Anul XLV 2000

STUDIA
UNIVERSITATIS BABES-BOLYAI

INFORMATICA
2

Redactia: 3400 Cluj-Napoca, str. M. Kogalniceanu nr. 1 Telefon 405300

SUMAR — CONTENTS - SOMMAIRE

D. Radoiu, A. Roman, 3D Terrain Reconstruction Using Scattered Data Sets 3
G. Pecsy, L. Szucs, Parallel Verification and Enumeration of Tournaments........... 11

G. Cimoca, An Approximate Algorithm to Estimate Plausible Location of
Undiscovered Hydrocarbon Accumulations in Sparsely Drilled Areas 27

C. Popescu, A Modification of the Tseng-Jan Group Signature Scheme 36
G. Serban, A Method for Training Intelligent Agents Using Hidden Markov Models....41
V. Niculescu, Some Parallel Nondeterministic Algorithms...........c.cccoceeviriininncnnne 51
M. Frentiu, On Programming Style—Program Correctness Relations...........ccccc.ce... 60

M. Suciu, Using Scalable Statecharts for Active Objects Internal Concurrency

IMOAERIIING.eeeevieiiieiiecie ettt ettt ettt e et e e sta e e b e e s taeebeestaeenseesssesnsaessseesseensnas 67
D. Tatar, G. Serban, Term Rewriting Systems in Logic Programming and in

Functional Programming.............cccoouiiiiiiiiieiieiie et 77
M. Tuga, Formal Model for Software SystemsComposition..........c..cecervereereriennnene 85

A. Campan, D. Bufnea, Automatic Support for Improving Interaction with a Web

STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000

3D TERRAIN RECONSTRUCTION USING SCATTERED DATA
SETS

DUMITRU RADOIU AND ADRIAN ROMAN

ABSTRACT. The paper presents a scientific visualization technique using scat-
tered data. The visualization system is based both on modules written by
the authors, implementing controlled Shepard interpolation algorithm and
ready-to-use VTK classes.

1. INTRODUCTION

The proposed visualization system is based both on modules written by the
authors (implementing sub-sampling, re-sampling and controlled Shepard inter-
polation algorithm), sustaining the modeling level, and VTK classes [4], for the
logical visualization and physical visualization level.

The application goal is to transform the 2D data, representing the altitude mea-
sured in some known points, non-uniform distributed, into interactive 3D maps.
The structure of the output data/files should allow the Internet distribution. The
main issues are the speed and accuracy of the used algorithms [7].

A file that contains the non-uniform distributed data, namely, represents the
data set: the position of the nodes on a horizontal plane and the correspond-
ing altitudes. The controlled re-sampling of the input data solves the modeling
problem; in order to obtain a uniform distributed data set. The re- sampling
propagates the local properties (the altitude value) towards the unknown-valued
points. The propagation is implemented using the modified local Shepard inter-
polation. A number of constraints are necessary [5, 2, 3]. The whole process is
described below.

2000 Mathematics Subject Classification. 65D18.
1998 CR Categories and Descriptors. 1.3.6 [Computing Methodologies|: Computer

Graphics — Methodology and Techniques.

4 DUMITRU RADOTU AND ADRIAN ROMAN

The uniform distributed data set is visualized using the warping of a plan,
taking into account the corresponding altitude of each point [1, 6]. Artificially
associated colors allow a better perception of the visualized object.

2. RE-SAMPLING OF THE DATA SET

The data set analysis shows that the input data set is non-uniform, meaning
that the data is represented by unconnected nodes and their associated altitudes.
In order to obtain a uniform distribution, as requested by the logical visualization
level, a re-sampling of the data set is performed.

We denote by N the number of non-uniform distributed points on a plane, in a
considered domain B.

(1) (wlayl)azzlaaN

(2) (zi,y:) € BC R

The corresponding altitudes are given by function f : B — R, which associates
to each point (z;,y;) a real value f(z;,y;) denoted by f;.

The visualization platform used, personal computers, and the dimension of
the data set, 25500 nodes, imposed the use of a modified version of the local
Shepard interpolation. The introduced constraints had as result an important
speed improvement.

We denote by ® the interpolation function ® : B — R. The Shepard interpola-

tion function is expressed as sum of weights:
N
(3) B(z,y) = > wi(z,9)f;
Jj=1
The interpolation function has to fulfill the condition:

Then weight function is supposed to:

3D TERRAIN RECONSTRUCTION USING SCATTERED DATA SETS 5

N
) S wiay) =1

>0 forall (z,y) € B
(6) wi(z,y) =4 =1 for (z,y) = (z;,y;)
=0 for (z,y) = (zk,yk), k # i, (zr,yr) ¢ B

The weights of the local Shepard interpolation are defined below:

1

€

wj(z,y) = Tf“;p,o < p < 00, with
S %—1 for 0 <r; < R,
Uj(z,y)=q
0 forr; > R

where r; is the distance between the points (z,y) and (z;,y;):

(8) T'j(l',y):\/(l'_l'j)2+*y—y]‘)2,j:1,...,N

R represents the radius of circle, centered in the point (z,y), that determines

those interpolation points (z;,y;) that are going to influence the interpolation
function. We consider p = 2.
The N nodes can be seen as belonging to a rectangle defined by the coordinates
(Tmin, Ymin) and (Tmaz, Ymae), Where:
Tmin = min{z;[j =1,...,N}
Tmae = max{z;|j =1,...,N}
Ymin = min{y;|j=1,...,N}
Ymaz = max{y;lj =1,...,N}

9)

The rectangle area that contains all the interpolation points is:
(10) A= (mmaz - Cl7min)(ymaav - ymin)-

The minimum value of R can be easily approximated. We associate to each
node (x;,y;) aregion that has the area equal to A/N. If the N initial nodes would
be uniform distributed then each region should contain only one node (Figure 4).

R minimum is, in fact, the diagonal of the rectangle of area A/N.

The idea is to propagate the local properties, introduced by the initial IV nodes,
to all points. We start from the point:

DUMITRU RADOIU AND ADRIAN ROMAN

4, FR I c et
. L]
Pl T e b I'| | _
. .-__._,.-' - __.L% ol K ; .
T L R T :
; et R ANV
| N N
_-"') 1 EA '-h-\..\"-\. e,
T ot S
\ e m ey
y TN
c o R L
‘-f' l-_.- - N] :I
.o ! .,
- "--.___ i} . . I" T \‘H-_ H |'| .lI
H 4 ' AR ' ."I.II 1
l::- 1 Il\._ 1 : - - I: Ly
' -~ N
——— ™ L v pedY
—— o iy
-
; £ ' J i
- T ! f ot
- . - J Y
| ; X'Eiﬂ
-___-'_'H. "
I.__) e o - - ,
[l - ’
-— —".: .-"--.-
- s . '
JRp— - £
_ ——— L,
r il - H

FIGURE 1. The data set representing Dealul Melcilor (Bragov)

(isoline representation)

N
(11) ToM = Ellzmzlv Aty

i=1 i

N
i1 Yi - [(Ti, yi
(12) yom = Ezfl < (
Zi:1 Yi
: clustering, visual

The starting point can be chosen, as well, by other techniques:

inspection, etc.
Algorithm CONTROLLED LOCAL SHEPARD INTERPOLATION

InputData: A set of N nodes on a plane, the number of columns and rows
used for re- sampling, the coordinates of the starting point (optional)

Outputata: A uniform data set

3D TERRAIN RECONSTRUCTION USING SCATTERED DATA SETS

> |
: 5

FIGURE 2. The data set representing Dealul Melcilor (Brasov)
(visualized by the splatting technique and the iso- surfaces gener-

ation)

For the N node we find Zmin, Ymin, Tmaz a0d Ymaz.

We compute R minimum.

)

)

) We generate the uniform data set.

) We search for the starting point for interpolation.
)

We use the above described interpolation function to compute the at-

tribute value.

the whole grid.

We insert the computed value in the set of the interpolation points.
We repeat the steps 5 and 6 covering the nodes in a spiral motion for

8 DUMITRU RADOIU AND ADRIAN ROMAN

F1GURE 3. Visualization of the uniform distributed data set, rep-
resenting Dealul Melcilor (Brasov) (warping technique); the warp-

ing factor is exaggerated for better perception

) : (e Ve |
A -
CIFEIE B —
)) N
- A
. . +____-"' I[IJ,‘}?J:I

/ "
(Fas -V)

FIGURE 4. The rectangle with all the interpolation points

3. WARPING

The 3D reconstruction of the terrain is performed by warping taking into ac-
count the corresponding altitude of each point. The warping is done by the move-
ment of the points of a 2D surface following the normal direction to the surface.
The warping is controlled by a scaling factor (Figure 3).

3D TERRAIN RECONSTRUCTION USING SCATTERED DATA SETS 9

4. ARTIFICIALLY ASSOCIATED COLORS

The perception of the terrain characteristics could be improved by colors artifi-
cially associated to each point, the color mapping taking into account the altitude.
Generally, if there is no attribute to be directly mapped into a color table,
the necessary attributes have to be generated. A filter producing scalar values

corresponding to a certain altitude does the scalar generation.

5. CONCLUSIONS

The 3D visualization of the terrain remains a hot issue. The controlled local
Shepard interpolation algorithm has to be further tested against standard data
sets.

Our tests included:

e known uniform functions were sampled and the values were visualized;

e data sets were then sub-sampled uniformly or non-uniformly;

e resulted data set was used as input data for the modeling module imple-
menting our modified Shepard algorithm;

e the starting point was automatically chosen or it was chosen as result of
a visual inspection of the non-uniform distributed data set (Figure 2);

e the two visual objects, obtained from the initial data set and the inter-
polated data set, respectively, were visually inspected.

The 3D visualization of the terrain can be performed automatically if the proper
interface is implemented.

REFERENCES

[1] Brodie K., Butt S., Mashwama P., Visualization of Surface Data to Preserve Positivity and
Other Simple Constraints, Computer and Graphics, Vol. 17, No 2, 1985, p. 55-64

[2] Brodlie K., Mashwama P., “Controlled Interpolation for Scientific Visualization” in “Scientific

Visualization”, Overview, Methodologies, Techniques, IEEE Computer Society, 1997, p. 253—
276.

[3] Nielsen G. M., “Scattered Data Modelling”, IEEE Computer Graphics and Applications, Vol.
13, No. 1, 1993, p. 60-70

[4] Radoiu D., “VTK in Desktop Scientific Visualization”, in Advanced Educational Technolo-
gies, Editura Universitatii Petru Maior, 1999, p. 21-30

[5] Radoiu D., “Interpolare Shepard locala cu restrictii”, Comunicare, Sesiunea de comunicari a
cadrelor didactice, Universitatea Petru Maior, 1999

10 DUMITRU RADOIU AND ADRIAN ROMAN

[6] Ruprecht D., Muller H., Image Warping with Scattered Data Interpolation, IEEE Computer

Graphics and Applications, March 1995, p. 37-43
[7] Stewart A. James, “Fast Horizon Computation al All points of a Terrain With Visibility and
Shading Applications”, IEEE Transactions on Visualization and Computer Graphics, Jan-

March 1998, Vol4, nr 1, pp. 82-93

UNIVERSITATEA PETRU MAIOR, TARGU MURES

UNIVERSITATEA POLITEHNICA BUCURESTI

STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000

PARALLEL VERIFICATION AND ENUMERATION OF
TOURNAMENTS

GABOR PECSY AND LASZLO SzUCS

ABSTRACT. The area of tournaments is extensively discussed in literature.
In this article the authors introduce asymptotically optimal sequential algo-
rithms for the verification of score vectors and score sequences and a sequen-
tial polynomial algorithm for enumeration of complete tournaments. The
extensions of these algorithms to different parallel architectures including
CREW PRAM, linear array, mesh and hypercube are also presented. It is
shown that most of the parallel algorithms discussed here are work-optimal
extensions of the sequential ones.

1. INTRODUCTION

Round-robin tournaments are popular in the world of sport, games or elections
and they are very much discussed in computer science as well. A tournament is
an n X n real matrix. The elements of the main diagonal ¢;; equal to zero and the
pairs of symmetric elements t;; : t;; give the result of the match between P; (the
i-th player) and P;. The sum of the elements of the i-th row (s;) is called the score
of the i-th player. A non-decreasingly ordered sequence of the scores is the score
sequence of the tournament.

The most usually discussed problems regarding tournaments include:

e Verification of a score sequence/score vector means the decision if there
exists a tournament for a given score sequence/score vector.

e Enumeration of score sequences means the counting of the possible dif-
ferent score sequences for a given number of players (n).

The outline of the paper is as follows. The following section describes the
problems and the used computational models more formally. Section 3 deals with
verification problems and their sequential and parallel solutions.Then Section 4

2000 Mathematics Subject Classification. 05C20, 68Q25, 65Y05.

1998 CR Categories and Descriptors. G.2.1 [Discrete mathematics]: Combinatorics —
Counting problems; F.2.2 [Analysis of algorithms and problem complexity]: Nonnumer-
ical algorithms and problems — Computations on discrete structures C.1.4 [Processor archi-
tectures]: Parallel architectures — Distributed architectures .

11

12 GABOR PECSY AND LASZLO szUCS

presents our results about enumeration. Finally, a table summarizes the results
with possible future works.

2. BASIC NOTIONS

2.1. Tournaments.

Tournament: A round-robin tournament is an nxn real matrix T, = [t;5]
(n > 2). The elements of the main diagonal t; equal to zero and the
pairs of symmetric elements ¢;; : t;; give the result of the match between
P; (the i-th player) and P;. ¢;; = t;; means a draw, while ¢;; > ¢;; means
the win of P; against P;.

Score vector: The sum of the elements of the i-th row (s;) is called the
score of the i-th player and the vector (si,...,s,) is called the score
vector of the tournament.

Score sequence: A non-decreasingly ordered sequence of the scores is de-
noted by ¢ =< ¢1,...,¢, > and is called the score sequence of the
tournament.

Complete tournament: We call a tournament complete if in it the per-
mitted elements are 0 and 1 and the sum of the symmetric elements
(tij+tji, where i # j) is always 1. A set of tournaments is called complete
for a given n if it contains all possible n player complete tournaments.

2.2. Computational models.

Sequential model: A RAM running pseudo-code similar to structured
programming languages.

PRAM: Parallel RAM, consists of a shared memory and possibly infi-
nite number of RAMs which operate with the same pseudo code as in
the sequential case. Depending on the methods of accessing the shared
memory there are different types of PRAM.

EREW: Exclusive Read Exclusive Write

ERCW: Exclusive Read Concurrent Write

CREW: Concurrent Read Exclusive Write

CRCW: Concurrent Read Concurrent Write
As concurrent read of shared memory is usually allowed while the result
of concurrent write is ambigous we decided to use CREW PRAM in our
study.

Linear array: A linear array consists of p processors (named 1,2,...,p).
Processor ¢ has two direct bidirectional interconnection links to its neigh-
bouring processors (i — 1 and i + 1) except processor 1 and p which has
only one neighbour.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 13

Mesh: A mesh is an a x b grid in which there is a processor at each grid
point. The edges correspond to communication links and are bidirec-
tional. In this paper we consider only square meshes, where a = b.

Hypercube: A hypercube of dimension d has p = 2¢ processors. Each
processor can be labeled with a d-bit binary number. A processor is
connected only to those processors which label differs in only one bit.

Work-optimal: We call a parallel algorithm work-optimal compared to a
given sequential algorithm if Pg—:p = O(1), where S, is the run time of
the sequential algorithm, P, is the run time of the parallel algorithm
and p is the number of processors.

Notice that if a parallel algorithm is work-optimal compared to a given asymp-
totically optimal sequential algorithm then the parallel algorithm itself is asymp-
totically optimal as well.

3. VERIFICATION

Verification of a score sequence/score vector means the decision if there exists
a tournament for a given score sequence/score vector. Landau [5] proved the
following theorem which gives necessary and sufficient condition for the existence
of a complete tournament for a particular score sequence.

Theorem 1. A non-decreasing sequence of n integers < qi,...,q, > 1S a score
sequence if and only if

izk;qz' > (g)

for each k =1,2,... n with equality for k = n.

3.1. Sequential algorithm. Theorem 1 can be directly applied to verify score
sequences as they are ordered non-decreasingly. The following algorithm solves
this problem in @(n) time and with O(1) auxiliary memory.

1 s:=0; i:=1; ok:=(g,<n);

2 while i<n and ok loop

3 S:=s+q;;

4 ok:=s>(i*(i-1)/2);

) ii=i+1;

6 end loop

7 ok:=ok and (s+g¢,)=(n*(n-1)/2);
8 return ok;

Algorithm 1: Sequential algorithm for score sequence verification

14 GABOR PECSY AND LASZLO szUCS

As the trivial lower bound for the verification problem is (2(n) — the algorithm
has to read the input — Algorithm 1 is asymptotically optimal for score sequence
verification.

In case of score vectors the input is not ordered properly so Theorem 1 (and
Algorithm 1) can not be applied directly. One possible solution is to sort the input
and then apply Algorithm 1 to the result. It is known that sorting of general keys
takes Q(nlogn) time but if keys are integer numbers from the range [0..k] then
they can be sorted in O(max(n, k)) time. Such algorithm can be found in chapter 9
of [1]. In case of a score vector all elements must belong to range [0..n-1] so the
vector can be sorted in O(n) time. This condition can also be verified in O(n)
time, so we get the following algorithm.

Step 1: Verify whether all elements in the vector fall in the range [0..n-1].
If not then the input can not be a score vector.

Step 2: Sort the input.

Step 3: Use Algorithm 1.

Algorithm 2: Sequential verification of score vectors

Note that Algorithm 2 is asymptotically optimal for the same reason as Algo-
rithm 1.

3.2. Parallel algorithms. In this section we provide an efficient way to imple-
ment Algorithm 1 and Algorithm 2 on different parallel architectures. !

3.2.1. PRAM. On a CREW PRAM Algorithm 1 can be implemented in a very
straightforward way.

Step 1: For all processors compute the prefix-sums (r;) of the input se-
quence.

Step 2: Processor p; (i := 1,2,...,n — 1) calculates l; := (r; > (i * (i —
1)/2)) while p,, calculates [, := (r, = (nx (n — 1)/2)).

Step 3: Calculate OK :=1; A ... Al, using the prefix computation algo-
rithm with all processors.

Algorithm 3: Simple parallel algorithm for score sequence verification

Step 1 can be done in O(logn) time, Step 2 takes O(1) time and Step 3 is
O(logn) again. Note that in case of CRCW PRAM Step 3 takes only O(1) time.
This algorithm uses O(n) processors and operates in O(logn) time therefore
it is not work-optimal, but it can be improved to run on O(logn) Processors
in O(logn) time which is work-optimal. To achieve this we divide the input

11t is assumed that the reader is familiar with the prefix-sum computation and other
well-known parallel algorithms summarized in [2] as they are building blocks of the following
algorithms.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 15

into logn long pieces. Processor p; will sequentially calculate prefix-sums of
S(i—1)logn+1s- - - » Silogn- Lhen the processors will apply the original prefix compu-
tation algorithm on the sums of the pieces. In the third step each processor will
update the prefix-sums of the corresponding piece by adding the sum of all the
previous pieces. After this the processors will calculate [; values sequentially for all
elements belonging to them and finally they perform a prefix computation using the
same algorithm as for the prefix-sum calculation to determine OK :=1; A...Al,.

Step 1: For all processors compute sequentially the prefix-sums
(t;,j, wherei :=1,2,..., ﬁ;j :=1,2,...,logn) of the corresponding
piece of input sequence.

Step 2: For all processors compute the prefix-sums (r;iogn) Of tilogn-

Step 3: For all processors compute sequentially 7r;_1)10gny; =
T(i—1)logn T tij (1 :=1,2,..., ﬁ;j :=1,2,...,logn).

Step 4: Processor p; (i := 1,2,...,logn) calculates l;_1)iognt; =
(Fi—ytognss > (i = D)logn +) * (i — 1) * logn + j — 1)/2)) using
equality at the last position.

Step 5: Calculate OK :=1; A ... Al, using the prefix computation algo-
rithm described in Step 1-3, with all processors.

Algorithm 4: Work-optimal verification of score sequences on CREW PRAM

In this algorithm all steps take O(logn) time so the whole algorithm works
in O(logn) time as well. It uses O(logn) processors so this is a work-optimal
parallelization of Algorithm 1. As Algorithm 1 is asymptotically optimal algorithm
for the score sequence verification problem the same holds for Algorithm 4 as well.

Notice that in this algorithm only the parallel steps (Step 2 and 5) require

interprocessor communication and these steps are all parts of prefix computations.

3.2.2. Linear array. A lower bound on every interconnection networks for a prob-
lem is the diameter of the network if all processors of the network contributes to
the computation of the result. As the diameter of a linear array of n processors is
n —1, 2(n) is a lower bound for the score sequence and score vector verification
problems. These problems can be solved in O(n) time on a single processor as
well, the trivial (and optimal) solution is to send all data to the first processor of
the array — this can be done in O(n) time — and do the verification there, using the
sequential algorithms. These solution are work-optimal if and only if the number
of processors in the array is O(1).

3.2.3. Mesh. The diameter of a p processor mesh is /p, so 2(,/p) is a lower bound
to an algorithm. The mesh adaptation of Algorithm 3 solves the problem in O(y/n)
if p = n. But we can apply the same technique as in Algorithm 4. If we assign ns
element for each processor of a n% x n% mesh then both the sequential and the

16 GABOR PECSY AND LASZLO szUCS

parallel steps work in O(n%) time. The number of processors in this case is n so
the algorithm is work-optimal.

3.2.4. Hypercube. In a p processor hypercube, prefix computation can be per-
formed in O(logp) time, which means that adoptations of Algorithm 3 and Algo-
rithm 4 can work in the same time bounds as in case of CREW PRAM.

3.2.5. Parallel score vector verification. Unfortunately there is no known work-
optimal parallel sorting algorithm for integer key from a given domain. This
means that the most difficult step in the parallel adoptation of Algorithm 2 is the
sorting. The complexity of sorting usually exceeds the complexity of the other
steps so the overall complexity of the algorithm equals the complexity of sorting
the input. For PRAM and hypercube there are algorithms which can sort general
keys in O(log® n) time.

4. ENUMERATION

Enumeration of score sequences means the counting of the possible different
score sequences for a given number of players (n).

For n > 1 let f,(T, E) be the number of non-decreasing sequences of integers
satisfying

n k
k
;qi:T,qn:Eand > ai> <2>,k:1,2,...,n—1.

i=1
Narayana and Bent in [7] presented a recursive formula for determining f,,(T, E):

1, fT=E>0
AT, B) = { 0, otherwise.

forn>2

E
(T,) = ,;)fnfl(T —E,k), fT—E> (%)

0, otherwise.

Let t,, be the number of possible score sequences in case of n players. For n > 1
we have the following formula for t,:

n—1
tn = ;fn((g),E),where r= [gJ .

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 17

T[n] = F[n,(n*(n-1)/2),1] +...+ F[n,(n*(n-1)/2),n-1]

Fli-1T-E0], ..., Fli-LT-EE]

Level i
Level i-1

FIGURE 1. Array element dependencies in the non-optimized formula

4.1. Units of measure. The experimental results indicate that the value of ¢,, is
increasing exponentially with n (¢, = £(2")) which implies that we need logt, =
©(n) memory to store a single number. This also implies that addition of such
numbers takes @(n). In the next parts of the article we will count the number
of operations (addition, send, receive and assignment) on the elements of the
array during the analysis of the algorithms. In a real implementation all of these
operations can be done in O(n) time.

4.2. Sequential algorithms. The most straightforward recursive calculation of
t,, using the recursive formula (1) has exponential run time so it is not applicable
for bigger n values. Using dynamic programming the run time can be reduced
significantly into polynomial domain.

4.2.1. Algorithm using dynamic programming. The following algorithm uses array
of size n x n x (n(n —1)/2 + 1) elements and works in @(n?) time.

The operation of the algorithms can be divided into two phases. First phase
is filling in the array F which contains the values of f;(T,E) for i = 1.n,T =
0..@ and E = 0..n—1, thus the dimensions of the array are n x W—H Xn =
O(n'). Calculating a particular F[i,T, E] element takes ©(1) time for i = 1 —

18 GABOR PECSY AND LASZLO szUCS

1 for i:=1 to n loop

2 for T:=0 to (n*(n-1)/2) loop

3 for E:=0 to n-1 loop

4 if i=1 then

) if T=E then

6 F[i,T,E]:=1;

7 else

8 F[i,T,E]:=0;

9 end if;

10 else

11 F[i,T,E]:=0;

12 if (T-E)> ((i-1)*(i-2)/2) then
13 for k:=0 to E loop

14 F[i,T,E]:=F[i,T,E]+F[i-1,T-E k];
15 end loop;

16 end if;

17 end if;

18 end loop;

19 end loop;

20 end loop;

21 TN:=0;

22 for E:=(n div 2) to n-1 loop
23 TN:=TN+F[n,(n*(n-1)/2,E];
24 end loop;

25 return TN;

Algorithm 5: Calculating the number of score sequences using dynamic
programming

lines 5-9 — and O(n) otherwise — lines 11-16 (see Figure 1). This means that the
whole algorithm runs in O(n®) time. The second phase is to calculate the number
of score sequences (TN) using the filled array F (see Figure 1).

4.2.2. Improved algorithm. In Algorithm 5 the number of the used array elements
is ©(n*) so O(n*) is a lower bound to the run time of any solution using this
approach, but the run time is O(n®). We show that using a proper reformulation
of equation (1) the run time of the algorithms can be reduced to ©(n?).

