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STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000THE RELAXATION OF THE FUNDAMENTAL CONDITIONSOF SCIENTIFIC VISUALIZATION USING EQUIVALENCECLASSESDUMITRU R�ADOIU AND ADRIAN ROMANAbstra
t. The paper addresses the issue of s
ienti�
 data visualization pro-
ess validation. Three fundamental 
onditions for s
ienti�
 visualization areintrodu
ed; one of them { the Pre
ision Condition { is dis
ussed in detail.The theory allows a better formal des
ription of the s
ienti�
 visualizationpro
ess.Index terms { s
ienti�
 visualization, pre
ision 
lasses, and s
ienti�
visualization pro
ess validation1. Introdu
tionS
ienti�
 Visualization is a 
omputational pro
ess that maps s
ienti�
 dataand its attributes into visual obje
ts [1℄. S
ienti�
 data 
an be obtained in manydi�erent ways, e.g. by running a simulation or by a DAQ pro
ess. Usually, s
i-enti�
 data obje
ts are �nite representations of 
omplex mathemati
al obje
ts.We note by O the set of su
h obje
ts, o 2 O. During the visualization pro
ess,initial data obje
ts, o, are pro
essed through di�erent transformation fun
tionsMat(o) = o0, into a new set o0 2 O0. Obje
ts o0 are then mapped Map(o0) = ginto a set of virtual geometri
al obje
ts g 2 G, through a set of graphi
alprimitives. Obje
ts g usually are n-dimensional (nD), animated (t) and intera
-tive.De�nition 1 A group of virtual geometri
al obje
ts, logi
ally inter
onne
ted, is
alled a logi
al visualization of that s
ene.Ideal geometri
al obje
ts g, nD, animated (t) and intera
tive are usually repre-sented Rep(g) = g0 , g0 2 G0, on real 2D s
reens.De�nition 2 The proje
tion of the logi
al visualization of a s
ene on a s
reenis 
alled a physi
al visualization of that s
ene.The fun
tions Rep(g) = g0 implement 
lassi
al graphi
al operations su
h as
omposition of the s
ene, volume generation, isosurfa
e generation, simulation oftransparen
y, re
e
tivity and lighting 
onditions, nD ! 2D proje
tion, 
lipping,2000 Mathemati
s Subje
t Classi�
ation. 65D18.1998 CR Categories and Des
riptors. I.3.6 [Computing Methodologies℄: ComputerGraphi
s { Methodology and Te
hniques. 3



4 DUMITRU R�ADOIU AND ADRIAN ROMANhidden surfa
e removal, shading, animation (t), setting user intera
tivity (zoom,rotate, translate, pan, et
), et
.De�nition 3. By intera
tivity we understand the attributes of visual obje
ts(logi
al and/or physi
al) whose setting allows nD ! 2D proje
tion (zoom, rotate,translate, pan, et
), animation 
ontrol (t), 
ontrol of the obje
ts 
omposing thes
ene and 
ontrol of the s
ene as a 
omposite obje
t.The s
ienti�
 visualization pro
ess is des
ribed by the V is(o) = g0, V is(o) =Rep(Map(Mat(o))) = g0 fun
tion. The pro
ess is des
ribed in �gure 1.

Figure 1. Des
ription of the s
ienti�
 visualisation pro
ess2. Fundamental 
onditions of s
ientifi
 visualizationThere are many requirements 
on
erning a 
ertain s
ienti�
 visualization pro-
ess. We 
onsider three of them to be fundamental. The �rst one is the dis-tin
tiveness 
ondition. This 
ondition (although very weak) enables users todistinguish between di�erent data obje
ts based on their display. The 
ondition isne
essary as one 
an imagine many visualization fun
tions that generate imageswith no use, whi
h reveal none of the data obje
ts 
hara
teristi
s/attributes.The se
ond 
ondition is the expressiveness 
ondition. This 
ondition assuresthat the attributes of the visual obje
t represent the attributes of the input dataset.



THE RELAXATION OF THE FUNDAMENTAL CONDITIONS OF SCIENTIFIC 5The third one is the pre
ision 
ondition. This 
ondition insures that theorder among data obje
ts is preserved among visual obje
ts.The distin
tiveness 
ondition. Di�erent input data (di�erent mathemati
alobje
ts) are represented by di�erent visual obje
ts.This 
ondition 
an be stated:o1 6= o2 ) V is(o1) 6= V is(o2)) Rep(Map(Mat(o1))) 6= Rep(Map(Mat(o2)))) g10 6= g20; for any o1; o2 2 O; g10; g20 2 G0The interpretation of this 
ondition is that V is(), Mat(), Map() and Rep()fun
tions are inje
tive.The expressiveness 
ondition. The visual obje
ts express all and only the
hara
teristi
s of the input data.It results that the visualization fun
tion should be one to one.The two 
onditions are ne
essary but not suÆ
ient. Another 
ondition is neededto establish an order relation both among data and visual obje
ts. This 
ondition
ould be seen as a pre
ision relation.The pre
ision 
ondition. For any obje
ts o1; o2 2 O su
h that o1 is \morepre
ise" than o2 we have that V is(o1) is \more pre
ise" than V is(o2), with V is(o1),V is(o2) 2 G0.The pre
ision 
ondition adds something new. If the visualization fun
tion iswell de�ned and the input data obje
ts are stri
tly ordered, the visual obje
ts 
anbe ordered by their \pre
ision".The �rst two 
onditions introdu
e 
riteria of validation and 
ontrol of the visu-alization pro
ess. The visualization fun
tion V is() ful�lling these 
riteria resultsin a s
ienti�
 visualization. The third 
ondition allows further developments byde�ning mathemati
al operations on the given ordering.3. Equivalen
e 
lassesWe introdu
e another approa
h to des
ribe formally the visualization pro
ess.There are examples that prove that the above 
onditions are too \tight". Be
ausewe display the visual obje
ts on real s
reens (i.e. with �nite resolution) it is possiblethat two or more obje
ts o to be mapped into identi
al visual obje
ts. Thereforea more relaxed approa
h to formally des
ribe the visualization pro
ess of s
ienti�
data is ne
essary. In order to des
ribe the new approa
h some mathemati
al
on
epts are to be presented.We have already introdu
ed the basi
 sets denoted by O, O0, G and G0. O repre-sents the set of the so 
alled \data obje
ts". O0 is the set of the elements obtainedfrom \data obje
ts" through di�erent transformation fun
tions. G represents theset of virtual geometri
al obje
ts, nD. Virtual geometri
al obje
ts be
ome realgeometri
al obje
ts (G0) by proje
tion/display (e.g. on 2D s
reens).The visualization fun
tion 
an be des
ribed as the mapping of the set O intoG0.



6 DUMITRU R�ADOIU AND ADRIAN ROMANDe�nition 4. Let O and G0 be two sets and v be a binary relation. We 
allv a mapping of O in G0 if for ea
h element o 2 O, there is exa
tly one elementg0 2 G0 that satis�es ho; g0i 2 v.The element g0 is 
alled the image of the element o through v, and o is 
alledthe inverse image of g0 through v. For the mapping v we introdu
e the notationv : o ! g0 and the fun
tional notation v(o) = g0. We 
an write that v : O ! G0to show that v = V is() is a mapping of O into G0. O is 
alled the domain of v. Ifthe inverse relation is also a mapping, we will denote it by v�1.From the set theory we know that a partition � of a set O is a subset of P (O)(the power set of O) not 
ontaining �, satisfying the following property: everyo 2 O is an element of exa
tly one A 2 �. The elements of a partition are 
alledblo
ks. If � and �0 are partitions of O, we will write � � �0 if for every blo
k B 2 �there exists a blo
k C 2 �0 su
h that B � C.We use the fundamental theorem of the equivalen
e relations in order to under-line some important aspe
ts:Theorem 1. [10℄ (a) Let � be a partition of O and de�ne a binary relation �pon O by o1�o2 if and only if o1 and o2 are in the same blo
k of the partition �.Then �� is an equivalen
e relation on O.(b) If � is an equivalen
e relation over a set O, then there exists a partition ��over O su
h that o1; o2 2 O are elements of the same blo
 of �� if and only if o1�o2.(
) If � � �0, then �� � ��0 . If � � �0, then �� � �0�.Theorem 1(a) shows that a binary relation is an equivalen
e relation if it \
on-serves" the initial partitioning over the given set. Theorem 1(b) states that apartitioning of a set 
an be obtained starting from a given equivalen
e relation �.Theorem 1(
) introdu
es an order relation.The following remark has to be stated:Remark 1. If more than one element o is mapped into the same visual obje
tg0, then the set O 
an be partitioned into non-empty subsets that in
lude all the oelements mapped into the same visual obje
t.Remark 1 introdu
es the idea of equivalen
e relations as the main tool in orderto obtain a more realisti
 des
ription of the visualization pro
ess. A natural equiv-alen
e relation �v 
an be de�ned over O. The relation �v is 
alled the equivalen
erelation indu
ed by v over the set of obje
ts O and it partitions the set O intosubsets of obje
ts sharing the same visualization (see theorem 1). We denote by�v the indu
ed partitioning over O.The proposed model is based on the 
on
ept of equivalen
e 
lasses.De�nition 5. [9℄ The equivalen
e 
lass of an element o 2 O, indu
ed by theequivalen
e relation �, is the subset of those elements from O that are in the relation� with o.We denote by [o℄� the equivalen
e 
lass of o 2 O, indu
ed by the equivalen
erelation �. When the equivalen
e relation is impli
it, we use the notation [o℄.



THE RELAXATION OF THE FUNDAMENTAL CONDITIONS OF SCIENTIFIC 7Further, another theorem is introdu
ed in order for us to be able to formulatethe new visualization 
onditions.Theorem 2. [10℄ Any mapping v : O ! G0 
an de represented as a produ
tof two mappings ' and �, v = '�, where ' is onto and � is one-to-one; if � isthe equivalen
e relation indu
ed by v, then ' = '� : O ! Oj� and � : Oj� ! G0,where Oj� is the set of all equivalen
e 
lasses indu
ed by � (Figure 2).

Figure 2. S
hemati
 representation for Theorem 2So, if we have a well-de�ned equivalen
e relation over O, then we 
an 
onsiderinstead of v a produ
t of two mappings (Figure 3). This approa
h has the advan-tage that it redu
es the set of obje
ts O to the set of 
lasses Oj�. Order relations
an be stated over the set of 
lasses.The presented theory is exempli�ed below. We 
onsider two data sets havingthe same format. The equivalen
e relation � imposes that the attributes of theobje
ts (element by element) have values between:(ai)1; (ai)2 2 (ai ��ai; ai +�ai);where (ai)1 are the attributes of the �rst obje
t, and (ai)2 those of the se
ondobje
t. If the resolution of the s
reen is small enough we observe that, for thesame visualization system, the two di�erent data sets will be represented on thes
reen by the same visual obje
t.
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Figure 3. Des
ription of the visualization pro
ess using equiva-len
e 
lassesRemark 2. Assuming that the equivalen
e relations �0, �1, . . . , �n�1, de�nedover the same set exist, we 
on
lude that the partitions �o, �1, . . . , �n�1 alsoexist.Theorem 1(
) and remark 2 introdu
e an order relation between the equiva-len
e 
lasses, relation that 
an be regarded as \pre
ision" relation. For the aboveexample, we 
onsider another equivalen
e relation �0 imposing that the attributesof the obje
ts (element by element) have values between:(ai0)1; (a0i)2 2 (a0i ��a0i; a0i +�a0i);where (a0i)1 are the attributes of the �rst obje
t, and (a0i)2 those of the se
ondobje
t, with �ai � �a0i. In this 
ase � � �0, where � and �0 represent thepartitions 
orresponding to the equivalen
e relations � and �0. From theorem 1.3it results that � � �0.4. The pre
ision relation over the s
ientifi
 visualization pro
essAn order relation is ne
essary over the visualization pro
ess. We have intro-du
ed the \pre
ision relation" as a fundamental 
ondition of the s
ienti�
 visual-ization. Now, the equivalen
e 
lasses allow a further development of the idea. Weare espe
ially interested in the O (or Oj�), G and G0 sets.



THE RELAXATION OF THE FUNDAMENTAL CONDITIONS OF SCIENTIFIC 9De�nition 6. A 
lass of obje
ts, de�ned by the equivalen
e relation � (seetheorem 1), is \more pre
ise" than another one, de�ned by the equivalen
e relation�0, if � � �0.So, [o1℄� � [o2℄�0 (� des
ribes the pre
ision relation) if � � �0.The set of virtual geometri
al obje
ts is denoted by G. A virtual geometri
alobje
t g 
an be regarded as a 
omposition of graphi
al primitives. We denote byP the set of all types of graphi
al primitives. Let us denote by SUM(N;P ) thesum Pni=1 pi: Then the virtual geometri
al obje
t g 
an be des
ribed as:g = SUM(N;P ); where pi 2 P; for a �nite N:De�nition 7. 1. A virtual geometri
al obje
t g1 = SUM(N1; P ) is said to be\stri
tly more pre
ise" than another virtual geometri
al obje
t g2 = SUM(N2; P )if N1 > N2.2. If N1 = N2, then a virtual geometri
al obje
t g1 =Map(Mat(o1)), o1 � [o1℄�is said to be \more pre
ise" than another obje
t g2 = Map(Mat(o2)), o2 � [o2℄�0if the 
lass [o1℄� is \more pre
ise" than the 
lass [o2℄�0.Remarks. 1. An obje
t 
an be represented using several ways (Figure 4). Therepresentation 
onsidered \the most (stri
tly) pre
ise" is the one that uses thehighest number of graphi
al primitives. We 
all this kind of pre
ision represen-tation pre
ision.2. If the representation uses the same number of graphi
al primitives then theset G 
onserves the pre
ision relation over O. The pre
ision indu
ed over G is
alled order pre
ision.If di�erent numbers of graphi
al primitives are used, then the representationpre
ision is 
onsidered as order relation.De�nition 8. A visual geometri
al obje
t g1 2 G is said to be \(stri
tly) morepre
ise" than another visual obje
t g2 2 G if g1 = Rep�1(g1) is \(stri
tly) morepre
ise" than g2 = Rep�1(g2).5. The relaxation of fundamental 
onditions of the s
ientifi
visualizationThe fundamental 
onditions of the s
ienti�
 visualization 
an be restated:The distin
tiveness 
ondition. Di�erent equivalen
e 
lasses are mappedinto di�erent visual obje
ts.Formally: [o1℄ 6= [o2℄) �([o1℄) 6= �([o2℄)) g01 6= g02[o1℄; [o2℄ 2 Oj�; g01; g02 2 G0.The expressiveness 
ondition. The visual obje
ts express all the 
hara
ter-isti
s of input equivalen
e 
lasses, and only those 
hara
teristi
s.Formally: 8g0 2 G0; 9[o℄ 2 Oj� su
h that �([o℄) = g0.The distin
tiveness 
ondition and the expressiveness 
ondition impose the map-ping � to be one-to-one.
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Figure 4. Example of visualization pipelinesThe pre
ision 
ondition be
omes the pre
ision theorem. The equivalen
e 
lassapproa
h redu
es the number of fundamental 
onditions and in the same timeallows the introdu
tion of a well-de�ned order relation.Pre
ision Theorem. 1. Let [o℄� 2 Oj� be a 
lass of obje
ts and let theideal geometri
al obje
ts g1; g2 2 G, where g01 represents the physi
al visualizationof the the [o℄ 
lass using N1 graphi
al primitives, and g02 represents the physi
alvisualization of the [o℄ 
lass obje
t using N2 graphi
al primitives.i.: If N1 > N2 then g01 is \stri
tly more pre
ise" than g02.ii.: If N1 = N2 then g01 is represented with the same pre
ision as g02.iii.: If N1 < N2 then g02 is \stri
tly more pre
ise" than g01.2. Let [o1℄�; [o2℄� 2 Oj� be two 
lasses of obje
ts and let the ideal geometri
alobje
ts g01; g02 2 G, where g01 represents the physi
al visualization of the the [o1℄�
lass using N1 graphi
al primitives, and g02 represents the physi
al visualizationof the [o2℄� 
lass obje
t using N2 graphi
al primitives. We 
onsider that the 
lass[o1℄� is \more pre
ise" than [o2℄�.i.: If N1 > N2 then g01 is \stri
tly more pre
ise" than g02.ii.: If N1 = N2 then g01 is \more pre
ise" than g02.iii.: If N1 < N2 then g02 is \stri
tly more pre
ise" than g01.



THE RELAXATION OF THE FUNDAMENTAL CONDITIONS OF SCIENTIFIC 11Proof. 1. i. For the obje
ts g1 = SUM(N1; P ) and g2 = SUM(N2; P ) we haveN1 > N2. From de�nition 7.1 it results that g1 is \stri
tly more pre
ise" than g2.From de�nition 8 we 
on
lude that g01 is \stri
tly more pre
ise" than g02.ii. If N1 = N2 then g1 = g2 and g01 = g02.iii. The same proof as for i.2. ii. We assume that a 
lass of obje
ts indu
ed by an equivalen
e relation �,[o1℄�, is \more pre
ise" than another one, [o2℄�, indu
ed by the equivalen
e relation�. We have then [o1℄� � [o2℄�.From the de�nition of the pre
ision relation for obje
t 
lasses from O, we 
on-
lude that � � � as the result of the relation [o1℄� � [o2℄�. From theorem 1(
) wefurther 
on
lude that � � �, where � and � are partitions of the set O. If � and� are partitions of O, we write � � � if for every blo
k B 2 � there exists a blo
kC 2 � su
h that B � C.Then, the obje
ts that belong to the equivalen
e 
lass [o1℄� are more exa
t thanthose from the 
lass [o2℄� and as a result their representations are more a

urate.From de�nition 7.2 it results that g1 is \more pre
ise" than g2.So, from de�nition 8, if g1 is \more pre
ise" than g2 then g1 = Rep(g1) is \morepre
ise" than g2 = Rep(g2).For i. and ii. we use the de�nition 7.1.6. Con
lusionsThis arti
le proves that a more \relaxed" approa
h of the mathemati
al de-s
ription of the pro
ess is ne
essary. The �nite s
reen resolution and the �nitea

ura
y of the system introdu
e visualization \error": di�erent data sets havesometimes the same display/visualization, i.e. are mapped into the same visualobje
t. The introdu
ed data models allow the de�nition of di�erent operationsbetween data sets and the de�nition of a pre
ision relation.Referen
es[1℄ Kaufman Arie, Nielson G., Rosenblum L. J., \The Visualization Revolution", IEEE Com-puter Graphi
s, July 1993, pp. 16{17[2℄ Williams L. Hibbard, Charles R. Dyer, Brian E. Paul, \Towards a Systemati
 Analysisfor Designing Visualizations", S
ienti�
 Visualization, IEEE Computer So
iety, 1997, pp.229{251[3℄ Ma
Kinlay, \Automating the Design of Graphi
al Presentations of Relational Information",ACM Transa
tions on Graphi
s, Vol.5, Nr.2 1986, pp. 110{141[4℄ W. Hibbard, C. Dyer, B. Paul, \A latti
e Model for Data Display", Pro
eedings of IEEEVisualization '94, 1994, pp. 310{317[5℄ Upson C., Faulhaber, Jr. T., Kamins D., Laidlau D., S
helgel D., Vroom J., Gurwitz R.,van Dam A., \The Appli
ation Visualization System: A Computational Environment forS
ienti�
 Visualization", Computer Graphi
s and Appli
ations, vol 9, nr.4, 1989[6℄ R�adoiu D., Roman A., \Modelarea pro
esului de vizualizare", in Tehnologii Avansate {Apli
at�ii �̂n edu
at�ie, Editura Universit�at�ii Petru Maior, 1999, p. 86{101
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ienti�
 Visualization of Ex-perimental Data", Studia Universitatis \Babe�s-Bolyai", Series Informati
a, XLIV, 1999, no.2, pp. 50{64[8℄ R�adoiu D., \Vizualizarea S�tiinti�
�a a Datelor Experimentale", Editura Universit�at�ii PetruMaior, 2000[9℄ V. Cru
eanu, \Elemente de algebr�a liniar�a �si geometrie", Editura dida
ti
�a �si pedagogi
�a,1973, pp. 12[10℄ Gratzer G., \Universal Algebra", Springer Verlag, New-York, Berlin, Heidelberg, 1979Petru Maior University of Tirgu MuresE-mail address: dradoiu�uttgm.roPolyte
hni
 University of Bu
harest



STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000A COMPRESSION METHOD FOR 3D SCENESRADU-LUCIAN LUPS�AAbstra
t. The arti
le presents a method for 
ompressing the representa-tions of 3D s
enes. It is a non-lossy 
ompression, based on a variation ofthe Hu�man algorithm and some ideeas taken from the LZ77 
ompressionmethod. The method des
ribed has been su

esfuly implemented and usedin a 
ommer
ial appli
ation.1. Introdu
tion3D graphi
s appli
ations need a representation of 3D s
enes they work on, forstoring or transmitting the information about the obje
ts. A 3D representationmust meet the following requirements:� it must be able to represent the 3D s
ene with enough a

ura
y for theappli
ation,� one must be able to 
onvert it fast enough to the representation requiredby the 3D engine or by other parts of the apli
ation,� it must be spa
e-eÆ
ient.There are two basi
 methods for des
ribing 3D obje
ts:(1) as geometri
 bodies(2) by voxelsAs the se
ond method leads to huge memory requirements, we will use the �rstone.In order to des
ribe the bounding surfa
e of a 3D body, two elements must bespe
i�ed:(1) the shape of that surfa
e(2) the opti
al properties of the surfa
eA body surfa
e 
an be approximated by an union of elements (or pat
hes),ea
h pat
h being a (�nite) fragment of a plane, of a Bezier surfa
e, or of a B-splinesurfa
e.The relevant opti
al properties of the pat
hes are:2000 Mathemati
s Subje
t Classi�
ation. 68T45.1998 CR Categories and Des
riptors. I.2.10 [Computing Methodologies℄: Arti�
ial In-telligen
e { Vision and S
ene Analysis. 13



