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HARDML: A BENCHMARK FOR EVALUATING DATA

SCIENCE AND MACHINE LEARNING KNOWLEDGE AND

REASONING IN AI

TIDOR-VLAD PRICOPE

Abstract. We present HardML, a benchmark designed to evaluate the
knowledge and reasoning abilities in the fields of data science and machine
learning. HardML comprises a diverse set of 100 challenging multiple-
choice questions, handcrafted over a period of 6 months, covering the most
popular and modern branches of data science and machine learning. These
questions are challenging even for a typical Senior Machine Learning En-
gineer to answer correctly. To minimize the risk of data contamination,
HardML uses mostly original content devised by the author. Current state-
of-the-art AI models achieve a 30% error rate on this benchmark, which is
about 3 times larger than the one achieved on the equivalent, well-known
MMLU-ML. While HardML is limited in scope and not aiming to push
the frontier—primarily due to its multiple-choice nature—it serves as a
rigorous and modern testbed to quantify and track the progress of top AI.
While plenty benchmarks and experimentation in LLM evaluation exist in
other STEM fields like mathematics, physics and chemistry, the sub-fields
of data science and machine learning remain fairly underexplored.

1. Introduction

Recent advancements in large language models (LLMs) have led to sig-
nificant progress in natural language processing tasks such as translation,
summarization, question answering, and code generation [1, 2]. These mod-
els have been extensively evaluated using benchmarks covering a wide range
of subjects, providing valuable insights into their capabilities [3, 4]. For in-
stance, the Massive Multitask Language Understanding (MMLU) benchmark
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[5] assesses LLMs across diverse disciplines, including STEM fields like math-
ematics, physics, and chemistry [6, 7, 8]. However, data science (DS) and
machine learning (ML) have received relatively little attention in benchmark-
ing efforts. The MMLU test set contains only 112 machine learning questions.
Moreover, in the few instances where these domains have been explored, state-
of-the-art AI models achieve near-saturation performance, rendering existing
benchmarks less effective for distinguishing model capabilities.

It is imperative to devise novel benchmarks that keep up with the rapid
advancements in LLMs. This necessity is exemplified in the FrontierMath
benchmark [15], which introduces a future-proof evaluation for mathematics by
presenting problems that remain unsolved by over 98% of current AI models.
Such benchmarks are crucial for continuing to challenge and develop advanced
AI systems.

Data science and machine learning are foundational to modern artificial
intelligence, driving advancements in everything from healthcare to finance
[9, 10]. Mastery in these fields requires not only theoretical understanding but
also practical skills in applying algorithms, statistical methods, and computa-
tional techniques to solve complex, real-world problems [11, 12]. As AI systems
become increasingly involved in DS and ML tasks—ranging from automated
model training to data analysis—it is crucial to assess their proficiency and
reasoning abilities in these areas. However, as of January 2025, benchmarks in
this domain are very limited. The most notable examples include the test ML
subsection of MMLU (MMLU-ML) [5], which consists of 112 multiple-choice
questions, and MLE-bench [16], introduced by OpenAI, which evaluates prac-
tical ML engineering skills using a collection of 75 coding questions modeled
after Kaggle competitions.

To address this gap, we propose HardML, a benchmark specifically designed
to evaluate the knowledge and reasoning capabilities of AI models in data sci-
ence and machine learning. HardML employs the same testing framework
as MMLU, comprising multiple-choice questions, with the primary difference
being that more than one answer can be correct. It differs in scope from
MLE-bench, as it does not test coding capabilities but focuses on theoret-
ical understanding and reasoning skills based on theoretical concepts in DS
and ML. HardML uses 100 challenging multiple-choice questions, meticulously
crafted over six months to cover the most relevant and contemporary topics
in DS and ML. The questions are designed to be difficult even for experienced
professionals, such as senior machine learning engineers, thereby ensuring that
the benchmark assesses advanced understanding and critical problem-solving
skills.
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A key aspect of HardML is its emphasis on originality and contemporary
relevance, featuring questions that reflect the latest advancements in machine
learning from the past two years. To minimize the risk of data contamina-
tion—where models might have been trained on benchmark content, leading
to artificially inflated performance [13]—we developed primarily original ques-
tions. By ”original,” we mean that while the core concepts required to solve
these questions may be known (similar to foundational theorems in mathe-
matics), the specific applications and reasoning required are unique. These
questions span topics including natural language processing, computer vision,
statistics and statistical modeling, classical machine learning algorithms, and
more. In this paper, we also introduce EasyML, a benchmark of 85 multiple-
choice questions designed to provide a more accessible and slightly easier set
of questions than MMLU-ML for evaluating smaller language models, such as
GPT4o-mini [21] and LLaMA models with fewer than 70 billion parameters
[22].

