STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LXVIII, Number 1, 2023
DOI: 10.24193/subbi.2023.1.05

FIELD EXPERIMENT OF THE MEMORY RETENTION OF
PROGRAMMERS REGARDING SOURCE CODE

ANETT FEKETE AND ZOLTAN PORKOLAB

ABSTRACT. Program comprehension is a continuously important topic in
computer science since the spread of personal computers, and several pro-
gram comprehension models have been identified as possible directions of
active code comprehension. There has been little research on how much
programmers remember the code they have once written. We conducted
two experiments with a group of Computer Science MSc students. In the
first experiment, we examined the code comprehension strategies of the
participants. The students were given a task to implement a minor feature
in a relatively small C++ project. In the second experiment, we asked the
students 2 months later to complete the same task again. Before starting
the clock, we asked the students to fill a questionnaire which aimed to
measure program code-related memory retention: we inquired about how
much the students remembered the code, down to the smallest relevant de-
tails, e.g. the name of functions and variables they had to find to complete
the task.

After the second experiment, we could compare the solution times of
those students who participated in both parts. As one result, we could see
that these students could solve the task in shorter time than they did in
the first experiment. We also looked at the results of the questionnaire:
the vast majority of students could not precisely remember more than two
or three identifiers from the original code. In this paper, we will show how
this result compares to the forgetting curve.

1. INTRODUCTION

Software development is a knowledge-intensive and complex task that de-
mands programmers to master and utilize vast amounts of information. Pro-
grammers need to have a deep understanding of programming languages, al-
gorithms, and design patterns, among other things. Moreover, the retention
of knowledge and memory of previously written and read code is essential for

Received by the editors: 1 March 2023.

2010 Mathematics Subject Classification. 68U99.

1998 CR Categories and Descriptors. I.m [Computing Methodologies]: Miscella-
neous; J.m [Computer Applications]|: Miscellaneous.

Key words and phrases. code comprehension, memory retention, experiment.

71

72 ANETT FEKETE AND ZOLTAN PORKOLAB

program comprehension and efficient coding. The memory retention of coding
concepts is important for programmers’ productivity, as they must be able to
recall previous code when creating new programs.

The ability to remember code and programming concepts is a critical com-
ponent in the development process, but it is not always clear how long the
retention lasts, or how it impacts performance. To address these questions,
this paper investigates the effect of forgetting on source code comprehension
and task solving time. We also examine whether programmers tend to remem-
ber code details or larger units, such as functions or algorithms. By answering
these questions, we can gain a better understanding of the cognitive processes
involved in programming and provide insights into how programmers can op-
timize their performance by retaining and recalling code more effectively.

In order to measure memory retention regarding source code, we conducted
two experiments with Computer Science MSc students, in which the partic-
ipants had to solve the same programming task and answer memory-related
questions. The experiments took place two months apart. After the second
experiment, we investigated the memories the participants had of the task, and
how that influenced their solution time. We asked the students to describe
their memories with as much details as possible in an essay question, and
asked them to fill a multiple-choice question which targeted the remembrance
of exact source code details.

In this paper, we attempt to answer the following research questions in
connection with source code comprehension and memory retention:

e RQ1: How does forgetting affect source code comprehension and
task solving time?

e RQ2: Are programmers more likely to remember the details of the
code, or larger units like functions or algorithms?

The rest of the paper is structured as follows: In Section 2, we present
earlier research about memory retention and programming experiments. In
Section 3, we describe the details of both experiments, putting more focus on
the second one. Section 4 contains the results of the second experiment. In
Section 5, we mention the possible threats to the validity of our study. Finally,
we conclude the paper in Section 6.

2. RELATED WORK

Our work is focused on the memory retention of programmers regarding
source code through two experiments in which the participants were given a
programming task to solve. In this section we present related research to show
how other studies conducted experiments that were centered around the work

MEMORY RETENTION OF PROGRAMMERS REGARDING SOURCE CODE 73

of software developers, and attempts to measure how programmers remember
source code.

