
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIX, Number 2, 2024
DOI: 10.24193/subbi.2024.2.01

PYDSBUILDER – A DATASET BUILDER WRITTEN IN

PYTHON DJANGO

LIVIU-MARIAN BERCIU

Abstract. Data mining and the analysis of open-source projects have
become crucial in recent research, driven by the vast availability of data
across multiple programming domains. This paper focuses on two main
objectives: first, to present an experience report for designing a software
quality data mining tool, and secondly, to provide an open-source solution,
PyDs, that facilitates the creation of datasets specifically aimed at analyz-
ing software quality attributes. PyDs, leveraging Python and the Django
Framework, provides a comprehensive solution for researchers, encompass-
ing data extraction from repositories, the application of software analysis
tools, and the consolidation of results into a coherent format conducive to
in-depth experimentation and analysis. This tool addresses the pressing
need for effective data mining capabilities in evaluating software quality,
allowing the research community to harness the full potential of the vast
resources offered by open-source software projects.

1. Introduction

Open-source software development has seen a constant increase in popular-
ity and adoption [17] in both industry and academia in the recent years. Open-
source software (OSS) projects are software initiatives made freely accessible
by their creators on various online platforms, such as GitHub and Bitbucket.
These projects invite a broad audience to utilize the software, adhering solely
to the terms of the associated open-source license. The widespread accessibil-
ity of these data, which span numerous programming languages, technologies,
frameworks, and innovative solutions in various programming subdomains,

Received by the editors: 13 September 2024.
2010 Mathematics Subject Classification. 68N99.
1998 CR Categories and Descriptors. D2.0 [Software Engineering]: General – Stan-

dards; D2.9 [Software Engineering]: Management – Software Quality Assurance.
Key words and phrases. Data Mining, Software Quality Analysis Tools, Software Qual-

ity, Datasets, Dataset Builder, GitHub Mining.
© Studia UBB Informatica. Published by Babeş-Bolyai University

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International Licence.

5

6 LIVIU-MARIAN BERCIU

has significantly propelled research efforts [13]. The integration of versioning
systems plays a crucial role in these projects, as they not only facilitate collab-
orative development but also preserve a comprehensive history of the project’s
evolution. These historical data are invaluable, providing insight into devel-
opment practices, trends, and the progression of software solutions over time,
thereby enriching the research landscape with a deeper understanding of soft-
ware development dynamics.

One topic that researchers have focused on when it comes to software
projects is the assessment of software quality. Software quality is a multi-
faceted concept that refers to the degree to which a software product meets
specified requirements, customer expectations, and user needs in a reliable,
efficient, and maintainable manner. It encompasses various attributes such as
maintainability, reliability, and security. The large number of OSS projects
consisting of source code, issue tracking systems, and, more often than not,
the competition brought about by projects tackling the same software domain
has allowed researchers to review software quality in a transparent way [25].

Evaluation of software quality when it comes to open source data requires
high volumes of information to be extracted, often due to the constant compar-
ison between quality factors among a multitude of projects. Here, the concept
of data mining comes into play [4], which implies tools and solutions that
allow researchers to extract experiment data in a format that facilitates the
execution of experiments and the drawing of conclusions about the problem
studied. In the software engineering domain, examples of experiments include
analyzing the technical debt of multiple Java projects [15] and studying main-
tainability when it comes to the long-term evolution of software projects [20].
When it comes to applying artificial intelligence to software engineering, more
often than not, experiments require large amounts of data to be mined [26].
The mining of Github commit messages for natural language processing al-
gorithms [12] and learning from the structure and history of the source code
to automate the detection and fixing of bugs [8] are other applications where
data mining is valuable.

Data mining often involves custom-created software solutions that facilitate
data extraction from the internet. Some projects focus on the extraction and
visualization of issue tracker data, such as [11] and [9], while others focus on
offering a wider range of data extraction methods, focusing also on source
code, commits and diffs, such as [24].

This paper outlines an experience report for the design and implementation
of a data-mining tool specifically created for extracting datasets from software
versioning systems, such as GitHub. The primary objective of this work is
to present a detailed design proposal for a mining software repository tool

PYDSBUILDER – A DATASET BUILDER WRITTEN IN PYTHON DJANGO 7

and to provide an open source artifact called PyDs Builder, drawing from our
hands-on experience in developing a solution tailored to our research needs. In
addition, we provide an experiment scenario to demonstrate the application
and effectiveness of PyDs. We also provide suggestions on the application
of the tool in empirical research studies. In developing this tool, we reference
established methodologies for data extraction and analysis, ensuring a rigorous
approach to our development process.

The insights gained from this project are diverse and offer valuable lessons
on the challenges and strategies involved in designing efficient and scalable
data mining tools. These lessons could serve as an important resource for
researchers looking to develop or enhance their own tools, providing a practical
foundation from which to approach similar projects.

