Justif(d),
Prereq(D)=

⋃
d∈D Pr ereq(d), Conseq(D)=

⋃
d∈D Conseq(d).

1991 Mathematics Subject Classification. 03B70, 68T27, 68T37.
1998 CR Categories and Descriptors. I2 [Artificial Intelligence] Deduction and Theorem

Proving – nonmonotonic reasoning and belief revision.
1Due to the (semi) representability results for these versions of default logic, we use in this

paper only defaults with at most one justification (unitary default theories).

53

54 MIHAIELA LUPEA

A default d = α:β
γ can be applied and thus derive γ if α is believed and it is

consistent to assumed β.
Using the classical inference rules and the defaults we can extend the initial set

of facts with new formulas called nonmonotonic theorems obtaining extensions.
Definition 1.1[6]: Let (D,W) be a default theory. For any set of formulas S,

let Γ(S) be the smallest set of formulas S’ such that:

(1) W⊆S’;
(2) Th(S’)= S’,whereTh(X) is the set of all the theorems obtained from the

set X of formulas and using the classical inference rules;
(3) For any α:β

γ ∈ D, if α ∈S’ and ¬β /∈S then γ ∈S’. The application of the
default rule means: if we can believe αand ¬β is not believed, then we
can believe γ.

A set E of formulas is a classical extension of (D,W) if and only if Γ(E)=E.
A classical extension for a default theory is a maximal set of conclusions (beliefs)

derived from the facts of W using classical derivation and the defaults as inference
rules. A default theory may has zero, one or more classical extensions.

Due to the individual consistency checking of justifications and thus the loss
of implicit assumptions when are constructed the classical extensions, this logical
system does not satisfy some desirable formal properties: semi-monotonicity, reg-
ularity, existence of extensions, commitment to assumptions. In classical default
logic these properties are satisfied only for normal default theories, that are the
theories with all the defaults of the form: α:β

β .
The next versions of default logic (justified default logic, constrained default

logic, rational default logic) try to obtain for general default theories the above
properties by modifying the meaning of the statement “it is consistent to assumed
β”.

Reiter has not provided a semantic for classical default logic, but he has observed
that the application of defaults restricts the models of the initial set of facts W,
and thus the class of models of an extension is a restricted class of models of W.
This idea was formalised by Lukaszewicz [2] for normal default theories and then
generalised by Etherington in [1]. Later on, as the new versions of default logics
were defined, new approaches of the semantic of these logics appeared.

The focused models semantics was introduced for the classical default logic in
[1] and then used in [7] for constrained default logic. This semantics is based on a
preference between focused models structures induced by some set of default rules.
An extension is characterized by a maximal models structure.

In the papers [7, 8] Schaub has developed a uniform semantical framework for
all the variants of default logic. This approach is called possible worlds semantics
for default logics and uses Kripke structures to characterise the two components
of an extension: the set of beliefs and the underlying assumptions.

The aim of this paper is to provide a semantic characterization for constrained
extensions and rational extensions of a default theory in the spirit of the approach
of Lukaszewicz [3]. Thus we can obtain an uniform approach of the semantics for
classical, justified, constrained, rational default logics, based on the idea that the
reasoning process, viewed as a successive application of the applicable defaults,

SEMANTICS FOR CONSTRAINED AND RATIONAL DEFAULT LOGICS 55

restricts the models of the initial set of facts. The advantage of this characteriza-
tion is its graphical interpretation, which illustrates the semantics of applicability
conditions for defaults and some formal properties.

The paper is organized as follows. Section 2 provides some notions and results
about constrained and rational default logics. In Section 3 we propose an opera-
tional semantic characterization for constrained and rational extensions. Section 4
of the paper contains the graphical interpretation of the semantic characterization
for constrained and rational extension. The last section is a comparative study of
the formal properties of the variants (classical, justified, constrained, rational) of
default logic from a semantical point of view.

2. Constrained and rational defaults logics

Schaub defined constrained default logic in [7] as an alternative approach to
classical default logic. The nonmonotonic reasoning formalized by this logic is
based on the observation that when we draw conclusions, we have to keep track of
the assumption used in the inference process and then to verify that they do not
contradict each other and do not contradict with the conclusions.

Definition 2.1[7]: Let (D,W) be a default theory. For any set of formulas T,
let Ψ(T) be the pair of the smallest sets of formulas (S’,T’) such that:

(1) W⊆S’⊆T’;
(2) S’=Th(S’) and T’=Th(T’);
(3) For α:β

γ ∈ D, if ∀0S’ and T ∪ {β} ∪ {γ} is consistent, then γ ∈S’ andβ ∧
γ ∈T’.

A pair (E,C) of sets of formulas is a constrained extension of (D,W) if and only
if Ψ(E,C)=(E,C).

The set E is the actual extension of the default theory and C is the set of
constraints (a consistent context for E), which keeps track of the justifications
assumed to be true in the construction of E.

The set of the generating defaults for the constrained extension (E,C) is defined
as follows:GD

(E,C)
∆ =

{
α:β
γ |α ∈ E and C ∪ {β, γ} 6 7→fals

}
.

This logical system satisfies the properties: semi-monotonicity, the existence
of a constrained extension is guaranted, strong-regularity and commitment to as-
sumption.

Rational default logic was proposed in [5] and is based on the idea that we
cannot use in the construction of an extension defaults whose all justifications
together are inconsistent with the extension.

Definitions 2.2[5]: Let (D,W) be a default theory, let X be a subset of the set
D of defaults and let S be a set of formulas.

(1) We define XS =
{

α
γ |α:β1,...,βn

γ ∈ X, S ∪ {¬βi} inconsistent, 1 6 i 6 n
}

and Mon(X)=
{

Pr ereq(d)
Conseq(d) |d ∈ X

}
.

(2) A set X of defaults is active with respect to W and S if it satisfies the
conditions:

(i) Justif(X)=∅ or Justif(X)∪ S is consistent
(ii) Prereq(X)⊆ ThXS (W), where ThXS (W) is the deductive closure of

W using classical inference rules and the monotonic rules fromXS .

56 MIHAIELA LUPEA

(3) We denote by A(D,W,S) the set of all subsets of the defaults in D which
are active with respect to W and S. ∅ ⊆ A(D,W,S). MA(D,W,S) is
defined as the set of all maximal elements in A(D,W,S).

The set E of formulas is a rational extension for the theory (D,W) if
E=ThXE (W), where X∈ MA(D,W,E), and X is the set of generating defaults.

The next definition is proposed by Schaub [8] and it is equivalent with the
original definition of rational default logic.

Definition 2.3[8]: Let (D,W) be a default theory. For any set of formulas T,
let Ψ(T) be the pair of the smallest sets of formulas (S’,T’) such that:

(1) W⊆S’⊆T’;
(2) S’=Th(S’) and T’=Th(T’);
(3) For any α:β

γ ∈ D, if ∀0S’ and T ∪ {β} is consistent, then γ ∈S’ andβ ∧
γ ∈T’.

A pair (E,C) of sets of formulas is a rational extension of (D,W) if and only if
Ψ(E,C)=(E,C). The set E is the actual extension of the default theory and C is
the reasoning context.

The set of the generating defaults for the rational extension (E,C) is defined as
follows: GD

(E,C)
∆ =

{
α:β
γ |α ∈ E si C ∪ {β} 6 7→fals

}
.

Rational default logic is a generalisation of constrained default logic that means:
each rational extension of a default theory is also a constrained extension of the
same theory. It can be easy observed that the sets of generating defaults for
constrained extensions are active sets, not necessarily maximal active sets. Con-
strained default logic and rational default logic coincide on the class of semi-normal
default theories. This logical system is strongly regular, does not guarantee the
existence of extensions, is not semi-monotonic and does not commit to assump-
tions.

The following theorems provide characterisations for constrained, respective
rational extensions of a default theory, using the set of generating defaults.

Theorem 2.1[8]: Let (D,W) be a default theory and let E and C be sets
of formulas. Then (E,C) is a constrained extension of (D,W) if and only if
E=Th(W∪Conseq(D’)) and C=Th(W∪Justif(D’)∪Conseq(D’)) for a maximal set
D’⊆D such that D’ is grounded in W and W∪Justif(D’)∪Conseq(D’) is consistent.

Theorem 2.2[4]: Let (D,W) be a default theory and let E and C be sets of
formulas. Then (E,C) is a rational extension of (D,W) if and only if E=Th(W
∪ Conseq(D’)) and C=Th(W ∪ Justif(D’) ∪ Conseq(D’)) for a maximal D’ ⊆ D
such that D’ is grounded in W and are satisfied the following conditions:

(i) W∪Conseq(D’)∪Justif(D’) is consistent
(ii) ∀d ∈ D\D’ we have: W∪Conseq(D’)∪{¬Precond(d)} is consistent or

W∪Conseq(D’)∪Justif(D’∪{d}) is inconsistent.
The condition (ii) from the above theorem states that the set of generating

defaults is maximal active with respect to W and E.
The two variants of the default logic presented in this section have as a common

feature the fact that the inference process formalised by them is guided by a reason-
ing consistent context, which contains the beliefs and the underlying assumptions,
used for deriving new nonmonotonic theorems.

SEMANTICS FOR CONSTRAINED AND RATIONAL DEFAULT LOGICS 57

3. Semantic characterization for constrained extensions and
rational extensions of a default theory

In this section we will provide semantic characterization for constrained and
rational extensions of a default theory. This operational approach is inspired from
[3], the construction of an extension is viewed as a successive application of the
applicable defaults.

In the following some notions from the semantic of first order logic will be used.
Definition 3.1:

(1) For each class of frames Λand a formula A we denote by Λ(A)={M|M∈
Λand | =MA} the models of A, that means the set of all the frames from
Λ in which the formula A is true.

(2) The frame M is a model for the set S of formulas, if and only if are
satisfied: | =MA, ∀A ∈ S. We will use the notation | =MS.

(3) A class Λ of frames is elementary if and only if Λ is the class of all the
models of the set S of formulas.

The particularity of these two variants of default logic that are used implicit
assumptions to derive new explicit conclusions suggests that there is an explicit
content (the set of beliefs) and an implicit content (assumptions) of the knowledge
base. These two aspects must be correlated in the semantic characterisation of an
extension.

Constrained and rational extensions are defined using a pair (E=actual exten-
sion, C=reasoning context). Thus it is naturally to have a pair < Λ1,Λ2 > which
characterises semantic these types of extensions as follows: Λ1 is the class of all
the models of the set E of beliefs, and Λ2 is the class of all the models of the
context C. We have Λ2 ⊆ Λ1 since E⊆C.

Definition 3.2: Let Λ1 and Λ2 be two classes of frames. The pair < Λ1,Λ2 >
is called a bi-structure if and only if Λ1 and Λ2are elementary classes and Λ2 ⊆ Λ1.

A bi-structure < Lambda1,Λ2 > characterises the stage of the reasoning process
as follows: Λ1represents the set of all the models of a set of beliefs and Λ2 represents
the set of all the models of a set of formulas, which represent the reasoning context.

reasoning context = set of beliefs (non-monotonic theorems) +
implicit assumptions (justifications of the used defaults)

Definition 3.3: Let < Λ1,Λ2 > be a pair of frames-frames and d = α:β1,...,βm

γ

a default.
(1) The default d is res-applicable with respect to < Λ1,Λ2 > if and only if:

(i) | =M α, ∀M ∈ Λ1 and (ii) ∃M ∈ Λ2 a.i. | =M β ∧ γ
(2) The default d is rat-applicable with respect to < Λ1,Λ2 > if and only if:

(i) | =M α, ∀M ∈ Λ1 and (ii) ∃M ∈ Λ2 a.i. | =M β

The conditions of res-applicability and rat-applicability are the semantic coun-
terpart of the applicability conditions from definitions 2.1 and 2.3. We can inter-
pret these semantic conditions of applicability as follows:

• res-applicable with respect to < Λ1, Λ2 > if and only if the prerequisite is
believed and the justification together with the consequent are consistent
with the reasoning context.

• rat-applicable with respect to < Λ1, Λ2 > if and only if the prerequisite
is believed and the justification is consistent with the reasoning context.

58 MIHAIELA LUPEA

Definition 3.4: To a closed default d = α:β1,...,βm

γ we assign a mapping dres

from the set of the bi-structures into the set of bi-structures as follows:

d
R(< Λ1,Λ2 >) =

{
< Λ1(γ), Λ2(β ∧ γ) > if d is res-applicable wrt < Λ1,Λ2 >
< Λ1, Λ2 > otherwise

This mapping models a cautious application of the defaults which means that
the commitment to assumptions for each applied default is guaranteed, and then
inconsistencies after the application of an applicable default cannot be obtained.

Definition 3.5: To a closed default d = α:β1,...,βm

γ we assign a mapping drat

from the set of frames-frames into the set of frames-frames as follows:

d
rat(< Λ1, Λ2 >) =





< Λ1(γ),Λ2(β ∧ γ) if < Λ1, Λ2 > is a bi-structure and
d is rat-aplicable wrt < Λ1, Λ2 >

< Λ1, Λ2 > if < Λ1, Λ2 > is a bi-structure and
d is not rat-aplicable wrt < Λ1, Λ2 >

< ∅, ∅ > if < Λ1, Λ2 > is not a bi-structure

The above definition models a step in the reasoning process, where the com-
mitment to assumptions is not guaranteed. We say that we have a hazardous
application of the defaults that means: the application of an applicable default
can cause inconsistencies in the set of beliefs or in the reasoning context.

