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DEEP LEARNING APPROACHES FOR DETECTING TEXT

GENERATED BY ARTIFICIAL INTELLIGENCE

DAVID BIRIS,

Abstract. Large language models have been a hot topic for discussion
and research for quite a few years, allowing them to infiltrate in many
industries, especially education. Their rise in popularity among students
was caused by their vast capabilities in giving quick and reliable answers to
questions on any topic. The use of these models for the purpose of generat-
ing schoolwork can be seen as a challenge to academic integrity. We inves-
tigate the development of AI capable of detecting AI-generated texts and
explore with training different types of deep learning models, on a mixed
dataset, containing essays, both human written and AI-generated, as well
as movie reviews and books. We experimented with LSTM (Long short-
term memory) and fine-tuning transformer based models. We achieve re-
sults close to the state of the art, and, in some particular cases, we surpass
a few of these models. For instance, one of our models surpasses a state
of the art model on a set of both student written and generated essays, in
terms of accuracy by up to 5%, and F1 score by up to 4%, in two different
experiments. Furthermore, our another model of ours surpasses a state of
the art model on a set of essays, but this time only in terms of precision,
by only 1%. These results indicate the potential of properly fine-tuned
transformer-based models, as well as the importance of a well-prepared
dataset.

1. Introduction

Ever since the revolutionary introduction of the transformer model in 2017
[29], the artificial intelligence industry has experienced a never-before-seen
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explosion in both performance and popularity. While the transformer was
initially designed for translation tasks, it has since been adapted for a varied
range of uses in natural language processing and way beyond. Large language
models (LLMs) were introduced the very next year, with pioneers such as
OpenAI’s Generative Pre-Trained Transformer (GPT) [27] and Google’s Bidi-
rectional Encoder Representations from Transformers (BERT) [8]. One more
year later, LLMs began to be publicly accessible with the release of GPT-2,
and, in no time, people realized the immense potential of these models as chat
bots.

Today, these chat bots are everywhere and are immensely more capable
than their predecessors. They are very popular and widely used by people in
diverse everyday tasks. Moreover, tools like ChatGPT have become helpful
allies for students, when trying to do their schoolwork. According to [3], 19%
of students aware of ChatGPT admitted to having used it for schoolwork.
This number is already high, but we can safely assume that, in reality, it
might be a lot higher, since only 25% first-year computer science students
that participated in a survey for this study [5] declared to have never used
ChatGPT for their assignments.

While these tools might not yet be useful for reliably solving complex prob-
lems, they certainly can write a satisfactory essay on any topic, especially for
students in earlier grades. Research made by OpenAI [22] shows that GPT-4
on its own can even pass many exams, with high grades. Some people might
see this as concerning, since students’ usage of these tools lead to inaccuracies
in the evaluation of their text comprehension, writing abilities and both logical
and critical thinking.

To address these concerns, we create a tool designed to help both students
and teachers. We aim not to punish students for using large language models
to learn and find ideas for their assignments, which can be a good habit, but
to discourage the damaging practice of carelessly copying and pasting entire
AI-generated essays and sending them as homework solutions.

In the following, we will present the steps we took to achieve to this fin-
ished product in great detail. We will start by presenting three state of the
art models, in a section dedicated to related work. The next section will show
the employed methodology and will briefly discuss the most important archi-
tectural aspects of each of the models. The experiments section focuses on
first discussing the content of the datasets and then the processing techniques
that have been applied to the data. After that, the process of training and
hyperparameter tuning is discussed, and the section is ended with results and
a detailed comparison between our models and the state of the art presented



DEEP LEARNING DETECTION OF AI-GENERATED TEXTS 41

in the aforementioned section. The article ends with a section that draws
conclusions and brings out possible future improvements.

2. Related Work

2.1. Sentence-Level AI-Generated Text Detection with SeqXGPT.
Most AIGT (AI-Generated Text) detection strategies are made with the pur-
pose of detecting, with as high of an accuracy as possible, if an entire document
is automatically generated by a LLM, rather than using a sentence-by-sentence
approach. While this technique may be useful in many cases, people do not
generally rely solely on AI to generate entire documents, and, instead, they
often use it to modify or enhance content that was originally written by hu-
mans. These AI modifications can be simple enhancements or additions to
certain sentences, or entire new AI-generated paragraphs scattered between
human-written text. Therefore, using a sentence-level AI generated content
detection strategy is crucial in some cases.

