
Anul XLV 2000

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI

INFORMATICA

2

Redacţia: 3400 Cluj-Napoca, str. M. Kogălniceanu nr. 1 Telefon 405300

SUMAR – CONTENTS – SOMMAIRE

D. Rădoiu, A. Roman, 3D Terrain Reconstruction Using Scattered Data Sets 3

G. Pecsy, L. Szucs, Parallel Verification and Enumeration of Tournaments…........ 11

G. Cimoca, An Approximate Algorithm to Estimate Plausible Location of
Undiscovered Hydrocarbon Accumulations in Sparsely Drilled Areas 27

C. Popescu, A Modification of the Tseng-Jan Group Signature Scheme 36

G. Şerban, A Method for Training Intelligent Agents Using Hidden Markov Models….41

V. Niculescu, Some Parallel Nondeterministic Algorithms.. 51

M. Frenţiu, On Programming Style–Program Correctness Relations......................... 60

M. Suciu, Using Scalable Statecharts for Active Objects Internal Concurrency
Modelling.. 67

D. Tătar, G. Şerban, Term Rewriting Systems in Logic Programming and in
Functional Programming... 77

M. Iuga, Formal Model for Software SystemsComposition....................................... 85

A. Câmpan, D. Bufnea, Automatic Support for Improving Interaction with a Web
Site... 95

A. M. Imbroane, Spatial Data Capture in GIS Environmeni 104

STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 20003D TERRAIN RECONSTRUCTION USING SCATTERED DATASETSDUMITRU RADOIU AND ADRIAN ROMANAbstra
t. The paper presents a s
ienti�
 visualization te
hnique using s
at-tered data. The visualization system is based both on modules written bythe authors, implementing
ontrolled Shepard interpolation algorithm andready-to-use VTK
lasses.
1. Introdu
tionThe proposed visualization system is based both on modules written by theauthors (implementing sub-sampling, re-sampling and
ontrolled Shepard inter-polation algorithm), sustaining the modeling level, and VTK
lasses [4℄, for thelogi
al visualization and physi
al visualization level.The appli
ation goal is to transform the 2D data, representing the altitude mea-sured in some known points, non-uniform distributed, into intera
tive 3D maps.The stru
ture of the output data/�les should allow the Internet distribution. Themain issues are the speed and a

ura
y of the used algorithms [7℄.A �le that
ontains the non-uniform distributed data, namely, represents thedata set: the position of the nodes on a horizontal plane and the
orrespond-ing altitudes. The
ontrolled re-sampling of the input data solves the modelingproblem; in order to obtain a uniform distributed data set. The re- samplingpropagates the lo
al properties (the altitude value) towards the unknown-valuedpoints. The propagation is implemented using the modi�ed lo
al Shepard inter-polation. A number of
onstraints are ne
essary [5, 2, 3℄. The whole pro
ess isdes
ribed below.2000 Mathemati
s Subje
t Classi�
ation. 65D18.1998 CR Categories and Des
riptors. I.3.6 [Computing Methodologies℄: ComputerGraphi
s { Methodology and Te
hniques. 3

4 DUMITRU RADOIU AND ADRIAN ROMANThe uniform distributed data set is visualized using the warping of a plan,taking into a

ount the
orresponding altitude of ea
h point [1, 6℄. Arti�
iallyasso
iated
olors allow a better per
eption of the visualized obje
t.2. Re-sampling of the data setThe data set analysis shows that the input data set is non-uniform, meaningthat the data is represented by un
onne
ted nodes and their asso
iated altitudes.In order to obtain a uniform distribution, as requested by the logi
al visualizationlevel, a re-sampling of the data set is performed.We denote by N the number of non-uniform distributed points on a plane, in a
onsidered domain B.(1) (xi; yi); i = 1; : : : ; N(2) (xi; yi) 2 B � R2The
orresponding altitudes are given by fun
tion f : B ! R, whi
h asso
iatesto ea
h point (xi; yi) a real value f(xi; yi) denoted by fi.The visualization platform used, personal
omputers, and the dimension ofthe data set, 25500 nodes, imposed the use of a modi�ed version of the lo
alShepard interpolation. The introdu
ed
onstraints had as result an importantspeed improvement.We denote by � the interpolation fun
tion � : B ! R. The Shepard interpola-tion fun
tion is expressed as sum of weights:(3) �(x; y) = NXj=1wj(x; y)fjThe interpolation fun
tion has to ful�ll the
ondition:(4) �(xi; yi) = fi; i = 1; : : : ; N:Then weight fun
tion is supposed to:

3D TERRAIN RECONSTRUCTION USING SCATTERED DATA SETS 5(5) NXj=1wj(x; y) = 1:(6) wj(x; y) =8><>: � 0 for all (x; y) 2 B= 1 for (x; y) = (xj ; yj)= 0 for (x; y) = (xk ; yk); k 6= i; (xk; yk) 62 BThe weights of the lo
al Shepard interpolation are de�ned below:(7) 8>>><>>>: wj(x; y) = 1	�jPNi=1 1	�i ; 0 < � <1; with	j(x; y) = (Rrj � 1 for 0 < rj < R;0 for rj � Rwhere rj is the distan
e between the points (x; y) and (xj ; yj):(8) rj(x; y) =q(x� xj)2 + �y � yj)2; j = 1; : : : ; NR represents the radius of
ir
le,
entered in the point (x; y), that determinesthose interpolation points (xi; yi) that are going to in
uen
e the interpolationfun
tion. We
onsider � = 2.The N nodes
an be seen as belonging to a re
tangle de�ned by the
oordinates(xmin; ymin) and (xmax; ymax), where:(9) xmin = minfxj jj = 1; : : : ; Ngxmax = maxfxj jj = 1; : : : ; Ngymin = minfyj jj = 1; : : : ; Ngymax = maxfyj jj = 1; : : : ; NgThe re
tangle area that
ontains all the interpolation points is:(10) A = (xmax � xmin)(ymax � ymin):The minimum value of R
an be easily approximated. We asso
iate to ea
hnode (xj ; yj) a region that has the area equal to A/N. If the N initial nodes wouldbe uniform distributed then ea
h region should
ontain only one node (Figure 4).R minimum is, in fa
t, the diagonal of the re
tangle of area A=N .The idea is to propagate the lo
al properties, introdu
ed by the initial N nodes,to all points. We start from the point:

6 DUMITRU RADOIU AND ADRIAN ROMAN

Figure 1. The data set representing Dealul Mel
ilor (Bra�sov)(isoline representation)(11) xCM = PNi=1 xi � f(xi; yiPNi=1 xi(12) yCM = PNi=1 yi � f(xi; yiPNi=1 yiThe starting point
an be
hosen, as well, by other te
hniques:
lustering, visualinspe
tion, et
.Algorithm Controlled Lo
al Shepard InterpolationInputData: A set of N nodes on a plane, the number of
olumns and rowsused for re- sampling, the
oordinates of the starting point (optional)Outputata: A uniform data set

3D TERRAIN RECONSTRUCTION USING SCATTERED DATA SETS 7

Figure 2. The data set representing Dealul Mel
ilor (Brasov)(visualized by the splatting te
hnique and the iso- surfa
es gener-ation)
(1) For the N node we �nd xmin, ymin, xmax and ymax.(2) We
ompute R minimum.(3) We generate the uniform data set.(4) We sear
h for the starting point for interpolation.(5) We use the above des
ribed interpolation fun
tion to
ompute the at-tribute value.(6) We insert the
omputed value in the set of the interpolation points.(7) We repeat the steps 5 and 6
overing the nodes in a spiral motion forthe whole grid.

8 DUMITRU RADOIU AND ADRIAN ROMAN

Figure 3. Visualization of the uniform distributed data set, rep-resenting Dealul Mel
ilor (Brasov) (warping te
hnique); the warp-ing fa
tor is exaggerated for better per
eption

Figure 4. The re
tangle with all the interpolation points3. WarpingThe 3D re
onstru
tion of the terrain is performed by warping taking into a
-
ount the
orresponding altitude of ea
h point. The warping is done by the move-ment of the points of a 2D surfa
e following the normal dire
tion to the surfa
e.The warping is
ontrolled by a s
aling fa
tor (Figure 3).

3D TERRAIN RECONSTRUCTION USING SCATTERED DATA SETS 94. Artifi
ially asso
iated
olorsThe per
eption of the terrain
hara
teristi
s
ould be improved by
olors arti�-
ially asso
iated to ea
h point, the
olor mapping taking into a

ount the altitude.Generally, if there is no attribute to be dire
tly mapped into a
olor table,the ne
essary attributes have to be generated. A �lter produ
ing s
alar values
orresponding to a
ertain altitude does the s
alar generation.5. Con
lusionsThe 3D visualization of the terrain remains a hot issue. The
ontrolled lo
alShepard interpolation algorithm has to be further tested against standard datasets.Our tests in
luded:� known uniform fun
tions were sampled and the values were visualized;� data sets were then sub-sampled uniformly or non-uniformly;� resulted data set was used as input data for the modeling module imple-menting our modi�ed Shepard algorithm;� the starting point was automati
ally
hosen or it was
hosen as result ofa visual inspe
tion of the non-uniform distributed data set (Figure 2);� the two visual obje
ts, obtained from the initial data set and the inter-polated data set, respe
tively, were visually inspe
ted.The 3D visualization of the terrain
an be performed automati
ally if the properinterfa
e is implemented. Referen
es[1℄ Brodie K., Butt S., Mashwama P., Visualization of Surfa
e Data to Preserve Positivity andOther Simple Constraints, Computer and Graphi
s, Vol. 17, No 2, 1985, p. 55{64[2℄ Brodlie K., Mashwama P., \Controlled Interpolation for S
ienti�
 Visualization" in \S
ienti�
Visualization", Overview, Methodologies, Te
hniques, IEEE Computer So
iety, 1997, p. 253{276.[3℄ Nielsen G. M., \S
attered Data Modelling", IEEE Computer Graphi
s and Appli
ations, Vol.13, No. 1, 1993, p. 60{70[4℄ Radoiu D., \VTK in Desktop S
ienti�
 Visualization", in Advan
ed Edu
ational Te
hnolo-gies, Editura Universitatii Petru Maior, 1999, p. 21{30[5℄ Radoiu D., \Interpolare Shepard lo
ala
u restri
tii", Comuni
are, Sesiunea de
omuni
ari a
adrelor dida
ti
e, Universitatea Petru Maior, 1999

10 DUMITRU RADOIU AND ADRIAN ROMAN[6℄ Rupre
ht D., Muller H., Image Warping with S
attered Data Interpolation, IEEE ComputerGraphi
s and Appli
ations, Mar
h 1995, p. 37{43[7℄ Stewart A. James, \Fast Horizon Computation al All points of a Terrain With Visibility andShading Appli
ations", IEEE Transa
tions on Visualization and Computer Graphi
s, Jan-Mar
h 1998, Vol4, nr 1, pp. 82{93Universitatea Petru Maior, Târgu MuresUniversitatea Politehni
a Bu
ures�ti

STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000PARALLEL VERIFICATION AND ENUMERATION OFTOURNAMENTSG�ABOR P�ECSY AND L�ASZL�O SZ}UCSAbstra
t. The area of tournaments is extensively dis
ussed in literature.In this arti
le the authors introdu
e asymptoti
ally optimal sequential algo-rithms for the veri�
ation of s
ore ve
tors and s
ore sequen
es and a sequen-tial polynomial algorithm for enumeration of
omplete tournaments. Theextensions of these algorithms to di�erent parallel ar
hite
tures in
ludingCREW PRAM, linear array, mesh and hyper
ube are also presented. It isshown that most of the parallel algorithms dis
ussed here are work-optimalextensions of the sequential ones.1. Introdu
tionRound-robin tournaments are popular in the world of sport, games or ele
tionsand they are very mu
h dis
ussed in
omputer s
ien
e as well. A tournament isan n�n real matrix. The elements of the main diagonal tii equal to zero and thepairs of symmetri
 elements tij : tji give the result of the mat
h between Pi (thei-th player) and Pj . The sum of the elements of the i-th row (si) is
alled the s
oreof the i-th player. A non-de
reasingly ordered sequen
e of the s
ores is the s
oresequen
e of the tournament.The most usually dis
ussed problems regarding tournaments in
lude:� Veri�
ation of a s
ore sequen
e/s
ore ve
tor means the de
ision if thereexists a tournament for a given s
ore sequen
e/s
ore ve
tor.� Enumeration of s
ore sequen
es means the
ounting of the possible dif-ferent s
ore sequen
es for a given number of players (n).The outline of the paper is as follows. The following se
tion des
ribes theproblems and the used
omputational models more formally. Se
tion 3 deals withveri�
ation problems and their sequential and parallel solutions.Then Se
tion 42000 Mathemati
s Subje
t Classi�
ation. 05C20, 68Q25, 65Y05.1998 CR Categories and Des
riptors. G.2.1 [Dis
rete mathemati
s℄: Combinatori
s {Counting problems; F.2.2 [Analysis of algorithms and problem
omplexity℄: Nonnumer-i
al algorithms and problems { Computations on dis
rete stru
tures C.1.4 [Pro
essor ar
hi-te
tures℄: Parallel ar
hite
tures { Distributed ar
hite
tures .11

12 G�ABOR P�ECSY AND L�ASZL�O SZ}UCSpresents our results about enumeration. Finally, a table summarizes the resultswith possible future works. 2. Basi
 notions2.1. Tournaments.Tournament: A round-robin tournament is an n�n real matrix Tn = [tij ℄(n � 2). The elements of the main diagonal tii equal to zero and thepairs of symmetri
 elements tij : tji give the result of the mat
h betweenPi (the i-th player) and Pj . tij = tji means a draw, while tij > tji meansthe win of Pi against Pj .S
ore ve
tor: The sum of the elements of the i-th row (si) is
alled thes
ore of the i-th player and the ve
tor (s1; : : : ; sn) is
alled the s
oreve
tor of the tournament.S
ore sequen
e: A non-de
reasingly ordered sequen
e of the s
ores is de-noted by q =< q1; : : : ; qn > and is
alled the s
ore sequen
e of thetournament.Complete tournament: We
all a tournament
omplete if in it the per-mitted elements are 0 and 1 and the sum of the symmetri
 elements(tij+tji;where i 6= j) is always 1. A set of tournaments is
alled
ompletefor a given n if it
ontains all possible n player
omplete tournaments.2.2. Computational models.Sequential model: A RAM running pseudo-
ode similar to stru
turedprogramming languages.PRAM: Parallel RAM,
onsists of a shared memory and possibly in�-nite number of RAMs whi
h operate with the same pseudo
ode as inthe sequential
ase. Depending on the methods of a

essing the sharedmemory there are di�erent types of PRAM.EREW: Ex
lusive Read Ex
lusive WriteERCW: Ex
lusive Read Con
urrent WriteCREW: Con
urrent Read Ex
lusive WriteCRCW: Con
urrent Read Con
urrent WriteAs
on
urrent read of shared memory is usually allowed while the resultof
on
urrent write is ambigous we de
ided to use CREW PRAM in ourstudy.Linear array: A linear array
onsists of p pro
essors (named 1; 2; : : : ; p).Pro
essor i has two dire
t bidire
tional inter
onne
tion links to its neigh-bouring pro
essors (i� 1 and i+1) ex
ept pro
essor 1 and p whi
h hasonly one neighbour.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 13Mesh: A mesh is an a � b grid in whi
h there is a pro
essor at ea
h gridpoint. The edges
orrespond to
ommuni
ation links and are bidire
-tional. In this paper we
onsider only square meshes, where a = b.Hyper
ube: A hyper
ube of dimension d has p = 2d pro
essors. Ea
hpro
essor
an be labeled with a d-bit binary number. A pro
essor is
onne
ted only to those pro
essors whi
h label di�ers in only one bit.Work-optimal: We
all a parallel algorithm work-optimal
ompared to agiven sequential algorithm if Pn�pSn = O(1), where Sn is the run time ofthe sequential algorithm, Pn is the run time of the parallel algorithmand p is the number of pro
essors.Noti
e that if a parallel algorithm is work-optimal
ompared to a given asymp-toti
ally optimal sequential algorithm then the parallel algorithm itself is asymp-toti
ally optimal as well. 3. Verifi
ationVeri�
ation of a s
ore sequen
e/s
ore ve
tor means the de
ision if there existsa tournament for a given s
ore sequen
e/s
ore ve
tor. Landau [5℄ proved thefollowing theorem whi
h gives ne
essary and suÆ
ient
ondition for the existen
eof a
omplete tournament for a parti
ular s
ore sequen
e.Theorem 1. A non-de
reasing sequen
e of n integers < q1; : : : ; qn > is a s
oresequen
e if and only if kXi=1 qi � �k2�for ea
h k = 1; 2; : : : ; n with equality for k = n.3.1. Sequential algorithm. Theorem 1
an be dire
tly applied to verify s
oresequen
es as they are ordered non-de
reasingly. The following algorithm solvesthis problem in �(n) time and with O(1) auxiliary memory.1 s:=0; i:=1; ok:=(qn<n);2 while i<n and ok loop3 s:=s+qi;4 ok:=s�(i*(i-1)/2);5 i:=i+1;6 end loop7 ok:=ok and (s+qn)=(n*(n-1)/2);8 return ok;Algorithm 1: Sequential algorithm for s
ore sequen
e veri�
ation

14 G�ABOR P�ECSY AND L�ASZL�O SZ}UCSAs the trivial lower bound for the veri�
ation problem is
(n) | the algorithmhas to read the input | Algorithm 1 is asymptoti
ally optimal for s
ore sequen
everi�
ation.In
ase of s
ore ve
tors the input is not ordered properly so Theorem 1 (andAlgorithm 1)
an not be applied dire
tly. One possible solution is to sort the inputand then apply Algorithm 1 to the result. It is known that sorting of general keystakes
(n logn) time but if keys are integer numbers from the range [0..k℄ thenthey
an be sorted in O(max(n; k)) time. Su
h algorithm
an be found in
hapter 9of [1℄. In
ase of a s
ore ve
tor all elements must belong to range [0..n-1℄ so theve
tor
an be sorted in O(n) time. This
ondition
an also be veri�ed in O(n)time, so we get the following algorithm.Step 1: Verify whether all elements in the ve
tor fall in the range [0..n-1℄.If not then the input
an not be a s
ore ve
tor.Step 2: Sort the input.Step 3: Use Algorithm 1.Algorithm 2: Sequential veri�
ation of s
ore ve
torsNote that Algorithm 2 is asymptoti
ally optimal for the same reason as Algo-rithm 1.3.2. Parallel algorithms. In this se
tion we provide an eÆ
ient way to imple-ment Algorithm 1 and Algorithm 2 on di�erent parallel ar
hite
tures. 13.2.1. PRAM. On a CREW PRAM Algorithm 1
an be implemented in a verystraightforward way.Step 1: For all pro
essors
ompute the pre�x-sums (ri) of the input se-quen
e.Step 2: Pro
essor pi (i := 1; 2; : : : ; n � 1)
al
ulates li := (ri � (i � (i �1)=2)) while pn
al
ulates ln := (rn = (n � (n� 1)=2)).Step 3: Cal
ulate OK := l1 ^ : : : ^ ln using the pre�x
omputation algo-rithm with all pro
essors.Algorithm 3: Simple parallel algorithm for s
ore sequen
e veri�
ationStep 1
an be done in O(log n) time, Step 2 takes O(1) time and Step 3 isO(log n) again. Note that in
ase of CRCW PRAM Step 3 takes only O(1) time.This algorithm uses O(n) pro
essors and operates in O(log n) time thereforeit is not work-optimal, but it
an be improved to run on O(nlogn) pro
essorsin O(log n) time whi
h is work-optimal. To a
hieve this we divide the input1It is assumed that the reader is familiar with the pre�x-sum
omputation and otherwell-known parallel algorithms summarized in [2℄ as they are building blo
ks of the followingalgorithms.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 15into logn long pie
es. Pro
essor pi will sequentially
al
ulate pre�x-sums ofs(i�1) logn+1; : : : ; si logn. Then the pro
essors will apply the original pre�x
ompu-tation algorithm on the sums of the pie
es. In the third step ea
h pro
essor willupdate the pre�x-sums of the
orresponding pie
e by adding the sum of all theprevious pie
es. After this the pro
essors will
al
ulate li values sequentially for allelements belonging to them and �nally they perform a pre�x
omputation using thesame algorithm as for the pre�x-sum
al
ulation to determine OK := l1 ^ : : :^ ln.Step 1: For all pro
essors
ompute sequentially the pre�x-sums(ti;j ; where i := 1; 2; : : : ; nlogn ; j := 1; 2; : : : ; logn) of the
orrespondingpie
e of input sequen
e.Step 2: For all pro
essors
ompute the pre�x-sums (ri logn) of ti;logn.Step 3: For all pro
essors
ompute sequentially r(i�1) logn+j :=r(i�1) logn + ti;j (i := 1; 2; : : : ; nlog n ; j := 1; 2; : : : ; logn).Step 4: Pro
essor pi (i := 1; 2; : : : ; logn)
al
ulates l(i�1) logn+j :=(r(i�1) logn+j � (((i � 1) logn + j) � ((i � 1) � logn + j � 1)=2)) usingequality at the last position.Step 5: Cal
ulate OK := l1 ^ : : : ^ ln using the pre�x
omputation algo-rithm des
ribed in Step 1{3, with all pro
essors.Algorithm 4: Work-optimal veri�
ation of s
ore sequen
es on CREW PRAMIn this algorithm all steps take O(log n) time so the whole algorithm worksin O(logn) time as well. It uses O(nlogn) pro
essors so this is a work-optimalparallelization of Algorithm 1. As Algorithm 1 is asymptoti
ally optimal algorithmfor the s
ore sequen
e veri�
ation problem the same holds for Algorithm 4 as well.Noti
e that in this algorithm only the parallel steps (Step 2 and 5) requireinterpro
essor
ommuni
ation and these steps are all parts of pre�x
omputations.3.2.2. Linear array. A lower bound on every inter
onne
tion networks for a prob-lem is the diameter of the network if all pro
essors of the network
ontributes tothe
omputation of the result. As the diameter of a linear array of n pro
essors isn � 1,
(n) is a lower bound for the s
ore sequen
e and s
ore ve
tor veri�
ationproblems. These problems
an be solved in O(n) time on a single pro
essor aswell, the trivial (and optimal) solution is to send all data to the �rst pro
essor ofthe array { this
an be done in O(n) time { and do the veri�
ation there, using thesequential algorithms. These solution are work-optimal if and only if the numberof pro
essors in the array is O(1).3.2.3. Mesh. The diameter of a p pro
essor mesh is pp, so
(pp) is a lower boundto an algorithm. The mesh adaptation of Algorithm 3 solves the problem in O(pn)if p = n. But we
an apply the same te
hnique as in Algorithm 4. If we assign n 13element for ea
h pro
essor of a n 13 � n 13 mesh then both the sequential and the

16 G�ABOR P�ECSY AND L�ASZL�O SZ}UCSparallel steps work in O(n 13) time. The number of pro
essors in this
ase is n 23 sothe algorithm is work-optimal.3.2.4. Hyper
ube. In a p pro
essor hyper
ube, pre�x
omputation
an be per-formed in O(log p) time, whi
h means that adoptations of Algorithm 3 and Algo-rithm 4
an work in the same time bounds as in
ase of CREW PRAM.3.2.5. Parallel s
ore ve
tor veri�
ation. Unfortunately there is no known work-optimal parallel sorting algorithm for integer key from a given domain. Thismeans that the most diÆ
ult step in the parallel adoptation of Algorithm 2 is thesorting. The
omplexity of sorting usually ex
eeds the
omplexity of the othersteps so the overall
omplexity of the algorithm equals the
omplexity of sortingthe input. For PRAM and hyper
ube there are algorithms whi
h
an sort generalkeys in O(log2 n) time. 4. EnumerationEnumeration of s
ore sequen
es means the
ounting of the possible di�erents
ore sequen
es for a given number of players (n).For n > 1 let fn(T;E) be the number of non-de
reasing sequen
es of integerssatisfying nXi=1 qi = T; qn = E and kXi=1 qi � �k2�; k = 1; 2; : : : ; n� 1:Narayana and Bent in [7℄ presented a re
ursive formula for determining fn(T;E):f1(T;E) = � 1; if T = E � 00; otherwise.for n � 2fn(T;E) = 8><>: EXk=0 fn�1(T �E; k); if T �E � �k2�0; otherwise.(1)Let tn be the number of possible s
ore sequen
es in
ase of n players. For n > 1we have the following formula for tn:tn = n�1XE=r fn(�n2�; E);where r = jn2k :

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 17
i

T[n] = F[n,(n*(n-1)/2),r] +...+ F[n,(n*(n-1)/2),n-1]

Level i-1

Level i

F[i-1,T-E,0], ..., F[i-1,T-E,E]

F[i,T,E]

T

EFigure 1. Array element dependen
ies in the non-optimized formula4.1. Units of measure. The experimental results indi
ate that the value of tn isin
reasing exponentially with n (tn =
(2n)) whi
h implies that we need log tn =�(n) memory to store a single number. This also implies that addition of su
hnumbers takes �(n). In the next parts of the arti
le we will
ount the numberof operations (addition, send, re
eive and assignment) on the elements of thearray during the analysis of the algorithms. In a real implementation all of theseoperations
an be done in O(n) time.4.2. Sequential algorithms. The most straightforward re
ursive
al
ulation oftn using the re
ursive formula (1) has exponential run time so it is not appli
ablefor bigger n values. Using dynami
 programming the run time
an be redu
edsigni�
antly into polynomial domain.4.2.1. Algorithm using dynami
 programming. The following algorithm uses arrayof size n� n� (n(n� 1)=2 + 1) elements and works in �(n5) time.The operation of the algorithms
an be divided into two phases. First phaseis �lling in the array F whi
h
ontains the values of fi(T;E) for i = 1::n; T =0::n(n�1)2 and E = 0::n�1, thus the dimensions of the array are n� n(n�1)2 +1�n =�(n4). Cal
ulating a parti
ular F [i; T; E℄ element takes �(1) time for i = 1 |

18 G�ABOR P�ECSY AND L�ASZL�O SZ}UCS1 for i:=1 to n loop2 for T:=0 to (n*(n-1)/2) loop3 for E:=0 to n-1 loop4 if i=1 then5 if T=E then6 F[i,T,E℄:=1;7 else8 F[i,T,E℄:=0;9 end if ;10 else11 F[i,T,E℄:=0;12 if (T-E)� ((i-1)*(i-2)/2) then13 for k:=0 to E loop14 F[i,T,E℄:=F[i,T,E℄+F[i-1,T-E,k℄;15 end loop;16 end if ;17 end if ;18 end loop;19 end loop;20 end loop;21 TN:=0;22 for E:=(n div 2) to n-1 loop23 TN:=TN+F[n,(n*(n-1)/2,E℄;24 end loop;25 return TN;Algorithm 5: Cal
ulating the number of s
ore sequen
es using dynami
programminglines 5{9 | and O(n) otherwise | lines 11{16 (see Figure 1). This means that thewhole algorithm runs in O(n5) time. The se
ond phase is to
al
ulate the numberof s
ore sequen
es (TN) using the �lled array F (see Figure 1).4.2.2. Improved algorithm. In Algorithm 5 the number of the used array elementsis �(n4) so O(n4) is a lower bound to the run time of any solution using thisapproa
h, but the run time is O(n5). We show that using a proper reformulationof equation (1) the run time of the algorithms
an be redu
ed to �(n4).