The overview of the tool on the side of the article is divided into two main
parts. The first one implies extracting issue tracking data and overall data
pertaining to a software project. Currently, the tool only supports Github as
a versioning system. The second one implies running software quality tools
such as SonarQube[23] and SZZ [22] on the extracted data, in order to further
refine the dataset and offer insights into the software quality attributes of a
specific project.

The paper is structured as follows: in Section 2 we will outline an overview of
a subset of the current data mining tools in academia. Section 3 discusses the
conceptual design of the solution. In sections 4, 5 and 6, we will go through the
architecture, database optimization, and usage of the application, reflecting
along the way the design choices matching the concept. Section 7 offers a final
overview of the challenges and experiences received while implementing the
solution. Sections 8 and 9 will underline future work, possible extensions of
the application, and concluding remarks.

2. Related Work

There has been several contributions addressing tools to mine software
repository and we intend to present those that we believe are of interest in our
approach.

PyDriller [24] is a software engineering tool created to help developers mine
Git repositories. Its main features include extracting the repository’s source
code, differences, commits, and modifications. It is a framework capable of
manipulating data and exporting them in the right format. The authors also
focused on creating a performant tool, allowing for fast-onboarding and easy
usage by developers. In opposition to our tool, PyDriller does not provide a
capability of saving the parsed data in a database for persistence, nor does it
allow extracting issue tracking data from a specific versioning system such as

8 LIVIU-MARIAN BERCIU

GitHub. It does, however, work with any git repository, as it utilizes the git
diff feature in order to parse repository data, making it, as stated beforehand,
a fast program.

GrumPy [11] is a Python and Django Framework [5] developed web-tool
with the purpose of mining issue data from issue trackers. With a focus on
GitHub as its main issue tracker of choice, the tool offers database management
capabilities without actually having database knowledge, it allows researchers
to download repositories issues data in parallel, using multiple task queues and
also provides access to data visualization features and statistical analysis of
the mined data. There are some similarities and differences between GrumPy
and our tool. On the one hand, both tools are implemented using Python and
Django. They use custom databases, different from the SQLite default that
Django comes with (MongoDB for GrumPy, PostgreSQL for our tool), and
the same is done for the queue management technology (Redis, as opposed to
RabbitMQ). Both tools also offer issue data mining using the same Github
API technology. On the other hand, GrumPy offers a visual overview on
the mined issues through a web platform, also targeting people without prior
knowledge of programming, while our tool is more technical, offering just the
Django admin panel for database visualization. In contrast, we mine more
Github information about repositories, such as Commits and Issue timelines,
while also allowing for custom tools execution in order to properly build a
dataset.

GHTorrent is another project that retrieves data from Github repositories
[10]. With this tool, the authors aim to provide persistent data and event
streams to the research community, as a service [10]. Data retrieval from
Github is done using a specifically implemented crawler, which queries for
raw data using the Github API. The extracted data are then sent to a set
of RabbitMQ queues, which further refine the data. It is important to note
here that this mechanism allows replication on multiple hosts, circumventing
the API limits by using different API tokens from multiple research teams.
Data persistence is done using MongoDB, due to the database technology’s
capability of scaling and handling of large amounts of data. While the GhTor-
rent solution allows for high amounts of data to be processed and put to the
community service, it does not process Github issues and also covers a wide
view of Github repositories, making it hard to target a specific niche. Instead,
our tool provides researchers with a solution in building their own dataset
for their specific needs, using a similar host distribution approach in order to
allow higher API limit thresholds and also supports tool execution, in order
to further enhance and interpret the data extracted.

PYDSBUILDER – A DATASET BUILDER WRITTEN IN PYTHON DJANGO 9

Lastly, Perceval [7] is a command line tool that supports a multitude of data
sources to retrieve data from, such as mailing lists, version control systems,
ticketing tools, and Q/A solutions. It comes as either a Python library or as
a command line tool, allowing for flexible usage. It is composed of multiple
back-end implementations targeting different data sources, with the possibility
of extension to support new entries, abiding by the user’s needs. While both
our tool and Perceval strive to offer data extraction and easy development
extension to researchers, there are two main differences to take into consider-
ation. Perceval [7] offers JSON-format data dumps, leaving the user to carry
the data persistence responsibility. We, on the other hand, use PostgreSQL
in order to save data directly for later use. The second difference is that there
is no analysis tools support on the raw data, leaving users to implement/use
their own data analysis pipelines. In our case, we support three out-of-the-box
tools for data analysis, allowing researchers to easily automate flows and use
the solution for an end-to-end dataset generation flow.

More often than not, tools created for data mining depend largely on re-
search purposes, and in many cases, they are created to address the specific
needs of a scientific experiment. For this reason, existing solutions are not al-
ways enough, as they often have to aggregate information from different tools,
making most of the tools rigid and hard to extend for research purposes other
than the ones they were built for.