Our evaluation of state-of-the-art AI models (o1) [20], reveals a substantial
performance gap compared to existing benchmarks [Figure 1]. Specifically,
these models exhibit an error rate of approximately 30% on HardML, which
is significantly higher than the error rate on the machine learning section of
MMLU (MMLU-ML) [5]. This disparity highlights the challenges that current
AI models face in mastering the complexities of DS and ML, particularly in
understanding nuanced concepts and applying them to non-trivial problems.

The initial motivation behind constructing this benchmark was to generate
a comprehensive set of interview-preparation questions for individuals seek-
ing positions in machine learning at leading technology companies (FAANG).
However, the interesting results obtained during large language model evalu-
ation, purely out of curiosity, led to the development of this paper. Given the
relative scarcity of specialized benchmarks in these fields compared to others
like mathematics and physics, we believe HardML fills an important gap and
provides a foundation for future research and development.

2. Data collection

The data collection involved a multi-step process spanned over 6 months.
As mentioned in the last paragraph of the introduction, the initial purpose of
this project was to form a set of question-answer for ML interview assessment
for entrance of the top tech companies. These are to be used on the platform
getaiquestions.com, which is a website similar to leetcode.com for interview
preparation. Therefore, the dataset construction wasn’t biased towards build-
ing problems that the LLMs wouldn’t be able to solve, they were fully intended
for human use.
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Figure 1. Comparison of error rate across 3 DS&ML bench-
marks. While existing benchmarks are approaching saturation,
HardML keeps an average level above saturation, in line with
benchmarks from other fields like MathVista [23] or AIME [24]
despite the multiple-choice nature

2.1. The collection pipeline. The collection pipeline for the development
of HardML and EasyML involved a meticulous 4-step process:

(1) Raw data collection and scraping. We have sourced approxi-
mately 400 questions from public platforms such as Glassdoor, Blind,
Quora, Stack Exchanges, YouTube, as well as from papers and books
—including those by Bishop [11]—and from our own writings and
public blogs (ptidor.com), among many other reputable sources. As
such, we specifically dedicated time in collected ideas from modern
sources - very recent interviews on the topic of the latest develop-
ment in Natural Language Understanding (NLU) or Computer Vision
(CV) and collecting ideas from recently published papers (from 2024
and 2023).

Importantly, this sourcing was not limited to simply gathering
existing interview questions. Many questions were thoughtfully de-
vised by us, inspired by theoretical concepts presented in books, pa-
pers, and online resources. This approach ensured that we had a

https://ptidor.com/single5.html
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reasonable amount of questions that were both original and rooted
in fundamental principles of data science and machine learning.

(2) Devising golden solutions and refinement. In this phase, we
crafted definitive ”golden” answers for each question, providing clear
and accurate solutions. Given that many sourced questions lacked
reliable and complete answers, this was a demanding and iterative
process that occupied the majority of the six-month development
period.

Each question was paired with a golden answer and a list of core
ideas—the essential elements required for a respondent to achieve
a perfect score. During this stage, we also engaged in refining the
questions, which included paraphrasing and restructuring to enhance
clarity and coherence. However, to preserve the authenticity of real-
world interview scenarios (recall that this was the purpose of this
project at that time), not all questions were extensively modified; in
some cases, we made only slight adjustments while maintaining the
original intent. Upon completion, this raw dataset amounted to an
extensive collection exceeding 150 pages (in google docs) of written
material.