2.1. Program comprehension experiments. Programming tasks require
cognitive effort and mental models from programmers, and can affect them
physically. Many experiments have investigated program comprehension and
computer science students, examining various aspects. For example, Naka-
gawa et al. measured cerebral blood flow during program comprehension and
found that more complex code increased mental workload [14]. Andrzejewska
and Skawinska tracked eye activity and found that external conditions and cog-
nitive load affected comprehension speed [1]. Kriiger et al. examined feature
traceability and program decomposition and found that feature traces were
helpful in solving tasks more quickly, while program decomposition hindered
it [10]. They also found based on developer interviews that self-assessments
are reliable sources of developer-related information, and programmers tend
to be correct when they recall memories on project-related questions that they
consider important [11]. Their findings confirm the study of Koenemann and
Robertson who investigated the analysis methods of professional developers,
and found that they focus on the software parts that they perceive as relevant
to them [9]. Cornelissen, Zaidman, and Dursen investigated trace visualiza-
tion and found that it could speed up task solving by 22% [3]. Kather and Jan
found that program comprehension and algorithm comprehension are not the
same, and that domain knowledge, experience, and abstract knowledge can
help solve tasks more quickly [8].

2.2. Memory retention and forgetting. In 1885, Ebbinghaus defined the
so-called "forgetting curve” [4] (see Figure 1) after a series of experiments in
which his subjects tried to remember randomly selected words. The most im-
portant factor of the formula is time. The original experiments of Ebbinghaus
were since then replicated, confirming the correctness of the formula with some
small modification in its smoothness [13], and it has also been investigated in
the context of brain function [16]. The psychological experiments of Averell
and Heathcote [2] confirmed that the exponential curve is the best fit to model
human forgetting.

Forgetting and memory retention has been scarcely researched from a soft-
ware development and source code aspect. Some studies that utilize the for-
getting curve include the work of Xu et al. who investigated the concreteness
and readability of identifiers in the source code based on how easily program-
mers remembered them [18]. One study that is closer to our goals is the work
of Unal et al. who looked at how repeated exposure to the same source code
helps solving programming tasks [17]. Kang and Hahn found in their study

74 ANETT FEKETE AND ZOLTAN PORKOLAB

Memory

1 2 3 4 5 6
Time remembered (days)

FIGURE 1. The forgetting curve as described by Ebbinghaus
in the 19th century.

that forgetting affects methodological knowledge more than technology-related
knowledge [7]. Most similarly to our research objectives, Kriiger et al. exam-
ined whether the forgetting curve is applicable in remembering source code.
Their experiment covered hours and days during which the programmers were
asked to recall memories of the source code [12]. Our aim is to investigate
whether programmers are likely to remember abstract levels and details of the
source code after a longer time period.

3. EXPERIMENTS

We planned two experiments in advance: in the first one, we targeted the
code comprehension strategies of junior programmers. The goal of the sec-
ond experiment was to gain an understanding of the memory retention of
programmers of source code.

We asked Computer Science MSc students from E6tvos Lorand University
to take part in the experiment. The students were all enrolled in the Multi-
paradigm programming course whose main topic is advanced C+-+. A total
of 27 students took part in the first experiment, and 16 of them took part in
both. We considered MSc students to be better experimental subjects, since
they generally have more experience in programming (both as a job and as an
activity), and because of that, they are more conscious about code compre-
hension and programming tasks.