SeqXGPT [30] is an open-source, advanced method for sentence-Level AI-
Generated text detection. Its approach consists of three parts: Perplexity
extraction and alignment, Feature Encoder and Linear Classification Layer.

The AIGT detection tests performed on SeqXGPT show a significant differ-
ence when compared to other AIGT detection methods, such as DetectGPT
[21] or Sniffer [18]. The LLMs used to construct the dataset are GPT2-x1,
GPT-Neo, GPT-J and LLaMA.

2.2. Zero-Shot AI-Generated Text Detection with Fast-DetectGPT.
According to a report by OpenAI [28], zero-shot detection uses a pre-trained
generative model on text generated either by itself or by other similar models.
This is done without subjecting the model to any supplementary training.
Zero shot means that access to human written or AIGT samples is not assumed
to perform detection. Generally, when using zero-shot AIGT detection, the
average per-token log probability of the generated text is evaluated.

This model relies on the hypothesis that language models tend to use tokens
with higher statistical probability because they have been pre-trained on lots of
human written content. In contrast, humans individually do not display such
bias since they compose texts based on contexts, meanings, and intents rather
than data and statistics [1]. This hypothesis stems from the fact that language
models try to mirror collective human writing behaviour instead of individual
human writing behaviour, therefore presenting a contextual difference in the
choice of words. This means that the conditional probability function p(x̃|x)
is much higher for an AIGT x, in comparison with human written text.

Fast-DetectGPT works in these three steps:

• Step 1. Sample alternative word choices x̃i for each token x.
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• Step 2. Evaluate the conditional probabilities p(x|x), p(x̃i|x) of these
generated samples.

• Step 3. Compare them to arrive at a detection decision:
1
n

∑
i log

p(x|x)
p(x̃i|x)

?
> ϵ

Here, x represents the entire input text, xi denotes the i-th token in x, x̃i
represents an alternative token generated as a substitute for xi, and n is the
total number of tokens in the input text. The decision to classify the text
as AI-generated or human-written depends on whether the aggregated score
exceeds the threshold ϵ.

Empirical evidence shows an increase of around 75% in detection accuracy
for Fast-DetectGPT over its predecessor, DetectGPT [21].

2.3. Adversarial learning with RADAR. In the context of AIGT detec-
tion tools, we refer as adversarial learning to the process in which two models
are trained at the same time, with two different, even opposing, goals in mind.
One of them is a generative model and the other is a discriminative model
that tries to determine, with a certain probability, whether some sample came
from the generative model or the training data [12]. The generative model’s
goal is to make the probability of the discriminative model to make a mistake
as high as possible.

RADAR: Robust AI-Text Detection via Adversarial Learning is a frame-
work for AIGT detection, that uses adversarial learning. By this method, the
discriminator is a ”two player game”, composed of the paraphraser and the
detector. These two ”players” have contrasting objectives, because the para-
phraser has to generate human-like content that should be able to avoid AI
detection, while the detector’s job is to enhance AIGT detectability. In the
training phase, the paraphraser learns to rewrite text from a dataset generated
by a target LLM, while trying to decrease the probability that the detector will
be able to discern the difference between the paraphraser’s text and human
written text. At the same time, the detector learns to compare AIGT from
the training dataset and from the paraphraser’s output with human written
text, in order to improve the detection performance [15].

3. Proposed models

The task at hand is formulated as a binary classification task with two
classes: human written, which is considered to be negative and AI-generated,
which is considered to be positive. Each input text belongs to one of these
two categories and it will be evaluated at document-level, meaning that there
will be no sentence-level analysis, such as in the case of SeqXGPT. We fine
tune some relatively lightweight transformer-based models, like BERT and
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DeBERTa (Decoding-enhanced BERT with Disentangled Attention) [13], since
their small size allows them to be directly integrated in applications, without
the need of an API, unlike some newer and heavier models, that cannot directly
run on users’ personal computers. Additionally, they are free to use and open
source. For the same reason, we also train an LSTM, which turns out to be
even lighter than the transformer models, at the expense of some performance.