3. Tool design

The requirement of extracting data from different sources in a consistent
and organized manner, which can be utilized for various experiments and
easily expanded, often leads to the need to create a software solution that
encompasses these aspects. When working with large amounts of data, the
need to structure and normalize the data is paramount and often involves
employing different algorithms that scan, extract and aggregate the needed
information in a form that facilitates processing. In order to do this, typically
different software tools are used and then their results aggregated in one form
or another, necessitating more effort from the researchers. The purpose of
this article is outlining the experience and actually creating a solution that
can aggregate data from different streams, under different formats, in one,
uniform, and general format that can be used for creative experiments and
extended as the researchers see fit.

An important aspect in creating a solution like this is to decide what data
formats are supported. Usually, data are extracted using API requests that
are provided by the data sources, or downloaded directly under the form of
files. Data thus often appears in JSON, CSV, YAMl or SQL formats, among

10 LIVIU-MARIAN BERCIU

many others, and are then processed into a single, uniform standard. For our
case, we see the need of supporting data conversion from the different formats
enumerated beforehand into a standardized format, such as SQL, that enables
researchers to conduct complex queries and analyses, and can also scale as the
amount of data increases.

Another important aspect is offering a way in running data extraction for
large periods of time without the constant supervision of the person using the
solution. This is done by implementing automation, under the form of task
queues, that allows cloud deployment and a clear set of instructions on how
to ensure data is processed continuously. Furthermore, the solution should be
implemented in a programming language that is popular in the programming
community, has a low learning curve and offers many out-of-the-box features
that developers can use, ensuring quick adoption and extension. Thus, another
important issue to follow is automation of data extraction.

Obtaining the data in the desired format should allow further processing by
feeding them to a data pipe of custom tools, each with its own purpose and end
results, suiting the specific needs of the researcher. The data obtained from
the execution of the tools will then be saved in the same uniform structure
decided beforehand, leaving the decision of further processing or concluding
the experiment in the hands of the user. In conclusion, if data from several
tools are needed, the decision about flow is important.

4. PYDS BUILDER SOLUTION

In the following sections, we introduce the specifics and implementation of
a data mining tool with a focus on the three important guidelines underlined
above: automation of data, format specification and flow decision.

PyDs Builder is a web, API-based solution that aims to offer a way for
researchers to create experimental datasets. It is built using Python and
Django Framework, leveraging the capabilities offered by both technologies,
such as fast development, scalability, excellent documentation, and an ORM
system allowing intuitive database manipulation.

Its main focus is extracting repository data from versioning systems, with
the incipient implementation offering support for Github. Data is processed
into the desired form and inserted into a custom database, following a pre-
established SQL schema. Data can be processed further by custom tools
in order to complete an experiment’s data acquisition goals. Afterwards, the
data can be used as the researchers see fit, either by publishing a totally new
dataset or feeding the data into an artificial intelligence solution, drawing new
conclusions and desired results.

An overall overview of the solution features is enumerated as follows:

PYDSBUILDER – A DATASET BUILDER WRITTEN IN PYTHON DJANGO 11

• Allow tool interaction through an API interface
• Extract Github repository data such as issues, issue timelines, com-
mits details and source code

• Execute software quality tools such as SonarQube [23], SZZ [22] and
PyRef [3] and ensure data persistence

• Provide automation for fast data processing
• Allow contribution and code extension through project modularity
and intuitive programming interface.

4.1. ARCHITECTURE. From an architectural point of view, a modular
monolith approach was used in order to build the application. This approach
was taken due to a few considerations. First, Django is a Python framework
that is designed as a monolith by default. It consists in a single code base,
a shared database and a single deployment. Second, Django has a native
application support, meaning it can be designed into modules such that a
single module can hold a single responsibility. From those two points came
the third, which implied that, by using modularization, we managed to create
separate code units for each tool that we support, setting boundaries so that
the shared code is held in common modules and tools don’t have to interfere
with each other. This further enriches the mission of allowing developers to
contribute to the PyDs solution by simply using the common modules already
defined to create a new module for their own specific needs.

Next, to enable automation, RabbitMQ [21] and Celery were used in order to
setup task queues. The task queue functionality provided by Celery allows the
application to perform asynchronous work in the background, while RabbitMQ
is the message broker that Celery uses in order to exchange messages and run
tasks. In this way, the application can be started, for example, on a virtual
machine in the cloud and perform work without constant supervision from the
user. Furthermore, it bypasses the HTTP request limit, allowing a task to
take from a few minutes to a few hours, depending on the needs, without the
risk of timeouts. The same rationale can be replicated on multiple instances of
virtual machines, allowing parallel execution and data extraction from multiple
sources at the same time. With this, we have covered the point about setting
up an automation mechanism for data extraction.

Data persistence was managed using PostgreSQL as the database engine of
choice. The reason this database technology was used, as opposed to using the
default SQLite Django database, was the following: it is highly scalable, han-
dling large volumes of data and concurrent users efficiently, it can be hosted in
the cloud, it supports JSON data types, and it has a robust security. In con-
trast, SQLite is a self-contained system that has no server setup, has limited

12 LIVIU-MARIAN BERCIU

scalability and concurrency, and lacks advanced features found in more com-
plex RDBMS (Relational Database Management System/s), such as ACID
transactions, complex query support and concurrency control.