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 19

F[i,T-1E-1]
Fli-1,T-EE]

Level i
Level i-1

FIGURE 2. Dependencies of elements in the array in case of the
optimized formula

E
fi(T,BE) =Y fies(T — E, k)
k=0

E-1
=Y fia((T=1) = (E=1),k) + fir(T - E, E)
k=0

= fz(T_ 1,E - 1) +fi—1(T_ EaE)

Notice that when we compute f;(T, E) we already know f;(T'—1,E — 1) so we
can replace the loop in lines 13-15 of Algorithm 5 with a simple assignment (see
Figure 2).

4.3. Parallel algorithms.

4.3.1. PRAM. A straightforward parallel implementation of the non-optimized
formula is the following. We fill in one level of the array in one round. We
have ﬁ processors for each element in the level (figure 3). These processors
perform a prefix computation to calculate the value using the original formula (1).
This takes O(logn) time. The array has n levels so the whole algorithm runs in
O(nlogn). On asingle level of the array there are n (g) elements, which means that

n_ _ n®(n—1) (nt
logn 2logn logn
this solution is not work-optimal as the amount of work done is O(n*logn) *
O(nlogn) = O(n®).

This algorithm used the property of (1) that the value of a particular element in
a certain level depends on other elements from a lower level only. This way we could
avoid the synchronization overhead between the processors working on different
elements. Using the optimized formula we have to use results from the same level

we need n(g)) processors to achieve this. Unfortunately

20 GABOR PECSY AND LASZLO szUCS

[] = nflog n processors

F1aURrE 3. Using brute-force approach on PRAM architecture

as well. More accurately the value of f;(T, E) depends on f;(T' — 1, E — 1) which
in turn depends on f;(T — 2, E — 2) etc. This dependency limits the maximum
number of processors that a work-optimal algorithm can utilize.

Here we present three possible work-optimal algorithms, using n, n? and Qﬁ;—ng
Processors.

Each algorithm calculates the values level by level. The first version assigns a
processor to each possible values of 7" and these processors calculate f;(T, E) for
the different E values one by one. As the value of T belongs to the domain [0..(})]
so we need (;) + 1 processors and each calculates f;(T,E) for E =0,...,n—1
which requires ©(n) time. There are n levels in the array so the whole run time
of the algorithm is ©(n?).

[] =1 processor

Level i

FIGURE 4. PRAM algorithm using n? processors

The second algorithm assigns processors to each possible values of E and these
processors calculate f;(T, E) for the different T values one by one. This means

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 21

that we need n processors and due to symmetry the run time of this algorithm is

O(n?).

[] =1 processor

FIGURE 5. PRAM algorithm using n processors

The third algorithm uses a bit different approach. For this algorithm, compu-
tation of one level takes two steps. During the first step the processors set the
elements of the level to 0. There are

n-_—nm
2
cessors so it takes O(logn) time to accomplish. In the second step the algorithm

calculates f;(T+j, E+j),(j = 1..n) using prefix computation algorithm with e
processors on f;_1 (T — E,j). This also takes logn time, so a single level can be
calculated in logn time, the array has n levels so the whole algorithm works in

O(nlogn).

3
M n_—n
elements in a level, we have 57— Togn] Pro-

E“:\:‘:\‘;\; n/log n processors

FIGURE 6. PRAM algorithm using % processors

22 GABOR PECSY AND LASZLO szUCS

4.3.2. Linear array. The second work-optimal algorithm given for PRAM can be
adapted to n processor linear array as well. Each processor is assigned a possible
value of E. The processor stores the two-dimensional subarray belonging to that
particular value . The processors use Algorithm 6.

Step 1: For i:=1 each processor calculates F[i,T, E] := (T = E)?1 : 0.
Step 2: For i:=2..n each processor performs Algorithm 7.
Step 3: The processors perform a prefix computation to determine ¢,,.

Algorithm 6: Enumeration of score sequences on n processor linear array

Each processor (E:=0..n-1) on level i (i:=2..n) does the following:
1 for T:=1 to n*(n-1)/2 loop
2 if E>0and T > 0) then

3 receive Z:=F[i,T-1,E-1] from processor E-1;
4 else

5 Z:=(i=2 and T=0 and E=0)71:0;
6 end if;

7 if T-E > ((i-1)*(-2)/2) then

8 F[i,TE]:=Z+F[i-1,T-E,E];

9 else

10 F[i,T,E]:=0;

11 end if;

12 if E<n-1and T < n*(n-1)/2 then
13 send F[i,T,E] to processor E+1;
14 end if;

15 end loop;

Algorithm 7: Calculating f;(T, E) values on an n processor linear array

4.3.3. Mesh. As linear array can be embedded to a mesh the algorithm given in
the previous section can be applied for meshes as well.

However there exists another work-optimal algorithm using n? processors. Let
the processors be indexed from 1 to n (i) and from 0 to n — 1 (E). Processor
(i, E) has a one-dimensional subarray containing f;(T, E) for the possible different
T values. This way to calculate f;(T,E) for a particular value of T it has to
communicate with two of its neighbours.

The enumeration problem can be solved using the following algorithms:

4.3.4. Hypercube. As mesh can be embedded to a hypercube the same algorithms
given for meshes can be applied.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 23

[]=1processor

,<><></
/

v

FIGURE 7. Mesh algorithm using n? processors

Step 1: For i:=1 and E:=0..n-1 each processor performs Algorithm 9. For
i:=2..n and E:=0..n-1 each processor performs Algorithm 10.
Step 2: The processors (n,0), ..., (n,n — 1) perform a prefix computation

to determine t,,.
Algorithm 8: Enumeration of score sequences on n? processor mesh

5. FURTHER OPTIMIZATIONS

The algorithms given in the previous section use @(n*) array elements. It’s
easy to see that each algorithm (except the last one) at a given time uses only
two levels of the array. Calculating the ith level we need the (i-1)th one for
that. This means that we don’t have to store all levels only the current and the
previous one. This optimization will reduce the number of necessary elements to
2xnxn*(n—1)/2=n3—-n?=0(n3).

6. CONCLUSIONS

6.1. Summary. The table below summarizes our results for p processors and
n-player tournaments:

Problem | Sequential | Linear | Mesh Hypercube | PRAM
array
Score O(n) Vp €N p= ns P= ogn P= ogm
sequence O(n) O(n?) O(logn) O(logn)
work-opt. | work-opt. work-opt.

24 GABOR PECSY AND LASZLO SZUCS
Score O(n) Vp eN p=n p=n p=n
vector O(n) O(n%) O(log® n) O(log® n)
p=n’ p=n’
O(log n) O(log n)
Enume- Recursive p=n p=0(n) | p=0(n) p=n
ration of | formula with | @(n?) O(n®) 6(n?) 6(n?)
score dynamic work-opt. | work-opt. | work-opt. work-opt.
sequences | programming: p=n’ p = O(n?) p=n’
e(n") o(n?) O(n?) O(n?)
work-opt. | work-opt. work-opt.
P = st
O(nlogn)
work-opt.

The notion of completeness of tournaments can be extended to k-completeness.

k-complete: We call a tournament k-complete if its elements are non-

From the definition it follows that a complete tournament is 1-complete.

negative integers and the sum of the symmetric elements is always k
(tij +tj; = k,where i # j) . A set of tournaments is called k-complete
for a given n if it contains all possible n player k-complete tournaments.

The

theorems and algorithms presented above can be easily extended to k-complete
tournaments.

6.2. Future Works. In this section we try to identify some possible directions to
do further research.

Fine-tuning the presented non work-optimal algorithms if possible or
design new ones.

As we saw the value of ¢,, increases exponentially this also implies that
fi(T, E) values are increasing in similar order. Storing such values re-
quires O(n) bits. However it is possible that the average size of the
elements in the array is smaller.

The task of reconstruction means that for a given score sequence we con-
struct a tournament. The asimptotically optimal sequential algorithms
solve this problem in ©@(n?) time. Parallel reconstructing algorithms for
the problem are to be considered.

Parallel algorithm for calculating the lexicographical successor of a given
score sequence.

Parallel listing of score sequences for a given n.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS

Each processor (i,E) (i:=2..n; E:=0..n-1) does the following:
1 for T:=0 to n*(n-1)/2 loop

2 if E>0 and T>0 then

3 receive Z:=F[i,T-1,E-1] from processor (i,E-1);
4 else

5 Z:=(i=2 and T=0 and E=0)71:0;

6 end if;

7 if T-E>((i-1)*(i-2)/2) then

8 if T=0 then

9 Y:=(i=2 and E=0)71:0;

10 else

11 receive Y:=F[i-1,T-E,E] from processor (i-1,E);
12 end if;

13 F[i,T,E:=Z2+Y;

14 else

15 F[i,T,E]:=0;

16 end if;

17 if T<n*(n-1)/2 then

18 if E<n-1 then

19 send F[i,T,E] to processor (i,E+1);
20 end if;

21 send F[i,T-E,E] to processor (i+1,E);
22 end if;

23 end loop;

Algorithm 9: Calculating f;(T, E) values for ¢ > 2

Each processor (1,E) (E:=0..n-1) does the following:
1 for T:=0 to n*(n-1)/2 loop
2 F[LT,El:=(E=T)?1:0;

3 if T<n*(n-1)/2 and T>E then

4 send F[1,T-E,E] to processor (2,E);
) end if;

6 end loop;

Algorithm 10: Calculating f; (T, E) values

25

The techniques that were used in the presented algorithms aimed the parallel
adoption of a sequential dynamic programming solution. These techniques should
be extended to other algorithms using dynamic programming.

26 GABOR PECSY AND LASZLO szUCS

Acknowledgement. The authors would like to thank Antal Ivanyi for sharing
his knowledge about tournaments and being open to discuss our ideas.

REFERENCES

[1] T.H. Cormen, C. E. Leiserson, R. L. Rivest (1990), Introduction to Algorithms, McGraw-Hill,
MIT Press, New York.

[2] E. Horowitz, S. Sahni, S. Rajasekaran (1998), Computer Algorithms, Computer Science Press,
New York.

[3] A. Ivanyi, Good tournaments, submitted to Annales Univ. Sci. Budapest., Sectio Math.

[4] A.Ivéanyi, Mazimal tournaments, In: Fourth Join Conf. on Math. and Comp. Sci. Felix, June
5-10, 2001, submitted to Pure Math. and Appl.

[5] H. G. Landau (1953), The condition for a score structure III, Bull. Math. Biophysics, pp.
153-158.

[6] J. W. Moon (1968), Topics on Tournaments, Holt, Rinehart & Winston, New York.

[7] T. V. Narayana, D. H. Bent (1964), Computation of the number of score sequences in round-
robin tournaments, Canad. Math. Bull. 7 (1), pp. 133-136.

[8] K. B. Reid (1996), Tournaments: scores, kings, generalizations and special topics, Congressus
Numerantium 115, pp. 171-211.

DEPARTMENT OF GENERAL COMPUTER SCIENCE, EOTVOS LORAND UNIVERSITY, 1117 Bu-
DAPEST, PAZMANY PETER SETANY 1/B., HUNGARY
E-mail address: pici@elte.hu and slice@elte.hu

STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000

AN APPROXIMATE ALGORITHM TO ESTIMATE PLAUSIBLE
LOCATIONS OF UNDISCOVERED HYDROCARBON
ACCUMULATIONS IN SPARSELY DRILLED AREAS

GHEORGHE CIMOCA

ABSTRACT. This paper uses concepts and principles pertaining to a natural
geometrical data structure (the Voronoi diagram) in a theoretical attempt
to estimate the sites and perimeters to really succeed in an exploration for
undiscovered new hydrocarbon accumulations in an oil basin/system. The
proposed algorithm can be applied to oil, methane gas or oil and gas combined
reserves in a natural area of hydrocarbon accumulation, characterized by the
same hydrocarbon source.

1. INTRODUCTION

The starting point of this mathematical experiment was a report [7], published
by the Petroconsultants Group in 1993, on a new method for estimating undiscov-
ered petroleum potential with applications to the giant oil fields of the world, such
as: Arabo-Iranian basin, Campos basin, Gippsland basin, Kutei, South Sumatra,
Niger delta, Timan-Pechora, North Sea grabens, Transylvania basin, as well as
other petroleum systems. Their estimation is based on the best fit with fractal
parabolas of oil field size distributions. Meanwhile, new methodologies meant
to estimate the amount of undiscovered hydrocarbon reserves were announced in
several reports ([11], [5]), whose results haven’t been published so far.

However, a more “delicate” and obviously more difficult problem can be posed:

“Is it possible to make forecasts/estimates, with a certain degree
of plausibility, on the locations (sites, perimeters, extents, zones)
of the “presumably existing” hydrocarbon accumulatios, not yet
discovered in a sparsely drilled oil system?”

Using our knowledge of Voronoi diagrams ([3], [10]) which we had previously
applied to some natural geological data structures (e.g., mineral deposits) we ar-
rived at a first approach of the above problem. The most important question was:

2000 Mathematics Subject Classification. 68U05.
1998 CR Categories and Descriptors. 13.5. [Computational Geometry and Object
Modeling] .

27

28 GHEORGHE CIMOCA

how to formulate, in mathematical terms, a location principle to find the “most
plausible” sites and corresponding extents of new oil fields in a drilled area?

2. VORONOI DIAGRAMS: GENERAL CONCEPTS

Let X be a non-empty arbitrary set. A function d: X x X — R is said to be a
distance or a metric on X if it satisfies the following conditions:

d(r,y) =0 &= z=y;
d(z,y) = d(y, z);
d(z,y) < d(x,2) +d(z,y) Vz,y,z € X.

The pair (X,d) is called a metric space.
A simple example is the real plane R? with the metric defined by:

dz,y) = V(z1 —y1)? + (22 —y2)2 Vo = (21,22),y = (y1,72) € R®.

This metric is called the Euclidean metric on R?. Let (X, d) be a metric space. A
subset Y of X is said to be bounded (with respect to the metric) if

sup {d(z,y)|z,y €Y} < oo.
Let Y be a non-empty subset of X and z € X. The real number:
d(Y,z) = inf {d(y,2)ly € Y}

is called distance from z to Y. Let M (X) be the set of all non-empty, bounded
subsets of (X, d) and M'(X) the set of all non-empty and closed subsets of (X, d).
IfY,Z € M(X), then the real number:

e(Y,Z) =sup{d(Y,z)|z € Z}

is called gauge or excess of Y from Z.
If (X,d) is a metric space, then the function p : M'(X) x M'(X) — R defined
by:
p(Y,Z) =max{e(Y,Z),e(Z,Y)} VY, Z e M'(X)
is a metric on M'(X) [8]. This metric is called the Pompeiu-Hausdorff metric.
Suppose now that S = {C1,...,Cy} is a finite set of distinct points in R?> and
f:R2 xS —[0,00[is a given function called the influence or authorithy function.
If i € {1,...,k}, then the subset of R? defined by:

reg(Cy) = {z € R*|f(z,C;) < f(x,C)),Vj € {L,... .k} \ {i}}

is said to be the influence region of C;.

We call the set {reg(Ci),...,reg(Ck)} the Voronoi diagram generated by S
with influence function f. In fact, the Voronoi diagram is a covering of the real
plane by a set of regions associated with members of the point set S and an
influence function f.

AN APPROXIMATE ALGORITHM TO ESTIMATE PLAUSIBLE LOCATIONS 29

The sets reg(C;),i = {1,...,k} are sometimes called faces of the Voronoi dia-
gram. The intersection of two faces gives a Voronoi edge and the intersection of
two edges is called a Voronoi vertez.

We’ll denote by Vor(S, f) the set consisting of all points of the edges of a
Voronoi diagram generated by S and an influence function f.

Ifi,j € {1,...,k},i # j, then the subset of R? defined by:

Sep(civcj) = {Z‘ €]R2|f(xvcz) = f(xvcj)}
is called the separation curve of C; and C;, and the set:

defines the dominance region of C; over C).
The following relations hold true:

dom(C;,C;) = []R2 \ dom(C;, C;)] U sep(C;, Cj),

reg(C;) = N{dom(C;,C;)|j € {1,...,k}\ {i}}.
If the influence function f is the Euclidean metric d of R?, then the planar (ordi-
nary) Voronoi diagram is obtained. In this case, sep(C;, Cj) is the perpendicular
bisector m;; between C; and C;, and dom(C;, C;) is the half plane defined by m;;,
containing C;. Therefore, being the intersection of k£ — 1 half planes, reg(C;) is a
convex set.

When f = d, we call the region reg(C%) the (ordinary) Voronoi polygon as-
sociated with C;, or the Voronoi polygon of C; denoted V(C;). Since a Voronoi
polygon is a closed set, it contains its boundary denoted by dV(C;). The term
polygon is used to denote the union of the boundary and of the interior. The
boundary of a Voronoi polygon may consist of line segments, half lines or infinite
lines, which we call Voronoi edges. Alternatively, we may define a Voronoi edge
as a line segment, a half line or an infinite line shared by two Voronoi polygons.

If V(C;) NV (C;) # 0, then the set V(C;) N V(C;) gives a Voronoi edge which
may degenerate into a point. If V(C;) N V(C};) is neither empty nor a point, we
say that the Voronoi polygons V(C;) and V(C;) are adjacent.

For the sake of simplicity, if f = d, instead of Vor(S, f) we write Vor(S) =
OV (C;)U...UadV(Cy).

Now let A be a closed subset of R?> and ¥ = {T1,...,T}, where each T},i €
{1,...,k} is a closed subset of A. If the elements of the set ¥ satisfy [T; \ 0T;] N
[T;\0T;] = 0,Vi,j € {1,...,k},i # j, then we call the set T a pretessellation of A.
A pretessellation ¥, where all T;,i € {1,...,k} are convex sets is called a convez
pretessellation.

A pretesselation ¥ = {Ti,...,T}} with A = U{T;|i = 1,...,k} becomes a
tesselation. A planar Voronoi diagram is a tessellation which consists of convex
polygons with three or more vertices. A planar tessellation in which any T; in ¥

30 GHEORGHE CIMOCA

is a triangle Vi € {1,...,k} is called a triangulation of A. Two vertices sharing an
edge in a triangulation are called adjacent.

Given a planar Voronoi diagram where generators are not colinear and their
number is three or more, but finite, we join all pairs of generators whose Voronoi
polygons share a common Voronoi edge, thus obtaining a new tessellation. If
the new tessellation consists only of triangles, we call it a Delaunay triangula-
tion; otherwise, we call it a Delaunay pretriangulation. In the case of the De-
launay pretriangulation, we partition the non-triangular polygons into triangles
by non-intersecting line segments joining the vertices. As a result, the Delaunay
pretriangulation becomes a Delaunay triangulation.

3. LOCATIONAL MATHEMATICAL MODEL

Let’s consider an oil system (or a geological-tectonical region) externally delim-
ited, on a geographical map, by the boundary of a simple polygon A. Suppose
that in this oil system k oil fields have been discovered.

Let the points C1,...,C) be the centers/sites/domes and let the simple poly-
gons p1,...,0k,Ci € p; C A,i € {1,...,k} be the extents/contours of these fields,
being situated on the same map. Moreover, o1 N...N @ = 0.

We consider the set S = {C1,...,C,}. In addition, let’s denote B; = 0p;,i €
{1,...,k}and P=U{p;li=1,....k}.

Now, we formulate the following question: where, in this region A, can the
centers of a given number of new, posible oil fields be most plausibly located 7

In order to get an answer it is important to restate and formalize the above
verbal problem more precisely, in mathematical terms. With that end in view, let
d be the Euclidean metric on R?, M’ the set of all non-empty closed subsets of R?
and p the Pompeiu-Hausdorff metric on M’.

In order to mathematically formalize the locational problem, we must adopt an
essential assumption:

Assumption.
Bin...NB,=Vor(S)Nn4

If the above assumption is correct, then we believe the most plausible location
of the centers of m undiscovered oil fields in the oil system A leads to the following
optimization problem:
Location problem. Find m points Cgi1,...,Cym in A\ P such that:

p(Vor(SU{Cit1,...,Chym}), B1U...UBy) =
min{p(Vor(SUS’),B; U...UBy)|S" € ¥}

where:

Y ={S" C A\ Plcard(S"\ S) = m}.

AN APPROXIMATE ALGORITHM TO ESTIMATE PLAUSIBLE LOCATIONS 31
Remarks.

(1) In fact, the above location problem is to determine within a simple poly-
gon A the locations of a given number (m) of points, outside of a pretes-
sellation of A (in A\ P), so that the Pompeiu-Hausdorff distance between
two Voronoi diagrams having some common generators is minimized.
The distance can be defined as the sum of Pompeiu-Hausdorff distances
between the pairs of Voronoi polygons [2] with common generators.

(2) A couple of location problems are similar, although much easier than
ours: the recognition of a Dirichlet (Voronoi) tessellation [1], [12] and
the geographical optimization problem from [6]. These problems start
from a convex tessellation. By contrast, we start from a more general,
non convex pretesselation, denoted in the following by (4, S, P).

4. THE APPROXIMATE ALGORITHM

Being fully aware of the difficulty of the above location problem, we have tried to
find only an approximate solution. Our approximate algorithm is of an incremental
type [9] and uses some remarks on distortions of a Voronoi diagram when one point
moves [4].

Let S = {C4,...,Ct} be the set of sites/centers of discovered oil fields and an
arbitrary point Cy € A\ P. In the following, we denote by V (i),i = 1,...,k, the
Voronoi polygon of C; in the Voronoi diagram generated by S and by Vy(i) the
Voronoi polygon in the Voronoi diagram generated by So = S U {Cy}. Let o be
the Delaunay triangulation of the set Sp.

For C; € S, we have V(i) = Vy(i), if and only if C; and Cy are not adjacent
vertices in Ty [4]. Moreover, if C; and Cy are adjacent and p; C V (i), it doesn’t
follow that p; C Vo (4).

We say that the “center” Cy is admissible in pretessellation (A4, .S, P) in respect
to Ty, if for every C; € S, such that C; and Cy are adjacent vertices in Ty, then
pi C Vo(i).

If Cp,Cy € A\ S,Cp # Cy, let us denote by V,(i), respectively by V, (i), the
Voronoi polygon of C; € S in Vor(S,), respectively Vor(S,), where S, = SUC,
and S, = SUC,. Let T, respectively €, be the Delaunay triangulations of S,
respectively S,. Moreover, let A(p) be the set of points in S which are adjacent
with C, in ¥,, and A(q) the points in S adjacent with C, in %,,.

Let Cp and C; be two admissible centers in (A, S, P) corresponding to ¥, and
T4, respectively. We say that C), is preferred to C, if

T = Z p(Vp(i),Vp(p)) < Z p(Vq(i), Vo(q)) = g,
cieAp) cieA(q)

where p is the Pompeiu-Hausdorff distance.

32 GHEORGHE CIMOCA

The number 7, evaluates the distortion effect of the point €}, on the Voronoi
diagram generated by S. At the same time, 7, represents a measure of plausibility.
The smaller 7,, the more plausible Cj,.

Let G(p,p) be a uniform rectangular grid with sides parallel to the coordinate
axes, which contains A, and the number p of horizontal and vertical grid lines an
even integer.

The algorithm. Step 1. Let p be the smallest positive even integer such that
m < p? and let G(p, p) be the minimal uniform rectangular grid covering A.

Let n:= 0 and W°:= S.

Step 2. Scan the grid G(p,p) rectangle-by-rectangle, in a spiral order, start-
ing from the central rectangle of the grid. For each rectangle D,y; execute the
following operations:

a. Let Cp := the center of Dy1;

b. Construct the Delaunay triangulation T, of the set W* = W7 U {Cy}. We
distinguish the cases:

Case I If there exists a point C; € S which is adjacent to Cp in T, and Cy € gp;,
take the next rectangle.

Case II. If Cy ¢ P, choose the most preferred point C* between Cy and each
of the four rectangle corners which are not in P. Let Wl := W7 U {C*} and
n:=n+ 1. If n = m stop, else go to Step 1 with p := 2p.

Remarks.

(1) Infact, this algorithm locates a m-points planar configuration in a pretes-
sellation, each of the m points having only a local plausibility. This
configuration can be a starting point pattern for further, more subtle,
improved algorithms.

(2) Mathematically, it is easier to insert “new” admissible oil fields closer to
the boundary of A, but we have preferred a more “central” configuration
for geological reasons.

(3) The algorithm can be relativized to a subzone of A, called zone of geo-
logical interest.

A software package named EXPLORER has been developed and tested on both
non- and real data. EXPLORER enables users to:

visualize a basin in study with all its fields,

visualize a particular field and its contour,

visualize a field and its adjacent neighbours,

visualize the Voronoi diagram of a basin,

locate a given number of new plausible oil fields and their possible ex-
tents, and

e print the founded pattern of “new” and old fields.

AN APPROXIMATE ALGORITHM TO ESTIMATE PLAUSIBLE LOCATIONS 33

In the following figures we present an example of EXPLORER outputs for a
fictional basin with 15 active oil fields, their contours or extents (gray polygons)
and the Voronoi diagram of these fields (left); the forecasted sites of 6 possible
new fields (circled dots) and their plausible (in decreasing rank order, #1 having
the highest degree of plausibility) extents as their Voronoi polygons (right).

EXPLORER EXPLORER

5. AN EXPERIMENT FOR TRANSYLVANIA BASIN

The EXPLORER, software application allows the user to “discover” several
“new” oil fields as well, in a real oil basin, Transylvania, with different plausibil-
ities (depending on the number of scanned rectangles).

We can comunicate, to whom may be interested, two tested results:

(1) Using the information regarding the 23 active fields discovered in the
Transylvania basin during 1906-1965, the algorithm proposed 20 “new”
locations of methane gas fields. We were surprised to find out that 15
out of these fields were “confirmed” (their extents having a non-empty
intersection with at least one contour of an actually discovered field)
during 1966-1985 (out of the 29 new fields actually pointed out during
this period). Furthermore, 4 more fields were confirmed during 1986-
1996 (out of 52 new actually discovered fields). Therefore, 19 out of the
20 sites proposed by algorithm have been confirmed.