3.1. LSTM. We start with the implementation of a LSTM model [14]. The
text data is tokenized with the basic english tokenizer provided by PyTorch,
in the torchtext package [23]. The vocabulary is built from these tokens.
We apply padding to the sequences, since the LSTM expects constant length
inputs. We use the LSTM class from PyTorch to build the model and try
multiple sets of hyperparameters to find the ideal ones, using Wandb [2].

The training is done using K-fold cross validation, splitting the dataset in
K parts. One of the K parts is used as a validation dataset, and the other
K − 1 are used for training. This process is repeated until each of the parts
has played the role of a validation dataset. We use the KFold function from
scikit-learn [25] to set up the cross validation and we experiment with 3 − 5
splits. The data is shuffled every time before splitting to ensure that the model
does not make any connections related to the order of the entries, since the
order does not matter. We save the model for every fold and pick the one with
the highest performance.

As an optimization algorithm for gradient descent we use Adam.
The loss function used is a Binary Cross Entropy Loss, with a sigmoid over

the outputs of the model, called BCEWithLogitsLoss, in the PyTorch library:

(1) li = −wi

(
yi · log σ(xi) + (1− yi) · log(1− σ(xi))

)
for the ith example in the batch, where xi is the the ith raw output of the

neural network, yi is the actual ith truth label and wi is a weight associated
with the ith example, and can be useful if we want to give different importance
to different examples in the batch.

The overall loss for the batch is the mean if the individual losses:

(2) l(x, y) =
1

N

N∑
i=1

li,

where li is defined in Equation 1, N is the batch size and x = {x1, x2, . . . , xN},
y = {y1, y2, . . . , yN}.

For this LSTM, we create a PyTorch module (a Python class that inherits
from the Module class in PyTorch) named TextLSTM. Our final model will
have type TextLSTM. Its constructor initializes the embedding layer, giving
as parameters the size of the aforementioned vocabulary and the dimension
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of the embedding vectors, which we chose to be 100. The constructor also
initialized the LSTM class from PyTorch that we have mentioned, as well as
a linear layer called fc that maps the output of the LSTM (with dimension
hidden dim, a hyperparameter we chose to be 256) to the desired output size
(which in this case is 1), since our task is binary classification. The forward
pass function starts by embedding text and then passing it through the LSTM.
Then it takes the last layer from the hidden states and passes it through the
fc, before returning it.

3.2. BERT. We also fine-tune multiple transformer-based models, the first
one being BERT. We use bert-base-uncased, a version of BERT with 110 mil-
lion parameters. The parameters are basically the total number of weights
and biases from the transformer’s layers. It has been pre-trained only on Eng-
lish datasets. We choose the uncased version from the presumption that the
case of the letters in a text are not significantly relevant in the context of
detecting whether a text is AI-generated or not. BERT’s tokenizer includes
the functionality of encoding the tokens, but has the limitation of admitting
a maximum of only 512 tokens per input, which might cause loss of data on
entries with texts longer than that. This is why we might want to truncate
and split the text into multiple sections of 512 tokens, but then we sometimes
run into the problem of losing the necessary context for the transformer to
make the needed connections for discriminating between AI and human text.
We will handle this problem in the data preprocessing subsection 4.2. If the
tokenizer does not find a specific word in the BERT dictionary, it splits it in
the largest subwords from the vocabulary. In the rare case when the tokenizer
cannot find a subword in the vocabulary, the entire word is tokenized as un-
known [9]. If a sequence is already split in 512 tokens (the maximum number),
and we need to split a word in subwords, the sequence will be truncated to
the maximum length [8].

For training, we split the dataset into three sets: 80% of the data was used
for training, 10% for testing, and 10% for validation. The test dataset is used
only to evaluate the performance of the final model. The other two sets are
used during training, just like in the LSTM: the validation is used to evaluate
the model every evaluation frequency steps on data that is new for the model,
since it is not included in the training dataset. The number of steps in an
epoch is dependent on the batch size, since each epoch is a complete pass
through the entire dataset and the batch size indicates how many samples are
taken for each forward back propagation of the neural network layer of the
transformer. So, the number of steps in an epoch is S = dataset size

batch size .
We use AdamW as optimization algorithm for gradient descent with learn-

ing rate 5 · 10−5. During the 1500 warm up steps, the learning rate is set
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to linearly increase to the desired value. The learning rate is set to linearly
decrease to 0 by the end of the training process. This learning rate scheduler
setup allows for the learning rate to stabilize the training in the early steps,
since the model has not yet had the chance to adjust to the dataset and we
risk overshooting minima of the loss function. After warm up, the learning
rate is set to gradually decrease, and this helps the model tune the weights
lightly near the end of the training.