Figure 1. PyDs Architecture Diagram

Figure 1 represents a visual overview of the architecture of the system. It
can be observed how the main system, comprised of common modules and the
specialized tools module, communicates with the internal modules of the data-
base instance and the task queue instance, and the external connection to the
Github API service. Common modules implement command-line functionality
and a wrapper over the Github API functionality. The modules of specialized
tools implement wrappers over SonarQube [23], PyRef [3] and PySzz [22].

4.2. TOOLS AND FLOWS. The solution code base includes support for
three software quality tools. The tools were chosen to serve the research
objectives and because of their relevance in the software quality research space
which provides ease of use for researchers to build datasets with the results of
their execution. The remainder of this section follows a short tool introduction
and the steps necessary for researchers to run the tools and extract data using
our solution. More details about tool usage can be found in Section 6.

In the context of enhancing software refactorings, PyRef [3] emerges as a
dedicated tool optimized for projects developed in Python. This tool con-
ducts a comparative analysis between two versions of a project to accurately
identify the refactorings that have occurred. PyRef is specifically engineered
to detect a suite of nine method-level refactoring operations, which include:
Rename Method, Add Parameter, Remove Parameter, Change/Rename Pa-
rameter, Extract Method, Inline Method, Move Method, Pull Up Method,

PYDSBUILDER – A DATASET BUILDER WRITTEN IN PYTHON DJANGO 13

and Push Down Method. PyRef’s ability to systematically identify and cat-
egorize method-level refactorings enhances its usefulness in gaining a more
comprehensive understanding of software evolution and maintenance practices
in Python-based projects.

In order to execute PyRef on a project, the PyRef repository must be cloned
in the solution root folder. Afterwards, the first thing to do is initialize a
repository in the system by calling the Create repository API url. The last
step is calling the PyRef API url specifying the repository and the commit
hash to be analysed. In case a commit hash is not provided, the latest release
of the repository, if any, is fetched from the database. It is important to note
that the tool will call the command ‘git rev-list ¡commit¿‘ and will compare
all pairs of commits that the command returns. The excution results will be
saved into the database.

The SZZ algorithm is used in software engineering to automatically identify
bug-introducing commits in version control systems. It operates by tracing
back from bug-fixing commits to the original commits where the bugs were
introduced, using the version history of a software project. An open source
implementation of the SZZ algorithm is PySZZ [22], a tool which we selected
based on its Python implementation and command line execution capabilities,
allowing quick integration with our tool.

For obtaining PySZZ data, the main two steps are preparing the input data
for the tool and executing the tool on the input data. The configuration
for SZZ is found in chapter 6. Calling the create input file and execute API
endpoints on the desired repository will create the input file, will execute the
tool on the input file and then, calling the extract endpoint, will save the result
into the database.

SonarQube is a static code analysis tool designed to enhance software qual-
ity standards [23]. It seamlessly integrates into the development workflow,
offering multi-language support for static analysis rules and classifying code
based on the software quality dimensions of reliability, security, and maintain-
ability. Since its inception in 2008, SonarQube has evolved significantly, as
evidenced by its frequent updates and the scholarly attention it has received,
including discussions in various scientific articles [15], [14] [19]. A noteworthy
development in its evolution is the shift from traditional issue classifications
such as bugs, vulnerabilities, and code smells towards the adoption of ”Clean
Code” principles. These principles are further delineated into categories such
as consistency, intentionality, adaptability, and responsibility, each defining
specific attributes of code quality. In order to execute the SonarQube flow,
users have to configure SonarQube on their work stations. This can be done

14 LIVIU-MARIAN BERCIU

either by following the installation steps from SonarQube’s official documen-
tation or by creating a docker container to hold the service. Subsequently,
making sure that the repository was already initialized in the database, the
endpoint sonarQube/analyze can be called. It is a POST method receiving a
body containing the repository owner, repository name, release tag, or commit
hash. It will execute SonarQube using the received information and save all
the SQ issues and SQ measures found.

We can conclude this section by reiterating the importance of deciding
about a clear flow of data extraction when it comes to integrating a
tool. From setting the incipient data such as the repository to be analyzed,
to writing the wrapping code over the tool interface, whether it is command-
line or web-based, to finally extracting and processing data in an automated
manner, each step has to be properly implemented and executed in the correct
order so that data acquisition is successful.

More endpoints are available in the project codebase due to various experi-
ments. They are left there for researchers to explore and use them as they see
fit.

5. Database optimization

The codebase includes a database architecture and entities that were used
in order to run different software engineering experiments that include data
extraction and arrangement. Next, we will take a look at some database
best practices and optimizations that can be done so that experiments run
optimally and the dataset is arranged as needed.