(2) Forecasting again 20 possible locations of “new” fields by means of the
methane gas field pattern existing in 1985 (i.e., 52 active fields), 17 fields
were confirmed during 1986-1996.

34 GHEORGHE CIMOCA

6. CONCLUSIONS

We are aware that the development of a new method/technology to mathemat-
ically forecast the sites and/or extents of new oil fields in an oil system needs a
strong collaboration between oil geologists, mathematicians and computer engi-
neers. The above algorithm is just a first step toward a new technology. Algo-
rithm’s forecasts zones of possible hydrocarbon accumulations require confirma-
tions by geological parameters. But these forecast perimeters, we believe, are the
most plausible locations for the new possible oil fields in an oil basin.

By superposing quantitative geological parameter (e.g., permeability, porosity,
pressure, &c.) maps, on this prognosticated locations the exploration expenses and
time can be drastically diminished. As the tested results on a real oil basin indicate,
we are optimistic and forsee a successful completion (new natural geometrical data
structures generated by an influence function f # d; new location principles; new
improved algorithms) of this promising research.

Acknowledgments. I am deeply grateful to Tiberiu Trif, from the Faculty of
Mathematics and Computer Science, the Babeg-Bolyai University, Cluj-Napoca,
Mihaela Ordean and Ovidiu Pop, from the Computer Science Department, the
Technical University of Cluj-Napoca, who contributed their expertise to the de-
velopment of the EXPLORER software application.

REFERENCES

[1] P.F. Ash, E.D. Bolker, Recognizing Dirichlet tessellations, Geometriae Dedicata, 19 (1985),
pp. 175-206.

M.J. Attallah, A linear time algorithm for the Hausdorff distance between convez polygons,
Inf. Proc. Let., 17 (1983), pp. 207-209.

[3] F. Aurenhammer, Voronoi Diagrams - A Survey of a Fundamental Geometric Data Struc-
ture, ACM Comput. Surveys, 23 (1991), pp. 345-405.

[4] L.-M. Cruz Orive, Distortion of certain Voronoi tessellations when one particle moves, J.
Appl. Prob., 16 (1979), pp. 95-103.

[5] C.C. Barton, G.L. Troussov, Fractal Methodology for Petroleum Resource Assessment and
Fra-A Computer Program That Calculates the Volume and Number of Undiscovered Hy-
drocarbon, U.S. Geological Survey; announced in 1997.

[6] M. Iri, K. Murota, T. Ohya, A Fast Voronoi Diagram Algorithm with Applications to Geo-
graphical Optimization, in Lecture Notes in Control and Information Sciences 59 , Springer
Verlag, Berlin, 1984, pp. 273-288.

[7] J. Laherrere, A. Perrodon, G. Demaison, Undiscovered Petroleum Potential; A new approach
based on distribution of ultimate resources, Petroconsultants S.A., Geneva-London-Houston-
St.Leonards-Singapore-Victoria Park, 1994.

[8] I. Muntean, Analizd functionald, Universitatea “Babeg-Bolyai”, Cluj-Napoca, 1993.

[9] T. Ohya, M. Iri, K. Murota, Improvements of the Incremental Method for the Voronoi
Diagram with Computational Comparison of Various Algorithms, J. Operations Res. Soc.
Japan, 27 (1984), pp. 306-336.

[10] A. Okabe, B. Boots, K. Sugihara, Spatial Tessellations; Concepts and Applications of
Voronoi Diagrams, J.Wiley & Sons Ltd, London, 1992.

[2

AN APPROXIMATE ALGORITHM TO ESTIMATE PLAUSIBLE LOCATIONS 35

[11] R.G. Stanley, The “Checkerboard Method”: A New Way to Estimate the Numbers of Undis-
covered Hydrocarbon Accumulations in Sparsely Drilled Areas, U.S. Geological Survey; an-
nounced in 1995; not yet published.

[12] A. Suzuki, M. Iri, Approzimation of a tessellation of the plane by a Voronoi diagram, J.
Operations Res. Soc. Japan, 29 (1986), pp. 69-96.

S.C. SIMBOLIC, sTR. BACAU NR. 3, 3400 CLui-NAPocA, ROMANIA, PHONE: +40-64-
431.333, FAX: 440-64-199.895
E-mail address: ghcimoca@symbolic.com

STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000

A MODIFICATION OF THE TSENG-JAN GROUP SIGNATURE
SCHEME

CONSTANTIN POPESCU

ABSTRACT. In this paper we present a modification of the Tseng-Jan group
signature scheme [18]. Our scheme appears to be secure in comparation with
the Tseng-Jan group signature scheme. The proposed scheme is based on
the e-th root problem and the discrete logarithm problem. Keywords: Group
signature, identity, membership certificate.

1. INTRODUCTION

Group signatures allow individual members of a group to sign messages on
behalf of the group while remaining anonymous. Furthermore, in case of disputes
later a trusted authority, who is given some auxiliary information, can identify
the signer. The concept of group signatures was introduced by Chaum and van
Heyst [4]. Their schemes have been improved by L. Chen and T. Pedersen [5],
who first use a Schoenmaker’s protocol [17] to hide a signer’s identity. Also, H.
Petersen suggested a general method to convert any ordinary digital signature
into a group signature scheme [15]. Petersen’s method combines the Stadler’s
verifiable encryption of discrete logarithm [18] and the Schoenmaker’s protocol. J.
Camenisch and M. Stadler presented the first group signature scheme whose public
key and signatures have length independent of the number of group members of
one group [2], but this isn’t independent of the number of groups. Many group
signature schemes have been presented [3], [7], [8], [12], [13], [14], [16]. In [19],
Tseng and Jan proposed a group signature scheme, but this was broken in [9] and
[10]. In [9], M. Joye, S. Kim and N. Lee showed that the Tseng-Jan scheme is
universally forgeable, that is, anyone is able to produce a valid group signature on
an arbitrary message. In [10], M. Joye showed that the group signature scheme
proposed by Tseng-Jan is not coalition-resistant: two group members can produce
untraceable group signatures.

In this paper we present a modification of the Tseng-Jan group signature scheme
[19]. Our scheme appears to be secure in comparation with the Tseng-Jan group

2000 Mathematics Subject Classification. 94A60.
1998 CR Categories and Descriptors. D.4.6. [Software]: Operating Systems — Security
and Protection;

36

A MODIFICATION OF THE TSENG-JAN GROUP SIGNATURE SCHEME 37

signature scheme. The proposed scheme is based on the e-th root problem and the
discrete logarithm problem. The remainder of the paper is organized as follows.
In Section 2, we review the scheme proposed by Tseng and Jan. In Section 3
our scheme is described. In Section 4 some security considerations are given and
finally, Section 5 concludes with the results of the paper.

2. TSENG-JAN GROUP SIGNATURE SCHEME

In this section, we give a short description of the Tseng-Jan group signature
scheme and refer to the original paper [19] for more details. The scheme involve
four parties: a trusted authority, the group authority, the group members, and
verifiers. The trusted authority acts as a third helper to setup the system param-
eters. The group authority selects the group public/secret keys. He (jointly with
the trusted authority) issues membership certificates to new users who wish to join
the group. In case of disputes, opens the contentious group signatures to reveal
the identity of the actual signer. Finally, group members anonymously sign on
group’s behalf using their membership certificates and verifiers check the validity
of the group signatures using the group public key.

In order to set up the system, a trusted authority selects two large prime num-
bers p; (= 3 mod 8) and ps (= 7 mod 8) such that (p; —1) /2 and (p2 — 1) /2 are
smooth, odd and co-prime [11]. Let N = pips. The trusted authority also de-
fines e,d,v,t satisfying ed = 1(mod ¢ (N)) and vt = 1(mod ¢ (N)), selects g
of large order in Z%, and computes F = g¢”(mod N). Moreover, the group
authority chooses a secret key z and computes the corresponding public key
y = F® (modN). The public parameters are (N,e,g, F,y). The secret param-
eters are (pi1,p2,d,v,t,x).

When a user U; (with identity information D;) wants to join the group, the
trusted authority computes

s; = etlog, ID; (mod ¢ (N))
where ID; = D; or ID; = 2D; according to (D; | N) =1or (D; | N) = —1, and
the group authority computes
z; = ID} (mod N).
The user membership certificate is the pair (s;, ;). To sign a message M, the user
U; (with certificate (s;,x;)) chooses two random numbers 7y and r» and computes

A = y™ (mod N)

B = y"™°(mod N)

C = si+rih(M|| A B)+rze
D = zy""MIAIB) (hod N)

where h (-) is a publicly known hash function. The group signature on message
M is given by the tuple (A, B,C, D). The validity of this signature can then be

38 CONSTANTIN POPESCU

verified by checking whether
D¢ AMMIAIB) B = € ph(MIIAIB) (mod N).

Finally, in case of disputes, the group authority can open the signature to
recover who issued it by checking which identity I D; satisfies

1D*¢ = D¢ B~"MIAIB) (1mod N) .

3. OUR GROUP SIGNATURE SCHEME

This section describes the proposed group signature scheme, which is speci-
fied by the key generation, signing messages, verification signatures and opening
signatures.

3.1. Key Generation. Our scheme consists of four kinds of participants: a
trusted center who setup the system parameters, a group authority who issues
membership certificates to new users who wish to join the group and identifies
a signer, a signer for issuing group signatures and a receiver for verifying them
using the group public key.

A trusted center selects two large primes p;, po as in [19]. Let n = p1p2. The
trusted center also selects a large integer e (160 bits) with ged (e, ¢ (n)) = 1 and
selects g of large order in Z7, where Z,, is the integer ring. The group authority
chooses a secret key = and computes the corresponding public key y = ¢g* (mod n).
The public parameters are (n, e, g,y) and the secret parameters are (p1, p2, x). Let
ID; € Z, be an identity information of a user U;. Finally, let h be a collision-
resistant hash function. Suppose now that a user wants to join the group. We
assume that communication between the user and the trusted center (between the
user and the group authority) is secure, i.e., private and authentic.

When a user U; wants to join the group, the trusted center computes

1
s; = ID§ (mod n)
and the group authority computes
z; = (ID; + eg)” (mod n) .

The user membership certificate is the pair (s;, ;).

3.2. Signing Messages. To sign a message M, the user U;, with certificate
(si, x;), chooses two random numbers r; and r» and computes
A =y™°(mod n)
B =z4%""" (mod n)
C = z;y™ (mod n)
D=sih(M||A)+rh(M]| A).

A MODIFICATION OF THE TSENG-JAN GROUP SIGNATURE SCHEME 39

The symbol || denotes the concatenation of two binary strings (or of the binary
representation of group elements and integers). The group signature on message
M is given by the tuple (4, B,C, D).

3.3. Verification Signatures. The validity of this signature can then be verified
by checking whether

CerMIA) yeD = geh(MIIA) gR(MIA) (164 p) .

If this equation holds, he accepts the signature (A, B, C, D), otherwise it is rejected.

3.4. Opening Signatures. Finally, in case of disputes, the group authority can
open the signature to recover who issued it by checking which identity ID; satisfies

(ID; + eg)™ = C°A~" (mod n) .

4. SECURITY CONSIDERATIONS

A receiver, a group authority and a trusted center, who have no membership
certificate (s;, ;) of a user U;, can not generate a group signature. Trusted center
knows s;, but he can not determine x;, because only the group authority knows
the secret key z. The group authority knows z;, but he can not determine s;,
because only the trusted center knows the e-th root of ID;.

Given a group signature (A, B, C, D), identifying the actual signer is computa-
tionally hard for every one but the group authority.Since no one knows which pair
(si, ;) corresponds to which group member, anonymity is guaranteed.

Deciding whether two different signatures are computed by the same group
member is computationally hard. The problem of linking two signatures (A4, B, C, D)
and (A', B',C", D") reduces to looking if either s; or z; is common to the two tu-
ples. This is however impossible under Decisional Diffie-Hellman Assumption (see
1], 6)).

Trusted center and a receiver can not determine a signer of the group signature,
because only the group authority knows the secret key x. If p; and po are suffi-
ciently large, even trusted center can not get x from the public key y. Therefore,
an adversary can not forge our group signature scheme on an arbitrary message
M.

5. CONCLUSIONS

This paper has presented a modification of the Tseng-Jan group signature
scheme proposed in [19]. Our scheme appears to be secure in comparation with the
Tseng-Jan group signature scheme. The security of the proposed scheme depends
on the e-th root problem and the discrete logarithm problem.

40

CONSTANTIN POPESCU

REFERENCES

[1] D. Boneh, The decision Diffie-Hellman problem, In Algorithmic Number Theory (ANTS-

III), Lecture Notes in Computer Sciences 1423, Springer-Verlag, pp. 48-63, 1998.

[2] J. Camenisch, M. Stadler, Efficient group signature schemes for large groups, Advances in

Cryptology, CRYPTO’97.

[3] J. Camenisch, M. Michels, A group signature scheme based on RSA-variant, BRICS, Den-

mark, 1998.

[4] D. Chaum, E. Heyst, Group Signatures, Advances in Cryptology, EUROCRYPT’91, Lecture

Notes in Computer Sciences 950, Springer-Verlag, 1992, pp. 257-265.

[5] L. Chen, T. Pedersen, New group signature schemes, Advances in Cryptology, EURO-

CRYPT’94, Lecture Notes in Computer Sciences 547, Springer-Verlag, 1995, pp. 163-173.

[6] W. Diffie, M. Hellman, New Directions in Cryptography, IEEE Transaction Information

Theory, IT-22, 6, pp. 644-654, 1976.

[7] S. Kim, S. Park, D. Won, Group signatures for hierarchical multigroups, Information Se-

curity Workshop, Lecture Notes in Computer Sciences 1396, Springer-Verlag, 1998, pp.
273-281.

[8] S. Kim, S. Park, D. Won, Convertible Group Signatures, Advances in Cryptology, ASI-

ACRYPT"96, Lecture Notes in Computer Sciences 1163, Springer-Verlag, 1996, pp. 311-321.

[9] M. Joye, S. Kim, N. Lee, Cryptanalysis of Two Group Signature Schemes, 1999 (5 pages).

[10]
(11]
(12]
(13]
[14]
[15]
(16]
[17]
(18]

(19]

M. Joye, On the Difficulty of Coalition-Resistance in Group Signature Schemes, Technical
Report, LCIS-99-6B, 1999.

U. Maurer, Y. Yacobi, Non-interactive public-key cryptography, In Advances in Cryptology-
EUROCRYPT"91, LNCS 547, Springer-Verlag, 1991, pp. 498-507.

S. Park, I. Lee, D. Won, A practical group signature, Proc. of JWISC’95, Japan, 1995, pp.
127-133.

S. Park, D. Won, A practical identity-based group signature, Proc. of ICEIC’95, China, 1995,
pp. 11-64-11-67.

S. Park, S. Kim, D. Won, ID-based group signature schemes, Electronics Letters, 1997, pp.
1616-1617.

H. Petersen, How to convert any digital signature scheme into a group signature scheme,
In Security Protocols Workshop, Paris, 1997.

C. Popescu, Group signature schemes based on the difficulty of computation of approximate
e-th roots, Proceedings of Protocols for Multimedia Systems (PROMS 2000), Poland, pp.
325-331, 2000.

B. Schoenmakers, Efficient Proofs of Or, Manuscript, 1993.

M. Stadler, Publicly verifiable secret sharing, Advances in Cryptology, EUROCRYPT’96,
Lecture Notes in Computer Sciences 1070, Springer-Verlag, 1996, pp. 190-199.

Y. Tseng, J. Jan, A nowvel ID-based group signature, In T.L. Hwang and A.K. Lenstra,
editors, 1998 International Computer Symposium, Workshop on Cryptology and Information
Security, Tainan, 1998, pp. 159-164.

UNIVERSITY OF ORADEA, DEPARTMENT OF MATHEMATICS, STR. ARMATEI ROMANE 5, ORADEA,

RoMANIA

E-mail address: cpopescu@math.uoradea.ro

STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000

A METHOD FOR TRAINING INTELLIGENT AGENTS USING
HIDDEN MARKOV MODELS

GABRIELA SERBAN

ABSTRACT. It is well-known that, in this moment, the field of intelligent
agents represents an important research direction in Artificial Intelligence,
which offers a new method for problem solving and a new way for interac-
tion between the computer and the user. The use of mathematical statistic-
methods represents a leading topic in this field. Hidden Markov Models
(HMM) are often used as a mathematical tool for modeling the environment
of intelligent agents. In this paper we propose a learning method for an agent
which recognize characters, based on training an Hidden Markov Model.
Keywords: Artificial Intelligence, Hidden Markov Models, learning.

1. INTELLIGENT AGENTS

The field of intelligent agents is in connection with another field of Artificial
Intelligence (AI), the field of machine learning. Machine learning represents the
study of system models that, based on a set of data (training data), improve their
performance by experiences and by learning some specific experimental knowledge.
The attempt of modeling the human reasoning leads to the concept of intelligent
reasoning. The reasoning is the process of conclusion deduction; the intelligent
reasoning is a kind of reasoning accomplished by humans. Most of the AI systems
are deductive ones, able for making inferences (draw conclusions), given their ini-
tial or supplied knowledge, without being able for new knowledge acquisition or to
generate new knowledge. The learning capability being connected to the intelli-
gent behavior, one of the most important research directions in AT is to implement
in the machines the learning capability.

An agent [3] is anything that can be viewed as perceiving its environment through
sensors and acting upon that environment through actions. An intelligent agent
is an agent with an initial knowledge, having the capability for learning. In the

2000 Mathematics Subject Classification. 68U05.
1998 CR Categories and Descriptors. 1.2.6. [Computing Methodologies] : Artificial
Intelligence — Learning .

41

42 GABRIELA SERBAN

followings we present how an agent can be modeled using a Hidden Markov Model,
and how the agent can be trained by learning the associated HMM.

2. HIDDEN MARKOV MODEL (HMM)

The Hidden Markov Model (HMM) is a generalization of Markov decision pro-
cesses, being possible more transitions from a state for the same input. For the
same input sequence (of actions) we can have more paths in the HMM, which
implies that P(a;,) (the probability to have as input a sequence of n actions,
aj ag - - - Gy, shortly written as a) is calculated as the sum of the probabilities
on all the possible paths. Probability on a given path is calculated by multiplying
the probabilities of transitions on the path.

Definition.

An HMM is a 4-tuple < s', S, A, P > , where S is a finite set of states, s € S is
the initial state, A is a set of input symbols (actions), and P : SXSXA— > [0,1]
gives the probability of moving from state s; to s; on performing action a. Let us
consider the following order of the elements of the sets S, A, P: S = (st,---5%);
A= (a',---a*); P = (p', - p°)., where o is the number of states, w is the number
of actions and € is the number of transitions.

Let us notice that [4] a; means the i-th element (action) of an input sequence,
while the a’ represents the i-th element of the A set. A transition is defined as
a 4-tuple: (s?,s’,a* p) , which means that the input action a* in the state s’
transitions to the state s/ with the probability p. For a given input sequence of
actions there are more possible paths in the HMM, so, the sequence of states that
it has been passed through is not deductible from the input, but hidden (this gives
the name of the model). The sequence of states si,S2,--- , 8,41 that has been
passed through for an input a; , is marked shortly with s1 ,41.

2.1. Agents and Hidden Markov Models. Let us consider a passive learning
agent in a known environment represented as a set of states. At each moment,
the agent executes an action, from a set of actions. In such a passive learning
model, the environment generates transitions between states, perceived by the
agent. The agent has a model of the environment using a model of actions (P),
where P(z'|z,a) represents the probability for reaching the state =’ by taking the
action a in the state z.

With the above considerations, the behavior of the agent in a given environ-
ment can be seen as a Markov decision process. If the state transitions are non-
deterministic (a given action a in a given state z transitions to a set of successor
states, not to a single successor state), then the Markov model is an HMM where:

e Sis the set of the environment states;

TRAINING INTELLIGENT AGENTS USING HIDDEN MARKOV MODELS 43

e s! € S is the initial state for the agent;
e A is the set of the actions of the agent;
e Pis the set of transitions between the states (conditioned by actions).

2.2. Algorithm for computing the likelihood of an input sequence of
actions. In the followings, we mention a very simple algorithm for computing
the likelihood of an input sequence of actions in an HMM. This algorithm, the
“forward” algorithm [1] calculate the probability of an input sequence of actions
(a1,n) using the “forward” probability () and the “backward” probability (5).

The “forward” probability is defined [1] as the probability of being in state 4
after seeing the first ¢ observations, given the input sequence.

Let us note by a;(t + 1) the probability of the input sequence a; ; having s’ as
final state. In other words:

(1) a;(t+1) = Plai, 141 = s9,t>0

The idea of the algorithm is to calculate the probabilities for all the input subse-
quences (ay4,t = 0,---,n) having as final state the state s, i = 1,---, 0, where
o is the total number of states of the Markov model. Having all a;(n + 1) values
calculated, the probability P(a1) is given by:

aln Zaln-i—l

Considering that a; o is the empty sequence, which has the acceptance probability
1, we have that a;(1) = 1if j = 1 and is 0 otherwise , corresponding to the fact
that the initial state of every path is s!.

Using the dynamic programming principle, we can make the following remark:
the probability of the input sequence a; 41 having s/ as final state, is obtained by
summing for all state s?, i = 1,--- , 0 the products between the probability of the
input sequence a; ; having s’ as final state and the probability of the transition
between the state s® and the state s/ for the action a;. Thus, calculation of a;(t) [4]
is made starting with a;(1) , @;(2) and going until a;j(n + 1) , using the recursive

relation:
i(t+1) Z a;(t X 59).

Recall that «;(t) are called “forward” probabilities. Using the above consider-
ations, let us notice that the algorithm for finding the highest-probability-paths
for a given entry is based on the “backward’ variant of the dynamic programming
principle (using the backward variant of the optimality principle).

44 GABRIELA SERBAN

As we have mentioned above it is also possible to calculate “backward’ probabili-
ties, B;(t), with the following definition: §;(¢) represents the acceptance-probability
of the input ay ,, if the state at step ¢ is s. In other words, the “backward” prob-
ability $;(t) computes the probability of seeing the observation from time t+1 to
the end, given that we are in state ¢ at time ¢ (given the input sequence).
So [4]:
Bi(t) = P(ay,n | st = s'),t > 1.

The probability we are looking for will be
Bi(1) = Plai,n | 51 = s') = P(ai,n)
Calculation of § function is made starting with values:
Biln+1)=Ple|spy1 =5)=14i=1,-- 0.

For the recursive case, we have:

o

Bi(t—1) = Play_1.n | i1 = 5') = D _ P(s" 5" s7)3;(t)

Jj=1

2.3. Training Hidden Markov Models. In the followings, we use the Baum-
Welch algorithm [1](“forward-backward’) for training a Hidden Markov Model.
This algorithm, that has given a certain training input sequence (an observation
sequence ai,5), adjusts the probabilities of transitions in the HMM, in order to
maximize the probability of the observation sequence. Having an HMM structure
already defined, the algorithm will let us train the transition probabilities of the
HMM. In fact, we can estimate the probabilities of transitions using a very simple
algorithm: for each transition (arc) ¢ which begins in a state s, we calculate how
often this arc is used when the entry sequence is a . Thus, P(t) is given by
how often the arc t is used

P(t) =
®) how often an arc beginning from s is used

More exactly, the probabilities of transitions are calculated with the formula [2]

k
, . iy gi
(2) P(Sl a_’; 8'7) _ awC(S — S' lm
121 m=1 C(s" = s)

Let us notice that the formula (2) is used only if the sum Y77 _ C(s*)

ks
is non-zero, otherwise the probability P(s* % s/) remains unchanged.

TRAINING INTELLIGENT AGENTS USING HIDDEN MARKOV MODELS 45

The C function (the “numbering function”) in the above formula is calculated
like this [2]:
ko, 1 n

(3) 0(51 L st) = m Z ai(t)P(Si a—k) Sj)ﬂj(t +1)

Let us notice that for the calculation of C(s N) we have to know the
probabilities of transitions for the HMM model. The main idea of the algorithm
is the following: we will start with an estimate for the probabilities, and then
use these estimated probabilities to derive better and better probabilities - we

calculate the new values of function C/(s N) using the formula (3) and finally
we adjust the probabilities of transitions using the formula (2). The measure
of the improvement level of probabilities after a training sequence is given by the
growth of the probability (P(ay,,)) of the input sequence compared to it’s previous
estimation. The process of recalculating the probabilities of transitions is finished
when P(a; ;) suffers no more significant modifications (in comparison with a given
approximation error).

3. EXPERIMENT

In this section our aim is to test how a system represented as an HMM (in our
example an agent for recognizing characters) works.

3.1. An agent for recognizing characters. Let us consider an agent for recog-
nizing two characters “I” and “U”. We assume that each character is represented
by a binary matrix (for simplification, we consider that the matrix has 4 lines and 3
columns). So, the matrix corresponding to the character “I” is [[100][100][100][100]]
and the matrix corresponding to character “U” is [[101][101][101][111]]. For this
issue, we propose the model described in Figure 1.

Using the considerations made in subsection 2.1, the model is hidden, in other
words is an HMM.

Of course, the structure of the Markov model chosen for the modeling of the
problem, it is important.

Having as initial state the state “a”, the above described HMM accepts the en-
tries 100100100100 (the character “I”) and 101101101111 (the character “U”)
(the entry for a character is obtained by juxtaposing the rows of the correspond-
ing matrix in the following order: the first, the second, the third and the fourth
line). The initial probabilities of transitions are calculated in comparison with the
two entry sequences which are accepted by the HMM (the characters “I” and “U”).