Definition 3.6: Let < Λ1, Λ2 > be a bi-structure and D a set of closed defaults.
(1) < Λ1,Λ2 > is res-stable wrt D if and only if dres(< Λ1,Λ2 >)=<

Λ1,Λ2 >, ∀d ∈ D.
(2) < Λ1,Λ2 > is rat-stable wrt D if and only if drat(< Λ1,Λ2 >)=< Λ1,Λ2 >,

∀d ∈ D.
A stable bi-structure characterises the end of the reasoning process in which all

the applicable defaults were used.
Definition 3.7: Let < Λ1,Λ2 > be a pair of frame-frame and < di > a sequence

of closed defaults.
(1) We denote by < di >res(< Λ1,Λ2 >) the bi-structure obtained as follows:

< di >rat(< Λ1, Λ2 >) =
{

< Λ1,Λ2 > if < di >= ∅
< ∩Λi

1,∩Λi
2 > else

where < Λ0
1, Λ

0
2 >=< Λ1,Λ2 >, and < Λi+1

1 , Λi+1
2 >= dres

i (< Λi
1, Λ

i
2 >)

for i=1,2,. . .
(2) We denote < di >rat(< Λ1,Λ2 >) the pair frames-frames obtained as

follows:

< di >res(< Λ1, Λ2 >) =
{

< Λ1, Λ2 > if < di >= ∅
< ∪Λi

1,∪Λi
2 > else

where < Λ0
1, Λ

0
2 >=< Λ1,Λ2 >, and < Λi+1

1 , Λi+1
2 >= drat

i (< Λi
1, Λ

i
2 >)

for i=1,2,. . .

SEMANTICS FOR CONSTRAINED AND RATIONAL DEFAULT LOGICS 59

These definitions model a reasoning process that consists in a successive appli-
cation of the elements from a sequence of defaults.

Definition 3.8: Let < Λ1,Λ2 > be a bi-structure, let Z be an elementary class
of frames and < di > a sequence of closed defaults. The pair < Λ1,Λ2 > is < di >-
x-accessible from Z if and only if < Λ1,Λ2 >=< di >x(< Z,Z>). < Λ1,Λ2 > is
x-accessible from Z wrt D if and only if there exists a sequence < di > of defaults
in D such that < Λ1,Λ2 > is < di >-x-accessible from Z. x can be res or rat, and
thus the notions of res-accessibility and rat-accessibility are defined.

Using the notions presented before, the following theorems provide semantic
characterisations for constrained extensions, respective rational extensions.

Theorem 3.1 (correctness and completeness): Let (D,W) be a closed
default theory and let Z be the class of all models of W. A class of frames Λ1 is
the class of all models of actual extension E and Λ2is the class of all models of
the reasoning context C (where (E,C) is a constrained extension of (D,W)) if and
only if there exists a bi-structure < Λ1,Λ2 > which satisfies:

(i) < Λ1,Λ2 > is res-stable wrt D and (ii) < Λ1,Λ2 > is res-accessible from Z
wrt D.

Proof:
(correctness) Assume that (E,C) is a constrained extension for (D,W), then

according to theorem 2.1 we have that:
E=Th(W∪Conseq(D’)), C=Th(W∪Conseq(D’)∪Justif(D’)), where D’ is

grounded in W and the set W∪Conseq(D’) ∪Justif(D’) is consistent.
Let Λ1={M| | =M W ∪ Conseq(D′)} be the set of all models of the actual

extension E and let Λ2={M| | =M W ∪ Conseq(D′) ∪ Justif(D′)} be the set
of all models of the reasoning context C. We have then that < Λ1,Λ2 > is a bi-
structure and we have to verify that < Λ1,Λ2 > satisfies conditions (i) and (ii)
from the theorem:

• For (i) we have to prove that ∀d ∈ D : dres(< Λ1,Λ2 >)=< Λ1,Λ2 >

There are two cases:
1. For d = α:β

γ ∈ D′:
α ∈E, hence | =M α, ∀M ∈ Λ1 and
γ ∈E, C∪{β ∧ γ} is consistent, hence ∃M ∈ Λ2 such that | =M β ∧ γ
We have Λ1(γ) = Λ1 since γ ∈E, and Λ2(β ∧ γ)¿ =Λ2 sinceβ ∧ γ ∈C.
The default d is res-applicable wrt < Λ1,Λ2 > according to definition3.3 and

dres(< Λ1,Λ2 >)= < Λ1(γ),Λ2(β ∧ γ) >= < Λ1,Λ2 >

2. For d = α:β
γ ∈ D\D′:

α /∈E, hence ∃M ∈ Λ1 such that | 6 =Mα or
C∪{β ∧ γ} is inconsistent, hence 6 ∃M ∈ Λ2 such that | =M β ∧ γ
According to the definition 3.3 the default d is not res-applicable wrt < Λ1,Λ2 >

and dres(< Λ1,Λ2 >)=< Λ1,Λ2 >
Thus we have proved the res-stability of the bi-structure < Λ1,Λ2 > wrt D.

• For (ii) we have to prove that there exists a sequence of defaults < di >
such that < Λ1,Λ2 >=< di >res(<Z,Z>), where Z={M| | =M W}.

The set D’ is grounded in W, therefore exists an enumeration 〈δi〉i∈I of its
elements such that:

60 MIHAIELA LUPEA

(1) W ∪ Conseq({δ0, δ1, . . . , δi−1}) 7→ Pr econd(δi), ∀i ∈ I = {0, 1, 2, n}
We consider that this enumeration represents the sequence < di >, which pro-

vides the application order of the defaults for generating the constrained extension
(E,C).
a) if < di >= ∅ then < Λ1,Λ2 >=<Z,Z>, the set of generating defaults D’=∅ and

the constrained extension (E,C), E=C=Th(W).
b) if < di > 6= ∅ we show by induction that:

(2) < d0, ..., dk >res (< Z,Z >) =< Λk+1
1 ,Λk+1

2 >, k = 0, . . . , n, where

Λk+1
1 ={M| | =M W ∪ Conseq({d0, ..., dk})} and

Λk+1
2 ={M| | =M W ∪ Conseq({d0, ..., dk}) ∪ Justif({d0, ..., dk})}

Base: k=0
From (1) with i=0 we have: W7→ Pr econd(d0) which implies W| =

Pr econd(d0), therefore ∀M ∈ Z | =M Pr econd(d0). The set
W∪Conseq(d0) ∪Justif(d0) is consistent because is a subset of the consistent
set W∪Conseq(D’)∪Justif(D’)).

Hence ∃M ∈ Z such that | =M Justif(d0) ∧ Conseq(d0).
Thus are satisfied the res-applicability conditions for the default d0 wrt <Z,Z>.
dres
0 (<Z,Z>)= < Λ1

1=Z(Conseq(d0),Λ1
2=Z(Justif(d0)∧Conseq(d0)) >.

Step: Let us assume that the relation (2) is true for k and we will prove that
it is true for k+1.

From (1) with i=k we have: W∪Conseq({d0, . . . , dk})7→ Pr econd(dk+1) which
implies W∪Conseq({d0, . . . , dk})| = Pr econd(dk+1), and then ∀M ∈ Λk+1

1 | =M

Pr econd(dk+1).
W∪Conseq({d0, ..., dk, dk+1})∪Justif({d0, . . . , dk, dk+1}) is a consistent set be-

cause is a subset of the consistent set W∪Conseq(D’)∪Justif(D’).
Hence ∃M ∈ Λk+1

2 such that | =M Justif(dk+1) ∧ Conseq(dk+1)
Thus are satisfied the res-applicability conditions for the default dk+1 wrt <

Λk+1
1 ,Λk+1

2 >.
< d0, ..., dk+1 >res(<Z,Z>) = dres

k+1(¡Λ
k+1
1 ,Λk+1

2 >)= < Λk+1
1 (Conseq(dk+1)),

Λk+1
2 (Conseq(dk+1)∧ Justif dk+1)) > = < Λk+2

1 , Λk+2
2 > and thus the relation

(2) is satisfied for k+1.
For i=n we have: < d0, . . . , dn >res (<Z,Z>) = < Λn+1

1 ,Λn+1
2 > =

<{M|| =M W ∪ Conseq({d0, . . . , dn})}, {M|| =M W ∪ Conseq({d0, . . . , dn}) ∪
Justif({d0, . . . , dn})}¿ = < Λ1, Λ2 > since D’={d0, ..., dn}.

Thus was proved the res-accessibility of the bi-structure < Λ1, Λ2 > from Z wrt
D.

(completeness) We assume that < Λ1,Λ2 > is a bi-structure which satisfies
the conditions (i) and (ii). Λ1 is the set of all the models of the set E of formulas
and Λ2is the set of all the models of the set C of formulas. The relation Λ1 ⊇ Λ2
implies E⊆C.

We have to prove that (E,C) is a constrained extension for the default theory
(D,W).

SEMANTICS FOR CONSTRAINED AND RATIONAL DEFAULT LOGICS 61

According to the condition (ii) there exists a sequence of defaults < di >=
d0, ..., dnin D such that < d0, ..., dn >res(<Z,Z>)= < Λ1,Λ2 >, where
Z={M| | =MW}

If < di >= ∅ then < Λ1,Λ2 > = <Z,Z> .
Since <Z,Z> is a bi-structure res-stable wrt D we have that

(E=Th(W),C=Th(W)) is a constrained extension for (D,W). The set of
the generating defaults is ∅.

If < di >6= ∅ then:
Following step by step the application of the defaults in the sequence we observe

that:
(a0) | =MPrecond(d0), ∀M ∈ Z = Λ0

1 and thus W 7→ Pr econd(d0)
(b0) dres

0 (<Z,Z>)=< Λ1
1 = Z(Conseq(d0), Λ1

2 = Z(Justif(d0)∧Conseq(d0)) > =
<{M| | =M W ∪ Conseq(d0)}, {M| | =M W ∪ Conseq(d0) ∪ Justif(d0)}¿.

< Λ1
1,Λ

1
2 > is a bi-structure which implies that W∪Conseq(d0)∪Justif(d0) is a

consistent set.
Using the notations:
Λk+1

1 ={M| | =M W ∪ Conseq({d0, ..., dk})} and
Λk+1

2 ={M| | =M W ∪ Conseq({d0, ..., dk}) ∪ Justif({d0, ..., dk})}
we can easily prove by induction that for k=1,2,. . . , n are satisfied the relations:

(ak) | =MPrecond(dk), ∀M ∈ Λk
1 , hence W∪Conseq({d0, ..., dk})7→

Pr econd(dk+1)
(bk) < d0, ..., dk >res(<Z,Z>)=< Λk+1

1 , Λk+1
2 > is a bi-structure.

From (a0) + (a1) +. . . +(an) we have that the set D’={d0, ..., dn} is grounded
in W.

For k=n we have: < d0, ..., dn >res(<Z,Z>)= < Λ1,Λ2 > = <{M| | =M W
∪Conseq(D’)}, {M| | =M W ∪Conseq(D’) ∪Justif(D’)}¿

< Λ1,Λ2 > is a bi-structure and thus W∪Conseq(D’)∪Justif(D’) is a consistent
set.

The res-stability condition for < Λ1,Λ2 > means that dres(< Λ1,Λ2 >)=<
Λ1,Λ2 >, for every d in D :

If d∈D’ then d is res-applicable wrt < Λ1,Λ2 > but it was applied already.
If d∈D\D’ then we have two cases (i) or (ii):

(i) d is res-applicable wrt < Λ1,Λ2 > but applying it we can neither obtain
new nonmonotonic theorems nor modify the context. We add to D’ all the
defaults d with this property: D’=D’∪{d} and D’ remains grounded in W.

(ii) d is not res-applicable wrt < Λ1,Λ2 > due to the following:
∃M ∈ Λ1 a.i. | 6 =M Pr econd(d),thus D’∪{d} is not grounded in W or
6 ∃M ∈ Λ2 a.i | =M Justif(d) ∧ Conseq(d), thus
W∪Conseq(D’∪{d})∪Justif(D’∪{d}) is an inconsistent set.

All the defaults in D\D’ are not res-applicable wrt < Λ1,Λ2 > and thus
is guaranteed the maximality of D’ such that D’ is grounded in W and
W∪Conseq(D’)∪Justif(D’) is consistent.

The maximal sets E, C of formulas with the property that Λ1,Λ2 are the
sets of all their models respectively, have the form: E=Th(W∪Conseq(D’),
C=Th(W∪Conseq(D’)∪Justif(D’)) and thus (E,C) is a constrained extension ac-
cording to the theorem 2.1.

62 MIHAIELA LUPEA

Theorem 3.2 (correctness and completeness): Let (D,W) be a closed
default theory and Z be the class of all models of W. A class of frames Λ1 is
the class of all the models of the actual extension E and Λ2is the class of all the
models of the reasoning context C (where (E,C) is a rational extension of the
theory (D,W)) if and only if there exists a bi-structure < Λ1,Λ2 > which satisfies
the following conditions:

(i) < Λ1,Λ2 > is rat-stable wrt D and (ii) < Λ1,Λ2 > is rat-accessible from Z
wrt D.

Proof: The proof of this theorem is similar to the above proof. Theorem 2.2
can be used for the characterization of rational extensions.

4. Graphical interpretation of the semantic characterization of
constrained and rational extensions

To each default theory (D,W) we can associate a transition network. The nodes
of this network contain pairs frames-frames and the arcs are labelled with defaults
from the set D. If a node contains a bi-structure is called viable, otherwise is called
contradictory. A leaf node is a node whose outbound arcs loop back.

The network is specified as follows:
(1) The set of nodes is the smallest set which satisfies the conditions:

• < Z, Z ¿ is the root node, where Z={M| | =MW}.
• if n is a viable node and d∈D, then dres(n) (respective drat(n)) is

a node of the network.
(2) From each viable node n and for each d∈D, there is an arc label by d

which leads to the node dres(n) (respective drat(n))
We can give a graphical interpretation for the theorems 3.1 and 3.2.
Let (D,W) be a default theory and the associated transition network built us-

ing dres(respective drat). Every viable node characterises a constrained extension
(respective rational extension) for the default theory (D,W) as follows:

< Λ1,Λ2 > is a stable bi-structure contained in a leaf node, where:
< Λ1,Λ2 >=< di >res(< Z,Z>) (respective < Λ1,Λ2 >=< di >rat(< Z,Z>)),
< di >=d1, . . . , dk , and Z={M| | =MW}.
if and only if

Λ1is the class of all models of the set E=Th(W ∪
k⋃

i=1

Conseq(di)) and Λ2 is

the class of all the models of the set of formulas C=Th(W ∪
k⋃

i=1

Conseq(di) ∪
k⋃

i=1

Justif(di)), that means:

Λ1 = {M || =M W ∪
k⋃

i=1

Conseq(di)},

Λ2 = {M || =M W ∪
k⋃

i=1

Conseq(di) ∪
k⋃

i=1

Justif(di)}

SEMANTICS FOR CONSTRAINED AND RATIONAL DEFAULT LOGICS 63

and {d1, . . . , dk} is the set of generating defaults for the constrained extension
(E,C) (respectively for the rational extension (E,C)).