• Data Normalization: Minimize redundancy, improve data integrity
but balance to avoid overly complex queries. Try not to create cyclic
dependencies between table and keep a tree structure. For example,
the Repository can be the main table to which the other parts of the
database connect, but the Repository will not reference any of it’s
dependents.

• Indexing: Accelerate record retrieval in frequently searched columns,
balancing read performance with write overhead. The SQ Issue ta-
ble, which can contain millions of results, can have an index on the
commit hash field.

• Partitioning: Divide large datasets into manageable segments for
improved performance and easier management, tailored to query pat-
terns. For example, tables for SonarQube and PyRef do not have any
dependencies to eachother, being separated in their own semantic
field, ensuring data integrity and proper separation.

PYDSBUILDER – A DATASET BUILDER WRITTEN IN PYTHON DJANGO 15

• Denormalization: Introduce redundancy selectively to speed up
read operations where beneficial, with careful consideration of trade-
offs. Many-to-many tables can be added to avoid join links such
as Repository - Issue - Timeline - Commit, or table fields that can
reference the main entity (Commit references repository ID directly).

• Concurrent Access and Locking Strategies: Implement suit-
able locking mechanisms to maintain data integrity during simul-
taneous access, optimizing for the specific access pattern. Proper
selection of the database engine ensures proper concurrent access,
hence the choice of PostgreSQL over SQLite.

• Efficient Query Design: Craft queries to only fetch necessary data,
using joins effectively, and optimize regularly based on usage.

6. Execution and Usage

6.1. Installation. There are a few steps that have to be completed in order
for the tool to run successfully. The first step implies installing the project
dependencies using Python’s pip command. Afterwards, docker-compose [6]
must be used in order to start the containers necessary for the queue orches-
trator, the database and tools such as SonarQube. The tool is then started
by running the default Django command for starting a server. An important
part after starting the server is to run the database migrations in order to
setup the correct database schema to use. The exact steps for installation are
enumerated in Listing 1.

Install the requirements

pip install -r requirements.txt

Start the docker containers

docker -compose up -d

Start the server

python3 manage.py runserver

In another terminal , run the

migrations for the database

python3 manage.py migrate

Listing 1. PyDs Setup Steps

6.2. Configuration. The tool configuration is done inside the main Django
configuration file, namely ‘settings.py‘ found in the main application folder.
The settings file contains general information about configuring a Django
project, such as the logging level, database connection credentials, installed
applications, middlewares, celery queues and custom variable defined by the

16 LIVIU-MARIAN BERCIU

user. Although the public repository will contain a pre-completed configura-
tion file with examples for values, the code from Listing 2 exemplifies some of
the important configuration variables and their meanings.

SonarQube

SONARQUBEURL = < SonarQube URL to c a l l>

SONARQUBETOKEN = <p ro j e c t a n a l y s i s tokens>

SONARQUBEGLOBALTOKEN = <>

SONARQUBEUSERTOKEN = <>

SONARQUBE SCANNERURL = <URL of the Sonar scanner i f not

i n s t a l l e d l o c a l l y>

SONARQUBE PROJECTKEY = < s p e c i f i c p r o j e c t key to scan>

SONARQUBEUSERNAME = < l o g i n username>

SONARQUBEPASSWORD = < l o g i n password>

Github

GITHUB TOKENS = [< l i s t o f g ithub authen t i c a t i on tokens

for API c a l l s]

GITHUB ROOT DIR = <root d i r e c t o r y for github p r o j e c t s

c lon ing>

PySZZ

SZZ INPUT FILES FOLDER = < l o c a t i o n o f f i l e s pre−prepared

for PySZZ execut ion

SZZ OUTPUT FILES FOLDER = < l o c a t i o n o f f i l e s a f t e r PySZZ

execut ion>

SZZ GITHUB TOKEN = < s p e c i f i c g ithub token to run only

with PySZZ>

Listing 2. Configuration Variables Example

6.3. Usage. The basic usage of the application is done through the REST API
exposed through Django [5] views. Django has a MVT (Model View Template)
architecture, allowing developers to write API endpoints in specialized VIEW
classes. A subset of the available API calls is found in Table 1. One important
note is that, for mining Github data, we have used a similar endpoint format
as in the official Github API documentation, in order to offer familiarity for
users who have prior experience with the Github API. For exemplification

PYDSBUILDER – A DATASET BUILDER WRITTEN IN PYTHON DJANGO 17

purposes, we used the Ansible [2] and Pandas [16] repositories, as they are
some of the largest Python Github open source projects.

6.4. Data visualisation. There are two options available for visualizing the
extracted data. The first option is to utilize a specialized SQL visualization
tool that enables the examination of the database, execution of queries, and
visualization of the overall database structure. Alternatively, the Django ad-
min panel can be used to gain insights directly into the selected tables included
in the admin dashboard. Another way to view the data is by implementing
fetch requests in the API views of the tool.