Let us notice that the dimension of the matrix (number of rows and columns)

46 GABRIELA SERBAN

1:0.42 0:0.29

Figure 1. The Hidden Markov Model

used to represent the characters has no influence in the recognition process (only
the probabilities of transitions after training the HMM change).
In this HMM, using the algorithm described in subsection 2.3, we observe that:

e the acceptance-probability for the entry 100100100100 (corresponding
to the character “I”) is 3.9190411- 10~ %;

e the acceptance-probability for the entry 101101101111 (corresponding
to the character “U”) is 8.2214139 - 1075;

e the acceptance-probability for the entry 100100100111 (corresponding
to the character “L”) is 2.07292009 - 10~*.

3.2. First training. First, we train the HMM to recognize the character “I”
(we use the training algorithm described in subsection 2.4 for the entry sequence
100100100100).
Considering the approximation error 10~7, the HMM is trained in 13 steps. The
probabilities of transitions during the training are described in Table 1 (the columns
correspond to the probabilities of transitions).

In the HMM trained to recognize the character “I”, we observe that:

e the acceptance-probability for the entry 100100100100 (corresponding
to the character “I”) is 3.906248 - 10~2;

e the acceptance-probability for the entry 101101101111 (corresponding
to the character “U”) is 7.017882-10725;

e the acceptance-probability for the entry 100100100111 (corresponding
to the character “L”) is 1.953123 - 1073,

3.3. Second training. The second training of the HMM is for recognizing the
character “U” (we use the training algorithm for entry sequence 101101101111).

Considering the approximation error 10~7, the HMM is trained in 26 steps,
described in Table 2.

TRAINING INTELLIGENT AGENTS USING HIDDEN MARKOV MODELS

47

TABLE 1. The probabilities of transitions during the first training process

Step

P(a,1,a)

P(a,0,a)

P(a,0,b)

P(b,1,a)

P(b,0,a)

© 00~ O U s W N =

—_ =
[l =]

—_ =
w N

0.34895903418
0.36807390057
0.39085481661
0.41877605321
0.45055613731
0.47879919631
0.49432319346
0.49898253274
0.49985762067
0.49998185346
0.49999772587
0.49999971564
0.49999996445

0.32739092305
0.30667030898
0.26963514927
0.21221865027
0.13549261529
0.05899019566
0.01463521470
0.00224291095
0.00028976704
0.00003637704
0.00000454959
0.00000056874
0.00000007109

0.32365004277
0.32525579045
0.33951003412
0.36900529651
0.41395124739
0.46221060803
0.49104159184
0.49877455631
0.49985261230
0.49998176950
0.49999772454
0.49999971562
0.49999996445

0.28061623839
0.21734816939
0.15079989110
0.08661076916
0.03595643299
0.00857366994
0.00080952252
0.00001805465
0.00000006090
0.00000000003
0.00000000000
0.00000000000
0.00000000000

0.71938376161
0.78265183061
0.84920010890
0.91338923084
0.96404356701
0.99142633006
0.99919047748
0.99998194535
0.99999993910
0.99999999997
1.00000000000
1.00000000000
1.00000000000

In the HMM trained to recognize the character “U”, we observe that:

e the acceptance-probability for the entry 100100100100 (corresponding
to the character “I”) is 8.111088 - 10~ %2;

e the acceptance-probability for the entry 101101101111 (corresponding
to the character “U”) is 3.251364 - 1072;

e the acceptance-probability for the entry 100100100111 (corresponding
to the character “L”) is 6.103893 - 10717,

After the agent was trained for recognizing the characters “I” and “U”, the
agent receives an entry, for example 100100100111 (the character “L”), which
he tries to recognize. The recognition performs the following steps:

e first, the agent computes the probability pl for the given entry in the
first environment (trained for “I”);

e second, the agent computes the probability p2 for the given entry in the
second environment (trained for “U”);

e third, the agent compares pl and p2 and determines the maximum;

e fourth, because pl is greater than p2 the agent recognize the character
“I” as the most probable for the given entry.

This is a kind of supervised learning, the agent is trained for a few models, and
after the training he tries to recognize a given entry. We chose this experiment
with two characters because it is simple and illustrates very clearly the idea of
training the agent using the training of the HMM.

48

TABLE 2. The probabilities of transitions during the second train-

ing process

GABRIELA SERBAN

Step

P(a, 1, a)

P(a, 0, a)

P(a, 0, b)

P(b, 1, a)

P(b, 0, a)

— =
D5 ©0~ao Utk w

I I I I I N R e
DU R WO OO Ok W

0.71380471380
0.70681329384
0.69971006779
0.69291260238
0.68680005870
0.68162626416
0.67748162778
0.67431367967
0.67198200820
0.67031480817
0.66914788095
0.66834348425
0.66779488597
0.66742348964
0.66717331840
0.66700537657
0.66689289418
0.66681767274
0.66676742102
0.66673387346
0.66671148776
0.66669655476
0.66668659534
0.66667995391
0.66667552547
0.66667257283

0.14141414141
0.12043988151
0.09913020337
0.07873780715
0.06040017610
0.04487879249
0.03244488333
0.02294103901
0.01594602459
0.01094442451
0.00744364286
0.00503045274
0.00338465792
0.00227046892
0.00151995519
0.00101612971
0.00067868255
0.00045301824
0.00030226306
0.00020162039
0.00013446328
0.00008966429
0.00005978602
0.00003986172
0.00002657642
0.00001771848

0.14478114478
0.17274682466
0.20115972884
0.22834959047
0.25279976520
0.27349494335
0.29007348889
0.30274528131
0.31207196721
0.31874076732
0.32340847618
0.32662606302
0.32882045610
0.33030604144
0.33130672641
0.33197849371
0.33242842326
0.33272930902
0.33293031592
0.33306450615
0.33315404895
0.33321378095
0.33325361864
0.33328018438
0.33329789811
0.33330970870

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

Also, we considered an experiment with four characters: “A”, “L”, “U”, “I”.
The associated HMM has four states and the recognition process works well.
On our opinion, it would be interesting the combination of the above described
method of training with certain dynamic programming methods.

4. THE APPLICATION

The application is written in Microsoft Visual C++ 5.0 and implements the
algorithms described in the previous sections.

TRAINING INTELLIGENT AGENTS USING HIDDEN MARKOV MODELS 49

Ezxamples
1. For the sequence 100100100111 the application displays the following results:

The entry is
%k

*
*
k %k 3k

The maximum probability for the entry is 0.003906

The character recognized for the given entry is:
*k

*
*
*

2. For the sequence 000101111101 the application displays the following results:
The entry is

* *
* %k %
* *

The maximum probability for the entry 000101111101 is 2.2966411-
10722

The character recognized for the given entry is:
*k

£

* ¥ ¥ ¥

*
*

5. CONCLUSIONS

In certain situations, the behavior of an intelligent agent can be modeled using
an HMM. In such situations, it would be interesting to use mathematical methods
for working on these models.

In the case of the proposed experiment, some future research would be:

e how could the proposed model be generalized for as many characters as
possible;

how could the structure of the HMM be generated dynamically;

how would such probabilistic methods be more appropriate than others;
how could the probabilistic methods be combined with others (that may
also be heuristic) for obtaining a higher performance of the model;

50 GABRIELA SERBAN

e what would happen in certain “plateau” situations (where a given entry
would have the same probability in more environments).

Anyway, which we wanted to emphasize in this paper is another way of working
on problems of training intelligent agents.

REFERENCES

[1] D.Jurafsky, James H. Martin : “Speech and language processing”, Prentice Hall., 2000.

[2] E. Charniak: “Statistical language learning”, MIT Press, 1996.

(3] S.J.Russell, P.Norvig: “Artificial intelligence. A modern approach”, Prentice-Hall Inter-
national,1995.

[4] D.Tatar, G.Serban: “Training probabilistic context-free grammars as hidden Markov mod-
els”, Studia Universitatis “Babes-Bolyai”, Series Informatica XLV (2), 2000, 69-78.

“BABES-BoOLYAI” UNIVERSITY, CLUJ-NAPOCA, ROMANIA
E-mail address: gabis@cs.ubbcluj.ro

STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000

SOME PARALLEL NONDETERMINISTIC ALGORITHMS

VIRGINTA NICULESCU

ABSTRACT. Nondeterminism is useful in two ways. First, it is employed to
derive simple and general programs, where the simplicity is achieved by avoid-
ing unnecessary determinism; such programs can be optimized by limiting
the nondeterminism. Second, some systems are inherently nondeterministic;
programs that represent such systems have to employ some nondeterministic
construct. Nondeterministic programs can be mapped more easier on parallel
machine, since parallelism brings some nondeterminism by itself.

In this article, there are constructed some nondeterministic programs,
for some numerical methods, using the UNITY notation[3]. The correctness
of the algorithms is proven, and some possible mappings are discussed.

1. INTRODUCTION

Nondeterminism is useful in two ways. First, it is employed to derive simple
and general programs, where the simplicity is achieved by avoiding unnecessary
determinism; such programs can be optimized by limiting the nondeterminism.
Second, some systems are inherently nondeterministic; programs that represent
such systems have to employ some nondeterministic construct.

There is a variety of parallel architectures, though parallel programs have to be
developed such that they can be mapped in different ways, on different architec-
tures. A solution is to specify little in the early stages of design, and specify enough
in the final stages to ensure efficient execution on target architecture. Specifying
little about program execution means that the programs may be nondeterministic.

To express the nondeterministic programs, the model used for the developing
the programs is UNITY [3]: ”Unbounded Nondeterministic Iterative Transforma-
tions”, which is briefly described in the next section.

2. A PROGRAMMING NOTATION
The UNITY program structure is
2000 Mathematics Subject Classification. 68N19.
1998 CR Categories and Descriptors. G.1.3. [Mathematics of Computing] : Numeri-

cal Analysis — Numerical Linear Algebra; G.4. [Mathematics of Computing] : Mathematical
Software; D.1.3 [Software] : Programming Techniques — Concurrent Programming.

51

52 VIRGINIA NICULESCU

program — Program program — name
declare declare — section
always always — section
initially initially — section
assign assign — section
end

The declare — section, names the variables used in the program and their types.
The syntax is similar to that used in Pascal. The always — section is used to define
certain variables as function of others. This section is not necessary for writing
UNITY programs, but it is convenient. The initially — section is used to define
initial values of some of the variables; uninitialized variables have arbitrary initial
values. The assign — section contains a set of assignment statements.

The program execution starts in a state where the values of variables are as
specified in the initially-section. (A state is characterized by the values of all
variables.) In each step, any one statement is executed. Statements are selected
arbitrarily for execution, though in an infinite execution of the program each state-
ment is executed infinitely often. A state of a program is called a fized point if and
only if execution of any statement of the program, in this state, leaves the state
unchanged. A predicate, called FP, characterize the fixed points of the program.
Once FP holds, continued execution leaves values of all variables unchanged, and
therefore it makes no difference whether the execution continues or terminates.

The termination of a program is regarded as a feature of an implementation. A
program execution is an infinite sequence of statement executions and an imple-
mentation is a finite prefix of the sequence.

2.1. Mapping Programs to Architectures. One way to implement a program
is to halt it after it reaches a fixed point.

A mapping to a von Neumann machine specifies the schedule for executing
assignments and the manner in which a program execution terminates.

In a synchronous shared-memory system, a fixed number of identical processors
share a common memory that can be read and written by any processors. The
synchronism inherent in a multiple-assignment makes it convenient to map such a
statement to this architecture.

A UNITY program can be mapped to asynchronous shared-memory system,
by partitioning the statements of the program among the processors. In addition,
a schedule of execution for each processor should be specified that guarantees a
fair execution for each partition. If the execution for every partition is fair, then
any fair interleaving of these executions determines a fair execution of the entire
program. Two statements are not executed concurrently if one modifies a variable
that the other uses.

Other architectures can be considered for mappings.

SOME PARALLEL NONDETERMINISTIC ALGORITHMS 53

2.2. Assignment Statement. It is allowed that a number of variables to be
assigned simultaneously in a multiple assignment, as in

x,y,z:=0,1,2.

Such an assignment can also be written as a set of assignment-components sepa-
rated by ||, as in
z,y:=0,1||z:=2
or
z:= 0|y := 1|z := 2.
The variables to be assigned and the values to be assigned to them may be de-
scribed using quantification, rather than enumeration:

<|li:0<i< N :: Afi] :== B[i] > .
A notation like the following is used for a conditional assignment:

r:=—1 ify<0 ~
0 ify=1n~
1 ify>0.

2.3. Assign-section. The symbol I acts as a separator between the statements.
A quantified-statement-list denotes a set, of statements obtained by instantiating
the statement-list with the appropriate instances of bounded variables; if there is
no instance, quantified-statement-list denotes an empty set of statements. The
number of the instances must be finite. The boolean expression in the quantifica-
tion should no name program variables whose values may change during program
execution.

2.4. Initially-section. The syntax of this section is the same as that of the assign-
section except that symbol := is replaced with =. The equations defining the initial
values should not be circular.

2.5. Always-section. An always-section is used to define certain program vari-
ables as function of other variables. The syntax used in the always-section is the
same as in the initially-section.

3. NONDETERMINISTIC GAUSS ELIMINATION

We consider the Gaussian elimination scheme for solving a set of linear equa-
tions,
A-X =B,
where A[0..n — 1,0..n — 1] and B[0..n — 1] are given and the solution is to be
stored in X[0..n — 1]. Gaussian elimination is presented typically as a sequence of
n pivot steps. The following UNITY program allows nondeterministic choices in
the selections of the pivot rows.

54 VIRGINIA NICULESCU

3.1. A Solution. Let M (A; B) (or M for short) the matrix with n rows and n+1
columns, where the first n columns are from A and the last column is from B. In
the Gaussian elimination M (A4; B) is modified to M (A'; B') by certain operations
such that

A-X =B
and
A.x=8

have the same solutions for X. The goal of the algorithm is to apply a sequence
of these operations to convert M(A; B) to M(I,; Xr), where I, is the identity
matrix; then Xp is the desired solution vector. This goal can be realized if the
rank of A is n, which we assume to be the case.

The program consists of two kinds of statements:

(1) Pivot with row w, provided that M [u,u] # 0; this has the effect of setting
Mu,u] to 1 and M[v,u] to 0, for all v,v # u

(2) Exchange two rows u and v, provided that both M[u,u] and M[v,v] are
zero and at least one of M[u,v], M[v,u] is nonzero; this has the effect of
replacing a zero diagonal with a nonzero element.

Due to the fact that there are some possible exchanges between the rows, the
elements of the solution vector will be exchanged also. The permutation of the
elements is stored in an array p.

Program Gauss
declare
M : array[0..n — 1,0..n] of real
p: arrayl0..n — 1] of integer
nitially
<i:0<i<n:pli=i>
assign
{pivot with row w if M[u,u] # 0}
<iu:0<u<n:
<|lv,j:0<j<nAO<v<nAv#u:
Mo, j] = Mlv,] — Mlo,u] - M[u, j1/M[u,u] if M, u] # 0
>
I<lj:0<j<n-:
Mlu,j] = Mu, j]/Mu,u] if Mu,u]#0
>
>

SOME PARALLEL NONDETERMINISTIC ALGORITHMS 55

I{exchange two rows if both have zero diagonal elements and the
exchange results in at least one of these elements being set to nonzero}
<Iu,v:0<u<nAO<v<nAuFuv:
<|lj:0<j <n:Mlu,jl, Mlv, j], plu], plv] := M[v, j], MTu, j], p[v], p[u]
if Mu,ul]=0A M[v,v] =0A (M[u,v] #0V M[v,u] # 0)
>
>
end{Gauss}

3.2. Correctness. Let M° denote the initial Z matrix. Since each statement in
the program modifies M such that the solutions to the given linear equations are
preserved, we have the following invariant:

invariant M°, M have the same solution.

In the following, A refers to the n x n matrix in the left part of M, and B,
to the last column of M. First, it is proven that the program Gauss reaches a
fixed point and that at any fixed point, A is an identity matrix. Then, from the
invariant, B is the desired solution vector. In the following, a unit column is a
column in which the diagonal element is 1 and all other elements are 0. That is,
column w is a unit column means that

Mv,ul]=0ifu#v ~1if u=w.
To show that a fixed point is reached, it is proven that the pair (p, ¢), where

p = number of unit columns in A
q = number of nonzero diagonal elements in A,

increases lexicographically with every state change.

We consider each statement in turn. Pivoting with row u, where column v is a
unit column, cause no state change. A state change results from a pivot operation
with row u only if column wu is not a unit column; the effect of the pivot operation
is to set u to a unit column, thus increasing p.

Two rows u and v are exchanged only when Mu,u] = 0 A Mv,v] = 0A
(Mu,v] # 0V M[v,u] # 0). Hence neither of the columns w or v is a unit column.
The exchange preserves all the unit columns, also preserving p. In addition, at
least one diagonal element, M[u,u] or Muv,v] is set to nonzero. Since both of
these elements were previously zero, ¢ increases. Therefore, every state change
in program Gauss increases (p, ¢) lexicographically. Since each of p, ¢ is bounded
from above by n, Gauss reaches a fix point.

Now, it must be proved that A is an identity matrix at any fix point. The proof
is as follows. Lemma 1 proves that if any diagonal element M[u,u] is nonzero at a
fixed point, v is a unit column. Lemma 2 proves that if some diagonal element is
zero at a fix point, all elements in the row are zero. This contradicts the assumption

56 VIRGINIA NICULESCU

that the determinant of A is nonzero. (Note that execution of any statement in
Gauss preserves the determinant.) Therefore every diagonal element is nonzero
and, using Lemma 1, A is an identity matrix.

Lemma 1. At any fized point of program Gauss,
Mlu,u] # 0 = u is a unit column.
Proof: Consider the statement for a pivot corresponding to row u. At any fix
point, given that M[u,u] # 0, for any j and v,u # v,
M[U,j] = M[”a]] - M['U,U] ! M[’U,,j]/M[U,’LL]

and

Mu, j] = MTu, j]/MTu, u].
In particular, with j = u,

Mv,u] = Mv,u] — Mv,u] - M[u,u]/M[u,u] =0
and
Mu,u] = M[u,u]/M[u,u] = 1.

Therefore u is a unit column.

Lemma 2. At any fized point of program Gauss,
Mu,u] =0 = Mu,v] = 0,Yv # u.

Proof: Consider two cases: M[v,v] =0 and M[v,v] # 0.
In the first case, consider the exchange statement for rows u, v. At any fix point,
given that Mu,u] = 0A M[v,v] = 0:

(M[u,u] = 0A Mv,v] = 0) V (Aj 2 Mlu, j] = M{v, j]).
Consider the particular case, j = v. Then,
(M[u,u] =0A M[v,v] =0) V (M[u,v] = Mv,v]).

Using the fact that M[v,v] = 0 we conclude that M[u,v] = 0.
In the second case, if M[v,v] # 0 from Lemma 1, M[u,v] = 0.

3.3. Mappings. Program Gauss can be implemented in a variety of ways on
different architectures. For a sequential machine, it may be more efficient to choose
the pivot rows in a particular order. The correctness of this scheme is obvious
from the proof because it is obtained from the given program by restricting the
nondeterministic choices in statement executions. For an asynchronous shared-
memory or distributed architecture, the given program admits several possible
implementations; the simplest one is to assign a process to a row. To facilitate
the exchange operation, it is possible to allow the row number at a process to
be changed. Two rows can be then exchanged simply by exchanging their row
numbers. A parallel synchronous architecture with O(n) processors can complete

SOME PARALLEL NONDETERMINISTIC ALGORITHMS 57

each exchange operation in a constant time and each pivot operation in O(n) steps;
with O(n?) processors, a pivot operation takes constant time.

4. THE INVERSE OF A MATRIX

The method we use for the computation of the inverse matrix use Gauss-Jordan
steps. A Gauss-Jordan step with the pivot element a[u,v] # 0 transforms the
matrix A elements, in the following way:

1

= Jd=uANj=wv
- ;{au[z,;f]] i=uNF
ali, j] = ;i]v]] iFUNG =
Sifetospoatitated i 2upto

If we apply a Gauss-Jordan step n times on matrix A[0..n —1,0..n — 1] we obtain
the inverse matrix A~! [2]. We assume that the rank of matrix A is n.

4.1. A Solution. The choice of the pivot element it is done in nondeterministic
way, provided that it is nonzero. Since, a pivot operation have to be done only
one time for a particular row u and a particular column v, after the execution of a
pivot operation with the pivot element a[u, v] we set indl[u] = 1 and ind2[v] = 1.
The indl and ind2 are two arrays which indicate the possible pivot steps. An
elimination step with the pivot afu,v] can be executed only if indlfu] = 0 A
ind2[v] = 0.

Because we not choose every time pivot elements from the diagonal, a permu-
tations of the rows of the inverse matrix results. The permutation p depends of
the choices of the pivot elements.

Program inverse
declare
a:array[0.n —1,0..n — 1] of real
indl,ind2 : array[0..n — 1] of integer
p: array[0..n — 1] of integer
initially
<wu:0<u<n:indlu],ind2[u] = 0,0 >
assign
{pivot operation with the element u,v if a[u,v] # 0}
<fu,w:0<u<nAO<v<n:
<||i,j:0<i<nAO<Lj<n:

58 VIRGINIA NICULESCU

ali,j] :=1/afu,v] ifi=uAj=v ~
= —alu, j]/alu, v] ifi=uNjF#v ~
= ali,v]/alu,v] ifiFuNj=v ~

(ali, j] - alu,v] — alu, j] - ali, v]) /alu,v] if iFunjFv
>
[|lindl]u],ind2[v], plu] := 1,1,v
if au,v]#0Aindl[u] =0Aind2[v] =0
>
end{inverse}

4.2. Correctness. If we denote by p the following sum p = > u:0<u < n:
ind1[u]), and by ¢ the sum ¢ = (D" u: 0 < u < n : ind2[u]), it can be easy proved
that the for the pair (p, ¢) the equality p = ¢ holds at any moment of the execution.
So, we can write:

invariant p =q.

The number p(p = ¢) increase after the execution of any statement. The values
for p and ¢ are bounded from above by n, hence the program inverse reaches at
a fix point, where p = ¢ = n.

The equality p = ¢ = n which holds at any fix point shows that there are
executed exact n Gauss-Jordan steps with pivot elements from different rows and
columns. Therefore the matrix A at any fix point is the inverse matrix of the
initial matrix, possible with the rows permuted.

To transform the result to the true inverse matrix the following program can
be used.

Program transform
declare
a: array[0..n —1,0..n — 1] of real
p: array[0..n — 1] of iuteger
assign
<tu,v:0<u<nAO<v<n:
{rows exchange }
<lj:0<j<n:afu,ilafv,] = alo, j],afuj] >
I plul, plo] = plo], pl]
if plul=vVpv]=u
>
end{transform}

4.3. Mappings. On a sequential architecture the program inverse can be mapped
by choosing the first pivot element founded; the search of the element is made de-
pending in indl and ind2.

SOME PARALLEL NONDETERMINISTIC ALGORITHMS 59

The program can be implemented on an asynchronous shared-memory system,
by assigning a processor to a row, or by assigning a processor to each matrix
element (and so the operations associated with it), provided that there are enough
processors.

On a parallel synchronous architecture with n? processors the execution of the
program takes O(n) time.

4.4. Other Applications. The program inverse can be used to find the rank of
a matrix. The rank it will be equal to p = ¢, which represents the number of the
Gauss-Jordan steps, which were executed.

With slight modifications, this program can be used to resolve a system of
linear equations. The matrix A is replaced with the matrix M defined for the
Gauss program M = [A|B] and finally the result (the solution vector)is the last
column of the matrix at the fix point. A permutation of the elements it is done in
this case also.

The application of n Gauss-Jordan steps represents also the second stage of the
algorithm SIMPLEX.

5. CONCLUSIONS

There are presented some nondeterministic algorithms from numerical analysis.
Their correctness was proved, and different mappings are discussed.

Nondeterministic programs can be mapped more easier on parallel machine,
because the parallelism brings some nondeterminism by itself.

Interesting algorithms can be developed using the concept of nondeterminism.
Nondeterministic programs can be implemented on different architectures, in effi-
cient ways.

REFERENCES

[1] G. E. Blelloch, B. M. Maggs , Parallel Algorithms, ACM Computing Surveys, Vol. 28, No.
1, March 1996, pg. 51-54.

[2] W.W. Breckner, Operational Research, ”Babes-Bolyai“ University, Cluj-Napoca, 1981 (in
Romanian).

3] K.M. Chandy, J. Misra, Parallel Program Design: A Foundation, Addison-Wesley, 1988.

4] Gh. Coman, Numerical Analysis, Libris, Cluj-Napoca, 1995 (in Romanian).

5] L. Foster, Designing and Building Parallel Programs, 1995.

6] Carrol Morgan, Programming from Specifications, Prentice Hall, 1990.

DEPARTMENT OF COMPUTER SCIENCE, “BABES-BOLYAI” UNIVERSITY, RO-3400 CLUJ-NAPOCA,
1 KOGALNICEANU ST., RO-3400 CLUJ-NAPOCA, ROMANIA
E-mail address: ginaQcs.ubbcluj.ro

STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000

ON PROGRAMMING STYLE - PROGRAM CORRECTNESS
RELATION

M. FRENTIU

ABSTRACT. There is little empirical information about the relation between
the quality of the programs and the style of the programmer. One experiment
in this direction is presented in this paper.

It is considered that the style of the programmer affects his efficiency,
and the correctness of his programs. To sustain this hyphotesis, the papers
at a written examination were analysed and the conclusions are presented.