(3) Adaptation to Multiple-Choice Format. This is penultimate
step of the process, and it involves transforming the refined dataset of
questions, golden answers and core ideas into machine parsable/ver-
ifiable input and output. We chose to go with the MMLU (ML)
framework of multiple-choice question format, with a small change:
at least one answer is correct, instead of exactly one that is correct,
hence increasing the difficulty. This required converting the answers
and core ideas into a structure where at least one option was correct.
This process was non-trivial, as not all questions could be adapted
without compromising their essence and level of difficulty. As a re-
sult, only about half of the initial questions and answers were success-
fully transitioned into the multiple-choice format, ensuring that the
benchmark remained challenging and faithful to its original purpose.

(4) Quality control and data contamination prevention. The is
the final step of the process, focusing on rigorous quality assurance
and final checks. We meticulously reviewed each multiple-choice
question and corresponding answer to ensure accuracy, clarity, and
alignment with the benchmark’s objectives. This phase involved
collaboration with beta testers—colleagues and peers—who inter-
acted with the questions through the user interface (UI) of our plat-
form (that the project was initially intended for), getaiquestions.com.
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While no major errors were identified, several ambiguous cases were
detected and rectified during this stage, enhancing the robustness
and reliability of the final benchmark.

Finally, we conducted a contamination check by evaluating the
similarity of our content against existing internet sources to detect
potential plagiarism. If any high similarities were identified, the ques-
tions and answers were carefully adjusted to ensure originality. Note
that this step was applied only to HardML, as its purpose is to rig-
orously assess human ML experts. In contrast, EasyML is intended
to test the foundational knowledge and basic reasoning abilities of hu-
man entry-level professionals in DS and ML (and potentially smaller
language models), and therefore, strict rigor was a secondary consid-
eration.

2.2. Question difficulty. The difficulty assignment to each question (be-
tween Easy, Medium and Hard) was done by us, as a measure of how difficult
a question would appear in our eyes. The author of this paper is a former
Lead Machine Learning Engineer with an MSc in AI from The University
of Edinburgh with about 5 years of industry experience in machine learn-
ing. His research contributions have gathered over 80 citations and his skill
set encompasses a broad range of technologies and methodologies, including
Python, PyTorch, AWS, GCP, MLOps, distributed computing, and quantita-
tive finance. Most importantly, the author interviewed over 100 candidates
throughout his career, driven by a deep passion for interview assessment and
a commitment to excellence.

While we acknowledge and don’t refute that the difficulty assignments may
exhibit slight bias—given that they were determined by a single individual—we
have strived to represent the difficulties as accurately as possible. This is sub-
stantiated by the results of our benchmark evaluations: HardML yields a
significantly higher error rate than MMLU, indicating a higher level of diffi-
culty, whereas EasyML achieves a notably lower error rate. These outcomes
corroborate our assessments of the relative difficulties of the benchmarks.
HardML comprises only ”hard” questions (according to the categorization sys-
tem explained above) whereas MMLU-ML –though lacking an official difficulty
rating–appears to consist predominantly of ”easy” and ”medium” questions
(according to the same categorization system).

3. Dataset composition

The HardML benchmark covers a broad spectrum of contemporary Data
Science and Machine Learning spanning from basic data handling methods
and classical machine learning to the frontier of Deep Learning and Natural
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Language Understanding with state-of-the-art language models and modern
training pipelines utilizing tens of thousand of devices.

3.1. Dataset Statistics. The distribution over categories is shows in [Ta-
ble 1]. A comprehensive coverage of topics is essential for effectively evaluat-
ing AI systems. Accordingly, the majority of the questions in our benchmark
focus on Deep Learning, Natural Language Understanding (NLU), and Com-
puter Vision (CV). This emphasis is intentional and natural, as these fields
encompass the most novel approaches and present some of the most challeng-
ing questions in contemporary AI research. This distribution is in line with
other prominent benchmarks’ distributions like FrontierMath [15].