7. EXPERIENCE REPORT

Developing PyDs from the ground up inevitably came with its own unique
set of obstacles. The following paragraphs outline the challenges encountered
during the development process of PyDs.

• We have made the decision to use SQL for data serialization and
database schema, instead of opting for the more direct JSON and/or
CSV formats that are commonly used for raw data. Although the
SQL approach may be more complex, we believe that the long-term
benefits, such as optimization and a rich feature set, outweigh the
disadvantages.

• The objective was to develop a universal approach for running exter-
nal tools. Since each tool has its own specific set of instructions for
execution, we were able to devise a general method by utilizing the
command line capabilities and creating wrapper classes and modules
for each individual tool.

• The selection of an appropriate database for automation is crucial.
Initially, SQLite was utilized as the preferred database option. How-
ever, it was soon realized that SQLite has limitations in terms of
capabilities and is not suitable for distributing the workload across
multiple machines. As a result, PostgreSQL was chosen as it pos-
sesses the necessary capabilities and is compatible with cloud hosting.

• The limitation of data intake was also influenced by the rate limits
imposed by open source project platforms. To address this challenge,
we developed a wrapper class that can utilize access tokens from
multiple researchers. This allows for continuous data retrieval, as
when one token reaches its rate limit, the next token in the queue is
automatically used.

18 LIVIU-MARIAN BERCIU

Purpose/Meaning API Call Method
Create a repository
database entry

/mining/repo/

github/pandas-dev/

pandas

POST

Delete a repository
from the database

/mining/repo/

ansible/ansible

DELETE

Fetch all issues for a
repository

/mining/repo/

github/ansible/

ansible/issues

POST

Fetch a specific issue for
a repository

/mining/repo/

github/ansible/

ansible/issues/123

GET

Extract timelines for
all already extracted
project issues

/mining/repo/

github/ansible/

ansible/issues/

timeline

POST

Extract an issue’s spe-
cific timeline

/mining/repo/

github/ansible/

ansible/issues/

4720/timeline

GET

Run a SonarQube
analysis for a specific
Github issue

/sonarqube/repo/

github/pandas-dev/

pandas/issue/36

POST

Run a SonarQube anal-
ysis for a commit hash
or release tag

/sonarqube/analyze POST

Run PySZZ create in-
put file

/szz/repo/

pandas-dev/pandas/

create_input_file

POST

Run PySZZ execute /szz/repo/

pandas-dev/pandas/

execute

POST

Run PySZZ extract /szz/repo/

pandas-dev/pandas/

extract

POST

Run PyRef on a reposi-
tory

/pyref/repo/

ansible/ansible

POST

Table 1. API Requests Overview

 /mining/repo/github/pandas-dev/pandas
 /mining/repo/github/pandas-dev/pandas
 /mining/repo/github/pandas-dev/pandas
 /mining/repo/ansible/ansible
 /mining/repo/ansible/ansible
 /mining/repo/github/ansible/ansible/issues
 /mining/repo/github/ansible/ansible/issues
 /mining/repo/github/ansible/ansible/issues
 /mining/repo/github/ansible/ansible/issues/123
 /mining/repo/github/ansible/ansible/issues/123
 /mining/repo/github/ansible/ansible/issues/123
 /mining/repo/github/ansible/ansible/issues/timeline
 /mining/repo/github/ansible/ansible/issues/timeline
 /mining/repo/github/ansible/ansible/issues/timeline
 /mining/repo/github/ansible/ansible/issues/timeline
 /mining/repo/github/ansible/ansible/issues/4720/timeline
 /mining/repo/github/ansible/ansible/issues/4720/timeline
 /mining/repo/github/ansible/ansible/issues/4720/timeline
 /mining/repo/github/ansible/ansible/issues/4720/timeline
 /sonarqube/repo/github/pandas-dev/pandas/issue/36
 /sonarqube/repo/github/pandas-dev/pandas/issue/36
 /sonarqube/repo/github/pandas-dev/pandas/issue/36
 /sonarqube/analyze
 /szz/repo/pandas-dev/pandas/create_input_file
 /szz/repo/pandas-dev/pandas/create_input_file
 /szz/repo/pandas-dev/pandas/create_input_file
 /szz/repo/pandas-dev/pandas/execute
 /szz/repo/pandas-dev/pandas/execute
 /szz/repo/pandas-dev/pandas/execute
 /szz/repo/pandas-dev/pandas/extract
 /szz/repo/pandas-dev/pandas/extract
 /szz/repo/pandas-dev/pandas/extract
 /pyref/repo/ansible/ansible
 /pyref/repo/ansible/ansible