14 RADU-LUCIAN LUPS�A(1) the 
olor (or the texture of that surfa
e)(2) the re
e
tion model(3) the refra
tion modelThe last two properties are omitted from the less elaborated representations, asthey 
an be used for rendering by very 
ostly algorithms only (su
h as ray-tra
ing).If a pat
h has only one 
olor, we 
an represent its 
omponents; if there isa texture, we represent thar texture as a 2D image (using a normal 2D imagerepresentation format) and that image is mapped onto the pat
h.Having the pat
hes planar (that is, ea
h pat
h is a polygon, and the bodyis therefore a polyhedron) simpli�es the 
omputations but the edges are far toovisible in the rendering. There are rendering methods for smoothing the rendering;the best known are the Gouraud or Phong methods [1℄ [7℄. Any of those requiresan approximation for the (real) normal ve
tor in ea
h of the verti
es. However,
omputing the normals from the pat
hes 
orners only is pe
uliar be
ause some ofthe edges between the pat
hes are to be smoothed, and others are real edges. Forthat reason, some of the 3D representation formats expli
itly represent the normalve
tor of ea
h pat
h in ea
h 
orner.2. Standard 3D formatsSeveral 3D formats (for instan
e, .obj (for a front end for OpenGL) and .3ds(3D Studio) are 
onstru
ted the following wayFirst of all, we have a list of 3D points, a list of 3D ve
tors, a list of 2D points,and a list of 2D images (the latter being represented using a standard 2D format| for instan
e, gif, jpeg, ti�, and may even be stored in di�erent �les). Next wehave the des
ription of the fa
ets (pat
hes). Ea
h fa
et des
ription 
ontains:� the verti
es list� the list of the normals in ea
h vertex (in 
ase the fa
e is not planar sothe rendering should be smoothed)� the texturing image� the 2D points on the texturing image, 
orresponding to the fa
et verti
esEa
h of these pie
es of information are in fa
t the index, in the list at thebeginning of the �le, of the 
orresponding 3D point, 3D ve
tor, 2D image, or,respe
tively, 2D point. 3. Compressing the 3D s
eneThe methods des
ribed above still 
ontain a lot of redondan
y. Eliminating thisredondan
y would lead to a better 
ompression.In the following we will start from a .obj-like 3D format and will try to 
ompressit. The �rst sour
e of redondan
y 
onsists in the fa
t that a typi
al appli
ation willoutput the verti
es and ve
tors in approximatively the same order they are used



A COMPRESSION METHOD FOR 3D SCENES 15by the fa
et des
riptions. This sugests us to write in the 
ompressed �le the list ofdi�eren
es between the su

esive vertex indi
es of ea
h fa
e, and to 
ompress thosedi�eren
es using the Hu�man algorithm [4℄ [5℄, with some modi�
ations inspiredfrom other 
ompression te
hniques.The �rst 
hange will be to make an adaptative Hu�man algorithm. In theoriginal algorithm, the 
oding table is 
omputed in a �rst pass over the input �leand written into the 
ompressed �le; then the information is en
oded using thattable.The modi�ed algorithm will start with a �xed en
oding table. As it sees theinput data, it 
omputes the frequen
y table. At some prede�ned moments (forinstan
e, when the number of already-pro
essed symbols is a power of 2), theen
oding table is regenerated based onto the frequen
y table.The de
oder starts with the �xed en
oding table. Relying on it, the de
oder 
anread and de
ode the �rst symbols, till the �rst en
oding table re
omputing. Atthat time, the de
oder will have exa
tly the same frequen
y table as the en
oder,and therefore it will generate the same en
oding table, so it will be able to 
ontinuethe de
oding pro
ess.The se
ond modi�
ation 
on
erns the handling of rarely-used symbols. As wesaw earlier in this se
tion, the input symbols for the Hu�man 
ompression arethe di�eren
es between the indi
es of two su

esive points on a fa
et. Thesedi�eren
es, if the indi
es are 32-bit integers, lay in the interval �231 + 1::231 � 1,but values above a few hundreds are rare. For that matter, statisti
al data areirrelevant for predi
ting future o

uren
es of those values. So, we will slightly
hange the Hu�man algorithm the following way: for the Hu�man algorithm, wewill 
onsider all values outside the interval, let's say, �127::127 as being equal.this way, the Hu�man part sees 256 distin
t symbols, one for ea
h number in theinterval �127::127 and one for all the other numbers. For the numbers outsidethe interval �127::127 we output the Hu�man 
ode of that symbol plus 32 bitsrepresenting the a
tual value.Sometimes we have a se
ond sour
e of redondan
y in the point and ve
tor
omponents. Let's take the sequen
e of the x 
oordinates of the points. If thereare points grouped in planes orthogonal to the Ox axis, we get repeating values inthat sequen
e. So, instead of 
oding the a
tual values, we will 
ode the distan
efrom the last appearan
e of that value.4. Con
lusionsThe method des
ribed in the previous se
tion was implemented by the authorand is used in a 
ommer
ial appli
ation for sending des
riptions of 3D s
enes overthe Internet. The s
enes are output by a CAD-like program and are between300kB and 5MB in obj format. A simple 
onversion from text to binary redu
esthe size to one half, and a zip-like program redu
es it to 1=4::1=5 of the original
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STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000TRAINING PROBABILISTIC CONTEXT-FREE GRAMMARS ASHIDDEN MARKOV MODELSADRIAN DUDA, GABRIELA S�ERBAN, DOINA T�ATARAbstra
t. It is 
onsiderred in this moment that the use of mathemati
alstatisti
s methods in natural language pro
essing represents a leading topi
 inNLP. Statisti
al methods have �rst been applied in the "spee
h-re
ognition"area. While Hidden Markov Model (HMM) is unanimously a

epted as amathemati
al tool in this area, its advantages have been less used in dealingwith understanding natural language. In this paper we propose a method forasso
iation of a HMM to a 
ontext-free grammar (CFG). In this way, learninga CFG with a 
orre
t parsing tree will be realized by learning a HMM.Key words: probabilisti
 
ontex-free languages, hidden Markov mod-els, natural language pro
essing.1. Hidden Markov Model (HMM).HMM model is a generalization of Markov 
hains, being possible that morearrows to go out for a given input. As in an HMM we 
an have more paths
overred for the same input, it implies that P (w1;n) (whi
h is the probabilityto have as input a sequen
e made up of n words, w1 w2 � � �wn, shortly writtenas w1;n ) is 
al
ulated as the sum of the probabilities on all the possible paths.Probability on a given path is 
al
ulated by multiplying the probabilities on ea
hsegment (arrow) of that path.De�nitionAn HMM is a 4-element stru
ture < s1; S;W;E > , where S is a (�nite) setof states, s1 2 S is the initial state, W is a set of input symbols (words), and Eis a set of transitions (labelled arrows). We 
onsider the following order of theelements of the sets S;W;E: S = (s1; � � � s�); W = (w1; � � �w!);E = (e1; � � � e�):Let us noti
e the di�eren
e between wi and wi: the �rst one means the i-thelement (word) of an input sequen
e, while the se
ond one is the i-th elementof the W set. A transition is de�ned as a 4-element stru
ture: (si; sj ; wk ; p) ,2000 Mathemati
s Subje
t Classi�
ation. 68Q42, 65C40.1998 CR Categories and Des
riptors. F.4.2 [Theory of 
omputation℄: Mathemati
alLogi
 and Formal languages { Grammars and other rewriting systems; G.3 [Mathemati
s ofComputing Probability and Statisti
s℄: Markov pro
esses.17



18 ADRIAN DUDA, GABRIELA S�ERBAN, DOINA T�ATARrepresenting passing from state si to state sj for input wk , transition evaluatedas having the probability p. As for a given input sequen
e we have more possiblepaths, the states that it has been passed through is not dedu
tible from input, buthidden (this gives the name of the model we fo
us on). The sequen
e of statess1; s2; � � � ; sn+1 that it has been passed through for an input w1;n is marked by usshortly with s1;n+1.Algorithm to �nd the highest-probability-path. In the followings, we areusing Viterbi 's algorithm to �nd the most probable path. Formally written, wehave to �nd argmaxs1;n+1P (w1;n; s1;n+1)where w1;n is a sequen
e of input(entran
e) words, and s1;n+1 is the set of statesthat has been passed through. The main idea of the algorithm is 
al
ulating themost probable path beginning with the empty input sequen
e, and pro
essing oneword at a time, then the next word that 
omes in the input sequen
e. At everystep, we 
al
ulate the most probable sequen
e of states whi
h ends up with thestate si, i = 1; � � � ; �, where � is the total number of states of the Markov model.Formally, we denote: �i(t + 1) is the most probable sequen
e of states when itwas given as input the sequen
e of words w1;t and the �nal state being si. Thehighest-probability-path we are looking for is�i(n+ 1) = argmaxs1;t+1P (w1;t; s1;t; st+1 = si)and has as �nal state si. Dynami
 programming prin
iple, that is fundamentalfor Viterbi's algorithm, allows us to make the following remarque: the highest-probability-path to a state si, when it is given as input the sequen
e w1;t, ismade up of the maximum-probability-path with the input w1;t�1, with the �nalstate (let us note) sk , whi
h is making the multipli
ation P (�k(t))P (sk wt! si)as maximal, and juxtaposing this so-obtained path with the state si. Saying theabove in another way, �i(t+ 1) is 
al
ulated like this:�i(1) = si; i = 1 � � �� �i(t+1) = �j(t)Æsi ; j = argmaxk=1;�(P (�k(t))P (sk wt! si)):In the above formula, "Æ" represents 
on
atenation.Algorithm to 
al
ulate the probability of an input sequen
e. We arementioning here two algorithms to 
al
ulate the probability of an input sequen
e.Let us note by �i(t+1) the probability that the input sequen
e w1;t be a

epted,and having si as the �nal state. In other words:�i(t+ 1) = P (w1;t; st+1 = si); t > 0 (1)Let us noti
e that having all �i(n+ 1) values 
al
ulated, the probability P (w1;n)is given by: P (w1;n) = nXi=1 �i(n+ 1):



TRAINING PROBABILISTIC CONTEXT-FREE GRAMMARS AS HIDDEN MARKOV MODELS19Considering that w1;0 is the empty word, whi
h has the a

eptan
e probability 1,we have that �j(1) = 1:; if j = 1; and it is 0 otherwise, 
orresponding to the fa
tthat the initial state of every path is s1. Cal
ulation of �j(t) is done starting with�j(1) , �j(2) and going until �j(n+ 1) , using the re
ursive relation:�j(t+ 1) = �Xi=1 �i(t)P (si wt! sj):The probabilities �i(t) are 
alled forward probabilities. It is also possible to 
al
u-late ba
kwards probabilities, �i(t), with the following de�nition: �i(t) representsthe a

eptan
e-probability of input wt;n, if the state at step t is si. So:�i(t) = P (wt;n j st = si); t > 1:The probability we are looking for will be�1(1) = P (w1;n j s1 = s1) = P (w1;n)Cal
ulation of � fun
tion is done starting with values:�i(n+ 1) = P (� j sn+1 = si) = 1; i = 1; � � � ; �:For the re
ursive 
ase, we have:�i(t� 1) = P (wt�1;n j st�1 = si) == �Xj=1 P (si wt�1! sj)�j(t)Training Markov models. The training algorithm of a Markov model used inthis paper is the Baum-Wel
h algorithm (or forward-ba
kward). This one, havinggiven a 
ertain training input sequen
e, it ajusts the probabilities of transitions inthe HMM, so that the respe
tive sequen
e have an as big as possible a

eptan
eprobability. Appli
ation of the algorithm has as prerequisite an HMM stru
ture al-ready having been de�ned, and only the probabilities of transitions still remainingto be established. The probabilities of transitions are 
al
ulated with the formula[2℄ P (si wk! sj) = C(si wk! sj)P�;!l=1;m=1 C(si wm! sl) (2)The C fun
tion in the above formula is 
al
ulated like this [2℄:C(si wk! sj) = 1P (w1;n) nXt=1 �i(t)P (si wk! sj)�j(t+ 1) (3):What 
an be immediately noti
ed in this formula is that, for the 
al
ulationof C(si wk! sj) we need to know path-probabilities, and so, the probabilities oftransitions for the HMM model. Therefore, we start with some 'guessed' prob-abilities, 
al
ulated with the help of the formula (3) the new values of fun
tion



20 ADRIAN DUDA, GABRIELA S�ERBAN, DOINA T�ATARC(si wk! sj) and then we adjust the probabilities of transitions using the formula(2). The indi
ator showing the improvement level of probabilities is the growthof the probability of input sequen
e P (w1;n) 
ompared to the previous estima-tion. The pro
ess of re
al
ulating transition probabilities is �nished when theseprobabilities no more su�ers modi�
ations 
onsidered as important.2. Probabilisti
 
ontext-free grammars.De�nition [3, 2℄A probabilisti
 
ontext-free grammar (PCFG) is a 5-element stru
ture< W;N;N1; R; P >where � W = fw1; : : : ; w!g represents a set of terminal symbols (we also 
allthem words);� N = fN1; � � � ; N�g represents a set of non-terminal symbols, and N1 isthe initial(start) symbol S;� R is a set of rules of form N i ! �j , where �j 2 (N [W )�;� P is a probability fun
tion asso
iating to every rule N i ! �j a proba-bility P (N i ! �j) so that the sum of probabilities of the rules having asleft-side member (deploying) the same non-terminal is 1.The probability of a sequen
e w1;n is equal with to sum of the probabilities ofall possible synta
ti
al trees for the analysis of w1;n. The probability of a treeis given by the multipli
ation of the probabilities of the used rules : P (T ) =Qrule r used in T P (r):2.1. Asso
iating an HMM model to a PCFG grammar. In the followings,we are providing a way of asso
iating an HMM model to a PCFG grammar, sothat ea
h derivation tree 
orespond to a path in HMM. This allows us to 
al
ulatethe probability of a sequen
e as the probability of an a

epted sequen
e by anHMM. In order to des
ribe the algorithm of atta
hing a HMM to a PCFG, wesuppose that the PCFG is in Chomsky-normal-form, that is, all the rules have theform: X ! Y Z or X ! awhere X;Y; Z are non-terminals, and a is terminal. There are three possiblesituations to be dis
ussed:Case I. A rule has the form pX : X ! Y Z and there exist the rules pY : Y ! aand pZ : Y ! b. A derivation tree using these rules looks like that given in the�gure 1.The 
orresponding path in an HMM is shown in the �gure 2.Case II. A rule has the form pX : X ! Y Z , and there exist the rulespY : Y ! U V , pU : U ! a , pV : V ! b, pZ : Z ! 
. A derivation tree usingthese rules looks like in the �gure 3.



TRAINING PROBABILISTIC CONTEXT-FREE GRAMMARS AS HIDDEN MARKOV MODELS21XY Zba Fig. 1
�̀��� -6���� -6?���� 6-����X � : pX a : pY b : pZY Z SfFig. 2 XY ZbVbUa Fig. 3The 
orresponding path in an HMM is shown in the �gure 4.Case III. The rule has the form pX : X ! Y Z , and there exist the rulespZ : Z ! U V , pY : Y ! a , pU : U ! b, pV : V ! 
. A derivation tree usingthese rules looks like in �gure 5.



22 ADRIAN DUDA, GABRIELA S�ERBAN, DOINA T�ATAR�̀��� -6���� -6?���� 6-����X � : pX Y ?����?̀����Zsf
b : pV
 : pZ

� : pY a : pUU V
Fig. 4 XY Za Ub V
Fig. 5The 
orresponding path in an HMM is shown in the �gure 6.�̀��� -6���� -6?���� 6-����X � : pX Y ?����?̀����sf

a : pY � : pZZ Ub : pu
 : pVVFig. 6De�nitionA sequen
e w1;n 2 L(G) , where G is a PCFG, with the probability P (w1;n),if there is a parsing tree T with the root S and the produ
t of rules used for T isP (w1;n).



TRAINING PROBABILISTIC CONTEXT-FREE GRAMMARS AS HIDDEN MARKOV MODELS23De�nitionA sequen
e w1;n is a

epted by a HMM H with the probability P (w1;n) if thereis a path from S ( the start node of HMM) to the �nal node sfin and the produ
tof probabilities on edges is P (w1;n).TheoremIf G is a probabilisti
 
ontext-free grammar, H is the HMM asso
iated with Gas above and the sequen
e w1;n 2 L(G) with the probability P (w1;n), then w1;n isa

epted by H .Proof Let us 
onsider that w1;n 2 G, where G is in Chomsky normal form.We will prove by indu
tion on the length m of the longest path in the parsingtree of w1;n that w1;n is a

epted by H . If the length m is 1, then w1;n = a andin H there is a path (as in Case IV above) from S to sfin labeled by a , of thesame probability. We will suppose that the impli
ation is true for ea
h sequen
eobtained by a parsing tree with the longest path m � 1 and let as suppose thatthe sequen
e w1;n is obtained by a parsing tree T with the longest path m. In thisparsing tree the �rst rule used is of the form pS : S ! Y Z . In the tree T Y andZ are roots of parsing tree T1 and T2, with the longest path at most m � 1 andwith the frontiers P1 and P2. The frontier of T is w1;n so w1;n = P1P2. Considerthat we are in the Case I (the others 
ases are proved analogously). In this 
aseP1 is a = w1 and P2 is w2;n. By indu
tion hypothesis P2 is a

epted by a HMMwith the start symbol Z. The situation in Case I is as in �gure 7.�̀��� -6���� -6?���� 6����a : pYY Z SfS -P2� : pS
Fig. 7So, H a

epts aP2 = w1;n. The probability P (w1;n) in T is obtained as theprodu
t between pS , the probability of P1, and the probability of P2. In the CaseI the probability is: pS � pY � P2.3. Training PCFG - grammars.The training of the PCFG-grammars is obtained based on the training algorithmfor HMM, by passing from a grammar to an HMM, as in the above mentionedtheorem. As we have said, Baum-Vel
h algorithm for training an HMM needs



24 ADRIAN DUDA, GABRIELA S�ERBAN, DOINA T�ATARa given stru
ture to be applied to. Just the same, for a PCFG, it is supposedthat the rules have already been de�ned. Let us 
onsider the phrases used forthe training pro
ess as "parenthesis-ed", whi
h means, it is de�ned the way toobtain items from lower-level items (
loser to the border of the derivation tree).In order to exemplify, look at the phrase: " Salespeople sold the dog bis
uits"[2℄. Let us now des
ribe the needed steps when training a PCFG, and use theabove phrase for better understanding. Parenthesis-ing (Salespeople (sold (thedog bis
uits))), generates the folowing rules: s ! np vp ; np ! noun ; np !det noun noun; vp ! verb np : A se
ond possible parenthesis-ing (in
orre
t) is:(Salespeople (sold (the dog) bis
uits)). A

ording to this, we have the rules: s !np vp ; np! noun ; np! det noun ;vp! verb np np: The overall set of rules wehave obtained is shown below, where the sum of probabilities of the rules having thesame non-terminal in the left-side member is s ! np vp : 1:0; np ! noun : 0:5;np ! det noun noun : 0:25; np ! det noun : 0:25; vp ! verb np : 0:5; vp !verb np np : 0:5: We are transforming the so-obtained rules to be in Chomsky-normal-form, starting with the rule np ! noun : 0:5 and in the next step weare modifying the rules 
ontaining more than two non-terminals in their right-sidemember. After these being done, the �nal grammar be
omes: s ! np vp : 0:50;s ! noun vp : 0:50; np ! det � n noun : 0:50; np ! det noun : 0:50; vp !verb np : 0:20; vp ! verb noun : 0:20; vp ! verb � np np : 0:20; vp ! verb �np noun : 0:20; vp! verb�n noun : 0:20; det�n! det noun : 1:0; v� np!verb np : 1:0; v � n ! verb noun : 1:0; noun ! salespeople : 0:35; noun !bis
uits : 0:35; noun ! dog : 0:40; verb ! sold : 1:0; det ! the : 1:0: Let usnow 
onsider the �rst (
orre
t) parenthesis-ing of the phrase: (Salespeople (sold(the dog bis
uits))). The derivation-tree of �gure 8 
orresponds to this situation.The path in the HMM is given in �gure 9.As far as 
on
erns the se
ond (in
orre
t) parenthesis-ing, its 
orrespondingderivation-tree looks like in �gure 10.Initially, both of the derivation trees have the same probability (0.00245). Afterthe grammar has been trained with the 
orre
tly paranthesised phrase, the 
orre
ttree has the probability 0.037037 while the in
orre
t one has the probability 0.000.4. The appli
ation.The appli
ation is written in Borland Pas
al. The appli
ation has three parts:� the �rst part(A) reads a HMM from a text �le� the se
ond part(B), having as input a HMM and a given entry sequen
e, �ndsthe probability and also the most probable paths for the entry sequen
e� the third part(C), exe
utes the training of the given HMM, for a given entrysequen
e.
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nounbis
uitsFig. 8

���� -���� -���� -���� - -���� -����& %����& ����
S � : 0:50noun salesp : 0:35 vp � : 0:20 verb np det� nsold : 1:0 � : 0:50� : 1:0the : 1:0 detsfinbis
uits : 0:35--

����dog : 0:40
�6

Fig. 9
The algorithms used in the se
ond and the third part of the appli
ation aredes
ribed above.



26 ADRIAN DUDA, GABRIELA S�ERBAN, DOINA T�ATARSnounsalespeople vpverb� npverbsold npdetthe noundog
nounbis
uitsFig. 10The appli
ation will be sent at request by the se
ond author. In the followingwe will des
ribe shortly this appli
ation.The input data are read from a text �le, whi
h 
ontains the given HMM, infa
t the number of states, the set of states, the initial state and the setof transitions. We have to spe
ify that the number of entries and the set of theentries is not read from the input �le, but is automati
ally 
al
ulated from the setof transitions. We assume that ea
h transition is identi�ed by three 
omponentss1; p; s2, where s1 and s2 are states, and p is the probability of the transition froms1 to s2 and also, a state is identi�ed by a 
hara
ter (of 
ourse, this assumption isnot restri
tive, if is ne
essary, a state 
ould be identi�ed by a string).Constants.�MaxNrStari = 25- the maximum number of states�MaxNrIntrari = 15- the maximum number of entries�MaxNrDrum = 10- the maximum number of pathsData types.sir=array[1..MaxNrStari℄ of 
har- de�nes the type of the set of states of the HMM (ea
h state is represented as a
hara
ter)tranzitii=array[1..MaxNrStari,1..MaxNrIntrari,1..MaxNrStari℄ of real



TRAINING PROBABILISTIC CONTEXT-FREE GRAMMARS AS HIDDEN MARKOV MODELS27- de�nes the type of the set of transitions (the stru
ture of a transition was de-s
ribed above)mat=array[1..MaxNrStari,1..MaxNrIntrari℄ of real- de�nes the type of a matrix withMaxNrStari lines andMaxNrIntrari 
olumns,for representing the data type of the probabilities �i(t)sirs=array[1..MaxNrDrum℄ of string;- represents the type 
orresponding to the array of paths in the HMM (a path isrepresented as a string - an array of 
hara
ters).Global variables.�s - a variable of type sir; represents the set (array) of states�w - a variable of type sir; represents the set (array) of entries�p - a variable of type tranzitii; represents the set (array) of transitions�sigma- a variable of type integer; represents the number of states�ni - a variable of type integer; represents the number of entries�si - a variable of type integer; represents the index of the initial state in theset of states�alfa - a variable of type mat; represents the matrix 
ontaining as elementsthe probabilities �i(t) (for a given entry sequen
e)�beta - a variable of type mat; represents the matrix 
ontaining as elements theprobabilities �i(t) (for a given entry sequen
e)�y - a variable of type string; represents an entry sequen
e (we assume thatthe length of this sequen
e is less or equal than MaxNrIntrari)The algorithm performs the following steps:Part A� reads the input data(the HMM) from the text �le.Part B� reads an entry sequen
e� determines for the given entry y, the probabilities �i(t) and �i(t) (for alli 2 [1::sigma℄ and t 2 [1::length(y) + 1℄� using � and � (
al
ulated at the pre
eding step), on determine the probabilityof the entry sequen
e y� determines and displays the most probable paths for the entry sequen
ePart C� reads the training entry sequen
e� trains the HMM for the entry sequen
e, using the Baum-Wel
h algorithmSubprograms used.