3.3. DeBERTa. We can fine-tune more BERT-based transformers models,
such as DeBERTa [13]. We use the base version of DeBERTa, deberta-v3-base,
with around 86 million parameters. It has 12 layers and a hidden size of 768.
We split the dataset in the same way we do for the BERT model. Again, we
use the AdamW optimizer, with learning rates like 5 · 10−5 or 3 · 10−5. The
same 1500 warm up steps are followed and the learning rate linearly decays
during training.

The improvement DeBERTa brings over BERT is that it separates the con-
tent and position information in different embeddings. This approach allows
the model to more effectively focus separately on semantics and positions of
the tokens. Additionally, DeBERTa has an upgraded mask decoder which
gives it better predictions during training. With these perks, DeBERTa is
a generally more efficient and better performing model in natural language
processing tasks than BERT or RoBERTa [19].

4. Experiments

A crucial step in training a text classification model is thoughtfully com-
piling a dataset of content with diverse writing styles. The models train their
weights to find patterns that discern real texts from fake ones, so it it very
important to not accidentally introduce biases or imbalances that could skew
the model’s performance and to ensure these sources vary in tone, complexity,
and subject matter. We gather content from a wide range of sources including
books, reviews and especially essays, since our tool is created with the intent
of primarily detecting schoolwork.

4.1. Datasets.

4.1.1. DAIGT-V4. [17] is a dataset compiled from a number of different sources.
The AI-generated section has texts generated by different models: LLaMA -
15,796 texts, Mistral - 13,439 texts, Falcon - 4,536 texts, GPT - 4,161, DaVinci
- 2,099 texts, Claude - 2,000 texts, PaLM - 1,733 texts, Babbage - 698 texts,
Curie - 696 texts, Ada - 692 texts, Cohere - 350 texts. The human generated
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content is composed of argumentative essays written by 6th-12th grade stu-
dents [6]. This dataset contains a total of 27,370 human generated texts and
46,200 AI generated texts.

The dataset contains values under multiple labels, such as the text itself, a
value that tells us whether the content is AI or human generated, the name of
the model it has been generated by, as well as the prompt used for generation.
The topics (prompts) of the essays are the same for both human and AI texts.

4.1.2. DAIGT Gemini-Pro 8.5K Essays. This dataset [7] brings 8,500 more
essays generated using the same prompts as the ones from DAIGT-V4. They
are generated by GeminiPro. The CSV file contains multiple labels, such as
the text itself, a value that tells us whether the content is generated by AI or
written by humans, and also the prompt used to generate the text.

4.1.3. IMDB 50K Movie Reviews. This dataset [24] provides a set of 50,000
movie reviews from IMDB, written by humans. The CSV file provides both
the review and the opinion reflected by the person in the review (positive
or negative sentiment towards the movie), for sentiment analysis. For our
purpose, we will not need to use the sentiment, and we will use this dataset
as a collection of human written text.

4.1.4. ArguGPT. [20] provides 4,038 argumentative essays, on different topics,
written by GPT (7 models). The CSV file contains labels for the text, the
prompt, as well as an id for each text and prompt and also the individual GPT
model used for generation.

4.1.5. Raw IELTS essays. Raw IELTS essays [4] is a collection of student-
written essays, from the IELTS test. It provides a valuable amount of 4,158
essays, that should definitely help the model find different human writing
patterns, during training.