PYDSBUILDER – A DATASET BUILDER WRITTEN IN PYTHON DJANGO 19

8. RESEARCH POSSIBILITIES AND EXTENSION

PyDs is a software solution that can be valuable both for researchers and
independent developers. For researchers, it provides a working framework for
running complex experiments in an automated way, ensuring data extraction
for very large datasets. While initially created for software quality experi-
ments, including running specialized software quality tools in order to uncover
maintainability, technical debt and reliability attributes of software projects,
it can be extended to allow artificial intelligence integration, it can support
multiple database engines such as MongoDB and MySQL and it can be en-
riched to extract data from other versioning and issue tracking systems such
as Bitbucket and Jira. Independent developers can greatly benefit from the
PyDs dataset generation tool by gaining enhanced insights into their projects’
maintainability and reliability, and by integrating analytics solutions on the
extracted data to suit their specific needs. The tool’s ability to integrate with
various development tools and database engines streamlines the development
workflow while offering opportunities for skill enhancement through interaction
and extension of the tool. This makes PyDs a versatile and valuable resource
for independent developers looking to innovate, improve project health, and
efficiently manage their software development processes.

PyDs is also offered as an open source project, allowing community con-
tributions and being subject of the FreeBSD license [1]. The source code
can be found by accessing the following link: https://figshare.com/s/

5dd7e88ba4e329acfa4a.

8.1. Possible scenario for tool usage. In order to expose the features of
the tool, we imagine a possible research scenario in which using PyDs Builder
can be beneficial. The objective of this study is to monitor and improve soft-
ware quality throughout the development lifecycle of a project. The aim is
to track the project’s quality trajectory, from commit to commit, and visual-
ize the evolution of issues to make informed decisions for continuous quality
improvement.

The methodology involves a streamlined process using the data mining tool.

• Selection of a Python Project: Choose a project with a sufficiently
large code base.

• Data Extraction: Utilize PyDs Builder API to fetch project data and
issues from GitHub.

• Quality Analysis: Analyze the project using SonarQube through the
integration with PyDs Builder.

• Issue Prioritization and Resolution: Identify critical issues affecting
quality and address them systematically.

https://figshare.com/s/5dd7e88ba4e329acfa4a
https://figshare.com/s/5dd7e88ba4e329acfa4a

20 LIVIU-MARIAN BERCIU

• Quality Trajectory Assessment: Evaluate changes in quality metrics
over time to gauge improvement or deterioration.

Upon analyzing the extracted data, notable trends in code quality met-
rics can be observed, particularly in the occurrence and distribution of spe-
cific types of issues across various developmental stages. Patterns between
SonarQube-reported issues and GitHub issues can be associated, shedding
light on the collaborative dynamics of the project contributors as they ad-
dressed quality concerns.

Using PyDs allows for tracking the quality trajectory of the project, iden-
tifying both problematic and beneficial commits and changes. This analysis
not only identifies areas that need improvement, but also facilitates proactive
interventions to increase overall project quality and stability. The insights
gained provide a detailed view of the project’s quality dynamics, highlighting
both strengths and areas for improvement in software development practices.

9. CONCLUSIONS

Data mining and open source project analysis have been one of the impor-
tant subjects of academia in recent years, with data availability comprising
multiple programming domains being one of the main factors for its ascen-
dance.

In this paper, we have introduced PyDs, a Python with Django Framework
solution that enables researchers to generate datasets for various scientific cri-
teria, primarily focusing on software quality attributes experiments. However,
it also allows for potential expansion to apply artificial intelligence to software
engineering. We have covered the conceptual design of the application, its
underlying principles, and delved into the implementation steps and different
perspectives. We have provided detailed instructions for setting up, config-
uring, and using the application to facilitate quick onboarding for readers.
Finally, we have explored potential avenues for extending the application and
shared our experience in developing this intricate tool.

The subsequent stages of the application involve its practical implementa-
tion in scientific settings and research projects. We are confident that PyDs
can serve as a reliable solution in these scenarios, allowing researchers to utilize
it for data extraction in popular software quality tools such as SonarQube and
SZZ algorithm implementations. Currently, PyDs only supports Github, but
there are future plans to expand its capabilities to integrate with the Jira tick-
eting system and extract CI/CD pipelines data from platforms like Jenkins,
as we believe project building steps and performance indicators can provide
valuable research data. In the end, PyDs Builder has been successfully utilized

PYDSBUILDER – A DATASET BUILDER WRITTEN IN PYTHON DJANGO 21

to create a dataset focused on open-source Python projects [18], highlighting
its flexibility and practical utility.

References

[1] The freebsd license, 2023.
[2] Ansible, I., et al. Ansible: Radically simple IT automation. https://github.com/

ansible/ansible, 2023.
[3] Atwi, H., Lin, B., Tsantalis, N., Kashiwa, Y., Kamei, Y., Ubayashi, N., Bavota,

G., and Lanza, M. Pyref: Refactoring detection in python projects. In 2021 IEEE 21st
International Working Conference on Source Code Analysis and Manipulation (SCAM)
(2021), pp. 136–141.

[4] Chaturvedi, K., Sing, V., and Singh, P. Tools in mining software repositories.
In 2013 13th International Conference on Computational Science and Its Applications
(2013), pp. 89–98.