Both experiments consisted of two main parts: first, the students were asked
to fill a different questionnaire. Afterwards, the students were given a small

MEMORY RETENTION OF PROGRAMMERS REGARDING SOURCE CODE 75

C++ task to solve in TinyXML2', a simple XML parser which contains only
three C++ source files of hundreds of lines of code. The task was focused on
code comprehension rather than writing new code: TinyXML?2 is case-sensitive
by default regarding XML tags. The students had to make the library case-
insensitive by finding a particular line of code, and replace it with calling
a function that we readily provided for them. Thus, we could measure code
comprehension speed because the students only had to focus on understanding
the code and finding the line in question instead of spending time with writing
the replacement code.
The following function definition was provided for the participants:

#include <ctype.h>

int my_stricmp(const char* sl1, const char* s2)

{

while (tolower((unsigned char) *s1) == tolower ((unsigned
— char) *s2))
{
if (xs1 == ’\0’)
return O;
sl++; s2++;
}
return (int) tolower((unsigned char)*sl) - (int) tolower

< ((unsigned char)*s2);

}

The line to be modified was line 1142 in tinyzml.cpp:

else if (!XMLUtil::StringEqual(endTag.GetStr(), ele->Name
— O) A

The correct solution:

else if (my_stricmp(endTag.GetStr(), ele->Name())) {

We divided the students into two groups: one group had to use CodeCom-
pass for code comprehension activities, the other group was free to use any
code editor or code comprehension tool. The latter group formed the control

lTﬁnthdLQ GitHub repo: https://github.com/leethomason/tinyxml2

76 ANETT FEKETE AND ZOLTAN PORKOLAB

group in the first experiment. CodeCompass [15] is an open-source code com-
prehension framework which applies static analysis to the source code and its
environment (e.g. compilation database, version control repository), and pro-
vides various textual and visual support for understanding source code both
on code level and file level.

3.1. First experiment. In the first experiment, we investigated the usual
code comprehension strategies of young programmers, and how that correlates
with factors such as the amount of experience as a programmer, and language
familiarity. Building on our earlier study [6], we aimed to investigate the
comprehension functionality that students used during task solution.

In the questionnaire of the first experiment we inquired about the amount
of their work and general programming experience, as well as the languages
they were most familiar with. As mentioned above, 27 students took part in
this experiment: 15 had to use CodeCompass, and 12 were free to use any
other tool.

Based on the participants’ solution time and their answers to the question-
naire, we concluded that while more programming experience meant quicker
task solution, work experience correlated more with solution time. The stu-
dents in the CodeCompass group used our demo server?, which collects anony-
mous user activity using Google Analytics. The activity log in CodeCompass
showed that the students were majorly using top-down comprehension strate-
gies.

The details and results of the first experiment are elaborated in our previous
study [5].

3.2. Second experiment. The second experiment took part cc. two months
after the first one. As mentioned above, 16 students took part in both the
first and the second experiment, thus their results are relevant in this study.

The students were asked to solve the same programming task as in the
first experiment: find the line of code in TinyXML2 in which the function call
needs to be replaced with the provided function in order to make XML parsing
case-insensitive.

We asked them to fill a different questionnaire the second time. The ques-
tions were related to source code memory retention:

e Essay question: What do you remember from the first experiment?
Please provide as much information as you can, any detail can be
useful.

e Multiple-choice question: Which identifiers were in the program that
you had to modify? For this question we listed 9 correct and 21 false

2Demo server: https://codecompass.net/

MEMORY RETENTION OF PROGRAMMERS REGARDING SOURCE CODE 77

identifiers. The false ones were most of the time very similar to the
correct ones, or they were made to sound relevant in an XML parser.

All students had to use the same tool for comprehension activities they used
in the first experiment. Our goal was to repeat the first experiment down to
every possible detail, in order to remove any additional factors that might
affect measuring memory retention. Both experiments were conducted in the
same university computer lab, and the machines were equipped with the same
hardware and software.

4. RESULTS AND DISCUSSION

By repeating the experiment, and asking the students about their memories
of the first experiment, we wanted to investigate whether participants remem-
ber source code details or structure, and whether remembering details of the
actual code correctly is correlated with quicker solution time. In our previous
study, we collected the common elements of code comprehension models [6].
These elements usually rely on how the code is written syntactically (e.g. bea-
cons are "visual cues” in the code the programmer is looking for to identify the
meaning of a source code unit), this is why we focus on remembering actual
identifiers.