Category Percentage
Deep Learning 33%
Classical Machine Learning 21%
Natural Language Understanding 15%
Data Engineering 11%
Computer Vision 11%
Statistics & Statistical Modeling 9%

Table 1. Percentage distribution of DS and ML sub-fields in
the HardML dataset, representing the proportion of each clas-
sification relative to the total amount.

3.2. Comparison to related benchmarks. HardML differs from the base-
line MMLU benchmark in both size—being slightly smaller—and format: each
question in HardML may have more than one correct answer. This multi-
answer format also sets it apart from MLE-bench, which focuses on coding
tasks with a definite answer rather than multiple-choice questions. A detailed
comparison of the various datasets used in the research space for LLM evalu-
ation in machine learning is presented in Table 2.

Dataset Size Type
HardML (this paper) 100 multiple-choice
EasyML (this paper) 85 multiple-choice
MMLU [ML subset, test] 112 multiple-choice
MLE-bench (OpenAI) 75 coding

Table 2. Comparison between datasets available in the re-
search space for LLM evaluation in the field of DS and ML.



66 TIDOR-VLAD PRICOPE

3.3. Sample questions from HardML. In order to accurately provide an
intuition of the level of difficulty and form of the questions from HardML, we
display below a few examples.

Sample problem 1

Question: You want to train a LLM that can solve challenging math prob-
lems properly. To do that, you employ a team of mathematicians to devise
problems and solutions for training data. Unfortunately, you require a lot of
training data, naturally, and hence you have to employ thousands of people to
generate problems and solutions for your LLM. You need some form of qual-
ity control to understand if the mathematicians keep an overall good quality
and that your LLM won’t be trained on corrupted data. You can assume you
have 1000 people devising (problem, solution) tasks, one person submits one
task. Each task is rated from 5 choices, from 1/5 (lowest) to 5/5 (highest):
1/5,2/5,3/5,4/5,5/5. You want these people to produce, on average, a quality
of work of at least 4/5=0.8 and to be 95% sure that is the case. You cannot
check all 1000 and compute the average yourself because that would defeat
the purpose of employing these people in the first place, so then what’s the
minimum number N of random tasks you would need to check? For this ex-
ercise, you can assume that the task grades follow a normal distribution and
the variance of the overall quality is known and it’s the maximum it can be,
given the range 1/5-5/5. Make sure to normalize the grades in [0.2,1]

A) 4
B) 6
C) 7
D) 8

Answer: B
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Sample problem 2

Question: You measure Model FLOPs Utilisation (MFU) by counting all
floating point operations in the entire training step—including overhead—and
dividing by (time elapsed)×(theoretical hardware FLOPS). You now enable
activation (gradient) checkpointing, which re-runs parts of the forward pass
to save memory. Assuming you still count all FLOPs and include the extra
recomputations in your total, what will happen to your measured MFU?

A) MFU will strictly increase, because you are performing additional
FLOPs without proportionally more time.

B) MFU will strictly decrease, because the added time from redoing
the forward pass dominates.

C) MFU will remain exactly the same, because both FLOPs and time
scale in a fixed ratio.

D) The effect on MFU is ambiguous; you are doing more FLOPs but
also increasing the total step time, so the ratio could go up or down.

Answer: D

Sample problem 3

Question: A T5 or FlanT5 model is considered one of the best encoder-
decoder models out there (as of 2024). Why aren’t these commonly used
at scale to train large language models (LLMs) that compete with GPT-4?
Select all that apply.

A) The architecture of FlanT5 makes it harder to scale.
B) Decoder-only models allow for simpler partitioning strategies, such

as splitting along head dimensions, resulting in more balanced com-
pute, memory, and network costs.

C) T5 is like a sequence of blocks but with more edges representing
more complicated data dependencies during compute.

D) The communication between encoder and decoder in encoder-
decoder models complicates network architecture and scaling
strategies.