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 19
Level i-1

E

i

F[i-1,T-E,E]

F[i,T-1,E-1]

F[i,T,E]

T Level i

Figure 2. Dependen
ies of elements in the array in
ase of theoptimized formulafi(T;E) = EXk=0 fi�1(T �E; k)= E�1Xk=0 fi�1((T � 1)� (E � 1); k) + fi�1(T �E;E)= fi(T � 1; E � 1) + fi�1(T �E;E)(2)Noti
e that when we
ompute fi(T;E) we already know fi(T � 1; E � 1) so we
an repla
e the loop in lines 13{15 of Algorithm 5 with a simple assignment (seeFigure 2).4.3. Parallel algorithms.4.3.1. PRAM. A straightforward parallel implementation of the non-optimizedformula is the following. We �ll in one level of the array in one round. Wehave nlogn pro
essors for ea
h element in the level (�gure 3). These pro
essorsperform a pre�x
omputation to
al
ulate the value using the original formula (1).This takes O(log n) time. The array has n levels so the whole algorithm runs inO(n logn). On a single level of the array there are n�n2� elements, whi
h means thatwe need n�n2� nlog n = n3(n�1)2 logn = O(n4logn) pro
essors to a
hieve this. Unfortunatelythis solution is not work-optimal as the amount of work done is O(n4 logn) �O(n logn) = O(n5).This algorithm used the property of (1) that the value of a parti
ular element ina
ertain level depends on other elements from a lower level only. This way we
ouldavoid the syn
hronization overhead between the pro
essors working on di�erentelements. Using the optimized formula we have to use results from the same level

20 G�ABOR P�ECSY AND L�ASZL�O SZ}UCS
= n/log n processors

E

i

T
Level i

Figure 3. Using brute-for
e approa
h on PRAM ar
hite
tureas well. More a

urately the value of fi(T;E) depends on fi(T � 1; E � 1) whi
hin turn depends on fi(T � 2; E � 2) et
. This dependen
y limits the maximumnumber of pro
essors that a work-optimal algorithm
an utilize.Here we present three possible work-optimal algorithms, using n, n2 and n3�n2blog n
pro
essors.Ea
h algorithm
al
ulates the values level by level. The �rst version assigns apro
essor to ea
h possible values of T and these pro
essors
al
ulate fi(T;E) forthe di�erent E values one by one. As the value of T belongs to the domain [0..�n2�℄so we need �n2� + 1 pro
essors and ea
h
al
ulates fi(T;E) for E = 0; : : : ; n � 1whi
h requires �(n) time. There are n levels in the array so the whole run timeof the algorithm is �(n2).
= 1 processor

E

i

Level i
T

Figure 4. PRAM algorithm using n2 pro
essorsThe se
ond algorithm assigns pro
essors to ea
h possible values of E and thesepro
essors
al
ulate fi(T;E) for the di�erent T values one by one. This means

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 21that we need n pro
essors and due to symmetry the run time of this algorithm is�(n3).
= 1 processor

E

i

T
Level i

Figure 5. PRAM algorithm using n pro
essorsThe third algorithm uses a bit di�erent approa
h. For this algorithm,
ompu-tation of one level takes two steps. During the �rst step the pro
essors set theelements of the level to 0. There are n3�n2 elements in a level, we have n3�n2blog n
 pro-
essors so it takes O(log n) time to a

omplish. In the se
ond step the algorithm
al
ulates fi(T +j; E+j); (j = 1::n) using pre�x
omputation algorithm with nlog npro
essors on fi�1(T � E; j). This also takes logn time, so a single level
an be
al
ulated in logn time, the array has n levels so the whole algorithm works inO(n logn).
E

= n/log n processors

i

T
Level i

Figure 6. PRAM algorithm using n3logn pro
essors

22 G�ABOR P�ECSY AND L�ASZL�O SZ}UCS4.3.2. Linear array. The se
ond work-optimal algorithm given for PRAM
an beadapted to n pro
essor linear array as well. Ea
h pro
essor is assigned a possiblevalue of E. The pro
essor stores the two-dimensional subarray belonging to thatparti
ular value . The pro
essors use Algorithm 6.Step 1: For i:=1 ea
h pro
essor
al
ulates F [i; T; E℄ := (T = E)?1 : 0.Step 2: For i:=2::n ea
h pro
essor performs Algorithm 7.Step 3: The pro
essors perform a pre�x
omputation to determine tn.Algorithm 6: Enumeration of s
ore sequen
es on n pro
essor linear arrayEa
h pro
essor (E:=0..n-1) on level i (i:=2..n) does the following:1 for T:=1 to n*(n-1)/2 loop2 if E > 0 and T > 0) then3 re
eive Z:=F[i,T-1,E-1℄ from pro
essor E-1;4 else5 Z:=(i=2 and T=0 and E=0)?1:0;6 end if ;7 if T-E � ((i-1)*(i-2)/2) then8 F[i,T,E℄:=Z+F[i-1,T-E,E℄;9 else10 F[i,T,E℄:=0;11 end if ;12 if E < n-1 and T < n*(n-1)/2 then13 send F[i,T,E℄ to pro
essor E+1;14 end if ;15 end loop;Algorithm 7: Cal
ulating fi(T;E) values on an n pro
essor linear array4.3.3. Mesh. As linear array
an be embedded to a mesh the algorithm given inthe previous se
tion
an be applied for meshes as well.However there exists another work-optimal algorithm using n2 pro
essors. Letthe pro
essors be indexed from 1 to n (i) and from 0 to n � 1 (E). Pro
essor(i; E) has a one-dimensional subarray
ontaining fi(T;E) for the possible di�erentT values. This way to
al
ulate fi(T;E) for a parti
ular value of T it has to
ommuni
ate with two of its neighbours.The enumeration problem
an be solved using the following algorithms:4.3.4. Hyper
ube. As mesh
an be embedded to a hyper
ube the same algorithmsgiven for meshes
an be applied.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 23
= 1 processor

E

T

i

Figure 7. Mesh algorithm using n2 pro
essorsStep 1: For i:=1 and E:=0..n-1 ea
h pro
essor performs Algorithm 9. Fori:=2..n and E:=0..n-1 ea
h pro
essor performs Algorithm 10.Step 2: The pro
essors (n; 0); : : : ; (n; n� 1) perform a pre�x
omputationto determine tn.Algorithm 8: Enumeration of s
ore sequen
es on n2 pro
essor mesh5. Further optimizationsThe algorithms given in the previous se
tion use �(n4) array elements. It'seasy to see that ea
h algorithm (ex
ept the last one) at a given time uses onlytwo levels of the array. Cal
ulating the ith level we need the (i-1)th one forthat. This means that we don't have to store all levels only the
urrent and theprevious one. This optimization will redu
e the number of ne
essary elements to2 � n � n � (n� 1)=2 = n3 � n2 = �(n3).6. Con
lusions6.1. Summary. The table below summarizes our results for p pro
essors andn-player tournaments:Problem Sequential Linear Mesh Hyper
ube PRAMarrayS
ore �(n) 8p 2 N p = n 23 p = nlog n p = nlognsequen
e �(n) �(n 13) �(log n) �(log n)work-opt. work-opt. work-opt.

24 G�ABOR P�ECSY AND L�ASZL�O SZ}UCSS
ore �(n) 8p 2 N p = n p = n p = nve
tor �(n) O(n 12) O(log2 n) O(log2 n)p = n2 p = n2O(log n) O(log n)Enume- Re
ursive p = n p = O(n) p = O(n) p = nration of formula with �(n3) �(n3) �(n3) �(n3)s
ore dynami
 work-opt. work-opt. work-opt. work-opt.sequen
es programming: p = n2 p = O(n2) p = n2�(n4) �(n2) �(n2) �(n2)work-opt. work-opt. work-opt.p = n3�n2blogn
�(n log n)work-opt.The notion of
ompleteness of tournaments
an be extended to k-
ompleteness.k-
omplete: We
all a tournament k-
omplete if its elements are non-negative integers and the sum of the symmetri
 elements is always k(tij + tji = k;where i 6= j) . A set of tournaments is
alled k-
ompletefor a given n if it
ontains all possible n player k-
omplete tournaments.From the de�nition it follows that a
omplete tournament is 1-
omplete. Thetheorems and algorithms presented above
an be easily extended to k-
ompletetournaments.6.2. Future Works. In this se
tion we try to identify some possible dire
tions todo further resear
h.� Fine-tuning the presented non work-optimal algorithms if possible ordesign new ones.� As we saw the value of tn in
reases exponentially this also implies thatfi(T;E) values are in
reasing in similar order. Storing su
h values re-quires O(n) bits. However it is possible that the average size of theelements in the array is smaller.� The task of re
onstru
tion means that for a given s
ore sequen
e we
on-stru
t a tournament. The asimptoti
ally optimal sequential algorithmssolve this problem in �(n2) time. Parallel re
onstru
ting algorithms forthe problem are to be
onsidered.� Parallel algorithm for
al
ulating the lexi
ographi
al su

essor of a givens
ore sequen
e.� Parallel listing of s
ore sequen
es for a given n.

PARALLEL VERIFICATION AND ENUMERATION OF TOURNAMENTS 25Ea
h pro
essor (i,E) (i:=2..n; E:=0..n-1) does the following:1 for T:=0 to n*(n-1)/2 loop2 if E>0 and T>0 then3 re
eive Z:=F[i,T-1,E-1℄ from pro
essor (i,E-1);4 else5 Z:=(i=2 and T=0 and E=0)?1:0;6 end if ;7 if T-E�((i-1)*(i-2)/2) then8 if T=0 then9 Y:=(i=2 and E=0)?1:0;10 else11 re
eive Y:=F[i-1,T-E,E℄ from pro
essor (i-1,E);12 end if ;13 F[i,T,E℄:=Z+Y;14 else15 F[i,T,E℄:=0;16 end if ;17 if T<n*(n-1)/2 then18 if E<n-1 then19 send F[i,T,E℄ to pro
essor (i,E+1);20 end if ;21 send F[i,T-E,E℄ to pro
essor (i+1,E);22 end if ;23 end loop;Algorithm 9: Cal
ulating fi(T;E) values for i > 2Ea
h pro
essor (1,E) (E:=0..n-1) does the following:1 for T:=0 to n*(n-1)/2 loop2 F[1,T,E℄:=(E=T)?1:0;3 if T<n*(n-1)/2 and T�E then4 send F[1,T-E,E℄ to pro
essor (2,E);5 end if ;6 end loop;Algorithm 10: Cal
ulating f1(T;E) valuesThe te
hniques that were used in the presented algorithms aimed the paralleladoption of a sequential dynami
 programming solution. These te
hniques shouldbe extended to other algorithms using dynami
 programming.

26 G�ABOR P�ECSY AND L�ASZL�O SZ}UCSA
knowledgement. The authors would like to thank Antal Iv�anyi for sharinghis knowledge about tournaments and being open to dis
uss our ideas.Referen
es[1℄ T. H. Cormen, C. E. Leiserson, R. L. Rivest (1990), Introdu
tion to Algorithms, M
Graw-Hill,MIT Press, New York.[2℄ E. Horowitz, S. Sahni, S. Rajasekaran (1998), Computer Algorithms, Computer S
ien
e Press,New York.[3℄ A. Iv�anyi, Good tournaments, submitted to Annales Univ. S
i. Budapest., Se
tio Math.[4℄ A. Iv�anyi, Maximal tournaments, In: Fourth Join Conf. on Math. and Comp. S
i. Felix, June5{10, 2001, submitted to Pure Math. and Appl.[5℄ H. G. Landau (1953), The
ondition for a s
ore stru
ture III, Bull. Math. Biophysi
s, pp.153{158.[6℄ J. W. Moon (1968), Topi
s on Tournaments, Holt, Rinehart & Winston, New York.[7℄ T. V. Narayana, D. H. Bent (1964), Computation of the number of s
ore sequen
es in round-robin tournaments, Canad. Math. Bull. 7 (1), pp. 133{136.[8℄ K. B. Reid (1996), Tournaments: s
ores, kings, generalizations and spe
ial topi
s, CongressusNumerantium 115, pp. 171{211.Department of General Computer S
ien
e, E�otv�os Lor�and University, 1117 Bu-dapest, P�azm�any P�eter s�et�any 1/B., HungaryE-mail address: pi
i�elte.hu and sli
e�elte.hu

STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000AN APPROXIMATE ALGORITHM TO ESTIMATE PLAUSIBLELOCATIONS OF UNDISCOVERED HYDROCARBONACCUMULATIONS IN SPARSELY DRILLED AREASGHEORGHE CIMOCAAbstra
t. This paper uses
on
epts and prin
iples pertaining to a naturalgeometri
al data stru
ture (the Voronoi diagram) in a theoreti
al attemptto estimate the sites and perimeters to really su

eed in an exploration forundis
overed new hydro
arbon a

umulations in an oil basin/system. Theproposed algorithm
an be applied to oil, methane gas or oil and gas
ombinedreserves in a natural area of hydro
arbon a

umulation,
hara
terized by thesame hydro
arbon sour
e. 1. Introdu
tionThe starting point of this mathemati
al experiment was a report [7℄, publishedby the Petro
onsultants Group in 1993, on a new method for estimating undis
ov-ered petroleum potential with appli
ations to the giant oil �elds of the world, su
has: Arabo-Iranian basin, Campos basin, Gippsland basin, Kutei, South Sumatra,Niger delta, Timan-Pe
hora, North Sea grabens, Transylvania basin, as well asother petroleum systems. Their estimation is based on the best �t with fra
talparabolas of oil �eld size distributions. Meanwhile, new methodologies meantto estimate the amount of undis
overed hydro
arbon reserves were announ
ed inseveral reports ([11℄, [5℄), whose results haven't been published so far.However, a more \deli
ate" and obviously more diÆ
ult problem
an be posed:\Is it possible to make fore
asts/estimates, with a
ertain degreeof plausibility, on the lo
ations (sites, perimeters, extents, zones)of the \presumably existing" hydro
arbon a

umulatios, not yetdis
overed in a sparsely drilled oil system?"Using our knowledge of Voronoi diagrams ([3℄, [10℄) whi
h we had previouslyapplied to some natural geologi
al data stru
tures (e.g., mineral deposits) we ar-rived at a �rst approa
h of the above problem. The most important question was:2000 Mathemati
s Subje
t Classi�
ation. 68U05.1998 CR Categories and Des
riptors. I3.5. [Computational Geometry and Obje
tModeling℄ . 27

28 GHEORGHE CIMOCAhow to formulate, in mathemati
al terms, a lo
ation prin
iple to �nd the \mostplausible" sites and
orresponding extents of new oil �elds in a drilled area?2. Voronoi diagrams: general
on
eptsLet X be a non-empty arbitrary set. A fun
tion d : X �X ! R is said to be adistan
e or a metri
 on X if it satis�es the following
onditions:d(x; y) = 0 () x = y;d(x; y) = d(y; x);d(x; y) � d(x; z) + d(z; y) 8x; y; z 2 X:The pair (X; d) is
alled a metri
 spa
e.A simple example is the real plane R2 with the metri
 de�ned by:d(x; y) =p(x1 � y1)2 + (x2 � y2)2 8x = (x1; x2); y = (y1; y2) 2 R2 :This metri
 is
alled the Eu
lidean metri
 on R2 . Let (X; d) be a metri
 spa
e. Asubset Y of X is said to be bounded (with respe
t to the metri
) ifsup fd(x; y)jx; y 2 Y g < 1:Let Y be a non-empty subset of X and x 2 X . The real number:d(Y; x) = inf fd(y; x)jy 2 Y gis
alled distan
e from x to Y . Let M(X) be the set of all non-empty, boundedsubsets of (X; d) and M 0(X) the set of all non-empty and
losed subsets of (X; d).If Y; Z 2M(X), then the real number:e(Y; Z) = sup fd(Y; z)jz 2 Zgis
alled gauge or ex
ess of Y from Z.If (X; d) is a metri
 spa
e, then the fun
tion � : M 0(X)�M 0(X) ! R de�nedby: �(Y; Z) = max fe(Y; Z); e(Z; Y)g 8Y; Z 2M 0(X)is a metri
 on M 0(X) [8℄. This metri
 is
alled the Pompeiu-Hausdor� metri
.Suppose now that S = fC1; : : : ; Ckg is a �nite set of distin
t points in R2 andf : R2 �S ! [0;1[is a given fun
tion
alled the in
uen
e or authorithy fun
tion.If i 2 f1; : : : ; kg, then the subset of R2 de�ned by:reg(Ci) = fx 2 R2 jf(x;Ci) � f(x;Cj);8j 2 f1; : : : ; kg n figgis said to be the in
uen
e region of Ci.We
all the set freg(C1); : : : ; reg(Ck)g the Voronoi diagram generated by Swith in
uen
e fun
tion f . In fa
t, the Voronoi diagram is a
overing of the realplane by a set of regions asso
iated with members of the point set S and anin
uen
e fun
tion f .

AN APPROXIMATE ALGORITHM TO ESTIMATE PLAUSIBLE LOCATIONS 29The sets reg(Ci); i = f1; : : : ; kg are sometimes
alled fa
es of the Voronoi dia-gram. The interse
tion of two fa
es gives a Voronoi edge and the interse
tion oftwo edges is
alled a Voronoi vertex.We'll denote by V or(S; f) the set
onsisting of all points of the edges of aVoronoi diagram generated by S and an in
uen
e fun
tion f .If i; j 2 f1; : : : ; kg; i 6= j, then the subset of R2 de�ned by:sep(Ci; Cj) = fx 2 R2 jf(x;Ci) = f(x;Cj)gis
alled the separation
urve of Ci and Cj , and the set:dom(Ci; Cj) = fx 2 R2 jf(x;Ci) � f(x;Cj)gde�nes the dominan
e region of Ci over Cj .The following relations hold true:dom(Cj ; Ci) = [R2 n dom(Ci; Cj)℄ [sep(Ci; Cj);reg(Ci) = \fdom(Ci; Cj)jj 2 f1; : : : ; kg n figg:If the in
uen
e fun
tion f is the Eu
lidean metri
 d of R2 , then the planar (ordi-nary) Voronoi diagram is obtained. In this
ase, sep(Ci; Cj) is the perpendi
ularbise
tor mij between Ci and Cj , and dom(Ci; Cj) is the half plane de�ned by mij ,
ontaining Ci. Therefore, being the interse
tion of k � 1 half planes, reg(Ci) is a
onvex set.When f = d, we
all the region reg(Ci) the (ordinary) Voronoi polygon as-so
iated with Ci, or the Voronoi polygon of Ci denoted V (Ci). Sin
e a Voronoipolygon is a
losed set, it
ontains its boundary denoted by �V (Ci). The termpolygon is used to denote the union of the boundary and of the interior. Theboundary of a Voronoi polygon may
onsist of line segments, half lines or in�nitelines, whi
h we
all Voronoi edges. Alternatively, we may de�ne a Voronoi edgeas a line segment, a half line or an in�nite line shared by two Voronoi polygons.If V (Ci) \ V (Cj) 6= ;, then the set V (Ci) \ V (Cj) gives a Voronoi edge whi
hmay degenerate into a point. If V (Ci) \ V (Cj) is neither empty nor a point, wesay that the Voronoi polygons V (Ci) and V (Cj) are adja
ent.For the sake of simpli
ity, if f = d, instead of V or(S; f) we write V or(S) =�V (Ci) [: : : [�V (Ck).Now let A be a
losed subset of R2 and T = fT1; : : : ; Tkg, where ea
h Ti; i 2f1; : : : ; kg is a
losed subset of A. If the elements of the set T satisfy [Ti n �Ti℄ \[Tj n�Tj ℄ = ;;8i; j 2 f1; : : : ; kg; i 6= j, then we
all the set T a pretessellation of A.A pretessellation T, where all Ti; i 2 f1; : : : ; kg are
onvex sets is
alled a
onvexpretessellation.A pretesselation T = fT1; : : : ; Tkg with A = [fTiji = 1; : : : ; kg be
omes atesselation. A planar Voronoi diagram is a tessellation whi
h
onsists of
onvexpolygons with three or more verti
es. A planar tessellation in whi
h any Ti in T

30 GHEORGHE CIMOCAis a triangle 8i 2 f1; : : : ; kg is
alled a triangulation of A. Two verti
es sharing anedge in a triangulation are
alled adja
ent.Given a planar Voronoi diagram where generators are not
olinear and theirnumber is three or more, but �nite, we join all pairs of generators whose Voronoipolygons share a
ommon Voronoi edge, thus obtaining a new tessellation. Ifthe new tessellation
onsists only of triangles, we
all it a Delaunay triangula-tion; otherwise, we
all it a Delaunay pretriangulation. In the
ase of the De-launay pretriangulation, we partition the non-triangular polygons into trianglesby non-interse
ting line segments joining the verti
es. As a result, the Delaunaypretriangulation be
omes a Delaunay triangulation.3. Lo
ational mathemati
al modelLet's
onsider an oil system (or a geologi
al-te
toni
al region) externally delim-ited, on a geographi
al map, by the boundary of a simple polygon A. Supposethat in this oil system k oil �elds have been dis
overed.Let the points C1; : : : ; Ck be the
enters/sites/domes and let the simple poly-gons }1; : : : ; }k; Ci 2 }i � A; i 2 f1; : : : ; kg be the extents/
ontours of these �elds,being situated on the same map. Moreover, }1 \ : : : \ }k = ;.We
onsider the set S = fC1; : : : ; Ckg. In addition, let's denote Bi = �}i; i 2f1; : : : ; kg and P = [f}iji = 1; : : : ; kg.Now, we formulate the following question: where, in this region A,
an the
enters of a given number of new, posible oil �elds be most plausibly lo
ated ?In order to get an answer it is important to restate and formalize the aboveverbal problem more pre
isely, in mathemati
al terms. With that end in view, letd be the Eu
lidean metri
 on R2 , M 0 the set of all non-empty
losed subsets of R2and � the Pompeiu-Hausdor� metri
 on M 0.In order to mathemati
ally formalize the lo
ational problem, we must adopt anessential assumption:Assumption. B1 \ : : : \ Bk = V or(S) \ AIf the above assumption is
orre
t, then we believe the most plausible lo
ationof the
enters of m undis
overed oil �elds in the oil system A leads to the followingoptimization problem:Lo
ation problem. Find m points Ck+1; : : : ; Ck+m in A n P su
h that:�(V or(S [fCk+1; : : : ; Ck+mg); B1 [: : : [Bk) =minf�(V or(S [S0); B1 [: : : [Bk)jS0 2 �gwhere: � = fS0 � A n P j
ard(S0 n S) = mg:

AN APPROXIMATE ALGORITHM TO ESTIMATE PLAUSIBLE LOCATIONS 31Remarks.(1) In fa
t, the above lo
ation problem is to determine within a simple poly-gon A the lo
ations of a given number (m) of points, outside of a pretes-sellation of A (in AnP), so that the Pompeiu-Hausdor� distan
e betweentwo Voronoi diagrams having some
ommon generators is minimized.The distan
e
an be de�ned as the sum of Pompeiu-Hausdor� distan
esbetween the pairs of Voronoi polygons [2℄ with
ommon generators.(2) A
ouple of lo
ation problems are similar, although mu
h easier thanours: the re
ognition of a Diri
hlet (Voronoi) tessellation [1℄, [12℄ andthe geographi
al optimization problem from [6℄. These problems startfrom a
onvex tessellation. By
ontrast, we start from a more general,non
onvex pretesselation, denoted in the following by (A;S; P).4. The approximate algorithmBeing fully aware of the diÆ
ulty of the above lo
ation problem, we have tried to�nd only an approximate solution. Our approximate algorithm is of an in
rementaltype [9℄ and uses some remarks on distortions of a Voronoi diagram when one pointmoves [4℄.Let S = fC1; : : : ; Ckg be the set of sites/
enters of dis
overed oil �elds and anarbitrary point C0 2 A n P . In the following, we denote by V (i); i = 1; : : : ; k, theVoronoi polygon of Ci in the Voronoi diagram generated by S and by V0(i) theVoronoi polygon in the Voronoi diagram generated by S0 = S [fC0g. Let T0 bethe Delaunay triangulation of the set S0.For Ci 2 S, we have V (i) = V0(i), if and only if Ci and C0 are not adja
entverti
es in T0 [4℄. Moreover, if Ci and C0 are adja
ent and }i � V (i), it doesn'tfollow that }i � V0(i).We say that the \
enter" C0 is admissible in pretessellation (A;S; P) in respe
tto T0, if for every Ci 2 S, su
h that Ci and C0 are adja
ent verti
es in T0, then}i � V0(i).If Cp; Cq 2 A n S;Cp 6= Cq , let us denote by Vp(i), respe
tively by Vq(i), theVoronoi polygon of Ci 2 S in V or(Sp), respe
tively V or(Sq), where Sp = S [Cpand Sq = S [Cq . Let Tp, respe
tively Tq be the Delaunay triangulations of Sp,respe
tively Sq . Moreover, let �A(p) be the set of points in S whi
h are adja
entwith Cp in Tp, and �A(q) the points in S adja
ent with Cq in Tq .Let Cp and Cq be two admissible
enters in (A;S; P)
orresponding to Tp andTq, respe
tively. We say that Cp is preferred to Cq if�p = XCi2�A(p) �(Vp(i); Vp(p)) � XCi2�A(q) �(Vq(i); Vq(q)) = �q ;where � is the Pompeiu-Hausdor� distan
e.

32 GHEORGHE CIMOCAThe number �p evaluates the distortion e�e
t of the point Cp on the Voronoidiagram generated by S. At the same time, �p represents a measure of plausibility.The smaller �p, the more plausible Cp.Let G(p; p) be a uniform re
tangular grid with sides parallel to the
oordinateaxes, whi
h
ontains A, and the number p of horizontal and verti
al grid lines aneven integer.The algorithm. Step 1. Let p be the smallest positive even integer su
h thatm < p2 and let G(p; p) be the minimal uniform re
tangular grid
overing A.Let n := 0 and W 0 := S.Step 2. S
an the grid G(p; p) re
tangle-by-re
tangle, in a spiral order, start-ing from the
entral re
tangle of the grid. For ea
h re
tangle Dq+1 exe
ute thefollowing operations:a. Let C0 := the
enter of Dq+1;b. Constru
t the Delaunay triangulation T� of the set W � = W q [fC0g. Wedistinguish the
ases:Case I. If there exists a point Ci 2 S whi
h is adja
ent to C0 in T� and C0 2 }i,take the next re
tangle.Case II. If C0 =2 P ,
hoose the most preferred point C� between C0 and ea
hof the four re
tangle
orners whi
h are not in P . Let W q+1 := W q [fC�g andn := n+ 1. If n = m stop, else go to Step 1 with p := 2p.Remarks.(1) In fa
t, this algorithm lo
ates am-points planar
on�guration in a pretes-sellation, ea
h of the m points having only a lo
al plausibility. This
on�guration
an be a starting point pattern for further, more subtle,improved algorithms.(2) Mathemati
ally, it is easier to insert \new" admissible oil �elds
loser tothe boundary of A, but we have preferred a more \
entral"
on�gurationfor geologi
al reasons.(3) The algorithm
an be relativized to a subzone of A,
alled zone of geo-logi
al interest.A software pa
kage named EXPLORER has been developed and tested on bothnon- and real data. EXPLORER enables users to:� visualize a basin in study with all its �elds,� visualize a parti
ular �eld and its
ontour,� visualize a �eld and its adja
ent neighbours,� visualize the Voronoi diagram of a basin,� lo
ate a given number of new plausible oil �elds and their possible ex-tents, and� print the founded pattern of \new" and old �elds.

AN APPROXIMATE ALGORITHM TO ESTIMATE PLAUSIBLE LOCATIONS 33In the following �gures we present an example of EXPLORER outputs for a�
tional basin with 15 a
tive oil �elds, their
ontours or extents (gray polygons)and the Voronoi diagram of these �elds (left); the fore
asted sites of 6 possiblenew �elds (
ir
led dots) and their plausible (in de
reasing rank order, #1 havingthe highest degree of plausibility) extents as their Voronoi polygons (right).

5. An experiment for Transylvania BasinThe EXPLORER software appli
ation allows the user to \dis
over" several\new" oil �elds as well, in a real oil basin, Transylvania, with di�erent plausibil-ities (depending on the number of s
anned re
tangles).We
an
omuni
ate, to whom may be interested, two tested results:(1) Using the information regarding the 23 a
tive �elds dis
overed in theTransylvania basin during 1906-1965, the algorithm proposed 20 \new"lo
ations of methane gas �elds. We were surprised to �nd out that 15out of these �elds were \
on�rmed" (their extents having a non-emptyinterse
tion with at least one
ontour of an a
tually dis
overed �eld)during 1966-1985 (out of the 29 new �elds a
tually pointed out duringthis period). Furthermore, 4 more �elds were
on�rmed during 1986-1996 (out of 52 new a
tually dis
overed �elds). Therefore, 19 out of the20 sites proposed by algorithm have been
on�rmed.(2) Fore
asting again 20 possible lo
ations of \new" �elds by means of themethane gas �eld pattern existing in 1985 (i.e., 52 a
tive �elds), 17 �eldswere
on�rmed during 1986-1996.