28 ADRIAN DUDA, GABRIELA S�ERBAN, DOINA T�ATARPart A(P) pro
edure 
itire(var sigma : integer; var s; w : sir; var p : tranzitii; var si :integer; var ni : integer)- reads the input data (the number of states, the set of states, the set of entries,the set of transitions, the initial state, the number of entries) from a text �lePart B(F) fun
tion apare(x : string; s : sir;ns : integer) : integer- determines the index of the string x in the array s having the dimension ns(F) fun
tion alfa j tplus1(alfa : mat; j; t : integer; y : string) : real- 
al
ulates �j(t+ 1) for the entry sequen
e y(F) fun
tion beta i tminus1(alfa; beta : mat; i; t : integer; y : string) : real- 
al
ulates �i(t� 1) for the entry sequen
e y(P) pro
edure 
al
ul alfa beta(var alfa; beta : mat; y : string)- using the two above des
ribed fun
tions, 
al
ulates the probabilities �i(t) and�i(t) (for all i 2 [1::sigma℄ and t 2 [1::length(y) + 1℄(P) pro
edure det prob intrare(y : string; var pro : real)- 
al
ulates the probability p of the entry sequen
e y, as the sum of the elementsfrom the last 
olumn (length(y)+1) of the matrix alfa(P) pro
edure det drum 
el mai probabil(y : string; var n : integer; var z :sirs; var max : real)- determines the most probable paths for the entry sequen
e y, ea
h path havingthe probability max (n represent the number of paths, z represent the array ofthe most probable paths)(P) pro
edure afisare drum 
el mai probabil(y : string;n : integer; z : sirs; pro :real)- displays the most probable paths for the entry sequen
e y (the paths retainedby the above des
ribed pro
edure)Part C.(F) fun
tion 
al
ul 
 i k j(i; k; j : integer; y : string) : real- 
al
ulates the value of the numbering fun
tion C for the states i, j and thetransition y[k℄ (y is the entry sequen
e), using the relation (3) given in subse
tion1.1; this fun
tion uses the values �i(t) and �i(t) 
al
ulated in part B(P) pro
edure antrenare hmm- trains the HMM using a training entry sequen
e and the Baum-Wel
h algo-rithmExamples.Part B.Let us 
onsider the following input �le



TRAINING PROBABILISTIC CONTEXT-FREE GRAMMARS AS HIDDEN MARKOV MODELS293 - the number of statess - the �rst stateb - the se
ond statef - the third states - the initial states 0 s 0.05 - the following lines 
ontain the transitionss 1 s 0.05s 0 b 0.9b 1 s 0.3b 0 s 0.5s 1 f 0.1b 0 f 0.1b 1 f 0.1If the entry sequen
e is 001, then the results are� the probability of the entry sequen
e is 0.0859� the probability of the most probable path for the entry sequen
e is 0.0450� the most probable path for the entry sequen
e is sbsfPart C.Let us 
onsider the following input �le, whi
h 
odi�es the HMM des
ribed inse
tion 3.9s - the state "S"a - the state "noun"b - the state "vp"
 - the state "verb-np"d - the state "verb"e - the state "np"h - the state "det-n"g - the state "det"f - the �nal state "s-�n"s - the initial states l a 0.5 - the transitionsa d a 0.4 - "d" 
odi�es "dog"a S b 0.35 - "S" 
odi�es "Salespeople"a b f 0.35 - "b" 
odi�es "bis
uits"b l 
 0.2 - "l" 
odi�es "�"b l d 0.2
 l d 1.0d s e 1.0 - "s" 
odi�es "sold"e l h 0.5



30 ADRIAN DUDA, GABRIELA S�ERBAN, DOINA T�ATARe l g 0.5h l g 1.0g t a 1.0 - "t" 
odi�es "the"a S f 0.35d s f 1.0a d f 0.4s l e 0.5a d b 0.40The sequen
e whi
h 
odi�es the 
orre
t senten
e (Salespeople(sold(the dog bis-
uits))) (1) is lSlslltdb.The sequen
e whi
h 
odi�es the in
orre
t senten
e (Salespeople(sold(the dog)bis
uits)) (2) is lSllsltdb.The sequen
e whi
h 
odi�es the in
orre
t senten
e (The dog(sold(the dog bis-
uits))) (3) is lltdlslltdb.The results obtained for this HMM are the following� in the given HMM, without training, the senten
es 1 and 2 have the sameprobability 0.00245 and the senten
e (3) has the probability 0.0014� after training the HMM for the �rst senten
e (1), the probability for thesenten
e 1 is 0.037037, the probability for the senten
e 2 is 0.00 and the probabilityfor the sequen
e (3) is 0.00 Referen
es[1℄ J.Allen : " Natural language understanding", Benjamin/Cummings Publ. , 2nd ed., 1995.[2℄ E. Charniak: "Statisti
al language learning", MIT Press, 1996.[3℄ D. Jurafski, J. H. Martin: "Spee
h and Language Pro
essing", Prenti
e Hall, 2000.[4℄ S.J.Russell, P.Norvig: "Arti�
ial intelligen
e.A modern approa
h", Prenti
e-Hall Interna-tional,1995.[5℄ D. Tatar: "Uni�
ation grammars in natural language pro
essing", in "Re
ent topi
s inmathemati
al and 
omputational linguisti
s", ed. A
ademiei, Bu
uresti, 2000, pg 289-300.Fa
ulty of Mathemati
s and Computer S
ien
e, \Babes�-Bolyai" University, Cluj-Napo
a, RomaniaE-mail address: gabis|dtatar�
s.ubb
luj.ro



STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000A JAVA-BASED OBJECT-ORIENTED INFRASTRUCTURE FORHPCCMARIN IUGA AND BAZIL PÂRVAbstra
t. This paper present a Java-based obje
t-oriented infrastru
turefor an High Performan
e Computing Center (HPCC). This infrastru
turehas several fun
tional levels: user- and server-intera
tion (at 
lient level),and identi�
ating and getting all the relevant information (at 
ommuni
ationproto
ol level). The main fun
tionality of the server is to establish the linkbetween the algorithms requested by the 
lient and their storage environ-ment, by o�ering additional assistan
e to 
lients while browsing through thealgorithms 
olle
tion.Keywords: High performan
e 
omputing, Java te
hnologies, 
lient-server ar
hite
ture, obje
t-oriented infrastru
ture.1. The general stru
ture of HPCCThis work is based espe
ially on [2℄, trying to 
on
retize the abstra
t spe
i�
a-tion of a High Performan
e Computing Center (HPCC) given there. It 
ontinuesother works on the same topi
 (see [1℄ and [3℄).The HPCC appli
ation has several fun
tional levels. Figure 1 below presentsthe way these levels are stru
tured, taking into a

ount the fun
tional needs fordata manipulation, and the fun
tional dependen
ies between them.As we see in Figure 1, there are �ve signi�
ant fun
tional levels, ea
h level usingextensively servi
es exposed by the previous ones. On its turn, ea
h fun
tional levelhas several se
tions, ea
h with its spe
i�
 servi
es.The �rst level (starting from top to bottom), AD user level, is user interfa
eone; it allows the user to navigate, visualize, or sear
h data 
ontained in thealgorithm store. Usually, this level will be an applet running on 
lient ma
hine.This applet will 
ommuni
ate with the data server either using a spe
i�
 networkproto
ol, or RMI. At this moment, there is no �nal de
ision 
on
erning this issue.The main task of this applet is to 
apture user's needs and to generate queriesfor the data server. On its turn this server will pro
ess these queries by using the2000 Mathemati
s Subje
t Classi�
ation. 68N19.1998 CR Categories and Des
riptors. D.2.2 [Software℄: Software Engineering { DesignTools and Te
hniques. 31
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Figure 1. HPCC - Fun
tional levelsservi
es o�ered by the obje
t model. Also, the 
lient level will use the servi
esexposed by the AD data obje
ts level in order to manipulate those obje
ts.The next level, AD management and data delivery, has two di�erent se
-tions: AD server and AD management. The se
ond se
tion, AD management,is designed as a separate JAVA appli
ation. By using the servi
es exposed by ADdata obje
ts level, its fun
tionality 
overs maintenan
e of data about algorithmsand 
lasses of algorithms.The �rst se
tion, AD server, deals with data transmission to 
lient applet.If a spe
i�
 network proto
ol is used for 
lient 
ommuni
ation, AD server needsto be a daemon JAVA appli
ation running on server ma
hine. In this 
ase, theproto
ol for data transmission needs to be de�ned and implemented. In the se
ond
ase, whi
h uses RMI for data transmission, there will be a set of interfa
es forensuring 
ommuni
ation between 
lient and server. In fa
t, AD server will be a
olle
tion of su
h interfa
es and some additional 
lasses used to implement queriesfor algorithm store. This se
ond approa
h for the AD server has the advantage ofa simpler implementation, and the drawba
k of working with JAVA 
lients only.The third level, AD data obje
ts, is the 
ore part of all appli
ations whi
h
onstitute HPCC. This level de�ne the stru
ture of obje
ts whi
h manipulate datareferring to algorithms and groups of algorithms and implements a series of usefuloperations on them. These issues are dis
ussed in detail in Se
tion 2 and 3.



A JAVA-BASED OBJECT-ORIENTED INFRASTRUCTURE FOR HPCC 33The fourth level,AD obje
t networking/storage operations, is responsiblewith storing and transmitting the obje
ts a
ross the network. It has two se
tions:AD networking and AD obje
t storage. The upper level will use the servi
es ofAD obje
t storage in order to store/retrieve obje
ts, as we dis
uss in the thirdse
tion. AD networking exposes servi
es for pa
king-transmission a
ross thenetwork-unpa
king operations.The basi
 level of the HPCC appli
ation, AD low level operations, de�nessome primitive operations. Fun
tionality of this level has to be ful�lled by usingsome standard JAVA pa
kages, in
luding JDBC, and the usual fun
tions of theoperating system.Note the pyramidal stru
ture of the appli
ation, in whi
h ea
h level is usingextensively only the operations exposed by the level below. This stru
ture wasdesigned keeping in mind the fun
tional de
omposition of the task and using astepwise approa
h for abstra
tions.2. Algorithm Store data s
hemeData about algorithms and groups of algorithms are modeled via two obje
tual
ounterparts, whi
h use the relational paradigm for assuring their persisten
e.There are two levels of storing information:� identi�
ation: map ea
h algorithm/group to its spe
i�
 main folder; thisinformation is kept in two relational tables;� data: data are stored in standardized stru
ture of di�erent �les andfolders in the main folder (des
ription, sour
e 
ode Pas
al and C++,JAVA applets).The information 
ontained in Algorithm Store is stru
tured in two organi-zational levels: the algorithm level, AlgorithmTable, and the algorithm grouplevel, GroupTable. Also, there are some internal tables.All the tables are managed by theAD obje
t storage se
tion fromAD obje
tnetworking/storage operations level, whi
h use JDBC and OS FileSystemoperations, lo
ated on lowest level.This se
tion dis
usses the data s
heme, while the next se
tion is dis
ussing the
orresponding obje
ts.2.1. AlgorithmTable. Algorithm Store 
ontains data referring to algorithms andgroups of algorithms. Ea
h algorithm is 
hara
terized by the following attributes:a name, a des
ription �le 
ontaining its goal, its parameters, and, in the 
ase offun
tions, the result type. Other attributes in
lude algorithm implementation,using a 
ommon programming language (C++, Pas
al), and/or the 
orrespondingapplet, whi
h is exe
uted on 
lient ma
hine (see Table 1).As we see in Table 1, the information 
ontained in ea
h line is a kind of dire
toryinformation. The way this information is used to store all the data referring to analgorithm is as follows:



34 MARIN IUGA AND BAZIL PÂRVTable 1. The stru
ture of AlgorithmTableAttribute Des
riptionAlgorithmIndex integer representing the algorithm id in the algorithm tableGroupIndex integer representing the group id in the GroupTable (id ofthe 
lass the algorithm belongs)AlgorithmName string representing algorithm nameHasDes
ription boolean value: True if the algorithm has a des
ription �leand False otherwiseHasPas
alCode boolean value: True if the algorithm has a Pas
al imple-mentation and False otherwiseHasCPPCode boolean value: True if the algorithm has a C++ imple-mentation and False otherwiseHasApplet boolean value: True if the algorithm has a 
orrespondingJAVA applet and False otherwiseKeyWords string, a list of keywords, separated by 
ommas; the key-words are used in queries� all the information referring to an algorithm is stored in a folder, 
alledalgorithm main folder and named 00-AlgorithmIndex; its sub- foldersare dis
ussed below� des
ription: 
ontains the �le des
ription.html, 
ontaining the algo-rithm des
ription (this subfolder exists only if HasDes
ription = True)� pas
al: 
ontains the �le pas
al.html 
ontaining the pas
al sour
e 
ode(this subfolder exists only if HasPas
alCode = True)� 
pp: 
ontains the �le 
pp.html 
ontaining the C++ sour
e 
ode (thissubfolder exists only if HasCPPCode = True)� applet: 
ontains the start �le applet.html and all the ne
essary JAVA�les for this applet (this subfolder exists only if HasApplet = True).Note that the �elds HasDes
ription, HasPas
alCode, HasCPPCode, and HasAppletare redundant in the AlgorithmTable, be
ause one 
an test the existing sub-folders in the algorithm main folder. The reason is in
reasing the speed of theappli
ations whi
h use this table.2.2. GroupTable. Ea
h algorithm belongs to a unique algorithm group (e.g.sorting algorithms, sear
hing algorithms, string pattern-mat
hing algorithms, nu-meri
al analysis algorithms and so on). On its turn, a group of algorithms 
anbe divided into subgroups in a tree fashion. The usual attributes for algorithmgroup are its name and a des
ription �le whi
h 
ontains the 
ommon features ofits algorithms.The stru
ture of GroupTable, whi
h 
ontains data referring to algorithmgrouping is detalied in Table 2.
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ture of GroupTableAttribute Des
riptionGroupIndex integer representing the group id in the group table. Rootgroup has the index 1UpperGroupIndex integer representing the id of the parent group in the grouptable. For the root group this index equals 0GroupName string representing group nameHasDes
ription boolean value: True if the group has a des
ription �le andFalse otherwise (usually this 
ag is True)KeyWords string, a list of keywords, separated by 
ommas; keywordsare using in queriesAll the information referring to a group of algorithms is stored in a folder, 
alledgroupmain folder and named 00-GroupIndex; it 
ontains the �le des
ription.html,i.e. the group des
ription (this �le exists only if HasDes
ription = True).2.3. Internal tables. Algorithm Store also 
ontains several internal tables, de-signed for a better implementation of its fun
tionality. By using these tables,Algorithm Store server builds several URLs and then sends them to the 
lientapplet. On its turn, the 
lient applet displays these URLs in the browser window.Thes internal tables are:UnusedAlgorithmIds: unused algorithm ids (due to algorithm delete op-erations)UnusedGroupIds: unused group ids (due to group delete operations)GlobalData: 
ontains 
ontext information: the root path for the �le andfolder stru
ture and the pre�x used for building URLs.3. Algorithm Store Obje
t ModelBoth data and operations 
on
erning algorithms and groups are modeled usingobje
ts. Both algorithms and groups are 
onsidered obje
ts, whi
h are manipu-lated by using a spe
i�
 manager obje
t. The designed 
lasses are:AlgorithmInfo: models the algorithm obje
tGroupInfo: models the algorithm group obje
tObje
tDBManager: models the obje
t manager, whi
h performs load/storeoperations on obje
ts. Be
ause all obje
ts are stored in a relational data-base, store and load operations need some spe
i�
 transformations (i.e.linearization).The obje
t model also 
ontains some support 
lasses, needed for obje
t propaga-tion a
ross network. These 
lasses are not full implemented. AlgorithmInfo andGroupInfo 
lasses belong to AD obje
t model level, while Obje
tDBManager
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Figure 2. Class diagrams { AlgorithmInfo and GroupInfois the 
ore of AD obje
t storage se
tion of AD obje
t networking/storageoperations level.3.1. AlgorithmInfo and GroupInfo 
lasses. Figure 2 presents 
lass diagrams forAlgorithmInfo and GroupInfo. Both 
lasses are derived from java.lang.obje
tand implement the interfa
e InformationItem.Note the 1:1 mapping between their attributes and the stru
ture of 
orre-sponding tables (AlgorithmTable and GroupTable). In order to speed updata manipulation and to de
rease memory usage, all attributes are 
onsideredpubli
 (instead of de
laring them private and using get/set methods). TheInformationItem interfa
e 
ontains usual data manipulation operations: write,read, delete, and append. All these operations use a referen
e to an Obje
tManagerobje
t. The method isAlgorithmInfo is used in dynami
 identi�
ation of the re-
eptor type.3.2. Obje
tManager 
lass. Obje
tManager's obje
t main task is to make persis-tent AlgorithmInfo and GroupInfo obje
ts. The roles of Obje
tManager support
lass are:
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ture for storing/retrievig AlgorithmInfo andGroupInfo obje
ts in/from a relational database (whi
h 
ontains thetables AlgorithmTable, GroupTable, UnusedAlgorithmIds, Un-usedGroupIds, and GlobalData)� to help AlgorithmInfo and GroupInfo obje
ts in managing their ownpersisten
e� to support queries referring to an algorithm or group of algorithms.Figure 3 presents the diagram for Obje
tDBManager 
lass.The Obje
tDBManager obje
t does not intera
t dire
tly with the �les in themain folders. It is used by the server in order to know if these �les exist in thefolder stru
ture. AD Management 
omponent is responsible with 
reation andupdating of these �les. 4. How HPCC worksThe AD management se
tion of AD management and data delivery level isresponsible with 
reating the standard stru
ture of folders and �les. First, the ADserver se
tion of the same level, by using AD obje
t model, 
reates URLs for theroot group whi
h are sent to the 
lient. On his behalf, 
lient displays in a tree
ontrol the stru
ture of HPCC Algorithm Store. When the user sele
ts a spe
i�
algorithm/group, the 
lient applet sends the algorithm/group id to the server, andthe server builds the 
orresponding URLs, whi
h are sent ba
k to the 
lient applet,whi
h displays them in a window.The user 
an spe
ify queries by using keywords or algorithm/group names. Theparameters are dire
ted to the AD server, whi
h builds the query string and usesObje
tDBManager::doQuery to retrieve the results, 
onsidered as a heterogeneous
olle
tion of AlgorithmInfo and GroupInfo obje
ts. These results are sent ba
k tothe 
lient applet, whi
h displays them in a window.5. Con
lusions and future workIn this moment, the 
ore part of HPCC appli
ation is already in pla
e. Theremaining 
omponents (as 
lient presentation, networking, AD management) willbe implemented soon. Referen
es[1℄ Avram, D., M. Iurian, B Pârv, A High Performan
e Computing Center Based On A Lo
alNetwork, in SYNASC 2000, The Se
ond International Workshop on Symboli
 and Numeri
Algorithms for S
ienti�
 Computation, West University, Timisoara, 4-6 O
t. 2000, 87-90.[2℄ Pârv, B., A Component-Based Model for Algorithms, Babe�s- Bolyai Univ., Fa
. Math. Comp.S
i. Res. Sem, Seminar on Computer S
ien
e, 20 (1998), No. 2, 53-60.
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Figure 3. Class diagram { Obje
tDBManager[3℄ Pop D., S. Iurian, M. Iurian, B. Pârv, C. Miho
, Obje
tual Interfa
es for AlgorithmDatabases, Babe�s-Bolyai Univ., Fa
. Math. Comp. S
i. Res. Sem, Seminar on ComputerS
ien
e, 21 (1999), No. 2, 35-42.Fa
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STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000GENETIC CHROMODYNAMICSD. DUMITRESCUAbstra
t. A new evolutionary sear
h and optimization metaheuristi
s, 
alledGeneti
 Chromodynami
s (GC), is proposed. The GC-based methods use avariable sized solution population and a lo
al intera
tion prin
iple. Lo
al in-tera
tions indu
e a restri
ted mating s
heme and permit dete
tion of multipleoptimal solutions.The main idea of the GC strategy is to for
e the formation and main-tenan
e of stable sub-populations. Proposed lo
al intera
tion s
heme ensuressub-population stabilization in the early sear
h stages.Sub-populations 
o-evolve and eventually 
onverge towards several opti-mal solutions. The number of individuals in the 
urrent population de
reaseswith the generation. Very 
lose individuals are merged. At 
onvergen
e thenumber of sub-populations equals the number of optimal solutions. Ea
h�nal sub-population hopefully 
ontains a single individual representing anoptimum point (a solution of the problem).The GC approa
h allows as solution representation any data stru
ture
ompatible with the problem and any set of meaningful variation operators.GC-based te
hniques 
an be used to solve multimodal, stati
 and dy-nami
, optimization problems.Keywords: Evolutionary algorithms, Geneti
 
hromodynami
s, Mul-timodal optimization 1. Introdu
tionEvolutionary 
omputing (EC) deals with adaptive sear
h and optimization te
h-niques that simulate biologi
al evolution and adaptation pro
esses. EC mainlyin
ludes Geneti
 algorithms (GAs), Evolution strategies, Evolutionary program-ming and Geneti
 programming. Geneti
 algorithms represent the most typi
alinstan
e of EC (see [4℄).Unfortunately standard GAs 
an not solve all kinds of optimization and sear
hproblems, like GA { hard or de
eptive problems [8℄. While one of the main diÆ-
ulties arises from the premature lo
al 
onvergen
e, other diÆ
ulties 
on
ern themultimodal optimization problems. Standard GAs, as well as the other usualevolutionary pro
edures, generally fail to dete
t multiple optimum points.2000 Mathemati
s Subje
t Classi�
ation. 68T05.1998 CR Categories and Des
riptors. I.2.8 [Computing Methodologies℄: Arti�
ial In-telligen
e { Problem Solving, Control Methods, and Sear
h.39