We evaluated the students’ responses to the essay question. 14 out of 16
students remembered the task clearly, and 9 students described steps of their
previous solution. It is worth noting, that multiple students explicitly stated
in their response that they do not usually remember exact identifiers of any
source code, instead they remember structural details.

Table 2 shows the number of correct and incorrect guesses of the multiple-
choice question for each student. We calculated the y-square test for the
answers of the question to determine whether the distribution of responses
is significantly different from what would be expected by chance. Table 1
represents the contingency table of the calculation. We divided the responses
into two categories, marked and not marked.

Equation 1 shows the results of the test. The degree of freedom in the
calculation was 1, and the original significance was p < .05. The statistic
value and the calculated significance suggest that the students’ guesses were
influenced by the correct vs. incorrect nature of the answer. Equation 2 shows
the statistics of the test with Yates correction: the results in this case did not
change the conclusion, the null hypothesis (that the students’ answers are
independent of correctness of the answer) remains rejected.

(1) x2(1) = 21.42, p < .00001

78 ANETT FEKETE AND ZOLTAN PORKOLAB

Correct answers | Wrong answers
Marked 58 68
Not marked 7 247
TABLE 1. The contingency table used in the y-square test for
the evaluation of the multiple-choice question in which we ex-
amined if the students remember identifiers correctly.

(2) x?(1) = 20.37,p < .00001

In Table 2 we also listed the solution times of each student who took part in
both experiments. Comparing the two experiments, the solution times show
an average improvement of 16 minutes and 20 seconds. If we look at the
individual solution times, we can see that students performed better in all
cases we knew both solution times.

The proportion of correct vs. wrong guesses was greater or equal to 1
in the case of 8 students, while this number was below 1 for the other 8
students. Comparing the solution times, the students with better guess rate
improved by 16.97 minutes on average, while the other 8 students decreased
their average solution time by 15.6 minutes. The cc. 1.5-minute difference
between the average improvements shows that remembering identifiers better
correlates with quicker solution time. However, the significant improvement
in solution times for all participants suggests that remembering the process
of task solution is more significant than remembering exact identifiers in the
source code. We included in the rightmost column of Table 2 if a student
described steps or details of the solution in the essay question. 7 students who
had more correct than wrong guesses reported such memories, while only 2
students remembered any details from the solution. This result suggests that
remembering steps of an algorithm and exact details from a code base are
correlated.

To answer RQ1 (How does forgetting affect source code comprehension and
task solving time?), our data shows that the participants who reported more
memories of the first experiment - either in the form of actual identifiers or
verbal descriptions of the task or the source code - performed better on average
during the second experiment.

Solution times and responses to the questions suggest that the participants
had statistically significant memories of the source code after two months of the
initial experiment. To answer RQ2 (Are programmers more likely to remember
the details of the code, or larger units like functions or algorithms?), the data
suggests that there is a correlation between remembering exact details of the

MEMORY RETENTION OF PROGRAMMERS REGARDING SOURCE CODE 79

source code and having more memories of the structure or steps of solving a
programming task.

The findings in reply to RQ2 are complementary to a related study [11] that
concluded from developer interviews that abstract knowledge of the source
code is more important to remember. However, our results are somewhat con-
tradictory of another study by Kriiger et al. [12] who found that the forgetting
curve applies to remembering source code. According to our results, the par-
ticipants had a fairly good recollection of the solution process even after 2
months. This suggests that forgetting slows down after a certain amount of
time, as we observed memory retention after two months, and the aforemen-
tioned study investigates remembering source code after some days.

Solution | Solution Detailed

Student # | time #1 | time #2 | Correct ids | Wrong ids mem-

(mins) (mins) ories?
1 11 3:05 7 7 v
2 N/A 25 5 7 X
3 33 8:03 3 2 v
4 19:50 N/A 2 2 X
5 N/A 14 6 4 X
6 11:30 8:54 5 6 v
7 26:40 4:34 1 3 v
8 30 8 7 3 v
9 7 1:20 4 4 v
10 23:48 16:54 2 7 X
11 37 27 1 3 X
12 59:48 19 2 3 X
13 24 2:50 4 3 v
14 N/A N/A 7 0 v
15 12 4:30 4 2 v
16 26:47 15:35 5 12 X

TABLE 2. The results of the second experiment. Comparing
solution times we can see that all students performed better
the second time which implies complex memory retention in
spite of inconsistent remembrance of exact identifiers.