34 GHEORGHE CIMOCA6. Con
lusionsWe are aware that the development of a new method/te
hnology to mathemat-i
ally fore
ast the sites and/or extents of new oil �elds in an oil system needs astrong
ollaboration between oil geologists, mathemati
ians and
omputer engi-neers. The above algorithm is just a �rst step toward a new te
hnology. Algo-rithm's fore
asts zones of possible hydro
arbon a

umulations require
on�rma-tions by geologi
al parameters. But these fore
ast perimeters, we believe, are themost plausible lo
ations for the new possible oil �elds in an oil basin.By superposing quantitative geologi
al parameter (e.g., permeability, porosity,pressure, &
.) maps, on this prognosti
ated lo
ations the exploration expenses andtime
an be drasti
ally diminished. As the tested results on a real oil basin indi
ate,we are optimisti
 and forsee a su

essful
ompletion (new natural geometri
al datastru
tures generated by an in
uen
e fun
tion f 6= d; new lo
ation prin
iples; newimproved algorithms) of this promising resear
h.A
knowledgments. I am deeply grateful to Tiberiu Trif, from the Fa
ulty ofMathemati
s and Computer S
ien
e, the Babe�s-Bolyai University, Cluj-Napo
a,Mihaela Ordean and Ovidiu Pop, from the Computer S
ien
e Department, theTe
hni
al University of Cluj-Napo
a, who
ontributed their expertise to the de-velopment of the EXPLORER software appli
ation.Referen
es[1℄ P.F. Ash, E.D. Bolker, Re
ognizing Diri
hlet tessellations, Geometriae Dedi
ata, 19 (1985),pp. 175-206.[2℄ M.J. Attallah, A linear time algorithm for the Hausdor� distan
e between
onvex polygons,Inf. Pro
. Let., 17 (1983), pp. 207-209.[3℄ F. Aurenhammer, Voronoi Diagrams - A Survey of a Fundamental Geometri
 Data Stru
-ture, ACM Comput. Surveys, 23 (1991), pp. 345-405.[4℄ L.-M. Cruz Orive, Distortion of
ertain Voronoi tessellations when one parti
le moves, J.Appl. Prob., 16 (1979), pp. 95-103.[5℄ C.C. Barton, G.L. Troussov, Fra
tal Methodology for Petroleum Resour
e Assessment andFra-A Computer Program That Cal
ulates the Volume and Number of Undis
overed Hy-dro
arbon, U.S. Geologi
al Survey; announ
ed in 1997.[6℄ M. Iri, K. Murota, T. Ohya, A Fast Voronoi Diagram Algorithm with Appli
ations to Geo-graphi
al Optimization, in Le
ture Notes in Control and Information S
ien
es 59 , SpringerVerlag, Berlin, 1984, pp. 273-288.[7℄ J. Laherrere, A. Perrodon, G. Demaison, Undis
overed Petroleum Potential; A new approa
hbased on distribution of ultimate resour
es, Petro
onsultants S.A., Geneva-London-Houston-St.Leonards-Singapore-Vi
toria Park, 1994.[8℄ I. Muntean, Analiz�a fun
t�ional�a, Universitatea \Babe�s-Bolyai", Cluj-Napo
a, 1993.[9℄ T. Ohya, M. Iri, K. Murota, Improvements of the In
remental Method for the VoronoiDiagram with Computational Comparison of Various Algorithms, J. Operations Res. So
.Japan, 27 (1984), pp. 306-336.[10℄ A. Okabe, B. Boots, K. Sugihara, Spatial Tessellations; Con
epts and Appli
ations ofVoronoi Diagrams, J.Wiley & Sons Ltd, London, 1992.

AN APPROXIMATE ALGORITHM TO ESTIMATE PLAUSIBLE LOCATIONS 35[11℄ R.G. Stanley, The \Che
kerboard Method": A New Way to Estimate the Numbers of Undis-
overed Hydro
arbon A

umulations in Sparsely Drilled Areas, U.S. Geologi
al Survey; an-noun
ed in 1995; not yet published.[12℄ A. Suzuki, M. Iri, Approximation of a tessellation of the plane by a Voronoi diagram, J.Operations Res. So
. Japan, 29 (1986), pp. 69-96.S.C. SIMBOLIC, str. Ba
�au nr. 3, 3400 Cluj-Napo
a, ROMANIA, phone: +40-64-431.333, fax: +40-64-199.895E-mail address: gh
imo
a�symboli
.
om

STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000A MODIFICATION OF THE TSENG-JAN GROUP SIGNATURESCHEMECONSTANTIN POPESCUAbstra
t. In this paper we present a modi�
ation of the Tseng-Jan groupsignature s
heme [18℄. Our s
heme appears to be se
ure in
omparation withthe Tseng-Jan group signature s
heme. The proposed s
heme is based onthe e-th root problem and the dis
rete logarithm problem. Keywords: Groupsignature, identity, membership
erti�
ate.1. Introdu
tionGroup signatures allow individual members of a group to sign messages onbehalf of the group while remaining anonymous. Furthermore, in
ase of disputeslater a trusted authority, who is given some auxiliary information,
an identifythe signer. The
on
ept of group signatures was introdu
ed by Chaum and vanHeyst [4℄. Their s
hemes have been improved by L. Chen and T. Pedersen [5℄,who �rst use a S
hoenmaker's proto
ol [17℄ to hide a signer's identity. Also, H.Petersen suggested a general method to
onvert any ordinary digital signatureinto a group signature s
heme [15℄. Petersen's method
ombines the Stadler'sveri�able en
ryption of dis
rete logarithm [18℄ and the S
hoenmaker's proto
ol. J.Camenis
h and M. Stadler presented the �rst group signature s
heme whose publi
key and signatures have length independent of the number of group members ofone group [2℄, but this isn't independent of the number of groups. Many groupsignature s
hemes have been presented [3℄, [7℄, [8℄, [12℄, [13℄, [14℄, [16℄. In [19℄,Tseng and Jan proposed a group signature s
heme, but this was broken in [9℄ and[10℄. In [9℄, M. Joye, S. Kim and N. Lee showed that the Tseng-Jan s
heme isuniversally forgeable, that is, anyone is able to produ
e a valid group signature onan arbitrary message. In [10℄, M. Joye showed that the group signature s
hemeproposed by Tseng-Jan is not
oalition-resistant: two group members
an produ
euntra
eable group signatures.In this paper we present a modi�
ation of the Tseng-Jan group signature s
heme[19℄. Our s
heme appears to be se
ure in
omparation with the Tseng-Jan group2000 Mathemati
s Subje
t Classi�
ation. 94A60.1998 CR Categories and Des
riptors. D.4.6. [Software℄: Operating Systems { Se
urityand Prote
tion; 36

A MODIFICATION OF THE TSENG-JAN GROUP SIGNATURE SCHEME 37signature s
heme. The proposed s
heme is based on the e-th root problem and thedis
rete logarithm problem. The remainder of the paper is organized as follows.In Se
tion 2, we review the s
heme proposed by Tseng and Jan. In Se
tion 3our s
heme is des
ribed. In Se
tion 4 some se
urity
onsiderations are given and�nally, Se
tion 5
on
ludes with the results of the paper.2. Tseng-Jan Group Signature S
hemeIn this se
tion, we give a short des
ription of the Tseng-Jan group signatures
heme and refer to the original paper [19℄ for more details. The s
heme involvefour parties: a trusted authority, the group authority, the group members, andveri�ers. The trusted authority a
ts as a third helper to setup the system param-eters. The group authority sele
ts the group publi
/se
ret keys. He (jointly withthe trusted authority) issues membership
erti�
ates to new users who wish to jointhe group. In
ase of disputes, opens the
ontentious group signatures to revealthe identity of the a
tual signer. Finally, group members anonymously sign ongroup's behalf using their membership
erti�
ates and veri�ers
he
k the validityof the group signatures using the group publi
 key.In order to set up the system, a trusted authority sele
ts two large prime num-bers p1 (� 3 mod 8) and p2 (� 7 mod 8) su
h that (p1 � 1) =2 and (p2 � 1) =2 aresmooth, odd and
o-prime [11℄. Let N = p1p2. The trusted authority also de-�nes e; d; v; t satisfying ed � 1 (mod ' (N)) and vt � 1 (mod ' (N)), sele
ts gof large order in Z�N, and
omputes F = gv (mod N). Moreover, the groupauthority
hooses a se
ret key x and
omputes the
orresponding publi
 keyy = F x (modN). The publi
 parameters are (N; e; g; F; y). The se
ret param-eters are (p1; p2; d; v; t; x).When a user Ui (with identity information Di) wants to join the group, thetrusted authority
omputessi = et logg IDi (mod ' (N))where IDi = Di or IDi = 2Di a

ording to (Di j N) = 1 or (Di j N) = �1, andthe group authority
omputes xi = IDxi (mod N) .The user membership
erti�
ate is the pair (si; xi). To sign a messageM , the userUi (with
erti�
ate (si; xi))
hooses two random numbers r1 and r2 and
omputesA = yr1 (mod N)B = yr2e (mod N)C = si + r1h (M k A k B) + r2eD = xiyr2h(MkAkB) (mod N)where h (�) is a publi
ly known hash fun
tion. The group signature on messageM is given by the tuple (A;B;C;D). The validity of this signature
an then be

38 CONSTANTIN POPESCUveri�ed by
he
king whetherDeAh(MkAkB)B � yCBh(MkAkB) (mod N) .Finally, in
ase of disputes, the group authority
an open the signature tore
over who issued it by
he
king whi
h identity IDi satis�esIDxei � DeB�h(MkAkB) (mod N) .3. Our Group Signature S
hemeThis se
tion des
ribes the proposed group signature s
heme, whi
h is spe
i-�ed by the key generation, signing messages, veri�
ation signatures and openingsignatures.3.1. Key Generation. Our s
heme
onsists of four kinds of parti
ipants: atrusted
enter who setup the system parameters, a group authority who issuesmembership
erti�
ates to new users who wish to join the group and identi�esa signer, a signer for issuing group signatures and a re
eiver for verifying themusing the group publi
 key.A trusted
enter sele
ts two large primes p1, p2 as in [19℄. Let n = p1p2. Thetrusted
enter also sele
ts a large integer e (160 bits) with g
d (e; ' (n)) = 1 andsele
ts g of large order in Z�n, where Zn is the integer ring. The group authority
hooses a se
ret key x and
omputes the
orresponding publi
 key y = gx (mod n).The publi
 parameters are (n; e; g; y) and the se
ret parameters are (p1; p2; x). LetIDi 2 Zn be an identity information of a user Ui. Finally, let h be a
ollision-resistant hash fun
tion. Suppose now that a user wants to join the group. Weassume that
ommuni
ation between the user and the trusted
enter (between theuser and the group authority) is se
ure, i.e., private and authenti
.When a user Ui wants to join the group, the trusted
enter
omputessi = ID 1ei (mod n)and the group authority
omputesxi = (IDi + eg)x (mod n) .The user membership
erti�
ate is the pair (si; xi).3.2. Signing Messages. To sign a message M , the user Ui, with
erti�
ate(si; xi),
hooses two random numbers r1 and r2 and
omputesA = yr2e (mod n)B = xiysi+r1 (mod n)C = xiyr2 (mod n)D = sih (M k A) + r1h (M k A) .

A MODIFICATION OF THE TSENG-JAN GROUP SIGNATURE SCHEME 39The symbol k denotes the
on
atenation of two binary strings (or of the binaryrepresentation of group elements and integers). The group signature on messageM is given by the tuple (A;B;C;D).3.3. Veri�
ation Signatures. The validity of this signature
an then be veri�edby
he
king whetherCeh(MkA)yeD � Beh(MkA)Ah(MkA) (mod n) .If this equation holds, he a

epts the signature (A;B;C;D), otherwise it is reje
ted.3.4. Opening Signatures. Finally, in
ase of disputes, the group authority
anopen the signature to re
over who issued it by
he
king whi
h identity IDi satis�es(IDi + eg)xe � CeA�1 (mod n) .4. Se
urity ConsiderationsA re
eiver, a group authority and a trusted
enter, who have no membership
erti�
ate (si; xi) of a user Ui,
an not generate a group signature. Trusted
enterknows si, but he
an not determine xi, be
ause only the group authority knowsthe se
ret key x. The group authority knows xi, but he
an not determine si,be
ause only the trusted
enter knows the e-th root of IDi.Given a group signature (A;B;C;D), identifying the a
tual signer is
omputa-tionally hard for every one but the group authority.Sin
e no one knows whi
h pair(si; xi)
orresponds to whi
h group member, anonymity is guaranteed.De
iding whether two di�erent signatures are
omputed by the same groupmember is
omputationally hard. The problem of linking two signatures (A;B;C;D)and (A0; B0; C 0; D0) redu
es to looking if either si or xi is
ommon to the two tu-ples. This is however impossible under De
isional DiÆe-Hellman Assumption (see[1℄, [6℄).Trusted
enter and a re
eiver
an not determine a signer of the group signature,be
ause only the group authority knows the se
ret key x. If p1 and p2 are suÆ-
iently large, even trusted
enter
an not get x from the publi
 key y. Therefore,an adversary
an not forge our group signature s
heme on an arbitrary messageM . 5. Con
lusionsThis paper has presented a modi�
ation of the Tseng-Jan group signatures
heme proposed in [19℄. Our s
heme appears to be se
ure in
omparation with theTseng-Jan group signature s
heme. The se
urity of the proposed s
heme dependson the e-th root problem and the dis
rete logarithm problem.

40 CONSTANTIN POPESCUReferen
es[1℄ D. Boneh, The de
ision DiÆe-Hellman problem, In Algorithmi
 Number Theory (ANTS-III), Le
ture Notes in Computer S
ien
es 1423, Springer-Verlag, pp. 48-63, 1998.[2℄ J. Camenis
h, M. Stadler, EÆ
ient group signature s
hemes for large groups, Advan
es inCryptology, CRYPTO'97.[3℄ J. Camenis
h, M. Mi
hels, A group signature s
heme based on RSA-variant, BRICS, Den-mark, 1998.[4℄ D. Chaum, E. Heyst, Group Signatures, Advan
es in Cryptology, EUROCRYPT'91, Le
tureNotes in Computer S
ien
es 950, Springer-Verlag, 1992, pp. 257-265.[5℄ L. Chen, T. Pedersen, New group signature s
hemes, Advan
es in Cryptology, EURO-CRYPT'94, Le
ture Notes in Computer S
ien
es 547, Springer-Verlag, 1995, pp. 163-173.[6℄ W. DiÆe, M. Hellman, New Dire
tions in Cryptography, IEEE Transa
tion InformationTheory, IT-22, 6, pp. 644-654, 1976.[7℄ S. Kim, S. Park, D. Won, Group signatures for hierar
hi
al multigroups, Information Se-
urity Workshop, Le
ture Notes in Computer S
ien
es 1396, Springer-Verlag, 1998, pp.273-281.[8℄ S. Kim, S. Park, D. Won, Convertible Group Signatures, Advan
es in Cryptology, ASI-ACRYPT'96, Le
ture Notes in Computer S
ien
es 1163, Springer-Verlag, 1996, pp. 311-321.[9℄ M. Joye, S. Kim, N. Lee, Cryptanalysis of Two Group Signature S
hemes, 1999 (5 pages).[10℄ M. Joye, On the DiÆ
ulty of Coalition-Resistan
e in Group Signature S
hemes, Te
hni
alReport, LCIS-99-6B, 1999.[11℄ U. Maurer, Y. Ya
obi, Non-intera
tive publi
-key
ryptography, In Advan
es in Cryptology-EUROCRYPT'91, LNCS 547, Springer-Verlag, 1991, pp. 498-507.[12℄ S. Park, I. Lee, D. Won, A pra
ti
al group signature, Pro
. of JWISC'95, Japan, 1995, pp.127-133.[13℄ S. Park, D. Won, A pra
ti
al identity-based group signature, Pro
. of ICEIC'95, China, 1995,pp. II-64-II-67.[14℄ S. Park, S. Kim, D. Won, ID-based group signature s
hemes, Ele
troni
s Letters, 1997, pp.1616-1617.[15℄ H. Petersen, How to
onvert any digital signature s
heme into a group signature s
heme,In Se
urity Proto
ols Workshop, Paris, 1997.[16℄ C. Popes
u, Group signature s
hemes based on the diÆ
ulty of
omputation of approximatee-th roots, Pro
eedings of Proto
ols for Multimedia Systems (PROMS 2000), Poland, pp.325-331, 2000.[17℄ B. S
hoenmakers, EÆ
ient Proofs of Or, Manus
ript, 1993.[18℄ M. Stadler, Publi
ly veri�able se
ret sharing, Advan
es in Cryptology, EUROCRYPT'96,Le
ture Notes in Computer S
ien
es 1070, Springer-Verlag, 1996, pp. 190-199.[19℄ Y. Tseng, J. Jan, A novel ID-based group signature, In T.L. Hwang and A.K. Lenstra,editors, 1998 International Computer Symposium,Workshop on Cryptology and InformationSe
urity, Tainan, 1998, pp. 159-164.University of Oradea, Department of Mathemati
s, Str. Armatei Romane 5, Oradea,RomaniaE-mail address:
popes
u�math.uoradea.ro

STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000A METHOD FOR TRAINING INTELLIGENT AGENTS USINGHIDDEN MARKOV MODELSGABRIELA S�ERBANAbstra
t. It is well-known that, in this moment, the �eld of intelligentagents represents an important resear
h dire
tion in Arti�
ial Intelligen
e,whi
h o�ers a new method for problem solving and a new way for intera
-tion between the
omputer and the user. The use of mathemati
al statisti
-methods represents a leading topi
 in this �eld. Hidden Markov Models(HMM) are often used as a mathemati
al tool for modeling the environmentof intelligent agents. In this paper we propose a learning method for an agentwhi
h re
ognize
hara
ters, based on training an Hidden Markov Model.Keywords: Arti�
ial Intelligen
e, Hidden Markov Models, learning.1. Intelligent agentsThe �eld of intelligent agents is in
onne
tion with another �eld of Arti�
ialIntelligen
e (AI), the �eld of ma
hine learning. Ma
hine learning represents thestudy of system models that, based on a set of data (training data), improve theirperforman
e by experien
es and by learning some spe
i�
 experimental knowledge.The attempt of modeling the human reasoning leads to the
on
ept of intelligentreasoning. The reasoning is the pro
ess of
on
lusion dedu
tion; the intelligentreasoning is a kind of reasoning a

omplished by humans. Most of the AI systemsare dedu
tive ones, able for making inferen
es (draw
on
lusions), given their ini-tial or supplied knowledge, without being able for new knowledge a
quisition or togenerate new knowledge. The learning
apability being
onne
ted to the intelli-gent behavior, one of the most important resear
h dire
tions in AI is to implementin the ma
hines the learning
apability.An agent [3℄ is anything that
an be viewed as per
eiving its environment throughsensors and a
ting upon that environment through a
tions. An intelligent agentis an agent with an initial knowledge, having the
apability for learning. In the2000 Mathemati
s Subje
t Classi�
ation. 68U05.1998 CR Categories and Des
riptors. I.2.6. [Computing Methodologies℄ : Arti�
ialIntelligen
e { Learning . 41

42 GABRIELA S�ERBANfollowings we present how an agent
an be modeled using a Hidden Markov Model,and how the agent
an be trained by learning the asso
iated HMM.2. Hidden Markov Model (HMM)The Hidden Markov Model (HMM) is a generalization of Markov de
ision pro-
esses, being possible more transitions from a state for the same input. For thesame input sequen
e (of a
tions) we
an have more paths in the HMM, whi
himplies that P (a1;n) (the probability to have as input a sequen
e of n a
tions,a1 a2 � � �an, shortly written as a1;n) is
al
ulated as the sum of the probabilitieson all the possible paths. Probability on a given path is
al
ulated by multiplyingthe probabilities of transitions on the path.De�nition.An HMM is a 4-tuple < s1; S; A; P > , where S is a �nite set of states, s1 2 S isthe initial state, A is a set of input symbols (a
tions), and P : SXSXA� > [0; 1℄gives the probability of moving from state s1 to s2 on performing a
tion a. Let us
onsider the following order of the elements of the sets S;A; P : S = (s1; � � � s�);A = (a1; � � � a!); P = (p1; � � � p�):, where � is the number of states, ! is the numberof a
tions and � is the number of transitions.Let us noti
e that [4℄ ai means the i-th element (a
tion) of an input sequen
e,while the ai represents the i-th element of the A set. A transition is de�ned asa 4-tuple: (si; sj ; ak; p) , whi
h means that the input a
tion ak in the state sitransitions to the state sj with the probability p. For a given input sequen
e ofa
tions there are more possible paths in the HMM, so, the sequen
e of states thatit has been passed through is not dedu
tible from the input, but hidden (this givesthe name of the model). The sequen
e of states s1; s2; � � � ; sn+1 that has beenpassed through for an input a1;n is marked shortly with s1;n+1.2.1. Agents and Hidden Markov Models. Let us
onsider a passive learningagent in a known environment represented as a set of states. At ea
h moment,the agent exe
utes an a
tion, from a set of a
tions. In su
h a passive learningmodel, the environment generates transitions between states, per
eived by theagent. The agent has a model of the environment using a model of a
tions (P),where P (x0jx; a) represents the probability for rea
hing the state x0 by taking thea
tion a in the state x.With the above
onsiderations, the behavior of the agent in a given environ-ment
an be seen as a Markov de
ision pro
ess. If the state transitions are non-deterministi
 (a given a
tion a in a given state x transitions to a set of su

essorstates, not to a single su

essor state), then the Markov model is an HMM where:� S is the set of the environment states;

TRAINING INTELLIGENT AGENTS USING HIDDEN MARKOV MODELS 43� s1 2 S is the initial state for the agent;� A is the set of the a
tions of the agent;� P is the set of transitions between the states (
onditioned by a
tions).2.2. Algorithm for
omputing the likelihood of an input sequen
e ofa
tions. In the followings, we mention a very simple algorithm for
omputingthe likelihood of an input sequen
e of a
tions in an HMM. This algorithm, the\forward" algorithm [1℄
al
ulate the probability of an input sequen
e of a
tions(a1;n) using the \forward" probability (�) and the \ba
kward" probability (�).The \forward" probability is de�ned [1℄ as the probability of being in state iafter seeing the �rst t observations, given the input sequen
e.Let us note by �i(t+ 1) the probability of the input sequen
e a1;t having si as�nal state. In other words:(1) �i(t+ 1) = P (a1;t; st+1 = si); t > 0The idea of the algorithm is to
al
ulate the probabilities for all the input subse-quen
es (a1;t; t = 0; � � � ; n) having as �nal state the state si, i = 1; � � � ; �, where� is the total number of states of the Markov model. Having all �i(n+ 1) values
al
ulated, the probability P (a1;n) is given by:P (a1;n) = nXi=1 �i(n+ 1)Considering that a1;0 is the empty sequen
e, whi
h has the a

eptan
e probability1, we have that �j(1) = 1 if j = 1 and is 0 otherwise ,
orresponding to the fa
tthat the initial state of every path is s1.Using the dynami
 programming prin
iple, we
an make the following remark:the probability of the input sequen
e a1;t+1 having sj as �nal state, is obtained bysumming for all state si, i = 1; � � � ; � the produ
ts between the probability of theinput sequen
e a1;t having si as �nal state and the probability of the transitionbetween the state si and the state sj for the a
tion at. Thus,
al
ulation of �j(t) [4℄is made starting with �j(1) , �j(2) and going until �j(n+1) , using the re
ursiverelation: �j(t+ 1) = �Xi=1 �i(t)P (si at! sj):Re
all that �i(t) are
alled \forward" probabilities. Using the above
onsider-ations, let us noti
e that the algorithm for �nding the highest-probability-pathsfor a given entry is based on the \ba
kward" variant of the dynami
 programmingprin
iple (using the ba
kward variant of the optimality prin
iple).

44 GABRIELA S�ERBANAs we have mentioned above it is also possible to
al
ulate \ba
kward" probabili-ties, �i(t), with the following de�nition: �i(t) represents the a

eptan
e-probabilityof the input at;n, if the state at step t is si. In other words, the \ba
kward" prob-ability �i(t)
omputes the probability of seeing the observation from time t+1 tothe end, given that we are in state i at time t (given the input sequen
e).So [4℄: �i(t) = P (at;n j st = si); t > 1:The probability we are looking for will be�1(1) = P (a1;n j s1 = s1) = P (a1;n)Cal
ulation of � fun
tion is made starting with values:�i(n+ 1) = P (� j sn+1 = si) = 1; i = 1; � � � ; �:For the re
ursive
ase, we have:�i(t� 1) = P (at�1;n j st�1 = si) = �Xj=1 P (si at�1! sj)�j(t)2.3. Training Hidden Markov Models. In the followings, we use the Baum-Wel
h algorithm [1℄(\forward-ba
kward") for training a Hidden Markov Model.This algorithm, that has given a
ertain training input sequen
e (an observationsequen
e a1;n), adjusts the probabilities of transitions in the HMM, in order tomaximize the probability of the observation sequen
e. Having an HMM stru
turealready de�ned, the algorithm will let us train the transition probabilities of theHMM. In fa
t, we
an estimate the probabilities of transitions using a very simplealgorithm: for ea
h transition (ar
) t whi
h begins in a state s, we
al
ulate howoften this ar
 is used when the entry sequen
e is a1;n. Thus, P (t) is given byP (t) = how often the ar
 t is usedhow often an ar
 beginning from s is usedMore exa
tly, the probabilities of transitions are
al
ulated with the formula [2℄(2) P (si ak! sj) = C(si ak! sj)P�;!l=1;m=1 C(si am! sl)Let us noti
e that the formula (2) is used only if the sumP�;!l=1;m=1 C(si am! sl)is non-zero, otherwise the probability P (si ak! sj) remains un
hanged.

TRAINING INTELLIGENT AGENTS USING HIDDEN MARKOV MODELS 45The C fun
tion (the \numberingfun
tion") in the above formula is
al
ulatedlike this [2℄:(3) C(si ak! sj) = 1P (a1;n) nXt=1 �i(t)P (si ak! sj)�j(t+ 1)Let us noti
e that for the
al
ulation of C(si ak! sj) we have to know theprobabilities of transitions for the HMM model. The main idea of the algorithmis the following: we will start with an estimate for the probabilities, and thenuse these estimated probabilities to derive better and better probabilities - we
al
ulate the new values of fun
tion C(si ak! sj) using the formula (3) and �nallywe adjust the probabilities of transitions using the formula (2). The measureof the improvement level of probabilities after a training sequen
e is given by thegrowth of the probability (P (a1;n)) of the input sequen
e
ompared to it's previousestimation. The pro
ess of re
al
ulating the probabilities of transitions is �nishedwhen P (a1;n) su�ers no more signi�
ant modi�
ations (in
omparison with a givenapproximation error). 3. ExperimentIn this se
tion our aim is to test how a system represented as an HMM (in ourexample an agent for re
ognizing
hara
ters) works.3.1. An agent for re
ognizing
hara
ters. Let us
onsider an agent for re
og-nizing two
hara
ters \I" and \U". We assume that ea
h
hara
ter is representedby a binary matrix (for simpli�
ation, we
onsider that the matrix has 4 lines and 3
olumns). So, the matrix
orresponding to the
hara
ter \I" is [[100℄[100℄[100℄[100℄℄and the matrix
orresponding to
hara
ter \U" is [[101℄[101℄[101℄[111℄℄. For thisissue, we propose the model des
ribed in Figure 1.Using the
onsiderations made in subse
tion 2.1, the model is hidden, in otherwords is an HMM.Of
ourse, the stru
ture of the Markov model
hosen for the modeling of theproblem, it is important.Having as initial state the state \a", the above des
ribed HMM a

epts the en-tries 100100100100 (the
hara
ter \I") and 101101101111 (the
hara
ter \U")(the entry for a
hara
ter is obtained by juxtaposing the rows of the
orrespond-ing matrix in the following order: the �rst, the se
ond, the third and the fourthline). The initial probabilities of transitions are
al
ulated in
omparison with thetwo entry sequen
es whi
h are a

epted by the HMM (the
hara
ters \I" and \U").Let us noti
e that the dimension of the matrix (number of rows and
olumns)

46 GABRIELA S�ERBAN

Figure 1. The Hidden Markov Modelused to represent the
hara
ters has no in
uen
e in the re
ognition pro
ess (onlythe probabilities of transitions after training the HMM
hange).In this HMM, using the algorithm des
ribed in subse
tion 2.3, we observe that:� the a

eptan
e-probability for the entry 100100100100 (
orrespondingto the
hara
ter \I") is 3:9190411 � 10�4;� the a

eptan
e-probability for the entry 101101101111 (
orrespondingto the
hara
ter \U") is 8:2214139 � 10�5;� the a

eptan
e-probability for the entry 100100100111 (
orrespondingto the
hara
ter \L") is 2:07292009 � 10�4.3.2. First training. First, we train the HMM to re
ognize the
hara
ter \I"(we use the training algorithm des
ribed in subse
tion 2.4 for the entry sequen
e100100100100).Considering the approximation error 10�7, the HMM is trained in 13 steps. Theprobabilities of transitions during the training are des
ribed in Table 1 (the
olumns
orrespond to the probabilities of transitions).In the HMM trained to re
ognize the
hara
ter \I", we observe that:� the a

eptan
e-probability for the entry 100100100100 (
orrespondingto the
hara
ter \I") is 3:906248 � 10�3;� the a

eptan
e-probability for the entry 101101101111 (
orrespondingto the
hara
ter \U") is 7:017882 � 10�25;� the a

eptan
e-probability for the entry 100100100111 (
orrespondingto the
hara
ter \L") is 1:953123 � 10�3.3.3. Se
ond training. The se
ond training of the HMM is for re
ognizing the
hara
ter \U" (we use the training algorithm for entry sequen
e 101101101111).Considering the approximation error 10�7, the HMM is trained in 26 steps,des
ribed in Table 2.