40 D. DUMITRESCUSeveral methods have been proposed to solve premature 
onvergen
e and mul-timodal optimization problems.Virus-evolutionary geneti
 algorithm (VEGA) [10℄ has been 
onsidered to pre-vent the premature lo
al 
onvergen
e due to the la
k of diversity in the solutionpopulation. The VEGA approa
h is based on the virus theory of evolution a

ord-ing to whi
h viruses transport segments of DNA a
ross the spe
ies. The VEGAapproa
h implies two populations: a host population and a virus population. Thevirus population realizes a horizontal propagation of geneti
 information in thehost population. This propagation is realized by virus infe
tion, i.e. by 
aringsolution fragments (substrings) between the individuals in the host population.Therefore the VEGA te
hnique simulates evolution with horizontal propagationand verti
al (i.e. usual) inheritan
e of geneti
 information.Multimodal geneti
 algorithms generally use another biologi
al idea, namely theni
he 
on
ept [1, 2, 6, 7, 8, 9℄. Ea
h optimum region in the sear
h spa
e will be
onsidered as a ni
he. Ni
hing geneti
 algorithms are able to form and maintainmultiple, diverse, optimal solutions. Usually the ni
he 
on
ept is implementedthrough the use of �tness sharing. The ni
hing pro
ess is a

omplished by degrad-ing the �tness of an individual a

ording to the presen
e of nearby individuals.The sharing fun
tions [6℄ are used to 
al
ulate the extent of sharing to beperformed between two individuals. For ea
h individual the value of the sharingfun
tion is 
al
ulated with respe
t to the individuals in the population. The ni
he
ount of an individual is the sum of the 
orresponding sharing values. The �tnessof an individual is divided by its ni
he 
ount. The obtained updated value is theshared �tness of that individual.The radius s of the estimated ni
hes is 
onsidered. The individuals separatedby distan
e greater than s do not degrade ea
h other's �tness.Sharing tends to spread the population over di�erent optima proportionally tothe values of these optima. Unfortunately the ni
hing methods do not guaranteean appropriate sele
tion of all useful solutions, for any situation [8℄. The dete
tionof the number of optimal solutions 
ould be a problem, as well.In this paper we 
onsider a di�erent, non-ni
hing, strategy to prevent prema-ture lo
al 
onvergen
e and to dete
t multiple optimal solutions. The proposedapproa
h is 
alled Geneti
 Chromodynami
s (GC). Let us note that GC doesnot represent a parti
ular evolutionary te
hnique but merely a metaheuristi
s forsolving (multimodal) optimization/sear
h problems.2. Geneti
 Chromodynami
s prin
iplesGeneti
 Chromodynami
s metaheuristi
s uses a variable sized population ofsolutions (
hromosomes or individuals) and a lo
al mating s
heme. Several solutionrepresentations 
an be 
onsidered. For instan
e solutions may be represented asreal- 
omponent ve
tors. Solution representation as binary strings 
an be also



GENETIC CHROMODYNAMICS 41used. Proposed GC strategy allows any data stru
ture suitable for a problemtogether with any set of meaningful variation/sear
h operators. Moreover theproposed approa
h is independent of the solution representation.The main idea of the GC strategy is to for
e the formation and maintenan
e ofsub-populations of solutions. Sub-populations 
o-evolve and eventually 
onvergetowards several (lo
al and global) optimal solutions.The number of individuals in the population de
reases with the generation.Very similar individuals (solutions) are merged. At 
onvergen
e the number ofsub-populations equals the number of optimal (lo
al and global) solutions. In thestandard 
ase ea
h �nal sub-population 
ontains a single individual representingan optimum point (a solution of the problem).A di�erent 
olor is assigned to ea
h solution in the initial population. In thestandard GC approa
h every solution in ea
h generation is sele
ted for re
ombi-nation or mutation. The re
ombination mate of a given solution is sele
ted withina determined mating region. Before re
ombination all solutions in a given matingregion will re
eive the 
olor of the best individual within that region.A (2,1) re
ombination me
hanism is used. The �rst parent is dominant and these
ond one is re
essive. The unique o�spring is labeled as the des
endent of itsdominant parent. The o�spring will inherit its parent 
olor. It is expe
ted that at
onvergen
e only di�erent 
olored solutions will remain in the population.Two sub-populations will generally have di�erent 
olor sets. The number of
olors per region tends to de
rease with the time. Hopefully a dominant 
olor willbe established in ea
h sub-population.We may 
onsider that the method en
ounters two intera
ting dynami
s: a mi
roand a ma
ro dynami
s. The system mi
ro-dynami
s is asso
iated with solutionmodi�
ations. The ma
ro-dynami
s is asso
iated with sub-populations formation,modi�
ation and stabilization. Ma
ro-dynami
s indu
es a dominant 
olor withinea
h sub-population.We may 
onsider ea
h of the mi
ro and ma
ro-dynami
s as expressing a par-ti
ular aspe
t of the global system dynami
s.As GC strategy uses a variable-sized solution population, the underlying popu-lation dynami
s is more 
ompli
ated than in usual evolutionary algorithms. There-fore the 
orresponding sear
h pro
ess may also be supposed to be more powerful.This feature makes GC-based sear
hing methods appealing for solving diÆ
ulttasks, like time-dependent, multimodal and multiobje
tive optimization problems.The ma
ro-dynami
s of a variable sized population seems to be adequate to dealwith a 
hanging environment. Hen
e the proposed approa
h is potential useful forta
kling distributed AI appli
ations, like 
ooperative multi-agents.
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eGC-based optimization te
hniques start with a large arbitrary population of so-lutions. Dimension of the solution population de
reases at ea
h generation. Thereis a highly probability that ea
h new generation will 
ontain some individualsbetter than the individuals in the previous generation.Using a lo
al mating s
heme the formation and maintenan
e of solution sub-population is favored or even for
ed.Sub-populations evolve towards 
ompa
t and well separated solution 
lusters.Sub- populations within ea
h generation P (t) indu
e a hard partition (or at leasta 
over) of the set P (t).In de�ning sub-populations we may 
onsider a biologi
al point of view. Re-
ombination of individuals in the same sub-population is highly expe
ted. Theprobability of mating individuals belonging to the same sub-population is greaterthan the probability of mating individuals from di�erent sub-populations. Re-
ombining individuals in di�erent sub-populations is not de�nitively forbiddenbut usually it is very improbable. Therefore we may say that sub-populations are
omposed of highly 
ompatible (with respe
t to re
ombination) individuals.GC approa
h is essentially based on lo
al intera
tions in a variable-sized pop-ulation. The role of lo
al mating s
heme (lo
al solution intera
tions) and that ofvariable sized population may be summarized as follows:(i) to ensure early sub-population formation and stabilization;(ii) to avoid massive migration between sub-populations approximating di�erentoptimum points (migrations 
ould a�e
t the quality of some already obtained'pure' or high quality solutions);(iii) to prevent destru
tion of some useful (high quality) sub-populations;(iv) to ensure a high probability of obtaining all useful problem solutions.Lo
al intera
tion prin
iple needs a slight modi�
ation of the variation sear
hoperators. 4. Mating regionLet us 
onsider a distan
e 
on
ept (a metri
 or a pseudo-metri
) Æ de�ned onthe solution spa
e Y . Consider an initial population in whi
h ea
h solution has adi�erent 
olor. Let f be the �tness fun
tion. As usual f(
) evaluates the qualityof the solution 
.As only short range intera
tions between solutions are allowed, the mate of ea
hsolution 
 has to belong to a neighborhood of 
. It is usually 
onvenient to 
onsiderthis neighborhood as the 
losed ball V (
; r) of 
enter 
 and radius r.We may interpret the parameter r as the intera
tion radius (or intera
tionrange) of the individual 
. Short range (or lo
al) intera
tions will ensure an ap-propriate 
o-evolution of the sub-populations.



GENETIC CHROMODYNAMICS 43All the individuals within the region V (
; r) re
eive the 
olor of the best indi-vidual in that mating region. The sear
h pro
ess starts with a population whoseindividuals have all di�erent 
olors.An adaptation me
hanism 
an be used to 
ontrol the intera
tion range r, so asto support sub-population stabilization. Within this adaptation me
hanism theintera
tion radius of ea
h individual 
ould be di�erent. In this way the 
exibilityof the sear
h pro
ess may in
rease signi�
antly. Ea
h sub-population may havea more independent evolution (more freedom degrees of its behavior). To 
ontrolthe domain intera
tions we 
an use a general (problem independent) method ora parti
ular heuristi
. Problem dependent approa
hes seem to be appealing fordealing with some parti
ular situations.Let us note that the meaning of the mating region V (
; r) is not that of ani
he. The resour
es of this region are not shared between its members, as in theni
he approa
h. It is more suitable to interpret the mating region V (
; r) as theintera
tion domain of the individual 
.For some parti
ular problems we may admit migrations (meaning that re
om-bination is permitted) between di�erent intera
tion domains. Allowing permeableintera
tion domains may lead to better solutions by in
reasing population diver-sity. 5. Termination 
onditionVarious termination 
onditions for the GC sear
h pro
ess may be identi�ed.Some stopping 
onditions may be formulated a

ording to the parti
ular problem
onsidered. Other stop 
onditions are problem independent. Here we are interestedin the se
ond 
lass.A good, general, problem independent heuristi
s is to stop the sear
h pro
essif the solution population remains un
hanged for a �xed number of generations.This 
ondition represents a natural termination 
riterion ensuring that the sear
hpro
ess 
ontinues only how long is ne
essary.6. Sele
tion and re
ombinationGeneti
 
hromodynami
s involves two types of sele
tion s
hemes. Global sele
-tion supplies the parent population. Lo
al sele
tion is a me
hanism for 
hoosinga mate of a solution in the respe
tive mating region.6.1. Global sele
tion. Within standard version of Geneti
 
hromodynami
s ap-proa
h ea
h solution 
 in the population P (t) will be 
onsidered for re
ombination.More sophisti
ated global sele
tion me
hanisms may be used. Their eÆ
ien
y inthis 
ontext is questionable.
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al sele
tion. A

ording to the proposed lo
al intera
tion s
heme themate of the solution 
 will be 
hosen from the neighborhood (mating region)V (
; r) of 
. Lo
al mate sele
tion is done a

ording to the values of the �tnessfun
tion f .For sele
ting the mate of a given solution we may use proportional sele
tion. Letm be a solution in the intera
tion domain (mating region) V (
; r) of the solution
. The probability that m is sele
ted as the mate of 
 is denoted by p(m) and isde�ned as p(m) = f(m)Pa2V (
;r) f(a) :Any other type of sele
tion 
ompatible with the parti
ular 
onsidered problemis permitted. Tournament sele
tion is a very powerful me
hanism and may besu

essfully use for mate sele
tion.6.3. Re
ombination. Let a be the sele
ted partner of 
. The ordered pair (
; a)generates by re
ombination a unique o�spring. The �rst parent is dominant,whereas the se
ond one is re
essive.Let d be the o�spring generated by 
 and a. The o�spring d will inherit the
olor of its (dominant) parent 
 and will be labeled as the des
endent of 
 only.The form of the re
ombination operator will be 
hosen a

ording to the solutionrepresentation and the nature of the problem.For a real valued solution representation a 
onvex 
ombination of the genesin 
 and a 
an be used to obtain the 
omponents of d. In the 
ase of 
onvexre
ombination the ith position of the o�spring d has the expression:di = q
i + (1� q)ai;where q is a real number in the unit interval [0,1℄.7. Mutation operatorIf the 
losed ball V (
; r) { the intera
tion domain of 
 { is empty then thesolution 
 will be sele
ted for mutation. In this way re
ombination and mutationare mutually ex
lusive operators. Mutation may be 
onsidered as a
ting mainlyon stray points.An additive normal perturbation seems to be appropriate for general optimiza-tion purposes. By mutation (stray) solutions are usually drawn 
loser to lo
aloptimum points of the obje
tive fun
tion. As a side e�e
t solutions are for
edtowards one of the existing sub-populations.Various solution 
omponents may su�er perturbation with di�erent standarddeviation values. In every situation the mutated solution will inherit the 
olor ofits parent, as well.
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eptan
e s
hemeWithin usual evolutionary algorithms generated mutations are generally un-
onditionally a

epted. Within Geneti
 
hromodynami
s based te
hniques a moresophisti
ated a

eptation me
hanism will be 
onsidered.8.1. General a

eptan
e me
hanism. Standard GC approa
h 
onsiders thatin ea
h generation every solution is involved in re
ombination or mutation. Ea
hsolution will produ
e, and possibly be repla
ed by, an o�spring. Whi
hever isbetter between a dominant parent and its o�spring will be in
luded in the newgeneration.A

ording to the proposed me
hanism a mutated solution (o�spring), whi
his better than its parent, is un
onditionally a

epted. This a

eptan
e s
hemeindu
es a rapid 
onvergen
e of the sear
h pro
ess.It seems that no restri
tion on mutation parameter is needed if the best fromparent and o�spring survives. This strategy 
an be useful in the �rst stages of thesear
h pro
ess. In the last stages it may 
ause a drawba
k of the sear
h pro
ess.Let us 
onsider a solution representing an optimum point. Its des
endant ob-tained by mutation 
ould belong to a region 
orresponding to a di�erent optimumpoint, having a higher �tness. The o�spring 
ould surpass its parent �tness. There-fore the o�spring will survive and a useful optimum point represented by its parentis lost.To prevent the extin
tion of some optimum points { espe
ially in the last sear
hstages - we may admit that a mutated o�spring have to belong to the intera
tionrange of its parent. We may ful�ll this requirement by 
hoosing an appropriatevalue of the standard deviation parameter (whi
h ensures a high probability theo�spring belongs to the intera
tion range). This strategy is another fa
et of thelo
al intera
tions prin
iple.A

ording to the parti
ular implementation or to the problem at hand othera

eptation me
hanisms may be 
onsidered.We may also asso
iate an a

eptan
e probability p to ea
h o�spring worse thanits parent. A simulated annealing s
heme (see [11℄) may be used to 
ontrol themutated solution a

eptan
e a

ording to the probability value p.8.2. Simulated annealing a

eptan
e. In some situations, it is important tohave an additional me
hanism for preventing premature lo
al 
onvergen
e. Thistask may be a

omplished by allowing an o�spring that is worse than its parentto be a

epted in the new generation. In this regard, an a

eptan
e me
hanismanalogous to simulated annealing te
hnique (see [11℄) may be used.The 
ost asso
iated with the a

eptan
e (maintenan
e) of a solution 
 in thenew generation is de�ned as: C(
) = K � f(
);
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onstant K is 
hosen su
h that C(
) � 0, for ea
h solution 
.Remark. The higher the �tness of a solution, the lower the 
ost to keep thatsolution in the next generation.Let d be an o�spring (obtained by re
ombination or by mutation) whi
h is worsethan its parent 
, we have: f(d) < f(
):The asso
iated 
ost variation is:�C = C(d) � C(
):It is easy to see that this 
ost is positive. The probability p of a

epting theo�spring d in the new generation isp = e��CkT ;where k > 0, and T is a positive parameter signifying system temperature.The values of the parameter k and T 
ontrolling the a

eptan
e probability are
hosen depending on the spe
i�
 problem.By subsequently lowering the temperature, the a

eptan
e probability de
reasesover time. In the �nal sear
h pro
ess stages very small a

eptation probabilitiesof worse solutions are needed.By the proposed a

eptan
e me
hanism the solutions will generally get 
loser tothe points 
orresponding to small 
ost values (high �tness values). Let us observethat the 
onsidered a

eptan
e me
hanism does not ensure the system rea
hesthermodynami
 equilibrium at ea
h generation (for ea
h value of the parameterT ), like in Metropolis algorithm (see [11℄) normally used in simulated annealing.We may suppose the equilibrium will be a
hieved only at the end of the sear
hpro
ess.The equilibrium 
orresponds to slow temperature variations. We may 
onsidertemperature de
reasing a

ording to the s
hedule:Tg = T11 + ln g ;where T1 is the initial temperature and g > 1 is the generation index.To implement the proposed me
hanism a random number R having uniformdistribution in [0,1℄ is generated. If R < p then the o�spring (worst than itsparent) is a

epted in the new generation. Otherwise its parent is a

epted.9. Adapting mutation parameterAn important problem with respe
t to the proposed evolutionary te
hniqueis to 
hoose an appropriate perturbation range for the mutation parameter. Arelated problem 
on
erns the development of suitable adapting te
hnique for thisparameter.
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onsider several adaptation me
hanisms for the perturbation standarddeviation (representing the perturbation amplitude).To ensure the �ne tuning of the sear
h pro
ess in its �nal stages we may allowperturbation amplitude de
reasing with time.Another strategy to 
ontrol the standard deviation parameter may be realizedby a self- adapting pro
ess. In this 
ase the standard deviation is in
luded inthe solution stru
ture (genotype) and it is adapted by the e�e
t of the variationoperators. 10. Intera
tion- range adaptationUsually the intera
tion-range is the same for all the solutions. To 
ontrol sub-population stabilization we may use a me
hanism to adapt the intera
tion radiusdepending on the spe
i�
 problem under 
onsideration. Generally it seems usefulthe intera
tion radius be a time de
reasing parameter.A radius 
ontrol me
hanism 
ould also ensure a supplementary tuning of thesear
h pro
ess right from the �rst stages.A possibility for evolving intera
tion radius is to 
onsider a symbiosis of the
urrent population P (t) and a se
ondary population whose individuals representintera
tion ranges.We also may 
onsider ea
h solution has its own intera
tion radius. This param-eter may be in
luded in the genotype and evolved during the sear
h pro
ess.11. Population de
reasing and stabilizationShort-range intera
tions permit early solution 
lustering in sub-populations.Lo
al intera
tions also favor sub-population stabilization. As a side e�e
t, aftera few generations, some solutions might overlap, or be
ome very 
lose, as two ormore sub- populations might evolve towards the same optimum point. To dete
tthe 
orre
t number of optima is ne
essary to have only one solution per optimum.To this end, the population size is subsequently redu
ed by merging similar (
losein terms of distan
e Æ) solutions.If distan
e between two solutions is less than an appropriate threshold, thenthe two solutions are merged. This veri�
ation will be done at ea
h insertion of anew solution in the population.The sear
h pro
ess stops if after a (previously �xed) number of generationsno signi�
ant 
hange o

urs in the population. Here a signi�
ant 
hange is thea

eptation of a new generated o�spring.We obtain the number of optimum points as the number of solutions in the �nalpopulation. Ea
h solution in the �nal population gives the position of a global orlo
al optimum point.
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onsider the CG approa
h as being merely a 
lass of optimi-sation and sear
h te
hniques based on the lo
al intera
tion prin
iple. Any usefulheuristi
 may be in
orporated.12. Lo
al and infra-lo
al optimaBy maintaining a diversity of sub-populations the Geneti
 
hromodynami
ssear
h methods are expe
ted to avoid the problems due to lo
al premature 
on-vergen
e. The proposed approa
h seems also to be robust with respe
t to very
lose optimum points. Close optima may not represent distin
t useful solutions,sin
e they are merely lo
al perturbations (due to noise, for instan
e) of a 
ertainoptimum point. We may 
all them infra-lo
al optima.For most pra
ti
al problems infra-lo
al optima are solutions of no interest. Lo
aloptima of fra
tal fun
tions may represent an interesting example of su
h uselesssolutions. Infra-lo
al optima represent parasite solutions. Their dete
tion is atime-
onsuming task. Furthermore parasite solutions 
an also generate 
onfusionin interpreting the results. 13. Appli
ationsGeneti
 
hromodynami
s is intended as a general optimization/sear
h te
h-nique. GC-based methods are parti
ularly suitable for solving multimodal andmultiobje
tive optimization problems.Geneti
 
hromodynami
s 
an also be used to solve mathemati
al problems thattraditionally are not treated by evolutionary approa
hes. Examples of su
h prob-lems are: equation solving (algebrai
, di�erential or integral equations), �xed pointdete
tion and equation systems solving.The GC approa
h may be used to solve real - world optimization problems.Geneti
 
hromodynami
s 
avor methods 
an be also applied in various s
ienti�
,engineering or business �elds involving stati
 or dynami
 (pro
ess) optimization.Clustering, data 
ompression and other data mining problems are very suitablefor a GC treatment. Geneti
 
hromodynami
s 
lustering based methods 
an beparti
ularly useful to dete
t the optimal number of 
lusters in a data set and the
orresponding set of useful prototypes. The method is e�e
tive even for a veryfew number of data points (one data point per 
lass, for instan
e).14. Con
lusionsAn evolutionary metaheuristi
s is proposed. This metaheuristi
s is 
alled Ge-neti
 Chromodynami
s strategy. GC implementations generate a new 
lass ofsear
h/optimization te
hniques. The GC approa
h uses a variable-sized popula-tion and lo
al intera
tions among solutions. Within the methods in theGC familysolutions are supposed to have di�erent 
olors. Population dynami
s is a

ompa-nied by a 
olor dynami
s. Short-range intera
tions permit early sub-populations
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e. The 
onsidered lo
al intera
tions also guarantee the sub-populationsmaintenan
e and stabilization.The solution sub-populations evolve towards the lo
al and global optimumpoints. The �nal population 
ontains as many solutions as (global and lo
al)optimum points are dete
ted.Geneti
 Chromodynami
s strategy is intended to prevent lo
al premature 
on-vergen
e and to solve multimodal optimization and sear
h problems. One of theimportant features of the GC-based te
hniques is their robustness with respe
t tolo
al perturbations of the optimum points.Geneti
 
hromodynami
s is a 
exible method allowing the in
orporation of dif-ferent general or problem-depending heuristi
s. We have already exempli�ed thisability by using a version of simulated annealing to 
ontrol the a

eptan
e me
ha-nism of a new solution. A similar me
hanism 
ould be used to 
ontrol the mutationpro
ess. For some parti
ular problems 
onsidering elements of tabu sear
h (see[5℄) 
ould ameliorate the performan
e of the GC method.Therefore we 
an 
onsider the Geneti
 
hromodynami
s approa
h as beingmerely a 
lass of optimization and sear
h te
hniques based on the prin
iple oflo
al intera
tions and using a variable- sized population. Ea
h parti
ular 
hromo-dynami
s te
hnique may also in
orporate any useful heuristi
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STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000A NEW EVOLUTIONARY APPROACH FOR MULTIOBJECTIVEOPTIMIZATIOND. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEANAbstra
t. Several evolutionary algorithms for solving multiobje
tive opti-mization problems have been proposed ([2, 5, 6, 7, 8, 9, 10, 12, 13℄, see alsothe reviews [1, 11, 14℄). All algorithms aim to give a dis
rete pi
ture of thePareto optimal set (and of the 
orresponding Pareto frontier). But Paretooptimal set is usually a 
ontinuous region in the sear
h spa
e. It follows thata 
ontinuous region is represented by a dis
rete pi
ture. When 
ontinuosde
ision regions are represented by dis
rete solutions there is an informationloss. In this paper we propose a new evolutionary approa
h 
ombing a newsolution representation, new variation operators and a multimodal optimiza-tion te
hnique. In the proposed approa
h 
ontinuous de
ision regions may bedete
ted. A solution is either a 
losed interval or a point. The solutions inthe �nal population will give a realisti
 representation of Pareto optimal set.Ea
h solution in this population 
orresponds to a de
ision region of Pareto set.Proposed te
hnique does not use a se
ondary population of non-dominatedalready founded.Keywords: evolutionary algorithms, multiobje
tive optimization, Pa-reto optimal set, Pareto frontier, Geneti
 
hromodynami
s.Let f1; f2; : : : ; fN be N obje
tive fun
tions.fi : 
! R;
 � R:Consider the multiobje
tive optimization problem:� optimize f(x) = (f1(x); : : : ; fN (x))subje
t to x 2 
The key 
on
ept in determining solutions of multiobje
tive problems is that ofPareto optimality.De�nition. (Pareto dominan
e) Consider a maximization problem. Let x, ybe two de
ision ve
tors (solutions) from 
. Solution x is said to dominate y (alsowritten as x�y) if and only if the following 
onditions are ful�lled:2000 Mathemati
s Subje
t Classi�
ation. 68T05.1998 CR Categories and Des
riptors. I.2.8 [Computing Methodologies℄: Arti�
ial In-telligen
e { Problem Solving, Control Methods, and Sear
h.51