Example 4.1: The default theory (
{
d1 = :B

C , d2 = :¬B
D , d3 = :¬C∧¬D

E

}
, ∅) has

three constrained extensions corresponding to the leaf nodes of the transition net-
work from the fig1.

(E1=Th({C}),C1=Th({C∧B})) with {d1} as the set of generating defaults.
(E2=Th({D}),C2=Th({D∧¬B})) with {d2} as the set of generating defaults.
(E3=Th({E}),C3=Th({E∧¬C∧¬D})) with {d3} as the set of generating de-

faults.

Figure 1.

Fig2 contains the transition network that characterizes the rational extensions.
The same default theory has only two rational extensions: (E1,C1) and (E2,C2).

Figure 2.

According to the original definition of rational default logic we have that:
• {d1}∈ MA(D,W,E1), where E1=Th(W∪Conseq({d1})).
• {d2}∈ MA(D,W,E2), where E2=Th(W∪Conseq({d2})).
• {d1,d3},{d2,d3}∈MA(D,W,S), where S=Th(W∪Conseq({d3})). There-

fore the set {d3} is not maximal active with respect to W and S; hence
{d3} cannot be a set of generating defaults for a rational extension.

The existence of the contradictory node in fig2 illustrates the semantical fail-
ure of semi-monotonicity, and thus the failure of commitment to assumption for
rational default logic.

64 MIHAIELA LUPEA

5. Conclusions

The semantic characterization of constrained and rational extensions proposed
in this paper together with the semantic characterization of classical and justi-
fied extensions from [3] can be viewed as a uniform approach of semantics which
permits a comparative study of the formal properties of these variants of default
logic. We can observe similarities between classical and rational default logics,
respective justified and constrained default logic as follows:

justified - constrained default logics:
• cautious application of the defaults
• a transition network which models the reasoning process in justified or

constrained default logic does not have contradictory nodes
• these variants of default logic satisfy the semi-monotonicity property

which permits to successively apply one default after another with no
risk of destroying any previous partial extension

• a default theory has always justified and constrained extensions.
classical - rational default logics

• hazardous application of the defaults
• there is the possibility to obtain contradictory nodes, which means: a

default that satisfies the applicability condition, after its application can
cause inconsistencies in the set of beliefs or in the reasoning context

• the failure of the semi-monotonicity property, and thus a classical and a
rational extension can not be generate iteratively

• the existence of classical and rational extensions is not guaranteed: there
are transition networks having only contradictory nodes as final nodes

• does not commit to assumptions
Constrained default logic satisfies the property of commitment to assumptions

due to the fact that the res-applicability condition is cautious and the reasoning
context must be consistent.

Rational and constrained default logics are strong-regular because the applica-
bility conditions for defaults require the reasoning context to be consistent.

References

[1] D.W. Etherington: A semantics for default logic. Proceedings of IJCAI 1987, pp. 495-498.
[2] W. Lukaszewicz: Two results on default logic. Proceedings of the IJCAI, 1985.
[3] W. Lukaszewicz: Non-monotonic reasoning. Ellis Horwood Limited, 1990.
[4] M.Lupea: A comparative study of versions of default logic, presented on the Ph.D. program,

November 2001, Faculty of Mathematics and Computer Science, “Babes-Bolyai” University
of Cluj-Napoca, Romania.

[5] A.Mikitiuk, M.Truszczynski: Rational default logic and disjunctive logic programming, ı̂n
A. Nerode, L.Pereira, Logic programming and non-monotonic reasoning, MIT Press, 1993,
pp. 283-299.

[6] R.Reiter: A logic for default reasoning, Journal of Artificial Intelligence, 13, 1980, pp. 81-
132.

[7] T.H.Schaub: Considerations on default logics. Ph.D. Thesis, Technischen Hochschule Darm-
stadt, Germany, 1992.

[8] T.H. Schaub. The Automation of Reasoning with Incomplete Information. Springer-Verlag
Berlin, 1997.

Department of Computer Science, Babeş-Bolyai University, 1 M. Kogălniceanu St.,
RO-3400 Cluj-Napoca, Romania

E-mail address: mlupea@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVI, Number 2, 2001

ON ROMANIAN ARTICLE SEMANTICS

DANA AVRAM

Abstract. In this paper a way to represent Romanian article semantic is
proposed. When trying to represent sentence semantics by using first order
predicate calculus, the articles usually became the mathematical operators
∃ and ∀. We define a more powerful operator, called DET, that encloses
the significance of ∃ and ∀. Rules that may be used with DET in a FOPC
are considered. This proposed representation is also appropriate for other
determiners class.

1. Introduction

The kinds of grammars that we are familiar with do not model the reasoning
process of the brain. They are descriptions of the natural language structure to
a certain degree of precision. So the course of development of the brain cannot
really be explained by the formal properties of the descriptive apparatus. Similar
questions can be raised for every piece of knowledge, specific and general, that is
embodied in the mental grammar. The set of things that we characterize as prior
knowledge are part of the language faculty, or universal grammar [2]. Everything
else is learned. The question, now, is how?

Deduction systems are one of the most used expert systems. They have a set of
statements (dates) and a set of deduction rules for constructing new statements.
They are built on mathematical logic operations whose fundamental rules are very
well stated. This very rigid but rigorous system will be exploited in the next
paragraphs.

2. Articles in Romanian Language

Syntactically speaking, the article appears near a noun [5]. They are definite,
indefinite, or bare. The indefinite form usually indicates that the speaker has
no information, or a reduced degree of information, on the object it stands by.
The definite article indicates a higher degree of information. The bare article is
an indefinite article, but its presence is not required by the syntactic rules. The
singular and plural form, the definitiveness or indefinitiveness article forms have a

2000 Mathematics Subject Classification. 68T50.
1998 CR Categories and Descriptors. I.2.7[Computing Methodologies]: Artificial In-

telligence – Natural Language Processing.

65

66 DANA AVRAM

supplementary numeric role. We will concentrate on the second problem and will
construct a model that captures this meaning in a simple and explicit way [4].

From the viewpoint of a syntactic form, the article may exist by himself as a sep-
arate word, standing above the noun, or it may be part of the noun it determines.
The forms of the Romanian article are presented in Table 1.

Table 1. The Romanian article syntactic forms

Article Syntactic
form

Number/Use Example

1. -l,-le,-a -lui, -e, -
i

part of the noun singular/definite
reference

cainele [the dog]

2. un, o, unei, unui separate word singular/indefi-
nite reference

un caine [a dog]

3. (toti) -i,(toate)-
le-lor

separate word
(optional) and
part of the noun

plural/definite
reference

(toti) cainii
[(all) dogs]

4. (niste) -le, -lor separate word
(optional) and
part of the noun

plural/indefinite
reference

niste caini [some
dogs]

5. BARE bare singular
NP (mass term)

caine [dog]

6. BARE bare plural NP
(generics)

caini [dogs]

3. Representation using FOPC

Let L = (Σ, F, A,R) be the first order predicate logic (FOPC):

Σ = V ∪ C ∪ (∪Fj) ∪ (∪Pj) ∪ {∀,∃,¬,∧,∨,→, (,)},
where V represents a set of symbols called variables, C represents a set of symbols
called constants, Fj represents a set of function symbols with j parameters, Pj

represents a set of function symbols with j parameters, Pj represents a set of
predicate symbols with j parameters, the set {∀, ∃,¬,∧,∨,→, (,)} represents the
logic operators, and ∃ and ∀ represent FOPC quantifiers.

One important class of semantic constructors is quantifiers class [3]. In the
first order predicate calculus [8], the two quantifiers, ∀ and ∃, encode the articles’
meaning.

Let us see how we can represent some sentences using the FOPC defined earlier.
The singular article, definite or indefinite (Table 1, lines 1 and 2), says that ∃

the material object that corresponds to the given noun.

ON ROMANIAN ARTICLE SEMANTICS 67

The definite plural article (Table 1, line 3) has the meaning of ∀.
The indefinite plural article (Table 1, line 4) indicates the existence (∀) of one or

more objects of the type that corresponds to the given noun. Few more quantifiers
are necessary.

The bare (missing) article (Table 1, lines 5 and 6) is usually interpreted as
indefinite article.

Table 2. Examples of sentences representation using FOPC

Romanian English
translation

Representation
of Romanian
sentence

The same sen-
tence in English

1. Un caine latra [A dog barks] (∃x: (CAINE(x))
→ LATRA(x))

(∃x: (DOG(x)) →
BARK(x))

2. Toti cainii latra [All dogs
bark]

(∀x: (CAINE(x))
→ LATRA(x))

(∀x: (DOG(x)) →
BARK(x))

3. Niste caini latra [Some dogs
bark]

(∃x: (CAINE(x))
→ LATRA(x))

(∃x: (DOG(x)) →
BARK(x))

Looking at Table 2 we may remark that the sentence Un caine latra / [A dog
barks] is represented in the same way as the sentence Niste caini latra / [Some
dogs bark]. It is easy to notice that this representation looses a part of the natural
language semantics. The problem is that any natural language contains a much
larger range of quantifiers than the two from FOPC. As an example for the higher
complexity of natural language quantifiers, let us consider the following FOPC
formula

∀x : P (x)
This formula is true if and only if P (x) is true for every possible object in the
domain.

Such statements are rare in natural language. We will rather say [most dogs
bark] (and in this case, this is not an article domain, but a Romanian adverb)
or [some people laugh], which requires constructs that are often called generalized
quantifiers. These quantifiers are used in statements of the general form [1, 6]:

(quantifier variable: restriction proposition → body-proposition)
For example:

([NISTE](x):(CAINE(x)) → LATRA(x))
(SOME(x):DOG(x) → BARK(x))

This roughly captures the meaning of the sentence: If there are some things
that are also dogs, then they are barking things.

Or:

68 DANA AVRAM

([CEI MAI MULTI](x):(CAINE(x)) → LATRA(x))
(MOST(x):DOG(x) → BARK(x))

This means that: Most dogs are barking things.

4. Quantifiers with extended functionality

A construct to handle plural forms, as in the phrase two dogs bark must to
be introduced. This indicates not a dog, but two. It can easily be seen that the
article has also a numeric meaning. Let us consider the general form:

DET[variable, name, number]
where variable is the variable inherited from FOPC, name is the name of the
determinant, and number is the number of objects indicated by the noun, or the
percent value (of all the possible objects in discussion) only indicators of number
(as all, some) are specified. Toti [all] refer to 100%, some will be convenient for
25% (less than 50%). Tabel 3 shows the Romanian articles representations using
the general form DET described above.

Table 3. Articles representations using DET

Article Representation
1. -l,-le,-a-lui, -e, -i DET[x, article, 1]
2. un, o, unei, unui DET[x, article, 1]
3. (toti) -i,(toate)-le-lor DET[x, article, 100%]
4. Niste -le, -lor DET[x, article, 25%]
5. BARE The same representation as the indefi-

nite form and the same number

For example, the previous expression
([NISTE](x):(CAINE(x)) → LATRA(x))

becomes
(DET [x, niste, 25%]:(CAINE(x)) → LATRA(x))

and the expression
([UN](x):(CAINE(x)) → LATRA(x))

becomes
(DET[x, un, 1]:(CAINE(x)) → LATRA(x))

For the adverbial expression cei mai multi [most] 75% will be convenient for
(more than 50%).

For example, the expression:
([CEI MAI MULTI](x):(CAINE(x)) → LATRA(x))

becomes:

ON ROMANIAN ARTICLE SEMANTICS 69

(DET [x, cei mai multi, 75%]:(CAINE(x)) → LATRA(x))
Numeral determiners make no assumption about the whole class of the object.

Their number will appear on the third position on DET argument, as in the next
example.

The expression:
([DOI](x):(CAINE(x)) → LATRA(x))

becomes:
(DET [x, doi, 2]:(CAINE(x)) → LATRA(x))

5. Rules for DET

To allow quantifiers, variables are introduced as in first order logic but with
an important difference. in first order logic a variable only retains its significance
within the scope of quantifier. Thus two instances of the same variable x oc-
curring in two different formulas – say in the formulas ∃xP (x) and ∃xQ(x) are
treated as completely different variables with no relation to each other. Natural
languages display a different behavior. For instance consider that two persons say
the following two true sentences: A dog barks and Three dogs bark. The first
sentence introduces a new object to the discussion namely a dog. You might think
to treat the meaning of this sentence along the lines of the existential quantifier
in logic. But the problem is that the dog number introduced existentially in the
first sentence is completed by to the number three in the second sentence. Vari-
ables appear to continue their existence after being introduced and the associate
determiners usually change by unification [1]. In FOPC they are combined using
the logical operators {¬,∧,∨,→, (,)}. Here → can be obtained from ∨ and ¬, and
the parens (,) specify the order. So we have to consider rules of combining DET
with →,∧,∨.

We suppose that all the variables refer to the same variable univers (unique and
known) which will be called the contextual universe.

Rules for ¬ are different when the number is percent and when it has a concrete
value. As it will be seen, there are cases when taking a decision is improper.

Rule no 1: (Percent case)
¬((DET [x, det1, p1]: OBJECT(x)) = (DET [x, det1, 100% -p1]:
¬ OBJECT(x))

Rule no 2: (Numeric case)
Suppose that we know the total number objects in the contextual uni-
verse.

if tot = total nr of objects that determiner determines is known
then

¬ (DET [x, det1, p1] : OBJECT(x))= (DET [x, det1, tot -
p1] : ¬ OBJECT(x))
else

70 DANA AVRAM

¬ (DET [x, det1, p1] : OBJECT(x)) = undefined
The rule for ∧ depends on maximal values of numeric argument. Suppose that

p1 > p2.
Rule no 3:

((DET [x, det1, p1] : OBJECT(x)) ∧ (DET [x, det2, p2] :
OBJECT(x))) = (DET [x, det1, p1] : OBJECT(x)) (if p1 > p2)

Rule for ∨ depends on numeric argument as in ∧ case.
Rule no 4:

((DET [x, det1, p1] : OBJECT(x)) ∨ (DET [x, det2, p2] :
OBJECT(x))) = (DET [x, det2, p2] : OBJECT(x)) (if p1 > p2)

There are mathematical rules that link with ∃ and ∀. One of the simplest
mathematical rules [8] says that ∀ implies ∃.

if
(∀x: OBJECT(x))

then
(∃x: OBJECT(x))

That means that: if any x is object is true, then an x is object is true, too. In
the DET case that is:

Rule no 5:
if

(DET [x, det1, p1] : OBJECT (x)) and p2 < p1 (percent or
numeric)
then

(DET [x, det1, p2] : OBJECT (x)).
This means that if there are p1 objects x and p2 is such that p2 < p1,

then there are also p2 objects x (in the given contextual universe).
We saw that problems that appear in the percent case are solved if we know

the total number of the objects in the contextual universe. This is so because in
this case we can transform the percent value into a (real) numeric one, as in the
rule that follows.