TRAINING INTELLIGENT AGENTS USING HIDDEN MARKOV MODELS 47Table 1. The probabilities of transitions during the �rst training pro
essStep P(a, 1, a) P(a, 0, a) P(a, 0, b) P(b, 1, a) P(b, 0, a)1 0.34895903418 0.32739092305 0.32365004277 0.28061623839 0.719383761612 0.36807390057 0.30667030898 0.32525579045 0.21734816939 0.782651830613 0.39085481661 0.26963514927 0.33951003412 0.15079989110 0.849200108904 0.41877605321 0.21221865027 0.36900529651 0.08661076916 0.913389230845 0.45055613731 0.13549261529 0.41395124739 0.03595643299 0.964043567016 0.47879919631 0.05899019566 0.46221060803 0.00857366994 0.991426330067 0.49432319346 0.01463521470 0.49104159184 0.00080952252 0.999190477488 0.49898253274 0.00224291095 0.49877455631 0.00001805465 0.999981945359 0.49985762067 0.00028976704 0.49985261230 0.00000006090 0.9999999391010 0.49998185346 0.00003637704 0.49998176950 0.00000000003 0.9999999999711 0.49999772587 0.00000454959 0.49999772454 0.00000000000 1.0000000000012 0.49999971564 0.00000056874 0.49999971562 0.00000000000 1.0000000000013 0.49999996445 0.00000007109 0.49999996445 0.00000000000 1.00000000000In the HMM trained to re
ognize the
hara
ter \U", we observe that:� the a

eptan
e-probability for the entry 100100100100 (
orrespondingto the
hara
ter \I") is 8:111088 � 10�22;� the a

eptan
e-probability for the entry 101101101111 (
orrespondingto the
hara
ter \U") is 3:251364 � 10�3;� the a

eptan
e-probability for the entry 100100100111 (
orrespondingto the
hara
ter \L") is 6:103893 � 10�17.After the agent was trained for re
ognizing the
hara
ters \I" and \U", theagent re
eives an entry, for example 100100100111 (the
hara
ter \L"), whi
hhe tries to re
ognize. The re
ognition performs the following steps:� �rst, the agent
omputes the probability p1 for the given entry in the�rst environment (trained for \I");� se
ond, the agent
omputes the probability p2 for the given entry in these
ond environment (trained for \U");� third, the agent
ompares p1 and p2 and determines the maximum;� fourth, be
ause p1 is greater than p2 the agent re
ognize the
hara
ter\I" as the most probable for the given entry.This is a kind of supervised learning, the agent is trained for a few models, andafter the training he tries to re
ognize a given entry. We
hose this experimentwith two
hara
ters be
ause it is simple and illustrates very
learly the idea oftraining the agent using the training of the HMM.

48 GABRIELA S�ERBANTable 2. The probabilities of transitions during the se
ond train-ing pro
essStep P(a, 1, a) P(a, 0 , a) P(a, 0, b) P(b, 1, a) P(b, 0, a)1 0.71380471380 0.14141414141 0.14478114478 1.000 0.002 0.70681329384 0.12043988151 0.17274682466 1.000 0.003 0.69971006779 0.09913020337 0.20115972884 1.000 0.004 0.69291260238 0.07873780715 0.22834959047 1.000 0.005 0.68680005870 0.06040017610 0.25279976520 1.000 0.006 0.68162626416 0.04487879249 0.27349494335 1.000 0.007 0.67748162778 0.03244488333 0.29007348889 1.000 0.008 0.67431367967 0.02294103901 0.30274528131 1.000 0.009 0.67198200820 0.01594602459 0.31207196721 1.000 0.0010 0.67031480817 0.01094442451 0.31874076732 1.000 0.0011 0.66914788095 0.00744364286 0.32340847618 1.000 0.0012 0.66834348425 0.00503045274 0.32662606302 1.000 0.0013 0.66779488597 0.00338465792 0.32882045610 1.000 0.0014 0.66742348964 0.00227046892 0.33030604144 1.000 0.0015 0.66717331840 0.00151995519 0.33130672641 1.000 0.0016 0.66700537657 0.00101612971 0.33197849371 1.000 0.0017 0.66689289418 0.00067868255 0.33242842326 1.000 0.0018 0.66681767274 0.00045301824 0.33272930902 1.000 0.0019 0.66676742102 0.00030226306 0.33293031592 1.000 0.0020 0.66673387346 0.00020162039 0.33306450615 1.000 0.0021 0.66671148776 0.00013446328 0.33315404895 1.000 0.0022 0.66669655476 0.00008966429 0.33321378095 1.000 0.0023 0.66668659534 0.00005978602 0.33325361864 1.000 0.0024 0.66667995391 0.00003986172 0.33328018438 1.000 0.0025 0.66667552547 0.00002657642 0.33329789811 1.000 0.0026 0.66667257283 0.00001771848 0.33330970870 1.000 0.00Also, we
onsidered an experiment with four
hara
ters: \A", \L", \U", \I".The asso
iated HMM has four states and the re
ognition pro
ess works well.On our opinion, it would be interesting the
ombination of the above des
ribedmethod of training with
ertain dynami
 programming methods.4. The appli
ationThe appli
ation is written in Mi
rosoft Visual C++ 5.0 and implements thealgorithms des
ribed in the previous se
tions.

TRAINING INTELLIGENT AGENTS USING HIDDEN MARKOV MODELS 49Examples1. For the sequen
e 100100100111 the appli
ation displays the following results:The entry is**** * *The maximum probability for the entry is 0.003906The
hara
ter re
ognized for the given entry is:****2. For the sequen
e 000101111101 the appli
ation displays the following results:The entry is* ** * ** *The maximumprobability for the entry 000101111101 is 2:2966411�10�22 The
hara
ter re
ognized for the given entry is:* ** ** ** * * 5. Con
lusionsIn
ertain situations, the behavior of an intelligent agent
an be modeled usingan HMM. In su
h situations, it would be interesting to use mathemati
al methodsfor working on these models.In the
ase of the proposed experiment, some future resear
h would be:� how
ould the proposed model be generalized for as many
hara
ters aspossible;� how
ould the stru
ture of the HMM be generated dynami
ally;� how would su
h probabilisti
 methods be more appropriate than others;� how
ould the probabilisti
 methods be
ombined with others (that mayalso be heuristi
) for obtaining a higher performan
e of the model;

50 GABRIELA S�ERBAN� what would happen in
ertain \plateau" situations (where a given entrywould have the same probability in more environments).Anyway, whi
h we wanted to emphasize in this paper is another way of workingon problems of training intelligent agents.Referen
es[1℄ D.Jurafsky, James H. Martin : \Spee
h and language pro
essing", Prenti
e Hall., 2000.[2℄ E. Charniak: \Statisti
al language learning", MIT Press, 1996.[3℄ S.J.Russell, P.Norvig: \Arti�
ial intelligen
e. A modern approa
h", Prenti
e-Hall Inter-national,1995.[4℄ D.Tatar, G.Serban: \Training probabilisti

ontext-free grammars as hidden Markov mod-els", Studia Universitatis \Babes-Bolyai", Series Informati
a XLV (2), 2000, 69{78.\Babes�-Bolyai" University, Cluj-Napo
a, RomaniaE-mail address: gabis�
s.ubb
luj.ro

STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000SOME PARALLEL NONDETERMINISTIC ALGORITHMSVIRGINIA NICULESCUAbstra
t. Nondeterminism is useful in two ways. First, it is employed toderive simple and general programs, where the simpli
ity is a
hieved by avoid-ing unne
essary determinism; su
h programs
an be optimized by limitingthe nondeterminism. Se
ond, some systems are inherently nondeterministi
;programs that represent su
h systems have to employ some nondeterministi

onstru
t. Nondeterministi
 programs
an be mapped more easier on parallelma
hine, sin
e parallelism brings some nondeterminism by itself.In this arti
le, there are
onstru
ted some nondeterministi
 programs,for some numeri
al methods, using the UNITY notation[3℄. The
orre
tnessof the algorithms is proven, and some possible mappings are dis
ussed.1. Introdu
tionNondeterminism is useful in two ways. First, it is employed to derive simpleand general programs, where the simpli
ity is a
hieved by avoiding unne
essarydeterminism; su
h programs
an be optimized by limiting the nondeterminism.Se
ond, some systems are inherently nondeterministi
; programs that representsu
h systems have to employ some nondeterministi

onstru
t.There is a variety of parallel ar
hite
tures, though parallel programs have to bedeveloped su
h that they
an be mapped in di�erent ways, on di�erent ar
hite
-tures. A solution is to spe
ify little in the early stages of design, and spe
ify enoughin the �nal stages to ensure eÆ
ient exe
ution on target ar
hite
ture. Spe
ifyinglittle about program exe
ution means that the programs may be nondeterministi
.To express the nondeterministi
 programs, the model used for the developingthe programs is UNITY [3℄: "Unbounded Nondeterministi
 Iterative Transforma-tions", whi
h is brie
y des
ribed in the next se
tion.2. A Programming NotationThe UNITY program stru
ture is2000 Mathemati
s Subje
t Classi�
ation. 68N19.1998 CR Categories and Des
riptors. G.1.3. [Mathemati
s of Computing℄ : Numeri-
al Analysis { Numeri
al Linear Algebra; G.4. [Mathemati
s of Computing℄ : Mathemati
alSoftware; D.1.3 [Software℄ : Programming Te
hniques { Con
urrent Programming .51

52 VIRGINIA NICULESCUprogram ! Program program� namede
lare de
lare� se
tionalways always� se
tioninitially initially� se
tionassign assign� se
tionendThe de
lare � se
tion, names the variables used in the program and their types.The syntax is similar to that used in Pas
al. The always�se
tion is used to de�ne
ertain variables as fun
tion of others. This se
tion is not ne
essary for writingUNITY programs, but it is
onvenient. The initially � se
tion is used to de�neinitial values of some of the variables; uninitialized variables have arbitrary initialvalues. The assign� se
tion
ontains a set of assignment statements.The program exe
ution starts in a state where the values of variables are asspe
i�ed in the initially-se
tion. (A state is
hara
terized by the values of allvariables.) In ea
h step, any one statement is exe
uted. Statements are sele
tedarbitrarily for exe
ution, though in an in�nite exe
ution of the program ea
h state-ment is exe
uted in�nitely often. A state of a program is
alled a �xed point if andonly if exe
ution of any statement of the program, in this state, leaves the stateun
hanged. A predi
ate,
alled FP,
hara
terize the �xed points of the program.On
e FP holds,
ontinued exe
ution leaves values of all variables un
hanged, andtherefore it makes no di�eren
e whether the exe
ution
ontinues or terminates.The termination of a program is regarded as a feature of an implementation. Aprogram exe
ution is an in�nite sequen
e of statement exe
utions and an imple-mentation is a �nite pre�x of the sequen
e.2.1. Mapping Programs to Ar
hite
tures. One way to implement a programis to halt it after it rea
hes a �xed point.A mapping to a von Neumann ma
hine spe
i�es the s
hedule for exe
utingassignments and the manner in whi
h a program exe
ution terminates.In a syn
hronous shared-memory system, a �xed number of identi
al pro
essorsshare a
ommon memory that
an be read and written by any pro
essors. Thesyn
hronism inherent in a multiple-assignment makes it
onvenient to map su
h astatement to this ar
hite
ture.A UNITY program
an be mapped to asyn
hronous shared-memory system,by partitioning the statements of the program among the pro
essors. In addition,a s
hedule of exe
ution for ea
h pro
essor should be spe
i�ed that guarantees afair exe
ution for ea
h partition. If the exe
ution for every partition is fair, thenany fair interleaving of these exe
utions determines a fair exe
ution of the entireprogram. Two statements are not exe
uted
on
urrently if one modi�es a variablethat the other uses.Other ar
hite
tures
an be
onsidered for mappings.

SOME PARALLEL NONDETERMINISTIC ALGORITHMS 532.2. Assignment Statement. It is allowed that a number of variables to beassigned simultaneously in a multiple assignment, as inx; y; z := 0; 1; 2:Su
h an assignment
an also be written as a set of assignment-
omponents sepa-rated by k, as in x; y := 0; 1kz := 2or x := 0ky := 1kz := 2:The variables to be assigned and the values to be assigned to them may be de-s
ribed using quanti�
ation, rather than enumeration:< ki : 0 � i < N :: A[i℄ := B[i℄ > :A notation like the following is used for a
onditional assignment:x := �1 if y < 0 �0 if y = 1 �1 if y > 0 :2.3. Assign-se
tion. The symbol z a
ts as a separator between the statements.A quanti�ed-statement-list denotes a set of statements obtained by instantiatingthe statement-list with the appropriate instan
es of bounded variables; if there isno instan
e, quanti�ed-statement-list denotes an empty set of statements. Thenumber of the instan
es must be �nite. The boolean expression in the quanti�
a-tion should no name program variables whose values may
hange during programexe
ution.2.4. Initially-se
tion. The syntax of this se
tion is the same as that of the assign-se
tion ex
ept that symbol := is repla
ed with =. The equations de�ning the initialvalues should not be
ir
ular.2.5. Always-se
tion. An always-se
tion is used to de�ne
ertain program vari-ables as fun
tion of other variables. The syntax used in the always-se
tion is thesame as in the initially-se
tion.3. Nondeterministi
 Gauss EliminationWe
onsider the Gaussian elimination s
heme for solving a set of linear equa-tions, A �X = B;where A[0::n � 1; 0::n � 1℄ and B[0::n � 1℄ are given and the solution is to bestored in X [0::n� 1℄. Gaussian elimination is presented typi
ally as a sequen
e ofn pivot steps. The following UNITY program allows nondeterministi

hoi
es inthe sele
tions of the pivot rows.

54 VIRGINIA NICULESCU3.1. A Solution. LetM(A;B) (orM for short) the matrix with n rows and n+1
olumns, where the �rst n
olumns are from A and the last
olumn is from B. Inthe Gaussian elimination M(A;B) is modi�ed to M(A0 ;B0) by
ertain operationssu
h that A �X = Band A0 �X = B0have the same solutions for X . The goal of the algorithm is to apply a sequen
eof these operations to
onvert M(A;B) to M(In;XF), where In is the identitymatrix; then XF is the desired solution ve
tor. This goal
an be realized if therank of A is n, whi
h we assume to be the
ase.The program
onsists of two kinds of statements:(1) Pivot with row u, provided thatM [u; u℄ 6= 0; this has the e�e
t of settingM [u; u℄ to 1 and M [v; u℄ to 0, for all v; v 6= u(2) Ex
hange two rows u and v, provided that both M [u; u℄ and M [v; v℄ arezero and at least one of M [u; v℄;M [v; u℄ is nonzero; this has the e�e
t ofrepla
ing a zero diagonal with a nonzero element.Due to the fa
t that there are some possible ex
hanges between the rows, theelements of the solution ve
tor will be ex
hanged also. The permutation of theelements is stored in an array p.Program Gaussde
lareM : array[0::n� 1; 0::n℄ of realp : array[0::n� 1℄ of integerinitially< i : 0 � i < n : p[i℄ = i >assignfpivot with row u if M [u; u℄ 6= 0g< zu : 0 � u < n ::< kv; j : 0 � j < n ^ 0 � v < n ^ v 6= u ::M [v; j℄ :=M [v; j℄�M [v; u℄ �M [u; j℄=M [u; u℄ if M [u; u℄ 6= 0>k < kj : 0 � j < n ::M [u; j℄ :=M [u; j℄=M [u; u℄ if M [u; u℄ 6= 0>>

SOME PARALLEL NONDETERMINISTIC ALGORITHMS 55zfex
hange two rows if both have zero diagonal elements and theex
hange results in at least one of these elements being set to nonzerog< zu; v : 0 � u < n ^ 0 � v < n ^ u 6= v ::< kj : 0 � j < n ::M [u; j℄;M [v; j℄; p[u℄; p[v℄ :=M [v; j℄;M [u; j℄; p[v℄; p[u℄if M [u; u℄ = 0 ^M [v; v℄ = 0 ^ (M [u; v℄ 6= 0 _M [v; u℄ 6= 0)>>endfGaussg3.2. Corre
tness. Let M0 denote the initial Z matrix. Sin
e ea
h statement inthe program modi�es M su
h that the solutions to the given linear equations arepreserved, we have the following invariant:invariant M0;M have the same solution:In the following, A refers to the n � n matrix in the left part of M , and B,to the last
olumn of M . First, it is proven that the program Gauss rea
hes a�xed point and that at any �xed point, A is an identity matrix. Then, from theinvariant, B is the desired solution ve
tor. In the following, a unit
olumn is a
olumn in whi
h the diagonal element is 1 and all other elements are 0. That is,
olumn u is a unit
olumn means thatM [v; u℄ = 0 if u 6= v � 1 if u = v:To show that a �xed point is rea
hed, it is proven that the pair (p; q), wherep = number of unit
olumns in Aq = number of nonzero diagonal elements in A;in
reases lexi
ographi
ally with every state
hange.We
onsider ea
h statement in turn. Pivoting with row u, where
olumn u is aunit
olumn,
ause no state
hange. A state
hange results from a pivot operationwith row u only if
olumn u is not a unit
olumn; the e�e
t of the pivot operationis to set u to a unit
olumn, thus in
reasing p.Two rows u and v are ex
hanged only when M [u; u℄ = 0 ^ M [v; v℄ = 0 ^(M [u; v℄ 6= 0_M [v; u℄ 6= 0). Hen
e neither of the
olumns u or v is a unit
olumn.The ex
hange preserves all the unit
olumns, also preserving p. In addition, atleast one diagonal element, M [u; u℄ or M [v; v℄ is set to nonzero. Sin
e both ofthese elements were previously zero, q in
reases. Therefore, every state
hangein program Gauss in
reases (p; q) lexi
ographi
ally. Sin
e ea
h of p; q is boundedfrom above by n, Gauss rea
hes a �x point.Now, it must be proved that A is an identity matrix at any �x point. The proofis as follows. Lemma 1 proves that if any diagonal element M [u; u℄ is nonzero at a�xed point, u is a unit
olumn. Lemma 2 proves that if some diagonal element iszero at a �x point, all elements in the row are zero. This
ontradi
ts the assumption

56 VIRGINIA NICULESCUthat the determinant of A is nonzero. (Note that exe
ution of any statement inGauss preserves the determinant.) Therefore every diagonal element is nonzeroand, using Lemma 1, A is an identity matrix.Lemma 1. At any �xed point of program Gauss,M [u; u℄ 6= 0) u is a unit
olumn:Proof: Consider the statement for a pivot
orresponding to row u. At any �xpoint, given that M [u; u℄ 6= 0, for any j and v; u 6= v,M [v; j℄ =M [v; j℄�M [v; u℄ �M [u; j℄=M [u; u℄and M [u; j℄ =M [u; j℄=M [u; u℄:In parti
ular, with j = u,M [v; u℄ =M [v; u℄�M [v; u℄ �M [u; u℄=M [u; u℄ = 0and M [u; u℄ =M [u; u℄=M [u; u℄ = 1:Therefore u is a unit
olumn.Lemma 2. At any �xed point of program Gauss,M [u; u℄ = 0)M [u; v℄ = 0;8v 6= u:Proof: Consider two
ases: M [v; v℄ = 0 and M [v; v℄ 6= 0.In the �rst
ase,
onsider the ex
hange statement for rows u; v. At any �x point,given that M [u; u℄ = 0 ^M [v; v℄ = 0:(M [u; u℄ = 0 ^M [v; v℄ = 0) _ (^j ::M [u; j℄ =M [v; j℄):Consider the parti
ular
ase, j = v. Then,(M [u; u℄ = 0 ^M [v; v℄ = 0) _ (M [u; v℄ =M [v; v℄):Using the fa
t that M [v; v℄ = 0 we
on
lude that M [u; v℄ = 0.In the se
ond
ase, if M [v; v℄ 6= 0 from Lemma 1, M [u; v℄ = 0.3.3. Mappings. Program Gauss
an be implemented in a variety of ways ondi�erent ar
hite
tures. For a sequential ma
hine, it may be more eÆ
ient to
hoosethe pivot rows in a parti
ular order. The
orre
tness of this s
heme is obviousfrom the proof be
ause it is obtained from the given program by restri
ting thenondeterministi

hoi
es in statement exe
utions. For an asyn
hronous shared-memory or distributed ar
hite
ture, the given program admits several possibleimplementations; the simplest one is to assign a pro
ess to a row. To fa
ilitatethe ex
hange operation, it is possible to allow the row number at a pro
ess tobe
hanged. Two rows
an be then ex
hanged simply by ex
hanging their rownumbers. A parallel syn
hronous ar
hite
ture with O(n) pro
essors
an
omplete

SOME PARALLEL NONDETERMINISTIC ALGORITHMS 57ea
h ex
hange operation in a
onstant time and ea
h pivot operation in O(n) steps;with O(n2) pro
essors, a pivot operation takes
onstant time.4. The Inverse of a MatrixThe method we use for the
omputation of the inverse matrix use Gauss-Jordansteps. A Gauss-Jordan step with the pivot element a[u; v℄ 6= 0 transforms thematrix A elements, in the following way:a[i; j℄ = 8>>>><>>>>: 1a[u;v℄ ; i = u ^ j = v�a[i;j℄a[u;v℄ ; i = u ^ j 6= va[i;j℄a[u;v℄ ; i 6= u ^ j = va[i;j℄�a[u;v℄�a[i;v℄�a[u;j℄a[u;v℄ ; i 6= u ^ j 6= v :If we apply a Gauss-Jordan step n times on matrix A[0::n� 1; 0::n� 1℄ we obtainthe inverse matrix A�1 [2℄. We assume that the rank of matrix A is n.4.1. A Solution. The
hoi
e of the pivot element it is done in nondeterministi
way, provided that it is nonzero. Sin
e, a pivot operation have to be done onlyone time for a parti
ular row u and a parti
ular
olumn v, after the exe
ution of apivot operation with the pivot element a[u; v℄ we set ind1[u℄ = 1 and ind2[v℄ = 1.The ind1 and ind2 are two arrays whi
h indi
ate the possible pivot steps. Anelimination step with the pivot a[u; v℄
an be exe
uted only if ind1[u℄ = 0 ^ind2[v℄ = 0.Be
ause we not
hoose every time pivot elements from the diagonal, a permu-tations of the rows of the inverse matrix results. The permutation p depends ofthe
hoi
es of the pivot elements.Program inversede
larea : array[0::n� 1; 0::n� 1℄ of realind1; ind2 : array[0::n� 1℄ of integerp : array[0::n� 1℄ of integerinitially< u : 0 � u < n :: ind1[u℄; ind2[u℄ = 0; 0 >assignfpivot operation with the element u; v if a[u; v℄ 6= 0g< zu; v : 0 � u < n ^ 0 � v < n ::< ki; j : 0 � i < n ^ 0 � j < n ::

58 VIRGINIA NICULESCUa[i; j℄ := 1=a[u; v℄ if i = u ^ j = v �:= �a[u; j℄=a[u; v℄ if i = u ^ j 6= v �:= a[i; v℄=a[u; v℄ if i 6= u ^ j = v �:= (a[i; j℄ � a[u; v℄� a[u; j℄ � a[i; v℄)=a[u; v℄ if i 6= u ^ j 6= v>kind1[u℄; ind2[v℄; p[u℄ := 1; 1; vif a[u; v℄ 6= 0 ^ ind1[u℄ = 0 ^ ind2[v℄ = 0>endfinverseg4.2. Corre
tness. If we denote by p the following sum p = (Pu : 0 � u < n :ind1[u℄), and by q the sum q = (Pu : 0 � u < n : ind2[u℄), it
an be easy provedthat the for the pair (p; q) the equality p = q holds at any moment of the exe
ution.So, we
an write: invariant p = q:The number p(p = q) in
rease after the exe
ution of any statement. The valuesfor p and q are bounded from above by n, hen
e the program inverse rea
hes ata �x point, where p = q = n.The equality p = q = n whi
h holds at any �x point shows that there areexe
uted exa
t n Gauss-Jordan steps with pivot elements from di�erent rows and
olumns. Therefore the matrix A at any �x point is the inverse matrix of theinitial matrix, possible with the rows permuted.To transform the result to the true inverse matrix the following program
anbe used. Program transformde
larea : array[0::n� 1; 0::n� 1℄ of realp : array[0::n� 1℄ of iutegerassign< zu; v : 0 � u < n ^ 0 � v < n ::frows ex
hange g< kj : 0 � j < n :: a[u; j℄; a[v; j℄ := a[v; j℄; a[u; j℄ >k p[u℄; p[v℄ := p[v℄; p[u℄if p[u℄ = v _ p[v℄ = u>endftransformg4.3. Mappings. On a sequential ar
hite
ture the program inverse
an be mappedby
hoosing the �rst pivot element founded; the sear
h of the element is made de-pending in ind1 and ind2.

