
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVIII, Number 1, 2023
DOI: 10.24193/subbi.2023.1.03

DETECTING PROGRAMMING FLAWS IN STUDENT

SUBMISSIONS WITH STATIC SOURCE CODE ANALYSIS

PÉTER KASZAB AND MÁTÉ CSERÉP

Abstract. Static code analyzer tools can detect several programming
mistakes, that would lead to run-time errors. Such tools can also detect
violations of the conventions and guidelines of the given programming lan-
guage. Thus, the feedback provided by these tools can be valuable for both
students and instructors in computer science education. In our paper, we
evaluated over 5000 student submissions from the last two years written
in C++ and C# programming languages at Eötvös Loránd University
Faculty of Informatics (Budapest, Hungary), by executing various static
code analyzers on them. From the findings of the analyzers, we highlight
some of the most typical and serious issues. Based on these results, we
argue to include static analysis of programming submissions in automated
and assisted semi-automatic evaluating and grading systems at universi-
ties, as these could increase the quality of programming assignments and
raise the attention of students on various otherwise missed bugs and other
programming errors.

1. Introduction

The demand for IT professionals is constantly increasing, as software devel-
opment and maintenance is required in various fields, ranging from the finance
sector through energy and manufacturing to healthcare [9]. As a direct con-
sequence, more and more people are enrolling each year in computer science
degree programs and other IT and programming related courses at universi-
ties [14]. This increment of students significantly increases the workload of
university teachers and makes the manual grading of each student submission

Received by the editors: 01 March 2023.
2010 Mathematics Subject Classification. 68U99, 68Q55, 97Q70.
1998 CR Categories and Descriptors. F.3.2 [Theory of Computation]: Logics and

Meanings of Programs – Semantics of Programming Languages; D.3.4 [Software]: Program-
ming Languages – Processors; K.3.2 [Computing Milieux]: Computers and Education –
Computer and Information Science Education.

Key words and phrases. static code analysis, C++, C#, student submission, computer
science education, programming flaw.

37



38 PÉTER KASZAB AND MÁTÉ CSERÉP

unsustainable. As a result, the usage of automatic grading systems for pro-
gramming assignments have gained focus in the past years. Whether they are
developed commercially, open-source or in many cases as an internal project
at a university, these systems are becoming indispensable for instructors [11].

Non-trivial run-time errors in programming submissions are often missed by
instructors and automatic testers, because these kinds of errors are not always
easy to find and reproduce. Furthermore, there are solutions with functionally
correct and bug-free code which do not follow the conventions and guidelines
of the given programming language. These kinds of errors can be avoided and
the application of the given guidelines can be forced using static code analyzers
[4, 12, 18, 22].

Static analyzer tools can be utilized to check or flaws in other programs.
This can be achieved by evaluating the source code, the byte code or the
binaries [2]. These tools can help developers to identify a wide range of issues
from incorrect styling and formatting to serious security issues [10]. In Section
2 we review the previous applications of such tools in higher education.

For our research, we evaluated over 5000 student submissions from the last
two years written in C++ and C# programming languages at the Eötvös
Loránd University Faculty of Informatics (ELTE FI ), by executing various
static code analyzers on them. In Section 3 we introduce the evaluated courses,
the used analyzer tools and the criteria for filtering analyzer results. Then,
in Section 4 and 5 the most typical and interesting findings are presented for
the C++ and C# submissions with simple code examples. We showcase our
prototype implementation for an automated evaluator system in Section 6.
Finally, the conclusion and future work is described in Section 7.

2. Related work

2.1. Automatic evaluation of submissions. Static analyzers can be used
in education in order to help the learning process of the students and speed
up the evaluation of the submission.

Michael Striewe and Michael Goedicke [22] reviewed the static analysis ap-
proaches that can help in providing feedback to the submitted solutions. They
highlighted the following requirements for a system that evaluates submissions
with static analysis:

• check for mistakes and violated coding conventions in syntactically
correct source code;

• check for source code which is correct, but contains element that are
not allowed in the context of the given course or exercise;

• check for missing code structures;
• give hints on how to solve the previously mentioned issues.