Key words: programming methodology, style, quality, software metrics,
education

1. INTRODUCTION

The need to measure various attributes met in software engineering is underlined
in [4]. Certainly, it is very important to asess the time needed to realize a software
project, or to evaluate the quality, maintainability, reliability, or usability of a
program, or the productivity of a programmer. Also, we think it is very useful to
assess the effect of programming style on the above mentioned attributes.

Is there a relation between the style of a programmer and the quality of his
work? We need some definitions of the concepts we use. What is a style? In [2]
the word style is considered to be the general way in which something is done,
“the general attitudes and usual ways of behaving”, “the style of a product is its
design”, and the style of writing is “the choice of words and the way in which
sentences and paragraphs are structured”. It is somebody’s manner of speaking,
acting, writing, for expressing his thought.

In Software Engineering when we define the style we can think only to how the
programs look [15, 17]. Therefore, in a narrow sens we have:

Definition 1. Programming Style consists of the ways in which the programer
writes programs easy to read, and easy to understand, the ways in which these
qualities are achieved.

2000 Mathematics Subject Classification. 68N30.

1998 CR Categories and Descriptors. D.2.3 [Software] : Software Engineering — Coding
Tools and Techniques D.2.7 [Software] : Software Engineering — Distirbution, Maintenance and
Enhancements .

60

ON PROGRAMMING STYLE - PROGRAM CORRECTNESS RELATION 61

Readability is considered to be the main attribute of style [11]. And readability
depends on indentation, good names, and on the comments present in the texts
of the programs.

We will briefly describe the elements of style. But we must say that they may
differ from person to person, although each programmer must have and think to his
own style. Citing Gries, “Whatever conventions you use, use them consistently”
[10].

Therefore, the elements of style (in a narrow sens) are:

e Comments;
e Text Formatting (Indentation, White Spaces);
e Good Names for Entities of the Program.

Comments are very important for internal documentation. Every program
ought to have documentation in it. Comments must be used:

e to state the specification of the problem solved by the program, to precise
the author, date, and other useful information for the reader;

e to show the purpose of each variable;

e to explain what a procedure does: to show the specification of the pro-
cedure, and the meaning of the parameters;

e to write the loop invariants in those places of the program where they
hold;

e to explain the conditions in which some parts of the programs are reached,
and the role of these parts;

e and to transmit other useful information to the reader.

Indentation rules are used to enrich the clarity of the program. There are a
variety of suggestions for such rules. Gries suggests the following indentation rules
[10]:

e succesive short commands can be written on the same line provided that,
logically, they belong together;

e commands of a sequence that appear on succesive lines should begin in
the same column;

e subcommands of a comand must be indented 3 or 4 spaces from the
column where the command begins;

e the pre- and postcondition of a command should begin in the same col-
umn as the command;

e a loop should be preceded by an invariant and a bound function; these
should begin in the same column as the beginning of the loop.

Then, the names of variables, functions, types, contribute to the clarity of
programs [13, 14]. Here are some rules in this direction:

e choose meaningful names for all entities;

62 M. FRENTIU

e do not use a single name for two variables (i.e. the same name has one
meaning in a part of the program, and a second meaning in another
part);

e define your variables before you use them, and then be sure to adhere
to the definitions;

e when a name is composed of two words, start the second one with a
capital letter.

But everybody admits that a badly conceived program remains a bad program.
It may be well documented through comments, it may be nice indented, and it
may use meningful names, if it is not correct it is useless. And, also, if it cannot
be maintained, it is not of a good quality.

Therefore, we consider a larger aspect of programming style.

Definition 2. Programming Style consists of all means taken by the programmer
in his activity for producing reliabile products easy to read, and easy to under-
stand, the ways in which these qualities are achieved [13, 10], [8, page 137].

This definition sets in the main frame the way in which the programmer respects
the general accepted rules for good programming. It starts with the specification
of the program, with the way in which the design is done, with the clarity of
documentation for all stages of work. As Floyd [5] said, we must permanently
fight to acquire better programming methods for producing correct and easily
maintainable programs. The style depends on how the general accepted rules for
good programming are respected. And there are many books and papers that
contain such rules [13, 14, 10, 6, 7, 8, 9].

2. THE EXPERIMENT

The opportunity to do this study was offered by the Graduate Licence Examina-
tion held in June 2001. 94 students took part in this exam (for B.Sc. in Computer
Science). The subject consisted of two parts: theoretics (the first two subjects),
and programming (next two subjects). Here are the subjects:

(1) Sorting. Quicksort;

(2) Merging;

(3) Specify, design, and implement an Abstract Data Type SET;

(4) Write a program which prints the longest sequence of consecutive primes
from a given sequence of natural numbers.

The results are given in Table 2. Since the results for the theoretical subjects
are not directly used in the analysis, only the total number of points (for all
four subjects) are given in the fourth column (denoted by T). The P3, and P4
columns contain the points given for the subject (3), and (4), respectively. Then,
the elements of style are measured by grades from 0 to 10. The grade 0 is given
when the corresponding attribute is not present at all, and 10 if it is considered
perfectly.

ON PROGRAMMING STYLE - PROGRAM CORRECTNESS RELATION

No |P3|P4| T P3 P4 No P3| P4 | T P3 P4
ICNG | ICNG ICNG | ICNG
1 123(122(73|8067 8085 || 48|24 |21 |8 |6556|5445
2 |19 |18 |66 |7275 (6343|4918 |23 |75(4044 (5035
3 125 8 |7T3(8136 |7082 | 50 |25(25[{90|9669 |8558
4 |15 |18 |57 | 7357|8262 | 51 (24|19|79|7046 |8857
5 |22 | 15|70 |7074 (9054 | 52|20|18|72|7267 |6246
6 |15 |19 |69 |8165 |6687 | 53|22 |23 |8 |6156 7237
7 8 |19 |57 |7052 | 7184 | 54|11 |18 |64 (4144|5324
8 |16 20| 715152 |8376 | 55(23|20|78[5456|5145
9 |22 |25 |81 |7555 8586 | 56 |20 |21 |75|13123|4344
10 {25 (22 (797656 | 7868 || 57 20| 0 |52|/4034 0000
11 | 25 (20 (848467 | 7046 || 58 |10 |20 |52|5445 6136
12 |22 119 |78 {8048 | 8255 || 59 | 25 |22 |87 |6768 6046
13 120 |20 (776658 |4877 |60 20| 5 |65|7557 6435
14| 9 5 14210000 |2020| 61| 6 |10|42(2212 5055
15 |18 | 17 |75 {6035 | 5434 || 62|18 |15 |64|5034|4133
16 {22 20 (82 |5045 |5145 |63 |23 (2082|4255 |5345
171 0 2 12810000 |20001 64 |20|20|8 |6056 6757
18 123 122806046 |5045 || 65|24 |21 |82|7878|7767
19 | 24 |20 (82 |9778 |8668 || 66|20 |18 |74|/6045 6968
20 1131716316133 7047 (67|21 |20 |73|6045|7346
21 |15 |15 |57|16235 (6355 (68| 9 |21 |65[2032 (3454
22 |17 |18 |71 | 7767 |7656 || 69|14 |20 |67|3022|5024
231 5 | 131423011 (2422 70|25|15|78|6356|5234
24 112 120|166 | 5454 (5665 || 71|12 |10 |55(2033 (4022
25 |25 |23 |8 |6869 7778 || 722019 |76|4133 4233
26 1101914912013 |6136 | 73|23 |15 |76|7356|4344
27 1 0 0 |15{0000 0000 | 74| 9 |15 |57]|4334 5344
28 | 13|15 (61| 2744|7044 | 752020 |72|5345|5245
20 |18 |21 | 7816455 |7557 || 76|22 |13 |75|6756|5534
30 |24 | 18 |81 | 8667 (5535 || 7722|2576 |7367 8956
31 |24 |21 |8 | 7166 5445 || 78|17 (2279|4023 6646
32 125 |23 |8 | 7668 7658 || 79|13 |18 | 644033 7557
33 124 |15 |74|16367 (5365 (|8 |23|19|82|6045 (5455
34 123122655777 (6056 |8 |25(23 |8 |5045|6145
35 |18 20| 77|16266 7545 (|82 22|21 822455 (5355
36 (24 | 20|17919989 (5666 || 8 | 18|22 |73|6466 6456
37 119 |18 |76 | 6545 3435 || 8 |11 |18 16832334023
38120 4 |53|5155 (2011 (|8 | 8 |18 464233 (5234
39 |20 |18 |66 | 8547 5755 (|8 | 12|19 |59 |5044 (5035
40 |22 |19 |79 (7056 |[6044 |8 | 25|20 (8 |6056 6435
41 120|122 |65|(6046 |7147 |8 | 9 |18 (544033 (5144
42 |11 | 3 (462111 (1011 | 8 |25]|20 |82 |7066 |665H56
43 1 9 |11 |30(2012 (2212 |90 |23|22|8|8768 87638
44 121 120 |61 (3044 (3533 | 91|24|20|79|7567 |7667
45 |22 |13 |72 (5235 (413492 |17 |21 |72|6556 6666
46 | 24 |21 |80 6556 |[6445 |93 |25|23 |8 |7457 (6757
47 |21 | 20 |76 | 5545 {4534 | 94|24 |15 |77|5344 (5434

TABLE 1. Primary data for attributes of style

63

64 M. FRENTIU

Line no. X1 X2 Y C(X1,Y) | C(X2)Y)
1 P3 T P3/1 0.70 0.67
2 P3 T P3/C 0.37 0.37
3 P3 T P3/N 0.70 0.70
4 P3 T P3/G 0.79 0.73
5 P4 T P4/1 0.64 0.57
6 P4 T P4/C 0.42 0.45
7 P4 T P4/N 0.56 0.50
8 P4 T P4/G 0.76 0.66
9 P3 P4 P3/1 + P4/1 0.63 0.61
10 P3 P4 P3/C + P4/C 0.43 0.40
11 P3 P4 P3/N + P4/N 0.60 0.63
12 P3 P4 P3/G + P4/G 0.72 0.69
13 P3/I + P4/I | P3/N + P4/N T 0.68 0.67
14 | P3/C + P4/C | P3/G + P4/G T 0.48 0.77

TABLE 2. The correlation coefficients for various attributes

For example, in column P4/C the grades for comments in the program corre-
sponding to the problem 4 are given. The minimum amount of comments required
to obtain 10 is formed from the statement of the problem, the precondition and
the postcondition for each procedure, the meaning of each variable, and, in some
important places, the situation in which that part of the procedure is reached.

The papers were independently analysed by two teachers, and the points were
given for the global correctness of programs. It was similar to an inspection of the
program, such that the given number of points reflects the measure of program
correctness (columns P3, and P4, respectively), and acquired knowledges (column
T). Although everybody knew that the correctness of programs is important, and
this was watched carefully, the students also knew that the teachers look at their
style of programming.

The columns marked by (C), (I), and (N) contain the points for the measures
in which the rules connected to comments, indentation, and good names are re-
spected, as explained above. The column (G) contains the points (from 0 to 10)
for the way in which all the general accepted programming rules are respected,
starting with the specifications of the problem and of all used modules, analysing
the design and the documentation of all activities. The points contained in the
columns (C), (I), (N), and (G) were given by the author of this paper.

3. CONCLUSIONS

It is known that the measure of linear dependence between two characteristics
is given by the correlation coefficient of these characteristics. Therefore, the cor-
relation coeflicients for various attributes were computed. They are given in Table
3, where C(X,Y) denotes the correlation coeficient of the attributes X and Y.

ON PROGRAMMING STYLE - PROGRAM CORRECTNESS RELATION 65

As we expected, these coefficients are positive, and show that there is a strong
dependence between the corresponding attributes. This confirms the idea that
programming style has an important impact on program correctness. Also, it was
expected that the largest coefficients are between the correctness and the way in
which the general rules are satisfied (column G).

Moreover, we must observe that these correlation coeficients are stable for both
problems, i.e. C'(P3,A4) is closed to C'(P4, A) for all attributes A € {I,C,N,G}.
This confirms that the students have been convinced of the necessity to respect
the above mentioned rules, and have acquired an acceptable programming style.

Nevertheless, we must observe some anomalies, and, for educational purposes,
take some measure to eliminate them. First, we can observe that the smallest
coefficients correspond to the column C: C(P3,P3/C) = 0.37 is the smallest of
all. Therefore, students do not like writing comments. In this direction we must
observe that there are 56 programs (from 188 = 2 x 94) that have no comments
at all!

This is in contrast with the case of the other attributes, where the presence of
zeros is an exception, only the lines with P3 = 0, or P4 = 0, having the grades
for these attributes equal to zero.

The indentation rules are much better respected. There is one more reason for
this. At all lectures, when the teachers write algorithms or code, they respect
these rules in all lines. But only sometimes they write comments.

We may conclude that a good programming style and a correct programming
habit must be taught in parrallel. As can be seen [6, 7, 8, 9] there were many
important programming style rules in my lectures, but they were not compulsory,
as is the case of many universities [1, 3, 11, 12, 15, 17]. As a consequence of this
analysis, I think such rules must become compulsory.

REFERENCES

[1] Adams, David, and Dan Beckett, Programming Style, http://www.island-
data.com/downloads/ papers/programmingstyle.html, 2001.

[2] BBC English Dictionary, HarperCollins Publishers, 1993.

[3] Craig E.Wills, Programming Assignments, http://www.cs.wpi.edu/~cew/courses/2005/
style/style.html

[4] Fenton, N.E., Software Metrics. A Rigorous Approach, Int. Thompson Computer Press,
London, 1995.

[5] Floyd, R.W., The Paradigms of Programming, Comm.ACM, 22(1979),8, 455-460.

[6] Frentiu M., B.Prv, Programming Proverbs Revisited, Studia Univ. Babes- Bolyai, Mathe-
matica, XXXVIII (1993), 3, 49-58.

[7] Frentiu M., On Program Correctness and Teaching Programming, Computer Science Journal
of Moldova, vol.5 (1997), no.3, pp.250-260.

[8] Frentiu M., Lazar I(Romanian), Programming Fundamentals. Algorithms Design,
Ed.Univ.” Petru-Maior”, Targu-Mures, 2000.

[9] Frentiu M., Verifying Program Correctness (Romanian), Ed.Univ.” Petru-Maior”, Targu-
Muresg, 2001.

66 M. FRENTIU

[10] Gries, D., The Science of Programming, Springer Verlag, Berlin, 1981.

[11] Haahr, P., A Programming Style for Java, http://www.webcom.com/~haahr/essays/java-
style

[12] Keith Gabryelski, Wildfire C++4 Programming Style, http://www.cs.umd.edu/users/
cml/cstyle

[13] Kernigham, Brian W., and P.J.Plauger, The Elements of Programming Style, McGraw-Hill
Book Company, New York, 1974.

[14] Ledgard H.F., Programming Proverbs for Fortran Programers, Hayden Book Company, Inc.,
New Jersey, 1975.

[15] McCann, Toward Developing Good Programming Style, http://www.comsc.ucok.edu/
~mccann/style_p.html

[16] Meyer, B., Object Oriented Software Construction, Prentice Hall, Englewood Cliffs, 1988.

[17] David R.Tribble, Notes About Programming Style, http://www.flash.net/~dtribble/src/sys/
style.htm, 1998-04-16

DEPARTMENT OF COMPUTER SCIENCE, “BABES-BOLYAT” UNIVERSITY, 1, M. KOGALNICEANU,
RO-3400 CLUJ-NAPOCA, ROMANIA
E-mail address: mfrentiu@cs.ubbcluj.ro

STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000

USING SCALABLE STATECHARTS FOR ACTIVE OBJECTS
INTERNAL CONCURRENCY MODELING

DAN MIRCEA SUCIU

ABSTRACT. In the last two decades, the design of object models having con-
current features has represented a constant concern for many researchers.
The fundamental abstractions used in this methodology are concurrent (or
active) objects and protocols for passing messages between them. Statecharts
seem to be one of the most appropriate ways of modeling the behavior of con-
current objects. Based on statecharts we will define an executable formalism,
called level 2 scalable statechart (SS?), for modeling of intra-concurrency in
object-oriented concurrent applications.

Key words: object-oriented concurrent programming, reactive sys-
tems, statecharts.

1. INTRODUCTION

In the last two decades, the design of object models having concurrent features
has represented a constant concern for many researchers. This was happening for
mainly two reasons. On the one hand, as an effect of the obtained technological
progress, many object-oriented programming languages having concurrent features
have been designed during this time (over 100 such languages have been discussed
and systemized in [10]).

On the other hand, the fact is known that object-oriented programming has
been developed having as a model our environment (seen as a set of objects among
which several relationships exist and which communicate between them by message
transmission). However, in the real world these objects are naturally concurrent,
which leads to the normal trend of transposing this thing into programming.

It is interesting how two distinct criteria, the first one objective (determined by
the rise of performances and complexities of the calculus systems), and the second
one subjective (actually determined by “decency”, which urges us to solve different
abstract problems looking for similitude with the real world), have finally led to

2000 Mathematics Subject Classification. 68N30.

1998 CR Categories and Descriptors. D.2.3 [Software] : Software Engineering — Coding
Tools and Techniques D.2.7 [Software] : Software Engineering — Distirbution, Maintenance and
Enhancements .

67

68 DAN MIRCEA SUCIU

the development of some concepts, some programming techniques and implicitly
of some efficient analysis and design methods for developing applications.

The concurrent programming has occurred before the object-oriented program-
ming. It has been applied for the first time within the framework of procedural
languages. Here the main problems studied have been concerned to the syn-
chronization of the parallel execution of some instruction sequences and to the
information transmission among many other concurrent activities.

Once with the appearance of object-oriented programming software develop-
ment has met a qualitative and meaningful leap. In this way, the development of
these programs (or applications) does not involve the decomposition of problems
into algorithmic procedures, but independent objects that interacts among them.
An evaluation of the coordinating primitives of these interactions will be achieved
in a concurrent system.

In the same time, a great interest was accorded to object oriented technology,
especially to the analysis and design methods. The analysis and design methods
may be defined as coherent approaches used to describe a system. Due to the
complexity of the systems, different models are built, each of them containing
another view of the system. Any model emphasize an aspect and neglect all the
others. For instance, the entity- relation model describes the dates involved in
the system and indicates nothing about their processing. In order to cover all the
aspects connected with the design, every method uses more than one model.

spe cjﬁcaﬁons
nahiral language)

Analysis mode]l | desiEn
(disgrams)
b
k.
Design model translation
(diagraras)
3 compiling +
Implementation model | _imediting
{source code)
Tte ratiom of /’ p
application
]Iiagfiycle Executable model
(hinaryeode)
- . : festing i

F1GURE 1. Iterative model of applications development using an
object-oriented analysis/design method

ACTIVE OBJECTS INTERNAL CONCURRENCY MODELING 69

The life cycle of an application, represents the stages that are go through in the
process of developing that application. The most important stages are:

Analysis: where are identified the main characteristics of all possible cor-
rect solutions,

Design: that add to analysis models new elements that define a particular
solution, based on some criteria optimizations,

Implementation: where an executable design is built for the particular
solution modeled in design phase,

Testing: where is verified the equivalence of the implementation with the
designed model and validates the fact that the implementation respects
the correctness criteria identified in the analysis phase.

The object oriented analysis and design methods allow an iterative approach of
the phases from applications life cycle (Figure 1).

CASE (Computer Aided Software Engineering) tools are software products able
to support medium or large application development. This support is realised by
automating some of the activities made in an analysis and design method. If
we agree that one of the main goals of an analysis and design method is code
generation and that we should obtain automatically a high rate of application
code, it is obvious that an efficient use of a method cannot be made without an
associated CASE tool.

Typically, the translation of a complex analysis/design model into a program-
ming language takes a long period. A model is called executable if this translation
can be made automatically. The automatization of the translation process allows
running a prototype of an application immediately after building its model.

This paper captures aspects regarding concurrent object oriented application
modeling. We analyzed the main object models developed in literature, insisting
on concurrency aspects. In the center of this analysis is UML (Unified Modeling
Language) version 1.3 [8].

The obtained results and the similarities between active object and reactive
systems drive us to the idea of modeling their behavior through statecharts for-
malism. We extended the scalable statecharts formalism, introduced in [13], which
allow developing executable models and offers support for automatic source code
generation and for simulation of active objects behavior.

The executability is an important feature of scalable statecharts [13], allowing
the automatization of active objects implementation based on their behavioral
models. Furthermore, the executability offers support for simulation, testing and
debugging of active object execution at the same level of abstraction like the built
model.

70

DAN MIRCEA SUCIU

2. LEVEL 2 SCALABLE STATECHARTS (SS?)

SSt statecharts defined in [13] do not allow parallel triggering of transitions.
Thus SS! statecharts cannot be used to model intra-object concurrency. Fur-
thermore, SS' statecharts do not provide mechanisms for modeling conditional
synchronization and synchronization constraints.

We will extent SS! with new elements that allow us to specify state invariants,
conditions for transition triggering and to handle more than one message from

queue.

Definition 1. A level 2 scalable statechart of a class K is a tuple:
S§S%. = (M,S,0,P,E,sg, Sk, (stSucc, stInit, ortSucc,), inv, T; eval, par, S,, C)

where:

M is a finite set of messages,

S is a finite, non-empty set of states,

O is a finite, non-empty set of orthogonal components,

P is a finite set of properties,

Sr € S is the root of the states hierarchy,

Sr is a finite set of final states. To preserve the consistency of our model
we will presume that all the final states will be successors of orthogonal
components from the root state sg. Thus we will eliminate the termina-
tion transitions proposed in UML [8] without affect the modeling power
of the statecharts.

functions that defines the states hierarchy:

— stSucc: O — P(SUSF), where stSucc(o) = {s1,82,...,8n} is the
set of sub-states of the orthogonal component o, with the restriction
that Yoy,02 € O we have stSucc(oy) N stSucc(oz) = B;

— stInit : O\{o : stSucc(o) = 0} — S, stInit(o) = so € stSucc(o),
the initial sub-state of the orthogonal component o (stSucc is defined
only for non-empty orthogonal components);

— ortSucc : S — P(O)\{0}, where ortSucc(s) = {o1,02,...,0m} is
the set of the orthogonal components owned by state s, with the
restriction that Vs1, 89 € S we have ortSucc(sy) N ortSucc(se) = 0
(a state has at least one orthogonal component);

T C P(S\{sr}) x M x P (S\{sgr}) is a finite set of transitions. A
transition ({s1,...,s;},m,{s{,...,s]}) € T means that if an object is in
source states si,...,s; € S\{sr} (each source state is located in distinct
orthogonal components of a state from S) and receives a message m
then, after executing the operation associated to m, the object will enter
in destination states sy,...,s;] € S\sr}. The root state can not be
source nor destination for a transition and the sets of source states and
destination states not contain states that includes each other.

ACTIVE OBJECTS INTERNAL CONCURRENCY MODELING 71

e S, C SUSF is the set of active states of the statechart in a given
moment with the restriction that Vs, € S, ortSuce(s,) =0,

e C' € M* is a finite sequence of messages, and models the messages queue
of an active object.

Figure 2 contains an example of a SS° statechart and its visual representation.
The structure of the modeled class (Bottle) is defined in the same figure using
UML notation.

Based on stSucc and ortSuce functions we will define another two functions
that return the parent of a state or orthogonal component.

Definition 2. The function stPred : O — S, where stPred(o) = s € S if o €
ortSucc(s), determines the parent state of an orthogonal component o € O. The
function ortPred : S U Sp\{sgr} — O, ortPred(s) = o € O if s € stSucc(o)
determines the orthogonal component that is parent of a state s € SU Sp\{sgr}.

The restrictions stated in definition 1:

Yo1,09 € O, stSucc(o1) N stSucc(oz) = O and
Vs1,s2 € S, ortSuce(s1) N stSucc(ss) 0,

ensure that stPred and ortPred are well defined.

To complete the formal definition of SS! statecharts we will give a formal
specification for valid transitions. For this reason, we will define first the nesting
relation between states and/or orthogonal components.

Definition 3. Two elements so1,s02 € SUQO are in nesting relation, denoted by
501 < 503, iff one of the above affirmations is true:

a) so1 = soo,
b) sop € SAsoy €S = Ine€N' :s0, =stPred(ortPred(---soy--)),

v

n t;;nes
¢) so; € O Asoy € O = In € Nt : 505 = ortPred(stPred(---soy - -+)),

n t;;nes
d) so; € SAsoy €0 = 3n € N : s05 = ortPred(stPred(- - - ortPred(soy) - -+))

-~

n times
e) sop € O ANsoy € S = In €N :s0y = stPred(ortPred(- - - stPred(soy)--)).

n times

Proposition 1. The nesting relation is partial order over S U O.

Proof. The reflexivity is assured by the affirmation a) from nesting relation
definition.

72 DAN MIRCEA SUCIU

Let soq, so02,s03 € S be three states such that sol < so, and so» < so3. From
definition 7 we have that In € N* : soo = stPred(ortPred(---so;---)) and

v

n t;;nes
Im € Nt : so3 = stPred(ortPred(--- sos---)). This implies that Ir = n+m €

v

m times
N* : so3 = stPred(ortPred(---so;---)), so so; < soz. This means that the

r=n+m times
nesting relation is transitive over S. Analogous it can be proved that the nesting

relation is transitive over S U O for so1, sos, so3 belonging to S and/or O.

We will prove that the nesting relation is anti-symmetrical over S.

Let so1,s02 € S be two states for which so; < sos and sos < soy. This implies
that:

S01 = S02,
or
In,m € N* : s0, = stPred(ortPred(---so; -+))
n times
and

soy = stPred(ortPred(-- - soy---)).

-

m times
Let us suppose that so; # sos. Then

Ir =n+m € NT : 50, = stPred(ortPred(---so, ---)).