SOME PARALLEL NONDETERMINISTIC ALGORITHMS 59The program
an be implemented on an asyn
hronous shared-memory system,by assigning a pro
essor to a row, or by assigning a pro
essor to ea
h matrixelement (and so the operations asso
iated with it), provided that there are enoughpro
essors.On a parallel syn
hronous ar
hite
ture with n2 pro
essors the exe
ution of theprogram takes O(n) time.4.4. Other Appli
ations. The program inverse
an be used to �nd the rank ofa matrix. The rank it will be equal to p = q, whi
h represents the number of theGauss-Jordan steps, whi
h were exe
uted.With slight modi�
ations, this program
an be used to resolve a system oflinear equations. The matrix A is repla
ed with the matrix M de�ned for theGauss program M = [AjB℄ and �nally the result (the solution ve
tor)is the last
olumn of the matrix at the �x point. A permutation of the elements it is done inthis
ase also.The appli
ation of n Gauss-Jordan steps represents also the se
ond stage of thealgorithm SIMPLEX. 5. Con
lusionsThere are presented some nondeterministi
 algorithms from numeri
al analysis.Their
orre
tness was proved, and di�erent mappings are dis
ussed.Nondeterministi
 programs
an be mapped more easier on parallel ma
hine,be
ause the parallelism brings some nondeterminism by itself.Interesting algorithms
an be developed using the
on
ept of nondeterminism.Nondeterministi
 programs
an be implemented on di�erent ar
hite
tures, in eÆ-
ient ways. Referen
es[1℄ G. E. Blello
h, B. M. Maggs , Parallel Algorithms, ACM Computing Surveys, Vol. 28, No.1, Mar
h 1996, pg. 51-54.[2℄ W.W. Bre
kner, Operational Resear
h, "Babe�s-Bolyai\ University, Cluj-Napo
a, 1981 (inRomanian).[3℄ K.M. Chandy, J. Misra, Parallel Program Design: A Foundation, Addison-Wesley, 1988.[4℄ Gh. Coman, Numeri
al Analysis, Libris, Cluj-Napo
a, 1995 (in Romanian).[5℄ I. Foster, Designing and Building Parallel Programs, 1995.[6℄ Carrol Morgan, Programming from Spe
i�
ations, Prenti
e Hall, 1990.Department of Computer S
ien
e, \Babes�-Bolyai" University, RO-3400 Cluj-Napo
a,1 Kog�alni
eanu St., RO-3400 Cluj-Napo
a, RomaniaE-mail address: gina�
s.ubb
luj.ro

STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000ON PROGRAMMING STYLE { PROGRAM CORRECTNESSRELATIONM. FRENT� IUAbstra
t. There is little empiri
al information about the relation betweenthe quality of the programs and the style of the programmer. One experimentin this dire
tion is presented in this paper.It is
onsidered that the style of the programmer a�e
ts his eÆ
ien
y,and the
orre
tness of his programs. To sustain this hyphotesis, the papersat a written examination were analysed and the
on
lusions are presented.Key words: programming methodology, style, quality, software metri
s,edu
ation 1. Introdu
tionThe need to measure various attributes met in software engineering is underlinedin [4℄. Certainly, it is very important to asess the time needed to realize a softwareproje
t, or to evaluate the quality, maintainability, reliability, or usability of aprogram, or the produ
tivity of a programmer. Also, we think it is very useful toassess the e�e
t of programming style on the above mentioned attributes.Is there a relation between the style of a programmer and the quality of hiswork? We need some de�nitions of the
on
epts we use. What is a style? In [2℄the word style is
onsidered to be the general way in whi
h something is done,\the general attitudes and usual ways of behaving", \the style of a produ
t is itsdesign", and the style of writing is \the
hoi
e of words and the way in whi
hsenten
es and paragraphs are stru
tured". It is somebody's manner of speaking,a
ting, writing, for expressing his thought.In Software Engineering when we de�ne the style we
an think only to how theprograms look [15, 17℄. Therefore, in a narrow sens we have:De�nition 1. Programming Style
onsists of the ways in whi
h the programerwrites programs easy to read, and easy to understand, the ways in whi
h thesequalities are a
hieved.2000 Mathemati
s Subje
t Classi�
ation. 68N30.1998 CR Categories and Des
riptors. D.2.3 [Software℄ : Software Engineering { CodingTools and Te
hniques D.2.7 [Software℄ : Software Engineering { Distirbution, Maintenan
e andEnhan
ements . 60

ON PROGRAMMING STYLE { PROGRAM CORRECTNESS RELATION 61Readability is
onsidered to be the main attribute of style [11℄. And readabilitydepends on indentation, good names, and on the
omments present in the textsof the programs.We will brie
y des
ribe the elements of style. But we must say that they maydi�er from person to person, although ea
h programmer must have and think to hisown style. Citing Gries, \Whatever
onventions you use, use them
onsistently"[10℄.Therefore, the elements of style (in a narrow sens) are:� Comments;� Text Formatting (Indentation, White Spa
es);� Good Names for Entities of the Program.Comments are very important for internal do
umentation. Every programought to have do
umentation in it. Comments must be used:� to state the spe
i�
ation of the problem solved by the program, to pre
isethe author, date, and other useful information for the reader;� to show the purpose of ea
h variable;� to explain what a pro
edure does: to show the spe
i�
ation of the pro-
edure, and the meaning of the parameters;� to write the loop invariants in those pla
es of the program where theyhold;� to explain the
onditions in whi
h some parts of the programs are rea
hed,and the role of these parts;� and to transmit other useful information to the reader.Indentation rules are used to enri
h the
larity of the program. There are avariety of suggestions for su
h rules. Gries suggests the following indentation rules[10℄: � su

esive short
ommands
an be written on the same line provided that,logi
ally, they belong together;�
ommands of a sequen
e that appear on su

esive lines should begin inthe same
olumn;� sub
ommands of a
omand must be indented 3 or 4 spa
es from the
olumn where the
ommand begins;� the pre- and post
ondition of a
ommand should begin in the same
ol-umn as the
ommand;� a loop should be pre
eded by an invariant and a bound fun
tion; theseshould begin in the same
olumn as the beginning of the loop.Then, the names of variables, fun
tions, types,
ontribute to the
larity ofprograms [13, 14℄. Here are some rules in this dire
tion:�
hoose meaningful names for all entities;

62 M. FRENT�IU� do not use a single name for two variables (i.e. the same name has onemeaning in a part of the program, and a se
ond meaning in anotherpart);� de�ne your variables before you use them, and then be sure to adhereto the de�nitions;� when a name is
omposed of two words, start the se
ond one with a
apital letter.But everybody admits that a badly
on
eived program remains a bad program.It may be well do
umented through
omments, it may be ni
e indented, and itmay use meningful names, if it is not
orre
t it is useless. And, also, if it
annotbe maintained, it is not of a good quality.Therefore, we
onsider a larger aspe
t of programming style.De�nition 2. Programming Style
onsists of all means taken by the programmerin his a
tivity for produ
ing reliabile produ
ts easy to read, and easy to under-stand, the ways in whi
h these qualities are a
hieved [13, 10℄, [8, page 137℄.This de�nition sets in the main frame the way in whi
h the programmer respe
tsthe general a

epted rules for good programming. It starts with the spe
i�
ationof the program, with the way in whi
h the design is done, with the
larity ofdo
umentation for all stages of work. As Floyd [5℄ said, we must permanently�ght to a
quire better programming methods for produ
ing
orre
t and easilymaintainable programs. The style depends on how the general a

epted rules forgood programming are respe
ted. And there are many books and papers that
ontain su
h rules [13, 14, 10, 6, 7, 8, 9℄.2. The experimentThe opportunity to do this study was o�ered by the Graduate Li
en
e Examina-tion held in June 2001. 94 students took part in this exam (for B.S
. in ComputerS
ien
e). The subje
t
onsisted of two parts: theoreti
s (the �rst two subje
ts),and programming (next two subje
ts). Here are the subje
ts:(1) Sorting. Qui
ksort;(2) Merging;(3) Spe
ify, design, and implement an Abstra
t Data Type SET;(4) Write a program whi
h prints the longest sequen
e of
onse
utive primesfrom a given sequen
e of natural numbers.The results are given in Table 2. Sin
e the results for the theoreti
al subje
tsare not dire
tly used in the analysis, only the total number of points (for allfour subje
ts) are given in the fourth
olumn (denoted by T). The P3, and P4
olumns
ontain the points given for the subje
t (3), and (4), respe
tively. Then,the elements of style are measured by grades from 0 to 10. The grade 0 is givenwhen the
orresponding attribute is not present at all, and 10 if it is
onsideredperfe
tly.

ON PROGRAMMING STYLE { PROGRAM CORRECTNESS RELATION 63No P3 P4 T P3 P4 No P3 P4 T P3 P4I CNG I CNG I CNG I CNG1 23 22 73 8 0 6 7 8 0 8 5 48 24 21 80 6 5 5 6 5 4 4 52 19 18 66 7 2 7 5 6 3 4 3 49 18 23 75 4 0 4 4 5 0 3 53 25 8 73 8 1 3 6 7 0 8 2 50 25 25 90 9 6 6 9 8 5 5 84 15 18 57 7 3 5 7 8 2 6 2 51 24 19 79 7 0 4 6 8 8 5 75 22 15 70 7 0 7 4 9 0 5 4 52 20 18 72 7 2 6 7 6 2 4 66 15 19 69 8 1 6 5 6 6 8 7 53 22 23 85 6 1 5 6 7 2 3 77 8 19 57 7 0 5 2 7 1 8 4 54 11 18 64 4 1 4 4 5 3 2 48 15 20 71 5 1 5 2 8 3 7 6 55 23 20 78 5 4 5 6 5 1 4 59 22 25 81 7 5 5 5 8 5 8 6 56 20 21 75 3 1 2 3 4 3 4 410 25 22 79 7 6 5 6 7 8 6 8 57 20 0 52 4 0 3 4 0 0 0 011 25 20 84 8 4 6 7 7 0 4 6 58 10 20 52 5 4 4 5 6 1 3 612 22 19 78 8 0 4 8 8 2 5 5 59 25 22 87 6 7 6 8 6 0 4 613 20 20 77 6 6 5 8 4 8 7 7 60 20 5 65 7 5 5 7 6 4 3 514 9 5 42 0 0 0 0 2 0 2 0 61 6 10 42 2 2 1 2 5 0 5 515 18 17 75 6 0 3 5 5 4 3 4 62 18 15 64 5 0 3 4 4 1 3 316 22 20 82 5 0 4 5 5 1 4 5 63 23 20 82 4 2 5 5 5 3 4 517 0 2 28 0 0 0 0 2 0 0 0 64 20 20 80 6 0 5 6 6 7 5 718 23 22 80 6 0 4 6 5 0 4 5 65 24 21 82 7 8 7 8 7 7 6 719 24 20 82 9 7 7 8 8 6 6 8 66 20 18 74 6 0 4 5 6 9 6 820 13 17 63 6 1 3 3 7 0 4 7 67 21 20 73 6 0 4 5 7 3 4 621 15 15 57 6 2 3 5 6 3 5 5 68 9 21 65 2 0 3 2 3 4 5 422 17 18 71 7 7 6 7 7 6 5 6 69 14 20 67 3 0 2 2 5 0 2 423 5 13 42 3 0 1 1 2 4 2 2 70 25 15 78 6 3 5 6 5 2 3 424 12 20 66 5 4 5 4 5 6 6 5 71 12 10 55 2 0 3 3 4 0 2 225 25 23 88 6 8 6 9 7 7 7 8 72 20 19 76 4 1 3 3 4 2 3 326 10 19 49 2 0 1 3 6 1 3 6 73 23 15 76 7 3 5 6 4 3 4 427 0 0 15 0 0 0 0 0 0 0 0 74 9 15 57 4 3 3 4 5 3 4 428 13 15 61 2 7 4 4 7 0 4 4 75 20 20 72 5 3 4 5 5 2 4 529 18 21 78 6 4 5 5 7 5 5 7 76 22 13 75 6 7 5 6 5 5 3 430 24 18 81 8 6 6 7 5 5 3 5 77 22 25 76 7 3 6 7 8 9 5 631 24 21 85 7 1 6 6 5 4 4 5 78 17 22 79 4 0 2 3 6 6 4 632 25 23 85 7 6 6 8 7 6 5 8 79 13 18 64 4 0 3 3 7 5 5 733 24 15 74 6 3 6 7 5 3 6 5 80 23 19 82 6 0 4 5 5 4 5 534 23 22 65 5 7 7 7 6 0 5 6 81 25 23 85 5 0 4 5 6 1 4 535 18 20 77 6 2 6 6 7 5 4 5 82 22 21 82 2 4 5 5 5 3 5 536 24 20 79 9 9 8 9 5 6 6 6 83 18 22 73 6 4 6 6 6 4 5 637 19 18 76 6 5 4 5 3 4 3 5 84 11 18 68 3 2 3 3 4 0 2 338 20 4 53 5 1 5 5 2 0 1 1 85 8 18 46 4 2 3 3 5 2 3 439 20 18 66 8 5 4 7 5 7 5 5 86 12 19 59 5 0 4 4 5 0 3 540 22 19 79 7 0 5 6 6 0 4 4 87 25 20 83 6 0 5 6 6 4 3 541 20 22 65 6 0 4 6 7 1 4 7 88 9 18 54 4 0 3 3 5 1 4 442 11 3 46 2 1 1 1 1 0 1 1 89 25 20 82 7 0 6 6 6 6 5 643 9 11 30 2 0 1 2 2 2 1 2 90 23 22 82 8 7 6 8 8 7 6 844 21 20 61 3 0 4 4 3 5 3 3 91 24 20 79 7 5 6 7 7 6 6 745 22 13 72 5 2 3 5 4 1 3 4 92 17 21 72 6 5 5 6 6 6 6 646 24 21 80 6 5 5 6 6 4 4 5 93 25 23 88 7 4 5 7 6 7 5 747 21 20 76 5 5 4 5 4 5 3 4 94 24 15 77 5 3 4 4 5 4 3 4Table 1. Primary data for attributes of style

64 M. FRENT�IULine no. X1 X2 Y C(X1,Y) C(X2,Y)1 P3 T P3/I 0.70 0.672 P3 T P3/C 0.37 0.373 P3 T P3/N 0.70 0.704 P3 T P3/G 0.79 0.735 P4 T P4/I 0.64 0.576 P4 T P4/C 0.42 0.457 P4 T P4/N 0.56 0.508 P4 T P4/G 0.76 0.669 P3 P4 P3/I + P4/I 0.63 0.6110 P3 P4 P3/C + P4/C 0.43 0.4011 P3 P4 P3/N + P4/N 0.60 0.6312 P3 P4 P3/G + P4/G 0.72 0.6913 P3/I + P4/I P3/N + P4/N T 0.68 0.6714 P3/C + P4/C P3/G + P4/G T 0.48 0.77Table 2. The
orrelation
oeÆ
ients for various attributesFor example, in
olumn P4/C the grades for
omments in the program
orre-sponding to the problem 4 are given. The minimum amount of
omments requiredto obtain 10 is formed from the statement of the problem, the pre
ondition andthe post
ondition for ea
h pro
edure, the meaning of ea
h variable, and, in someimportant pla
es, the situation in whi
h that part of the pro
edure is rea
hed.The papers were independently analysed by two tea
hers, and the points weregiven for the global
orre
tness of programs. It was similar to an inspe
tion of theprogram, su
h that the given number of points re
e
ts the measure of program
orre
tness (
olumns P3, and P4, respe
tively), and a
quired knowledges (
olumnT). Although everybody knew that the
orre
tness of programs is important, andthis was wat
hed
arefully, the students also knew that the tea
hers look at theirstyle of programming.The
olumns marked by (C), (I), and (N)
ontain the points for the measuresin whi
h the rules
onne
ted to
omments, indentation, and good names are re-spe
ted, as explained above. The
olumn (G)
ontains the points (from 0 to 10)for the way in whi
h all the general a

epted programming rules are respe
ted,starting with the spe
i�
ations of the problem and of all used modules, analysingthe design and the do
umentation of all a
tivities. The points
ontained in the
olumns (C), (I), (N), and (G) were given by the author of this paper.3. Con
lusionsIt is known that the measure of linear dependen
e between two
hara
teristi
sis given by the
orrelation
oeÆ
ient of these
hara
teristi
s. Therefore, the
or-relation
oeÆ
ients for various attributes were
omputed. They are given in Table3, where C(X,Y) denotes the
orrelation
oe�
ient of the attributes X and Y.

ON PROGRAMMING STYLE { PROGRAM CORRECTNESS RELATION 65As we expe
ted, these
oeÆ
ients are positive, and show that there is a strongdependen
e between the
orresponding attributes. This
on�rms the idea thatprogramming style has an important impa
t on program
orre
tness. Also, it wasexpe
ted that the largest
oeÆ
ients are between the
orre
tness and the way inwhi
h the general rules are satis�ed (
olumn G).Moreover, we must observe that these
orrelation
oe�
ients are stable for bothproblems, i.e. C(P3; A) is
losed to C(P4; A) for all attributes A 2 fI; C;N;Gg.This
on�rms that the students have been
onvin
ed of the ne
essity to respe
tthe above mentioned rules, and have a
quired an a

eptable programming style.Nevertheless, we must observe some anomalies, and, for edu
ational purposes,take some measure to eliminate them. First, we
an observe that the smallest
oeÆ
ients
orrespond to the
olumn C: C(P3; P3=C) = 0:37 is the smallest ofall. Therefore, students do not like writing
omments. In this dire
tion we mustobserve that there are 56 programs (from 188 = 2 � 94) that have no
ommentsat all!This is in
ontrast with the
ase of the other attributes, where the presen
e ofzeros is an ex
eption, only the lines with P3 = 0, or P4 = 0, having the gradesfor these attributes equal to zero.The indentation rules are mu
h better respe
ted. There is one more reason forthis. At all le
tures, when the tea
hers write algorithms or
ode, they respe
tthese rules in all lines. But only sometimes they write
omments.We may
on
lude that a good programming style and a
orre
t programminghabit must be taught in parrallel. As
an be seen [6, 7, 8, 9℄ there were manyimportant programming style rules in my le
tures, but they were not
ompulsory,as is the
ase of many universities [1, 3, 11, 12, 15, 17℄. As a
onsequen
e of thisanalysis, I think su
h rules must be
ome
ompulsory.Referen
es[1℄ Adams, David, and Dan Be
kett, Programming Style, http://www.island-data.
om/downloads/ papers/programmingstyle.html, 2001.[2℄ BBC English Di
tionary, HarperCollins Publishers, 1993.[3℄ Craig E.Wills, Programming Assignments, http://www.
s.wpi.edu/�
ew/
ourses/2005/style/style.html[4℄ Fenton, N.E., Software Metri
s. A Rigorous Approa
h, Int. Thompson Computer Press,London, 1995.[5℄ Floyd, R.W., The Paradigms of Programming, Comm.ACM, 22(1979),8, 455-460.[6℄ Frent�iu M., B.Prv, Programming Proverbs Revisited, Studia Univ. Babe�s- Bolyai, Mathe-mati
a, XXXVIII (1993), 3, 49-58.[7℄ Frent�iu M., On Program Corre
tness and Tea
hing Programming, Computer S
ien
e Journalof Moldova, vol.5 (1997), no.3, pp.250-260.[8℄ Frent�iu M., Lazar I.(Romanian), Programming Fundamentals. Algorithms Design,Ed.Univ."Petru-Maior", Târgu-Mure�s, 2000.[9℄ Frentiu M., Verifying Program Corre
tness (Romanian), Ed.Univ."Petru-Maior", Târgu-Mure�s, 2001.

66 M. FRENT�IU[10℄ Gries, D., The S
ien
e of Programming, Springer Verlag, Berlin, 1981.[11℄ Haahr, P., A Programming Style for Java, http://www.web
om.
om/�haahr/essays/java-style[12℄ Keith Gabryelski, Wild�re C++ Programming Style, http://www.
s.umd.edu/users/
ml/
style[13℄ Kernigham, Brian W., and P.J.Plauger, The Elements of Programming Style, M
Graw-HillBook Company, New York, 1974.[14℄ Ledgard H.F., Programming Proverbs for Fortran Programers, Hayden Book Company, In
.,New Jersey, 1975.[15℄ M
Cann, Toward Developing Good Programming Style, http://www.
oms
.u
ok.edu/�m

ann/style p.html[16℄ Meyer, B., Obje
t Oriented Software Constru
tion, Prenti
e Hall, Englewood Cli�s, 1988.[17℄ David R.Tribble, Notes About Programming Style, http://www.
ash.net/�dtribble/sr
/sys/style.htm, 1998-04-16Department of Computer S
ien
e, \Babes�-Bolyai" University, 1, M. Kog�alni
eanu,RO-3400 Cluj-Napo
a, RomaniaE-mail address: mfrentiu�
s.ubb
luj.ro

STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000USING SCALABLE STATECHARTS FOR ACTIVE OBJECTSINTERNAL CONCURRENCY MODELINGDAN MIRCEA SUCIUAbstra
t. In the last two de
ades, the design of obje
t models having
on-
urrent features has represented a
onstant
on
ern for many resear
hers.The fundamental abstra
tions used in this methodology are
on
urrent (ora
tive) obje
ts and proto
ols for passing messages between them. State
hartsseem to be one of the most appropriate ways of modeling the behavior of
on-
urrent obje
ts. Based on state
harts we will de�ne an exe
utable formalism,
alled level 2 s
alable state
hart (SS2), for modeling of intra-
on
urren
y inobje
t-oriented
on
urrent appli
ations.Key words: obje
t-oriented
on
urrent programming, rea
tive sys-tems, state
harts. 1. Introdu
tionIn the last two de
ades, the design of obje
t models having
on
urrent featureshas represented a
onstant
on
ern for many resear
hers. This was happening formainly two reasons. On the one hand, as an e�e
t of the obtained te
hnologi
alprogress, many obje
t-oriented programming languages having
on
urrent featureshave been designed during this time (over 100 su
h languages have been dis
ussedand systemized in [10℄).On the other hand, the fa
t is known that obje
t-oriented programming hasbeen developed having as a model our environment (seen as a set of obje
ts amongwhi
h several relationships exist and whi
h
ommuni
ate between them by messagetransmission). However, in the real world these obje
ts are naturally
on
urrent,whi
h leads to the normal trend of transposing this thing into programming.It is interesting how two distin
t
riteria, the �rst one obje
tive (determined bythe rise of performan
es and
omplexities of the
al
ulus systems), and the se
ondone subje
tive (a
tually determined by \de
en
y", whi
h urges us to solve di�erentabstra
t problems looking for similitude with the real world), have �nally led to2000 Mathemati
s Subje
t Classi�
ation. 68N30.1998 CR Categories and Des
riptors. D.2.3 [Software℄ : Software Engineering { CodingTools and Te
hniques D.2.7 [Software℄ : Software Engineering { Distirbution, Maintenan
e andEnhan
ements . 67

68 DAN MIRCEA SUCIUthe development of some
on
epts, some programming te
hniques and impli
itlyof some eÆ
ient analysis and design methods for developing appli
ations.The
on
urrent programming has o

urred before the obje
t-oriented program-ming. It has been applied for the �rst time within the framework of pro
edurallanguages. Here the main problems studied have been
on
erned to the syn-
hronization of the parallel exe
ution of some instru
tion sequen
es and to theinformation transmission among many other
on
urrent a
tivities.On
e with the appearan
e of obje
t-oriented programming software develop-ment has met a qualitative and meaningful leap. In this way, the development ofthese programs (or appli
ations) does not involve the de
omposition of problemsinto algorithmi
 pro
edures, but independent obje
ts that intera
ts among them.An evaluation of the
oordinating primitives of these intera
tions will be a
hievedin a
on
urrent system.In the same time, a great interest was a

orded to obje
t oriented te
hnology,espe
ially to the analysis and design methods. The analysis and design methodsmay be de�ned as
oherent approa
hes used to des
ribe a system. Due to the
omplexity of the systems, di�erent models are built, ea
h of them
ontaininganother view of the system. Any model emphasize an aspe
t and negle
t all theothers. For instan
e, the entity- relation model des
ribes the dates involved inthe system and indi
ates nothing about their pro
essing. In order to
over all theaspe
ts
onne
ted with the design, every method uses more than one model.

Figure 1. Iterative model of appli
ations development using anobje
t-oriented analysis/design method

ACTIVE OBJECTS INTERNAL CONCURRENCY MODELING 69The life
y
le of an appli
ation, represents the stages that are go through in thepro
ess of developing that appli
ation. The most important stages are:Analysis: where are identi�ed the main
hara
teristi
s of all possible
or-re
t solutions,Design: that add to analysis models new elements that de�ne a parti
ularsolution, based on some
riteria optimizations,Implementation: where an exe
utable design is built for the parti
ularsolution modeled in design phase,Testing: where is veri�ed the equivalen
e of the implementation with thedesigned model and validates the fa
t that the implementation respe
tsthe
orre
tness
riteria identi�ed in the analysis phase.The obje
t oriented analysis and design methods allow an iterative approa
h ofthe phases from appli
ations life
y
le (Figure 1).CASE (Computer Aided Software Engineering) tools are software produ
ts ableto support medium or large appli
ation development. This support is realised byautomating some of the a
tivities made in an analysis and design method. Ifwe agree that one of the main goals of an analysis and design method is
odegeneration and that we should obtain automati
ally a high rate of appli
ation
ode, it is obvious that an eÆ
ient use of a method
annot be made without anasso
iated CASE tool.Typi
ally, the translation of a
omplex analysis/design model into a program-ming language takes a long period. A model is
alled exe
utable if this translation
an be made automati
ally. The automatization of the translation pro
ess allowsrunning a prototype of an appli
ation immediately after building its model.This paper
aptures aspe
ts regarding
on
urrent obje
t oriented appli
ationmodeling. We analyzed the main obje
t models developed in literature, insistingon
on
urren
y aspe
ts. In the
enter of this analysis is UML (Uni�ed ModelingLanguage) version 1.3 [8℄.The obtained results and the similarities between a
tive obje
t and rea
tivesystems drive us to the idea of modeling their behavior through state
harts for-malism. We extended the s
alable state
harts formalism, introdu
ed in [13℄, whi
hallow developing exe
utable models and o�ers support for automati
 sour
e
odegeneration and for simulation of a
tive obje
ts behavior.The exe
utability is an important feature of s
alable state
harts [13℄, allowingthe automatization of a
tive obje
ts implementation based on their behavioralmodels. Furthermore, the exe
utability o�ers support for simulation, testing anddebugging of a
tive obje
t exe
ution at the same level of abstra
tion like the builtmodel.

70 DAN MIRCEA SUCIU2. Level 2 s
alable state
harts (SS2)SS1 state
harts de�ned in [13℄ do not allow parallel triggering of transitions.Thus SS1 state
harts
annot be used to model intra-obje
t
on
urren
y. Fur-thermore, SS1 state
harts do not provide me
hanisms for modeling
onditionalsyn
hronization and syn
hronization
onstraints.We will extent SS1 with new elements that allow us to spe
ify state invariants,
onditions for transition triggering and to handle more than one message fromqueue.De�nition 1. A level 2 s
alable state
hart of a
lass K is a tuple:SS2K = (M;S;O; P;E; sR; SF ; (stSu

; stInit; ortSu

;); inv; T ; eval; par; Sa; C)where: � M is a �nite set of messages,� S is a �nite, non-empty set of states,� O is a �nite, non-empty set of orthogonal
omponents,� P is a �nite set of properties,� sR 2 S is the root of the states hierar
hy,� SF is a �nite set of �nal states. To preserve the
onsisten
y of our modelwe will presume that all the �nal states will be su

essors of orthogonal
omponents from the root state sR. Thus we will eliminate the termina-tion transitions proposed in UML [8℄ without a�e
t the modeling powerof the state
harts.� fun
tions that de�nes the states hierar
hy:{ stSu

 : O ! P(S [SF), where stSu

(o) = fs1; s2; : : : ; sng is theset of sub-states of the orthogonal
omponent o, with the restri
tionthat 8o1; o2 2 O we have stSu

(o1) \ stSu

(o2) = ;;{ stInit : Onfo : stSu

(o) = ;g ! S; stInit(o) = s0 2 stSu

(o),the initial sub-state of the orthogonal
omponent o (stSu

 is de�nedonly for non-empty orthogonal
omponents);{ ortSu

 : S ! P(O)nf;g, where ortSu

(s) = fo1; o2; : : : ; omg isthe set of the orthogonal
omponents owned by state s, with therestri
tion that 8s1; s2 2 S we have ortSu

(s1) \ ortSu

(s2) = ;(a state has at least one orthogonal
omponent);� T � P(SnfsRg) � M � P (SnfsRg) is a �nite set of transitions. Atransition (fs01; : : : ; s0ig;m; fs001 ; : : : ; s00j g) 2 T means that if an obje
t is insour
e states s01; : : : ; s0i 2 SnfsRg (ea
h sour
e state is lo
ated in distin
torthogonal
omponents of a state from S) and re
eives a message mthen, after exe
uting the operation asso
iated to m, the obje
t will enterin destination states s001 ; : : : ; s00j 2 SnsRg. The root state
an not besour
e nor destination for a transition and the sets of sour
e states anddestination states not
ontain states that in
ludes ea
h other.

ACTIVE OBJECTS INTERNAL CONCURRENCY MODELING 71� Sa � S [SF is the set of a
tive states of the state
hart in a givenmoment with the restri
tion that 8sa 2 Sa; ortSu

(sa) = ;,� C 2M? is a �nite sequen
e of messages, and models the messages queueof an a
tive obje
t.Figure 2
ontains an example of a SS0 state
hart and its visual representation.The stru
ture of the modeled
lass (Bottle) is de�ned in the same �gure usingUML notation.Based on stSu

 and ortSu

 fun
tions we will de�ne another two fun
tionsthat return the parent of a state or orthogonal
omponent.De�nition 2. The fun
tion stPred : O ! S, where stPred(o) = s 2 S if o 2ortSu

(s), determines the parent state of an orthogonal
omponent o 2 O. Thefun
tion ortPred : S [SF nfsRg ! O, ortPred(s) = o 2 O if s 2 stSu

(o)determines the orthogonal
omponent that is parent of a state s 2 S [SF nfsRg.The restri
tions stated in de�nition 1:8o1; o2 2 O; stSu

(o1) \ stSu

(o2) = ; and8s1; s2 2 S; ortSu

(s1) \ stSu

(s2) = ;;ensure that stPred and ortPred are well de�ned.To
omplete the formal de�nition of SS1 state
harts we will give a formalspe
i�
ation for valid transitions. For this reason, we will de�ne �rst the nestingrelation between states and/or orthogonal
omponents.De�nition 3. Two elements so1; so2 2 S [O are in nesting relation, denoted byso1 � so2, i� one of the above aÆrmations is true:a) so1 = so2,b) so1 2 S ^ so2 2 S) 9n 2 N+ : so2 = stPred(ortPred(� � �| {z }n times so1 � � �)),
) so1 2 O ^ so2 2 O) 9n 2 N+ : so2 = ortPred(stPred(� � �| {z }n times so1 � � �)),d) so1 2 S ^ so2 2 O) 9n 2 N+ : so2 = ortPred(stPred(� � �| {z }n times ortPred(so1) � � �))e) so1 2 O ^ so2 2 S) 9n 2 N+ : so2 = stPred(ortPred(� � �| {z }n times stPred(so1) � � �)).Proposition 1. The nesting relation is partial order over S [O.Proof . The re
exivity is assured by the aÆrmation a) from nesting relationde�nition.