DETECTING PROGRAMMING FLAWS IN STUDENT SUBMISSIONS 39

J. Walker Orr [19] proposes a rule-based tool for Java and Python that
provides feedback on predefined rules. The checked design principles are for-
malized as logical functions, and they are applied to the subtrees of the ab-
stract syntax trees. The implemented rules are designed to meet the needs of
students. The system was hosted as a standalone web service where students
could submit their solutions. There were no limitations to the number of up-
loads, and the execution of the tests was instant. Thus, this increased the
transparency of the grading progress. On average, the rate of design quality
flaws dropped 47.84% on different assignments.

Blau et al. developed a tool called FrenchPress [4] which is an Eclipse-plugin
designed for students with intermediate knowledge of the Java programming
language. It focuses on silent flaws that often get overlooked by students,
because IDEs and compilers do not catch them. The advantage of the IDE
integration, that the students can get feedback while they work in their code
without leaving the development environment. The authors emphasize that
the feedbacks should be relevant for the situation of the students and should
be easy to understand. Also, it is important to minimize the number of false
positives, as they could be more problematic than false negatives for inexpe-
rienced users. In the end, the percentage of cases when FrencPress motivated
the users to improve their programs varied from 36% to 64% depending on
the course.

In contrast to the previously mentioned tools, Hyperstyle [3] uses existing
professional code analyzers to evaluate the submissions. It currently supports
Java, Kotlin, JavaScript and Python, but it can be extended easily with an-
alyzers for other languages. The possible errors are split into the following
categories: code style, code complexity, error-proneness, best practices, and
minor issues. Based on the findings, it gives grades for the solutions on a four
level scale: excellent, good, moderate, bad. Additionally, it provides custom
messages for some issues, because students often need more detailed errors
messages than the output of the professional tool. Hyperstyle was tested on
the Stepik and Jetbrains Academy platforms, but it can be added to other
MOOC systems as well. For Java solutions, the number of students who made
fewer mistakes increased, and the number of who made six or more mistakes
decreased. For Python solutions, the number of students without code quality
issues increased four times and the number of students who made two or more
errors decreased.

2.2. Analyze solutions from previous semesters. While the previously
reviewed papers present solutions that provide feedback to students or grade
their submissions automatically, analyzing datasets of existing submission can
provide valuable information on several aspects. Moreover, checking older



40 PÉTER KASZAB AND MÁTÉ CSERÉP

solutions can also help to evaluate the code analyzer tools, and adapt their
results to the needs of the students and teachers.

Molnar et al. [18] evaluated Python assignments from an introductory pro-
gramming course using Pylint. They also developed a custom tooling that is
able to visualize and list findings for: a specific student, a given assignment,
or an assignment corresponding to multiple students. Their study showed
that Pylint provided meaningful information regarding code style and logical
errors.

Keuning et al. [12] investigated code quality issues in Java programs. The
analyzed source files were collected from the Blackbox database, which con-
tains Java solutions written in the BlueJ IDE. The database stores multiple
versions of the source files, and also collects events and usage statistics from the
BlueJ IDE (e.g., enabled plugins). They used the PMD tool for analysis and
categorized the errors into the following categories: flow, idiom, expression,
decomposition, and modularization. Some detectable issues by PMD needed
to be discarded, because they were too advanced for novice programmers, or
they were too specific for a library or platform. Errors from categories like
presentation and documentation were completely discarded. They also exam-
ined the most commonly fixed errors. Empty if statements and singular fields
were the most commonly fixed issues. Probably, because the initial uploads
were not finished. Issues like too many fields or methods were fixed in less
than 5% of the cases. So, the overall fixing rate was relatively low.