4.1.6. SeqXGPT’s sentence-level detection dataset. A section of the document-
level detection dataset used for evaluating SeqXGPT [30]. It contains, among
human generated texts, content from GPT-2, GPT-3, GPT-J, GPT Neo and
Llama. We take the GPT-2, GPT-3 and human texts for training, and leave
the rest for subsequent testing. GPT-2 and GPT-3 are extensively studied and
thoroughly evaluated models, making them suitable choices for establishing a
solid training dataset. We reserve GPT-J, GPT-Neo, and LLaMA for testing,
in order to ensure that the trained model is evaluated on texts it has not
seen during training phase. We use a total of 600 texts for training, from this
dataset, 200 human written and 400 human generated.
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4.1.7. Some books. We also include some books in the dataset. Books offer
very high quality examples of human writing, while also being well edited and
well reviewed. This should help the model’s ability to detect subtle charac-
teristics of human authored text. For diversity of writing styles, we choose
both newer and older books. The books we have included in our dataset are
Crime And Punishment, The Great Gatsby, The Hunger Games, Frankenstein,
Twilight, Harry Potter, The DaVinci Code and Tarzan Of The Apes. After
splitting these books in sections of maximum 450 words (in order to have
similar length texts in the dataset) we get about 2,100 small texts.

4.1.8. Alpaca GPT4. Alpaca GPT4 [10] [26] is a collection of instruction-
following texts generated by GPT-4. It does not include essays, but these
texts might help our model understand some more diverse patterns in AI-
generated content, so it might be beneficial to not only include essays in the
training dataset. For this reason, we choose a random set of 2,100 samples
of the total 52,000. Since these texts are not essays, they have an unusual
writing style compared to the other AI-generated texts, so we choose 2,100 in
order to match the number of texts from the previous human-written dataset,
composed of books. This way, we have a balance between AI-generated and
human-written texts with different writing styles.

4.1.9. AI Vs Human Text. This dataset is a huge cluster of essays, both AI-
generated and human written essays[11]. It includes some of the datasets
presented above and many more. Since our tool targets detecting AI-generated
content in academic scenarios, this dataset is a very good choice due to its
large collection of essays, aligned with academic writing styles. This dataset
contains around 300,000 human written and 180,000 AI-generated essays. We
have used AI-generated some texts from ”AI Vs Human Text” only as a filler,
for balancing the training dataset, since we ended up with more human written
content.

4.1.10. Testing Dataset. This dataset will only be used for testing, so we do
not count it in with the other training datasets. We use another IELTS essays
dataset [16], different from the one used for training. This dataset contains
both the question that the students were asked to write the essay about, and
the student essay itself. We take a sample of these questions and ask the
most popular AI models to write essays as well. Now we have created our
test dataset with some student essays and some generated essays. We have, in
total, 1332 pieces of writing created by gpt-3.5-turbo, gpt-4-turbo and gpt-4o,
the latest model from OpenAI, as of this writing. We have generated these
essays ourselves, using the API that OpenAI has made publicly available.
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4.1.11. Data splitting. The number of texts in the final dataset and their
provenience is described in detail in Table 1. We split the dataset in three
sections: the training set (80% of the entire dataset), the validation set and
the test set (both 10%). The training set is used for the actual process of ad-
justing the weights of the model while training. The validation dataset helps
assessing the model’s performance during training and preventing overfitting
by providing a separate set of data to evaluate the immediate performance
of the model. The test set is a completely unseen section of the data, that
provides an unbiased evaluation of the model’s performance after the training
is completed.

Datasets
Dataset Name Human

Written
Texts

AI-
Generated
Texts

Total AI/Human
Ratio

DAIGT-V4 27,370 46,200 73,570 1.68
DAIGT Gemini-Pro 8.5K 0 8,500 8,500 -
IMDB 50K Movie Reviews 50,000 0 50,000 -
ArguGPT 0 4,038 4,038 -
Raw IELTS essays 4,158 0 4,158 -
SeqXGPT’s sentence-level
detection dataset

200 400 600 0.5

Alpaca GPT4 0 2,100 2,100 -
Books 2,100 0 2,100 -
AI Vs Human Text 0 22,590 22,590 -

Total 83,828 83,828 167,656 1

Table 1. Summary of datasets used.