72 DAN MIRCEA SUCIULet so1; so2; so3 2 S be three states su
h that so1 � so2 and so2 � so3. Fromde�nition 7 we have that 9n 2 N+ : so2 = stPred(ortPred(� � �| {z }n times so1 � � �)) and9m 2 N+ : so3 = stPred(ortPred(� � �| {z }m times so2 � � �)). This implies that 9r = n +m 2N+ : so3 = stPred(ortPred(� � �| {z }r=n+m times so1 � � �)), so so1 � so3. This means that thenesting relation is transitive over S. Analogous it
an be proved that the nestingrelation is transitive over S [O for so1; so2; so3 belonging to S and/or O.We will prove that the nesting relation is anti-symmetri
al over S.Let so1; so2 2 S be two states for whi
h so1 � so2 and so2 � so1. This impliesthat: so1 = so2;or 9n;m 2 N+ : so2 = stPred(ortPred(� � �| {z }n times so1 � � �))and so1 = stPred(ortPred(� � �| {z }m times so2 � � �)):Let us suppose that so1 6= so2. Then9r = n+m 2 N+ : so1 = stPred(ortPred(� � �| {z }r=n+m times so1 � � �)):From de�nition 1 we have that the above statement is true only for r = 0. This isobviously impossible be
ause r 2 N+ . We dedu
e that so1 = so2. The other three
ases (so1; so2 2 O, so1 2 O and so2 2 S, so1 2 S and so2 2 O) are analogous.Thus, 8so1; so2 2 S [O, so1 � so2 ^ so2 � so1) so1 = so2, i.e. the nestingrelation is anti-symmetri
al over S [O.Be
ause the relation (S [O;�) is re
exive, transitive and anti-symmetri
al wededu
e that the nesting relation is partial order over S [O. �De�nition 4. For a state or orthogonal
omponent so 2 S [O, fso0 : so0 2S [O; so � so0g, denoted by PREDso, is the set of all its prede
essors.Proposition 2. For all so 2 S [O, (PREDso;�) is total order.Proof. Corresponding to proposition 1, the relation (PREDso;) is partialorder. Let so0; so00 2 PREDso \ S be two prede
essor states of so. A

ording tode�nition 8 we have:9n0 2 N+ : so0 = stPred(ortPred(� � �| {z }n0 times so � � �))

ACTIVE OBJECTS INTERNAL CONCURRENCY MODELING 73and 9n00 2 N+ : so00 = stPred(ortPred(� � �| {z }n00 times so � � �)):We suppose that n0 > n0'. We have:9n00 2 N+ : so00 = stPred(ortPred(� � �| {z }n0�n" times so0 � � �))that implies so0 � so00. The other three
ases (so0; so00 2 PREDso \ O, so0 2PREDso
apO and so00 2 PREDso\S, so0 2 PREDso\S and so00\PREDso\O) are analogous.Thus, 8so0; so00 2 PREDso, so0 � so00 or so00 � so0, whi
h implies (PREDso;�)is total order. �De�nition 5. Let (X;�) be a partially ordered set and let Y be a subset of X.An element x 2 X is a lower bound for Y i� x � y for all y 2 Y . A lower boundx for Y is the greatest lower bound for Y i�, for every lower bound x0 for Y ,x0 � y. Whet it exists, we denote the greatest lower bound for Y by uY .In the paper we use the following three well known results [9℄:� if x is a lower bound for Y and x 2 Y then uY = x;� if uY exists then it is unique;� if (Y;�) is total order and Y is �nite then uY exists and uY 2 Y .Be
ause (PREDso;�) is total order and PREDso is a �nite set, we dedu
e thatthe greatest lower bound for PREDso does exist, and uPREDso 2 PREDso. Wewill prove that uPREDso is the parent of so.Proposition 3. Let so 2 S [O be a state or orthogonal
omponent. One of thefollowing aÆrmations is true:1) so 2 S) ortPred(so) = uPREDso,2) so 2 O) stPred(so) = uPREDso.Proof. a) Let so 2 S be a state. It is obvious that so � ortPred(so), andbased on the de�nition of set PREDso we have that ortPred(so) 2 PREDso.Let so0 2 PREDso be an arbitrary prede
essor of the state so. From de�nition8 we have that so � so0. If so0 is an orthogonal
omponent (so0 2 O) then:9n 2 N : so0 = ortPred(stPred(� � �| {z }n times ortPred(so) � � �));whi
h implies that ortPred(so) � so0. The
ase when so0 is a state (so0 2 S) isanalogous. Be
ause so' was arbitrary sele
ted from PREDso we will have:8so0 2 PREDso; ortP red(so) � so0. that implies ortPred(so) = uPREDso.The proof for statement b) is analogous. �

74 DAN MIRCEA SUCIU

Figure 2. Graphi
al representation of SS2 state
hartDe�nition 6. Two states or orthogonal
omponents so0; so00 2 S are orthogonali� so0 6� so00, so00 6� so0 and u(PREDso0 \ PREDso00) 2 S.In other words, two states or orthogonal
omponents are orthogonal if they arenot in nesting relation and the
losest
ommon an
estor is a state.De�nition 7. Let t = (fs0i 2 S : i = 1; : : : ; ng;m; fs00j 2 S : j = 1; : : : ;mg) 2 Tbe a transition. We say that t is a valid transition if all the following aÆrmationsare true:a) Ps0 = uTi=1n PREDs0i 2 S (the sour
e states are orthogonal),b) Ps00 = u \j=1m PREDs00j 2 S (the destination states are orthogonal),
) Ps0 6� Ps00, Ps00 6� Ps0 and u(PREDPs0 \ PREDPs00) 2 O (sour
e and desti-nation states are not orthogonal).We will
all domt = u(PREDPs0 \PRED0Ps0) 2 O the domain of transition t.

ACTIVE OBJECTS INTERNAL CONCURRENCY MODELING 75The domain of a transition represents the \smallest" orthogonal
omponentthat
ontains all transition's sour
e and destination states.In de�nition 1 fun
tion par
hara
terizes the algorithm of
hoosing a set ofmessages frommessage queue. The spe
i�
ation of par fun
tion is not important inthis phase of formalization and is imposed by parti
ular me
hanisms implementedin various
on
urrent obje
t oriented languages. We
onsider that this fun
tionwill return the maximal set of messages that
an be handled
on
urrently.De�nition 8. Two transitions t0; t00 2 T are textslindependent i� their domainsare orthogonal, i.e., u(PREDdomt0 \ PREDdomt00) 2 S.De�nition 9. A
on�guration of a SS2 state
hart is a tuple (Sa; par(C); Cr),where Sa � S is the �nite set of a
tive states, par(C) is the set of messagesfrom queue whi
h will be pro
essed in parallel and Cr 2 M? the rest of messagesqueue C after removing messages from par(C). The initial
on�guration of a SS2state
hart if given by (a
tive(sR);?).De�nition 10. The interpretation of a SS2 state
hart
on�guration is a fun
tion:Æ2 : P(S)�P(M)�M? ! P(S [SF)�M?;Æ2(Sa; fm1; : : : ;mng; Cr) == 8<: (A
tiv(Si=1n S00i); C 0r); if 8i 2 f1; : : : ; ng9(S0i � Sa [Spa and eval(ei) = true(Sa; C 0r); if 8i 2 f1; : : : ; ng 6 9S1; S2; S2 � S1; e 2 E : (S1;mi; e; S2) 2 T(Sa; C 0r ^m1 ^ � � � ^mn); elseDe�nition 11. The exe
ution of a SS2 state
hart is a sequen
e �nite or in�-nite of
on�guration interpretations, starting from the initial
on�guration, and isdenoted:(a
tive(sR); ;;?) Æ2�! (S1; par(C); Cr1) Æ2�! � � � Æ2�! (Sk; par(C); Crk) Æ2�! � � �where S1; : : : ; Sk; : : : � S, m1; : : : ;mk; : : : 2 M and Cr1; : : : ; Crk; : : : 2 M?. Theexe
ution is �nite if the set of a
tivated states
ontains at least a �nal state.3. Con
lusionsWe extended the state
harts formalism [7℄ with new semanti
ally and graphi
alelements, in order to allow the spe
i�
ation of a
tive obje
ts behavior with respe
tof a general
on
urrent obje
t model. The extensions are: allowing s
alability,exe
utability and the de�nition of a pre
ise semanti
.The formalism that is proposed in se
tion two of this paper is
alled level twos
alable state
hart. The s
alability of states minimizes the e�ort of modelingobje
ts with a
omplex behavior. In this way, the a
tive obje
ts behavior models
an be analyzed at di�erent levels of detail.Be
ause the semanti
 of s
alable state
harts was de�ned regarding a general
on
urrent obje
t model, they allow sour
e
ode generation in various
on
urrent

76 DAN MIRCEA SUCIUobje
t-oriented languages that use various modalities and me
hanisms for spe
i-�
ation of
on
urren
y and intera
tion between
on
urrent a
tivities. This thing
onfers a better
exibility in translation of behavioral models in sour
e
ode.Referen
es[1℄ F. Barbier, H. Briand, B. Dano, S. Rideau, \The Exe
utability of Obje
t-Oriented FiniteState Ma
hines", Journal of Obje
t-Oriented Programming, SIGS Publi
ations, 4 (11), pp.16{24, jul/aug 1998[2℄ Mi
hael von der Bee
k, \A Comparison of State
harts Variants", Formal Te
hniques inReal-Time and Fault-Tolerant Systems, L. de Roever and J. Vytopil (eds.), Le
ture Notesin Computer S
ien
e, vol. 863, pp. 128{148, Springer-Verlag, New York, 1994[3℄ S. Cook, J. Daniels, \Designing Obje
t Systems - Obje
t-Oriented Modelling with Syn-tropy", Prenti
e Hall, Englewood Cli�s, NJ, 1994[4℄ Bru
e Powel Douglas, \UML State
harts", Embedded Systems Programming, jan. 1999,available at http://www.ilogix.
om/fs prod.htm[5℄ D. Harel, A. Naamad, \The STATEMATE Semanti
s of State
harts", ACM Transa
tionson Software Engineering and Methodology, 5 (4), pp. 293{333, 1996[6℄ D. Harel, E. Gery, \Exe
utable Obje
t Modeling with State
harts", IEEE Computer, 30(7): 31{42, Jul. 1997[7℄ David Harel, State
harts: A Visual Formalism for Complex Systems, S
ien
e of ComputerProgramming, vol.8, no. 3, pp. 231{274, June 1987[8℄ Obje
t Management Group, OMG Uni�ed Modeling Language Spe
i�
ation, ver. 1.3, June1999 available on Internet at http://www.rational.
om/[9℄ Z. Manna, Mathemati
al Theory of Computation, M
Graw-Hill, 1974[10℄ Mi
hael Phillipsen, Imperative Con
urrent Obje
t-Oriented Languages, Te
hni
al ReportTR-95- 049, International Computer S
ien
e Institute, Berkeley, Aug. 1995[11℄ Marian S
uturi
i, Dan Mir
ea Su
iu, Mihaela S
uturi
i, Iulian Ober, Spe
i�
ation of a
tiveobje
ts behavior using state
harts, Studia Universitatis \Babes Bolyai", Informati
a, Vol.XLII, no. 1, pp. 19{30, 1997[12℄ Dan Mir
ea Su
iu, Reuse Anomaly in Obje
t-Oriented Con
urrent Programming, StudiaUniversitatis \Babes-Bolyai", Informati
a, Vol. XLII, no. 2, pp. 74{89, 1997[13℄ Dan Mir
ea Su
iu, Extending State
harts for Con
urrent Obje
ts Modeling, Studia Univer-sitatis \Babes-Bolyai", Informati
a, Vol. XLIV, No. 1, pp. 37{44, 1999Department of Computer S
ien
e, \Babes�-Bolyai" University, 1 M. Kog�alni
eanuSt., RO-3400 Cluj-Napo
a, RomaniaE-mail address: tzutzu�
s.ubb
luj.ro

STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000TERM REWRITING SYSTEMS IN LOGIC PROGRAMMINGAND IN FUNCTIONAL PROGRAMMINGDOINA T�ATAR, GABRIELA S�ERBANAbstra
t. Automated theorem proving and term rewriting system are �eldswith big interest sin
e some years. Often these �elds have a
ommon devel-opment. Is it not amazingly that logi
 programming and fun
tional program-ming, whi
h belongs to both these �elds, o�ers simple solutions to problemsarising at the frontier of them. In [8℄, the author submitted a
hallenge for"�nding an optimum way to implement the rewriting systems ". This paperpresents the way in that the logi
 programming and fun
tional programmingo�er their
on
ision to realize a sound implementation of the TRS.1. Introdu
tionIn the �rst se
tion we will presents shortly the equation systems, the TRS, the\
riti
al pair" idea and the
ompletion algorithm [1, 5, 7, 10℄. In the followingse
tions we will outline some problems and their solution in our implementationin Prolog (se
tion 2) and in Lisp (se
tion 3).De�nition 1 An equational theory (F,V,E)
onsists of:� a set F of fun
tion symbols (with the same sort, for simpli
ity).� a set V of variables.Let T(F,V) be the set of terms build from F and V.� a set of pairs of equations, s=t,s,t 2 T(F,V).The set of equations E de�nes a synta
ti
al equality relation ==E on T(F,V),usually de�ned as \repla
ing equals by equals".The fundamental problem in an equational theory is the \validity" or \wordproblem", whi
h is unde
idable:\Give s and t 2 T(F,V), does s ==E t ?"The unde
idability (more pre
isely, the semide
idability) of the \word problem"is transferred on the approa
h by the TRS, but this approa
h is, on the our opinion,more algorithmi
ally.2000 Mathemati
s Subje
t Classi�
ation. 68T15.1998 CR Categories and Des
riptors. D.1.6. [Software℄ : Programming Te
hniques {Logi
 Programming ;I.2.3. [Computing Methodologies℄ : Arti�
ial Intelligen
e { Dedu
tionand Theorem Proving. 77

78 DOINA T�ATAR, GABRIELA S�ERBANDe�nition 2. A TRS is a set of rules: R = fl ! r j l; r 2 T(F,V) , everyvariables o

urring in term r also o

urs in term l g.A TRS de�nes a rewrite relation !R:De�nition 3. s!R t i� there is a rule l! r 2 R and an o

urren
e p in s su
hthat the subterm of o

urren
e p, noted s jp and the term t have the property:s jp= �(l); t = s[p �(r)℄for some substitution �. Here notation s[p �(r)℄ represents the term obtainedfrom s by repla
ing the subterm of o

urren
e p by the term �(r).We denote by !�R and !�R the re
exive-transitive and re
exive-transitive-symmetri

losure of !R.In order to solve the \word problem" for an equational theory E,
ompute anTRS RE su
h that s ==E t is a relation equivalent with s !�R t. Let us denoteRE as asso
iated with E.The TRS RE is the
anoni
al (terminating and
on
uent) TRS asso
iatedwith E, obtained as output of the
ompletion pro
edure Knuth -Bendix. Thisalgorithm has as input the set E and a redu
tion order over T(F,V).De�nition 4 The normal form of a term t , denoted t #R , is a term with thefollowings properties: 1:t!�R t #R2:t #R irredu
ible:Observations:1. If a TRS R has the property that every term has a unique normal form,then:s !�R i� s #R= t #R, be
ause s ! t�R is s !�R s #R and t !�R#R. Thus,testing s ! t�R is is the same as testing that s #R= t #R.2. In a
anoni
al TRS ,R, every term has a unique normal form.We won't des
ribe the well known Knuth-Bendix algorithm. Instead, we willsurvey the
riti
al pair idea, staying on the ground of this algorithm.De�nition 5 Let l1 ! r1 and l2 ! r2 be two rules in R. By renaming thevariables we may assume that they do not share
ommon variables. If �1(l1) =�2(l2) , then the pair of terms (�1(l1); �2(l2)) is a
riti
al pair for R.The Knuth-Bendix algorithm
omputes, for every
riti
al pair (t1; t2) of R0,the normal forms t1 #R0 and t2 #R0 . If this normal forms are di�erent, then a rulet1 #R0!0R t2 #R0 or
onverse, (depending of the
ase t1 #R0> t2 #R0 or the
onverse),is added to R0. Let observe that the pro
edure fails if neither t1 #R0> t2 #R0 northe
onverse is true. 2. Implementation in PrologA set of problems for implementation in Turbo Prolog derives from the fa
tthat in this language does not exist the standard predi
ates fun
tor, ==, andop. This fa
t lead as
onstru
t two spe
i�
 domains in se
tion domains of ourprograms as follows:

TERM REWRITING SYSTEMS 79domainsterm=var(symbol);
on(symbol);
mp(symbol,terml)terml=term*termll=terml*For example, if we must introdu
e the term f(x,y,a) , we will write:
mp(f,[var(x),var(y),
on(a)℄), respe
ting the
onventions for syntax of for-mulas in �rst-order logi
. Also,if we must introdu
e the formula p(x,f(y,z)) wewill write:atom(p,[var(x),
mp(f,[var(y),var(z)℄)℄) .A TRS R of I rules, as in de�nition 2, is done by a
ouple of predi
ates l(t,N)and r(t,N) where t is a term and N=1; � � � ;I is the index of the rule. We worked inthis program with the three starting rules asso
iated with the theory E of groups.l(
mp(\f",[
on(e),var(a)℄),1).l(
mp(\f",[
mp(\g",[var(a)℄),var(a)℄),2).l(
mp(\f",[
mp(\f",[var(a),var(b)℄),var(
)℄),3).r(var(a),1).r(
on(e),2).r(
mp(\f",[var(a),
mp(\f",[var(b),var(
)℄)℄),3).The predi
ates whi
h realizes the rewriting relation X ! Y with a rule N inde�nition 3 is the predi
ate rewrite (X,Y,N) .rewrite(X,Y,N):-l(X,N),r(Y,N),!. (1)rewrite(X,Y,N):-member_left(X,L1,L2,N), (2)list_var(X,L_var), (3)lg_list(Lnou,K), (4)l(M_stg,N), (5)apli
_subst(M_stg,Nou_m_stg,L1,L2), (6)tr_term_str(Nou_m_stg,St_stg), (7)apli
_subst(X,NouX,L1,L2), (8)list_var(NouX,L_var_n), (9)lg_list(Lnoun,K), (10)tr_term_str(NouX,St), (11)r(M_dr,N), (12)apli
_subst(M_dr,Nou_m_dr,L1,L2), (13)tr_term_str(Nou_m_dr,St_dr), (14)strsr_first(St,St_stg,St_dr,Nou_string),(15)tr_str_term(Nou_string,Yinterm), (16)s
_lista(L2,L1,L2nou,L1nou), (17)apli
_subst(Yinterm,Y,L2nou,L1nou),!. (18)The predi
ate member-left (denoted by (1)) is de�ned as follows:/* member_left(X,L1,L2,N):-the rule N-th has the property thathis left side unifies with a subterm of term X, and the unifierhas the domain L1 and the
odomain L2. */One of the
lauses for member-left must be:

80 DOINA T�ATAR, GABRIELA S�ERBANmember_left(X,L1,L2,N):-subterm(S,X),l(Z,N),unify(S,Z,L1,L2).The predi
ate apli
-subst(t,s,L1,L2) denoted by (6) applies the substitution� =(L1/L2) to t obtaining s. The predi
ates tr-term-str transforms a term(e.g. f(a,x)) in a string (f2ax). The reason for this transformation is to provide topredi
ate:strsr-�rst (St,St-stg,St-dr,Nou-string), denoted by (15),his �rst three arguments (the lines (7),(11),14)). Thus, one step of the realizationof the relation ! is a

omplished by the predi
ate strsr-�rst. This is de�ned as:/* strsr-first(S1,S2,S3,S):- the string S is obtained byrepla
ing in the string S1 the first o

urren
e of thesubstring S2 by the string S3. */The
onverse transformation of a string into a term is realized by the predi
atetr-str-term (16). A
lause for this one must be:tr_str_term(X,Y):-str_len(X,L),L>0,frontstr(1,X,Z,U),frontstr(1,U,N,W),str_int(N,N1),frontstr(N1,W,WW,WWW),tr_str_terml(WW,V),tr_str_terml(WWW,V1),append(V,V1,V2),Y=
mp(Z,V2),lg_list(V2,N1).The relation !�R de�ned as the re
exive -transitive
losure of !R is realizedby the predi
ate rewrite*. The
lauses for this predi
ate are:rewrite*(X,Y):-rewrite(X,Y,N).res
rie*(X,Y):-rewrite(X,Z,N),!,rewrite*(Z,Y).The predi
ates
riti
al-pair and normal-form are de�ned as:
riti
al-pair(X,Y):-l(X,N),member_left(X,L1,L2,M),l(Z,M),apli
-subst(Z,Y,L1,L2).normal-form(X,Y):-rewrite*(X,Y),not(rewrite(Y,_,_)).At the end of the appli
ation of the Knuth-Bendix algorithm, the
anoni
alTRS is given as usually by 10 rules. (Some intermediary rules are deleted be
ausethey have been rewritten in the same terms.) The obtained
anoni
al TRS
an beused for demonstrate some theorem in group theory. For example, if we want toprove that t1 = i((i(a) + a) + (b+ i(b))) is equal with t2 = b+ (i(a+ b) + a), thenwe run the program with normal-form(t1,X) and normal-form(t2,Y). We willobtain X=Y.

TERM REWRITING SYSTEMS 813. Implementation in LispIn this se
tion our aim is to present how the rewriting relations
ould be de�nedin LISP.3.1. LISP representations. First, we have to establish the way in whi
h theterms are represented in LISP.� a variable x is represented as a list (var x);� a
onstant a is represented as a list (
on a);� a fun
tional symbol f is represented as a list (
mp f);� a fun
tion f(LA) where f is a fun
tional symbol and LA is a list ofarguments, is represented as a list ((the list
orresponding to f)(the list of arguments)); for example, f(a,x) is represented as a list((
mp f) ((
on a) (var x))).With the above
onsiderations, if we must introdu
e the term g(x,f(y,z)) wewill write ((
mp g) ((
mp f) ((var y) (var z)))).A rule l!r from a TRS is represented as a list (list-l list-r), where list-l andlist-r are the representations in LISP of the terms l and r. For example, a rulef(a;x)!x is represented as the list (((
mp f) ((
on a) (var x))) (var x)).A TRS R of N rules is represented as a list of rules (rule-1 rule-2 . . . rule-N),ea
h rule is represented as we des
ribed above.In the followings, we work with the three starting rules asso
iated with thetheory of groups. The list of rules is denoted by LR and is the following:(setq LR '((((
mp f) ((
on e) (var a)))(var a))(((
mp f) (((
mp g) ((var a))) (var a)))(
on e))(((
mp f) (((
mp f) ((var a) (var b))) (var
)))((
mp f) ((
mp f) ((var a) ((
mp f) ((var b) (var
)))))))))3.2. Fun
tions de�ned for rewriting rules. The fun
tions whi
h realize therewriting relation X!Y with a rule N in de�nition 3 is the fun
tion (rewrite XN LR) whi
h returns Y .(defun rewr (X N LR); LR represent the list of rules(prog (RN)

82 DOINA T�ATAR, GABRIELA S�ERBAN(setq RN (rule-N N LR))(
ond((equal (
ar RN) X) (return (
adr RN)))(t (setq Y (
adr RN))(setq UNIF (member-left X (
ar RN)))(
ond((null UNIF) nil)(t (setq L1 (
ar UNIF))(setq L2 (
adr UNIF))(return (apply-subst L1 L2 Y)))))))) The fun
tion (rule-N N LR) returns the N -th rule from the list of rules LR.(defun rule-N (N LR)(
ond((null LR) nil)((= N 1) (
ar LR))(t (rule-N (- N 1) (
dr LR))))) The fun
tion (member-left X Y) is de�ned as follows:� if Y (the left side of a given rule) uni�es with a sub-term of X , andthe uni�er has the domain L1 and the
odomain L2, then the fun
tionreturns the list (L1 L2) (this list is
al
ulated by the fun
tion (unifyX Y));� else the fun
tion returns NIL.(defun member-left (X Y)(
ond((not (equal (length X) (length Y))) nil)(t (unify X Y)))) The fun
tion (apply-subst L1 L2 Y) applies the substitution � = (L1=L2)to Y and returns the result.(defun apply-subst (L1 L2 Y)(subst Y L1 L2))

TERM REWRITING SYSTEMS 83The fun
tion (rewrite X) is de�ned as follows:� returns a list of elements having the form (N Y), where Y is the rightside of the rewriting relation X!Y with the rule N (if it is possible) -this list is
al
ulated by the re
ursive fun
tion (rewrite-rule X N LR)whi
h returns the result of rewriting X with the N -th rule of LR;� returns NIL, if no rewriting relations for X are possible.(defun rewrite-rule(X N LR)(
ond((> N (length LR)) nil)(t (setq RN (rewr X N LR))(
ond((not (null RN)) (
ons (list N RN)(rewrite-rule X (+ N 1) LR)))(t (rewrite-rule X (+ N 1) LR))))))(defun rewrite (X)(rewrite-rule X 1 LR)) The relation de�ned as the re
exive-transitive
losure of the rewriting relationR is de�ned as the fun
tion (rewrite* X).(defun rewrite* (X)(setq Y (rewrite X))(append Y (rewr* Y)))(defun rewr* (Y)(
ond((null Y) nil)(t (append (rewrite (
adar Y)) (rewr* (
dr Y)))))) The normal-form is de�ned as a fun
tion (normal-form X).(defun normal-form (X)(n-form (rewr* X)))

84 DOINA T�ATAR, GABRIELA S�ERBAN(defun n-form (Y)(
ond((null Y) nil)((null (rewrite (
adar Y))) (append (
ar Y) (n-form (
dr Y))))(t (n-form (
dr Y))))) Examples(1) if X is ((
mp f) (((
mp g) ((var b))) (var b))), then the result of rewritingX este ((2 (CON e)));(2) if X is ((
mp f) ((
on e) (var b))), then the result of rewriting X este ((1(VAR b)));(3) if X is ((
mp f) ((
on e) (var a))), then the result of rewriting X este ((1(VAR a))).(4) if X is ((
mp f) (((
mp f) ((var a) (var b))) ((
mp g) ((var
))))), thenthe result of rewriting X este (3 ((
mp f) ((
mp f) ((var a) ((
mp f) ((varb) ((
mp g) ((var
)))))))).Referen
es[1℄ Avenhaus J., Madlener K. : \Term rewriting and Equational Reasoning" in Formal Te
h-niques in A.I., A
oursebook, R.B.Banerdji (ed) 1990.[2℄ K.H. Blasius, H.J. Burkert: \Dedu
tion systems in Arti�
ial Intelligen
e", Ellis HorwoodLtd.,1989.[3℄ Bu
hberger B.: \History and basi
 features of the Criti
al-Pair Completion Pro
edure", J.of symboli
 Computation 3, 1987, pp. 3{38.[4℄ W.F. Clo
ksin, C.S. Mellish : Programming in Prolog, Springer-verlag, 1984.[5℄ Huet G., Oppen D.D.: \Equations and rewrite rules: A survey", in \Formal languages:theory, perspe
tives and open problems", ed. R. Book, 1980.[6℄ Jouannaud J.P., Les
anne P.: \Rewriting Systems", in Te
hnology and S
ien
e of Informat-i
s, 1987, pp. 181{199.[7℄ Knuth D.E., Bendix P.P.: \Simple word problem in Universal Albgebra", Comp. prob. inAbstr. Alg. (ed. J. Lee
h), 1970.[8℄ Les
anne P.: \Current trends in rewriting te
hniques and related Problems", IBM int. symp.on Trends in Computer Algebra, Germany, 1987.[9℄ Rusinowit
h M.: \Demonstration automatique. Te
hniques de ree
riture" Inter. Edition,Paris, 1989.[10℄ Tatar D.: \A new method for the proof of theorems", Studia Universit. Babes-Bolyai,Mathemati
a, 1991, pp. 83{95.[11℄ Tatar D.: \Term rewriting systems and
ompletion theorems proving: a short survey",Studia Univ. Babes-Bolyai, Mathemati
a, 1992, pp. 117{125.Department of Computer S
ien
e, Fa
ulty of Mathemati
s and Computer S
ien
e,\Babes�-Bolyai University, 1, M. Kog�alni
eanu St., RO-3400 Cluj-Napo
a, Romania

STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITIONIUGA MARINAbstra
t. In this paper we have provided a formal model for software sys-tems spe
i�
ation and for the software systems
omposition operation. Usingthe notion of information system as a basis, we
an model any informationsystem using both software servi
es and software interfa
es. Doing this, we
an develop a formal model for software systems
omposition. This formalmodel may be used both in formal spe
i�
ation of software systems (stru
ture,fun
tionality, requirements) and in software systems
omposition expressions.1. An overview of software system notionThe history of \software system" notion is full of
ontroversies and debates overwhat is
entral in the pro
ess of de�ning a software system. At �rst, a softwaresystem was identi�ed with an exe
utable program, but this de�nition has beenenlarged later when a software system was asso
iated with an exe
utable programand its modules. Sooner, this de�nition has proven to be in
omplete be
ause thenotion of software system has a larger range than that given by any program, nomatters how large or
omplex this program is.As a
onsequen
e, the de�nition of a software system has
hanged its
enterfrom the notion of exe
utable programs and modules to the notion of softwareservi
es and software systems inter-relations.A radi
al
hange of perspe
tive over the software systems is presented in [9℄:\Large software systems are non-algorithmi
, open and distributed:non-algorithmi
: they model temporal evolution by systems of intera
t-ing
omponentsopen: they manage in
remental
hange by lo
al
hanges of a

essible openinterfa
esdistributed: requirements as well as
omponents are lo
ally autonomous."A system is generally
onsidered to be a
olle
tion of
omponents organizedto ful�ll a
ertain fun
tion or a
ertain set of fun
tions. A software system isviewed as an entity that requests software servi
es from the external environmentand exports other software servi
es to this environment. We will try to des
ribe asoftware system without any need of information about its internal
onstru
tion.2000 Mathemati
s Subje
t Classi�
ation. 03B70,68N30.1998 CR Categories and Des
riptors. C.0. [Computer Systems Organization℄ :General. 85