Similarly to the previous paper, Edwards et al. [6] also analyzed Java pro-
grams from four different courses for students with different skill-levels. The
dataset contained nearly 10 million errors produced by 3691 students. They
used the CheckStyle and PMD open-source tools for static code analysis, but
they created their own categories for errors: braces, coding flaws, documenta-
tion, excessive coding, formatting, naming, readability, style, and testing. The
most common categories were documentation, formatting, style, and coding
flaws. The coding flaws category could indicate that the student is struggling.
Usually, the solutions with lower scores had more coding flaws in them. Also,
it is possible that some students ignore the warnings produced by the ana-
lyzers, if they are dominated by documentation and formatting issues. This
factor should be considered when analyzers are used in automatic evaluator
systems.

3. Methodology

The first batch containing 3433 solutions written in C++ were collected
from the Object-oriented programming course. While the students have to
develop command-line interface applications, they have to manage memory



DETECTING PROGRAMMING FLAWS IN STUDENT SUBMISSIONS 41

manually and use advanced object-oriented techniques, like polymorphism. In
addition, 226 C++ projects were added from the GUI programming with QT
course, where the participants have to develop complex graphical application
with layered architecture (Model-View).

The C++ submissions were analyzed with Clang-Tidy, Clang Static Ana-
lyzer and Cppcheck [1, 13, 15, 16]. To run the previously mentioned tools and
visualize their results, we have used Ericsson CodeChecker [8].

In the case of C# projects, 2148 programming submissions were collected
from the Event-driven programming course, where students have to develop
Windows Forms, WPF and Xamarin/MAUI graphical applications. Simi-
larly to the GUI programming with QT course, the usage of layered archi-
tecture (Model-View and Model-View-ViewModel) is mandatory. For these
programs, we have used both first-party (Microsoft NetAnalyzers) and third-
party (Roslynator Analyzers and SonarAnalyzer CSharp) analyzers built on
top of APIs provided by the Microsoft Roslyn compiler platform [23, 24].

Table 1 summarizes the previously described tools, courses, and analyzed
submissions.

Language Analyzer tools Course Submissions

C++
Clang Tidy,
Clang Static Analyzer,
Cppcheck

Object-oriented
programming

3433

GUI programming
with QT

226

C#
Microsoft NetAnalyzers,
Roslynator Analyzers,
SonarAnalyzer CSharp

Event-driven
programming

2148

Table 1. Summary of the used analyzers and evaluated submissions

From the findings of the analyzers, we have selected the presented errors
according to the following criteria:

• We have included the most common and typical errors.
• Some errors only occurred in a handful of submission, but they indi-
cated serious design flaws or lack of understanding.

• We excluded styling errors. While code-styling is important, there
were no enforced styling guidelines for the assignments. Also, these
rules often require detailed configuration in real-world projects.

• For the C# programs a significant part of findings reported by the
Roslyn-based analyzers were possible refactorings, those were also
discarded.



42 PÉTER KASZAB AND MÁTÉ CSERÉP

4. C++ results

In this section, we present the selected errors from the C++ solutions.
Figure 1 shows the number of solutions from both courses where the those
errors occurred.

Figure 1. The number of C++ solutions with errors

4.1. Fields are not initialized correctly. Fields are usually not initialized
automatically in C++. However, they could be initialized during debug compi-
lation on some platforms, misleading students (as in Listing 1). It is generally
a good practice to give sensible starting values to fields during construction.

class Example {

private:

int _x , _y , _z;

public:

Example(int x, int y): _x(x), _y(y) {}

void method () {

if (_z > 0) { /* ... */ }

// _z not guaranteed to be initialized to zero

}

};

Listing 1. Field initialization



DETECTING PROGRAMMING FLAWS IN STUDENT SUBMISSIONS 43

4.2. Use constant references where possible (performance improve-
ment). While function f in Listing 2 is functionally correct, it has two po-
tential performance problems:

(1) the vec vector is copied every time f is called;
(2) the curr vector is copied in every iteration.

Using const references for the parameter and the loop variable improves per-
formance of this program.

void f(vector <vector <int >> vec) {

for(vector <int > curr : vec) { /* ... */ }

}

void f_improved(const vector <vector <int >>& vec) {

for(const vector <int >& curr : vec) { /* ... */ }

}

Listing 2. Perfomance can be improved with constant references

However, sometimes copying the values of the parameters is the desired
behavior. Code analyzers are smart enough to give hints based on the con-
text. So, these warning are only showed if marking the parameter to a const

reference would not break the given program.