Answer: A, B, C, D
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Sample problem 4

Question: What is the difference between L2 regularization and weight decay
in the context of neural networks, and under which conditions can they be
considered equivalent?

A) L2 regularization adds a penalty to the loss function proportional
to the sum of squared weights, while weight decay multiplies the
weights by a factor slightly less than 1 after each update.

B) L2 regularization and weight decay are always equivalent, regardless
of the optimizer used.

C) L2 regularization and weight decay are equivalent only when using
stochastic gradient descent (SGD) as the optimizer.

D) Using optimizers like Adam or RMSprop breaks the equivalence
between L2 regularization and weight decay.

Answer: A, C, D

Sample problem 5

Question: The backpropagated gradient through a tanh non-linearity is al-
ways smaller or equal in magnitude than the upstream gradient.

A) True.
B) Depends on the sign of the inputs.
C) False
D) True only if all the input units are in (-1,1)

Answer: A

Sample problem 6

Question: Where is the temperature applied in the model architecture of
Chat GPT-3 or 4?

A) At the input level.
B) After the softmax layer.
C) Right before the softmax layer.
D) At beam-search level when we select the output token based on

probability.

Answer: C

We intentionally designed the benchmark to assess fairly up-to-date ad-
vancements in AI, as exemplified by questions 2, 3, and 6. Additionally,
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we included both reasoning-intensive questions—such as question 1, which re-
quires code implementation or meticulous hand calculations, and question 5,
which tests comprehension through a comparison between the hyperbolic tan-
gent function (tanh) and its derivative—as well as knowledge-intensive ques-
tions like question 4, which addresses a subtle nuance in the mathematical
formula for weight decay and the formula of popular optimizers.

4. Results

4.1. Accuracy on HardML. We evaluated 5 leading language models and
1 leading smaller language model (gpt-4o-mini) on our HardML dataset. Due
to limited resources and ease of use, we decided to stick only with models
from OpenAI and Anthropic, we believe these are enough to convey a good
assessment. For instance, o1 is in top 5 in Chatbot Arena LLM Leaderboard
from lmarena.ai. The results are present in [Figure 2]. We used the same
prompt and batch size for these experiments.

Figure 2. Solved questions in HardML

Based on a single evaluation of the full benchmark, we found that most
models solve aout 65% of the questions with the top performing model (o1)
being able to solve 70%. This is in line with other benchmarks from other
fields. For example, in math, current benchmarks that are considered ’hard’
like Omni-Math, MathVista and Aime have around 60%, 70% and around
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70% respectively in accuracy against o1. Interestingly, if we allow a ”soft”
figure for solved questions (giving partial credit when the model’s answer is a
subset of the correct answer), then the performance goes up by 5 percentage
points (to 75.08% for o1), not a drastic change.

The models are very close together in performance, the precise ordering of
model performance should be interpreted with significant caution as multiple
runs could switch a few places around. We ran 2 times to make sure the order
at the top is consistent, in both, o1 demonstrated the strongest performance.

An interesting observation is that even when the model arrives at a correct
result, the underlying reasoning may not be accurate. We made the models
output a reasoning field in the output json to observe this behaviour. For
example, GPT-4o sometimes selects numerical answers because they are intu-
itively closer to an expected magnitude (like choosing 7 over 8 because it is
smaller), rather than deriving them through rigorous proof. This illustrates
a natural limitation of the multiple-choice format—scores can be artificially
inflated due to luck or educated guesses that do not reflect true understanding.