4.2. Data preprocessing. Before doing any further processing on our dataset,
the texts have been grammatically corrected. Correcting grammar is an im-
portant step in processing our datasets. We use a special Python library called
language-tool to correct all the grammatical errors in all our texts, both AI
and human written. We do not want our model to form bias towards labeling
a text as AI just because it does not have grammatical errors. After correcting
the grammar in the texts, we see that 1,456,283 errors have been corrected in
human texts and only 631,083 in AI content. This data supports our previous
hypothesis that the model could have been biased towards labeling correctly
written text as AI, when trained on an uncorrected dataset.
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Since transformer-based models like BERT or DeBERTa have a maximum
input size of 512 tokens, we cannot keep texts longer than 512 tokens in our
dataset. We could just truncate the longer texts, but this way we could lose
meaningful context from those texts. This is why we will just discard the texts
with more than 500 words. We choose to count words instead of tokens since
the BERT and DeBERTa tokenizers are different, but they both generally
split tokens as words. The reason we choose not to split them into chunks, as
we have previously done for the books dataset is because there is not enough
content that we can work with in these texts. The texts are generally only
slightly longer than 500 words, and, by keeping the surplus in a separate chunk,
we would have many short pieces of text with no context behind. We will also
discard texts with less than 50 words, since they might not provide enough
context for the AI model to properly train. The vast majority of the texts
lied in the desired range, even before this processing, as can be seen in Figure
1, but, after discarding texts that are too long or too short, Figure 2 shows
a nicer, almost Gaussian distribution of text lengths. We have discarded a
few too long or too short texts, but we still have 152,386 texts to work with,
76,534 human written and 75,852 AI-generated.

Figure 1. Initial
distribution of word
counts in the
dataset.

Figure
2. Distribution
of word counts in
the dataset, after
discarding too long
or too short texts.

4.3. Metrics. During training, we compute accuracy, loss, and validation loss
every epoch. These values, called metrics, specifically the last two, help us
interpret the progress during training. Validation loss is computed on the val-
idation dataset, and loss on the training dataset. If the two loss values become
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closer and lower, it is a good sign that the training process has steady and
good progress. Otherwise, if they are far apart, this might indicate overfitting.

We can also track the learning rate and f1 score. The f1 score is a function
of precision and recall. The precision is a metric that shows us how accurate
the positive predictions are. We will abbreviate true positives by TP, false
positives by FP and false negatives by FN. TP are the texts correctly classified
as AI-generated, and FN are texts incorrectly classified as human written.
Then, the precision has the formula Precision = TP

TP+FP . Recall is the ration

between true positives and all the actual positives: Recall = TP
TP+FN . The

f1 score measures the balance between precision and recall and has values
between 0 and 1, 1 meaning perfect precision and recall:

(3) f1 score =
2 · TP

2 · TP + FP + FN

4.4. Training and hyperparameter tuning. It is good practice to imple-
ment multiple models, based on different architectures, and tune their hy-
perparameters, in order to find the best possible solution. The deep learning
library of choice is PyTorch [23]. Hyperparameter tuning is done with Wandb.
Wandb Weights & Biases is a platform that helps with tracking a history of
experiments in machine learning. It provides the tools to log each training run
and save the training progress, the hyperparameters and the metrics of the
model (loss, accuracy, f1 score, etc.), as well as many details about the sys-
tem’s performance during training. In addition, it creates graphs with these
metrics. The sweep functionality from Wandb allows us to pre-plan multiple
sets of hyperparameters and Wandb will train the model with these multiple
possible settings so we can choose the preferred one.

When training the LSTM model, we choose to use 5 folds for k-fold cross
validation and experiment with different hyperparameters. The best results
have been achieved with the dimension of the vector space in which words
are represented (embedding dimension) set to 100. We choose the number of
neurons in the hidden layers (hidden dimension) to 256, the learning rate to
10−3 and the dropout rate to 20% of the neurons. We train this model with a
batch size of 128. The training and validation loss progress for each of these
5 folds can be seen in Figure 3.

When fine-tuning BERT, only 3 epochs are needed, since this is a transformer-
based model, pre-trained on massive datasets and has already captured a sig-
nificant number of natural language features. This is the reason why the
learning rate we set is much lower, compared to the LSTM one, specifically
10−5. During fine-tuning we only need to finely adjust the model’s weights, to
fit our new text classification purpose. We also need to set the batch size to
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Figure 3. BCEWithLogitsLoss (sigmoid wrapped cross en-
tropy loss) progression in the training process of the LSTM
model (training vs validation loss), for each of the 5 folds

a lower number, 16, since the multi-head attention mechanisms of the trans-
former require much more video RAM than the LSTM architecture. The loss
progression during the fine-tuning process is displayed in Figure 4.