4.3. Narrowing conversion. Conversion from a wider data type to a nar-
rower can lead to data loss (e.g., float → int) and/or integer overflow (e.g.,
unsigned int → int in Listing 3).

void search(int elem , bool& found , int &ind) {

found = false;

for (unsigned int i = 0; i < vec.size() && !found; ++i) {

if(vec[i] == elem) {

found = true;

ind = i; // Could cause integer overflow

}

}

}

Listing 3. Possible integer overflow, because of narrowing conversion

4.4. Comparison of signed and unsigned integers. Direct comparison
between signed and unsigned integers is not safe in C++. In most cases
this error occurred, when students compared a loop-variable with a size of
a container that has std::size t type which is an unsigned integer type
(Listing 4). While this have not caused problems in the submitted solution,
it is still considered a bad practice, because vec.size() can be greater than
the maximum value of int on the given platform.



44 PÉTER KASZAB AND MÁTÉ CSERÉP

for (int i = 0; i < vec.size() /* std:: size_t */ ; ++i) {}

Listing 4. The maximum size of int might be smaller than vec.size()

Comparison of signed and unsigned integers could also be problematic if
the signed integer value is negative. In Listing 5, we would expect that it will
print 0 as i is not greater than j, but the value of i is also cast to unsigned

int and it underflows.

int i = -4;

unsigned int j = 5;

std::cout << (i > j) << std::endl; // Expected 0, but prints 1

Listing 5. int i is casted to unsigned int

4.5. Possible memory leaks in dynamic memory management. Free-
ing allocated dynamic memory is often missed by students. Consider the Stack
class in Listing 6, where the writer of the code allocates memory for the array,
but the destructor is missing. Thus, the memory will not be freed after s is
not used anymore.

class Stack {

private:

int _top , _size;

int* _arr;

public:

Stack(int size)

: _top(-1), _size(size), _arr(new int[size]) {}

// ...

};

Listing 6. Memory leak: missing destructor

4.6. Non-void functions does not return a value. Reaching the end of
the body of a non-void function without returning a value is will not generate
a compiler error by default, but it is an undefined behavior in C++. A good
example of this, a stack class where the pop method of a stack that removes
the item from the top of the stack and returns its value. The implementation
in Listing 7 of the pop method is error-prone, because the user of the class can
call the method on an empty stack.

int Stack::pop() {

if (! isEmpty ()) { return _vec[--_top]; }

}

Listing 7. Empty stacks are not handled



DETECTING PROGRAMMING FLAWS IN STUDENT SUBMISSIONS 45

4.7. Potential ODR violations: placing function in headers. One Def-
inition Rule (ODR) means that non-inline functions and types must have only
one definition in the entire program [21]. For instance, placing functions in
headers can lead to ODR violations. This does not necessarily mean that the
solution does not compile or run until it is only included in one source file.
However, if the student had included it in two or more sources, the compiler
would not have accepted the solution.

Consider the scenario illustrated in Listing 8, while

• the g++ main.cpp first.cpp command will compile the program
successfully;

• the g++ main.cpp first.cpp second.cpp command will fail.

/// Contents of helpers.h:

int square(int x) { return x * x; }

/// Contents of first.cpp:

#include "helpers.h"

void first_calculation () { int res = square (2); /* ... */ }

/// Contents second.cpp:

#include "helpers.h"

void second_calculation () { int res = square (3); /* ... */ }

/// Contents main.cpp:

// helpers.h is not included in main.cpp

Listing 8. Functions in headers

4.8. Lack of virtual destructors in abstract classes or classes with
virtual functions. It is possible that the student implemented all necessary
destructors, but they are not marked as virtual when needed. In Listing 9,
if the destructor of Base is not marked as virtual and delete is called on a
variable with static type of Base, then the destructor of Derived will not be
called.