Rule no 6:
Suppose that tot is the total number of the objects OBJECT in the
contextual universe and p1 is a percent value. Then the math says that:
p2 = p1/100×tot, and p2 is a numeric value, i. e.:

(DET [x, det1, p1] : OBJECT (x)) = (DET [x, det1, p1/100 ×
tot] : OBJECT (x)).

Taxonomies are valuable resources in Natural Language Processing and Artifi-
cial Intelligence. They consist of hypernym (generalization) and hyponym (spe-
cialization) relations between concepts [7]. The most known example of such an
organization is WordNet – a lexical database organized as a general terminological

ON ROMANIAN ARTICLE SEMANTICS 71

system that contains semantic classes organized hierarchical is a classical exam-
ple. There are also other knowledge bases as a partially structured knowledge, as
domain specific terminological systems. Those structures may be easily used, if
available, to improve deduction rules into determiners domain.

Let us consider the case of hierarchical system generated by ISA arcs. Suppose
that OBJECT1 ISA OBJECT2, like a DALMATIAN is a DOG.

Rule no 7:
if

(DET [x, det1, p1] : DALMATIAN (x)) and p1 is numeric
then

(DET [x, det1, p1] : DOG (x))
This deduction rule works as follows: if there are five Dalmatians

that bite, then there are also (at least) five dogs that bite.
This rule does not work in the percent case. We cannot say that if

there are 50% Dalmatians that bite, then there are also 50% dogs that
bite, nor that if there are 50% dogs that bite, then there are also 50%
Dalmatians that bite.

6. Further research

Examples regarding the article case have been discussed. The issues approached
in this paper may be developed even for numerals and other adverbs (with deter-
miner role). As we have seen, the article semantics is much the same as of the
other parts of speech with determiner role.

Only the case of a unique universe has been considered. But in the real world,
each speaker states truths about his own known, time changing universe which
may be different from the others. There is always a possibility that the statement
be not (exactly) true if reported to the general universe. The classification scheme,
structured according to the state of current human knowledge is, also, not perfect.
Sometimes, the hierarchy is not so well done, there are exceptions that must be
handled. One solution would be to introduce a special parameter to DET argument
list in order to handle those special cases.

Noun phrases serve many different language functions, and it is important to
distinguish these functions when considering scoping issues. There are at least
three major classes to consider. Those involving definite reference indicate that the
listener should in principle be able to identify the object or set. Definite reference
occurs, for example, with determiners as the as in the dog (an individual) or the
fat men (a specific set). In any natural settings there will obviously be many dogs
in the world, so the use of the context to identify the correct one is crucial for
understanding the sentence. Identification is a problem of anaphora resolution,
and has been widely discussed in the literature.

72 DANA AVRAM

References

[1] Allen, J., Natural Language Understanding, The Benjamin Cummings Publishing Com-
pany, New York, 1995.

[2] Culicover, P.W., Language acquisition and the architecture of the language faculty, Pro-
ceedings of the Berkeley Formal Grammar Conference Workshop, The University of Cali-
fornia, Berkeley, CSLI Publications, http://www-csli.stanford.edu/publications/, 2000.

[3] Gal, A., Lapalme, G., Saint-Dizier, P., Somers, H., Prolog for Natural Language
Analysis, John Wiley, London, 1991.

[4] Graur, Al. et. al., Romanian Language Grammar, Romanian Academy Publishing House,
1966.

[5] Jurafsky, D., Martin, J.M., Speech and Language Processing, Prentice Hall, Inc., Uni-
versity of Colorado, New Jersy, USA, 2000.

[6] Onet, A., A module-based application for te semantic representation of natural language
sentences, Proceedings of Eurolan 2001, Iasi, Romania, 2001.

[7] Stevenson, M., Enriching Noun Taxonomies with Thesaural Information, Proceedings of
NAACL 2001, Carnegie Mellon University Pittsburgh, PA, USA, 2001.

[8] Tatar, D., Artificial Inteligence: Automate Demonstration, Natural Language Processing,
Editura Albastră, 2001.

Babeş-Bolyai University, Department of Computer Science, Cluj-Napoca, Romania
E-mail address: davram@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVI, Number 2, 2001

ACTIVECASE - TOOL FOR DESIGN OF CONCURRENT
OBJECT-ORIENTED APPLICATIONS

DAN MIRCEA SUCIU

Abstract. Object-oriented concurrent programming is a methodology that
seems to satisfy nowadays requirements for complex application development.
Issues like inheritance anomalies or developing of object models that integrate
in a natural way concurrent programming elements with object-oriented con-
cepts was intensely analyzed in literature.

Construction of a consistent modeling mechanism that ameliorates the
inheritance anomalies as much as possible represents the main goal of our
research work ([13], [14]). This paper presents the implementation of this
modeling mechanism into a CASE tool for analysis and design of concur-
rent object-oriented applications. Developing specific scalable statecharts for
behavior modeling of active objects and automatic code generation are sub-
sequent issues that are attend to validate the executability of our mechanism.

Key words: CASE tools, object-oriented concurrent programming,
reactive systems, statecharts.

1. Introduction

CASE (Computer Aided Software Engineering) tools are software products able
to support medium or large application development. This support is realised by
automating some of the activities made in an analysis and design method. If
we agree that one of the main goals of an analysis and design method is code
generation and that we should obtain automatically a high rate of application
code, it is obvious that an efficient use of a method cannot be made without an
associated CASE tool.

Typically, the translation of a complex analysis/design model into a program-
ming language takes a long period. A model is called executable if this translation
can be made automatically. The automatization of the translation process allows
running a prototype of an application immediately after building its model.

The executability is an important feature of scalable statecharts [13], allowing
the automatization of active objects implementation based on their behavioral

2000 Mathematics Subject Classification. 68N30.
1998 CR Categories and Descriptors. D.2.3 [Software] : Software Engineering – Coding

Tools and Techniques; D.2.7 [Software] : Software Engineering – Distribution, Maintenance
and Enhancements .

73

74 DAN MIRCEA SUCIU

models. Furthermore, the executability offers support for simulation, testing and
debugging of active object execution at the same level of abstraction like the built
model.

The paper describes the architectural and functional features of a CASE tool
designed for modeling, developing and simulation of concurrent object oriented
applications. This tool, called ActiveCASE, is complete original and supports
active objects behaviour modeling through scalable statecharts formalism as de-
scribed in [13] and [14]. In addition, ActiveCASE allows concurrent class structure
specification, active object behavior modeling and source code generation.

Section 2 presents the meta-model of class diagrams and scalable statecharts
implemented in ActiveCASE.

A detailed description of tool functional features is shown in section 3.
Section 4 validates the modeling capacity and executability of scalable stat-

echarts describing the development and modeling process of an application for
traffic control on a rectangular track. This sample exploits all scalable statecharts
features described in [13] and [14].

2. The meta-model of scalable statecharts

In this section is presented in detail a static meta-model of scalable statecharts.
This meta-model is used in scalable statecharts implementation in ActiveCASE
(figure 1).

Figure 1. The meta-model of class and state diagrams used in ActiveCASE

DESIGN OF CONCURRENT OBJECT-ORIENTED APPLICATIONS 75

Because a state diagram is associated with a class, ActiveCASE supports also
a primitive class diagram editor. This kind of diagrams is not an important fea-
ture of ActiveCASE, because the tool focuses on behavioural models. However,
ActiveCASE can be easily interfaced with other existing CASE tools. The classes
that models class diagrams are: CLSClass (models a class), CLSStandardType
(models primitive types like integer, float, string, boolean etc), CLSParameter,
CLSAttribute and CLSMethod (model the properties and operations of a spe-
cific class).

In ActiveCASE simple states are viewed like composed states with zero sub-
states, and a non-concurrent state like a state, which contains one orthogonal
component. This manner of considering state diagrams allows the elimination
of redundant classes from meta-model. In the same time, this representation
semantically unifies the concepts of simple state, composed state and orthogonal
state. Figure 2 shows in a graphical manner the relationships between entities of
scalable statecharts.

Figure 2. Graphical representation of scalable statecharts

FSMAbstractState abstract class models all kind of states defined in Level
2 scalable statecharts (SS2). An object of FSMAbstractState class contains a
list of (incoming and outgoing) transitions (modeled by FSMTransition class)
and a list of orthogonal components (modeled by FSMOrthogonalComponent
class). In ActiveCASE there are two state categories: pseudostates (initial, final,
history - modeled by FSMPseudoState class)and concrete states (modeled by
FSMConcreteState class). A concrete state contains at least one orthogonal
components.

Another important element of our model is that a class has not associated
a state diagram or a state machine, but a concrete state. This concrete state
represents the parent (root) of all states that describes the behavior of associated
class objects. This particular state will have the same name as the modeled class,
and its invariant corresponds to the consistency condition imposed on class objects.
Practically, the concept of state diagram is not used anymore, and the behavior
of objects is described through a state hierarchy.

The auto-transition from FSMTransition class level assigns to each transition
a ‘clone’ used in scaling (minimizing or maximizing) composed states. In figure

76 DAN MIRCEA SUCIU

3 is presented a sample where this double transition is useful. The transitions
labeled with m1 and m3 link states from different nesting levels. When State2 is
minimized, its sub states will be ’hidden’ and the same thing will happen with
their transitions.

Figure 3. Cloning transitions

Therefore, is necessary to introduce supplementary transitions that will preserve
the behavioral model. These transitions double the original transitions, and they
link states State1 and State2. Also, ‘clone’ transitions do not influence the source
code generation. Their launch conditions are conjunctions between the original
condition and the invariant of source state (for the transition labeled with m3,
its clone will have attached the condition c3 && c4, where && is logical AND
operator from C++ programming language).

3. ActiveCASE architecture

The ActiveCASE tool has three main components:

• ActiveCASE.exe - main application, used for editing class and scalable
statecharts diagrams and source code generation,

• StateControl.ocx - component used for specific statecharts display,
• ActiveStatechart.dll - component used in simulation of active objects

behavior during execution of a generated application.

ActiveCASE is a tool for modeling of active objects behavior and offers sup-
port for analysis, implementation and testing phases of life cycle of an application.
ActiveCASE application allows editing primitive class diagrams and scalable stat-
echarts, and has a C++ source code generator (Figure 4).

DESIGN OF CONCURRENT OBJECT-ORIENTED APPLICATIONS 77

Figure 4. ActiveCASE capture with graphical editors of class
and states diagrams

All modeled classes are sub-classes of a special class called ActiveObject. This
class has attributes and operations for handling states and transitions and for
interactions with simulation component.

The component used for simulation allows the visualization of concurrent ob-
jects execution during the execution of an application generated by ActiveCASE
environment.

4. Modeling an application for traffic simulation

In this section is presented a sample application for traffic simulation on a rect-
angular track. This sample application uses all features provided by ActiveCASE
tool and all new elements introduced by scalable statecharts.

Figure 5 shows the class diagram that models an application for traffic simu-
lation on a rectangular track. A Track object contains a bi-dimensional array of
locations and has a set of associated cars. The three operations of Track class
allow displaying a Track object on screen and to start or stop all its associated
cars.

78 DAN MIRCEA SUCIU

Figure 5. State diagrams for Track, Car and Location classes

All diagrams presented in figure 5 are made with ActiveCASE tool. Using Ac-
tiveCASE environment the implementation code for all three classes was generated

DESIGN OF CONCURRENT OBJECT-ORIENTED APPLICATIONS 79

and attached to a Visual C++ project. The intervention of developer is neces-
sary only for creating a Track object and for attaching to it a desired number of
cars (Car objects). In addition, the developer can implement code for graphical
representation of all objects.

Figure 6 shows a test of “Maşină roşie” active object behavior using the simu-
lation of its execution using scalable statecharts.

Figure 6. The simulation of “Maşină roşie” object behavior

5. Conclusions

The process of concurrent object oriented applications development is laborious.
As we stated in the previous sections, the conceptual differences between different
concurrent object oriented programming languages make difficult to translate ap-
plications from one language in another. In the same time, testing and debugging
these applications is more complicated than for sequential applications. There-
fore modeling these applications through a unitary set of concepts and notations
and testing and debugging them at models level increase the quality of developed
applications and decrease the maintenance effort.

The goal of ActiveCASE tool is to automate some steps of the developing pro-
cess for concurrent object oriented applications. Its main features are:

• flexibility in modeling active objects behavior through scalable state-
charts that cover most of concurrent object models;

• high level of internal concurrency specification;
• the source code generator is adaptable to any concurrent object oriented

programming language;

80 DAN MIRCEA SUCIU

• offers support for active objects behavior simulation at run-time;
• imposes an implementation discipline, which ameliorates reuse anom-

alies.