-~

r=n+m times

From definition 1 we have that the above statement is true only for » = 0. This is
obviously impossible because r € N*. We deduce that so; = so». The other three
cases (s01,s02 € O, so; € O and sos € S, so; € S and soy € O) are analogous.

Thus, Vso1,s00 € SUQO, so; < sos A S02 < s01 = s01 = S09, i.e. the nesting
relation is anti-symmetrical over S U O.

Because the relation (S U O, <) is reflexive, transitive and anti-symmetrical we
deduce that the nesting relation is partial order over S U O. O

Definition 4. For a state or orthogonal component so € S U O, {so' : so' €

SUO,s0 < so'}, denoted by PREDy,, is the set of all its predecessors.
Proposition 2. For all so € SUO, (PREDq,, <) is total order.

Proof. Corresponding to proposition 1, the relation (PREDg,,) is partial
order. Let so’,s0" € PRED,, NS be two predecessor states of so. According to
definition 8 we have:

In' € N* : 50’ = stPred(ortPred(---so---))

-

n' times

ACTIVE OBJECTS INTERNAL CONCURRENCY MODELING 73

and
In" € N* : 50" = stPred(ortPred(---so---)).

-~

n' times

We suppose that n’ > n””. We have:
In" € N™ : 50" = stPred(ortPred(---so ---))

v

n’—n” times
that implies so' < so”. The other three cases (so',s0"” € PRED;, N O, so' €
PRED,capO and so'' € PRED,,NS, so' € PRED;,NS and so"NPRED,,NO
) are analogous.
Thus, Vso', so'" € PRED;,, so' < so" or so' < so', which implies (PRED;,,, <)
is total order. I

Definition 5. Let (X, <) be a partially ordered set and let Y be a subset of X.
An element © € X is a lower bound for Y iff x <y for ally € Y. A lower bound
x for Y is the greatest lower bound for Y iff, for every lower bound x' for Y,
' <y. Whet it exists, we denote the greatest lower bound for Y by NY.

In the paper we use the following three well known results [9]:
e if z is a lower bound for Y and z € Y then MY = x;
e if MY exists then it is unique;
e if (Y, <) is total order and Y is finite then MY exists and MY € Y.
Because (PRED;,, <) is total order and PRE Dy, is a finite set, we deduce that
the greatest lower bound for PRE Dy, does exist, and MTPRED,, € PRED,,. We
will prove that MPRE D, is the parent of so.

Proposition 3. Let so € SUO be a state or orthogonal component. One of the
following affirmations is true:

1) so € S = ortPred(so) = MPREDs,,

2) so € O = stPred(so) = MPREDg,.

Proof. a) Let so € S be a state. It is obvious that so < ortPred(so), and
based on the definition of set PRED;, we have that ortPred(so) € PREDg,.

Let so' € PREDy, be an arbitrary predecessor of the state so. From definition
8 we have that so < so’. If so' is an orthogonal component (so' € O) then:

dn € N : s0' = ortPred(stPred(--- ortPred(so) -)),

n times
which implies that ortPred(so) < so’. The case when so' is a state (so' € S) is
analogous. Because so’ was arbitrary selected from PREDso we will have:
Vso' € PRED;,,ortPred(so) < so

. that implies ortPred(so) = MPREDs,.
The proof for statement b) is analogous. O

74 DAN MIRCEA SUCIU

Buottle -
[Mormal [

Blottle Fill [zortert + 5 < capacity] i
int capacity :
int content i [withoutLakel [+
boolean label !

= ' ot |akel

veid FIlig SOMEIE £ oApacty e
void Emphy() Sl E Removelabel
void Breakd Fill [eontert + & * capacity] !
woid Capacity]) .J.. ! Add Label
woid AddLabeld) ol ik
void Remowelabel () E WithLakel [+

WithLahel WithoutLabel 3

FIGURE 2. Graphical representation of SS? statechart

Definition 6. Two states or orthogonal components so',so"” € S are orthogonal
iff so' £ so", so" A so and N(PREDs, N PREDg,) € S.

In other words, two states or orthogonal components are orthogonal if they are
not in nesting relation and the closest common ancestor is a state.

Definition 7. Lett = ({s; € S:i=1,....n},m,{sf € S:j=1,....m}) €T

be a transition. We say that t is a valid transition if all the following affirmations

are true:

a) Ps'=n ﬂifl PREDg € S (the source states are orthogonal),

b) Ps" =nni=t PRED,y € S (the destination states are orthogonal),

¢) Ps' £ Ps", Ps" A Ps" and \(PREDpy N PREDpg) € O (source and desti-
nation states are not orthogonal).

We will call dom; = M(PREDpy NPREDYp,,) € O the domain of transition t.

ACTIVE OBJECTS INTERNAL CONCURRENCY MODELING 75

The domain of a transition represents the “smallest” orthogonal component
that contains all transition’s source and destination states.

In definition 1 function par characterizes the algorithm of choosing a set of
messages from message queue. The specification of par function is not important in
this phase of formalization and is imposed by particular mechanisms implemented
in various concurrent object oriented languages. We consider that this function
will return the maximal set of messages that can be handled concurrently.

Definition 8. Two transitions t',t" € T are textslindependent iff their domains
are orthogonal, i.e., M(PRED jpmt N PRED gomt) € S.

Definition 9. A configuration of a SS? statechart is a tuple (S,,par(C),C,),
where S, C S is the finite set of active states, par(C) is the set of messages
from queue which will be processed in parallel and C,. € M* the rest of messages
queue C after removing messages from par(C). The initial configuration of a SS®
statechart if given by (active(sg),L).

Definition 10. The interpretation of a SS? statechart configuration is a function:
62 P(S) x P(M) x M* = P(SUSp) x M*,
62(Sq, {ma,...,mp},Cp) =
(Activ(J= S, CL), if Vie {1,...,n}3(S! C S, US,, and eval(e;) = true
= (Sa,CTI,), if Vi € {1, R ,n} ,351,52,52 C Si,e€eE: (Sl,mi,e,SQ) eT
(Sa, CLAML A= Amy,), else

Definition 11. The execution of a SS? statechart is a sequence finite or infi-
nite of configuration interpretations, starting from the initial configuration, and is
denoted:

. 62 52 52 52
(G’Ctlve(sR)a wa J—) — (Slapa’r(c)a Crl) — (Sk,par(C), CT‘k) —
where S1,...,S;,...C S, my,...,mg,... € M and Cry,...,Crp,... € M*. The

execution is finite if the set of activated states contains at least a final state.

3. CONCLUSIONS

We extended the statecharts formalism [7] with new semantically and graphical
elements, in order to allow the specification of active objects behavior with respect
of a general concurrent object model. The extensions are: allowing scalability,
executability and the definition of a precise semantic.

The formalism that is proposed in section two of this paper is called Ilevel two
scalable statechart. The scalability of states minimizes the effort of modeling
objects with a complex behavior. In this way, the active objects behavior models
can be analyzed at different levels of detail.

Because the semantic of scalable statecharts was defined regarding a general
concurrent object model, they allow source code generation in various concurrent

76

DAN MIRCEA SUCIU

object-oriented languages that use various modalities and mechanisms for speci-
fication of concurrency and interaction between concurrent activities. This thing
confers a better flexibility in translation of behavioral models in source code.

(1]

[2

(9]
[10]

(1]
(12]

(13]

ST.

REFERENCES

F. Barbier, H. Briand, B. Dano, S. Rideau, “The Executability of Object-Oriented Finite
State Machines”, Journal of Object-Oriented Programming, SIGS Publications, 4 (11), pp.
16—24, jul/aug 1998

Michael von der Beeck, “A Comparison of Statecharts Variants”, Formal Techniques in
Real-Time and Fault-Tolerant Systems, L. de Roever and J. Vytopil (eds.), Lecture Notes
in Computer Science, vol. 863, pp. 128—-148, Springer-Verlag, New York, 1994

S. Cook, J. Daniels, “Designing Object Systems - Object-Oriented Modelling with Syn-
tropy”, Prentice Hall, Englewood Cliffs, NJ, 1994

Bruce Powel Douglas, “UML Statecharts”, Embedded Systems Programming, jan. 1999,
available at http://www.ilogix.com/fs_prod.htm

D. Harel, A. Naamad, “The STATEMATE Semantics of Statecharts”, ACM Transactions
on Software Engineering and Methodology, 5 (4), pp. 293333, 1996

D. Harel, E. Gery, “Executable Object Modeling with Statecharts”, IEEE Computer, 30
(7): 31-42, Jul. 1997

David Harel, Statecharts: A Visual Formalism for Complex Systems, Science of Computer
Programming, vol.8, no. 3, pp. 231-274, June 1987

Object Management Group, OMG Unified Modeling Language Specification, ver. 1.3, June
1999 available on Internet at http://www.rational.com/

Z. Manna, Mathematical Theory of Computation, McGraw-Hill, 1974

Michael Phillipsen, Imperative Concurrent Object-Oriented Languages, Technical Report
TR-95- 049, International Computer Science Institute, Berkeley, Aug. 1995

Marian Scuturici, Dan Mircea Suciu, Mihaela Scuturici, Tulian Ober, Specification of active
objects behavior using statecharts, Studia Universitatis “Babes Bolyai”, Informatica, Vol.
XLII, no. 1, pp. 19-30, 1997

Dan Mircea Suciu, Reuse Anomaly in Object-Oriented Concurrent Programming, Studia
Universitatis “Babes-Bolyai”, Informatica, Vol. XLII, no. 2, pp. 74-89, 1997

Dan Mircea Suciu, Extending Statecharts for Concurrent Objects Modeling, Studia Univer-
sitatis “Babes-Bolyai”, Informatica, Vol. XLIV, No. 1, pp. 37-44, 1999

DEPARTMENT OF COMPUTER SCIENCE, “BABES-BOLYAT” UNIVERSITY, 1 M. KOGALNICEANU
, RO-3400 CLUJ-NAPOCA, ROMANIA
E-mail address: tzutzu@cs.ubbcluj.ro

STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000

TERM REWRITING SYSTEMS IN LOGIC PROGRAMMING
AND IN FUNCTIONAL PROGRAMMING

DOINA TATAR, GABRIELA SERBAN

ABSTRACT. Automated theorem proving and term rewriting system are fields
with big interest since some years. Often these fields have a common devel-
opment. Is it not amazingly that logic programming and functional program-
ming, which belongs to both these fields, offers simple solutions to problems
arising at the frontier of them. In [8], the author submitted a challenge for
”finding an optimum way to implement the rewriting systems ”. This paper
presents the way in that the logic programming and functional programming
offer their concision to realize a sound implementation of the TRS.

1. INTRODUCTION

In the first section we will presents shortly the equation systems, the TRS, the
“critical pair” idea and the completion algorithm [1, 5, 7, 10]. In the following
sections we will outline some problems and their solution in our implementation
in Prolog (section 2) and in Lisp (section 3).

Definition 1 An equational theory (F,V,E) consists of:

e a set F of function symbols (with the same sort, for simplicity).
e a set V of variables.

Let T(F,V) be the set of terms build from F and V.
e a set of pairs of equations, s=t,s,t € T(F,V).

The set of equations E defines a syntactical equality relation ==g on T(F,V),
usually defined as “replacing equals by equals”.

The fundamental problem in an equational theory is the
problem”, which is undecidable:

“Give s and t € T(F,V), does s == t 7"

The undecidability (more precisely, the semidecidability) of the “word problem”

is transferred on the approach by the TRS, but this approach is, on the our opinion,
more algorithmically.

4

‘validity” or “word

2000 Mathematics Subject Classification. 68T15.

1998 CR Categories and Descriptors. D.1.6. [Software] : Programming Techniques —
Logic Programming;1.2.3. [Computing Methodologies] : Artificial Intelligence — Deduction
and Theorem Proving.

T

78 DOINA TATAR, GABRIELA SERBAN

Definition 2. A TRS is a set of rules: R = {l — r | I,r € T(F,V) , every
variables occurring in term r also occurs in term 1 }.

A TRS defines a rewrite relation — g:

Definition 3. s — g tiff there is a rulel — r € R and an occurrence p in s such
that the subterm of occurrence p, noted s |, and the term ¢ have the property:

s [p=0(l),t = slp < o(r)]
for some substitution o. Here notation s[p < o(r)] represents the term obtained
from s by replacing the subterm of occurrence p by the term o(r).

We denote by —7% and <——% the reflexive-transitive and reflexive-transitive-
symmetric closure of — .

In order to solve the “word problem” for an equational theory E, compute an
TRS R such that s ==g ¢ is a relation equivalent with s <~—7% t. Let us denote
Rpg as associated with E.

The TRS Rp is the canonical (terminating and confluent) TRS associated
with E, obtained as output of the completion procedure Knuth -Bendix. This
algorithm has as input the set F and a reduction order over T(F,V).

Definition 4 The normal form of a term ¢ , denoted ¢ |g , is a term with the
followings properties:

1t =R tlr

2.t | g irreducible.

Observations:

1. If a TRS R has the property that every term has a unique normal form,
then:

s «——5 iff s [r=1 |g, because s <—— t} is s =% s g and t =} r. Thus,
testing s <—— t} is is the same as testing that s {[g=1 |g.

2. In a canonical TRS R, every term has a unique normal form.

We won’t describe the well known Knuth-Bendix algorithm. Instead, we will
survey the critical pair idea, staying on the ground of this algorithm.

Definition 5 Let I; — r; and ls — r2 be two rules in R. By renaming the
variables we may assume that they do not share common variables. If o (l;) =
o2(l2) , then the pair of terms (o1 (l1),02(l2)) is a critical pair for R.

The Knuth-Bendix algorithm computes, for every critical pair (¢1,t2) of R/,
the normal forms ¢; | g and t5 Lg/. If this normal forms are different, then a rule
t1 $rr =% t2 Lr or converse, (depending of the case t1 | g > t2 | g or the converse),
is added to R'. Let observe that the procedure fails if neither t; |z > t2 | g nor
the converse is true.

2. IMPLEMENTATION IN PROLOG

A set of problems for implementation in Turbo Prolog derives from the fact
that in this language does not exist the standard predicates functor, ==, and
op. This fact lead as construct two specific domains in section domains of our
programs as follows:

TERM REWRITING SYSTEMS 79

domains
term=var (symbol) ; con(symbol) ; cmp (symbol,terml)
terml=termx*
termll=termlx*

For example, if we must introduce the term f(x,y,a) , we will write:

cmp (f,[var(x),var(y),con(a)]), respecting the conventions for syntax of for-
mulas in first-order logic. Also,if we must introduce the formula p(x,f(y,z)) we
will write:

atom(p,[var(x),cmp(f,[var(y),var(z)])]) .

A TRS R of T rules, as in definition 2, is done by a couple of predicates 1(t,N)
and r(t,N) where t is a term and N=1,--- Tis the index of the rule. We worked in
this program with the three starting rules associated with the theory E of groups.

I(cmp(“F”, [cone),var (a)]),1).
(cmp(“F”emp(“g” [var (2)]) var (a)]).2).
emp(“6” fomp(“F” [var(a).var(b)]) var(c)]),3)-
r(var(a) 1).
r(con(e).2).

r(emp(“F",[var(a) cmp(“6” [var(b) var(c)])]),3).

The predicates which realizes the rewriting relation X — Y with a rule N in
definition 3 is the predicate rewrite (X,Y,N) .

rewrite(X,Y,N):-1(X,N),r(Y,N),!'. (1)
rewrite(X,Y,N) : -member_left(X,L1,L2,N), (2)
list_var(X,L_var), (3)
lg_list(Lnou,K), (4)
1(M_stg,N), (5)
aplic_subst(M_stg,Nou_m_stg,L1,L2), (6)
tr_term_str (Nou_m_stg,St_stg), P
aplic_subst(X,NouX,L1,L2), (8)
list_var (NouX,L_var_n), (9)
lg_list(Lnoun,K), (10)
tr_term_str(NouX,St), (11)
r(M_dr,N), (12)
aplic_subst(M_dr,Nou_m_dr,L1,L2), (13)
tr_term_str (Nou_m_dr,St_dr), (14)
strsr_first(St,St_stg,St_dr,Nou_string), (15)
tr_str_term(Nou_string,Yinterm), (16)
sc_lista(L2,L1,L2nou,L1inou), an)
aplic_subst(Yinterm,Y,L2nou,L1inou),!. (18)

The predicate member-left (denoted by (1)) is defined as follows:

/* member_left(X,L1,L2,N):-the rule N-th has the property that
his left side unifies with a subterm of term X, and the unifier
has the domain L1 and the codomain L2. */

One of the clauses for member-left must be:

80 DOINA TATAR, GABRIELA SERBAN

member_left(X,L1,L2,N):-subterm(S,X),
1(z,N),
unify(S,Z,L1,L2).

The predicate aplic-subst(t,s,L1,L2) denoted by (6) applies the substitution
o =(L1/L2) to t obtaining s. The predicates tr-term-str transforms a term
(e.g. f(a,x)) in a string (f2ax). The reason for this transformation is to provide to
predicate:

strsr-first (St,St-stg,St-dr,Nou-string), denoted by (15),
his first three arguments (the lines (7),(11),14)). Thus, one step of the realization
of the relation — is accomplished by the predicate strsr-first. This is defined as:

/* strsr-first(S1,52,53,5):- the string S is obtained by
replacing in the string S1 the first occurrence of the
substring S2 by the string S3. */

The converse transformation of a string into a term is realized by the predicate
tr-str-term (16). A clause for this one must be:

tr_str_term(X,Y):-str_len(X,L),L>0,frontstr(1,X,Z,0),
frontstr(1,U,N,W),
str_int (N,N1),
frontstr(N1,W,WW,WWWw),
tr_str_terml (WW,V),
tr_str_terml (WWW,V1),
append (V,V1,V2),
Y=cmp(Z,V2),1g_list(V2,N1).

The relation —7% defined as the reflexive -transitive closure of —p is realized
by the predicate rewrite*. The clauses for this predicate are:

rewritex(X,Y):-rewrite(X,Y,N).

rescriex(X,Y):-rewrite(X,Z,N),!,rewritex(Z,Y).
The predicates critical-pair and normal-form are defined as:

critical-pair(X,Y):-1(X,N) ,member_left (X,L1,L2,M),1(Z,M),
aplic-subst(Z,Y,L1,L2).
normal-form(X,Y) :-rewrite*x(X,Y) ,not(rewrite(Y,_,_)).

At the end of the application of the Knuth-Bendix algorithm, the canonical
TRS is given as usually by 10 rules. (Some intermediary rules are deleted because
they have been rewritten in the same terms.) The obtained canonical TRS can be
used for demonstrate some theorem in group theory. For example, if we want to
prove that t; = i((i(a) + a) + (b+4(b))) is equal with t5 = b+ (i(a + b) + a), then
we run the program with normal-form(¢;,X) and normal-form(¢>,Y). We will
obtain X=Y.

TERM REWRITING SYSTEMS 81

3. IMPLEMENTATION IN LISP

In this section our aim is to present how the rewriting relations could be defined
in LISP.

3.1. LISP representations. First, we have to establish the way in which the
terms are represented in LISP.

a variable x is represented as a list (var x);

a constant a is represented as a list (con a);

a functional symbol f is represented as a list (cmp f);

a function f(LA) where f is a functional symbol and LA is a list of
arguments, is represented as a list ((the list corresponding to f)
(the list of arguments)); for example, f(a,x) is represented as a list

((cmp f) ((con a) (var x))).

With the above considerations, if we must introduce the term g(x,f(y,z)) we
will write ((cmp g) ((cmp f) ((var y) (var z)))).

A rule 1-r from a TRS is represented as a list (list-1 list-r), where list-1 and
list-r are the representations in LISP of the terms 1 and r. For example, a rule
f(a,x)—x is represented as the list (((cmp f) ((con a) (var x))) (var x)).

A TRS R of N rules is represented as a list of rules (rule-1 rule-2 ... rule-N),
each rule is represented as we described above.

In the followings, we work with the three starting rules associated with the
theory of groups. The list of rules is denoted by LR and is the following:

(setq LR 7 (
(((cmp £) ((con e) (var a)))
(var a)

)

(
(Cemp £) (((cmp g) ((var a))) (var a)))
(con e)

)

(
((cmp £) (((cmp f) ((var a) (var b))) (var c)))
(Ccmp £) ((cmp £) ((var a) ((cmp £) ((var b) (var c))))))

)

)
)

3.2. Functions defined for rewriting rules. The functions which realize the
rewriting relation X—Y with a rule V in definition 3 is the function (rewrite X
N LR) which returns Y.
(defun rewr (X N LR)
; LR represent the list of rules

(prog (RN)

82 DOINA TATAR, GABRIELA SERBAN

(setq RN (rule-N N LR))
(cond
((equal (car RN) X) (return (cadr RN)))
(t (setq Y (cadr RN))
(setq UNIF (member-left X (car RN)))
(cond
((null UNIF) nil)
(t
(setq L1 (car UNIF))
(setq L2 (cadr UNIF))
(return (apply-subst L1 L2 Y))

The function (rule-N N LR) returns the N-th rule from the list of rules LR.

(defun rule-N (N LR)
(cond
((null LR) nil)
((=N 1) (car LR))
(t (rule-N (- N 1) (cdr LR)))

The function (member-left X Y) is defined as follows:

e if YV (the left side of a given rule) unifies with a sub-term of X, and
the unifier has the domain L1 and the codomain L2, then the function
returns the list (L1 L2) (this list is calculated by the function (unify
XY));

e else the function returns NIL.

(defun member-left (X Y)
(cond
((not (equal (length X) (length Y))) nil)
(t (unify X Y))

The function (apply-subst L1 L2 Y) applies the substitution o = (L1/L2)
to Y and returns the result.
(defun apply-subst (L1 L2 Y)

(subst Y L1 L2)
)

TERM REWRITING SYSTEMS 83
The function (rewrite X) is defined as follows:

e returns a list of elements having the form (N Y), where Y is the right
side of the rewriting relation X—Y with the rule N (if it is possible) -
this list is calculated by the recursive function (rewrite-rule X N LR)
which returns the result of rewriting X with the N-th rule of LR;

e returns NIL, if no rewriting relations for X are possible.

(defun rewrite-rule(X N LR)
(cond
((> N (length LR)) nil)
(t
(setq RN (rewr X N LR))
(cond
((not (null RN)) (cons (list N RN)
(rewrite-rule X (+ N 1) LR)
)
)
(t (rewrite-rule X (+ N 1) LR))
)
)
)
)

(defun rewrite (X)
(rewrite-rule X 1 LR)
)

The relation defined as the reflexive-transitive closure of the rewriting relation
R is defined as the function (rewrite* X).

(defun rewritex (X)
(setq Y (rewrite X))
(append Y (rewr* Y))

)

(defun rewr* (Y)
(cond
((null Y) nil)
(t (append (rewrite (cadar Y)) (rewr* (cdr Y))))
)
)

The normal-form is defined as a function (normal-form X).

(defun normal-form (X)
(n-form (rewr* X))

)

84 DOINA TATAR, GABRIELA SERBAN

(defun n-form (Y)
(cond
((null Y) nil)
((null (rewrite (cadar Y))) (append (car Y) (n-form (cdr Y))))
(t (n-form (cdr Y)))

Ezamples

(1) if Xis ((cmp f) (((cmp g) ((var b))) (var b))), then the result of rewriting
X este ((2 (CON e)));

(
(VAR D)));
gcmp f) ((con e) (var a))), then the result of rewriting X este ((1

(4) i X is ((cmp £) (((emp £) ((var) (var b)) ((cmp g) ((var c))))), then
the result of rewriting X este (3 ((cmp f) ((cmp f) ((var a) ((cmp f) ((var

b) ((cmp g) ((var c))))))))-

REFERENCES

[1] Avenhaus J., Madlener K. : “Term rewriting and Equational Reasoning” in Formal Tech-
niques in A.I., A coursebook, R.B.Banerdji (ed) 1990.

[2] K.H. Blasius, H.J. Burkert: “Deduction systems in Artificial Intelligence”, Ellis Horwood
Ltd.,1989.

[3] Buchberger B.: “History and basic features of the Critical-Pair Completion Procedure”, J.
of symbolic Computation 3, 1987, pp. 3—38.

[4] W.F. Clocksin, C.S. Mellish : Programming in Prolog, Springer-verlag, 1984.

[5] Huet G., Oppen D.D.: “Equations and rewrite rules: A survey”, in “Formal languages:
theory, perspectives and open problems”, ed. R. Book, 1980.

[6] Jouannaud J.P., Lescanne P.: “Rewriting Systems”, in Technology and Science of Informat-
ics, 1987, pp. 181-199.

[7] Knuth D.E., Bendix P.P.: “Simple word problem in Universal Albgebra”, Comp. prob. in
Abstr. Alg. (ed. J. Leech), 1970.

[8] Lescanne P.: “Current trends in rewriting techniques and related Problems”, IBM int. symp.
on Trends in Computer Algebra, Germany, 1987.

[9] Rusinowitch M.: “Demonstration automatique. Techniques de reecriture” Inter. Edition,
Paris, 1989.

[10] Tatar D.: “A new method for the proof of theorems”, Studia Universit. Babes-Bolyali,
Mathematica, 1991, pp. 83-95.
[11] Tatar D.: “Term rewriting systems and completion theorems proving: a short survey”,

Studia Univ. Babes-Bolyai, Mathematica, 1992, pp. 117-125.

DEPARTMENT OF COMPUTER SCIENCE, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE,
“BABES-BOLYAT UNIVERSITY, 1, M. KOGALNICEANU ST., RO-3400 CLUJ-NAPOCA, ROMANIA

STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION

IUGA MARIN

ABSTRACT. In this paper we have provided a formal model for software sys-
tems specification and for the software systems composition operation. Using
the notion of information system as a basis, we can model any information
system using both software services and software interfaces. Doing this, we
can develop a formal model for software systems composition. This formal
model may be used both in formal specification of software systems (structure,
functionality, requirements) and in software systems composition expressions.