86 IUGA MARINIt suÆ
es to say that a software system has an internal state, represented by a setof abstra
t values, but we don't need to know how the state and the me
hanismof state
hanging is implemented inside the system.The
lassi
al software system
on
ept is now repla
ed by the
on
ept of ex-tensible system (see [10℄). An extensible system is
onsidered to be a kind ofsoftware system whose fun
tionality may be freely extended by repla
ing existing
omponents with new ones. Smalltalk is an extensible language/system, and newadditions to Java make it possible to
reate extensible systems in Java. Extensiblesystems
annot be
reated in more traditional languages su
h as Simula and C++.However, A
tive X from Mi
rosoft, allows programming of extensible systems inC++, Visual Basi
 and other languages.2. Modeling software systems using software servi
esWe
an observe now the fa
t that the de�nition of a software system is
enteredover the notion of software servi
e, thus making the de�nition of software servi
ethe key to de�ne the notion of software system. We will de�ne the software servi
eas a set of operations grouped under the same identi�er. This identi�er is thesoftware servi
e's identi�er.An operation is de�ned by a name, and a textual, rather informal, des
riptionof it.Considering this, an operation
ould be represented as:operation = (operation signature; operation des
ription)where: operation signature: is the operation's signature;operation des
ription: is the operation's des
ription.We will provide a formal representation for an operation in this paper.On
e we
an spe
ify an operation, we are able to represent a software servi
eas: servi
e = (servi
e name; fservi
e operationi; i 2 1; : : : ; num operationsg)where: servi
e name: is the name of the software servi
e,servi
e operationi: is the i-th operation of the software servi
enum operations: is the number of operations asso
iated with this soft-ware servi
e.A software servi
e
ould be easily identi�ed as a
ontra
t between a providerand a
lient. It spe
i�es the terms of information ex
hange between the providerand the
lient, it spe
i�es a proto
ol that makes the servi
e provider and the
lientto understand ea
h other and it spe
i�es the
onditions that must be met for theinformation ex
hange pro
ess.As an example let's
onsider the pro
ess of a COM obje
t serialization. Theserialization is de�ned as \the ability of an obje
t to write its state to a persistent

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 87storage" [6℄. So, if we want a persistent COM obje
t then this obje
t must imple-ment the servi
e spe
i�ed by IPersistStorage (at least). We will
all this servi
eas the Persist Storage servi
e, and it is
hara
terized by the following operations:IsDirty: indi
ates whether the obje
t has
hanged sin
e it was last savedto its
urrent storage;InitNew: initializes a new obje
t, providing a handler to the storage tobe used for the obje
t;Save: saves an obje
t, and any nested obje
ts that it
ontains, into storage;SaveCompleted: noti�es the obje
t that it
an revert from NoS
ribbleor HandsO� mode, in whi
h it must not write to its storage obje
t, toNormal mode, in whi
h it
an;HandsO�Storage: instru
ts the obje
t to release all storage obje
ts thathave been passed to it by its
ontainer and to enter HandsO� mode, inwhi
h the obje
t
annot do anything and the only operation that worksis a
lose operation.We
an de�ne a software system by the following quadruple:(IN STATUS;OUT STATUS; IN;OUT)where: IN STATUS: represents the system's internal status;OUT STATUS: represents the external environment's status that is a
-
essed or modi�ed by the system's servi
es;IN: represents the set of imported servi
es that are needed by the systemin order to ful�ll its fun
tionality;OUT: represents the set of the exported servi
es that are used by thesoftware system to express its fun
tionality.As a synthesis of what we have exposed until now, we will
onsider a softwaresystem to be
hara
terized by the following features:� a series of software servi
es exported to an external software environ-ment;� a series of software servi
es imported from an external software environ-ment;� an internal state whi
h
ould be
hanged as a result of a software servi
eful�llment;� a software servi
e exe
ution
ould
hange the status of the external en-vironment.We are
lose to the model for a software
omponent, introdu
ed in [7℄, wherethe
omponent is
hara
terized by a servi
e interfa
e, a
lient interfa
e and animplementation. Sin
e the bla
k-box model is adopted for a software
omponent(ex
luding any information about internal implementation and imported servi
es),we �nd the essen
e of this model appli
able to software systems.We denote by OUT1; : : : ; OUTn the exported software servi
es, where n is thenumber of exported servi
es and we denote by IN1; : : : ; INm the imported software

88 IUGA MARINservi
es where m is the number of the imported software servi
es. Also we willdenote by: IN STATUS = fIN STATE1; : : : ; IN STATEpgthe set of the values of the software system status a�e
ted by the software servi
esexe
ution, and by:OUT STATUS = fOUT STATE 1; : : : ; OUT STATEqgthe set of the values of the external software environment status a�e
ted by thesoftware servi
es exe
ution.We
onsider the external software environment to be divided into two parts,the �rst part denoted by IN exports software servi
es to the software system,denoted by SY STEM , and the se
ond denoted by OUT is the part whi
h importsthe software servi
es exported by SY STEM . Both parts
ould be identi�ed asa standalone software system. The �rst representation of the intera
tion of asoftware system with the external software environment, using software servi
es,is given in Figure 1:
Figure 1. Representation of the intera
tion between a softwaresystem and its external software environment using software ser-vi
esLet's
onsider, as an example, a software system,
alled DataPro
essor, whi
hre
eives data from an external data sour
e, pro
ess it, and displays it to a display.The imported servi
es for this system are DataProvider servi
e (imported forma data sour
e system) and DisplayRenderer (imported from a graphi
al devi
esystem).DataProvider servi
e is
hara
terized by the following operations:OpenConne
tion: opens a
onne
tion with the data sour
e;CloseConne
tion:
loses the
onne
tion with the data sour
e;GetData: obtains the raw input data.DisplayRender servi
e is
hara
terized by the following operations:ClearDevi
e:
lears the
ontent of the graphi
al devi
e;RenderImage: renders a graphi
al image.The DataPro
essor system exports the DataPro
essing servi
e, whi
h is
har-a
terized by the following operations:Che
kValidity:
he
ks the validity of input data;

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 89Pro
essData: pro
esses the input data.The internal status for the system is:IN STATUS = fidle; operation
ompleted; operation readygwhere: idle: DataPro
essor system is idling;operation
ompleted: DataPro
essor system has just �nished an oper-ation and is ready to provide output data;operation ready: DataPro
essor system has re
eived valid input dataand is ready to begin a pro
essing session.The external status for the system's external environment is:OUT STATUS = f(
onne
ted); (not
onne
ted)gwhere:
onne
ted: the data sour
e has a

epted
onne
tion and is ready to pro-vide input data;not
onne
ted: the data sour
e has not a

epted a
onne
tion, the
on-ne
tion is
losed or it is not ready to provide any input data.As we may see from this example, the software servi
e is only a feature that
hara
terizes a software system and a software system
ould be viewed as a nodethat imports some servi
es and exports other servi
es.3. Modeling software systems using software interfa
esBy using a formal spe
i�
ation for a software servi
e (as a interfa
e implemen-tation) we
an obtain a formal representation for a software systems (as a set ofinterfa
e implementations). In this kind of spe
i�
ation we must represent howthe status of the external software environment and the status of the softwaresystem are a�e
ted by the software servi
es exe
ution.The
ontra
t between a software entity and its external environment must bespe
i�ed in a neutral language and there is needed a
ontra
t that will stipulatethe terms and limits of the information transa
tion. In [5℄ we have spe
i�ed thefa
t that the
ontra
t that supervises the information transa
tion should be basedon the notion of software interfa
e and the software interfa
e must be spe
i�ed ina programming language neutral manner.However, other authors have di�erent points of view about the neutrality ofan element spe
i�
ation. They
onsider the spe
i�
ation of an element (type,interfa
e,
lass,
omponent, . . .) as an abstra
t des
ription of it, and a program(or module) as the
on
rete des
ription of this element. In [2℄ it is requested thatany software spe
i�
ation must be in an exe
utable format, but it is hard to agreewith this.For a long time, a software servi
e has been modeled as an interfa
e. Thiskind of model ignores the fa
t that an interfa
e
an be identi�ed only with thespe
i�
ation of a proto
ol for a set of operations (the synta
ti
 part) and
annot

90 IUGA MARIN
apture the meaning of this operation (the semanti
 part). So, it is properly todis
uss a servi
e by the means of the implementation of an interfa
e.So, we will propose to use the interfa
e implementations as a model for a soft-ware servi
e, rather then using only interfa
es. The interfa
es are sets of methodsignatures and
arry only the synta
ti
 information, while the interfa
e implemen-tations are sets of methods and
arry semanti
 information (behavioral spe
i�-
ations). There are many ways to spe
ify a method by using predi
ate
al
ulus,fun
tional methods and non-fun
tional methods.We will propose here a spe
i�
ation model that is based on the predi
ate
al-
ulus. We will spe
ify a method as:(signature; pre
ondition; post
ondition)where: signature: is the method's signature;pre
ondition: is the method's pre
ondition predi
ate;post
ondition: is the method's post
ondition predi
ate.The method's signature is represented as:return typemethod name(in status; out status; [par rolepar name : par type℄)where: return type: is the method's return type;method name: is the method's name;in status: represents the IN STATUS for the software system to whomthe method are bounded to, via its asso
iated interfa
e;out status: represents the OUT STATUS for the software system towhom the method are bounded to, via its asso
iated interfa
e;par role: is the parameter's role (
ould be in, out, inout);par name: is the parameter's name;par type: is the parameter's type.For a method m, we will
onsider the following sets:� IN(m) = fthe set of all in or inout parametersg[fin status, out statusg;� OUT (m) = fthe set of all parametersg[fin status, out statusg[fresult{ the value returned by this methodg.The pre
ondition predi
ate is de�ned over values from IN(m) and it is true ifthese values represents valid input data, and false otherwise.The post
ondition predi
ate
onne
ts the input data with the output data, andis true if the returned values are those expe
ted (if valid input data is
onsideredfor the a
tual parameters of the method).All that we have to remember is the fa
t that an interfa
e implementationspe
i�
ation must
onsider the me
hanism of state
hanging asso
iated with thesystem that implements the interfa
e. As a
onsequen
e of this thing, not allinterfa
e implementations
ould be atta
hed to any software system. A softwaresystem that implements this interfa
e must a

ept the values of the state
hanged

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 91by this interfa
e implementation. We will denote by Ij the interfa
e that has itsimplementation spe
i�ed by the software servi
e INj and with Oi the interfa
e thathas its implementation spe
i�ed by the software servi
e OUTi. Using the name ofthe interfa
e to designate the interfa
e implementation asso
iated with the servi
e,we will have another representation of the intera
tion between a software systemand its asso
iated external environment, as
an be seen in Figure 2.The way an interfa
e implementation is spe
i�ed in has no
riti
al importan
e.Thus, we have provided a fun
tional spe
i�
ation, but it also
an be non-fun
tional(using message sending/re
eiving for example). This spe
i�
ation must take into
onsideration the modi�
ation of the state of the software system and its externalenvironment.
Figure 2. Representation of the intera
tion between a softwaresystem and its external software environment using interfa
e im-plementationFinally, we may synthetize the de�nition of a software system by using thefollowing quadruple:SY STEM = (IN STATUS;OUT STATUS;fFIk; 0 � k � ni; ni 2 Ng; fFOk ; 0 � k � no; no 2 Ng)where the notions involved are:SYSTEM: the software system to be de�ned;IN STATUS: the set of the values of the software system status a�e
tedby the software servi
es exe
ution;OUT STATUS: the set of the values of the external software environmentstatus a�e
ted by the software servi
es exe
ution;FI l: the interfa
e implementation asso
iated with the software servi
eINl;FO l: the interfa
e implementation asso
iated with the software servi
eOUTl;ni: number of the imported servi
es;no: number of the exported servi
es.This quadruple
an
apture the entire des
ription of a software servi
e. It is anopen model though, be
ause of the way an interfa
e implementation is spe
i�edin (but is not �xed be
ause one
an
hoose an alternate way to spe
ify a software

92 IUGA MARINinterfa
e implementation). Any kind of spe
i�
ation (predi
ative, fun
tional ornon- fun
tional)
an be used, the only restri
tion is that the spe
i�
ation must
onsider the me
hanism of status
hanging for a software system and its asso
iatedenvironment. 4. Software systems
ompositionThe idea that a software system must be de
omposed in smaller subsystems,for the purpose of a better handling, is an old idea and it is frequently argued in[1℄. But building a software system form simpler subsystems is an idea embra
edfrom the beginning of 90s, and the advantages of this method is presented inpapers like [8, 4, 3℄. We will spe
ify a formal model, based on our software systemspe
i�
ation, for the operation of software systems
omposition.In the previous paragraphs we have provided a formal model for software sys-tems, model based on servi
es and interfa
es. Using this model we will proposea formal model for the operation of
omposition of two software systems. In aninformal manner, we will
onsider the result of the
omposition of two softwaresystems S1 and S2 as a new software system that follow these rules:� the group of IN servi
es for the result system is obtained by puttingtogether the IN servi
es of both software systems. From this group wewill eliminate all those servi
es that are IN servi
es for one system andOUT servi
es for the other system;� the group of OUT servi
es for the result system is obtained by puttingtogether the OUT servi
es of both software systems. From this groupwe will eliminate all those servi
es that are OUT servi
es for one systemand IN servi
es for the other system;� the IN STATUS is the set of all values of the software system statuswhi
h appear in all of the servi
e des
riptions from IN and OUT groups;� the OUT STATUS is the set of all values of the external environmentstatus whi
h appear in all of the servi
e des
riptions from IN and OUTgroups.For a software system S, we will
onsider the following fun
tions:� the IN(S) fun
tion as the fun
tion that returns all the interfa
e imple-mentations asso
iated with the imported servi
es of this system;� the OUT (S) fun
tion as the fun
tion that returns all the interfa
e im-plementations asso
iated with the exported servi
es of this system;� the Spe
StatusIN(spe
) fun
tion as the fun
tion whi
h returns all thesystem's status values whi
h appear in the interfa
e implementation fromspe
i�
ation set spe
;� the Spe
StatusOUT (spe
) fun
tion as the fun
tion whi
h returns all theexternal environment's status values whi
h appear in the interfa
e im-plementation from spe
i�
ation set spe
.By using the interfa
e-based model, we
an de�ne the software systems
ompo-sition by
onsidering the set named SY STEMS as the set of all software systems.

FORMAL MODEL FOR SOFTWARE SYSTEMS COMPOSITION 93The operation of
omposition, denoted by \+":+ : SY STEMS � SY STEMS ! SY STEMSwill be de�ned for any software systems:S1 = (in status1; out status1; f(i1l ; fi1l); 0 � l � ni1; ni1 2 Ng;f(o1l ; fo1l); 0 � l � no1; no1 2 Ng);S2 = (in status2; out status2; f(i2l ; fi2l); 0 � l � ni2; ni2 2 Ng;f(o2l ; fo2l); 0 � l � no2; no2 2 Ng):as: S1 + S2 = (Spe
Status((IN(S1)nS2 \ S1) [(IN(S2)nS1 \ S2));Spe
Status((OUT (S1)nS1 \ S2) [(OUT (S2)nS2 \ S1));(IN(S1)nS2 \ S1) [(IN(S2)nS1 \ S2);(OUT (S1)nS1 \ S2) [(OUT (S2)nS2 \ S1))This formal de�nition of the software systems
omposition
aptures the entiremeaning of the informal de�nition, previously presented. The expression:(IN(S1)nOUT (S2)) [(IN(S2)nOUT (S1))is the formal expression of the imported servi
es, and the expression:(OUT (S1)nIN(S2)) [(OUT (S2)nIN(S1))is the formal expression of the exported servi
es of the (S1 + S2) informationsystem.The expressions:Spe
StatusIN ((IN(S1)nOUT (S2)) [(IN(S2)nOUT (S1))[[(OUT (S1)nIN(S2)) [(OUT (S2)nIN(S1)))Spe
StatusOUT ((IN(S1)nOUT (S2)) [(IN(S2)nOUT (S1))[[(OUT (S1)nIN(S2)) [(OUT (S2)nIN(S1)))de�nes the IN STATUS and, respe
tively, OUT STATUS attributes of the re-sult system.The
omposition operation for two software systems models the pro
ess of thetight
oupling between these systems. All the similar servi
es exported by onesystem and imported by the other system are hidden in the obtained system,along with the
orresponding status values. One
an use this operator if he wishesto obtain an expression for a tight intera
tion between two software systems. The
omposition operation is
hara
terized by the following proprieties:� the
omposition operation is
ommutative;� the system � = (;; ;; ;; ;) is the neutral element for the
ompositionoperation;� if we
onsider the software system:S = (IN STATUS;OUT STATUS;fIk; 0 � k � ni; ni 2 Ng; fOk ; 0 � k � no; no 2 Ng)

94 IUGA MARINthen the following system:CLOSE(S) = (OUT STATUS; IN STATUS;fOk; 0 � k � no; no 2 Ng; fIk ; 0 � k � ni; ni 2 Ng)is the inverse element of S for the
omposition operation;� the
omposition operation is not generally asso
iative.The proof of these proprieties, due to its extent, it is not dis
ussed here. Wehave only wished to enumerate them.The software systems spe
i�
ation and
omposition may be used for many pur-poses, ranging from
he
king of software systems
ompatibility to methods forsoftware appli
ations design and generation. CASE tools
an use them as a sup-port for software systems representation and intera
tion models. They might alsobe the basis for other di�erent formal models in programming.Referen
es[1℄ Dahl O.J., Dijkstra E. W., Hoare C.A.R., Stru
tured Programming, A
ademi
 Press, 1972[2℄ Fu
s N. E., \Spe
i�
ations Are (Preferably) Exe
utable", Software Engineering Journal,September, 1992[3℄ Gamma Eri
h, Helm Ri
hard, Johnson Ralph, Vlissides John, Design Patterns: Elementsof Reusable Obje
t-Oriented Software, Addison-Wesley, 1994[4℄ H�olzle U., Integrating Independently-Developed Components in Obje
t-Oriented Languagesin LNCS 707, pp. 36{56, 1993[5℄ Iuga Marin, A Graphi
al Representation for Software Component Systems, Fa
ulty of math-emati
s and Computer S
ien
e, Resear
h Seminars, pp. 107{110, 1999[6℄ MSDN Library Visual Studio 6.0, Visual C++ Programmers guide, Serialization (Obje
tPersisten
e)[7℄ Allen Parrish, Component Based Software Engineering: A Broad Based Model is Needed,Brandon Dixon, David Hale in International Workshop on Component-Based Software En-gineering pro
eedings, pp. 43{46, 1999[8℄ Jan Udell, ComponentWare, Byte Magazine, pp. 46{56, 1994[9℄ Wegner Peter, Models and Paradigms of Intera
tion, in Obje
t-Based Distributed Program-ming, ECOOP'93 Workshop, Vol. 791, pp. 1{32, Springer-Verlag, 1994[10℄ Szyperski Clemens, Pountain Di
k, Extensible Software Systems, in BYTE May 1994, pp.57{62, 1994Babes�-Bolyai University, Fa
ulty of Mathemati
s and Computer S
ien
eE-mail address: marin�
s.ubb
luj.ro, iuga marin�yahoo.
om

STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000AUTOMATIC SUPPORT FOR IMPROVING INTERACTIONWITH A WEB SITEALINA CÂMPAN AND DARIUS BUFNEAAbstra
t. In this paper we des
ribe a method to make a Web site easiernavigable by its users. In the same time, this method provides support forthe Webmaster to raise the quality of the site with minimal e�ort. Thesegoals are a
hieved by automati

reation of orientation Web pages. The newadds-on to the site are generated by exploiting the data a

umulated in Webserver a

ess logs, being thereby a feedba
k to the users' \footprint". Webmining te
hniques are used in order to extra
t the meaningful informationfrom log data. 1. Introdu
tionFor a Web site, to be appre
iated by its visitors, it is signi�
ant not only itsvisual aspe
t, the interest of the information or/and the quality of servi
es it o�ers!It also
ounts, in a great extent, how easy the users retrieve within the site theinformation they are interested in. If this retrieval involves sear
hing in long
hainsof un
learly linked do
uments, it is very likely that the user will give up sear
hing,leave the site and possibly never
ome ba
k. In the
ase of a
ompany that salesits produ
ts or servi
es on the Internet, this will mean loosing
lients,
learly anundesired e�e
t.As de�ned in [7℄, the quality of a Web site is lower as the user's e�ort to �nd thepages that mat
h his area of interest is growing. Most often this e�ort is measuredas a
ount of links followed by the visitor until he �nds the desired information.It is more realisti
 to assume this e�ort as being a trade-o� between the e�ortto
hoose in every visited page the link to follow next, and the number of visitedpages. We are interested in redu
ing this e�ort.We must also note that maintaining a
omplex Web site
an be a diÆ
ult task.The Webmaster has to fa
e several
hallenges:� The site has to
ontain up-to-date information;2000 Mathemati
s Subje
t Classi�
ation. 68T05,68T10,68U35.1998 CR Categories and Des
riptors. I.5.2. [Computing Methodologies℄ : PatternRe
ognition { Design Methodology ; I.5.3. [Computing Methodologies℄ : Pattern Re
ognition{ Clustering ; H.3.3. [Information Systems℄ : Information Storage and Retrieval { InformationSear
h and Retrieval . 95

96 ALINA CÂMPAN AND DARIUS BUFNEA� The users may seek di�erent information at di�erent times, and the sitemust be stru
tured in a way to permit easy a

ess, whatever the visitors'goals may be.
So, a Web site is a dynami
 stru
ture, its design may be obje
t to
hangesin time. These
hanges materialize in new pages and links, added sometime inunlikely pla
es.Our purpose is to
ome in response to the Webmaster needs, by helping himto maintain a good quality site for the users (quality as we talked about fewparagraphs above). We are entitle to sustain that the solution we shall des
ribedoes help to improve the intera
tion with the Web site, both for the Webmasterand,
onsequently, for the visitors.Previous work. The problem of adaptive Web sites | \sites that automati-
ally improve their organization and presentation by learning from visitor a

esspatterns" | was enoun
ed in the AI
ommunity ([5℄). There are known two waysof addressing this problem. One is the
ustomization of the Web site (we will notrefer to this). The other, more re
ent, approa
h is the optimization of the site'sstru
ture to make it easier to use for all visitors. This is the trend followed by theauthors in [5, 6, 7℄. More pre
isely, they investigate the data a

umulated in Webserver a

ess logs and identify a number of
ohesive, possibly overlapping
lustersof pages that they
on
lude, based on users a

ess patterns dete
ted in logs data,that are related to a parti
ular topi
. For some of these
lusters are synthesizedindex pages whi
h
ontain a link for every page in that
luster. The methods usedin the above mentioned papers are AI traditional
lustering te
hniques adapted tothe spe
i�
 of the problem.In this paper, we pro
eed similarly as in [5, 6, 7℄. Namely, we want to
reateorientation pages with links to the related-by-
ontent pages of the site. But wepropose a di�erent manner to partition the site: using Web mining methods in-stead of AI
lustering te
hniques. Also, this partitioning will be made with morea

ura
y, as we shall see.The point to start from is raw Web server data. Taking into a

ount a userbrowsing behavior model (proposed in [3℄), we separate important
ontent pagereferen
es from referen
es used for navigational purposes. Than we
onstru
t
ontent transa
tions that
orrespond to the
ontent pages visited by a user in onesession. The obtained transa
tion repository is than mined for asso
iation ruleswith Web mining algorithms. Pages in every asso
iation rule give us a
lusterfor whi
h we
an synthesize orientation pages. Keeping in view that we try tofa
ilitate the a

ess to the site, and not to overhead it, we develop orientationpages only for those
lusters whi
h pages are not already linked in the site [5℄.

AUTOMATIC SUPPORT FOR IMPROVING INTERACTION WITH A WEB SITE 972. Problem des
riptionWe rea
h our goal of synthesizing orientation pages in three steps, as we saidabove. Ea
h one of these steps is detailed next in one paragraph.2.1. Content Transa
tions Identi�
ation. In order to group into transa
tionsthe elementary page referen
es whi
h a Web server a

ess log
ontains, we
onsiderthe following user behavior model. First, we make a visit
oheren
e assumption,whi
h states that the pages a user visits during one visit session tend to be
on-
eptually related [5℄. Even if this is not always a valid assumption, a

umulatingstatisti
s over long periods of time and for many users will redu
e the noise tillextinguish. Se
ondly, during a visit of a site, a user treats the pages either as
on-tent pages, either as navigational pages. We a

ept as
ontent pages those pageswith information the user is interested in. The pages where he looks for links tothe desired data are
onsidered navigational ones.To meet our goals we shall need to identify
ontent transa
tions, from the logdata. By a
ontent transa
tion we mean all of the
ontent referen
es a user makesin one session. Mining these
ontent transa
tions will produ
e the asso
iationsbetween the
ontent pages of the site, therefore the
lusters of pages within thesite related by their
ontent; so, we do more than just �nd the most popularnavigational paths and the pages these paths
onsist in.We introdu
e now the notions we need and des
ribe formally how to �nd
ontenttransa
tions.Let L be the set of Web server a

ess log entries
ompleted with user identi�-
ation information. An entry l 2 L in
ludes the
lient IP address l:ip, the
lientuser id l:uid, the URL of the a

essed page l:url and the time of a

ess l:time.Lo
al browser
a
he, masquerading and proxy servers
an distort the a

ura
y ofthe data
olle
ted by the Web server and make user identi�
ation a diÆ
ult toa

omplish task. Some solutions to user identi�
ation problem are given in [8℄.We order the log entries after l:uid and l:time and we develop �rst a repositoryof general transa
tions.De�nition 1. A general transa
tion t is a triple:t = hipt; uidt; f(lt1:url; lt1:time); : : : ; (ltm:url; ltm:time)giwhere ltk 2 L; ltk:ip = ipt; ltk:uid = uidt; k = 1; : : : ;m.From the general transa
tions, we identify the set of referen
e length transa
-tions
ontained in the log data.De�nition 2. A referen
e length transa
tion t is a triple:tr = hiptr; uidtr; f(ltr1 :url; ltr1 :time; ltr1 :length); : : : ; (ltrm:url; ltrm:time; ltr1 :length)giwhere ltrk 2 L; ltrk :ip = iptr; ltrk :uid = uidtr; k = 1; : : : ;m,and ltrk :lenght = ltrk+1:time� ltrk :time; k = 1; : : : ;m� 1.

98 ALINA CÂMPAN AND DARIUS BUFNEAWe make some observations regarding the above de�nition.Obviously, the last referen
e in ea
h general transa
tion has no next time touse in determining the referen
e length. We assume that all of the last referen
esare
ontent ones and their length is, say, one hour (in [3℄, they are also ex
luded inthe pro
ess of
al
ulating the
ut-o� time). From one general transa
tion, we
angenerate one or more referen
e length transa
tions, as follows. During a user visitmay appear large amounts of time between two page referen
es. In
ase of su
hinterruptions in user's navigation, longer than a threshold TMax we establish, wede
ide to break the initial general transa
tion in two or more smaller referen
elength transa
tions, for whi
h every referen
e (ex
ept the last one) is shorter thanTMax. This makes sense, be
ause resuming a visit after a long ina
tivity may bevery well interpreted as the beginning of a new session. Therefore, we
ompletede�nition 2 with the following
ondition:ltrk :length < TMax; k = 1; : : : ;m� 1 and ltrm:length � TMax:Di�erent users
an use the same page in di�erent manners, whi
h are for nav-igational or for
ontent purposes. We need to di�erentiate between these twoalternatives. In most
ases it is not possible to
ategorize a page based on its
ontent; it is more realisti
 to make the distin
tion based on how mu
h time thevisitor spends on the page. A
ut-o� threshold between the medium time asso
i-ated with the navigation referen
es and the
ontent referen
es
an be assumed or
al
ulated | one possibility is mentioned in [3℄. We denote this
ut-o� time byC. Having this
ut-o� time, we de�ne a
ontent transa
tion as follows:De�nition 3. A
ontent transa
tion t is a triple:t
 = hipt
; uidt
; f(lt
1 :url; lt
1 :time; lt
1 :length); : : : ; (lt
m:url; lt
m:time; lt
m:length)giwhere lt
k 2 L; lt
k :ip = ipt
; lt
k :uid = uidt
; k = 1; : : : ;m,and C < lt
k :length < TMax; k = 1; : : : ;m� 1; lt
m:length � TMax.From every referen
e length transa
tion we obtain one
ontent transa
tion byremoving the referen
es shorter than the
ut-o� time C.2.2. Mining for Large Content-page Sets. We properly format the
ontenttransa
tions from the repository R we obtained as des
ribed in paragraph 2.1,to be suited for the type of data mining we want to perform. Be
ause temporalinformation is not needed for the mining of asso
iation rules, we ex
lude it fromour set of transa
tions. We do this next.Let P = fp1; p2; : : : ; png be the set of pages within the site. Every su
h pi hasa unique
orresponding url that appears in the Web server a

ess log entries and,
onsequently, in the
ontent transa
tions in R, and whi
h uniquely identi�es thepage within the site.