References

[1] F. Barbier, H. Briand, B. Dano, S. Rideau, “The Executability of Object-Oriented Finite
State Machines”, Journal of Object-Oriented Programming, SIGS Publications, 4 (11), pp.
16–24, jul/aug 1998

[2] Michael von der Beeck, “A Comparison of Statecharts Variants”, Formal Techniques in
Real-Time and Fault-Tolerant Systems, L. de Roever and J. Vytopil (eds.), Lecture Notes
in Computer Science, vol. 863, pp. 128–148, Springer-Verlag, New York, 1994

[3] S. Cook, J. Daniels, “Designing Object Systems - Object-Oriented Modelling with Syn-
tropy”, Prentice Hall, Englewood Cliffs, NJ, 1994

[4] Bruce Powel Douglas, “UML Statecharts”, Embedded Systems Programming, jan. 1999,
available at http://www.ilogix.com/fs prod.htm

[5] D. Harel, A. Naamad, “The STATEMATE Semantics of Statecharts”, ACM Transactions
on Software Engineering and Methodology, 5 (4), pp. 293–333, 1996

[6] D. Harel, E. Gery, “Executable Object Modeling with Statecharts”, IEEE Computer, 30
(7): 31–42, Jul. 1997

[7] David Harel, Statecharts: A Visual Formalism for Complex Systems, Science of Computer
Programming, vol.8, no. 3, pp. 231–274, June 1987

[8] Object Management Group, OMG Unified Modeling Language Specification, ver. 1.3, June
1999 available on Internet at http://www.rational.com/

[9] Z. Manna, Mathematical Theory of Computation, McGraw-Hill, 1974
[10] Michael Phillipsen, Imperative Concurrent Object-Oriented Languages, Technical Report

TR-95-049, International Computer Science Institute, Berkeley, Aug. 1995
[11] Marian Scuturici, Dan Mircea Suciu, Mihaela Scuturici, Iulian Ober, Specification of active

objects behavior using statecharts, Studia Universitatis “Babes Bolyai”, Informatica, Vol.
XLII, no. 1, pp. 19–30, 1997

[12] Dan Mircea Suciu, Reuse Anomaly in Object-Oriented Concurrent Programming, Studia
Universitatis “Babes-Bolyai”, Informatica, Vol. XLII, no. 2, pp. 74–89, 1997

[13] Dan Mircea Suciu, Extending Statecharts for Concurrent Objects Modeling, Studia Univer-
sitatis “Babes-Bolyai”, Informatica, Vol. XLIV, No. 1, pp. 37–44, 1999

[14] Dan Mircea Suciu, Using Scalable Statecharts for Active Objects Internal Concurrency
Modeling, Studia Universitatis “Babes-Bolyai”, Informatica, Vol. XLV, No. 2, pp. 67–76,
2000

Department of Computer Science, “Babeş-Bolyai” University, 1 M. Kogălniceanu
St., RO-3400 Cluj-Napoca, Romania

E-mail address: tzutzu@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVI, Number 2, 2001

DESIGNING A FAULT–TOLERANT JINI COMPUTE SERVER

IOAN LAZĂR

Abstract. Java-based tuplespaces provide a simple infrastructure for scien-
tific distributed computing. There are several classes of problems that are not
efficiently solvable in JavaSpaces model of computation while efficiently solv-
able in other tuplespace implementation. JavaSpaces can be used for high
performance computing if viewed less strictly in the heritage of Linda and
more as a platform-neutral code delivery mechanism.

This paper presents an early design of JavaSpaces compute server. We
describe how we use mobile co-ordination and agent wills to provide fault-
tolerance in Jini based compute servers. Preliminary experimental results
show performance gains made when mobile co-ordination is used.

In this paper we apply the mobile co-ordination and agent wills [12] to provide
fault-tolerance in compute servers based on tuple spaces.

The first section the tuple space paradigm and the Linda model for parallel com-
putation. The next section provides an overview of Jini and JavaSpaces [14]. The
third section describes in detail our design and then we present our conclusions.

1. The Tuple Space Paradigm

Linda is a well known co-ordination model [3]. The fundamental concepts of
Linda are tuples, templates and tuple spaces.

A tuple is an ordered collection of fields. Each field has a type and a value
associated to it. A field with both a value and a type is known as an actual. The
tuple < 1989int, “Linda”string , 1.0real > is a tuple containing three fields, with
the type of the field shown as a subscript of the value.

Tuples are placed into tuple spaces and are removed from tuple spaces using an
associative matching process.

A template is similar to a tuple except the fields do not need to have values
associated to them, but all fields must have a type. A field that has only a
type and no value is known as a formal. A template is a tuple which can have
formals. A template matches a tuple if they have the same number of fields, and

2000 Mathematics Subject Classification. 65Y05, 68Q85.
1998 CR Categories and Descriptors. F.1.2 [Computation by Abstract Devices]:

Modes of Computation – Parallelism and concurrency; G.4 [Mathematics of Computing]:
Mathematical Software – D.1.3 [Programming Techniques]: Concurrent Programming – E.1
[Data]: Data Structures – Distributed data structures.

81

82 IOAN LAZĂR

all the actuals in the template match the actual in the tuple and the formals in the
template matches the type of the corresponding actual in the tuple. The templates
< |¤int, “Linda”string , 1.0real | >, and < |1989int, “Linda”string , 1.0real | > will
match the tuple < 1989int, “Linda”string , 1.0real >. (¤ in a template is used to
indicate formal fields.)

A tuple space is a logical shared associative memory that is used to store tuples.
A tuple space implements a bag or a multi-set (the same tuple may be present
more than once and there is no ordering of the tuples in a tuple space).

1.1. Basic Tuple Space Operations and Matching. Tuples are inserted into
tuple spaces. In order to retrieve a tuple an associative match is performed between
a template and the tuples in the tuple spaces. The main primitives (operations)
on tuple spaces are:

out(tuple): Place the tuple into the tuple space.
in(template): tuple: Removes a tuple from the tuple space. The tuple

removed is associatively matched using the template and the tuple is
returned to the calling process. If not tuple that matches exists then the
calling process is blocked until one becomes available.

rd(template): tuple: This primitive is identical to in except that the
matched tuple is not removed from the tuple space, and a copy is re-
turned to the calling process.

eval(active tuple): The active tuple contains one or more functions, eval-
uated in parallel with each other and the calling process. When all the
functions have terminated, a tuple is placed into the tuple space with
the results of the functions as its elements.

1.2. Multiple rd problem. The rd operation returns one arbitrary matching
tuple from all tuples matching a given template. If a process wants to iterate
over the list of all tuples matching a given template, no atomic Linda operation is
provided in order to do this.

One solution presented in [10] is adding another operation copy-collect to the
Linda operations. This operation reads all matching tuples in the tuple space and
copies them into another tuple space. Therefore this extension of the tuple space
model needs multiple addressable tuple spaces [3].

A similar operation collect is added to solve the equivalent multiple in problem,
which moves all matching tuples from one tuple space to another tuple space.

Another solution is to change the application using the tuple space instead.
One way is to include an index field in the tuples and iterate over that field when
rd operations.

1.3. Predicate Operations. Linda includes predicate variants of the two op-
erations in and rd, named inp and rdp. These are non-blocking versions of the

DESIGNING A FAULT–TOLERANT JINI COMPUTE SERVER 83

operations, meaning that if no tuple matches the template provided these oper-
ations return the boolean value false (or some other value) indicating that no
matching tuple was found, and do not block.

In general, the non-blocking Linda operations rdp and inp cause a problem
because they inspect the “present” state of a tuple space, and one could argue
that they are inappropriate in a distributed environment, where “the most recent
operation” is not defined [7].

1.4. Fault-tolerant tuple spaces. Early tuple space based languages suffered
from poor fault agent (program, process) fault tolerance. Later, many systems
have used transactions to provide fault-tolerant Linda primitives: PLinda [6],
JavaSpaces [14] and TSpaces [16]. More recently Rowstron [12] proposed a new
technique mobile coordination in order to provide fault tolerant tuple-space based
co-ordination.

Transactions. Most implementations which use transactions add two new prim-
itives which are start and commit [12]. The start primitive causes the server man-
aging the tuple spaces to retain all copies being removed and to hold all copies
being inserted by the agent (program, process) which performed the start. When
the agent execute the commit operation, the tuples inserted under the transaction
are actually placed in the tuple space and the tuples deleted are actually discarded.
There are many problems with this approach [12]: altering the semantics of the
co-ordination language and how can decide the server if the agent that performed
a start operation is alive?

As an alternative to this traditional approach using transactions the mobile
co-ordination approach solves the problems mentioned above.

Mobile Co-ordination. In this approach the co-ordination primitives are moved
on the server which store the tuple space. If all the coordination primitives reach
the server before any are executed then the entire operation of the agent will be
executed.

An overview of this framework from an application developer perspective is as
follows (see Figure 1). The agent who whish to execute an operation composed
by many primitives in and out, encapsulate these primitives into the function
coordination. This function will be executed by the tuple-space server. In order
to migrate this code to the tuple-server, the application developer creates a class
that implements the MobileCoordination interface (extended from the interface
Serializable). After that, the agent calls the tuple-space operation executeSafe
which returns a tuple.

An agent will is a set of tuple space access primitives that are executed when
the tuple space server managing the tuple spaces decides that an agent owning the
will has failed.

84 IOAN LAZĂR

Figure 1. Mobile coordination class diagram

The following lines of code shows how an agent can take safely a tuple from a
tuple space:

AgentOperation inOperation = new AgentOperation();
AgentWill inWill = new AgentWill(inOperation);
tuplespace.createWill(inWill);
tuple = tuplespace.executeSafe(opIn);
tuplespace.cancelWill(inWill);

where
class AgentOperation implements MobileCoordination {
Tuple t;
Tuple coordination() { //operations executed on server

t = tuplespace.in(template);
return t;

}
}
class AgentWill implements MobileCoordination {
Tuple t = null;
AgentWill(AgentOperation inOperation) {

this.tuple = inOperation.tuple;
}
Tuple coordination() { //operations executed on server

tuplespace.out(tuple);
return null;

}
}

DESIGNING A FAULT–TOLERANT JINI COMPUTE SERVER 85

class TupleSpace {
Tuple executeSafe(MobileCoordination agent) {

return agent.coordination();
}

}

This fault-tolerant mechanism is working if the AgentOperation and AgentWill
objects are migrated to the tuple space server and their coordination methods
are executed there.

1.5. Tuple Space Usage in Parallel Computing. The tuple space paradigm
provides a mechanism for communication between processes in a distributed sys-
tem. The abilities provided by a tuple space are for processes to share data and
coordinate events in a distributed environment.

The data sharing of a tuple space is simply achieved by having several processes
accesing a tuple space as a global shared memory.

The event coordination ability of a tuple space is achieved using a tuple to
simulate a semaphore by having clients insert tuples into a tuple space and with-
draw tuples from a tuple space. A single-element tuple is functionally equivalent
to a semaphore [4]. The coordination feature of the tuple space is illustrated by
implementing a counting n semaphore:

begin
in(tsemaphore)

//critical region
out(tsemaphore)

end

where the initial value n can be obtained by n repetitions of out(tsemaphore).
There are two types of coordination (or synchronization): mutual exclusion

and conditional synchronization. Mutual exclusion is exemplified in the pseudo-
program above. Conditional synchronization – waiting for an event to occur, is
also an integral part of Linda. This is achieved by blocking operations – waiting
until a tuple is present.

2. Design overview of Jini and JavaSpaces

The Jini technology [15] is a runtime infrastructure that resides on the network
and provides mechanisms to enable addition, removal, discovery and access of
services. Jini enable building and deploying distributed systems that are organized
as a federation of services. A service is an entity capable of performing some
function. Services advertise their capabilities via a look up server. The primary
function of lookup servers is to assist Jini enabled clients to discover and access
services.

86 IOAN LAZĂR

out(. . .) write(Entry entry, ...)
in(. . .) take(Entry template, ...)
rd(. . .) read(Entry template, ...)
eval(. . .) not included
inp(. . .) takeIfExists(Entry template, ...)
rdp(. . .) readIfExists(Entry template, ...)
not included write(Entry, ...)

Table 1. Linda and JavaSpaces operations and terminology

JavaSpaces is a Java implementation of a tuple-based system [14], and is pro-
vided as a service based on Jini technology.

The tuple space is represented by the JavaSpace interface, and the Linda tuples
and templates are represented by the Entry marker interface.

The JavaSpace operations read, take and write correspond to the rd, in and
out Linda primitives. All these operations are synchronous (blocking operations).

There are also two asynchronous (non-blocking) operations readIfExists and
takeIfExist. These types of asynchronous operations correspond to some Linda
primitive extensions [11].

In order to provide fault tolerance for tuple space primitives, the read, take
and write operations can be performed as part of a transaction or not. The
description of the basic primitives include descriptions of how they interact with
transactions. This fact increases the complexity of the implementation, and makes
it from a simple model into a complex one.

JavaSpaces does not introduce any new concept at the Linda model level. JavaS-
paces objects (Entry derived objects) can be introduced in a space but there they
are not active objects. The JavaSpace interface does not have any operation
corresponding to Linda eval primitive.

3. A Framework for Adaptive Master-Worker Parallelism

Master-worker parallelism is a widely used form of parallel application program-
ming [13, 2]. It is conceptually very simple and involves dividing a problem into
a smaller number of independent work units which can be distributed to remote
worker processes for computation in parallel. A single master process centrally
controls both the distribution of work units to worker processes and the returned
of computed results back to the master process. The method of maintaining a
collection of work units is referred as work queue or task farm scheduling.

There are many opportunities for running distributed running applications [13].
We choose here the Jini [15] environment for the master and worker processes, and
JavaSpaces for task scheduling.

A typical space-based compute server works as described below:

DESIGNING A FAULT–TOLERANT JINI COMPUTE SERVER 87

• A task is an entry that both describes the specific of the task and contains
methods that performs the necessary computations.

• Worker processes monitor a space, take tasks as they become available,
compute them, and then write their results back to the space.

• Results are entries that contain data from computation’s output.
Spaced-based computer servers have the following nice properties:

Scalability: the more worker processes there are, the faster the tasks will
be computed. Workers can be added or removed at run time and the
computation will continue as long as there is at least one worker to
compute tasks.

Load balancing: workers running on slower CPU will compute their tasks
slowly (and thus complete fewer tasks) than those running on faster
CPU.

Low coupling: the master and the workers are uncoupled. The workers
do not have to know anything about the master and the specific of the
task - they just compute them and return results to the space.

3.1. Basic abstractions.

Tasks. Our spaces hold tasks. The task is considered an active entity of the space
if it is not completed.

The Task class implements the Jini Entry interface in order to be JavaSpaces
compatible. Also, the Task class defines a method compute() that is overridden
by user-defined tasks and a method execute() called by the Worker processes.
The compute() method should be an abstract method but in order the Task to
be a template for retrieving tuples from the JavaSpaces spaces, the Task must be
a concrete class.