1. AN OVERVIEW OF SOFTWARE SYSTEM NOTION

The history of “software system” notion is full of controversies and debates over
what is central in the process of defining a software system. At first, a software
system was identified with an executable program, but this definition has been
enlarged later when a software system was associated with an executable program
and its modules. Sooner, this definition has proven to be incomplete because the
notion of software system has a larger range than that given by any program, no
matters how large or complex this program is.

As a consequence, the definition of a software system has changed its center
from the notion of executable programs and modules to the notion of software
services and software systems inter-relations.

A radical change of perspective over the software systems is presented in [9]:

“Large software systems are non-algorithmic, open and distributed:

non-algorithmic: they model temporal evolution by systems of interact-
ing components

open: they manage incremental change by local changes of accessible open
interfaces

distributed: requirements as well as components are locally autonomous.”

A system is generally considered to be a collection of components organized
to fulfill a certain function or a certain set of functions. A software system is
viewed as an entity that requests software services from the external environment
and exports other software services to this environment. We will try to describe a
software system without any need of information about its internal construction.

2000 Mathematics Subject Classification. 03B70,68N30.
1998 CR Categories and Descriptors. C.0. [Computer Systems Organization] :
General.

85

86 IUGA MARIN

It suffices to say that a software system has an internal state, represented by a set
of abstract values, but we don’t need to know how the state and the mechanism
of state changing is implemented inside the system.

The classical software system concept is now replaced by the concept of ex-
tensible system (see [10]). An extensible system is considered to be a kind of
software system whose functionality may be freely extended by replacing existing
components with new ones. Smalltalk is an extensible language/system, and new
additions to Java make it possible to create extensible systems in Java. Extensible
systems cannot be created in more traditional languages such as Simula and C++.
However, Active X from Microsoft, allows programming of extensible systems in
C++, Visual Basic and other languages.

2. MODELING SOFTWARE SYSTEMS USING SOFTWARE SERVICES

We can observe now the fact that the definition of a software system is centered
over the notion of software service, thus making the definition of software service
the key to define the notion of software system. We will define the software service
as a set of operations grouped under the same identifier. This identifier is the
software service’s identifier.

An operation is defined by a name, and a textual, rather informal, description
of it.

Considering this, an operation could be represented as:

operation = (operation_signature, operation_description)

where:

operation_signature: is the operation’s signature;
operation_description: is the operation’s description.

We will provide a formal representation for an operation in this paper.
Once we can specify an operation, we are able to represent a software service
as:

service = (service_name, {service_operation;,i € 1,...,num_operations})

where:

service_name: is the name of the software service,

service_operation;: is the i-th operation of the software service

num_operations: is the number of operations associated with this soft-
ware service.

A software service could be easily identified as a contract between a provider
and a client. It specifies the terms of information exchange between the provider
and the client, it specifies a protocol that makes the service provider and the client
to understand each other and it specifies the conditions that must be met for the
information exchange process.

As an example let’s consider the process of a COM object serialization. The
serialization is defined as “the ability of an object to write its state to a persistent

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 87

storage” [6]. So, if we want a persistent COM object then this object must imple-
ment the service specified by IPersistStorage (at least). We will call this service
as the Persist_Storage service, and it is characterized by the following operations:

IsDirty: indicates whether the object has changed since it was last saved
to its current storage;

InitNew: initializes a new object, providing a handler to the storage to
be used for the object;

Save: saves an object, and any nested objects that it contains, into storage;

SaveCompleted: notifies the object that it can revert from NoScribble
or HandsOff mode, in which it must not write to its storage object, to
Normal mode, in which it can;

HandsOffStorage: instructs the object to release all storage objects that
have been passed to it by its container and to enter HandsOff mode, in
which the object cannot do anything and the only operation that works
is a close operation.

We can define a software system by the following quadruple:
(IN.STATUS,OUT_STATUS,IN,OUT)

where:

IN_STATUS: represents the system’s internal status;

OUT_STATUS: represents the external environment’s status that is ac-
cessed or modified by the system’s services;

IN: represents the set of imported services that are needed by the system
in order to fulfill its functionality;

OUT: represents the set of the exported services that are used by the
software system to express its functionality.

As a synthesis of what we have exposed until now, we will consider a software
system to be characterized by the following features:

e a series of software services exported to an external software environ-
ment;

e 3 series of software services imported from an external software environ-
ment;

e an internal state which could be changed as a result of a software service
fulfillment;

e a software service execution could change the status of the external en-
vironment.

We are close to the model for a software component, introduced in [7], where
the component is characterized by a service interface, a client interface and an
implementation. Since the black-box model is adopted for a software component
(excluding any information about internal implementation and imported services),
we find the essence of this model applicable to software systems.

We denote by OUTY,...,0OUT,, the exported software services, where n is the
number of exported services and we denote by I Ny, ..., IN,, the imported software

88 IUGA MARIN

services where m is the number of the imported software services. Also we will
denote by:

IN_STATUS ={IN_STATE,,...,IN.STATE,}
the set of the values of the software system status affected by the software services
execution, and by:

OUT_STATUS = {OUT_STATE_,...,OUT_STATE,}

the set of the values of the external software environment status affected by the
software services execution.

We consider the external software environment to be divided into two parts,
the first part denoted by IN exports software services to the software system,
denoted by SY STEM, and the second denoted by OUT is the part which imports
the software services exported by SYSTEM. Both parts could be identified as
a standalone software system. The first representation of the interaction of a
software system with the external software environment, using software services,
is given in Figure 1:

O
{-/\x-- o
{ H L - O . T

F1GURE 1. Representation of the interaction between a software
system and its external software environment using software ser-
vices

Let’s consider, as an example, a software system, called DataProcessor, which
receives data from an external data source, process it, and displays it to a display.

The imported services for this system are DataProvider service (imported form
a data source system) and DisplayRenderer (imported from a graphical device
system).

DataProvider service is characterized by the following operations:
OpenConnection: opens a connection with the data source;
CloseConnection: closes the connection with the data source;
GetData: obtains the raw input data.

DisplayRender service is characterized by the following operations:
ClearDevice: clears the content of the graphical device;
RenderImage: renders a graphical image.

The DataProcessor system exports the DataProcessing service, which is char-

acterized by the following operations:

CheckValidity: checks the validity of input data;

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 89

ProcessData: processes the input data.
The internal status for the system is:

IN_STATUS = {idle, operation_completed, operation_ready}

where:

idle: DataProcessor system is idling;

operation_completed: DataProcessor system has just finished an oper-
ation and is ready to provide output data;

operation_ready: DataProcessor system has received valid input data
and is ready to begin a processing session.

The external status for the system’s external environment is:
OUT_STATUS = {(connected), (not_connected)}

where:

connected: the data source has accepted connection and is ready to pro-
vide input data;

not_connected: the data source has not accepted a connection, the con-
nection is closed or it is not ready to provide any input data.

As we may see from this example, the software service is only a feature that
characterizes a software system and a software system could be viewed as a node
that imports some services and exports other services.

3. MODELING SOFTWARE SYSTEMS USING SOFTWARE INTERFACES

By using a formal specification for a software service (as a interface implemen-
tation) we can obtain a formal representation for a software systems (as a set of
interface implementations). In this kind of specification we must represent how
the status of the external software environment and the status of the software
system are affected by the software services execution.

The contract between a software entity and its external environment must be
specified in a neutral language and there is needed a contract that will stipulate
the terms and limits of the information transaction. In [5] we have specified the
fact that the contract that supervises the information transaction should be based
on the notion of software interface and the software interface must be specified in
a programming language neutral manner.

However, other authors have different points of view about the neutrality of
an element specification. They consider the specification of an element (type,
interface, class, component, ...) as an abstract description of it, and a program
(or module) as the concrete description of this element. In [2] it is requested that
any software specification must be in an executable format, but it is hard to agree
with this.

For a long time, a software service has been modeled as an interface. This
kind of model ignores the fact that an interface can be identified only with the
specification of a protocol for a set of operations (the syntactic part) and cannot

90 IUGA MARIN

capture the meaning of this operation (the semantic part). So, it is properly to
discuss a service by the means of the implementation of an interface.

So, we will propose to use the interface implementations as a model for a soft-
ware service, rather then using only interfaces. The interfaces are sets of method
signatures and carry only the syntactic information, while the interface implemen-
tations are sets of methods and carry semantic information (behavioral specifi-
cations). There are many ways to specify a method by using predicate calculus,
functional methods and non-functional methods.

We will propose here a specification model that is based on the predicate cal-
culus. We will specify a method as:

(signature, precondition, postcondition)

where:

signature: is the method’s signature;
precondition: is the method’s precondition predicate;
postcondition: is the method’s postcondition predicate.

The method’s signature is represented as:
return_typemethod_name(in_status, out_status, [par_rolepar_name : par_type))

where:

return_type: is the method’s return type;

method_name: is the method’s name;

in_status: represents the IN_STATUS for the software system to whom
the method are bounded to, via its associated interface;

out_status: represents the QOUT_STATUS for the software system to
whom the method are bounded to, via its associated interface;

par_role: is the parameter’s role (could be in, out, inout);

par_name: is the parameter’s name;

par_type: is the parameter’s type.

For a method m, we will consider the following sets:

e IN(m) = {the set of all in or inout parameters}U{in_status, out_status};
e OUT(m) = {the set of all parameters}U {in_status, out_status} U {result
— the value returned by this method}.

The precondition predicate is defined over values from IN(m) and it is true if
these values represents valid input data, and false otherwise.

The postcondition predicate connects the input data with the output data, and
is true if the returned values are those expected (if valid input data is considered
for the actual parameters of the method).

All that we have to remember is the fact that an interface implementation
specification must consider the mechanism of state changing associated with the
system that implements the interface. As a consequence of this thing, not all
interface implementations could be attached to any software system. A software
system that implements this interface must accept the values of the state changed

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 91

by this interface implementation. We will denote by I; the interface that has its
implementation specified by the software service I V; and with O; the interface that
has its implementation specified by the software service OUT;. Using the name of
the interface to designate the interface implementation associated with the service,
we will have another representation of the interaction between a software system
and its associated external environment, as can be seen in Figure 2.

The way an interface implementation is specified in has no critical importance.
Thus, we have provided a functional specification, but it also can be non-functional
(using message sending/receiving for example). This specification must take into
consideration the modification of the state of the software system and its external
environment,.

F1GURE 2. Representation of the interaction between a software
system and its external software environment using interface im-
plementation

Finally, we may synthetize the definition of a software system by using the
following quadruple:

SYSTEM = (IN_STATUS,OUT_STATUS,
{FI};,0 < k < ni,ni € N}, {FO;,0 <k <no,no € N})

where the notions involved are:

SYSTEM: the software system to be defined;

IN_STATUS: the set of the values of the software system status affected
by the software services execution;

OUT_STATUS: the set of the values of the external software environment
status affected by the software services execution;

FI_l: the interface implementation associated with the software service
IN;

FO_l: the interface implementation associated with the software service
oUTy;

ni: number of the imported services;

no: number of the exported services.

This quadruple can capture the entire description of a software service. It is an

open model though, because of the way an interface implementation is specified
in (but is not fixed because one can choose an alternate way to specify a software

92 IUGA MARIN

interface implementation). Any kind of specification (predicative, functional or
non- functional) can be used, the only restriction is that the specification must
consider the mechanism of status changing for a software system and its associated
environment.

4. SOFTWARE SYSTEMS COMPOSITION

The idea that a software system must be decomposed in smaller subsystems,
for the purpose of a better handling, is an old idea and it is frequently argued in
[1]. But building a software system form simpler subsystems is an idea embraced
from the beginning of 90s, and the advantages of this method is presented in
papers like [8, 4, 3]. We will specify a formal model, based on our software system
specification, for the operation of software systems composition.

In the previous paragraphs we have provided a formal model for software sys-
tems, model based on services and interfaces. Using this model we will propose
a formal model for the operation of composition of two software systems. In an
informal manner, we will consider the result of the composition of two software
systems S7 and Sy as a new software system that follow these rules:

e the group of IN services for the result system is obtained by putting
together the I N services of both software systems. From this group we
will eliminate all those services that are IN services for one system and
OUT services for the other system;

e the group of OUT services for the result system is obtained by putting
together the OUT services of both software systems. From this group
we will eliminate all those services that are OUT services for one system
and IN services for the other system;

e the IN_STATUS is the set of all values of the software system status
which appear in all of the service descriptions from I'N and OUT groups;

e the OUT_STATUS is the set of all values of the external environment
status which appear in all of the service descriptions from IN and OUT
groups.

For a software system S, we will consider the following functions:

e the IN(S) function as the function that returns all the interface imple-
mentations associated with the imported services of this system;

e the OUT(S) function as the function that returns all the interface im-
plementations associated with the exported services of this system;

e the SpecStatusin(spec) function as the function which returns all the
system’s status values which appear in the interface implementation from
specification set spec;

e the SpecStatusoyr(spec) function as the function which returns all the
external environment’s status values which appear in the interface im-
plementation from specification set spec.

By using the interface-based model, we can define the software systems compo-
sition by considering the set named SY ST EM S as the set of all software systems.

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 93

The operation of composition, denoted by “+7:
+:SYSTEMS x SYSTEMS — SYSTEMS

will be defined for any software systems:

Sy = (in_status', out_status*, {(it, fi}),0 <1 < ni',ni' € N},
{(of, f0}),0 <1 <mo',no" € N}),

Sy = (in_status®, out_status?, {(2,2, leQ ,0 <1 < ni? ni®> € N},
{(of, fo}),0 <1< no®,no* € N})

as:

S1+ 55 = (SpecStatus((IN(Sl)\Sg n Sl) U (IN(SQ)\Sl n 52)),
SpecStatus((OUT(Sl)\Sl n SQ) U (OUT(SQ)\SQ n Sl)),
(IN(S1)\S2 N S1) U (IN(S5)\S1 N Ss),
(OUT(81)\S1 N S2) U (OUT(S2)\S2N S1))

This formal definition of the software systems composition captures the entire
meaning of the informal definition, previously presented. The expression:

(IN(S1)\OUT(S2)) U(IN(S2)\OUT(S1))
is the formal expression of the imported services, and the expression:
(OUT(S1)\IN(S2)) U (OUT(S2)\IN(51))

is the formal expression of the exported services of the (S1 + S2) information
system.
The expressions:

SpecStatusyn ((IN(S1)\OUT(S3)) U (IN(S2)\OUT(S;))U
U(OUT (S1)\IN(S2)) U (OUT(S2)\IN(51)))
SpecStatusoUT ((IN(S1)\OUT(S2)) U (IN(S2)\OUT(S1))U
U(OUT (S1)\IN(S2)) U (OUT(S2)\IN(51)))

defines the IN_ST ATUS and, respectively, OUT_ST ATUS attributes of the re-
sult system.

The composition operation for two software systems models the process of the
tight coupling between these systems. All the similar services exported by one
system and imported by the other system are hidden in the obtained system,
along with the corresponding status values. One can use this operator if he wishes
to obtain an expression for a tight interaction between two software systems. The
composition operation is characterized by the following proprieties:

e the composition operation is commutative;

e the system 6 = ((,0,0,0) is the neutral element for the composition
operation;

e if we consider the software system:

S = (IN.STATUS,OUT.STATUS,
{It,0 < k < ni,ni € N},{O,,0 < k <no,no € N})

94

IUGA MARIN

then the following system:
CLOSE(S) = (OUT.STATUS,IN_STATUS,
{Ok,0 <k <no,no € N}, {I;,0 < k < ni,ni € N})
is the inverse element of S for the composition operation;
e the composition operation is not generally associative.
The proof of these proprieties, due to its extent, it is not discussed here. We

have only wished to enumerate them.

The software systems specification and composition may be used for many pur-

poses, ranging from checking of software systems compatibility to methods for
software applications design and generation. CASE tools can use them as a sup-
port for software systems representation and interaction models. They might also

be

N

[10]

the basis for other different formal models in programming.

REFERENCES

Dahl O.J., Dijkstra E. W., Hoare C.A.R., Structured Programming, Academic Press, 1972
Fucs N. E., “Specifications Are (Preferably) Executable”, Software Engineering Journal,
September, 1992

Gamma Erich, Helm Richard, Johnson Ralph, Vlissides John, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1994

Hoélzle U., Integrating Independently-Developed Components in Object-Oriented Languages
in LNCS 707, pp. 36-56, 1993

Tuga Marin, A Graphical Representation for Software Component Systems, Faculty of math-
ematics and Computer Science, Research Seminars, pp. 107-110, 1999

MSDN Library Visual Studio 6.0, Visual C++ Programmers guide, Serialization (Object
Persistence)

Allen Parrish, Component Based Software Engineering: A Broad Based Model is Needed,
Brandon Dixon, David Hale in International Workshop on Component-Based Software En-
gineering proceedings, pp. 43-46, 1999

Jan Udell, ComponentWare, Byte Magazine, pp. 46-56, 1994

Wegner Peter, Models and Paradigms of Interaction, in Object-Based Distributed Program-
ming, ECOOP’93 Workshop, Vol. 791, pp. 1-32, Springer-Verlag, 1994

Szyperski Clemens, Pountain Dick, Extensible Software Systems, in BYTE May 1994, pp.
57-62, 1994

BABES-BOLYAI UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
E-mail address: marin@cs.ubbcluj.ro, iuga marin@yahoo.com

STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000

AUTOMATIC SUPPORT FOR IMPROVING INTERACTION
WITH A WEB SITE

ALINA CAMPAN AND DARIUS BUFNEA

ABSTRACT. In this paper we describe a method to make a Web site easier
navigable by its users. In the same time, this method provides support for
the Webmaster to raise the quality of the site with minimal effort. These
goals are achieved by automatic creation of orientation Web pages. The new
adds-on to the site are generated by exploiting the data accumulated in Web
server access logs, being thereby a feedback to the users’ “footprint”. Web
mining techniques are used in order to extract the meaningful information
from log data.

1. INTRODUCTION

For a Web site, to be appreciated by its visitors, it is significant not only its
visual aspect, the interest of the information or/and the quality of services it offers!
It also counts, in a great extent, how easy the users retrieve within the site the
information they are interested in. If this retrieval involves searching in long chains
of unclearly linked documents, it is very likely that the user will give up searching,
leave the site and possibly never come back. In the case of a company that sales
its products or services on the Internet, this will mean loosing clients, clearly an
undesired effect.

As defined in [7], the quality of a Web site is lower as the user’s effort to find the
pages that match his area of interest is growing. Most often this effort is measured
as a count of links followed by the visitor until he finds the desired information.
It is more realistic to assume this effort as being a trade-off between the effort
to choose in every visited page the link to follow next, and the number of visited
pages. We are interested in reducing this effort.

We must also note that maintaining a complex Web site can be a difficult task.
The Webmaster has to face several challenges:

e The site has to contain up-to-date information;

2000 Mathematics Subject Classification. 68T05,68T10,68U35.

1998 CR Categories and Descriptors. 1.5.2. [Computing Methodologies] : Pattern
Recognition — Design Methodology; 1.5.3. [Computing Methodologies] : Pattern Recognition
— Clustering; H.3.3. [Information Systems] : Information Storage and Retrieval — Information
Search and Retrieval.

95

96 ALINA CAMPAN AND DARIUS BUFNEA

e The users may seek different information at different times, and the site
must be structured in a way to permit easy access, whatever the visitors’
goals may be.

So, a Web site is a dynamic structure, its design may be object to changes
in time. These changes materialize in new pages and links, added sometime in
unlikely places.

Our purpose is to come in response to the Webmaster needs, by helping him
to maintain a good quality site for the users (quality as we talked about few
paragraphs above). We are entitle to sustain that the solution we shall describe
does help to improve the interaction with the Web site, both for the Webmaster
and, consequently, for the visitors.

Previous work. The problem of adaptive Web sites — “sites that automati-
cally improve their organization and presentation by learning from visitor access
patterns” — was enounced in the AT community ([5]). There are known two ways
of addressing this problem. One is the customization of the Web site (we will not
refer to this). The other, more recent, approach is the optimization of the site’s
structure to make it easier to use for all visitors. This is the trend followed by the
authors in [5, 6, 7]. More precisely, they investigate the data accumulated in Web
server access logs and identify a number of cohesive, possibly overlapping clusters
of pages that they conclude, based on users access patterns detected in logs data,
that are related to a particular topic. For some of these clusters are synthesized
index pages which contain a link for every page in that cluster. The methods used
in the above mentioned papers are Al traditional clustering techniques adapted to
the specific of the problem.

In this paper, we proceed similarly as in [5, 6, 7]. Namely, we want to create
orientation pages with links to the related-by-content pages of the site. But we
propose a different manner to partition the site: using Web mining methods in-
stead of AI clustering techniques. Also, this partitioning will be made with more
accuracy, as we shall see.

The point to start from is raw Web server data. Taking into account a user
browsing behavior model (proposed in [3]), we separate important content page
references from references used for navigational purposes. Than we construct
content transactions that correspond to the content pages visited by a user in one
session. The obtained transaction repository is than mined for association rules
with Web mining algorithms. Pages in every association rule give us a cluster
for which we can synthesize orientation pages. Keeping in view that we try to
facilitate the access to the site, and not to overhead it, we develop orientation
pages only for those clusters which pages are not already linked in the site [5].

AUTOMATIC SUPPORT FOR IMPROVING INTERACTION WITH A WEB SITE 97

2. PROBLEM DESCRIPTION

We reach our goal of synthesizing orientation pages in three steps, as we said
above. Each one of these steps is detailed next in one paragraph.

2.1. Content Transactions Identification. In order to group into transactions
the elementary page references which a Web server access log contains, we consider
the following user behavior model. First, we make a visit coherence assumption,
which states that the pages a user visits during one visit session tend to be con-
ceptually related [5]. Even if this is not always a valid assumption, accumulating
statistics over long periods of time and for many users will reduce the noise till
extinguish. Secondly, during a visit of a site, a user treats the pages either as con-
tent pages, either as navigational pages. We accept as content pages those pages
with information the user is interested in. The pages where he looks for links to
the desired data are considered navigational ones.

To meet our goals we shall need to identify content transactions, from the log
data. By a content transaction we mean all of the content references a user makes
in one session. Mining these content transactions will produce the associations
between the content pages of the site, therefore the clusters of pages within the
site related by their content; so, we do more than just find the most popular
navigational paths and the pages these paths consist in.

We introduce now the notions we need and describe formally how to find content
transactions.

Let L be the set of Web server access log entries completed with user identifi-
cation information. An entry [€ L includes the client IP address [l.ip, the client
user id [.uid, the URL of the accessed page [.url and the time of access [.time.
Local browser cache, masquerading and proxy servers can distort the accuracy of
the data collected by the Web server and make user identification a difficult to
accomplish task. Some solutions to user identification problem are given in [8].

We order the log entries after [.uid and [.time and we develop first a repository
of general transactions.

Definition 1. A general transaction ¢ is a triple:
t = (ipy, widy, {(IL.url, 1t time), ..., (It url, 1t time)})
where It € L,1t.ip = ipy, L wid = uid, k = 1,...,m.

From the general transactions, we identify the set of reference length transac-
tions contained in the log data.

Definition 2. A reference length transaction t is a triple:
tr = (ipgr, widg, { (11" url 18" time, i7" length), . . ., (I url 157 time, Ii" length) })

where Ii" € L1 .ip = ipyy, 1 uid = uidy k= 1,...,m,
and 1t lenght = lfcfH.time — Ui time,k=1,...,m — 1.

98 ALINA CAMPAN AND DARIUS BUFNEA

We make some observations regarding the above definition.

Obviously, the last reference in each general transaction has no next time to
use in determining the reference length. We assume that all of the last references
are content ones and their length is, say, one hour (in [3], they are also excluded in
the process of calculating the cut-off time). From one general transaction, we can
generate one or more reference length transactions, as follows. During a user visit
may appear large amounts of time between two page references. In case of such
interruptions in user’s navigation, longer than a threshold T'Max we establish, we
decide to break the initial general transaction in two or more smaller reference
length transactions, for which every reference (except the last one) is shorter than
T Maz. This makes sense, because resuming a visit after a long inactivity may be
very well interpreted as the beginning of a new session. Therefore, we complete
definition 2 with the following condition:

Ii" length < TMax,k=1,...,m — 1 and I!" length > T Maz.

Different users can use the same page in different manners, which are for nav-
igational or for content purposes. We need to differentiate between these two
alternatives. In most cases it is not possible to categorize a page based on its
content; it is more realistic to make the distinction based on how much time the
visitor spends on the page. A cut-off threshold between the medium time associ-
ated with the navigation references and the content references can be assumed or
calculated — one possibility is mentioned in [3]. We denote this cut-off time by
C. Having this cut-off time, we define a content transaction as follows:

Definition 3. A content transaction ¢ is a triple:
te = (ipge, widge, { (1L url, 11 time, [1.length), . . ., (1% url, 1% time, I'C length)})

where 1€ € L,1i.ip = ipse, 1y uid = uidye, k = 1,...,m,
and C < lif.length < TMaz,k=1,...,m — 1,1 length > TMax.

From every reference length transaction we obtain one content transaction by
removing the references shorter than the cut-off time C.

2.2. Mining for Large Content-page Sets. We properly format the content
transactions from the repository R we obtained as described in paragraph 2.1,
to be suited for the type of data mining we want to perform. Because temporal
information is not needed for the mining of association rules, we exclude it from
our set of transactions. We do this next.