AUTOMATIC SUPPORT FOR IMPROVING INTERACTION WITH A WEB SITE 99De�nition 4. We de�ne an appli
ation f over R, whi
h transforms a
ontenttransa
tion in a mining transa
tion,
orresponding to the relation below:f(hip; uid; f(l1:url; l1:time; l1:length); : : : ; (lm:url; lm:time; lm:length)gi) == fpk1; : : : ; pkmg;wheret
 = hip; uid; f(l1:url; l1:time; l1:length); : : : ; (lm:url; lm:time; lm:length)gi 2 Rand pki is the page that
orresponds to li:url.Ea
h mining transa
tion is uniquely identi�ed by a tid in the resulting set ofmining transa
tions (we denote this set by D).Every mining transa
tion (we refer to it simply as transa
tion from now on) tmis therefore a set of pages su
h that tm � P .De�nition 5. Let X be a set of pages. A transa
tion tm is said to
ontain X ifand only if X � tm.a) An asso
iation rule is an impli
ation of the form X) Y , where X � P , Y � Pand X \ Y = ;.b) The rule X) Y holds in the transa
tion set D with
on�den
e
 if
% oftransa
tions in D that
ontain X also
ontain Y .
) The rule X) Y has support s in the transa
tion set D if s% of transa
tionsin D
ontain X [Y .Given the set of transa
tions D, the problem of mining asso
iation rules is togenerate all asso
iation rules that have support and
on�den
e greater than a user-spe
i�ed minimum support (mins) and minimum
on�den
e (min
) respe
tively.This problem of mining asso
iation rules
an be de
omposed into two subprob-lems. First, �nd all sets of pages (page sets) that have transa
tion support aboveminimum support | whi
h means that they are
ontained in a suÆ
ient numberof transa
tions su
h that the page set to have its support larger than mins. We
all large page sets those page sets with minimum support
ondition satis�ed.On
e all large page sets are obtained, we use them to generate the desired rules.There are proposed various algorithms for solving the mining asso
iation rulesproblem ([1, 2, 4℄). For what we want to do it is suÆ
ient to limit ourselves at�nding the large page sets. We �nd suitable for this the algorithms des
ribed in[2℄.2.3. How We Synthesize Orientation Pages. Sin
e we
hoose to mine themining transa
tions obtained from
ontent transa
tions in D, we are entitled tosay that we will obtain large
ontent-page sets. What signi�es, in pra
ti
e, su
h alarge
ontent-page set? Dis
overing an asso
iation rule X) Y in D means thatis very frequent the situation when if a user visits the pages in X , he will also visitpages in Y . The support X [Y of that rule gives us therefore a
luster of pages

100 ALINA CÂMPAN AND DARIUS BUFNEAgrouped together based on
ertain
ommon feature. In our
ase, they are groupedtogether
orresponding to the
riteria that they are related by their
ontent. Aswe said, the asso
iation rules are determined from the
al
ulated large page sets.The large
ontent-page set from whi
h X) Y is derived is X [Y (however, fromX [Y it is possible to obtain more that one asso
iation rule!). The dis
ussionabove justi�es why we found suÆ
ient to determine the large page sets, and notto
ontinue with identifying the asso
iation rules.For every set of
urrently unlinked
ontent-related pages we want to generatean orientation page,
omprising one link for every page in that set. Two pages are
onsidered linked if there exists a link from one to the other, or if there exists apage that links to both of them. It
ertainly wouldn't make sense to in
lude, in anorientation page, links to two pages that are already pointed by a
ommon parent,be
ause we would
reate a redundant stru
ture equivalent with the existing parent.We make use in
onstru
ting the orientation pages of the following obviousproperty that stands for large page sets. In fa
t, the algorithms that dis
overthe large page sets in a transa
tion repository are based on this property. Weenun
iate it and then we introdu
e another
on
ept we will use.Remark 1. Any subset of a large page set is also a large page set.De�nition 6. We
all a maximal page set a large page set that is not
ontainedin any other large page set.We explained before that every large
ontent-page set
omprises pages relatedby their
ontent, and whi
h are often visited together. Obviously, we wouldn'thave any advantage in generating an orientation page for every large page set!This be
ause every large page set that is not maximal will retrieve itself in a seriesof other large and maximal page sets fa
t that would
ause many redundantorientation pages! So, we are interested in knowing only the maximal
ontent-page sets be
ause they give us the maximal,
omplete
lusters of pages relatedby their
ontent. To obtain them from the large
ontent-page sets that we havepreviously determined is a straightforward task.However, we are not yet at the end of our task. As we aÆrmed, we wantto generate orientation pages for groups of related-by-
ontent pages that are notalready linked in the site So, it remains to dete
t, from every maximal
ontent-pageset, the subsets of pages that, two by two, are
urrently unlinked. We des
ribebellow, in an algorithmi
 form, a method to do this by working on a graph model.Algorithm ConnComp isSet H = ;;For every maximal
ontent-page set previously determined, M=fpi1, : : :,pijg � P , DoAsso
iate to M a graph G = (M;U); U � M �M where there is anedge (pi; pj) 2 U i� the pages pi and pj are unlinked (meaning thatthey are not linked in the sense we spe
i�ed above) in our site;

AUTOMATIC SUPPORT FOR IMPROVING INTERACTION WITH A WEB SITE 101Find all the
onne
ted
omponents of G and add them to H ;End For;End ConnCompThe algorithmConnComp supplies us the setH of all the
onne
ted
omponentsdetermined for all maximal
ontent-page sets. For every
onne
ted
omponent inH there are two properties that follow from the way we de�ned G:� All the pages in a
onne
ted
omponent in H are
ontent related;� Every
onne
ted
omponent in H has the property that ea
h two of itspages are not linked.We must note that it is not realisti
 to o�er to the visitors of the site orientationpages with hundreds of links, be
ause this wouldn't be of any help. Similarly,orientation pages with just a few links should be ex
luded, as not being signi�
antenough and only burdening the site's stru
ture. So, we agree to reasonably
hoosetwo thresholds (min and Max, min < Max) to limit the number of links in ana

eptable orientation page.Eventually, we generate one or more orientation pages for every
onne
ted
om-ponent in H like this:� If the
onne
ted
omponent has between min and Max pages, we gen-erate one orientation page
ontaining a link for every page in the
om-ponent;� If the
onne
ted
omponent has more than Max pages we break it intoparts of Max pages ea
h (ex
epting the last one, whi
h may have be-tween 1 and Max pages). For ea
h part we
onstru
t one orientationpage and we
reate a parent index to point to the orientation pages
orre-sponding to all these parts. So, we have a two-level orientation stru
ture.We will not take into
onsideration the
onne
ted
omponents with morethan Max2 pages; we think that su
h
ases have little
han
e to appearin pra
ti
e for a
ommon site. For Max = 10, imagine what it means\hot" a

ess pattern that imply more than 100 pages!We point out that every possible improvement to the site (add-on orientationpages) is reported to the Webmaster to be a

epted or not. Only the
ontent ofpages is automati
ally supplied; the Webmaster will have to integrate the orienta-tion pages in the overall design of the site and pla
e them where he thinks adequate.So this approa
h brings in only non-destru
tive transformations:
hanges of thesite that leave existing stru
ture inta
t.3. Heuristi
 Comparative StudyIn [5℄ grouping the pages above their
ommon topi
 simply
onsisted in �nding
olle
tions of pages that tend to
o-o

ur in visits. This pro
ess didn't make dif-feren
e between pages that were visited only for navigational purposes and those

102 ALINA CÂMPAN AND DARIUS BUFNEApages that really interested the user by their
ontent. This fa
t
an erroneously in-trodu
e some pages used for navigation, into one
luster of related-by-topi
 pages,only be
ause they are pla
ed on a frequently used path between two
ontent relatedpages.In turn, we identi�ed the pages that really share a parti
ular topi
 by makinguse of the
on
ept of
ontent transa
tion [3℄. We explain now why this is true.In the
ontext of
lassifying a referen
e made by a user as either a naviga-tional or a
ontent one, there are two ways of de�ning transa
tions 3. One is tode�ne a transa
tion as all of the navigation referen
es up to and in
luding ea
h
ontent referen
e for a user session | navigation-
ontent transa
tions. The otheris to
ompound a transa
tion as we did in this paper, from all of the
ontentreferen
es within a user session |
ontent transa
tions. Mining the repositoryof navigation-
ontent transa
tions
al
ulated from a log and the one of
ontenttransa
tion determined for the same log will take us to di�erent results. The �rstapproa
h is, in a way, similar to what is des
ribed in [5℄ | mining navigation-
ontent transa
tion would essentially give the
ommon traversal paths trough theWeb site towards
ontent pages. Mining the
ontent transa
tions produ
es, inturn, asso
iations between the
ontent pages of a site, without any informationabout the path followed between the pages. We point out other signi�
ant fa
tthat devolves from our approa
h: Web mining on
ontent transa
tions does notprodu
e asso
iation rules that might be erroneously determined if we would
on-sider all page referen
es in a log. Imagine this situation: users that treat page Aas a navigation page do generally go on to the page B, but users that visit A as a
ontent page do not go on to B. In this
ase, in
luding navigational referen
es intothe data mining pro
ess will
lassify A in the same
luster as B. Mining
ontenttransa
tions will not produ
e this fake asso
iation, be
ause rule A) B will nothave minimum support. So, in this way, we grouped the pages related by their
ontent with more a

ura
y than previously has been done.4. Con
lusionsIn this paper we presented an approa
h to the problem of adaptive Web sites |synthesizing new pages to be added to the site in order to fa
ilitate the retrievalof information was already proposed before. What is new is the way we establishthe
ontent of the orientation pages. We identi�ed the
lusters of pages that reallyshare a parti
ular topi
 by making use of the
on
ept of
ontent transa
tion. Weoutlined above the advantage of this te
hnique.Referen
es[1℄ Agrawal R., Srikant R., Fast Algorithms for Mining Asso
iation Rules, InPro
. of the 20th VLDB Conferen
e, pp. 487{499, Santiago, Chile, 1994(http://
iteseer.nj.ne
.
om/agrawal94fast.html).

AUTOMATIC SUPPORT FOR IMPROVING INTERACTION WITH A WEB SITE 103[2℄ Chen M.-S., Park J. S., Yu P.S., Data Mining for Path Traversal Patterns in a Web Environ-ment, In Pro
. of the 16th International Conferen
e on Distributed Computing Systems, pp.385{392, 1996 (http://
iteseer.nj.ne
.
om/128354.html).[3℄ Cooley R., Mobasher B., Srivastava J., Grouping Web Page Referen
es into Transa
tions forMining World Wide Web Browsing Patterns, In Knowledge and Data Engineering Workshop,pp. 2{9, Newport Bea
h, CA, 1997 (http://
iteseer.nj.ne
.
om/
ooley97grouping.html).[4℄ Park J. S., Chen M.-S., Yu P.S., An E�e
tive Hash-Based Algorithm forMining Asso
iation Rules, In Pro
. 1995 ACM-SIGMOD, pp. 175{186, 1995(http://
iteseer.nj.ne
.
om/park95e�e
tive.html).[5℄ Perkowitz M., Etzioni O., Adaptive Web sites: Automati
ally Synthesiz-ing Web Pages, In 15- th National Conferen
e on Arti�
ial Inteligen
e, 1998(http://
iteseer.nj.ne
.
om/perkowitz98adaptive.html).[6℄ Perkowitz M., Etzioni O., Towards adaptive Web sites: Con
eptual framework and
ase study,Arti�
ial Intelligen
e 118 (2000), pp. 245{275, 2000 (http://
iteseer.nj.ne
.
om/326006.html).[7℄ Perkowitz M., Adaptive Web Sites: Cluster Mining and Con
ep-tual Clustering for Index Page Synthesis, Ph.D. Dissertation, 2001(http://www.perkowitz.net/mike/resear
h/papers/phd.pdf).[8℄ Pitkow J., In sear
h of reliable usage data on the WWW, In Pro
 of the SixthInternational World Wide Web Conferen
e, pp. 451{463, Santa Clara, CA, 1997(http://
iteseer.nj.ne
.
om/242362.html).Department of Computer S
ien
e, Fa
ulty of Mathemati
s and Computer S
ien
e,\Babes�-Bolyai University, 1, M. Kog�alni
eanu St., RO-3400 Cluj-Napo
a, RomaniaE-mail address: alina�
s.ubb
luj.roComuni
ations Center, \Babes�-Bolyai University, 1, M. Kog�alni
eanu St., RO- 3400Cluj-Napo
a, RomaniaE-mail address: bufny�
s.ubb
luj.ro

STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 2, 2000SPATIAL DATA CAPTURE IN GIS ENVIRONMENTA. M. IMBROANEAbstra
t. Traditionally geographi
al data is presented on maps using sym-bols, lines and
olours. A map is an e�e
tive medium for presentation anda database for storing geographi
al data. But herein lies some limitations.The stored information is pro
essed and presented in a parti
ular way andfor a parti
ular purpose. A map provides a �xed, stati
 pi
ture of geographythat is almost always a
ompromise between many di�erent users. Comparedto maps GIS (Geographi
al Information System) has the inherent advantagethat data storage and data presentation are separate and may be presentedand viewed in various ways. The
ore of GIS environment is the mat
hingof spatial data (digital maps) and attribute data (the meaningful of spatialdata) together. The attribute data are in fa
t tables asso
iated with geo-graphi
al features stored in spatial database. The main problem is
apturingand storing spatial data in digital form. In this paper we will approa
h justspatial data
apture in ve
tor format and not the database organization.1. Introdu
tionThe geographi
 entities or obje
ts in GIS are based on two di�erent types ofdata: spatial and attribute. Spatial data representation in GIS are
lassi�ed intoraster and ve
tor, whi
h are dual with regard to spa
e bounding and spa
e �lling[6℄. Parallel to representational duality, there is the duality of spatial
on
epts,namely entity-based and �eld-based
on
epts [4℄. The fundamental di�eren
e be-tween the representations as well as between spatial
on
epts
auses problems ininteroperability and multi-sour
e fusion [8℄. Attributes or des
riptive, or aspatialdata are alphanumeri
 data related to the graphi
 entities. They are also
alledthemati
 data be
ause they
ontain themselves a theme of the graphi
 features.Attributes of ve
tor units are stored in
omputer �les as re
ords or tuples that maybe linked to them by pointers. Usually the attributes are stored in traditional re-lational database. This operation is
alled geo
oding or address mat
hing. Thefa
t is that attributes data
an be linked with other tabular data (external) andso the new data
an be pro
essed together with the others. This is one of thepowerful spe
i�
 operations in GIS. Spatial data and attribute data
an be stored2000 Mathemati
s Subje
t Classi�
ation. 91B99.1998 CR Categories and Des
riptors. J.2. [Computer Appli
ations℄ : Physi
al S
ien
esand Engineering { Earth and Atmospheri
 S
ien
es.104

SPATIAL DATA CAPTURE IN GIS ENVIRONMENT 105separately or together depending of the database design performed by the GIS pro-prietary. A geographi
al database is a set of geometri
 entities (spatial features)and attributes. The major problems are to
apture, store, manipulate, maintainand pro
ess the spatial data. In order to obtain a digital map whi
h
an be pro-
essed by GIS software it has to be depi
ted in separated themati
 layers, like:topography, geology, hydrology, and so on. The next step is to separate points,lines and polygons asso
iated with real entities from the layers above. And �nally,ea
h graphi
 feature, points, lines, polygons have to
ontain just a single theme,like towns, roads, administrative boundaries.In this paper we will approa
h only ve
tor format and related attributes. Theve
tor format
an be represented in two
omponents: geometri
 (graphi
) data andtopologi
al data. Geometri
 data have a quantitative nature and are used to rep-resent
oordinates, lines, areas et
. The two-dimensional ve
tor format has threesubtypes: point, line and polygon, named features. These features are
alled also`graphi
s primitives' (de�nition borough from CAD/CAM software). Geometri
,or non-topologi
al data models are those in whi
h any positional information arere
orded. The re
ognition of individual spatial units as separate un
onne
ted ele-ments
hara
terized the early data organization for digital
artography. Topolog-i
al data des
ribe the relationship between the geometri
 data. There are severaltypes of topologi
al relationship:
onne
tivity, adja
en
y, and in
lusion. Exam-ples of queries
on
erning topologi
al relationship are: whi
h areas are neighborsof ea
h other (adja
en
y), whi
h lines are
onne
ted and form a network or a road(
onne
tivity), and whi
h lakes lie in a
ertain
ountry (in
lusion). Topologi
aldata are not always stored expli
itly, be
ause in prin
iple they
an be derived fromgeometri
 data. Note that this de�nition of topologi
al data is slightly di�erentfrom the stri
ter one used in mathemati
s.To avoid the
onfusions and for simpli
ity it is better that every type featurerepresents only one type of an obje
t in a layer. Example: in a point theme wehave only towns and not other kind of point obje
t. In a line theme we have onlyrivers and not roads.2. Data
apture programs in pseudo-
ode form for point featureThe
ore of the ve
tor data storage is the
apturing data from digitizer tablet.This pro
edure will be used for point feature storage, line feature storage, andpolygon feature storage. We have di�erent programs in pseudo-
ode for the threespatial features: point, line and polygon.Program POINT {Captures and stores x,y
oordinates}open VECTOR_POINTrepeatread
od {
od =1 write in file,
od =-1 end}
all DIGITIZE(x,y,id$)put id$,x,y

106 A. M. IMBROANEuntil
od =-1
lose VECTOR_POINTendSubsequently we will illustrate the transfer of a string of data in ASCII formatfrom a tablet and extra
t the (x,y)
oordinate. The pro
edure DIGITIZE
allsthe port repeatedly looking for the data, assembles the (x,y)
oordinates.pro
edure DIGITIZE(x,y,id$) {Get x, y and id$}
all GET_STRING(str$)x=num(val(str$,1,4))y=num(val(str$,5,4))id$= num(val(str$,9,4)endpro
edurepro
edure GET_STRING(str$) {Extra
ts
hara
ters from the port}str$="":port_signal=0repeat
all PORT(port_signal)
all INKEY(key$)if key$ <> " " then
har$=GET$str$=str$+
har$endifuntil (
har$=
hr$(10)) or (key = " ")endpro
edureVal$ fun
tion extra
ts x, y values and the identi�er from a spe
i�
 part ofstring, Num fun
tion
onverts from string to numeri
 value. So the x
oordinateis obtained at the numeri
al value of part of str$ string, starting at the
hara
ter1 and ending at
hara
ter 4; y is starting at
hara
ter 5 and ending at 8. Theidenti�er feature (id$) is extra
ted from
hara
ter position 9 and end at 12. Theprogram may be used for
ontrol points and point theme as well.The next step is to
reate attribute table linked together with VECTOR POINTwhi
h
ontain des
riptive data on point features. This mean to open VEC-TOR POINT and read every identi�er
ode and
reate for it a �eld (
hara
teror numeri
). In subsequent we present the program in general form.Program ATTRIBUTE_POINT {Creates the attribute table}open VECTOR_POINT {assigned to point feature table}open ATTRIB_POINTrepeatget id$,x,yrepeatput id$read file_type {1 for
har 0 for numeri
 -1 for finish}if file_type=1 then read
hr_field$put
hr_field$

SPATIAL DATA CAPTURE IN GIS ENVIRONMENT 107if file_type=0 then read num_fieldput num_fielduntil file_type=-1until endfile
lose VECTOR_POINT
lose ATTRIB_POINTendUsually just a few �elds are generated in the attribute data �le. More data
anbe joined from an external relational database. The join
ondition is that every�le has a
ommon �eld.Examples. Assume that we must
reate a point theme, whi
h is represent-ing towns at suÆ
ient small s
ale that the shape of the town is not important.In the VECTOR POINT �le we have the
oordinates of every town and in AT-TRIBUTE POINT we
an have the subsequent �elds: town
ode (whi
h must beunique), name, population and so on.3. Data
apture programs for line featureFor the line feature storage it is
onvenient to use multi-button
ursor. Thefun
tionality of the buttons is pre-spe
i�ed. Here we de�ne one button (say button1) to denote a digitized point, another (button 2) to mean `start node { start ofar
', and the other (button 3) `end node end of ar
'. The following
ode showshow a ve
tor of points
an be build up by
orre
tly interpreting in
oming datafrom the tablet using this prin
iple. Su
h
ode normally is treated as a pro
edureor a sub-routine within the program
ontrolling the data generation pro
ess.Program LINE {Captures line feature}open VECTOR_LINErepeatread
od {
od=1 write in file;
od=-1 for end}k=0repeat
all GET_STRING (str$)k=k+1
on$=val(str$,9,1)x=num(val(str$,1,4))y=num(val(str$,5,4))if
on$="button2" then beginline(k,1)=x: line(k,2)=y endif
on$="button3" then beginline(k,3)=x: line(k,4)=y endif
on$="button1" then beginline(k,3)=x: line(k,4)=yline(k+1,1)=x: line(k+1,2)=yendif

108 A. M. IMBROANEuntil
on$="button3"read id$put id$kk=k-1 {kk = total number of segments}put line(1,1),line(1,2),line(1,3),line(1,4),kkfor k=1 to kkput line(k+1,1), line(k+1,2)endforuntil
od=-1
lose VECTOR_LINEendThe attribute �le
ontains des
ription data on line feature. Usually line at-tribute
ontains the ar
 length, beside others. This
hara
teristi
 is required inalmost all spatial pro
edures analysis. The algorithms that follow use the nextfun
tions two
ompute the length of a segment and area of a triangle:length(x1,y1,x2,y2) = sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2))area(x1,y1,x2,y2,x3,y3) = (x1*y2+x2*y3+x3*y1-y1*x2-y2*x3-y3*x1)/2An algorithm for the attribute �le is given below.Program ATTRIBUTE_LINE {Creates attribute table for line feature}open VECTOR_LINEopen ATTRIB_ LINErepeatget id$,xs,ys,xe,ye,nlen =length(xs,ys,x(1),y(1))for i=1 to n-1len = len + length(x(i),y(i),x(i+1),y(i+1))endforlen = len + length(x(n),y(n),xe,ye)put id$put lenrepeatread file_type {1 for
har, 0 for numeri
, -1 for finish}if file_type=1 then read
hr_field$put
hr_field$if file_type=0 then read num_fieldput num_fielduntil file_type=-1until endfile
lose VECTOR_LINE
lose ATTRIB_ LINEendExamples. If LINE VECTOR refers to roads, the attribute data must be
odeof the road, name, length, quality and so on. If LINE VECTOR refers to rivers,

SPATIAL DATA CAPTURE IN GIS ENVIRONMENT 109attribute data must be
ode of the river, name, length, quality, mean debit and soon. 4. Data
apture programs for polygon featureThe polygon theme is in a way synonym with the line theme. In fa
t a polygonis a
losed line (start point and end point are the same). When the line is �nishedpla
ing the
ursor in the right lo
ation (exa
tly in the same lo
ation where thestart point is) might be problemati
. This is a real problem be
ause we are notable to mark exa
tly the same point at di�erent times (if we move a little bit the
ursor). It is an \error" problem. So it is ne
essary to establish an error insidewhi
h the two points represent the same point. It is often named snap node error(or snap node toleran
e). This is linked with the digitizer pre
ision. Anyway theerror is establish suÆ
iently small for the purpose of using the map. Operatorspe
i�es this error before the digitizing pro
ess is running. If the two nodes areinside error toleran
e, the start node `snap' the end node and therefore we havejust one node (xe=xs, ye=ys).Every polygon must
ontain an isolated point inside the polygon (not ne
essarilyin
entre) named
entroid. Like for the line feature storage we use a multi-button
ursor.Program POLYGON {Captures and stores polygon features}open VECTOR_POLYread snap_pointrepeatread
od {if
od=1 then
apture polygon; if
od=-1 then end}10 k=0repeat
all GET_STRING (str$)k=k+1
on$=val(str$,9,1)x=num(val(str$,1,4))y=num(val(str$,5,4))if
on$="button2" then beginline(k,1)=x: line(k,2)=yend else if
on$="button3" then beginline(k,3)=x: line(k,4)=yend else if
on$="button1" then beginline(k,3)=x: line(k,y)=yline(k+1,1)=x: line(k+1,2)=yenduntil
on$="button3"xs=line(k,1): ys=line(k,2): xe=line(k,3): ye=line(k,4)dist = length(xs,ys,xe,ye)if dist>snap_point then goto 10

110 A. M. IMBROANEkk=k-1 {kk = total number of segments}read id$put id$put xs,ys, kk
all DIGITIZE (x,y,id$)put x,yfor k=1 to kkput line(k+1,1), line(k+1,2)endforuntil
od=-1
lose VECTOR_POLYendA multi-polygon map often requires a hierar
hi
al data stru
ture be
ause poly-gons will share
ommon boundary and line segments will terminate at the
ommonnodes. Moreover, to produ
e
artographi
 output, any
ombination of polygonsmay be required.Usually the attribute table
ontains beside identi�er, both perimeter and areaof the polygon, followed by an arbitrary number of �elds. For the perimeter we
an use the same pro
edure as for ar
 length. The measurement of an irregularfeature su
h a polygon
an be done by
al
ulating the areas of the trapezoids underthe su

essive line segments whi
h make up the polygon [1℄. Another method for�nding area of a polygon is to de
ompose the polygon in triangles using the
entroid
oordinate, and �nally
al
ulate area of ea
h triangle.For an e�e
tive evaluation of the area we depi
t the polygon in three parts:�rst triangle, intermediate triangles and last triangle. A pseudo-
ode program forattribute �le is:Program ATTRIBUTE_POLY {Creates the attribute table}open VECTOR_ POLY {asso
iated with polygon feature}open ATTRIB_ POLYrepeatget id$,xs,ys,nget x
,y
len = length(xs,ys,x(1),y(1))a = area(xs,ys,x(1),y(1),x
,y
)for i=1 to n-1len = len + length(x(i),y(i),x(i+1),y(i+1))a = a + area(x(i),y(i),x(i+1),y(i+1),x
,y
)endforlen = len + length(x(n),y(n),xs,ys)a = a + area(xs,ys,x(n),y(n),x
,y
)put id$,len,arearepeatread file_type {1 for
har, 0 for numeri
, -1 for finish}if file_type=1 then read
hr_field$

SPATIAL DATA CAPTURE IN GIS ENVIRONMENT 111put
hr_field $if file_type=0 then read num_fieldput num_fielduntil file_type=-1until endfile
lose VECTOR_ POLY
lose ATTRIB_ POLYendData entry pro
ess, su
h as retrieval of themati
 data from se
ondary sour
es, ortopographi
 data
apture from digitizing operations, are typi
ally managed withina GIS. The task is to provide the user with te
hniques for interfa
ing with inputdevi
e and �le handling pro
edures.Referen
es[1℄ Bra
ken I., Webster C., Information Te
hnology in Geography and Planning, Routledge,London, 1990.[2℄ Butten�eld B.P., Digital De�nitions of S
ale Dependent Line Stru
tures, in Pro
eeding AutoCarto M.J. Blakemore (ed), vol. I, 1986, 497{506.[3℄ Foley J. D. and Van Dam A., Fundamentals of Computer Graphi
s, Addison-Wesley, Reading,Mass, 1982.[4℄ Frank A.U., Spatial Con
epts, Geometri
 Data Models and Geometri
 Data Stru
tures, Com-puters & Geos
ien
e, 18, 1992, 409-417.[5℄ Imbroane, A.M., Moore D., Init�iere �̂n GIS �si Teledete
t�ie, Presa Univ. Clujean�a, Cluj-Napo
a, 1999.[6℄ Peuquet D.J., A Con
eptual Framework and Comparison of Spatial Data Models, Carto-graphi
a, 66, 1984, 113{121.[7℄ Walla
e V.L., The Semanti
s of Graphi
s Input Devi
es, Computer Graphi
s, 10, 1976, 1,61{65.[8℄ Winter S., Bridging Ve
tor and Raster Representation in GIS, ACM, 11, 1998, 57{63.\Babes�-Bolyai" University, Fa
ulty of GeographyE-mail address: alex�geografie.ubb
luj.ro

	00contents
	1-Radoiu
	2-Pecsy
	3-Cimoca
	4-Popescu
	5-Serban
	6a-Niculescu
	6-Niculescu
	7-Frentiu
	8-Suciu
	9-Tatar
	10-Iuga
	11-Campan
	12-Imbroane