The master process writes Task instances (done = False) into spaces and the
workers take tasks execute them, and then return the completed tasks back into
the space (done = True).

Master and Worker Processes. Master and worker processes use Jini services
for JavaSpaces and distributed transactions. In the current implementation of the
framework both uses a TransactionManager and a JavaSpace Jini services. This
services are available through some methods of AbstractProcess class.

The abstract methods generateTasks() and collectResults() of the class
GenericMaster are defined in concrete master processes.

A worker continually looks for tasks, takes it from a space, computes it and
writes the result back in a space. The significant running code for the worker
process is:

work() {
for (; ;) { //looks continually for tasks

Task task = taskReader.takeTask(); //take (safe) a task

88 IOAN LAZĂR

Figure 2. A Master-Worker Jini Framework

task.execute(); //execute, and then
getSpace().write(task); //write the task

} //(completed) back to the space
}

where taskReader is an instance of the class TaskReader.
The next subsection discusses the rest of the design (our fault–tolerant deci-

sions).

3.2. Fault Tolerance. The worker process uses mobile co-ordination and agent
wills in order to provide a fault tolerant solution in our compute framework.

The TaskReader class encapsulates a safe Linda in operation on a JavaSpaces
space. The takeTask method returns a Task from the space and it is a blocking
operation:
1. Task takeTask() {
2. WorkerWill will = new WorkerWill(this);

DESIGNING A FAULT–TOLERANT JINI COMPUTE SERVER 89

3. mobileCoordinator.createWill(will);
4. Task task = mobileCoordinator.executeSafe(this);
5. mobileCoordinator.cancelWill(will);
6. }

The mobileCoordinator in the above code is a proxy of a Jini service running in
the same Java virtual machine as the JavaSpaces service. (We have made some
minor modifications in the com.sun.jini.outrigger.SpaceProxy class, but not
altering the JavaSpaces services.) Line 4 causes the TaskReader object to be
migrated to the server, and the result is returned.

The MobileCoordinator server executes the following:

Entry executeSafe(MobileCoordination mc) {
return mc.coordination();

}

which is the TaskReader’s code:

Entry coordination() {
this.task = space.take(new Task(), null, Long.MAX_VALUE)
return task;

}

but executed into the server.
Now, if the worker dies while executing the task, then the server can restore

the task back into the space since the Worker will, encapsulated into the class
WrokerWill, is:

Entry coordination() {
if (taskReader.task != null)
space.write(taskReader.task, null, Long.MAX_VALUE);

return null;
}

where the taskReader is a copy (stored in the server) of the TaskReader object.

4. Conclusions

In this paper we have demonstrated how the concepts of mobile co-ordination
can be used to provide fault–tolerant Jini compute servers.

This paper describes the use of a single tuple space server. In real implemen-
tations, multiple servers must be used. A comparison between the transactions
model used in Jini and also a multiple fault–tolerant tuple space servers is an area
under consideration.

We also will investigate the proposed design related to some computational
problems – linear and nonlinear solvers.

90 IOAN LAZĂR

References

[1] N. Carriero, E. Freeman, G. Gelernter, D. Kaminsky, Adaptive parallelism and Piranha,
IEEE Computer, 28(1):40-49, 1995.

[2] N. Carriero, G. Gelernter, How to write parallel programs: a first course, MIT Press, Cam-
bridge, 1990.

[3] N. Carriero, D. Gelernter, Linda in context, Communication of the ACM, 32(4):444–458,
1989.

[4] D. Gelernter, Generative Communication in Linda, ACM Transactions on Programming
Languages and Systems, 7(1), 1985.

[5] E. Freeman, S. Hupfer, K. Arnold, JavaSpaces Principles, Patterns and Practice, Addison
Wesley, 1999.

[6] K. Jeong, D. Shasha, Persistent Linda 2: a transaction/checkpointing approach to fault-
tolerant Linda, in Proc 13th Symposium on Fault-Tolerant Distributed Systems, 1994.

[7] J.E. Larsen, J.H. Spring, GLOBE: Global Object Exchange, Candidatus Scientiarum in
Computer Science Thesis, Univ. Copenhagen, 1999.

[8] M.S. Noble, S. Zlateva, Distributed Scientific Computation with JavaSpaces?, Boston Uni-
versity, Technical Report CN01-34, 2001.

[9] A. Rowstron, Using Agent Wills to Provide Fault-tollerance in Distributed Shared Memory
Systems, 8th EUROMICRO Workshop on Parallel and Distributed Processing, Rhodos,
Greece, IEEE Press, pp. 317-324, 2000.

[10] A. Rowstron, A.M. Wood, Solving the Linda multiple rd problem, Coordination Languages
and Models, Proc. Coordination ’96, eds. P. Ciancarini, C. Hankin, Springer-Verlag, LNCS
1061, 1996, pp. 357–367.

[11] A. Rowstron, Using asyncronous tuple space access primitives (BONITA primitives) for
process co-ordination, Coordination Languages and Models, eds. D. Garlan, D. Le Metayer,
Springer-Verlag LNCS 1282, pp. 426–429, 1997.

[12] A. Rowstron, Mobile Co-ordination: Providing fault tolerance in tuple space based co- ordi-
nation languages, Coordination Languages and Models, Coordination ’99, eds. P. Ciancarini,
P. Wolf, Springer-Verlag, LNCS 1594, 1999, pp. 196–210.

[13] G. Shao, Adaptive Scheduling of Master/Worker Applications on Distributed Computational
Resources, Phd Thesis, Univ. California, San Diego, 2001.

[14] Sun Microsystems, Jini Specifications, Available from Sun Microsystems WWW Site
(http://java.sun.com/products/javaspaces/), 1998.

[15] Sun Microsystems, Jini Specifications, Available from Sun Microsystems WWW Site
(http://www.sun.com/jini/specs/), 2000.

[16] P. Wyckoff, S. McLaughry, T. Lehman, D. Ford, TSpaces, IBM System Journal, 1998. 1994.

Department of Computer Science, Faculty of Mathematics and Computer Science,
Babeş-Bolyai University, RO-3400 Cluj-Napoca, Romania

E-mail address: ilazar@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVI, Number 2, 2001

NUMERICAL SOLUTION OF THE DELAY DIFFERENTIAL
EQUATIONS BY NONPOLYNOMIAL SPLINE FUNCTIONS

V. A. CĂUŞ AND G. MICULA

Abstract. In this paper the nonpolynomial spline function to approximate

the solution of the delay differential equations is constructed. The stability

and the convergence of the nonpolynomial spline algorithms are also investi-

gated.

Key Words: nonpolynomial splines, delay equations, collocation.

1. Introduction

The delay differential equations provide realistic models for many phenomena
arising in applied mathematics. As known, delay differential equations can be
used for the modeling of population dynamics, the spread of infections diseases,
two-body problems of electrodynamics, etc.

Delay differential equations, or generally functional differential equations have
been extensively studied in the past decades, especially as models to describe many
physical and biological systems. Although, there exist several methods to solve
numerically the delay differential equations, most of them cannot handle some
difficulties properly. At the same time spline functions have steadily advanced to
the front position as a very useful tool in general for the approximate the solutions
of nonlinear differential, integral and partial differential equations, and particularly
of the modified argument differential equations.

Comprehensive bibliography of published papers in this field (see [15]) and
especially the reference therein.

The aim of this paper is to propose an alternative approximate method for the
numerical solution of the delay differential equation problem and to introduce a
new approach to the stability analysis of the nonpolynomial spline approximate

2000 Mathematics Subject Classification. 65L05,65D05,65L70,34K10.
1998 CR Categories and Descriptors. G.1.7 [Mathematics of Computing]: Numerical

Analysis – Ordinary Differential Equation; G.1.1 [Mathematics of Computing]: Numerical

Analysis – Interpolation.

91

92 V. A. CĂUŞ AND G. MICULA

solution. We will only consider in this paper the following scalar delay differential
equation problem:

ý(t) = f(t, y(t), y(g(t))), t ∈ [0, T]

y(t) = ϕ(t), ý(t) = ϕ́(t), t ∈ [α, 0], α < 0(1)

Several other methods for such delay differential equation problems have been
proposed and their convergence has been investigated. For example, Oberle and
Pesch [16] investigated the convergence of a numerical method for a constant delay
g(t) = t − h, Bellen and Zennaro [4] investigated the convergence of a numerical
method for time dependent delay, Tavernini [18], Arndt [2], Feldstein and Neves
[8], Karoui and Vaillancourt [12, 13] and Baker and Paul [3] investigated the con-
vergence of a numerical methods for state dependent delay differential equations.
Jackiewicz [9, 10, 11] investigated the convergence of numerical method for time
dependent delay of neutral delay differential equations. Recently, Enright and
Hayashi [7] gave a very deep investigation of the convergence analysis of the solu-
tion of retarded and neutral delay differential equations by continuous numerical
method.

We assume the existence, uniqueness and stability of the solutions to the math-
ematical problem under consideration. For example, sufficient conditions for the
existence and uniqness of solution to the delay differential equation problem (1)
are:

-f is continuous with respect to t, y(t), y(g(t)),
-y(t) is continuous,
-f satisfies a Lipschitz condition in the last two argument,
-ϕ is continuous and
-f is bounded (see Driver[6]).
We suppose here that f ∈ Cr([0, T]×R2, R) for a given natural number r ∈ N

and we shall introduce the nonpolynomial spline function space of degree m ∈ N

denoted by Sm(∆), in which we shall find an approximate solution for the problem
(1). It will be shown that our approximating method is a one-step method and
the order of the method is O(hβ+r+m) in y(q), (q = 0, 1, ..., r + 1), 0 < β ≤ 1.

Here m is an arbitrary positive integer, which in fact indicates the number of
iteration processes in the method that describes the spline function.

Assume that f satisfies the following Lipschitz condition:

(2)
∣∣∣f (q)(t, u1, v1)− f (q)(t, u2, v2)

∣∣∣ ≤ L [|u1 − u2|+ |v1 − v2|]

NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS 93

where (t, u1, v1), (t, u2, v2) ∈ [0, T]×R2.

The continuity of f and the Lipschitz condition (2) guarantee the existence and
uniqueness of the solution y : [α, T] → R of problem (1).

Assume that the delay function g satisfied the condition g(t) ≤ t, t ∈ [α, 0] and
the jump discontinuities to be known for sufficiently high-order derivatives of y

and are given in the form:

(3) ∆ : ξ0 < ξ1 < ... < ξM

We will construct a nonpolynomial spline function s : [0, T] → R in such a way
that on each interval [ξk, ξk+1] s be a nonpolynomial spline function.

We will use a collocation method of the order O(hβ+r+m) in f (q), q = 0, 1, ..., r+
1. The function f (q), q = 0, 1, ... is a function of the variables t, y(t) and y(g(t))
and it will be obtained from the following algorithm:

If we denote f (0) := f (t, y(t), y(g(t))) , then for all q = 0, 1, 2, ...

(4) y(q+1) :=
dqf

dtq
:= f (q) :=

∂(q−1)f

∂t
+

∂(q−1)f

∂y(t)
· f +

∂(q−1)f

∂y(g(t))
· ∂y(g(t))

∂g(t)
· ∂g(t)

dt

can be used as a recurrence formula. Let us consider the first interval [ξ0, ξ1]
which is [0,ξ1] and the uniform partition of this interval

(5) ξ0 = t0 ≤ t1 ≤ ... ≤ tm−j+1 ≤ ... ≤ tm ≤ ξ1

Choosing a sufficiently large arbitrary positive integer m, let us define the non-
polynomial spline functions s, which approximate the solution y of (1)

(6) s(t) := s
[m]
k (t) +

∫ t

tk

f [t1, s
[m−1]
k (t1), s

[m−1]
k (g(t1))]dt1

on the subinterval tk ≤ t ≤ tk+1, (k = 1, 2, ..., n− 1) such that
s
[m]
−1 (t0) = ϕ(t0), s0(g(t)) = ϕ(g(t)), and s0(t) = ϕ (t) , t ∈ [α, 0]

Define the nonpolynomial spline function s0 approximating the solution y of
(1), on the first interval I1 : [t0, ξ1] by

(7) s0 (t) = ϕ (t1) +
∫ t

t0

f(t1, ϕ[j−1] (t1) , ϕ[j−1](g(t1)))dt1

Associating the following m iteration processes

94 V. A. CĂUŞ AND G. MICULA

(8) s1 (t) = s
[m]
0 (t1) +

r∑

j=0

(t− t1)
j+1

(j + 1)!
f (j)(t1, s

[m]
0 (t1), s

[m]
0 (g(t1)))

Let us denote the nonpolynomial spline function by sk, sk ∈ Sm, which is ap-
proximating the solution on the interval Ik : [ξk−1, ξk]. sk is a nonpolynomial
spline function such that sk : [ξk−1, ξk] → R. In a similar manner, following the
introduced procedure one can easily construct spline functions on each subinterval
Ik : [ξk−1, ξk].

sk(t) = sk−1(tk) +

+
∫ t

tk−1

f(tm−j+1, s
[j−1](tm−j+1), s[j−1](g(tm−j+1)))dtm−j+1(9)

and

(10) sk(t) = s
[m]
k−1(t) +

r∑

j=0

(t− tk)j+1

(j + 1)!
f (j)(tk, s

[m]
k−1(tk), s[m]

k−1(g(tk))),

for (k = 0, 1, ..., n− 1).
We call the space Sm(∆) ={s :there exists polynomials, s0, s1, ..., sn such that

s(x) = si(x) for x ∈ Ii, (i = 1, 2, ...) and Djsi−1(xi) = Djsi(xi) for j = 0, 1, 2,}
Here the derivatives s(j) are left-hand limits of the segment of s defined on

[tk−1, tk].
This procedure yields a spline function s ∈ Sm over the entire interval [ξj , ξj+1]

with the knots {tk}N
k=1 .