Figure 3. Solved questions in EasyML

4.2. Human performance on HardML. Examining human performance
is particularly insightful, given that the initial intention of this project was
to assess candidates during interviews or to filter applicants competing for
positions in major technology companies. The results displayed in Figure 2



HARDML 71

include human scores for reference. Below, we explain how these human scores
were calculated:

A) The first metric (Senior Machine Learning Engineer) was obtained
during the beta testing phase of data collection (the final step). We
invited actual senior machine learning engineers—friends of the au-
thor (see acknowledgements)—to participate in several quizzes con-
sisting of 7 to 8 questions each, sampled, at random, from HardML.
Once sampled, the same quizzes were used for each person, we man-
aged to assess 5-6 quizzes per person. After aggregating the results,
we found that an individual scored, on average, approximately 5.5
correct answers out of 8 (which translates into 68.75%). Although it
is not reflective of the performance on all the questions from HardML
(only on a subset), we believe this figure is relevant to be shown.
Hence, this performance is reflected in Figure 2 and Figure 3. The
participants expressed admiration for the benchmark, noting that the
questions required significant thought and were highly challenging.

B) The second number (Top ML Researcher) is purely the author’s opin-
ion. Even though we did not have access to a globally recognized top
machine learning researcher, we posit that this benchmark would not
represent a significant challenge for individuals actively engaged in
cutting-edge ML research and who have been at the forefront of the
field for the past 20 years.

4.3. Accuracy on MMLU and EasyML. Below, we have the equivalent
diagram (Figure 4) for the 112 questions present in the testset of MMLU (ML
subset) and our proposed EasyML. Observe how o1 is still the top performer,
but the scores are significantly higher compared to HardML. Note that, we
have not displayed human assessment figures on the MMLU benchmark as
this experiment wasn’t conducted.

5. Related work

The evaluation of large language models (LLMs) has been extensively ex-
plored across various domains, leading to the development of numerous bench-
marks that assess different aspects of AI capabilities. In this section, we review
the most relevant benchmarks and studies related to our work, focusing on
those that evaluate LLMs in the context of machine learning and data science
and briefly mentioning a few impressive pieces of work on other fields from
STEM.

5.1. Multitask Language Understanding Benchmarks. The Massive Mul-
titask Language Understanding (MMLU) benchmark introduced by Hendrycks
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Figure 4. Solved questions in MMLU [ML]

et al. [5] has been a significant step toward assessing the broad academic and
professional knowledge of LLMs. MMLU covers 57 subjects across STEM,
humanities, social sciences, and more, including a subset dedicated to ma-
chine learning with 112 multiple-choice questions. While MMLU has provided
valuable insights into the capabilities of models like GPT-3, state-of-the-art
models have begun to approach saturation on several subjects, including ML.
This near-ceiling performance limits the benchmark’s effectiveness in distin-
guishing the advanced capabilities of newer models. Moreover, the ML subset,
due to its relatively small size and scope, may not fully capture the depth and
complexity required to evaluate nuanced understanding in ML and DS.

5.2. Benchmarks for Advanced Reasoning. To address the limitations
of existing benchmarks in measuring advanced reasoning, FrontierMath [15]
was introduced as a benchmark comprising exceptionally challenging and orig-
inal mathematical problems. These problems span major branches of modern
mathematics and are designed to require significant effort from expert math-
ematicians—often multiple hours or days—to solve. FrontierMath effectively
minimizes data contamination by using unpublished problems and employs
automated verification for reliable evaluation. Remarkably, current AI models
solve under 2% of the problems, highlighting a substantial gap between AI
capabilities and human expertise in advanced mathematics. This benchmark
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underscores the importance of creating future-proof evaluations that remain
challenging despite rapid advancements in AI. This paper is the inspiration for
HardML, we were impressed by it and wanted to replicate some of the work.

5.3. Practical Machine Learning Engineering Benchmarks. In paral-
lel, MLE-bench was proposed by Chan et al [16] as a benchmark to evaluate
AI agents’ performance in machine learning engineering tasks. MLE-bench
curates 75 ML engineering-related competitions from Kaggle, encompassing
tasks that require practical skills such as data preprocessing, model training,
and experimental analysis. By establishing human baselines based on Kaggle’s
publicly available leaderboards, MLE-bench provides a real-world context for
assessing AI agents in practical engineering scenarios. The benchmark evalu-
ates AI setups like OpenAI’s o1-preview with AIDE scaffolding, noting that
the best-performing agent achieves a bronze medal level in approximately 17%
of competitions.