52 D. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEAN(i) fi(x) � fi(y), 8i = 1; 2; : : : ; n.(ii) 9j 2 f1; 2; : : : ; ng : fj(x) > fj(y).De�nition. Let S � 
. All solutions whi
h are not dominated by any ve
torof S are 
alled nondominated with respe
t to S.De�nition. Solutions that are nondominated with respe
t to the entire sear
hspa
e 
 are 
alled Pareto optimal solutions.Pareto optimal set may 
onsist from de
ision regions represented as:(i) a set of points;(ii) a set of disjoint intervals;(iii) a set of disjoint intervals and a set of points.Usual multiobje
tive optimization algorithms may deal with the �rst 
ase. These
ond 
ase is solved in a quite arti�
ial manner. Obtained solutions representpoints in a set of non-disjoint intervals. It is problemati
 to obtain a realisti
representation of a union of 
ontinuous Pareto optimal regions using su
h a dis
retepi
ture.When 
ontinuous de
ision regions are modeled by dis
rete solutions there isan information loss due to �delity loss between 
ontinuous and dis
rete represen-tations. Any multiobje
tive optimization problem being 
omputationally solvedsu�ers this fate. Methods for �nding Pareto optimal set and Pareto optimal frontusing dis
rete solutions are 
omputationally very diÆ
ult. Moreover the resultingsets are still only a dis
rete representation of their 
ontinuous 
ounterparts. How-ever the results may be a

epted as the `best possible' at a given 
omputationalresolution.In this paper we propose a new evolutionary approa
h 
ombing a non-standardsolution representation and a multimodal optimization te
hnique. In the proposedapproa
h a solution is either a 
losed interval or a point. The solutions in the �nalpopulation will give a more adequate representation of Pareto optimal set.To evolve population we use a multi-modal optimization metaheuristi
 
alledGeneti
 Chromodynami
s ([4℄). Ea
h individual from the population is sele
tedfor re
ombination or mutation. A mate for an interval (individual) is anotherinterval that interse
ts it. If an individual has a mate then they are 
ombined.Otherwise it is mutated. Mutation 
onsists from normal perturbation of intervalextremities.A new variation operator 
alled splitting operator is 
onsidered. By splittingan interval-solution 
ontaining a dominated point is splitted. In this way sev-eral Pareto regions existing in the same solution are separated. Performing thisoperation population size is in
reased.Two population de
reasing me
hanisms are used: merging (if an interval iswholly 
ontained in other interval, the �rst one is remove from the population)



A NEW EVOLUTIONARY APPROACH FOR MULTIOBJECTIVE OPTIMIZATION 53and vanishing (very bad intervals are removed from the population). The algo-rithm stops when the optimal number of solutions is a
hieved. The evolutionarymultiobje
tive pro
edure proposed in this paper is 
alled Continuous Pareto Op-timal Set (CPOS).1. Solution representation and dominationIn this paper we 
onsider solutions are represented as intervals in the sear
hspa
e 
.Ea
h interval-solution k is en
oded by an interval [xk ; yk℄ � R. Degeneratedintervals are allowed. Within degenerate 
ase yk = xk the solution is a point. Todeal with this representation a new domination 
on
ept needed.De�nition. An interval-solution [x; y℄ is said to be interval-nondominated ifand only if all points of that interval [x; y℄ are nondominated.Remark. If x = y this 
on
ept redu
ed to the ordinary non-domination notion.De�nition. An interval-solution [x; y℄ is said to be total dominated if and onlyif ea
h point within [x; y℄ is dominated (by a point inside or outside the interval).Remarks.(i) If no ambiguity arise we will use nondominated (dominated) instead of in-terval-nondominated (interval-dominated).(ii) An interval-solution may 
ontain dominated as well as nondominates points.A 
ommon approa
h of multiobje
tive optimization is to use a Pareto-rankingme
hanism for �tness assignment (see for instan
e). In our interval-representationthis approa
h is diÆ
ult to be used dire
tly due to the in�nite member of pointsto be tested in ea
h interval. For this reason we propose a new approa
h. The ideais to approximate the 
on
ept of total domination. In this respe
t we introdu
ethe notion of non-domination degree.A non-domination 
on
ept may be introdu
ed by 
onsidering some randompoints in the solution interval. The number Kxy of random points is proportionalto the interval size jx� yj. We may de�ne Kxy asKxy = F (jx� yj);where F is a linear fun
tion.Let Sxy be a set of random numbers within the solution-interval [x; y℄. The sizeof the sampling set Sxy is equal to Kxy:
ard Sxy = Kxy:De�nition. Non-domination degree of the interval-solution [x; y℄ is the numberNxy de�ned as follows:



54 D. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEAN(1) x 6= y then Nxy = N1 �N2Kxk :where N1 (N2) is the number of non-dominated (dominated) points inthe set Sxy and Kxy � 1.(2) x = y then Nxy = � 1 if x is non-dominated0 otherwiseDe�nition. Solution [x; y℄ is said to be t-nondominated if the inequalityNxy � tholds. In this inequality t is a threshold, 0 � t � 1.2. Fitness assignmentWithin our evolutionary multiobje
tive optimization pro
edure �tness assign-ment is realized using non- domination degree.Let [x; y℄ be a solution. Fitness of the solution [x; y℄ is denoted eval([x; y℄) andeval([x; y℄) = Nxy:Remark. Proposed �tness assignment s
heme may supply di�erent �tnessvalues for several sampling sets Sxy. This is not a major drawba
k. As a matterof fa
t, we may 
onsider the statisti
al 
hara
ter of �tness assignment pro
essas an advantage. It may results in an in
reasing 
exibility of the 
orrespondingsear
h pro
edure.3. Population model and sear
h operators within CPOS pro
edureFor preserving all useful solutions in the population CPOS pro
edure use amulti?modal optimization te
hnique. Our experiments emphasize that Geneti

hromodynami
s meta?heuristi
 proposed in [4℄ outperforms other standard meth-ods like ni
hing, restri
ted mating or island models. Geneti
 
hromodynami
s usesa variable?sized population and a lo
al mating s
heme.The method allows a natural termination 
ondition. Ea
h solution in the lastpopulation supplies a Pareto optimal region 
ontributing to the pi
ture of Paretooptimal set.Most of the multiobje
tive optimization te
hniques based on Pareto rankinguse a se
ond population that stores nondominated individuals. Members of se
-ond population Pse
ond may be used to guide the sear
h pro
ess. As dimensionof se
ondary population may dramati
ally in
rease several me
hanisms to redu
e
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ond size have been proposed. In [13℄ and [14℄ a population de
reasing te
h-nique based on a 
lustering pro
edure is 
onsidered. We may observe that preserv-ing only one individual from ea
h 
luster implies a loss of information. Presentapproa
h does not use a se
ondary population. This makes CPOS pro
edure morerobust and less 
ostly. It does not imply a loss of information about Pareto optimalset during the sear
h pro
ess.3.1. Sele
tion for re
ombination. Only most �t individuals are allowed to re-
ombine. A

ording to our elitist s
heme only 1?nondominated individuals arere
ombined. Ea
h 1-nondominated solution is 
onsidered for re
ombination. Forea
h parent a restri
ted mating s
heme is used to �nd the other parent. Let [x; y℄be an 1?nondominated solution. If the solution is the degenerate interval x = ythen its mate is sele
ted from the 
losed ball V (x;R), where R is the mating range.R represents a parameter of the pro
edure.The mate of the one non-degenerate interval [x; y℄ is sele
ted from all one non-degenerate solutions [u; v℄ su
h that they are not disjoint and do not in
lude ea
hother. This means that the following 
onditions are have to be ful�lled for re
om-bining interval solutions [x; y℄ and [u; v℄:(i) [x; y℄ \ [u; v℄ 6= ;;(ii) [x; y℄ \ [u; v℄ 6= [x; y℄;(iii) [x; y℄ \ [u; v℄ 6= [u; v℄.The individuals that 
an be sele
ted as mates of [x; y℄ represent the breederset of [x; y℄. From the breeder set the se
ond parent is sele
ted using a 
ertainpro
edure like a tournament or proportional sele
tion s
hemes.3.2. Re
ombination operator. Re
ombining the individual [x; y℄ and its se-le
ted mate it results a unique o�spring. The �rst parent [x; y℄ will be repla
ed bythis o�spring.If the parents are nondegenerated solutions the o�spring is the union of theparent intervals.For degenerated 
ase the o�spring may be, for instan
e, the 
onvex 
ombinationof its parents.A

ording to the proposed re
ombination operator the mate of a (non) degen-erated solution has to be (non) degenerated too.3.3. Mutation operator. An individual [x; y℄ is mutated if and only if no mate
an be sele
ted for it. This happens when the breeder set of [x; y℄ is empty.3.3.1. Mutating an interval. There are several ways of realizing mutation. Thesepossibilities are:a) mutate the left extremity of the interval;
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) mutate the both extremities of the interval.Remarks.(i) For extremities perturbation we use an additive normal perturbation withstandard deviation �, where � is a parameter of the method.(ii) Degenerated?solutions mutation is in
luded in the general s
heme.(iii) Mutation type (a, b or 
) is randomly 
hosen.3.3.2. Degenerated interval-solutions. By mutation an interval 
an be redu
ed toa point. This may happen in the following situations:(i) mutation of the right (left) interval extremity is less (greater) than the left(right) interval extremity;(ii) if by mutation the interval extremities 
oin
ide (with respe
t to a given 
om-putational resolution).3.4. Splitting operator. For segregation two disjoint Pareto regions that arerepresented by the same interval-solution we introdu
e a new type of variationoperator 
alled splitting operator.Splitting operator is applied to an interval-solution and produ
es two o�spring.This operator in
reases population size.Applying re
ombination or mutation to all individuals in the 
urrent populationP (t) a new intermediary population P 1(t) is obtained. Splitting operator is appliedto the intermediate population P 1(t).To apply splitting operator an interval-solution [x; y℄ is randomly 
hosen fromP 1(t). A 
ut-point p, x < p < y, is randomly 
hosen. If p is a dominated pointthen [x; y℄ may in
lude disjoint Pareto regions. For separating these regions weapply the splitting operator.The o�spring resulted by splitting the solution [x; y℄ are [x; p℄ and [p; y℄. Wemay thus write split[x; y℄ = f[x; p℄; [p; y℄g:Splitting operator is not applied if the randomly generated point p is nondom-inated. 4. Population dynami
s within CPOS algorithmTo dete
t the 
orre
t number of Pareto optimal regions it is ne
essary to haveonly one solution per Pareto optimal region. Using Geneti
 Chromodynami
ste
hnique population size de
reases during the sear
h pro
ess su
h that eventuallyequals the number of optimal solutions.Several population de
reasing me
hanisms may be used. In our implementa-tion we 
onsider two 
omplementary s
hemes. Two new operators implement the
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onsidered population de
reasing me
hanisms. The proposed operators are 
alledmerging and vanishing. They a
t only on nondegenerated solutions.(i) Merging operator. If an 1-nondominated solution T1 is 
ompletely in-
luded in another 1- nondominated solution T2, then the solution are merged.The solution T1 is dis
arded.(ii) Vanishing operator. If a solution is (-1) nondominated then the solutionis dis
arded. This operation is very useful be
ause performing split mutationthe number of bad solutions may grow 
onsiderably.These veri�
ations needed by the operators are done when a new solution isin
luded in the population. 5. Stop 
onditionGeneti
 
hromodynami
s deals with a very natural termination 
ondition. A
-
ording to this stop 
ondition the 
hromosome population remains un
hanged fora �xed number of generations (given by the parameter MaxIteration in our algo-rithm) then the sear
h pro
ess stops.6. CPOS algorithmContinuos Pareto optimal set (CPOS) algorithm proposed in this paper maybe outlined as below:CPOS AlgorithmbeginPopulation initialization:generate randomly a interval population (P (0));t = 0;Evolving intervals:repeatfor ea
h individual 
 in P (t)if Has Mate(
) f
 has a possible mategthensele
t b { a mate for 
; fsele
t mate using proportional sele
tiongPerform re
ombination:z =Re
ombination(b; 
);else Perform mutation of individual 
:z =Mutate(
);endifadd z to intermediate population P 0(t);endforApply merging operator on individuals in intermediate population P 0(t):



58 D. DUMITRESCU, CRINA GROS�AN, AND MIHAI OLTEANP 00(t) =merge(P 0(t));Apply vanishing operator on individual on P 00(t):P 000(t) =vanish(P 00(t));P (t+ 1) = P 000(t); fnext generationgt = t+ 1;until MaxIterations is rea
hedend.Remark. Algorithm stops if there is no population modi�
ation for a numberof MaxIterations su

essive iterations.7. Numeri
al experimentsSeveral numeri
al experiments using CPOS algorithm have been performed.For all examples the dete
ted solutions gave 
orre
t representations of Pareto setwith an a

eptable a

ura
y degree. Some parti
ular examples are given below.Example 1. Consider the fun
tions f1; f2 : [�4; 6℄! R de�ned asf1(x) = x2;f2(x) = (x� 2)2:Consider the multiobje
tive optimization problem:� minimize f1(x); f2(x)subje
t tox 2 [�4; 6℄Pareto optimal set for this multiobje
tive problem is the interval [0, 2℄.The initial population is depi
ted in Figure 1. For a better view the 
hromo-somes are drawn one above another.For the value � = 0:1of the standard deviation parameter solutions obtained after 10 generations aredepi
ted in Figure 2.The population obtained after 24 generations is depi
ted in Figure 3.The �nal population, obtained after 40 generations, is depi
ted in Figure 4.Final population obtained after 40 generations 
ontains only one individual.This individual is: s = [0:01; 1:98℄;and represent a 
ontinuous Pareto optimal solution.
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Figure 1. Initial population

Figure 2. Population after 10 generationsThe obtained solution a

ura
y may be in
reased, if ne
essary, by de
reasingthe parameter standard deviation of normal perturbation. Of 
ourse the numberof iterations needed for 
onvergen
e in
reases this 
ase.
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Figure 3. The population obtained after 24 generations

Figure 4. Final population obtained after 40 generationsFor example, if we 
onsider the value



A NEW EVOLUTIONARY APPROACH FOR MULTIOBJECTIVE OPTIMIZATION 61� = 0:01;the solution s = [0:004; 1:997℄;is obtained after 60 iterations.Example 2. Consider the fun
tions f1; f2 : [�10; 13℄! R de�ned asf1(x) = sin(x);f2(x) = sin(x+ 0:7):and the multiobje
tive optimization problem:� minimize f1(x); f2(x)subje
t tox 2 [�10; 13℄The initial population is depi
ted in Figure 5.

Figure 5. Initial populationFor the value � = 0:1solutions obtained after 5 generations are depi
ted in Figure 6.We may observe four distin
t, well-separated, subpopulations are already seg-regated after 5 generations. Therefore useful subpopulations are stabilized very
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larity, segments in the same 
lass areseparately represented. In reality they partially overlap.

Figure 6. The population after 5 generationsThe population after 10 generations is depi
ted in Figure 7. Subpopulationsare well individualized and nested.The �nal population, obtained after 120 generations, is depi
ted in Figure 8.Solutions in the �nal population are:s1 = [�8:47;�7:86℄;s2 = [�2:26;�1:56℄;s3 = [4:01; 4:69℄;s4 = [10:29; 10:99℄:Example 3. Consider the fun
tions f1; f2 : [�9; 9℄! R de�ned asf1(x) = x2;f2(x) = 9�p81� x2:and the multiobje
tive optimization problem:� minimize f1(x); f2(x)subje
t tox 2 [�9; 9℄The initial population is depi
ted in Figure 9.
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Figure 7. Population after 10 generationsConsider the standard deviation parameter value� = 0:1;In this 
ase population obtained after 3 generations is depi
ted in Figure 10.It is very interesting to observe that very early population stabilizes to a singleindividual. This individual will be improved at subsequent iterations.The population after 7 generations is depi
ted in Figure 11.The �nal population, obtained after 120 generations, is depi
ted in Figure 12.Final population obtained at 
onvergen
e after 120 generations 
ontains onlyone individual represented as degenerated interval (i.e. a point)s = �0:001:Therefore dete
ted Pareto optimal set 
onsists from a single point:Pdete
t = f�0:001g:We may remark that dete
ted Pareto set represents a good estimation of the
orre
t Pareto optimal set P
 = f0g:A

ura
y of this estimation 
an be easy improved by using smaller values ofthe parameter ? (standard deviation). In this 
ase a larger number of generationsare needed for 
onvergen
e.
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Figure 8. Four solutions within the �nal population (obtainedafter 120 generations)

Figure 9. Initial population
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Figure 10. Population after 3 generations

Figure 11. Population after 7 generationsFor instan
e, if we put � = 0:01;
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Figure 12. Final population obtained after 120 generationsthe obtained solution is s = 0:0008:8. Con
luding remarks and further resear
hesA new evolutionary te
hnique for solving multiobje
tive optimization problemsinvolving one variable fun
tions is proposed. A new solution representation is used.Standard sear
h (variation) operators are modi�ed a

ordingly. Three new sear
hoperators are introdu
ed. The proposed evolutionary multiobje
tive optimizationte
hnique does not use a se
ondary population of non-dominated solutions.Proposed multiobje
tive optimization method uses a new evolutionary meta-heuristi
 
alled Geneti
 
hromodynami
s for maintaining multiple optimal solu-tions on the 
al
ulated Pareto set during the sear
h pro
ess.All known multiobje
tive optimization te
hniques supply a dis
rete pi
ture ofPareto optimal solutions and of Pareto frontier. But Pareto optimal set is usuallynon-dis
rete. Finding Pareto optimal set and Pareto optimal frontiers using adis
rete representation is not a very easy 
omputationally task (see [11℄).CPOS te
hnique supplies dire
tly a 
ontinuous pi
ture of Pareto optimal set andof Pareto frontier. This makes our approa
h very appealing for solving problemswhere very a

urate solutions dete
tion is needed.
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hnique has a natural termination 
onditionderived from the nature of evolutionary method used for preserving populationdiversity.Experimental results suggest that CPOS algorithm supplies 
orre
t solutions ina very few iterations.Further resear
h will 
on
entrate on the possibilities to extend the proposedte
hnique to deal with multidimensional domains.Another dire
tion is to exploit the solution representation as intervals for solvinginequality systems and other problems for whi
h this representation is natural.Referen
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STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000PHRASE GENERATION IN LEXICAL FUNCTIONALGRAMMARS AND UNIFICATION GRAMMARSDOINA T�ATAR, DANA AVRAMAbstra
t. In this paper we 
ompare the pro
ess of deriving a phrase stru
-ture in a lexi
al fun
tional grammars with the pro
ess of obtaining fea-ture stru
ture for the symbol S of an uni�
ation grammar. If the 
 �stru
ture(D;C; e) generates the feature stru
ture F , then F is the featurestru
ture obtained as MGSat( ), where  is a 
onjun
tion of a set of de-s
riptions from Des
.1. Lexi
al Fun
tional Grammar-LFGLFG is a lexi
al theory, this means that the lexi
on 
ontains a lot of informationabout lexi
al entries. LFG grammars present two separate levels of synta
ti
representation: 
-stru
ture, about 
onstituent stru
tures (in mu
h the same wayas derivation trees in CFG grammars) and f -stru
ture , whi
h is used to holdinformation about fun
tional relations, en
oded using equations between featurestru
tures (see the next se
tion). We will introdu
e here the design of the grammarrules and the lexi
on, as well as the pro
ess applied to derive a phrase.De�nitionA LFG grammar over a set Feats of attributes and a set Types of types is a5-uple (N,T,P,L,S) where:� N is a �nite set of symbols, 
alled nonterminals;� T is a �nite set of symbols 
alled terminals;� P is a �nite set of produ
tion rulesA0 ! A1; � � � ; AnE1; � � � ; En:where n � 1; A1; � � � ; An 2 N and Ei; 1 � i � n, is a �nite set ofequations of the forms: "j# � ="j# �02000 Mathemati
s Subje
t Classi�
ation. 68Q42.1998 CR Categories and Des
riptors. F.4.2 [Theory of 
omputation℄: Mathemati
alLogi
 and Formal languages { Grammars and other rewriting systems.69



70 DOINA T�ATAR, DANA AVRAM"j# �00 = vwith �; �0 2 Feats�; �00 2 Feats+ and v 2 Types;� L is a �nite set of lexi
on rulesA! tEwhere A 2 N; t 2 T [ " and E is a �nite set of equations of the form"j# � = vwith � 2 Feats+ and v 2 Types;� S 2 N is the start symbol.As an example let us 
onsider the rule:S ! NP V P" subj =#"=#The equations (or fun
tional s
hemes) are interpreted as referring to the featurestru
tures (se
tion 2) asso
iated, in the following way: the meta-variable " refersto the f-stru
ture that is asso
iated with the head of the rule, # refers to thef-stru
ture asso
iated with the daughter to whi
h the equation is atta
hed.The 
� stru
ture based on a LFG grammar G is a tree, in mu
h the same wayas derivation trees in a CFG grammar, but the nodes are annotated not only withelements from N [ T but also with sets of equations E. More exa
tly:De�nitionA tree domain D is a set D � N�, (where N is the set of natural numbers, andN� is the Kleene 
losure of N) su
h that if x 2 D then all pre�xes of x are also inD. The out degree d(x) of an element x in tree domain D is the 
ardinality of theset fi j xi 2 D; i 2 Ng. Let us denote by term(D) the set fx j x 2 D; d(x) = 0g.We 
an now de�ne a 
-stru
ture based on a LFG grammar :De�nition[2℄A 
onstituent stru
ture (
-stru
ture) based on a LFG grammarG = (N;T; P; L; S)is a triple (D;C; e) where� D is a �nite tree domain;� C is a fun
tion C : D �! N [ T [ f"g;� e is a fun
tion e : D n f"g �! � where � is the set of all equation sets inP and L, su
h that C(x) 2 T [ f"g if x 2 term(D), C(") = S and forall x 2 (D � term(D)), if d(x) = n thenC(x) ! C(x1) � � �C(xn)e(x1) � � � e(xn)
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tion or lexi
al rule in G.De�nitionA terminal string for a 
-stru
ture is the string C(x1) � � �C(xn) , with x1; � � � ; xn 2term(D) and xi �lex xi+1 for i = 1; � � � ; n� 1.The existen
e of a 
-stru
ture is a ne
essary but not suÆ
ient 
ondition asterminal string belongs to the L(G). Nodes of the 
-stru
ture are asso
iatedwith feature stru
tures (denoted by fi), and the equations indu
e some equationsbetween fi as unknowns. The minimal solution of this set of equations ( if asolution exists) represents a feature stru
ture F .De�nitionThe 
-stru
ture(D;C; e) generates the feature stru
ture F if F is the minimalsolution of the set of equations e. We denote this byF j=0 [x2D e(x):In the next se
tion we will present uni�
ation grammars and will illustrate the
onne
tion between uni�
ation grammars and LFG grammars.2. Unifi
ation Based Phrase Stru
ture Grammars.The uni�
ation grammars are phrase stru
ture grammars in whi
h non-terminaland terminals symbols are repla
ed by feature stru
tures. Intuitively, a featurestru
ture (FS) is a des
ription of some linguisti
 obje
t, spe
ifying some or all ofthe information that is asserted to be true of it [3, 5℄. We will present shortly twode�nitions of (untyped) feature stru
tures.De�nition:A feature stru
ture over a signature Types and Feats is a labeled rooted dire
tedgraph represented by the tuple: F =< Q; �q; �; Æ >where :� Q is the �nite set of nodes of the graph;� �q 2 Q is the root node;� � : Q �! Type is a partial node typing fun
tion;� Æ : Feat �Q �! Q is a partial value fun
tion, whi
h asso
iates with a nodei the nodes i1; � � � ; in if Æ(FEAT1; i) = i1; � � � ; Æ(FEATn; i) = in:In the rewriting relations two notions about FS's are important: subsumptionrelation and uni�
ation operation.De�nitionA feature stru
ture F subsumes another feature stru
ture G or F v G i�:



72 DOINA T�ATAR, DANA AVRAM� if a feature f 2 Feat is de�ned in F then f is also de�ned in G and its valuein F subsumes the value in G;� if the values of two paths are shared in F , then they are also shared in G.Thus, F v G if G 
ontains more information than F or F is more general thanG.The notion of subsumption 
an be used to de�ne the notion of uni�
ation, themain information 
ombining operation in uni�
ation based grammars. Uni�
ation
onjoins the information in two feature stru
tures into a single result if they are
onsistent and dete
ts an in
onsisten
y otherwise.De�nitionThe result of the uni�
ation of two FS's F and F 0 is an other FS (if it exists),denoted F tF 0 whi
h is the most general FS (in the sense of relation v) subsumedby both input FS's.Thus, F tF 0 is the l. u. b of F and F 0 , if it exists, on the ordering relation v.The FS's 
an be des
ribed, as an other modality, by a logi
al expression, whi
his denoted "des
ription". The big advantage of this kind of representing FS's isthe linearity of displaying.De�nition [1℄ The set of des
riptions over the set Types of types and Featsof features is the least set, Des
, su
h that:� 2 Des
, if � 2 Types� : � 2 Des
 if � is a path, � 2 Des
�1 := �2 2 Des
, if �1 and �2 are paths� ^  ; � _  2 Des
, if �;  2 Des
The priority among the operations is::=j :j ^ j _ jA satisfa
tion relation between FS's and the set Des
 is de�ned as:De�nition The relation j= is the least relation su
h that:F j= � if � 2 Types, � v �(q)F j= � : � if F�� is de�ned and F�� j= �F j= �1 := �2 if Æ(q; �1) = Æ(q; �2)F j= � ^  if F j= � and F j=  F j= � _  if FF j= � or F j=  .The following theorem establishes the duality between a (non-disjun
tive) de-s
ription and the most general FS whi
h satis�es this des
ription:Theorem ([1℄). There is a partial fun
tion (algorithm)MGSat : Non�Disj �Des
! T FSsu
h that for ea
h � and F
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onstru
ted as most general total well typed FS whi
h satis�es �.)Remark : The algorithm 
onsiders re
ursively the 
ases of des
riptions: �, � : �,�1 = �2, � ^  and 
onstru
t (learn) MGSat(�). The most important 
ase is:MGSat(� ^  ) =MGSat(�) tMGSat( ):The UBPSG's are phrase stru
ture grammars in whi
h non-terminal or 
ategorysymbols are repla
ed by FS's in rewriting rules, the lexi
al entries are terminals,and an inheritan
e hierar
hy < Types;v> is asso
iated.UBPSG's was introdu
ed by Shieber (1988) [5℄ , Gazdar and Melli
h (1989) [4℄.De�nition. (UBPSG) For an inheritan
e hierar
hy < Types;v> with anappropriateness spe
i�
ation, a set Feats of features, a set Lex of terminals (lexi
alentries), a UBPSG is a set of rewriting rules:E0 ! E1 : : : En;where ea
h Ei is either a feature stru
ture or a terminal (and in this 
ase n = 1).The interpretation of su
h a rule is: the 
ategoryE0 
an 
onsist of an expressionof 
ategory E1, followed by the 
ategory E2, et
.Alternatively, the rewriting rule 
an be given as:D0 ! D1 : : : Dnwhere Di are des
riptions, su
h thatEi = Di; if Di is a terminal; Ei = (total well�typed )MGSat(Di); if Di 2 Des
:Remarks:If the 
-stru
ture(D;C; e) generates the feature stru
ture F , then F is thefeature stru
ture obtained as MGSat( ), where  is obtained as 
onjun
tion ofthe set of Des
 as follows:� If an equation refers to a single unknown ( with the form: fi� = v,fi being an unknown, � being a path from Feats�, v 2 Types), then� : v 2 Des
;� If two equations are as fi� = v and fi�0 = v0 then � : v ^ �0v0 2 Des
;� If an equation is of the form fi = fj , and fi j= �i and fj j= �j , then�i ^ �j 2 Des
.These remarks 
an be summarized in the following:TheoremIf F j=0 Sx2D e(x) then F j=  , where  = V�2Des
 �, and � are the des
rip-tions obtained as above.



74 DOINA T�ATAR, DANA AVRAM3. ExampleThe lexi
al rules of this example from [3℄ are:N �!0 Ralu
a0" pred =0 Ralu
a0; " pers =0 30; " nr =0 sing0N �!0 marea0" pred =0 marea0; " pers =0 30; " nr =0 sing0V �!0 priveste0" pred =0 priveste0; " pers =0 30; " nr =0 sing0The nonlexi
al rules let be: S ! NP V P" subj =#; "=#V P ! V NP"=#; " obj =#NP ! N"=#We will 
onstru
t the 
 � stru
ture based on the above LFG grammar, thanwe will pro
eed to de
orate the 
 � stru
ture by names of feature stru
tures fiand will apply the equation between them. The de
orated 
� stru
ture with theinstantiated equations atta
hed to its nodes for the above example is also presentedas bellow.
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'Ralu
a'(" pred =0 Ralu
a0, " pers =0 30, " nr =0 sing0)

VP("=#)����� QQQQQ���� QQQQV("=#)(" pred = priveste, " pers = 3, " nr = sing)'priveste' NP(" obje
t =#)N("=#)(" pred =0 marea0, " pers =0 30, " nr =0 sing0 )'marea'S f1NP f2 (f1subj = f2)N f3 (f2 = f3)
'Ralu
a'(f3pred =0 Ralu
a0, f3pers =0 30, f3nr =0 sing0)

VP f4 (f1 = f4)����� QQQQQ���� QQQQV f5 (f4 = f5)(f5pred = priveste, f5pers = 3, f5nr = sing)'priveste' NP f6 (f4 obje
t = f6)N f7 (f6 = f7)(f7pred =0 marea0, f7pers =0 30, f7nr =0 sing0 )'marea'We will pro
eed in the following to obtain the (minimal) solution of the set ofequation ( or to determining the unsolvability of it).The steps of this pro
edure are:1. Solving the set of equations referring to a single unknown ( with the form:fi� = v, fi being an unknown, � being a path from Feats�, v 2 Types).



76 DOINA T�ATAR, DANA AVRAM2. Interpreting equal unknowns with di�erent values as results of an uni�
ation(fi�v and fi�0v0 indu
e the feature stru
ture fi "� v�' v'#).3. Removing the unknowns whi
h are not used e�e
tively by their equals ( iffi = fj and fi is not de�ned, one use fj).4. Solving the equations with two feature stru
ture names ( if fi = a fj , thenthe feature stru
ture fi �a fj h i� is obtained).5. Solving the equations of the form fi = fj , where both feature stru
turesfi and fj are de�ned, by uni�
ation of the values of fi and fj and denoting theresult as: fi fj h....i6. As f1 is asso
iated with S , the feature stru
ture for f1 (if exists), is thefeature stru
ture of the entire 
orre
t phrase.For the above example, the set of equations is:f1subj = f2f1 = f4f2 = f3f3pred =0 Ralu
a0f3pers = 3f3nr = singf4 = f5f4obje
t = f6f5pred =0 priveste0f5pers = 3rdf5nr = singf6 = f7f7pred =0 marea0f7pers = 3rdf7nr = singBy exe
ution of the above 
al
ulus 1-4 steps we obtain the following featurestru
tures:f1 hsubj: f2 if3 264pred: 'Ralu
a'nr: singpers: 3 375f4 hobje
t: f6 i



PHRASE GENERATION IN LEXICAL FUNCTIONAL GRAMMARS AND UNIFICATION 77f5 264pred: 'priveste'nr: singpers: 3 375f7 264pred: 'marea'nr: singpers: 3 375From equations f1 = f4, f2 = f3, f4 = f5, f6 = f7, we obtain the followingfeature stru
tures:f1 2664subj: f2 f3 264pred: 'Ralu
a'nr: singpers: 3 3753775f4 2664obje
t: f6 f7 264pred: 'marea'nr: singpers: 3 3753775f5 264pred: 'priveste 'nr: singpers: 3 375For the equations f1 = f4, f4 = f5, we apply the step 5 as above and we obtain:
f1 f4 f5

266666666666664
pred: 'priveste'subj: f2 f3 264pred: 'Ralu
a'nr: singpers: 3 375obje
t: f6 f7 264pred: 'marea'nr: singpers: 3 375

377777777777775The same feature stru
ture 
an be obtained from des
riptions as at the end ofse
tion 2. 4. Con
lusions.In this paper we repla
e the 
onstru
tion of a feature stru
ture, given as themost general satis�er of a 
onjun
tion of des
riptions, by obtaining the solutionof a set of lexi
al rules equations. The bases of this repla
ing are the remarksexpressed by the theorem at end of se
tion 2.
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STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000SEMANTIC ANALYSIS IN DIALOGUE INTERFACESADRIAN ONET�, DOINA T�ATARAbstra
t. One 
ru
ial issue for the NL interfa
es is the use of an "interme-diate meaning representation formalism" whi
h will support the semanti
 andpragmati
 reasoning pro
esses of the system. The paper presents a synta
ti
-semanti
 analyzer based on the approa
h of lambda-
al
ulus, realised by the�rst author, as a kind of syntax-driven, 
ontext independent and inferen
efree approa
h. The �rst level of this appli
ation 
ontains the semanti
 engine(written in SWI-Prolog); the se
ond one 
ontains an interfa
e with the user(written in Delphi); the extra level is for the graphi
al representation of theparse tree (written in Visual Prolog).1. Dialogue interfa
esA fundamental goal of arti�
ial intelligen
e is the manipulation of natural lan-guages (NL's) using the tools of 
omputing s
ien
e. The mains 
hallenges raised byNL pro
essing arise at many levels: 
on
eptual model, semanti
 theories, parsingtheories, user modeling. The NL phenomenon has some important 
hara
teristi
sthat must be 
onsidered when one implement an NLP system [15℄ :� La
k of an expli
it de�nition;� Presen
e of in
omplete and ill stru
tured senten
es, without preventing theunderstanding;� In
uen
e of the 
ontext;� Ambiguities .These few 
hara
teristi
s show that NLP requires te
hniques di�erent from thetraditional te
hniques. Several s
ienti�
 dis
iplines have made natural languagean obje
t of study: arti�
ial intelligen
e, linguisti
s, philosophy, logi
, psy
hology.All these attempt to answer at the question of " automati
 NL understanding".The most used 
riterion now is the reasoning pro
ess operating on some internalrepresentation of the meaning of the NL input.The �rst major su

ess for natural language pro
essing (NLP) was in the area ofdatabase a

ess. One �rst su
h interfa
es was Fernando Pereira's CHAT system2000 Mathemati
s Subje
t Classi�
ation. 68U35.1998 CR Categories and Des
riptors. I.2.1 [Computing Methodologies℄: Arti�
ial In-telligen
e { Apppli
ations and Expert Systems.79



80 ADRIAN ONET�, DOINA T�ATAR(1983) about a geographi
al database. Over the last de
ade, some 
ommer
ialsystems have built up large grammars and lexi
ons to handle a wide variety ofinputs."The main 
hallenge for 
urrent systems is to follow the 
ontext of onintera
tion" ([10℄).One 
ru
ial issue for the NL interfa
es is the use of an "intermediate meaningrepresentation formalism" whi
h will support the semanti
 and pragmati
 reason-ing pro
esses of the system. Su
h of representation is 
alled "intermediate logi
alform" and it is the prin
ipal point through whi
h results 
oming from the �eld oflogi
 
an be used in a NL pro
essing (NLP) system .The semanti
s of the phrases expressed in a natural language has two aspe
ts:semanti
s and pragmati
s. Semanti
s refer to those aspe
ts of the meaning thatare not in
uen
ed by the 
ontext, and the pragmati
s is 
on
erned with the 
ontextand the intention of the speaker. Almost every approa
h for the semanti
 inter-pretation of a phrase is made with the prin
iple of 
ompositionality :the meaningof a phrase is a fun
tion of the meanings of its parts .The dialogue-based appli
ation in
lude [1℄:� question-answering systems, where NL is used to query a database;� automated 
ustomer servi
e;� tutoring systems;� spoken language 
ontrol of a ma
hine;� general 
ooperative problem-solving systems.A dialog interfa
e does have to pro
ess sequen
es of senten
es ex
hanged be-tween a user and an appli
ation system. Ea
h of these senten
es has to be pre
iselyunderstood. The dis
ourse domain of one interfa
e is usually restri
ted, and thuseasier to model from a semanti
 point of view. From a histori
al perspe
tive, 
anbe distinguished three generations of NL interfa
es [14℄:� The "dire
t translation systems", performing a dire
t translation of the NLinput into an output string, suitable for the purposes of the appli
ation. Theparser of su
h a system does not make use of a general meaning representationformalism. These systems are not portable and is diÆ
ult to implement in themthe semanti
 inferen
es.� The se
ond generation of NL interfa
es separates the understanding pro
essinto two steps: in a �rst step an analyzer will pro
ess the NL input and produ
ea representation of its meaning in an intermediate meaning representation formal-ism, usually an intermediate logi
al form (ILF). In a se
ond step, an interpreterwill study this representation and will �nd out related a
tions, a

ordingly withthe appli
ation. Both analysis and interpretation are based on an expli
it model
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ourse domain, as a knowledge base de�ning the ideas referred, pro-viding semanti
 and pragmati
 information and performing the logi
al inferen
esne
essary for understanding.� The third generation of NL interfa
es in
ludes, besides the model of dis
oursedomain, an expli
it model of user with "stati
" information, su
h as the level of
ompeten
e possessed by a spe
i�
 user, and "dinami
" information expressing theknowledge and beliefs of the user and the evolution of these knowledge and beliefswithin the dialogue. This kind of information 
an be used to improve the resolu-tion of ambiguities, the pro
essing of in
omplete senten
es and the generation of
ooperative responses.The study of intermediate meaning representation (IMR) formalism has beenthe subje
t of large disputes. The question was of de
iding whether IMR shouldbe "logi
al" or not (based on frames, semanti
 networks, 
on
eptual dependen
ies,et
) [13℄. Is it largely a

epted that an IMR formalism must 
ombine di�erentkinds of elements, all of whi
h are ne
essary for the interpretation pro
ess [15℄:� Logi
al stru
ture;� Con
eptual 
ontent: the variables and 
onstants of the logi
al notation appearas instan
es of a 
lass system that provides a 
on
eptual model of the dis
oursedomain. This 
lass stru
ture 
an be organized hierar
hi
ally as a latti
e and formsthe skeleton of the knowledge base used in NL interfa
e;� Spee
h a
t indi
ation representing the expe
ted impa
t that the speaker triesto have on his inter lo
utor by uttering a proposition, depending on the natureof this utteran
e: request, order, information, et
. This expe
ted impa
t 
an bemodeled in terms of "wants", "knowledge" and " beliefs" of the inter lo
utor.The primitives expressing this levels 
an be logi
ally axiomatized and support areasoning pro
ess improving the behavior of an NL interfa
e;� Pragmati
 annotations about determination of logi
al quanti�ers.The phase of interpretation of an ILF , after his produ
tion by the parser,is a

omplished in some well de�ned steps [15℄. These steps in
ludes a set ofpro
esses as: resolution of anaphori
 referen
es, resolution of s
oping ambiguitiesand other types of ambiguities whi
h 
ould not be solved in the parsing phase.Also, NL interfa
e that pro
ess more than one isolated senten
e needs a dialoguemanager and the possibility to 
ontrol interpretation, for example dete
ting wrongpresupposition. 2. Semanti
 analysis by lambda-
al
ulusSemanti
 analysis (SA) is the pro
ess whereby semanti
 representations are
omposed and asso
iated with a linguisti
 input. The sour
es of knowledge that areused are: the meanings of words, the meanings asso
iated with the grammati
al
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ture and the knowledge about the 
ontext in whi
h the dis
ourse o

urs(semanti
s of the dis
ourse).One approa
h of SA is by lambda-
al
ulus and it is a kind of syntax-driven SA,
ontext independent and inferen
e free. Su
h approa
h is suÆ
ient to produ
euseful results. Others two approa
hes are semanti
 grammars and information ex-tra
tion [6℄. The lambda-
al
ulus SA is based on the prin
iple of 
ompositionalitywhi
h assert that the meaning of a senten
e 
an be 
omposed from the meaningsof its parts. The input of a semanti
 analyzer is an output of a synta
ti
 analyzer, that means a parse tree or a feature stru
ture, et
. We will assume that it is aparse tree.In lambda-
al
ulus approa
h of SA every 
ontext free grammar rule is aug-mented by a semanti
 rule whi
h spe
ify how to 
ompute the meaning representa-tion of a 
onstru
tion from the meanings of its 
onstituent parts [6℄. An augmentedrule is :A �! �1�2 � � ��nfA:sem = f(�j :sem � � ��k:sem)g; 1 � j � k � nThe denotation A:sem = f(�j :sem; � � � ; �k:sem) means that the semanti
s ofA, A:sem, will be obtained as a fun
tion f on the �j :sem; � � � ; �k:sem.Let us 
onsider an example generated by a small subset of rules from ATISgrammar [6℄: Continental serves meat.The small subset of ATIS rules is:S �! NP V PV P �! V erb NPNP �! ProperNounNP �!MassNounV erb �! servesProperNoun �! ContinentalMassNoun �! meatThe augmented rules are:NP �! ProperNoun fNP:sem = ProperNoun:semgNP �!MassNoun fNP:sem =MassNoun:semgProperNoun �! Continental fProperNoun:sem = ContinentalgMassNoun �! meat fMassNoun:sem = meatgThese rules assert that the semanti
s of NP's are the same as the semanti
s oftheir individual 
omponents. In general will be the 
ase that for non-bran
hing
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s asso
iated with the 
hild will be 
opied un
hangedto the parent.To 
ome up with the semanti
s for VP's, we will use a notational extensionto �rst order predi
ate 
al
ulus (FOPC) , lambda-
al
ulus, (Chur
h , 1940) thatprovides the kind of formal parameter that we need.The ��expression �xP (x)must be understand as a formula (with P (x) a formula from FOPC), where thefree variable x is bound to the spe
i�
 terms in FOPC. The pro
ess of bounding ofx with a spe
i�
 term in FOPC is a �� redu
tion and is illustrate by the equality:�xP (x)(A) = P (A)The variables denoted by � 
an be in a arbitrary number and their order is thesame with the order of their binding to the terms.With � notation the augmented rule for V erb is:V erb �! serves fV erb:sem = �x�y9eIS �A(e; Serving)^Server(e; y) ^ Served(e; x)gand for V P is:V P �! V erb NP fV P:sem = V erb:sem(NP:sem)gThe 
al
ulus for V P:sem = V erb:sem(NP:sem) is :�x�y9eIS �A(e; Serving) ^ Server(e; y) ^ Served(e; x)(NP:sem) =�y9eIS �A(e; Serving) ^ Server(e; y) ^ Served(e;Meat):So, V P:sem = �y9eIS �A(e; Serving) ^ Server(e; y) ^ Served(e;Meat).With � notation the augmented rule for S is:S �! NP V PfS:sem = V P:sem(NP:sem)gThe 
al
ulus for S:sem is:S:sem = V P:sem(NP:sem) = �y9eIS �A(e; Serving)^^Server(e; y) ^ Served(e;Meat)(NP:sem)= �y9eIS �A(e; Serving) ^ Server(e; y) ^ Served(e;Meat)(Continental)= 9eIS �A(e; Serving) ^ Server(e; Continental) ^ Served(e;Meat):In the appli
ations is used another new notation that fa
ilitates the 
omposi-tional 
reation of the desired semanti
s: 
omplex-term. Formally, a 
omplex-termis an expression with the following three-part stru
ture: hQuantifier V ariableBodyiThe formulas whi
h use 
omplex-terms usually refereed as quasi-logi
al forms.
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onvert a quasi-logi
al form in a FOPC formula we will use the followings
hema of rewriting any predi
ate having a 
omplex-term argument:P (hQuantifier V ariable Bodyi) ^ U! Quantifier V ariable (Body Conne
tive P (V ariabila) ^ U):where Conne
tive is ^ for 9 and �! for 8.Let us 
onsider the senten
e: A restaurant serves meat.The needed augmented rules are:Det �! a fDet:sem = 9gNominal �! Noun fNominal:sem = �xIS �A(x;Noun:sem)gNoun �! restaurant fNoun:sem = restaurantgNP �! Det NominalfNP:sem = hDet:sem x Nominal:sem(x)ig:The bottom-up 
al
ulus is:Nominal:sem = �xIS �A(x;Noun:sem) = �xIS �A(x;Restaurant)S:sem = V P:sem(NP:sem) = (V erb:sem(NP:sem))(NP:sem) =Using V P:sem as above we obtain:(�y)(9e)(IS �A(e; Serving) ^ Server(e; y) ^ Served(e;Meat))(NP:sem)) =(�y)(9e)(IS �A(e; Serving) ^ Server(e; y) ^ Served(e;Meat))(hDet:sem z (�x)IS �A(x;Restaurant)(z)i)(9e)(IS �A(e; Serving) ^ Server(e; hDet:sem z IS �A(z;Restaurant)i)^^Served(e;Meat))9e(IS �A(e; Serving) ^ (9z)(IS �A(z;Restaurant) ^ Server(e; z))^^Served(e;Meat))(9e)(9z)(IS �A(e; Serving) ^ IS �A(z;Restaurant) ^ Server(e; z)^^Served(e;Meat)):Let us observe that a senten
e as: Every restaurant has a menu has two semanti
representation, one whi
h 
orresponds to the 
ommon-sense interpretation (everyrestaurant has its own menu), but also the interpretation whi
h state that thereis one menu that all restaurants share.The two interpretation are obtained pro
essing the two 
omplex-term in thefollowing formula in a di�erent order:(9e)(IS �A(e;Having) ^Haver(e; hIS �A(x;Restaurant)i)^Had(e; h(9y)IS �A(y;Menu)i)
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omplex-term is pro
essed �rst, then the obtained formula is:(9e)(8x)(IS �A(e;Having) ^ IS �A(x;Restaurant) �! Haver(e; x)^(9y)(IS �A(y;Menu) ^Had(e; y)))If the se
ond 
omplex-term is pro
essed �rst, then the di�erent formula is:(9e)(9y)(IS �A(e;Having) ^ IS �A(y;Menu)^Had(e; y) ^ (8x)(IS �A(x;Restaurant) �! Haver(e; x)):The same results will be obtained for the example in the next se
tion.3. Context independent senten
es mapping in logi
al form. Thesynta
ti
-semanti
 analyzerSin
e the very beginning of 
omputer s
ien
e the natural language representedan important preo