5. THREATS TO VALIDITY

As any research that relies on human resources and input, our study holds
some obvious threats to validity.

80 ANETT FEKETE AND ZOLTAN PORKOLAB

Small number of participants. Although 27 students took part in the
first experiment, only 16 of them was present during the second one. The
students come from similar backgrounds considering their computer science
education and programming experience. This might narrow down our research
results regarding target population, making more experiments needed with a
more diverse pool of participants.

Incomplete data. The questionnaire was available for the students on
the Canvas learning management system. The responses of one student could
not be found after the experiment. The solution times were also collected
through Canvas, and some data was lost between the experiments, this is why
a few solution times are missing from Table 2. The missing data is omitted
in our calculations in order to avoid distorting results, hence the metrics in
our results are computed for 12 students instead of 16, the total number of
participants.

Short study period for the students. In our experiments, the students
had one hour both times to study the source code of TinyXML2. In reality,
a programmer spends much more time working on the same source code, so
their memory retention of the code is probably stronger. However, our data
shows that even with a short study period and after a longer intermission, the
students were able to recall the comprehension process and solved the task
quicker than the first time, which suggests that more time spent with the
same code instills even stronger memories.

Effects of the first experiment. The students were aware that they were
participating in an experiment both times which gives space to biased results
as they might have paid more attention to the code and exercise than they
would have had they not know about the experiment. However, at the time of
the first experiment, they did not know there would be a second one so they
had no direct reason to clearly remember the details of the first one after the
2-month break.

6. CONCLUSION

In this research, we presented the results of two consecutive experiments
with Computer Science MSc students in which we investigated the effect of
forgetting in source code comprehension and solving programming tasks. The
students were asked to fill questionnaires and solve the same C++ program-
ming task in both experiments. In the first experiment, we examined the
code comprehension strategies of the students, and the correlation between
task solution time, and work experience, general programming experience,
and familiarity with programming languages. In the second experiment, we
investigated how much the students remembered from the first experiment: we

MEMORY RETENTION OF PROGRAMMERS REGARDING SOURCE CODE 81

asked them to describe their memories, and answer a multiple-choice question
about the actual identifiers in the source code.

In total, 16 students took part in both experiments. We executed a y-square
test on the students’ guesses in the multiple-choice question. The test showed
that there is correlation between the correctness of an answer option and if it
was guessed by a student.

The average solution time was decreased by 16.3 minutes on average among
the participants. In case of the 8 students who marked at least as many
correct identifiers as wrong ones in the multiple-choice question, the solution
time improved by 15.6 minutes, and 16.97 minutes for the other 8 students.
This result suggests that remembering the process of task solution is a more
significant factor in code comprehension than remembering exact identifiers.
The results of our research suggest that remembering both structural and
code-level details contribute to quicker task solution, and that remembering
more exact details of the source code correlates with the retention of more
structural memories.

REFERENCES

1. Magdalena Andrzejewska and Agnieszka Skawinska, Examining students’ intrinsic cog-
nitive load during program comprehension—an eye tracking approach, International Con-
ference on Artificial Intelligence in Education, Springer, 2020, pp. 25-30.

2. Lee Averell and Andrew Heathcote, The form of the forgetting curve and the fate of
memories, Journal of mathematical psychology 55 (2011), no. 1, 25-35.

3. Bas Cornelissen, Andy Zaidman, Arie Van Deursen, and Bart Van Rompaey, Trace
visualization for program comprehension: A controlled experiment, 2009 IEEE 17th In-
ternational Conference on Program Comprehension, IEEE, 2009, pp. 100-109.