Let P = {p1,p2,...,pn} be the set of pages within the site. Every such p; has
a unique corresponding url that appears in the Web server access log entries and,
consequently, in the content transactions in R, and which uniquely identifies the
page within the site.

AUTOMATIC SUPPORT FOR IMPROVING INTERACTION WITH A WEB SITE 99

Definition 4. We define an application f over R, which transforms a content
transaction in a mining transaction, corresponding to the relation below:

fUip, uid, {(l1.url, 1y .time,l; .length), ..., (Ly.url,l,, time,l,, length)})) =
= {pkh s 7pkm}7

where
te = (ip, wid, {(I1.url,ly .time, 1y length), ..., (lm.url,l, time, [, length)}) € R
and py; is the page that corresponds to l;.url.

Each mining transaction is uniquely identified by a tid in the resulting set of
mining transactions (we denote this set by D).

Every mining transaction (we refer to it simply as transaction from now on) tm
is therefore a set of pages such that tm C P.

Definition 5. Let X be a set of pages. A transaction tm is said to contain X if
and only if X Ctm.

a) An association rule is an implication of the form X =Y, where X C P,Y C P
and X NY = {).

b) The rule X = Y holds in the transaction set D with confidence ¢ if ¢% of
transactions in D that contain X also contain Y.

¢) The rule X = Y has support s in the transaction set D if s% of transactions
in D contain X UY .

Given the set of transactions D, the problem of mining association rules is to
generate all association rules that have support and confidence greater than a user-
specified minimum support (mins) and minimum confidence (minc) respectively.

This problem of mining association rules can be decomposed into two subprob-
lems. First, find all sets of pages (page sets) that have transaction support above
minimum support — which means that they are contained in a sufficient number
of transactions such that the page set to have its support larger than mins. We
call large page sets those page sets with minimum support condition satisfied.
Once all large page sets are obtained, we use them to generate the desired rules.

There are proposed various algorithms for solving the mining association rules
problem ([1, 2, 4]). For what we want to do it is sufficient to limit ourselves at
finding the large page sets. We find suitable for this the algorithms described in

2].

2.3. How We Synthesize Orientation Pages. Since we choose to mine the
mining transactions obtained from content transactions in D, we are entitled to
say that we will obtain large content-page sets. What signifies, in practice, such a
large content-page set? Discovering an association rule X = Y in D means that
is very frequent the situation when if a user visits the pages in X, he will also visit
pages in Y. The support X UY of that rule gives us therefore a cluster of pages

100 ALINA CAMPAN AND DARIUS BUFNEA

grouped together based on certain common feature. In our case, they are grouped
together corresponding to the criteria that they are related by their content. As
we said, the association rules are determined from the calculated large page sets.
The large content-page set from which X = Y is derived is X UY (however, from
X UY it is possible to obtain more that one association rule!). The discussion
above justifies why we found sufficient to determine the large page sets, and not
to continue with identifying the association rules.

For every set of currently unlinked content-related pages we want to generate
an orientation page, comprising one link for every page in that set. Two pages are
considered linked if there exists a link from one to the other, or if there exists a
page that links to both of them. It certainly wouldn’t make sense to include, in an
orientation page, links to two pages that are already pointed by a common parent,
because we would create a redundant structure equivalent with the existing parent.

We make use in constructing the orientation pages of the following obvious
property that stands for large page sets. In fact, the algorithms that discover
the large page sets in a transaction repository are based on this property. We
enunciate it and then we introduce another concept we will use.

Remark 1. Any subset of a large page set is also a large page set.

Definition 6. We call a maximal page set a large page set that is not contained
in any other large page set.

We explained before that every large content-page set comprises pages related
by their content, and which are often visited together. Obviously, we wouldn’t
have any advantage in generating an orientation page for every large page set!
This because every large page set that is not maximal will retrieve itself in a series
of other large and maximal page sets fact that would cause many redundant
orientation pages! So, we are interested in knowing only the maximal content-
page sets because they give us the maximal, complete clusters of pages related
by their content. To obtain them from the large content-page sets that we have
previously determined is a straightforward task.

However, we are not yet at the end of our task. As we affirmed, we want
to generate orientation pages for groups of related-by-content pages that are not
already linked in the site So, it remains to detect, from every maximal content-page
set, the subsets of pages that, two by two, are currently unlinked. We describe
bellow, in an algorithmic form, a method to do this by working on a graph model.

Algorithm ConnComp is

Set H = (;

For every maximal content-page set previously determined, M={p;, ...,

pij} C P, Do
Associate to M a graph G = (M,U); U C M x M where there is an
edge (p;,p;) € U iff the pages p; and p; are unlinked (meaning that
they are not linked in the sense we specified above) in our site;

AUTOMATIC SUPPORT FOR IMPROVING INTERACTION WITH A WEB SITE 101

Find all the connected components of G and add them to H;
End For;
End ConnComp

The algorithm ConnComp supplies us the set H of all the connected components
determined for all maximal content-page sets. For every connected component in
H there are two properties that follow from the way we defined G:

e All the pages in a connected component in H are content related;
e Every connected component in H has the property that each two of its
pages are not linked.

We must note that it is not realistic to offer to the visitors of the site orientation
pages with hundreds of links, because this wouldn’t be of any help. Similarly,
orientation pages with just a few links should be excluded, as not being significant
enough and only burdening the site’s structure. So, we agree to reasonably choose
two thresholds (min and Maz, min < Maz) to limit the number of links in an
acceptable orientation page.

Eventually, we generate one or more orientation pages for every connected com-
ponent in H like this:

e If the connected component has between min and Max pages, we gen-
erate one orientation page containing a link for every page in the com-
ponent;

e If the connected component has more than Maz pages we break it into
parts of Max pages each (excepting the last one, which may have be-
tween 1 and Max pages). For each part we construct one orientation
page and we create a parent index to point to the orientation pages corre-
sponding to all these parts. So, we have a two-level orientation structure.
We will not take into consideration the connected components with more
than Maz? pages; we think that such cases have little chance to appear
in practice for a common site. For Max = 10, imagine what it means
“hot” access pattern that imply more than 100 pages!

We point out that every possible improvement to the site (add-on orientation
pages) is reported to the Webmaster to be accepted or not. Only the content of
pages is automatically supplied; the Webmaster will have to integrate the orienta-
tion pages in the overall design of the site and place them where he thinks adequate.
So this approach brings in only non-destructive transformations: changes of the
site that leave existing structure intact.

3. HEURIsTIC COMPARATIVE STUDY

In [5] grouping the pages above their common topic simply consisted in finding
collections of pages that tend to co-occur in visits. This process didn’t make dif-
ference between pages that were visited only for navigational purposes and those

102 ALINA CAMPAN AND DARIUS BUFNEA

pages that really interested the user by their content. This fact can erroneously in-
troduce some pages used for navigation, into one cluster of related-by-topic pages,
only because they are placed on a frequently used path between two content related
pages.

In turn, we identified the pages that really share a particular topic by making
use of the concept of content transaction [3]. We explain now why this is true.

In the context of classifying a reference made by a user as either a naviga-
tional or a content one, there are two ways of defining transactions 3. One is to
define a transaction as all of the navigation references up to and including each
content reference for a user session — navigation-content transactions. The other
is to compound a transaction as we did in this paper, from all of the content
references within a user session — content transactions. Mining the repository
of navigation-content transactions calculated from a log and the one of content
transaction determined for the same log will take us to different results. The first
approach is, in a way, similar to what is described in [5] — mining navigation-
content transaction would essentially give the common traversal paths trough the
Web site towards content pages. Mining the content transactions produces, in
turn, associations between the content pages of a site, without any information
about the path followed between the pages. We point out other significant fact
that devolves from our approach: Web mining on content transactions does not
produce association rules that might be erroneously determined if we would con-
sider all page references in a log. Imagine this situation: users that treat page A
as a navigation page do generally go on to the page B, but users that visit A as a
content page do not go on to B. In this case, including navigational references into
the data mining process will classify A in the same cluster as B. Mining content
transactions will not produce this fake association, because rule A = B will not
have minimum support. So, in this way, we grouped the pages related by their
content with more accuracy than previously has been done.

4. CONCLUSIONS

In this paper we presented an approach to the problem of adaptive Web sites —
synthesizing new pages to be added to the site in order to facilitate the retrieval
of information was already proposed before. What is new is the way we establish
the content of the orientation pages. We identified the clusters of pages that really
share a particular topic by making use of the concept of content transaction. We
outlined above the advantage of this technique.

REFERENCES

[1] Agrawal R., Srikant R., Fast Algorithms for Mining Association Rules, In
Proc. of the 20th VLDB Conference, pp. 487-499, Santiago, Chile, 1994
(http://citeseer.nj.nec.com/agrawal94fast.html).

2]

AUTOMATIC SUPPORT FOR IMPROVING INTERACTION WITH A WEB SITE 103

Chen M.-S., Park J. S., Yu P.S., Data Mining for Path Traversal Patterns in a Web Environ-
ment, In Proc. of the 16th International Conference on Distributed Computing Systems, pp.
385-392, 1996 (http://citeseer.nj.nec.com/128354.html).

Cooley R., Mobasher B., Srivastava J., Grouping Web Page References into Transactions for
Mining World Wide Web Browsing Patterns, In Knowledge and Data Engineering Workshop,
pp. 2-9, Newport Beach, CA, 1997 (http://citeseer.nj.nec.com/cooley97grouping.html).
Park J. S., Chen M.S., Yu P.S., An Effective Hash-Based Algorithm for
Mining Association Rules, In Proc. 1995 ACM-SIGMOD, pp. 175-186, 1995
(http://citeseer.nj.nec.com/park95effective.html).

Perkowitz M., Etzioni O., Adaptive Web sites: Automatically Synthesiz-
ing Web Pages, In 15- th National Conference on Artificial Inteligence, 1998
(http://citeseer.nj.nec.com/perkowitz98adaptive.html).

Perkowitz M., Etzioni O., Towards adaptive Web sites: Conceptual framework and case study,
Artificial Intelligence 118 (2000), pp. 245-275, 2000 (http://citeseer.nj.nec.com/326006.html).
Perkowitz M., Adaptive Web Sites: Cluster ~ Mining and Concep-
tual Clustering for Index Page Synthesis, Ph.D. Dissertation, 2001
(http://www.perkowitz.net/mike/research /papers/phd.pdf).

Pitkow J., In search of reliable usage data on the WWW, In Proc of the Sixth
International World Wide Web Conference, pp. 451-463, Santa Clara, CA, 1997
(http://citeseer.nj.nec.com/242362.html).

DEPARTMENT OF COMPUTER SCIENCE7 FACULTY OF MATHEMATICS AND COMPUTER S(}IENCE7

“BABES-BOLYAI UNIVERSITY, 1, M. KOGALNICEANU ST., RO-3400 CLUJ-NAPOCA, ROMANIA

E-mail address: alina@cs.ubbcluj.ro

COMUNICATIONS CENTER, “BABES-BOLYAT UNIVERSITY, 1, M. KOGALNICEANU ST., RO- 3400

CLUJ-NAPOCA, ROMANIA

E-mail address: bufny@cs.ubbcluj.ro

STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000

SPATIAL DATA CAPTURE IN GIS ENVIRONMENT

A. M. IMBROANE

ABSTRACT. Traditionally geographical data is presented on maps using sym-
bols, lines and colours. A map is an effective medium for presentation and
a database for storing geographical data. But herein lies some limitations.
The stored information is processed and presented in a particular way and
for a particular purpose. A map provides a fixed, static picture of geography
that is almost always a compromise between many different users. Compared
to maps GIS (Geographical Information System) has the inherent advantage
that data storage and data presentation are separate and may be presented
and viewed in various ways. The core of GIS environment is the matching
of spatial data (digital maps) and attribute data (the meaningful of spatial
data) together. The attribute data are in fact tables associated with geo-
graphical features stored in spatial database. The main problem is capturing
and storing spatial data in digital form. In this paper we will approach just
spatial data capture in vector format and not the database organization.

1. INTRODUCTION

The geographic entities or objects in GIS are based on two different types of
data: spatial and attribute. Spatial data representation in GIS are classified into
raster and vector, which are dual with regard to space bounding and space filling
[6]. Parallel to representational duality, there is the duality of spatial concepts,
namely entity-based and field-based concepts [4]. The fundamental difference be-
tween the representations as well as between spatial concepts causes problems in
interoperability and multi-source fusion [8]. Attributes or descriptive, or aspatial
data are alphanumeric data related to the graphic entities. They are also called
thematic data because they contain themselves a theme of the graphic features.
Attributes of vector units are stored in computer files as records or tuples that may
be linked to them by pointers. Usually the attributes are stored in traditional re-
lational database. This operation is called geocoding or address matching. The
fact is that attributes data can be linked with other tabular data (external) and
so the new data can be processed together with the others. This is one of the
powerful specific operations in GIS. Spatial data and attribute data can be stored

2000 Mathematics Subject Classification. 91B99.
1998 CR Categories and Descriptors. J.2. [Computer Applications]: Physical Sciences
and Engineering — Farth and Atmospheric Sciences.

104

SPATIAL DATA CAPTURE IN GIS ENVIRONMENT 105

separately or together depending of the database design performed by the GIS pro-
prietary. A geographical database is a set of geometric entities (spatial features)
and attributes. The major problems are to capture, store, manipulate, maintain
and process the spatial data. In order to obtain a digital map which can be pro-
cessed by GIS software it has to be depicted in separated thematic layers, like:
topography, geology, hydrology, and so on. The next step is to separate points,
lines and polygons associated with real entities from the layers above. And finally,
each graphic feature, points, lines, polygons have to contain just a single theme,
like towns, roads, administrative boundaries.

In this paper we will approach only vector format and related attributes. The
vector format can be represented in two components: geometric (graphic) data and
topological data. Geometric data have a quantitative nature and are used to rep-
resent coordinates, lines, areas etc. The two-dimensional vector format has three
subtypes: point, line and polygon, named features. These features are called also
‘graphics primitives’ (definition borough from CAD/CAM software). Geometric,
or non-topological data models are those in which any positional information are
recorded. The recognition of individual spatial units as separate unconnected ele-
ments characterized the early data organization for digital cartography. Topolog-
ical data describe the relationship between the geometric data. There are several
types of topological relationship: connectivity, adjacency, and inclusion. Exam-
ples of queries concerning topological relationship are: which areas are neighbors
of each other (adjacency), which lines are connected and form a network or a road
(connectivity), and which lakes lie in a certain country (inclusion). Topological
data are not always stored explicitly, because in principle they can be derived from
geometric data. Note that this definition of topological data is slightly different
from the stricter one used in mathematics.

To avoid the confusions and for simplicity it is better that every type feature
represents only one type of an object in a layer. Example: in a point theme we
have only towns and not other kind of point object. In a line theme we have only
rivers and not roads.

2. DATA CAPTURE PROGRAMS IN PSEUDO-CODE FORM FOR POINT FEATURE

The core of the vector data storage is the capturing data from digitizer tablet.
This procedure will be used for point feature storage, line feature storage, and
polygon feature storage. We have different programs in pseudo-code for the three
spatial features: point, line and polygon.

Program POINT {Captures and stores x,y coordinates}
open VECTOR_POINT
repeat

read cod {cod =1 write in file, cod =-1 end}

call DIGITIZE(x,y,id$)
put id$,x,y

106 A. M. IMBROANE

until cod =-1
close VECTOR_POINT
end

Subsequently we will illustrate the transfer of a string of data in ASCII format
from a tablet and extract the (x,y) coordinate. The procedure DIGITIZE calls
the port repeatedly looking for the data, assembles the (x,y) coordinates.

procedure DIGITIZE(x,y,id$) {Get x, y and id$}
call GET_STRING(str$)

x=num(val(str$,1,4))

y=num(val(str$,5,4))

id$= num(val(str$,9,4)

endprocedure

procedure GET_STRING(str$) {Extracts characters from the port}
str$="":port_signal=0

repeat

call PORT(port_signal)
call INKEY(key$)

if key$ <> " " then
char$=GET$
str$=str$+char$
endif
until (char$=chr$(10)) or (key =" ")
endprocedure

Val$ function extracts z, y values and the identifier from a specific part of
string, Num function converts from string to numeric value. So the z coordinate
is obtained at the numerical value of part of str$ string, starting at the character
1 and ending at character 4; y is starting at character 5 and ending at 8. The
identifier feature (id$) is extracted from character position 9 and end at 12. The
program may be used for control points and point theme as well.

The next step is to create attribute table linked together with VECTOR_POINT
which contain descriptive data on point features. This mean to open VEC-
TOR_POINT and read every identifier code and create for it a field (character
or numeric). In subsequent we present the program in general form.

Program ATTRIBUTE_POINT {Creates the attribute table}
open VECTOR_POINT {assigned to point feature table}
open ATTRIB_POINT
repeat
get id$,x,y
repeat
put id$
read file_type {1 for char 0 for numeric -1 for finish}
if file_type=1 then read chr_field$
put chr_field$

SPATIAL DATA CAPTURE IN GIS ENVIRONMENT 107

if file_type=0 then read num_field
put num_field
until file_type=-1
until endfile
close VECTOR_POINT
close ATTRIB_POINT
end

Usually just a few fields are generated in the attribute data file. More data can
be joined from an external relational database. The join condition is that every
file has a common field.

Examples. Assume that we must create a point theme, which is represent-
ing towns at sufficient small scale that the shape of the town is not important.
In the VECTOR_POINT file we have the coordinates of every town and in AT-
TRIBUTE_POINT we can have the subsequent fields: town code (which must be
unique), name, population and so on.

3. DATA CAPTURE PROGRAMS FOR LINE FEATURE

For the line feature storage it is convenient to use multi-button cursor. The
functionality of the buttons is pre-specified. Here we define one button (say button
1) to denote a digitized point, another (button 2) to mean ‘start node — start of
arc’, and the other (button 3) ‘end node end of arc’. The following code shows
how a vector of points can be build up by correctly interpreting incoming data
from the tablet using this principle. Such code normally is treated as a procedure
or a sub-routine within the program controlling the data generation process.

Program LINE {Captures line feature}
open VECTOR_LINE
repeat
read cod {cod=1 write in file; cod=-1 for end}
k=0
repeat
call GET_STRING (str$)
k=k+1
con$=val(str$,9,1)
x=num(val(str$,1,4))
y=num(val(str$,5,4))

if con$="button2" then begin
line(k,1)=x: line(k,2)=y end
if con$="button3" then begin

line(k,3)=x: line(k,4)=y end
if con$="buttonl" then begin

line(k,3)=x: line(k,4)=y

line(k+1,1)=x: line(k+1,2)=y
endif

108 A. M. IMBROANE

until con$="button3"
read id$
put id$
kk=k-1 {kk = total number of segments}
put line(1,1),line(1,2),line(1,3),line(1,4),kk
for k=1 to kk
put line(k+1,1), line(k+1,2)
endfor
until cod=-1
close VECTOR_LINE
end

The attribute file contains description data on line feature. Usually line at-
tribute contains the arc length, beside others. This characteristic is required in
almost all spatial procedures analysis. The algorithms that follow use the next
functions two compute the length of a segment and area of a triangle:

length(x1l,y1,x2,y2) = sqrt((x1-x2)*(x1-x2)+(yl-y2)*(yl-y2))
area(xl,y1,x2,y2,x3,y3) = (xl*y2+x2*y3+x3*yl-yl*x2-y2+x3-y3*x1)/2

An algorithm for the attribute file is given below.

Program ATTRIBUTE_LINE {Creates attribute table for line feature}
open VECTOR_LINE
open ATTRIB_ LINE
repeat
get id$,xs,ys,xe,ye,n
len =length(xs,ys,x(1),y(1))
for i=1 to n-1
len = len + length(x(i),y(i),x(i+1),y(i+1))
endfor
len = len + length(x(n),y(n),xe,ye)
put id$
put len
repeat
read file_type {1 for char, 0 for numeric, -1 for finish}
if file_type=1 then read chr_field$
put chr_field$
if file_type=0 then read num_field
put num_field
until file_type=-1
until endfile
close VECTOR_LINE
close ATTRIB_ LINE
end

Examples. If LINE_VECTOR refers to roads, the attribute data must be code
of the road, name, length, quality and so on. If LINE_ZVECTOR refers to rivers,

SPATIAL DATA CAPTURE IN GIS ENVIRONMENT 109

attribute data must be code of the river, name, length, quality, mean debit and so
on.

4. DATA CAPTURE PROGRAMS FOR POLYGON FEATURE

The polygon theme is in a way synonym with the line theme. In fact a polygon
is a closed line (start point and end point are the same). When the line is finished
placing the cursor in the right location (exactly in the same location where the
start point is) might be problematic. This is a real problem because we are not
able to mark exactly the same point at different times (if we move a little bit the
cursor). It is an “error” problem. So it is necessary to establish an error inside
which the two points represent the same point. It is often named snap node error
(or snap node tolerance). This is linked with the digitizer precision. Anyway the
error is establish sufficiently small for the purpose of using the map. Operator
specifies this error before the digitizing process is running. If the two nodes are
inside error tolerance, the start node ‘snap’ the end node and therefore we have
just one node (xe=xs, ye=ys).

Every polygon must contain an isolated point inside the polygon (not necessarily
in centre) named centroid. Like for the line feature storage we use a multi-button
cursor.

Program POLYGON {Captures and stores polygon features}
open VECTOR_POLY
read snap_point

repeat
read cod {if cod=1 then capture polygon; if cod=-1 then end}
10 k=0
repeat
call GET_STRING (str$)
k=k+1

con$=val (str$,9,1)
x=num(val(str$,1,4))
y=num(val(str$,5,4))
if con$="button2" then begin
line(k,1)=x: line(k,2)=y
end else if con$="button3" then begin
line(k,3)=x: line(k,4)=y
end else if con$="buttonl" then begin
line(k,3)=x: line(k,y)=y
line(k+1,1)=x: line(k+1,2)=y
end
until con$="button3"
xs=line(k,1): ys=line(k,2): xe=line(k,3): ye=line(k,4)
dist = length(xs,ys,xe,ye)
if dist>snap_point then goto 10

110 A. M. IMBROANE

kk=k-1 {kk = total number of segments}
read id$
put id$
put xs,ys, kk
call DIGITIZE (x,y,id$)
put x,y
for k=1 to kk
put line(k+1,1), line(k+1,2)
endfor
until cod=-1
close VECTOR_POLY
end

A multi-polygon map often requires a hierarchical data structure because poly-
gons will share common boundary and line segments will terminate at the common
nodes. Moreover, to produce cartographic output, any combination of polygons
may be required.

Usually the attribute table contains beside identifier, both perimeter and area
of the polygon, followed by an arbitrary number of fields. For the perimeter we
can use the same procedure as for arc length. The measurement of an irregular
feature such a polygon can be done by calculating the areas of the trapezoids under
the successive line segments which make up the polygon [1]. Another method for
finding area of a polygon is to decompose the polygon in triangles using the centroid
coordinate, and finally calculate area of each triangle.

For an effective evaluation of the area we depict the polygon in three parts:
first triangle, intermediate triangles and last triangle. A pseudo-code program for
attribute file is:

Program ATTRIBUTE_POLY {Creates the attribute table}
open VECTOR_ POLY {associated with polygon feature}
open ATTRIB_ POLY
repeat

get id$,xs,ys,n

get xc,yc

len = length(xs,ys,x(1),y(1))

a = area(xs,ys,x(1),y(1),xc,yc)

for i=1 to n-1
len = len + length(x(i),y(i),x(i+1),y(i+1))
a = a + area(x(i),y(i),x(i+1),y(i+1),xc,yc)

endfor

len = len + length(x(n),y(n),xs,ys)

a = a + area(xs,ys,x(n),y(n),xc,yc)

put id$,len,area

repeat
read file_type {1 for char, 0 for numeric, -1 for finish}
if file_type=1 then read chr_field$

SPATIAL DATA CAPTURE IN GIS ENVIRONMENT 111

put chr_field $
if file_type=0 then read num_field
put num_field

until file_type=-1

until endfile
close VECTOR_ POLY
close ATTRIB_ POLY
end

Data entry process, such as retrieval of thematic data from secondary sources, or

topographic data capture from digitizing operations, are typically managed within
a GIS. The task is to provide the user with techniques for interfacing with input
device and file handling procedures.

REFERENCES

[1] Bracken I., Webster C., Information Technology in Geography and Planning, Routledge,

London, 1990.

Buttenfield B.P., Digital Definitions of Scale Dependent Line Structures, in Proceeding Auto
Carto M.J. Blakemore (ed), vol. I, 1986, 497-506.

Foley J. D. and Van Dam A., Fundamentals of Computer Graphics, Addison-Wesley, Reading,
Mass, 1982.

Frank A.U., Spatial Concepts, Geometric Data Models and Geometric Data Structures, Com-
puters & Geoscience, 18, 1992, 409-417.

Imbroane, A.M., Moore D., Initiere in GIS si Teledetectie, Presa Univ. Clujeand, Cluj-
Napoca, 1999.

Peuquet D.J., A Conceptual Framework and Comparison of Spatial Data Models, Carto-
graphica, 66, 1984, 113-121.

Wallace V.L., The Semantics of Graphics Input Devices, Computer Graphics, 10, 1976, 1,
61-65.

Winter S., Bridging Vector and Raster Representation in GIS, ACM, 11, 1998, 57-63.

“BABES-BoOLYAI” UNIVERSITY, FACULTY OF GEOGRAPHY
E-mail address: alex@geografie.ubbcluj.ro

	00contents
	1-Radoiu
	2-Pecsy
	3-Cimoca
	4-Popescu
	5-Serban
	6a-Niculescu
	6-Niculescu
	7-Frentiu
	8-Suciu
	9-Tatar
	10-Iuga
	11-Campan
	12-Imbroane