5.4. Automated Answering and Generation of ML Exams. In the
realm of educational assessments, other researchers explored the automatic
answering and generation of machine learning final exam questions in their
work titled ”From Human Days to Machine Seconds: Automatically Answer-
ing and Generating Machine Learning Final Exams.” [25] They demonstrated
that large language models could pass ML final exams at a human level and
generate new exam questions rapidly. Their study focused on the differences
between final exams and problem sets, noting that final exams typically have
longer, multi-part questions that span a broader set of topics and require
more complex reasoning. Notably, in this paper, multiple-choice questions
were generated and tested, making it a valuable related benchmark that is, in
our opinion, underexplored.

5.5. Comparison to Our Work. Our proposed HardML benchmark fills an
important gap in existing evaluations by providing a rigorous, modern, and
challenging testbed specifically tailored to data science and machine learning.
Unlike MMLU’s ML subset, HardML offers a more difficult, more diverse and
more up-to-date set of questions that delve deeper into advanced topics. In
contrast to MLE-bench, which assesses practical engineering skills through
coding tasks, HardML focuses on theoretical understanding and the ability to
reason about complex concepts.

By emphasizing originality and minimizing data contamination, similar to
FrontierMath, we ensure that HardML remains a relevant and challenging
benchmark for current and future AI models. Additionally, by including
EasyML as a complementary benchmark for evaluating smaller language mod-
els, we address the need for scalable evaluations across different model sizes
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and capabilities. It is challenging to ascertain the long-term applicability of
HardML; however, we anticipate that it will remain relevant at the cutting
edge of model evaluation for at least one year.

6. Limitations

Even though HardML currently demonstrates reasonable resistance to sat-
uration, we do not believe this resilience will persist for much longer. Models
like o3 [26] have already shown improvements over previous frontier models
such as o1, and the pace of advancement in AI systems is exceedingly rapid.
One of the significant limitations of HardML is its multiple-choice format,
which allows for ”guesses” or ”educated guesses” that can artificially inflate
scores—a limitation that has been critically examined in FrontierMath. In
benchmarks like MMLU [ML], where only one answer is correct per question,
a random guess has a 1

4 chance of being correct. In comparison, in a multiple-
choice format where more than one answer can be correct, a random guess has
a probability as high as 1

15 . These probabilities are still substantial, poten-
tially diminishing the benchmark’s ability to effectively discriminate between
true understanding and chance performance.

Therefore, it is essential to develop benchmarks with automatic evaluations
that require machine-verifiable outputs, such as numerical or boolean answers.
This approach reduces the likelihood of inflated scores due to guessing. Bench-
marks like MLE-bench, which necessitate code implementation or involve ad-
vanced mathematical reasoning to arrive at the correct solution—while still
being related to data science and machine learning—are exemplary in this
regard.

Constructing challenging multiple-choice questions is particularly difficult
because adept humans or advanced AI models can employ elimination strate-
gies to identify the correct answers. This means that even if the correct an-
swers are difficult to determine, the benchmark’s effectiveness can collapse if
the incorrect options are not equally challenging to dismiss. Consequently,
every answer choice must be nuanced and not obviously incorrect. Achieving
this level of subtlety in question design is exceptionally demanding and was a
primary reason why the development of this benchmark required such a sig-
nificant investment of time. Crafting answers that appear plausible yet are
subtly incorrect is a skill in itself.
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the challenge and attempting HardML very thoroughly, as well as providing
invaluable feedback. Their expertise and rigorous assessments have been in-
strumental in refining the dataset and validating its efficacy. Special thanks
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8. Conclusion

With this paper, we instigate to further research in the area of LLM bench-
marking for cutting edge Data Science and Machine Learning. The dataset of
HardML is present in an interactive environment on getaiquestions.com and
can also be obtained in clean json format for experiment replication or further
research here. Our work contributes to the ongoing efforts to develop bench-
marks that can effectively measure and distinguish the advanced capabilities
of AI models in rapidly evolving fields.
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