Figure 4. Training vs validation loss during the fine-tuning
of the BERT model.

We fine-tune DeBERTa for 4 epochs, but this time we use three sweeps to
automatically find the best hyperparameters, instead of manually changing
them and trying again. The best results are achieved with a dropout rate of
0.1, a initial, linearly decaying learning rate of 3 · 10−5 and a batch size of 16.
The first 1000 steps (first 1000 batches) in the first epoch are used as warm
up steps, to gradually increase the learning rate to the initial value of 3 · 10−5.
The model is trained for two epochs, and the training progress can be seen in
Figure 5.

4.5. Results. We will try to find a winner between our models, by subjecting
them to a few classification test on our testing dataset. We will go through all
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Figure 5. Training vs validation loss during the fine-tuning
the DeBERTa model.

the sections of the dataset, which, as previously stated, is composed of human
written and gpt-3.5-turbo, gpt-4-turbo and gpt-4o generated essays, as well as a
section from SeqXGPT’s dataset. We will begin by comparing only our three
models on the gpt-3.5-turbo section, in order to establish a baseline, and then
we will continue with a comparison with the state of the art models. We will
compare the models by calculating metrics such as accuracy, precision, recall
and f1 score for each one of them.

Model Accuracy Precision Recall F1 Score
Our LSTM model 0.78 0.78 0.78 0.78
Our BERT model 0.86 0.88 0.86 0.86

Our DeBERTa model 0.90 0.91 0.90 0.90

Table 2. Comparison between results from all our three mod-
els on 955 gpt-3.5 turbo vs 955 human texts from our testing
dataset.

By doing some tests using our testing dataset we can observe that our
DeBERTa model yields the highest performance of all three, as shown in Table
2. This result is expected, since DeBERTa is an improved version of BERT,
both in performance and in efficiency, and it also is designed to focus more
on semantics and the position of tokens, because of its different approach to
embeddings.
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Next, we will subject all three models, plus some more, on a series of more
tests, and we will see if DeBERTa still retains its performance against our
other methods and also against some state of the art methods.

4.6. Comparison with other methods. We now make use of the test-
ing dataset that we’ve compiled to test our models versus some state of the
art models presented in the second section. We use different sections of the
dataset. Considering which model has generated the text is crucial when eval-
uating performance, as it allows for an assessment of whether the detection
is effective against state-of-the-art generative models or if its capabilities are
limited to identifying text generated by older, less advanced models.

Model Accuracy Precision Recall F1 Score
RADAR 0.97 0.97 0.97 0.97

Our LSTM model 0.76 0.78 0.73 0.76
Our BERT model 0.88 0.90 0.88 0.88

Our DeBERTa model 0.93 0.93 0.93 0.93

Table 3. Comparison between results from RADAR vs our
models, on a sample of 286 student essays and 286 essays gen-
erated by gpt-3.5-turbo.

The AI-generated texts from the dataset for which the models yielded the
results presented in Table 3 is different from the one in Table 2, though both
are generated by gpt3.5-turbo.

Model Accuracy Precision Recall F1 Score
RADAR 0.88 0.89 0.88 0.88

Our LSTM model 0.68 0.75 0.53 0.62
Our BERT model 0.93 0.93 0.92 0.92

Our DeBERTa model 0.84 0.86 0.84 0.83

Table 4. Comparison between results from RADAR vs our
models, on a sample of 94 student and AI essays generated by
gpt-4-turbo

This time, in Table 4, the BERT model stands on top, overtaking even
RADAR in gpt-4-turbo texts detection.

Again, our BERT model seems to classify texts from OpenAI’s latest model,
gpt-4-o very well, even slightly surpassing RADAR, as displayed in Table 5.
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Model Accuracy Precision Recall F1 Score
RADAR 0.88 0.89 0.88 0.88

Our LSTM model 0.70 0.73 0.63 0.67
Our BERT model 0.89 0.90 0.89 0.89

Our DeBERTa model 0.73 0.79 0.73 0.71

Table 5. Comparison between results from RADAR vs our
models, on a sample of 253 student essays and 253 essays gen-
erated by gpt-4o