By construction its obvious that s ∈ Cr([ξj , ξj+1], R). Thus the exact solution
of problem (1) can be written in the following form on the interval I1 :

(11) y(t) := y
[m]
k (tk) +

∫ t

t0

f(t1, y[m−1] (t1) , s[m−1](g(t1)))dt1

where the following m-iterations processes are considered

(12) y(t) := y[m](tk) +
r∑

j=1

(t− tk)j

j!
y(j)(tk) +

y(r+1)(ηk)
(r + 1)!

(t− tk)r+1

NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS 95

y(t) : = y[j](tk) +

+
∫ t

tk

f(tm−j+1, y
[j−1](tm−j+1), s[j−1](g(tm−j+1)))dtm−j+1(13)

such that j = 1, 2, ...m, tk ≤ ηk ≤ tk+1 and k = 0, 1, 2, ...

It is then clear that the continuity of f and the Lipschitz condition (2) guarantee
the existence and uniqueness of the solution (1) on every subinterval [tk, tk+1].

2. Error estimation and Convergence

We show here that the global error of introduced numerical solution method for
delay differential equations is bounded on the whole interval.

Theorem 1. Assume that f satisfies the Lipschitz condition (2) and s(t) is the
nonpolynomial spline approximation of the solution of (1). Then the order of the
introduced method is O(hβ+r+m).

Proof. Let denote L = max {L1,L2, ..., Lm} as a Lipschitz constant and con-
sider the first interval I1 : [ξ0, ξ1]. For the error estimation of the introduced
method using Lipschitz condition we get

|y (t)− s (t)| ≤ L

∫ t

t0

{
∣∣∣y[m−1](t1)− s[m−1](t1)

∣∣∣ +

+
∣∣∣y[m−1](g(t1))− s[m−1](g(t1))

∣∣∣ }dt1

≤ 2L2

∫ t

t0

∫ t1

t0

{
∣∣∣y[m−2](t2)− s[m−2](t2)

∣∣∣ +

+
∣∣∣y[m−2](g(t2))− s[m−2](g(t2))

∣∣∣ }dt2dt1

...

≤ 2m−1Lm

∫ t

t0

∫ t1

t0

...

∫ tm−1

t0

{
∣∣∣y[0](tm)− s[0](tm)

∣∣∣ +

+
∣∣∣y[0](g(tm))− s[0](g(tm))

∣∣∣ }dtm...dt1(14)

and consequently we obtain

96 V. A. CĂUŞ AND G. MICULA

(15) |y(t)− s(t)| ≤ 2mLm

(r + m + 1)!
hr+m+1 ·W (h) = O(hr+m+1)

where W (h) = max
{
ω(y(r+1)(t), h)

}
such that ω(y(r+1), h) is the continuity

moduli of the function y(r+1) and h is the step-length..
Similarly the difference |ý(t)− ś(t)| can be estimated easily. Thus

|ý(t)− ś(t)| ≤ L[
∣∣∣y[m−1](t)− s[m−1](t)

∣∣∣ +
∣∣∣y[m−1](g(t))− s[m−1](g(t))

∣∣∣]

≤ 2L2

∫ t

t0

[
∣∣∣y[m−2](t2)− s[m−2](t2)

∣∣∣ +
∣∣∣y[m−2](g(t2))− s[m−2](g(t2))

∣∣∣]dt2

≤ 2m−1Lm

∫ t

t0

∫ t2

t0

...

∫ tm−1

t0

[
∣∣∣y[0](tm)− s[0](tm)

∣∣∣ +

+
∣∣∣y[0](g(tm))− s[0](g(tm))

∣∣∣]dtmdtm−1...dt2

and finally we obtain

(16) |ý(t)− ś(t)| ≤ 2mLm

(r + m)!
hr+m ·W (h) = O(hβ+r+m)

Hence choosing for q = 2, 3, ..., r + 1 we get

(17)
∣∣∣y(q)(t)− s(q)(t)

∣∣∣ ≤ 2kLk

(r + m)!
hr+m ·W (h) = O(hβ+r+m)

This completes the proof of the theorem. Let denote the difference

(18) e(t) = |y(t)− s(t)| , é(t) = |ý(t)− ś(t)| .
Lemma 2. Suppose f ∈ Cr([0, T] × [α, T] × [α, T], R), r ∈ N and f satisfy the
Lipschitz condition (2) with a constant L = max {L1, L2, ..., Lm} , then there exist
constants C1 and C2 which are independent of h such that

e(t) ≤ C1h
r+mW (h) = O(hβ+r+m)

(19) é(t) ≤ C2h
r+mW (h) = O(hβ+r+m)

NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS 97

where 0 < β ≤ 1. Similarly it can be easily shown that there exists a constant
C3 which is independent of h such that the following inequality holds

(20)
∣∣∣y(q)(t)− s(q)(t)

∣∣∣ ≤ C3h
r+mW (h) = O(hβ+r+m)

where q = 2, 3, ..., r + 1 and t ∈ [tk, tk+1]. Proof of Lemma is obvious.
From (20) and defined procedure we have the following subsequent assertion:

Theorem 3. Let y : [0, T] → R be the exact solution of the problem (1). If
s : [0, T] → R is the nonpolynomial spline approximation of the solution of (1),
defined by the introduced procedure, then the following inequalities hold:

(21) |y(t)− s(t)| ≤ C0

(r + m + 1)!
hr+m+1W (h)

(22)
∣∣∣y(q)(t)− s(q)(t)

∣∣∣ ≤ C0

(r + m)!
hr+mW (h)

where C0 = 2mLm, q = 0, 1, 2, ..., r + 1, for all t ∈ [tk, tk+1] and consequently

(23)
∣∣∣y(q)(t)− s(q)(t)

∣∣∣ ≤ Chr+mW (h)

holds for all t ∈ [tk, tk+1] and for q = 0, 1, 2, ..., r + 1. Here C is a constant
independent of h.

References

[1] AHLBERG J.H., NILSON E.N. and WALSH J.L. - The theory of Splines and Their Appli-

cations, Academic Press, New York, 1967

[2] ARNDT H. - Numerical solution of retarded initial value problems: Local and global error

and stepsize control, Numer.Math., 43(1984), pp.343-360

[3] BAKER C.T.H. and PAUL C.A.H. - Parallel continuous Runge-Kutta Methods and vanish-

ing lag delay differential equations, Adv. Comput. Math., 1(1993), pp.367-394

[4] BELLEN A. and ZENNARO M. - Numerical solution of differential equations by uniform

corrections to an implicit Runge-Kutta method, Numer.Math., 47(1985), pp.301-316

[5] BLAGA P., MICULA G. and AKCA H.- On the use of spline function of even degree for

the numerical solution of the delay differential equations, CALCOLO, 1-2/32(1990)

[6] DRIVER R.D. - Ordinary and Delay Differential Equations, Springer Verlag, Berlin, 1977

[7] ENRIGHT W.E. and HAYASHI H. - Convergence analysis of the solutions of retarded and

neutral delay differential equations by continuous numerical methods, SIAM J. Numer. Anal.

35(1998)

[8] FELDSTEIN A. and NEVES K.W. - High order methods for state-dependent delay differ-

ential equations with nonsmooth solutions, SIAM J. Numer. Anal. 21(1984)

98 V. A. CĂUŞ AND G. MICULA

[9] JACKIEWICZ Z. - One-step methods of any order for neutral functional differential equa-

tions, SIAM J. Numer. Anal. 23(1986)

[10] JACKIEWICZ Z. - Variable-step variable-order algorithm for the numerical solution of

neutral functional differential equations, Appl. Numer.Math, 3(1987)

[11] JACKIEWICZ Z. - The numerical solution of neutral functional differential equations by

Adams predictor-corector methods, Appl. Numer.Math, 8(1991)

[12] KAROUI A. and VAILLANCOURT R.-Computer solutions of state-dependent delay differ-

ential equations, Comput.Math.Appl, 27(1994)

[13] KAROUI A. and VAILLANCOURT R. - A numerical method for vanishing-lag delay dif-

ferential equations, Appl. Numer.Math, 17(1995)

[14] MICULA G. and AKCA H. - Numerical solutions of differential equations with deviating

argument using spline functions, Studia Univ. Babes-Bolyai, Mathematica 33(1988)

[15] MICULA G. and MICULA S. - Handbook of splines, Kluwer Academic Publishers,

Dordrecht-London-Boston, 1999

[16] OBERLE H.J. and PESCH H.J. - Numerical treatment of delay differential equations by

Hermite interpolation, Numer.Math., 37(1981)

[17] SCHUMAKER L.L. - Spline Functions: BasicTheory, John Wiley and Sons inc., New-York-

Chichester-Brisbane-Toronto, 1981

[18] TAVERNINI L. - The approximate solution of Volterra differential systems with state-

dependent time legs, SIAM I.Numer.Anal. 15(1978)

University of Oradea, Romania

E-mail address: vcaus@uoradea.ro

Babeş-Bolyai University of Cluj-Napoca, Romania

E-mail address: ghmicula@math.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVI, Number 2, 2001

A NEW ALGORITHM FOR WORD SENSE DISAMBIGUATION

DOINA TĂTAR AND GABRIELA ŞERBAN

Abstract. The task of disambiguation is to determine which of the senses
of an ambiguous word is invoked in a particular use of the word [3]. Start-
ing from the algorithm of Yarowsky [5, 4] and the Naive Bayes Classifier
(NBC) algorithm , in this paper we propose an original algorithm which
combines their elements. This algorithm preserve the advantage of principles
of Yarowsky (one sense per discourse and one sense per collocation) with
the known high performance of the NBC algorithm. Moreover, an agent is
constructed accomplishing this algorithm.

1. Introduction

The word sense disambiguation (WSD) is probably one of the most important
open problem and it has now already a long ”history” in computational linguistics
[2, 1]. WSD problem has direct applications in some fields of text understanding
as information retrieval, text summarization, machine translation.

The problem that arises in word sense disambiguation (WSD) in natural lan-
guage is that many words (called polysemic), have several meanings or senses.
These senses depend on the context they occur in. The task of disambiguation is
to determine which of the senses of an ambiguous word is invoked in a particular
use of the word [3]. Whenever a system’s actions depend on the meaning of the
text being processed, WSD is necessary.

The algorithms used in WSD are classified considering whether they involve
supervised or unsupervised learning. Unsupervised learning can be viewed as
clustering task while supervised learning is usually seen as a classification task.
Dictionary based disambiguation, which we will present in the following section
can be considered as intermediary between supervised and unsupervised disam-
biguation [3, 6].

2000 Mathematics Subject Classification. 68T50, 68Q32.
1998 CR Categories and Descriptors. I.2.7[Computing Methodologies]: Artificial In-

telligence – Natural Learning Processing; 6.3[Mathematicsof Computing]: Statistical Com-
puting – .

99

100 DOINA TĂTAR AND GABRIELA ŞERBAN

2. Dictionary based disambiguation

If we have no information about the senses of a target word w we can follow
disambiguation methods that rely on the definitions in dictionaries.

Notational conventions used in the following are:

• w– the word to be disambigued (target word);
• s1, · · · , sK— possible senses for w;
• c1, · · · , cI—contexts of w in corpus;
• v1, · · · , vJ— words used as contextual features for disambiguation of w.

Regarding of v1, · · · , vJ there are two possibilities: they are colocates or co-
occurrences with w. In the first case the contextual features occur in a fixed
position near w, in a window of fixed length, centered on w. In the second case
the contextual features occur together with w, in arbitrarily positions. We will
consider the first sense of contextual features.

In [5] (1995), Yarowsky observed that there are constraints between different
occurrences of contextual features that can be used for disambiguation. Two such
constraints are:

• One sense per discourse: the sense of a target word is highly consistent
within a given discourse (document);

• One sense per collocation: the contextual features (nearby words) pro-
vide strong clues to the sense of a target word.

For example, regarding the first constraint for the word plant, if his sense is
in a first occurrence ”living being”, then later occurrences are likely to refer to
”living beings” too. As the second constraint for plant, if the word animal occurs
together with plant, this word is likely to be a clue word for the ”living beings”
sense.

The algorithm proposed by Yarowsky combines both constraints. It iterates
building two sets , Fk and Ek for each sense sk: Fk contains characteristic collo-
cations, Ek is the set of contexts of the target word w which are assigned to the
sense sk. The algorithm is as bellow [3]. Let us remark that a multi-set is denoted
by {{· · · }}:

Initialization
for all sense sk of w do

Fk = {the set of collocations in definition from
dictionary of sk sense of w}

for all sk of wdo
Ek = Φ

One sense per collocation

A NEW ALGORITHM FOR WORD SENSE DISAMBIGUATION 101

While at least one Ek changed in the last iteration do
for all sense sk of w do

Ek = {{ci | ci ∩ Fk 6= Φ}}
for all sense sk of w do

Fk = {fm | ∀n 6= k, P (sk|fm)
P (sn|fm) > α (usually α = 1)}

One sense per discourse
for all document dm (context or set of contexts)do

determine themajority sense sk of w in dm

assign all occurrences of w in dm to sk

3. Supervised disambiguation by Naive Bayes Classifier algorithm

In supervised disambiguation a tagged corpus or a semantic annotated corpus
is available. Such annotated corpus is used in on-line product Senseval. The task
in this case is to build a classifier which correct classifies a new context based on
the contextual features occurring in this context. The classifier does no feature
selection, but it combines the participation of all contextual features.

What a Naive Bayes Classifier realizes is the calculus of the sense s′ which for
the target word w and a given context c satisfies the relation:

(1) s′ = argmaxsk
P (sk | c) = argmaxsk

P (c | sk)
P (c)

P (sk)

= argmaxsk
P (c | sk)P (sk).

The same value for s′ is obtained if we consider the logarithm of expression:

(2) s′ = argmaxsk
(logP (c | sk) + logP (sk))

The Naive Bayes assumption is that the contextual features are all conditional
independent:

(3) P (c | sk) = P ({vj | vj ∈ c} | sk) =
∏
vj∈c

P (vj | sk).

Here vj represents any word in the context c.
This assumption has two consequences:

• the structure and order of words in context is ignored;
• the presence of one word in the context does not depend on the presence

of another.

102 DOINA TĂTAR AND GABRIELA ŞERBAN

This is clearly not true, but there is a large number of cases in which the
algorithm works well.