upation for the spe
ialists. The appli
ations in this domainwant to resolve two essential issues: the voi
e re
ognition (if the user speaks) andtext pro
essing (its meaning).We provide in this paper an appli
ation whi
h begins with the semanti
 repre-sentation idea of the 
ontext independent senten
es in the natural language likeexpressions in extended �rst order predi
ate 
al
ulus. First of all we must spe
ifywhat we mean by the extended �rst order predi
ate 
al
ulus. Starting with theFOPC we provide a new set of quanti�ers, among the existential and universalones, ne
essary for the representation of the quantitative senten
es semanti
. Byusing this quanti�ers we will represent a quantitative senten
e semanti
 like Mostpeople laugh as 9NX:(people(X) ^ laugh(X)^most(N));where 9N belongs to the new set of quanti�ers.This FOPC extension will be noted by FOPC/QS (�rst order predi
ate 
al
ulusfor quantitative senten
es). For further details see [9℄.Ba
k to our appli
ation, this will have as entry a natural language senten
eintrodu
ed from the standard input from whi
h it will result the FOPC/QS ofthis senten
e and a graphi
al representation of its parse tree. It is very diÆ
ult to
ompare the natural language fun
tionality and the 
omputer systems operation.Problems appear when we deal with semanti
 ambiguities resolved by the humanmind through 
ontext and 
onvention. We have tried to eliminate part of theseambiguities introdu
ed by the domain of quanti�ers and of operators by the un-derspe
i�ed method. Thus for Every boy loves a dog the semanti
 representationswill be like in �gure 1:
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Figure 1The ambiguities given by the multiple sense of the words will be 
onsidered ina future upgrade of the appli
ation, whi
h 
ould use the semanti
 network rep-resentation of the Lexis. We must spe
ify that the senten
es re
ognized by theappli
ation have to be introdu
ed by an existent grammar. In other words, theuser 
an not modify in any way the existent grammati
al rules, but the appli
ation
ould be improved by allowing the user to 
onstru
t the grammar he needs. Thisappli
ation allows the Lexis entries a
tualization by an intera
tive interfa
e. Theuser 
ould test, after resolving the problems whi
h permit the grammar modi�
a-tions too, the appli
ation in every natural language whi
h des
ribes that grammar.Thus, for every natural language will exists a �le whi
h 
ontains its grammar, a�le with its lexi
al entries and also a �le whi
h will 
ontain the mapping of everyatom stru
tures of its senten
es into the semanti
 representation. For every givensenten
e the appli
ation also presents the advantage of the parse tree graphi
alrepresentation. Su
h an example is given as follows: Every boy loves a dog. (See�gure 2)We must also say that in the present the appli
ation doesn't resolve yet totallythe parse of the senten
e, more pre
isely, the gender, person and number agree-ment. This situation 
ould be improved by modifying the grammati
al rules byadding new arguments whi
h represent these agreements. One advantage is thatthe appli
ation 
an help to design new appli
ations, su
h as the natural languagefor querying knowledge bases, natural language 
onversation. For example, we 
an
reate an algorithm whi
h will map every natural language senten
e in an equiv-alent SQL statement in the �rst type appli
ations. Con
erning the stru
ture ofthis appli
ation, it is built on two levels, plus an extra level for the parse tree rep-resentation. The �rst level 
ontains the semanti
 engine (written in SWI-Prolog);the se
ond one 
ontains an interfa
e with the user (written in Delphi); the extralevel is for the graphi
al representation of the parse tree (written in Visual Pro-log). The 
ommuni
ation among these levels is done by the use of the Windows
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Figure 2Operating systems spe
i�
 DDE (dynami
 data ex
hange), we 
an also use forthese 
ommuni
ation more evolved te
hniques su
h as COM/DCOM.By its spe
i�
, our appli
ation 
onstru
tion is based on more programminglanguages mixture; it also su

eeds in ta
king advantages on these programminglanguages 
hara
teristi
s. We believe that this te
hnique 
an be the starting pointfor resolving some natural language semanti
 problems.Referen
es[1℄ J.Allen : " Natural language understanding", Benjamin/Cummings Publ. , 2nd ed., 1995.[2℄ C.Beardon, D.Lumsden, G.Holmes: " NL and 
omputational linguisti
s", Ellis HowoodSeries, 1991.[3℄ P.Fla
h: "Simply logi
al.Intelligent reasoning by example", John Wiley and Sons, 1994.[4℄ A. Fly
ht-Eriksson: "A domain knowledge manager for dialogue systems", Pro
eedingsof ECAI2000, pp 431-435.[5℄ A.Gaal , G.Lapalme, P.Saint-Dizier: "Prolog for NLP", 1991.[6℄ D.Jurafsky, J.H.Martin: "Spee
h and language pro
essing", Prenti
e Hall, 2000.[7℄ R.Kasper, P.Davis, C.Roberts: "An integrated approa
h to referen
e and pressupositionresolution", The 37th Annual Meeting of ACL, june 1999.[8℄ I.A. Let�ia and all : " Multi-agent systems", Casa 
�art�ii de �stiinta, Cluj, 1999.[9℄ A. Onet: " Semanti
 representation of the quantitative natural language senten
es" toappear in Studia Universitatis "Babes-Bolyai", seria Informati
a.[10℄ S.J. Russell, P.Norvig: "Arti�
ial intelligen
e.A modern approa
h",[11℄ I. A. Sag, T. Wasow: "Synta
ti
 Theory:A formal introdu
tion " 1997, http://ling.ohio-state.edu/HPSG[12℄ D. T�atar: "Uni�
ation Grammars in Natural Language Pro
essing" , in "Re
ent topi
sin mathemati
al and 
omputational linguisti
", ed. C. Martin-Vide, G. Paun, EdituraA
ademiei, 2000, pg 289-300.
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 for expert systems", JohnWiley and Sons, 1990.Department of Computer S
ien
e, Fa
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STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000NEW INTERACTION MECHANISMS BETWEEN JAVADISTRIBUTED OBJECTSFLORIAN MIRCEA BOIAN AND CORINA FERDEANAbstra
t. This arti
le proposes some solutions to very 
ommon problemsand requirements 
on
erning the intera
tion between Java obje
ts spreada
ross several ma
hines. Thus, an obje
t should be able to a

ess another re-mote obje
t without knowing where that obje
t resides. This lo
ation trans-paren
y indu
es also migration transparen
y, allowing obje
ts to be foundand a

essed by their 
lients, even if they are 
hanging their lo
ation.Another extension, of the standard intera
ting proto
ols for the 
ollabo-ration between distributed obje
ts, 
ould be the de�nition of patterns used tomat
h the remote obje
ts, whi
h have 
ertain attributes or whi
h implementthe servi
es spe
i�ed in the pattern.1. Introdu
tionBasi
ally, every distributed system implies two or more a
tive entities (pro-
esses, threads, running obje
ts) performing 
omputations, in di�erent addressspa
es, potentially on di�erent hosts. Also, these a
tive exe
ution entities shouldbe able to 
ommuni
ate.For a basi
 
ommuni
ation me
hanism, the Java programming language sup-ports the so
kets, whi
h are 
exible and suÆ
ient for general 
ommuni
ation.However, so
kets require the 
lient and server to de�ne appli
ations-level proto-
ols to en
ode and de
ode messages for ex
hange, and the design of su
h proto
olsis 
umbersome and sometimes error-prone. Besides, even if these proto
ols al-lows the 
ommuni
ation between programs written in di�erent languages and onheterogeneous platforms, they are not 
exible and neither extensible.Another distan
e 
ommuni
ation me
hanism, as an alternative to so
kets, isRemote Pro
edure Call (RPC), whi
h abstra
ts the 
ommuni
ation interfa
e to thelevel of a pro
edure 
all. Instead of working dire
tly with so
kets, the programmerhas the illusion of 
alling a lo
al pro
edure, when in fa
t the arguments of the 
allare pa
kaged up and send to the remote target of the 
all. RPC systems en
ode2000 Mathemati
s Subje
t Classi�
ation. 68M14.1998 CR Categories and Des
riptors. C.2.4 [Computer Systems Organizations℄:Computer-Communi
ation Networks { Distributed Systems.89



90 FLORIAN MIRCEA BOIAN AND CORINA FERDEANarguments and return values using an external standard data representation, su
has XDR.However, the RPC me
hanism is not suitable for the distributed obje
t systems,where 
ommuni
ation between program-level obje
ts residing in di�erent addressspa
es is needed. In order to mat
h the semanti
s of obje
t invo
ation, distributedobje
t systems require remote method invo
ation or RMI. In su
h systems, a lo
alsurrogate (stub) obje
t manages the invo
ation on a remote obje
t.2. Java RMI me
hanism and JRMP proto
olJava RMI (Remote Method Invo
ation) o�ers a distributed obje
t model for theJava Platform. Thus, the Java RMI system assumes the homogeneous environmentof the Java virtual ma
hine (JVM), and it uses the standard Java obje
t model,extending it into a distributed 
ontext.RMI is unique in that it is a language-
entri
 model that takes advantage ofa 
ommon network type system. In other words, RMI extends the Java obje
tmodel beyond a single virtual ma
hine address spa
e.The underlying 
ommuni
ation proto
ol used in Java RMI me
hanism is JRMP.This proto
ol allows the obje
t methods to be invoked between di�erent VirtualMa
hines a
ross a network, and a
tual obje
ts 
an be passed as arguments andreturn values during method invo
ation. The JRMP proto
ol uses obje
t serial-ization to 
onvert obje
t graphs to byte-streams for transport. Any Java obje
ttype 
an be passed during invo
ation, in
luding primitive types, 
ore 
lasses, user-de�ned 
lasses, and JavaBeans. Java RMI 
ould be des
ribed as a natural progres-sion of pro
edural RPC (Remote Pro
edure Call), adapted to an obje
t-orientedparadigm for the Java platform environment.In the following we'll des
ribe shortly how a typi
al obje
t intera
tion works inJava RMI.Any obje
t whose methods are available to be invoked by another Java ob-je
t must publish these methods by implementing an interfa
e, whi
h extends thejava.rmi.Remote interfa
e.To make a remote obje
t a

essible to other virtual ma
hines, a program typi-
ally registers it with the RMI registry. The program supplies to the registry thestring name of the remote obje
t as well as the remote obje
t itself.A 
lient program, in fa
t a Java obje
t, whi
h wants to a

ess a remote obje
t,must supply the remote obje
t's string name to the registry that is on the samema
hine as the remote obje
t.The string name a

epted by the RMI registry has the syntax \rmi://hostname:port/remoteObje
tName", where hostname and port identify the ma
hine andport, respe
tively, on whi
h the RMI registry is running and remoteObje
tNameis the string name of the remote obje
t. hostname, port, and the pre�x, \rmi:"
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i�ed, then it defaults to the lo
al host. If portis not spe
i�ed, then it defaults to 1099. If remoteObje
tName is not spe
i�ed,then the obje
t being named is the RMI registry itself.The registry returns to the 
aller a referen
e, 
alled stub, to the remote obje
t.As it turns out, the 
ommuni
ation between Java obje
ts is stru
tured in a layerhierar
hy, depi
ted in Figure 1.
Figure 1. RMI Ar
hite
tureWhen the obje
t's methods are invoked remotely, its arguments are marshalledand sent from the lo
al virtual ma
hine to the remote one, where the argumentsare unmarshalled and used. When the method terminates, the results are mar-shalled from the remote ma
hine and sent to the 
aller's virtual ma
hine. Animportant observation whi
h worths mentioning here is that the remote obje
ts(that implement the Remote interfa
e) are passed by referen
e, and the others ob-je
ts by value (also, they must implement the Serializable interfa
e). Anotherobservation is that passing by value a Java obje
t in a di�erent Java environmentis equivalent with a primitive form of obje
t migration, where the "mobile agent"(the obje
t passed by value) is stati
, and 
an be 
alled when and if its destinationenvironment de
ides).3. Providing Java RMI with support for lo
ation transparen
y andfault-toleran
eA natural question, whi
h arises in a Java RMI 
ommuni
ation 
ontext, is howit would be possible for a 
lient obje
t to a

ess a remote obje
t, without havingto know a priori the server obje
t lo
ation. This feature of lo
ation independen
ybe
omes a fundamental requirement if it is assumed that Java server obje
ts 
ould
hange their lo
ation, migrating between di�erent hosts.



92 FLORIAN MIRCEA BOIAN AND CORINA FERDEAN3.1. Using JNDI and LDAP. The �rst solution proposed for providing lo
ationtransparen
y is based on 
omplementary te
hnologies like JNDI (Java NamingDire
tory Interfa
e) and LDAP (Light Dire
tory A

ess Proto
ol).Our dis
ussion begins with a brief des
ription of these te
hnologies, followed bythe presentation of the support they provide for a

essing Java obje
ts transpar-ently.JNDI (Java Naming Dire
tory Interfa
e). The Java Naming and Dire
tory Inter-fa
e (JNDI) is an appli
ation programming interfa
e (API) that provides namingand dire
tory fun
tionality to appli
ations written using the Java programminglanguage [4, 5℄. This API is de�ned to be independent of any spe
i�
 dire
tory ser-vi
e implementation, allowing a variety of dire
tories to be a

essed in a 
ommonway.The JNDI ar
hite
ture 
onsists of an API and a servi
e provider interfa
e (SPI).The primary goal for Java appli
ations, that use the JNDI API, is to a

ess avariety of naming and dire
tory servi
es. The servi
es 
an be plugged in trans-parently, by using SPI [11℄. This interfa
e allows the developers of di�erent nam-ing/dire
tory servi
e providers to hook up their implementations so that the 
or-responding servi
es are a

essible from appli
ations that use JNDI [4, 5℄.These implementations in
lude those for the Initial Context and for its des
en-dent 
ontexts that 
an be plugged in dynami
ally to the JNDI ar
hite
ture to beused by the JNDI appli
ation 
lients.JNDI is in
luded in the Java 2 SDK, v1.3 and later releases. It is also availableas a Java Standard Extension for use with the JDK1.1 and the Java 2 SDK, v1.2.As it turns out, in order to use the JNDI, besides the JNDI 
lasses, also, one ormore servi
e providers should be available. The Java 2 SDK, v1.3 in
ludes threeservi
e providers for the following naming/dire
tory servi
es:� Lightweight Dire
tory A

ess Proto
ol (LDAP);� Common Obje
t Request Broker Ar
hite
ture (CORBA) Common Ob-je
t Servi
es (COS) name servi
e;� Java Remote Method Invo
ation (RMI) Registry.In this survey, we use LDAP as a dire
tory servi
e that provides a repositoryfor the Java distributed shared obje
ts.LDAP. LDAP was originally developed as a front end to X.500, the OSI dire
toryservi
e. X.500 de�nes the Dire
tory A

ess Proto
ol (DAP) for 
lients to use when
onta
ting dire
tory servers. DAP is a heavyweight proto
ol that runs over a fullOSI sta
k and requires a signi�
ant amount of 
omputing resour
es to run. LDAPruns dire
tly over TCP and provides most of the fun
tionality of DAP at a mu
hlower 
ost [6℄.
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tory servi
e is based on a 
lient-server model. One or more LDAPservers 
ontain the data making up the LDAP dire
tory tree. An LDAP 
lient
onne
ts to an LDAP server and asks it a question. The server responds with theanswer, or with a pointer to where the 
lient 
an get more information (typi
ally,another LDAP server). No matter whi
h LDAP server a 
lient 
onne
ts to, it seesthe same view of the dire
tory; a name, presented to one LDAP server, referen
esthe same entry it would at another LDAP server. This is an important feature ofa global dire
tory servi
e, like LDAP [7, 8℄.In LDAP, dire
tory entries are arranged in a hierar
hi
al tree-like stru
turethat re
e
ts politi
al, geographi
 and/or organizational boundaries. Entries rep-resenting 
ountries appear at the top of the tree. Below them, there are entriesrepresenting states or national organizations. Below them, might be entries rep-resenting people, organizational units, printers, do
uments, or any other entitiessomeone needs to de�ne.In addition, LDAP allows the 
ontrol and the 
on�guration of whi
h attributesare required and allowed in an entry, through the use of a spe
ial attribute 
alledobje
t
lass. The values of the obje
t
lass attribute determine the s
hemarules the entry must obey.Using LDAP and JNDI to extend Java distributed 
omputing. In the Java dis-tributed 
omputing 
ontext, LDAP provides a 
entrally administered and possi-bly repli
ated servi
e for use by Java appli
ations spread a
ross the network. Forexample, an appli
ation server might use the dire
tory for registering obje
ts thatrepresent the servi
es that it manages so that a 
lient 
an later sear
h the dire
toryto lo
ate those servi
es as needed.The JNDI provides an obje
t-oriented view of the dire
tory, thereby allowingJava obje
ts to be added to and retrieved from the dire
tory without requiring the
lient to manage data representation or lo
ation exe
ution issues.There are di�erent ways in whi
h Java appli
ations 
an use the dire
tory tostore and lo
ate obje
ts. Thus, an appli
ation might store (a 
opy of) the obje
titself, a referen
e to an obje
t, or attributes that des
ribe the obje
t.In general terms, a Java obje
t's serialized form 
ontains the obje
t's stateand an obje
t's referen
e is a 
ompa
t representation of addressing informationthat 
an be used to 
onta
t the obje
t. An obje
t's attributes are properties thatare used to des
ribe the obje
t; attributes might in
lude addressing and/or stateinformation.Whi
h of these three ways to use depends on the appli
ation/system that isbeing built and how it needs to interoperate with other appli
ations and systemsthat will share the obje
ts stored in the dire
tory. Another fa
tor is the supportprovided by the servi
e provider and the underlying dire
tory servi
e.
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ts 
ommuni
ation. In this survey, we will showhow Sun's LDAP servi
e provider supports the binding of java.rmi.Remote ob-je
ts into dire
tories. When java.rmi.Remote obje
ts and/or RMI registries arebound into an LDAP enterprise-wide shared namespa
e, RMI 
lients 
an lookup java.rmi.Remote obje
ts without knowing on whi
h ma
hine the obje
ts arerunning [1, 9, 10℄.Instead of storing the entire serialized state of an obje
t, whi
h 
ould be toolarge, it is preferable to store, into dire
tories, a referen
e to that obje
t. Forthat purpose, JNDI o�ers the javax.naming.Referen
e 
lass. This 
lass makesit possible to re
ord address information about obje
ts not dire
tly bound to thedire
tory servi
e. The referen
e to an obje
t 
ontains the following information[7℄: � The 
lass name of the referen
ed obje
t;� A ve
tor of javax.naming.RefAddr obje
ts that represents the addres-ses, identifying the 
onne
tions to the obje
t;� The name and lo
ation of the obje
t fa
tory to use during obje
t re
on-stru
tion.javax.naming.RefAddr is an abstra
t 
lass 
ontaining information needed to
onta
t the obje
t (e.g., via a lo
ation in memory, a lookup on another ma
hine,et
.) or to re
reate it with the same state. This 
lass de�nes an asso
iationbetween 
ontent and type. The 
ontent (an obje
t) stores information required torebuild the obje
t and the type (a string) identi�es the purpose of the 
ontent.

Figure 2. The relation between a Referen
e, RefAddr, Type,and Content
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t.equals(Obje
t obj)and java.lang.Obje
t.hash
ode() to ensure that two referen
es are equal ifthe 
ontent and type are equal. RefAddr has two spe
i�
 sub
lasses, namely,javax.naming.StringRefAddr and javax.naming.BinaryRefAddr, whi
h storestrings, and respe
tively arrays of bytes. For example, a string referen
e address
ould be an IP, URL, hostname, et
.4. ExampleIn the following, we'll give a simple example of storing referen
es to Java remoteobje
ts in a LDAP dire
tory. We mention that it is also possible to store 
opies ofobje
ts as streams of bytes, but this alternative requires mu
h more spa
e, and itisn't 
exible, as it is not possible to 
hange an obje
t implementation on
e it wasbound in the dire
tory servi
e. Using referen
es to obje
ts provide this 
exibility,and besides it saves a lot of spa
e in the dire
tory tree.Our example is 
onstru
ted 
onforming to the following steps, performed ondi�erent ma
hines:(1) We de�ne on the ma
hine 
ronos.

.ubb
luj.ro a Java shared ob-je
t HelloImpl, whi
h implements a Remote interfa
e 
alled Hello. Weregister this obje
t with the rmiregistry name servi
e, on the samema
hine.import java.rmi.*;publi
 interfa
e Hello extends Remote fpubli
 String sayHello() throws RemoteEx
eption;g Program 1. Hello.javaimport java.rmi.*;import java.rmi.server.*;publi
 
lass HelloImpl extends Uni
astRemoteObje
timplements Hello fpubli
 HelloImpl() throws RemoteEx
eption fgpubli
 String sayHello() throws RemoteEx
eption freturn ("Hello, the time is " + new java.util.Date());gg Program 2. HelloImpl.javaimport java.rmi.*;publi
 
lass ServHello f
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 stati
 void main(String args[℄) ftry fSystem.setSe
urityManager(new RMISe
urityManager());// 
reate a registry if one is not running already.try fjava.rmi.registry.Lo
ateRegistry.
reateRegistry(1099);g 
at
h (java.rmi.server.ExportEx
eption ee) f// registry already exists, we'll just use it.g 
at
h (RemoteEx
eption re) fSystem.err.println(re.getMessage());re.printSta
kTra
e();gNaming.rebind("rmi://
ronos.

.ubb
luj.ro/hello",new. HelloImpl());g 
at
h(Ex
eption e) fSystem.out.println("Error: "+e.getMessage());e.printSta
kTra
e();ggg Program 3. ServHello.java(2) On another ma
hine, hermes.

.ubb
luj.ro, we 
reate a referen
e oftype StringRefAddr to the HelloImpl obje
t, whi
h 
ontains an RMIURL of the form rmi://
ronos.

.ubb
luj.ro/RemoteObje
tNameandit is bound to a name into a LDAP dire
tory. We also de�ne a value forthe java
odebase attribute, whi
h will be used by the servi
e providerto �nd the stub 
lass for the remote obje
t.import java.util.Hashtable;import javax.naming.*;import javax.naming.dire
tory.*;import java.rmi.*;publi
 
lass HelloServ fpubli
 stati
 void main(String argv[℄) fString rmiurl = "rmi://
ronos.