4. Hermann Ebbinghaus, Uber das gedachinis, 1885.

5. Anett Fekete and Zoltan Porkoldb, Report on a Field Experiment of the Comprehension
Strategies of Computer Science MSc Students, 2022 IEEE 16th International Scientific
Conference on Informatics - Proceedings, IEEE, 2022, pp. 73-81.

6. Anett Fekete and Zoltan Porkoldb, A comprehensive review on software comprehension
models, Annales Mathematicae et Informaticae, vol. 51, Liceum University Press, 2020,
pp- 103-111.

7. Keumseok Kang and Jungpil Hahn, Learning and forgetting curves in software develop-
ment: Does type of knowledge matter?, ICIS 2009 Proceedings (2009), 194.

8. Philipp Kather and Jan Vahrenhold, Is algorithm comprehension different from program
comprehension?, 2021 IEEE/ACM 29th International Conference on Program Compre-
hension (ICPC), IEEE, 2021, pp. 455-466.

9. Jiirgen Koenemann and Scott P Robertson, Expert problem solving strategies for program
comprehension, Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 1991, pp. 125-130.

10. Jacob Kriiger, Giil Calikli, Thorsten Berger, Thomas Leich, and Gunter Saake, Effects
of explicit feature traceability on program comprehension, Proceedings of the 2019 27th

82 ANETT FEKETE AND ZOLTAN PORKOLAB

ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2019, pp. 338-349.

11. Jacob Kriiger and Regina Hebig, What developers (care to) recall: An interview survey
on smaller systems, 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME), IEEE, 2020, pp. 46-57.

12. Jacob Kriiger, Jens Wiemann, Wolfram Fenske, Gunter Saake, and Thomas Leich, Do
you remember this source code?, Proceedings of the 40th International Conference on
Software Engineering, 2018, pp. 764-775.

13. Jaap MJ Murre and Joeri Dros, Replication and analysis of ebbinghaus’ forgetting curve,
PloS one 10 (2015), no. 7.

14. Takao Nakagawa, Yasutaka Kamei, Hidetake Uwano, Akito Monden, Kenichi Mat-
sumoto, and Daniel M German, Quantifying programmers’ mental workload during pro-
gram comprehension based on cerebral blood flow measurement: a controlled experiment,
Companion proceedings of the 36th international conference on software engineering,
2014, pp. 448-451.

15. Zoltan Porkolab, Tibor Brunner, Daniel Krupp, and Marton Csordas, Codecompass: an
open software comprehension framework for industrial usage, Proceedings of the 26th
Conference on Program Comprehension, 2018, pp. 361-369.

16. Dong Gue Roe, Seongchan Kim, Yoon Young Choi, Hwije Woo, Moon Sung Kang,
Young Jae Song, Jong-Hyun Ahn, Yoonmyung Lee, and Jeong Ho Cho, Biologically
plausible artificial synaptic array: Replicating ebbinghaus’ memory curve with selective
attention, Advanced Materials 33 (2021), no. 14, 2007782.

17. Utku Unal, Eray Tiiziin, Tamer Gezici, and Ausaf Ahmed Farooqui, Investigating the
impact of forgetting in software development, arXiv preprint arXiv:2204.07669 (2022).

18. Weifeng Xu, Dianxiang Xu, and Lin Deng, Measurement of source code readability us-
ing word concreteness and memory retention of variable names, 2017 IEEE 41st An-
nual Computer Software and Applications Conference (COMPSAC), vol. 1, IEEE, 2017,
pp. 33-38.

EO6TVOS LORAND UNIVERSITY,, FACULTY OF INFORMATICS, EGYETEM TER 1-3.,, 1053
BupAPEST,, HUNGARY
Email address: afekete@inf.elte.hu

EO6TVOS LORAND UNIVERSITY,, FACULTY OF INFORMATICS, EGYETEM TER 1-3.,, 1053
BubpAPEST,, HUNGARY
Email address: gsd@inf.elte.hu