As regarding the probabilities P (vj | sk) and P (sk), these are calculated from
the labeled (annotated) corpus:

(4) P (vj | sk) =
C(vj , sk)

C(sk)
P (sk) =

C(sk)
C(w)

where C(vj , sk) is the number of occurrences of vj in the contexts annotated with
the sense sk, C(sk) is the number of contexts with the sense sk and C(w) is the
total number of occurrences of the word w.

The NBC algorithm is:

Training:
for all senses sk of w do

for all words vj in corpus) do
P (vj | sk) = C(vj ,sk)

C(sk)

for all senses sk of w do
P (sk) = C(sk)

C(w)

Disambiguation:
for all senses sk of w do

score(sk) = logP (sk) +
∑

vj∈c logP (vj | sk)
Calculate s′ = argmaxsk

score(sk)

In [3] is reported that a disambiguation system based on this algorithm is correct
for about 90 percents of cases.

4. A bootstrapping algorithm on the base of the principles: one
sense per discourse and one sense per collocation

The algorithm begins by identifying a small number of training contexts. This
could be accomplished by hand tagging with senses the contexts of w for which
the sense of w is clear because some seed collocations [5] occour in these contexts.

This tagging is made on the base of dictionaries or by using the known on-
line dictionary of senses WordNet . This initial set of annotated contexts is used
for learning an naive bayesian classifier. This NBC will help in annotating new
contexts. By repeating the process, the annotated part of corpus grows. We will

A NEW ALGORITHM FOR WORD SENSE DISAMBIGUATION 103

stop when the remaining unannotated corpus is empty or any new context can’t
be annotated.

The notational conventions are as above:
• w is the polysemic word
• S = {s1, s2, · · · , sK} are possible senses for w, as in a dictionary, or as

obtained with WordNet.
• C = {c1, c2, · · · cI} are contexts (windows) for w, as obtained for w with

an on-line corpus tool (for example Cobuild). each ci is of the form:

ci = w1, w2, · · · , wt, w, wt+1, · · · , wz

where w1, w2, · · · , wt, wt+1, · · · , wz are words from the set v1, · · · , vJ and
t and z (usually z = 2t) are selected by user.

Let us consider that the words V = {v1, · · · , vl} ⊂ {v1, · · · , vJ}, where l is
small (for example 2) are surely associated with the senses for w, such that the
occurrence of vi in the context of w determines the choice for w of a sense (one
sense per collocation).

For example, for the word plant, the occurrence in the same context of the word
life means a sense (let say A) , while the occurrence in the same context of the
word manufacturing means another sense (let say B). These rules can be done
as a decision list:

if vi occurs in a context of w (of z words) ⇒ si, i = 1, · · · , l

So, some contexts can be solved from the set of contexts obtained as query
results with Cobuild. Namely, we marked these contexts with A or B:
(A)industrial equipment and engineering plant.[p] The company

insures
(A)hard currency. And so we’ve found a plant, and I have some

seeds here from
(B)the planning and construction of the plant at Rabta near

Tripoli and were
(A)A. japonica Japanese aucuba. A male plant, bearing panicles

of purple-
(A)and experience of any individual plant in my garden alone

is hardly
(A)aspect, features and animal and plant life."[p] [p] These

were never
(A)in flower and it Is worth having a plant or two in the

flower border or in
(B)all the allegations. It says the plant produces merely

pharmaceuticals.
(A)or example, the issue of the role of plant respiration in

104 DOINA TĂTAR AND GABRIELA ŞERBAN

a hydrological
(A)he USA announced in 1989 that 680 US plant species will

be extinct in the wild
(B)d be looking at 75 to 100 jobs and a plant that would

produce probably
(B)the Sellafield nuclear reprocessing plant. These are ‘cost

plus" contracts
(B)[h] [p] SCIENTISTS have engineered a plant which could

grow its own plastic

Algorithm

We start by defining a relation δ : WXC, where W is the set of words and C
is the set of contexts (set of array of words). If w ∈ W is a word and c ∈ C is a
context, we say that (w, c) ∈ δ if exist a word w1 ∈ c so that the words w and w1
have the same root.

Cres = Φ, determine the set V = {v1, · · · , vl}
For each context c in C apply the rules:
if (vi, c) ∈ δ,⇒ sense s′i, i = 1, · · · , l, Cres = Cres ∪ {c}
Crest = C\Cres

While Crest 6= Φdo :
Determine a set V ∗ of words with maximfrequency in Cres

Define V = V ∪ V ∗ =
⋃l

j=1 Vsj ,
where Vsj is the set of words associate with the sense sj

(If v ∈ V ∗, the context c solved with the sense sj, and (v, c) ∈ δ,
then v ∈ Vsj

, according with the principle “one sense per discourse”)
For each ci ∈ Crest apply the BNC algorithm :

(5) s∗i = argmaxsP (s | ci) = argmaxs
P (ci | s)× P (s)

P (ci)

= argmaxsP (ci | s)× P (s)
whereP (ci | s) = P (w1 | s) · · ·P (wt | s)P (wt+1 | s) · · ·P (wz | s)

andP (wi | sj) =
{

1 if wi ∈ Vsj
nr.occ.wi

nr. total of words) else

C∗res = {ci | P (s∗i | ci) > N, N fixed}
Cres = C∗res ∪ Cres

Crest = Crest\Cres

5. The application

5.1. The Agent for words’ disambiguation. General presentation. The
application is written in Visual C++ 6.0 (Figure 1) and implements the behavior

A NEW ALGORITHM FOR WORD SENSE DISAMBIGUATION 105

of an Intelligent Agent, whose purpose is to find the correct sense for a given word
(the target word) in some given contexts (the word’s disambiguation), using the
algorithm described in the previous section.

Figure 1. The Agent

The environment of this agent consists in some information which the agent
reads from an input text file ”in.txt”:

• the target word(w);
• the possible senses for w;
• the contexts for w;
• the words used as contextual attributes for w’s disambiguation.

On the basis of his environment, using the algorithm described in the previous
section, the agent learns to find the correct sense of the target word in the given
contexts.

106 DOINA TĂTAR AND GABRIELA ŞERBAN

5.2. The Agent’s design. The basis classes used for implementing the agent’s
behavior are the following:

• String: defines the type String (array of characters), having methods
for:

– adding a char in a String;
– accessing the length and the characters of a String;
– displaying, comparing, concatenating Strings.

• Set: defines the type Array of strings (corresponding to a context which
contains the target word w), associated with a sense of w. The main
methods of this class are for:

– adding a String in an Array;
– accessing the number of elements and the strings of an Array;
– testing the membership of a string in the Array;
– setting the corresponding sense for w;
– finding the reunion of two Arrays.

• Contexts: defines the type Set of arrays of strings (array of contexts),
representing the contexts for which we want to associate a sense corre-
sponding to w. The main methods of this class are for:

– adding an element in the Set;
– accessing the number of elements and the elements of a Set;
– testing the membership of an array in the Set;
– finding the difference of two Sets.

• Agent: the main class of the application, which implements the agent
behavior and the learning algorithm (Figure 2).

The private member data of this class are:
– Q: the target word;
– S: the set of senses for the target word;
– v: the set of words used as contextual attributes for Q’s disam-

biguation;
– C: the contexts for the target word.

The public methods of the agent are the followings:
– readEnvironment: reads the information about the environment

from an input stream ;
– disambiguation: the main (learning)algorithm of the agent used

to find the correct senses of the target word in the environment’s
contexts;

– retQ: returns the target word (Q);
– retS: returns the set of senses of the target word (S);
– retV: returns the member data v;
– retC: returns the contexts for the target word (C);

Besides the public methods, the agent has some private methods used
in the method disambiguation.

A NEW ALGORITHM FOR WORD SENSE DISAMBIGUATION 107

Figure 2. The main class of the Agent

5.3. Experiment. Using the application we accomplish the training of the agent
in the following environment (given in the text file ”in.txt”):

poarta the target word
usa imbraca the senses of the target word
clanta 1 se 2 the words used as contextual attributes for Q’s

disambiguation and the indexes of the
corresponding sense of the target word

poarta se deschide cu clanta the contexts of the target word
se poarta rosu
unde este poarta
se stie ca cine poarta rosu este optimist
daca poarta e inchisa nu intram

108 DOINA TĂTAR AND GABRIELA ŞERBAN

After the agent reads the information from the environment, he applies the
disambiguation algorithm for the given contexts. The result is shown below(each
context is followed by the sense for the target word - found by the agent after the
disambiguation).

poarta se deschide cu clanta — usa
se poarta rosu — imbraca
unde este poarta — usa
se stie ca cine poarta rosu este optimist — imbraca
daca poarta e inchisa nu intram — usa

We notice that if the Agent starts with a substantial initial knowledge (number
of senses of the target word, set of words used as contextual attributes for the
disambiguation) and if the environment consists in a big number of contexts, the
the disambiguation (learning) algorithm works very well.

References

[1] J.Allen : ” Natural language understanding”, Benjamin/Cummings Publ. , 2nd ed., 1995.
[2] D. Jurafsky, J. Martin: ” Speech and language processing”, Prentice Hall, 2000.
[3] C. Manning, H. Schutze: ” Foundation of statistical natural language processing”, MIT,

1999.
[4] P. Resnik, D. Yarowsky : ” Distinguishing Systems and Distinguishing sense: new evalu-

ation methods fot WSD ”, Natural Language Engineering, 1 , nr 1, 1998.
[5] D. Yarowsky: ”Hierarchical Decision Lists for WSD”, Kluwer Acadmic Publishers, 1999.
[6] F. Sebastiani: ” A tutorial on Automated Text Categorization”, pp 1-25, ESSLLI 2001.
[7] D. Tatar: ”Inteligenta artificiala: demonstrare automata de teoreme, prelucrarea limba-

jului natural”, Editura Microinformatica, 2001.

University ”Babeş-Bolyai”, Cluj-Napoca, Romania
E-mail address: dtatar@cs.ubbcluj.ro, gabis@cs.ubbcluj.ro

STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume XLVI, Number 2, 2001

MAHMUT PARLAR, “INTERACTIVE OOPERATIONS
RESEARCH WITH MAPLE. METHODS AND MODELS”,

BIRKHÄUSER, BOSTON, 2000, ISBN 0-8176-4165-3

BAZIL PÂRV

The book is structured in 10 chapters, followed by a list of references and an
index, all covering 468 pages. The first two chapters introduce the main topics
referring to Operations Research (OR) and Maple, while the third, Maple and
Mathematical Foundations of Operations Research, presents the main functional-
ity of Maple in performing mathematical operations, with focus on those needed
in OR field: algebra, calculus, linear algebra, differential equations, transform
methods, and probability theory.

The next seven chapters are dedicated to a particular OR topic: linear pro-
gramming, nonlinear programming, dynamic programming, stochastic processes,
inventory models, queueing systems, and simulation. Every chapter follows the
same pattern: an introduction, followed by the presentation of OR methods, tech-
niques, and example problems, accompanied by solutions using Maple. A summary
and a list of proposed exercises are given at the end of each chapter.

The linear programming chapter presents the general form of linear program-
ming problem, the graphical and simplex solutions, exemplified for production and
transportation problem, and two-person zero-sum games. Special cases, difficul-
ties, sensitivity analysis, and duality are also covered.

The nonlinear programming chapter introduces the general nonlinear program-
ming problem, convexity sets and functions with examples, unconstrained and
inequality/equality constrained optimization, and Lagrangian duality.

The dynamic programming chapter starts with the presentation of the general
concepts of dynamic programming problem, followed by discussion of some particu-
lar cases like models with a linear system and quadratic cost and continuous-time
dynamic programming. Examples include the stagecoach problem, the infinite-
stage problem, the constrained work force planning problem, the gambling model
with myopic optimal policy, and optimal stopping problems.

Exponential distribution and Poisson processes, renewal theory, discrete-time
Markov chains, and continuous-time Markov chains are the main topics discussed
in the stochastic processes chapter. Accompanying examples include time-dependent

109

110 BAZIL PÂRV

arrival rate in a restaurant, random walk, periodic-review inventory systems, ma-
chine maintenance problem, birth and death processes, a self-service car wash and
vacuum facility with extra capacity, and response areas for emergency units.

The inventory models chapter introduces and classifies those models and the
associated costs followed by a detailed presentation of deterministic and proba-
bilistic models. Deterministic inventory models and related topics discussed are:
the basic EOQ (economic order quantity) model, the EOQ model with backo-
rders, the analysis of implied backorder costs, and quantity discounts. In the class
of probabilistic inventory models are considered the continuous-review model (in
approximate and exact formulations), the one-period model with random demand,
and dynamic inventory models.

Markovian queueing systems, their transient solutions, queueing networks, and
optimization of queueing systems are the main topics of the queueing systems
chapter. Concrete problems and models discussed include birth and death pro-
cesses, M/M/1, M/M/1/K, M/M/c, MX/M/1, and M/M/∞ queueing systems,
serial queue with blocking, Jackson networks, transportation queueing processes,
and optimal dynamic service rate control.

The last chapter is dedicated to simulation. It deals with methods for generating
(pseudo-) random numbers (mixed-congruential, Maple’s uniform random number
generator, Kolmogorov-Smirnov test for uniformity), generating random variates
from other distributions (exponential random variates, Maple’s random variates
generator), Monte Carlo simulation (used to evaluate definite integrals numeri-
cally and to simulate a static single-period problem), dynamic simulation models
(inventory system with random yield, non-Markovian queues), and optimization
of random search.

The book can be considered as an essential reference material for students, pro-
fessors, researchers, and practitioners who learn, teach, and use OR principles,
methods, and techniques in various areas, from management science, engineer-
ing, and mathematics departments in universities to R&D, marketing, produc-
tion, and other departments in companies. Examples presented throughout the
book illustrate the capabilities and usefulness of Maple computer algebra system
in formulating and solving various real-world OR problems.

Department of Computer Science, Faculty of Mathematics and Computer Science,
Babe-ş-Bolyai University, Cluj-Napoca, Romania

E-mail address: bparv@cs.ubbcluj.ro

	00_contents
	1-Cimoca
	2-Serban
	3-Dumitrescu
	4-Boian
	5-Toadere
	6-Pop
	7-Lupea
	8-Avram
	9-Suciu
	10-Lazar
	11-Micula
	12-Tatar
	13-RecParv