As mentioned in the datasets section, we have used some samples from
SeqXGPT’s datasets for training, but we have also left some for testing. This
time, we will compare our results with the one from the table for document
level detection, from SeqXGPT’s paper [30], since they have already tested on
the same dataset. We will test our models and also the RADAR model on
the sections left for testing from this dataset (200 GPT-J texts, 200 GPT-Neo
texts and 200 LLaMA texts). Since we have used the human-written texts
from this dataset for training the detection models, we cannot fairly compute
precision, but we will compare the recall values, since recall is a function of
true positives and false negatives and it only deals with truly AI generated
texts. True positives are the texts correctly classified as AI-generated, and
false negatives are texts incorrectly classified as human written.s

Model GPT-J GPT-Neo LLaMA
Sniffer 0.74 0.83 0.07

Sent-RoBERTa 0.21 0.46 0.10
Seq-RoBERTa 0.26 0.40 0.72
SeqXGPT 0.96 0.99 0.90
RADAR 0.31 0.26 0.23

Our LSTM model 0.27 0.33 0.30
Our BERT model 0.95 0.97 0.89

Our DeBERTa model 0.73 0.81 0.67

Table 6. Comparison between recall values from models com-
pared in SeqXGPT’s paper, RADAR and our models, on three
of the document-level datasets from SeqXGPT’s testing sets.
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RADAR and our LSTM seem to be performing particularly poorly on this
specific dataset. SeqXGPT though has outstanding performance when com-
pared to all other models in this case. Our bert model comes very close to
SeqXGPT’s performance, falling behind with only 1% accuracy when it comes
to classifying the texts from these datasets as AI generated.

Next up, we compare Fast-DetectGPT [1] with our models, on a section
of 80 texts from our IELTS student and gpt-3.5-turbo test dataset. We are
constrained to reduce the size of the test dataset for this particular experiment
due to the very heavy workload Fast-DetectGPT demands during execution.
Fast-DetectGPT yields really good results, with an impressive perfect recall,
meaning it correctly guessed all the AI generated texts, as can be seen in Table
7. Our DeBERTa model comes really close, followed by our BERT, and then
the LSTM.

Model Accuracy Precision Recall F1 Score
Fast-DetectGPT 0.97 0.95 1 0.97
Our LSTM model 0.74 0.76 0.70 0.73
Our BERT model 0.89 0.91 0.89 0.88

Our DeBERTa model 0.96 0.96 0.96 0.96

Table 7. Comparison between results from Fast-DetectGPT
vs our models, on a sample of 80 texts from our IELTS student
and gpt-3.5-turbo dataset.

5. Conclusions and Future Work

To conclude, we have focused on developing a tool that aims to diminish
academic dishonesty caused by the use of large language models. This dishon-
esty is not caused by many educationally appropriate use cases of generative
pre-trained transformers, such as researching, searching for ideas, finding an-
swers to problems in order to learn solving methods or even receiving feedback
for one’s own work. However, a problem could arise when students claim entire
AI works or very big chunks of generated content as being their own. This is
where our tool proves to be useful. We have trained multiple models with mul-
tiple architectures, on various datasets, to find, to the best of our ability, the
best configuration for creating a tool specialized to detect essays, documents
or stories generated by AI. Specifically, we have created an LSTM model, a
BERT and a DeBERTa model, which are all lightweight, free to use and open
source, so that they can all be run locally on any user’s personal computer.
Based on the comparison in the previous section, it is hard to pick a winner
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between BERT and DeBERTa, since they both perform the best between the
3 models developed by us in 3 out of 6 experiments. However, BERT surpasses
a state of the art model, RADAR in all metrics in two of our experiments,
whereas DeBERTa only manages to achieve a slightly better precision than
Fast-DetectGPT, and, therefore, we will declare the BERT model our best.

With some future improvements, these models could become part widely-
used tools in schools and universities all around the world. They could benefit
from an even larger and more diverse dataset to be trained on, which would
require much more computational power, but would also yield much better
results. Experimenting with many different other transformer based models
and different hyperparameters definitely brings potential for achieving a much
higher accuracy. Another potentially big improvement would be creating cus-
tom embeddings for specializing models in particular detection applications,
meaning detecting generated text for each school subject in particular. We
would have, for example, a model specially designed to detect biology essays,
another for history, and so on. By using our custom embeddings instead of
pre-trained ones, we could much easier train a transformer for subject-specific
tasks.
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