.ubb
luj.ro/hello";// Set up environment for 
reating the initial 
ontextHashtable env = new Hashtable();env.put(Context.INITIAL CONTEXT FACTORY,"
om.sun.jndi.ldap.LdapCtxFa
tory");
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s.ubb
luj.ro:389/
n=CORI,o=CCUBB,
=RO");try f// Create the initial 
ontextDirContext 
tx = new InitialDirContext(env);// Create the referen
e 
ontaining the (future) lo
ation of the obje
tReferen
e ref = new Referen
e("Hello",new StringRefAddr("URL", rmiurl));Basi
Attributes battr = new Basi
Attributes("javaCodebase","http://www.
s.ubb
luj.ro/�
ori/t/");// Bind the obje
t to the dire
tory
tx.rebind("
n=RefHello", ref);
tx.
lose();g 
at
h (NamingEx
eption e) fSystem.out.println("Operation failed: " + e);g Program 4. HelloServ.java(3) We �nally invoke the remote obje
t from a 
lient resident on ma
hinenessie.
s.ubb
luj.ro. As we proposed from the beginning, the 
lientmakes the remote invo
ation without knowing the server obje
t address,whi
h allows the latter to 
hange its lo
ation, without a�e
ting the po-tential 
lients.import java.util.Hashtable;import javax.naming.*;import javax.naming.dire
tory.*;import java.rmi.*;publi
 
lass HelloCl fpubli
 stati
 void main(String argv[℄) fString rmiurl = "rmi://
ronos.

.ubb
luj.ro/hello";// Set up environment for 
reating the initial 
ontextHashtable env = new Hashtable();env.put(Context.INITIAL CONTEXT FACTORY,
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om.sun.jndi.ldap.LdapCtxFa
tory");env.put(Context.PROVIDER URL,"ldap://rave.s
s.ubb
luj.ro:389/
n=CORI,o=CCUBB,
=RO");try fDirContext 
tx = new InitialDirContext(env);// lookup the obje
tHello h = (Hello)
tx.lookup("
n=RemoteHello");System.out.println(h.sayHello());
tx.
lose();g 
at
h (NamingEx
eption e) fSystem.out.println("Operation failed: " + e);g 
at
h (RemoteEx
eption e1) fSystem.out.println("Operation failed: " + e1);ggg Program 5. HelloCl.javaThe method that we presented uses the information stored in the dire
tory.This information, represented by the Referen
e obje
t, is a
tually a pointer tothe information stored in another naming servi
e (the RMI registry), whi
h inturn, 
ontains the referen
e to the java.rmi.Remote obje
t.Even if, in the simple example presented above, this level of indire
tion seemsto be overheading, besides lo
ation transparen
y, it has important appli
ationslike providing fault-toleran
e to distributed Java obje
ts.We use fault-toleran
e to refer to the situation when a server obje
t isn't avail-able anymore (it was stopped or its host 
rashed), its servi
es are being provided byother identi
al ba
kup server obje
ts. This is the traditional method of providingfault-toleran
e by repli
ation of the servi
es that require high availability. In our
ase, a fault-tolerant Java server obje
t is registered with di�erent rmiregistries,and the 
orresponding rmi obje
t's identifying URLs are stored as a Referen
e ina LDAP dire
tory.A 
lient invo
ation uses one of the available server obje
ts (in fa
t, the �rstavailable server in the stored addresses referen
es order), without being aware ofthe dupli
ation. The management of the dupli
ated obje
ts is done totally trans-parent for the potential 
lients, and is 
ompleted by repli
ation servi
e providedby LDAP (for example slapd { Stand-alone LDAP Daemon { 
an be 
on�gured to
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ated servi
e for a database with the help of slurpd, the standaloneLDAP update repli
ation daemon) [12℄.5. Con
lusionsIn the arti
le we presented the standard RMI me
hanism available on the Javaplatforms, and some possible extensions to its basi
 features.Within the Java language domain, Java RMI o�ers powerful new features forremote obje
t distribution. Besides the powerful obje
ts intera
tion fa
ilities thisme
hanism provides, it 
an be extended with features that respe
ts new 
on-straints and requirements like lo
ation and migration transparen
y of the serverobje
ts. Also, the basi
 distributed systems requirement of fault-toleran
e 
an besu

essfully integrated into the Java RMI me
hanism.Referen
es[1℄ Dire
tory Exampleshttp://java.sun.
om/produ
ts/jndi/tutorial/getStarted/examples/dire
tory.htmlhttp://java.sun.
om/produ
ts/jndi/tutorial/obje
ts/storing/sr
/RemoteObj.java[2℄ Filterfresh: Hot Repli
ation of Java RMI Server Obje
tshttp://www.usenix.org/publi
ations/library/pro
eedings/
oots98/full papers/baratloo/baratloo html/baratloo.html[3℄ Java IDLhttp://sophia.dtp.fmph.uniba.sk/javastu�/tutorial/idl/summary/[4℄ JNDI APIhttp://sunsite.

u.edu.tw/java/jdk1.3/api/javax/naming/InitialContext.html# ENVI-RONMENThttp://java.sun.
om/produ
ts/jndi/[5℄ JNDI Tutorialhttp://java.sun.
om/produ
ts/jndi/tutorial/[6℄ LDAP: A Next Generation Dire
tory Proto
olhttp://www.intranetjournal.
om/foundation/ldap.shtml[7℄ LDAP and JNDI: Together foreverhttp://www.javaworld.
om/javaworld/jw-03-2000/jw-0324-ldap p.html[8℄ RFC LDAPhttp://www.ietf.org/rf
/rf
2713.txt[9℄ RMI and Java Distributed Computinghttp://java.sun.
om/features/1997/nov/rmi.html[10℄ RMI Registry Servi
e Provider JNDIhttp://sunsite.

u.edu.tw/java/jdk1.3/guide/jndi/jndi-rmi.html#USAGE[11℄ SLAPD Daemonhttp://www.umi
h.edu/ dirsv
s/ldap/do
/guides/slapd/1.html#RTFToC1[12℄ SPIhttp://java.sun.
om/j2se/1.3/do
s/guide/jndi/spe
/spi/jndispi.fm.html#1005286Servi
e Provider Pa
kagehttp://java.sun.
om/produ
ts/jndi/tutorial/getStarted/overview/provider.html
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STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000ON THE USING OF ARTIFICIAL NEURAL NETWORKS INAUTOMATIC METALOGRAPHIC ANALYSISIOAN ILEAN�A AND REMUS JOLDEAbstra
t. This paper presents several 
onsiderations and preliminary re-sults in implementing an automati
 metallographi
 analysis system using ar-ti�
ial neural networks. The opti
al mi
ros
ope images of spe
ial preparedsamples of metals and alloys may be 
lassi�ed by a neural network trainedwith standards. We present some of the results and problems we en
oun-tered in our work. Our 
ontribution mainly 
onsist in analysis system design,images prepro
essing and network training.Keywords: metallographi
 analysis, pattern re
ognition, arti�
ial neu-ral network, prepro
essing. 1. Introdu
tionOne of the important investigation methods used by the physi
al metallurgy isopti
al metallography, whi
h also 
on
erns mi
rographi
 analysis using the opti
almi
ros
ope (magnifying rate up to 2000:1). The images obtained by mi
ros
opegive dire
t indi
ations on the 
hemi
al and stru
tural 
omposition, also indire
tlyinforming on the physi
al and me
hani
al properties of the metalli
 alloys. One
an as well get data on the stru
tural 
hanges o

urred under the in
uen
e ofvarious me
hani
al pro
essing previously applied to the alloy.When 
onsidering pure metals or monophasi
 alloys, mi
rographi
 analysis al-lows observing the size and the orientation of the 
rystalline grains, the parti
u-larities of the dendriti
 stru
ture, even the repartition of the dislo
ations. As forpolyphasi
 alloys, whi
h present more 
omplex stru
tural aspe
ts, one 
an deter-mine the nature, quantity, shape, size and repartition of the various phases in thestru
ture.Mi
ros
opi
 analysis is an important information sour
e. Its eÆ
ien
y is partlyin
uen
ed by the pla
e where the samples are 
olle
ted and the 
olle
ting manner,as well as the skills and experien
e of the spe
ialist performing the analysis. Figure1 presents images of samples taken from di�erent materials.It is to be noti
ed that the information is \
oded" in graphi
al patterns-images(using gray tones or 
olors) that have to be interpreted by the person that does2000 Mathemati
s Subje
t Classi�
ation. 68T10.1998 CR Categories and Des
riptors. I.5.1 [Computing Methodologies℄: PatternRe
ogniton { Models. 101
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Figure 1. Metalli
 surfa
es viewed through opti
al mi
ros
ope:a) steel with 0.08{0.15% C, rolled at warm; b) steel with 0.16{0.25% C normalized at 880degC; 
) bronze with biphasi
 
astaluminium. Sour
e: [8℄.the analysis. This operation is diÆ
ult, demanding a lot of time and experien
e.Therefore a very useful improvement would 
onsist in the automation of theseanalysis by 
reating a system that is able to 
lassify and re
ognize, possibly in realtime, in the images obtained by mi
ros
ope stru
tures, 
aws, previous pro
essing.2. Automati
 Metallographi
 Analysis SystemOur team, in 
ollaboration with the industrial partner \SC SATURN SA"AlbaIulia, has started a proje
t 
on
erning the implementation of an automati
 sys-tem for metallographi
 analysis (�g. 2), where the re
ognition and 
lassi�
ationfun
tions are performed by a neural network.

Figure 2. Automati
 metallographi
 analysis systemDuring the 
urrent stage of the proje
t, our attention has been fo
used on theinterpretation and 
lassi�
ation of the material samples images.The interpretation of mi
rographi
 images is part of the larger area of pattern
lassifying and re
ognition. As it is shown by the example in �gure 1, identi-fying rather simple patterns 
an require the interpretation of mega-dimensionaldatabases, with 
ompli
ated stru
ture and unknown topologi
al relations. In gen-eral there aren't known possible transformations that 
ould simplify this stru
tureand a multilevel hierar
hy system of feature extra
tion be
omes ne
essary.Another general issue in model based pattern re
ognition 
onsists in 
orre
t in-put image identifying, even when the image is a geometri
ally transformed version
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ognition 
an be a
hieved using, instead of the ini-tial pattern, the result of a mathemati
al transformation, that ne
essarily assuresa 
ertain invarian
e (Fourier transform, Mellin transform et
.). Unfortunately thismathemati
al pattern prepro
essing implies a great 
omputing e�ort in ele
troni
(hardware and software) implementations. Opti
al and optoele
troni
 systems 
anbypass this drawba
k due to the parallel 
omputing.In our 
ase, for metallographi
 opti
al analysis, we 
an assume that the pro-totype (standard) images and those to be re
ognized and interpreted, will havethe same s
ale fa
tor, so that the system must be only translation and rotationinvariant.We intend to use for image interpretation a software simulated arti�
ial neuralnetwork (ANN), therefore we have evaluated several ANN 
ategories and severalprepro
essing te
hniques, in order to �nd an a

eptable solution. The followingse
tion present some preliminary results of our work.3. Neural Network ModelIn our work we used two kinds of arti�
ial neural ntworks: a re
urrent networkand then a feed forward neural network, trained with ba
kpropagation method.The pro
essing unit (arti�
ial neuron) used in the two 
ases is displayed in �gure3. In this �gure x1; x2; : : : ; xn are neuron inputs, w1; w2; : : : ; wn are the inter
on-ne
tion weights, � is the neuron threshold, f() is a
tivation fun
tion and y isneuron output.We note: x = [x1; x2; : : : ; xn℄T the input ve
tor, w = [w1; w2; : : : ; wn℄T synapti
weights ve
tor,(1) net =Xi wixi = wTx

Figure 3. The pro
essing unit used



104 IOAN ILEAN�A AND REMUS JOLDEThen the neuro output may be writen:(2) y = f(net� �) = f(wTx� �)A) For the re
urrent neural network, the model is presented in �gure 4. Let's
onsider the single-layer neural network built from totally 
onne
ted neurons,whose states are given by xi 2 �1; 1, i = 1; 2; : : : n, (�g.4).

Figure 4. The re
urrent network modelWe denote: W = [wij : 1 � i; j � n℄ the weights matrix, � = [�1; : : : ; �n℄T 2 Rnthe thresholds ve
tor, x(t) = [x1(t); : : : ; xn(t)℄T 2 �1; 1n the network state ve
tor.The evolution in time of the network is des
ribed by the following dynami
equation:(3) xI (t+ 1) = sgn24 nXj=1wijxj(t)� �i35 ; i = 1; 2; : : : ; nwith the 
onvention:(4) nXj=1 wijxj(t)� �i = 0; xi(t+ 1) = xi(t)where:(5) sgn(x) = � 1 if x > 0�1 if x < 0Notes:(1) We may 
onsider networks where the neurons' state is not bipolar: -1,1,but binary: 0,1. A relation between the two representations 
an be easilyfound.(2) In many situations we may give up the neural network threshold zi andwe'll do this whenever it doesn't a�e
t the results.
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iative memory des
ribed in this paper, the weight matrixW will be built as follows: given a set of n-dimensional prototype ve
tors X =[�1; �2; : : : ; �p℄, we establish the synapti
 matrix W and the threshold ve
tor �, sothat the prototype ve
tors be
ome stable points for the asso
iative memory, i.e.:(6) �i = sgn(W�i � �); i = 1; 2; : : : ; pwhere the sgn fun
tion is applied to ea
h 
omponent of the argument.Several 
lassi
al rules for determining the weights matrix proved su

essful intime: � the `Hebb' rule� the proje
tion rule� the delta proje
tion rule (the gradient method)B) In the se
ond approa
h we used a feed forward network with three layers,trained with ba
k propagation method. The number of neurons in the �rst layeris determined by the dimension of the input image. The number of neurons in theoutput layer depends on the number of 
lasses in whi
h the input images must be
lassi�ed. In the hidden layer we tried several 
on�guration and the �nal networkused the best stru
ture. For the neurons in hidden and output layer we used asa
tivation fun
tion the sigmoid fun
tion.4. Preliminary ResultsBe
ause of our industrial partner's interest in the metallographi
 analysis of 
astiron (its �eld of produ
tion) samples, we've studied the synthesis of an ANN that
ould allow the re
ognition and 
lassi�
ation of real samples reported to standards.Some standards used for these experiments are shown in �gures 5 and 6.
Figure 5. Standard stru
tures of 
ast iro with nodule graphite:a) below 3%; b) 3{5%; 
) 5{8%; d) 8{12%; e) over 12%. Sour
e:[8℄Using samples taken from these standard images, we investigated the trainingmethods for various types of ANN in order to perform mi
rographi
 images 
las-si�
ation. The images used as prototypes have been prepro
essed as to enhan
etheir spe
i�
 features (�g. 7).
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Figure 6. Stabdards for gray 
ast iron with lamellar graphite: a)isolated separations; b) agglomerations with low isolation degree;
) pun
tiform graphite net; d) lamellar graphite net. Sour
e: [8℄

Figure 7. Some prepro
essed prototypesA.One �rst tested ANN 
ategory was a re
urrent network used to implement anasso
iative memory. We used as prototypes 32�32 pixels images randomly sele
tedfrom the standard images. Rotation and translation invarian
e has been obtainedby storing several images of the same prototype, randomly transformed [6℄. Theasso
iative memory thus built has been veri�ed with a great number of test images.The statisti
al results were very good in what noise 
ontamination is 
on
erned(up to 50% noise 
ontamination). As for geometri
al transforms invarian
e, theresults were rather unsatisfa
tory; the 
orre
t re
ognition rate would be from 40%up to no more than 80%, depending on the prototype image.B. A se
ond simulation 
ategory 
onsisted in the setup of a feed-forward ANN,trained with the same input data used in the previous approa
h. We investigatedseveral feed-forward topologies, with 2 and 3 layers. Within the limits of availableinput data, the 3 layers stru
ture provided a

eptable results. We fa
ed somediÆ
ulties when using 32�32 pixels images, therefore we had to work with 16�16pixels images.C. In order to obtain rotation and translation invarian
e, we also tried to useinvariant moments, as presented in [1℄. The diÆ
ulties we en
ountered in thisapproa
h are 
onne
ted to the large 
omputation volume and to the ne
essity
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riptors to be di�erent enough as to separate the di�erent standard
lasses. For the 5 standards 
lasses in �g. 5 and the 4 standard 
lasses in �g.6, the above mentioned des
riptors are shown in �g. 8 and 9, respe
tively. Onemay noti
e a rather insigni�
ant di�eren
e, whi
h leads to diÆ
ulties and errorsin data interpretation. We 
urrently work on �nding more eÆ
ient prepro
essing,that 
ould lead to stronger dis
rimination among invariant des
riptors of di�erent
lasses.

Figure 8. Moment invariants for images in �g. 35. Con
lusionsThe implementation of an automati
 system for opti
al metallographi
 imagesanalysis is an important obje
tive for the laboratories where su
h tasks are per-formed. Moreover, su
h a system on
e implemented, it 
ould be used in 
awanalysis and even in biologi
al tissue analysis.This paper has presented some preliminary results obtained by our team inusing ANN to perform the re
ognition and 
lassi�
ation of opti
al mi
rographi
images of material samples, as reported to standards.The main diÆ
ulties we had to over
ome were the following:� The ne
essity of using relatively large images (over 32 � 32 pixels) inorder to extra
t signi�
ant features out of the sample stru
ture; 
onse-quently troubles in training and simulating the ANN were 
onne
ted tothe required memory spa
e, as well as to the 
omputation speed.
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Figure 9. Moment invariants for images in �g. 4� The ne
essity of re
ognition immunity, regarding the noise 
ontamina-tion of the images, and also their various geometri
al transforms.We investigated several methods to build a system that would a

omplish theserequirements and we may 
on
lude that ANN do o�er a realist perspe
tive, ifsolving the above mentioned diÆ
ulties. The solutions we 
urrently have in viewpartly refer to using a faster and more powerful 
omputer for network trainingand simulation, and partly 
onsist in using more eÆ
ient prepro
essing methodsfor the input images. Referen
es[1℄ Alastair, M
. Aulay: Opti
al 
omputer ar
hite
tures: the appli
ation of opti
al 
on
epts tonext generation 
omputers, John Wiley & Sons, In
, 1991.[2℄ Cojo
 D�anut�-Adrian: Apli
at�ii ale 
orelat�iei opti
e �̂n re
unoa�sterea formelor, Tez�a de do
-torat, Universitatea \Politehni
a", Bu
ure�sti.[3℄ Dumitres
u D., Hariton Costin: Ret�ele neuronale. Teorie �si apli
at�ii, Ed. Teora, 1996.[4℄ Jian
hang Mao, Anil K. Jain: \Arti�
ial neural Network for Features Extra
tion and Mul-tivariant Data Proje
tion", IEEE Transa
tions on Neural Network, vol. 6, Nr. 2, mar
h1995.[5℄ Ilean�a Ioan, Ian
u Ovidiu Corneliu: \Optoele
troni
 asso
iative neural network for somegraphi
al patterns re
ognition", Pro
eedings of SPIE, SIOEL '99, Volume 4068, p.733{739.[6℄ Ilean�a Ioan, Ian
u Ovidiu Corneliu, Jolde�s Remus: \Re
unoa�sterea invariant�a la translat�ia,rotat�ia sau s
alarea formelor", Annales Universitatis Apulensis, Series E
onomi
a, Tom 1,2000, p. 175{185.[7℄ Nedevs
hi Sergiu: Prelu
rarea imaginii �si re
unoa�sterea formelor, Editura Albastr�a, Cluj-Napo
a, 1998.[8℄ R�adules
u M., Dr�agan N., Hubert H., Opri�s C.: Atlas Metalogra�
, Ed. Tehni
�a, 1971.\1 De
embrie 1918" University of Alba Iulia



STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000ALAIN DARTE, YVES ROBERT AND FREDERIC VIVIEN,\SCHEDULING AND AUTOMATIC PARALLELIZATION",BIRKHAUSER BOSTON, 2000, ISBN 0-8176-4149-1ALEXANDRU VANCEA
This book o�ers a detailed and self-
ontained presentation for studying looptransformations, the dete
tion of parallel loops, and how to use them to dete
tparallelism in a spe
i�
 program. It provides 
areful explanation and expositionfor all parallel-loop algorithms that have been designed re
ently in a framework ofs
heduling algorithms on 
y
li
 graphs, primarily task graph s
heduling and loopnest s
heduling perspe
tives.Program restru
turing te
hniques are important optimization methods used inparallelizing 
ompilers. The fo
us is on loop transformations, be
ause there iswhere a program spends most of its exe
ution time. The authors, well known inthe parallelizing 
ompilers 
ommunity, have original 
ontributions regarding looprestru
turing based on unimodular transformations and general aÆne transforma-tions.S
heduling and Automati
 Parallelization o�ers an explanation of how to in-
orporate these transformations in algorithms, whi
h transformations to apply,and how to optimize them. It provides a full study of loop transformations, andalgorithms for parallel loop dete
tion in a s
heduling perspe
tive, making the linkwith 
y
li
 s
heduling and systems of uniform re
urren
e equations.One of the main 
ontributions of the book is building a unifying theory of loopnest s
heduling. This theory is developed based upon the previous work of Karp,Miller, Winograd and Lamport and it relies on sophisti
ated mathemati
al tools: unimodular transformations, parametri
 integer linear programming, Hermitede
omposition, Smith de
omposition et
.The book is an essential referen
e for the latest developments in automati
 par-allelization methods used for s
heduling, 
ompilers, and program transformations.It is intended for graduate and postgraduate students interested in automati
 par-allelization te
hniques, resear
hers interested in s
heduling, 
ompilers and programtransformations. Software engineering and 
omputer engineering professionals will109



110 ALEXANDRU VANCEA�nd it a very good resour
e and referen
e. It is also suitable for self-study purposesby pra
titioners.Department of Computer S
ien
e, Fa
ulty of Mathemati
s and Computer S
ien
e,\Babe-s�-Bolyai" University, Cluj-Napo
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STUDIA UNIV. BABES�{BOLYAI, INFORMATICA, Volume XLV, Number 1, 2000WALLIS, W.D., \A BEGINNER'S GUIDE TO GRAPHTHEORY", BIRKHUSER, BOSTON-BASEL-BERLIN, 2000, ISBN0-8176-4176-9, 230PP.TEODOR TOADEREThis is a very good 
ourse on graph Theory for students in mathemati
s, 
om-puter s
ien
e, engineers and psy
hologists. The author has taught "graph theory
ourses at the University of New
astle and Southern Illinois University over thepast 30 years".It is a lu
id book and has attained a balan
e between the theoreti
al and pra
-ti
al approa
hes.The book is divided into 13 
hapters and two appendi
es: Hint & Answers andSolutions.Ea
h 
hapter presents theoreti
al notions, examples and exer
ises.The �rst four 
hapters introdu
e the reader in graph theory (it is presented the
on
epts of graphs, walks, paths, 
y
les, 
uts, 
onne
tivity and tree).The �fth 
hapter deals with the appli
ation of several ve
tor spa
es 
on
eptsgraphs theory.The next four 
hapters presents: fa
torizations, graph 
oloring, planarity andRamsey theory.Chapter 10 introdu
es dire
ted graphs. The two following 
hapters are devotedto two important appli
ation areas: 
riti
al paths and network 
ows. The last
hapter is dedi
ated for 
omputational 
onsiderations.The book has 109 referen
es 
ited in text.We think that this is a very good book, whi
h 
an be useful to any person whowants to introdu
e himself in the graph theory or to deepen its study.Department of Computer S
ien
e, Fa
ulty of Mathemati
s and Computer S
ien
e,\Babe-s�-Bolyai" University, Cluj-Napo
a, RomaniaE-mail address: toadere�
s.ubb
luj.ro
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