[5] Django Software Foundation. Django.
[6] Docker, Inc. Docker: Empowering app development for developers, 2023. Accessed:

2024-02-17.
[7] Dueñas, S., Cosentino, V., Robles, G., and Gonzalez-Barahona, J. M. Perceval:

software project data at your will. In Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings (New York, NY, USA, 2018), ICSE
’18, Association for Computing Machinery, p. 1–4.

[8] Elmishali, A., Stern, R., and Kalech, M. An artificial intelligence paradigm for
troubleshooting software bugs. Engineering Applications of Artificial Intelligence 69
(2018), 147–156.

[9] Fiechter, A., Minelli, R., Nagy, C., and Lanza, M. Visualizing github issues. In
2021 Working Conference on Software Visualization (VISSOFT) (2021), pp. 155–159.

[10] Gousios, G., Vasilescu, B., Serebrenik, A., and Zaidman, A. Lean ghtorrent:
Github data on demand. pp. 384–387.

[11] Jr., J. M., Santana, R., and Machado, I. Grumpy: an automated approach to
simplify issue data analysis for newcomers. In Proceedings of the XXXV Brazilian Sym-
posium on Software Engineering (New York, NY, USA, 2021), SBES ’21, Association
for Computing Machinery, p. 33–38.

[12] Kourtzanidis, S., Chatzigeorgiou, A., and Ampatzoglou, A. Reposkillminer:
identifying software expertise from github repositories using natural language process-
ing. In Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering (New York, NY, USA, 2021), ASE ’20, Association for Comput-
ing Machinery, p. 1353–1357.

[13] Krogh, G. v., and Spaeth, S. The open source software phenomenon: Characteristics
that promote research. The Journal of Strategic Information Systems 16, 3 (2007),
236–253.

[14] Lenarduzzi, V., Lomio, F., Taibi, D., and Huttunen, H. On the fault proneness of
sonarqube technical debt violations: A comparison of eight machine learning techniques.
CoRR abs/1907.00376 (2019).

[15] Lenarduzzi, V., Saarimäki, N., and Taibi, D. The technical debt dataset. In Pro-
ceedings of the Fifteenth International Conference on Predictive Models and Data Ana-
lytics in Software Engineering (Sept. 2019), PROMISE’19, ACM.

https://github.com/ansible/ansible
https://github.com/ansible/ansible

22 LIVIU-MARIAN BERCIU

[16] McKinney, W., et al. pandas: a powerful Python data analysis toolkit. https://
github.com/pandas-dev/pandas, 2023.

[17] Midha, V., and Palvia, P. Factors affecting the success of open source software.
Journal of Systems and Software 85, 4 (2012), 895–905.

[18] Moldovan, V.-A., Berciu, L.-M., and Patcas, R.-D. The python software quality
dataset. In 50th Euromicro Conference Series on Software Engineering and Advanced
Applications (2024).

[19] Molnar, A.-J., and Motogna, S. Long-term evaluation of technical debt in open-
source software. In Proceedings of the 14th ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM) (New York, NY, USA,
2020), ESEM ’20, Association for Computing Machinery.

[20] Molnar, A.-J., and Motogna, S. A study of maintainability in evolving open-
source software. In Evaluation of Novel Approaches to Software Engineering (Cham,
2021), R. Ali, H. Kaindl, and L. A. Maciaszek, Eds., Springer International Publishing,
p. 261–282.

[21] RabbitMQ Team. Rabbitmq: Open source message broker. https://www.rabbitmq.
com/, 2023. [Online; accessed 10-February-2024].

[22] Rosa, G., Pascarella, L., Scalabrino, S., Tufano, R., Bavota, G., Lanza, M.,
and Oliveto, R. A comprehensive evaluation of szz variants through a developer-
informed oracle. Journal of Systems and Software 202 (2023), 111729.

[23] SonarSource. Sonarqube: Continuous code quality inspection tool, 2023. [Online;
accessed 10-February-2024].

[24] Spadini, D., Aniche, M., and Bacchelli, A. Pydriller: Python framework for mining
software repositories. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software En-
gineering (New York, NY, USA, 2018), ESEC/FSE 2018, Association for Computing
Machinery, p. 908–911.

[25] Spinellis, D., Gousios, G., Karakoidas, V., Louridas, P., Adams, P. J., Samo-
ladas, I., and Stamelos, I. Evaluating the quality of open source software. Electronic
Notes in Theoretical Computer Science 233 (2009), 5–28.

[26] Wangoo, D. P. Artificial intelligence techniques in software engineering for automated
software reuse and design. In 2018 4th International Conference on Computing Com-
munication and Automation (ICCCA) (2018), pp. 1–4.

Babes, -Bolyai University, Faculty of Mathematics and Computer Science, 1
Mihail Kogălniceanu, Cluj-Napoca 400084, Romania

Email address: liviu.berciu@ubbcluj.ro

https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://www.rabbitmq.com/
https://www.rabbitmq.com/