46 PÉTER KASZAB AND MÁTÉ CSERÉP

struct Base {

virtual void method () = 0;

~Base() {std::cout << "base "; } // Should be virtual

};

struct Derived: public Base {

void method () override { }

~Derived () { std::cout << "derived "; }

};

void f() {

Base* d = new Derived;

delete d; // outputs: base

}

Listing 9. Destructors should be virtual

4.9. Calling virtual methods during construction and destruction.
During construction and destruction, the virtual call mechanism is disabled.
Therefore, the implementation from the current class is used, as illustrated in
Listing 10 with the call of f. Calling virtual methods in the constructor is
not necessarily a problem, but the student might not aware of the previously
described behavior.

struct Base {

Base() { f(); } // Prints base

virtual void f() { std::cout << "base"; }

};

struct Derived: public Base {

void f() override { std::cout << "derived"; }

};

Listing 10. Virtual calls in constructors

4.10. Double-free and use after free. In C++ delete should be called
only once for the same reference and the reference should not be used after
delete called on it. Listing 11 counts not only as double-free, but an infinite
loop, because ~Example will always get called again, recursively. This is a
good example of how reported errors can also indicate lack of understanding
from students.

struct Example {

~Example () { delete this; }

};

Listing 11. Incorrect usage of delete



DETECTING PROGRAMMING FLAWS IN STUDENT SUBMISSIONS 47

4.11. Out of bound indexing. Out of bound indexing is often missed by
beginner programmers. It usually results in a memory segmentation fault. The
provided example (Listing 12) is relatively simple: the student made a small
mistake and wrote <= instead of <. Fortunately, the used code analyzers can
spot possible out of bound indexing in more complex scenarios.

int arr [10];

for (int i = 0; i <= 10; ++i) { arr[i] = i; }

Listing 12. Out of bound indexing

4.12. Object slicing. Slicing happens when copying a derived object into a
base object: the members of the derived object (both member variables and
virtual member functions) will be discarded [5]. In Listing 13, slicing object
from type Derived to Base discards override method.

struct Base {

virtual void method () { std::cout << "base"; }

};

struct Derived: public Base {

virtual void method () { std::cout << "derived"; }

};

void f(Base obj) { obj.method (); }

int main() {

Derived d;

f(d); // prints base

return 0;

}

Listing 13. Object slicing

5. C# results

In this section, we present the selected errors from the C# solution. Figure
2 shows the number of solutions from both courses where the those errors
occurred, categorized by tasks. It is worth to note that the number of solutions
containing the highlighted errors are really similar for the WinForms, WPF,
and Xamarin/MAUI assignments. This is because the students have to develop
the same software for all three tasks, and they are encouraged to reuse layers
from their previous solutions. Exams are different, because student have to
develop new applications from scratch, but reusing their existing materials is
still allowed.



48 PÉTER KASZAB AND MÁTÉ CSERÉP

Figure 2. The number of C# solutions with errors

5.1. Non-constant fields with public visibility. Using public mutable
fields are generally considered a bad practice and against guidelines in C#.
There are several alternatives:

• mark the field readonly or const;
• use auto-implemented properties instead;
• make it private and access it with a property or method.

5.2. Asynchronous calls are not awaited. In Listing 14, NewGameAsync is
an async function, but it is not awaited. Thus, the state of the model object
might be incorrect when AdvanceGame is called.

GameModel model = new GameModel ();

model.NewGameAsync ();

model.AdvanceGame ();

Listing 14. model.NewGameAsync() is not awaited

5.3. Asynchronous methods with void return type. Asynchronous func-
tion should return Task or Task<T>, because they cannot be awaited and ex-
ceptions cannot be caught from them (Listing 15). Event handlers are the only



DETECTING PROGRAMMING FLAWS IN STUDENT SUBMISSIONS 49

exceptions according to the Microsoft Learn guidelines, because they usually
have to return void [17].

public async void LoadAsync(string filePath) {

FileContent = await File.ReadAllTextAsync(filePath);

}

Listing 15. LoadAsync cannot be awaited

5.4. Results of integer division should not be assigned to floating
point/decimal variables/parameters. In Listing 16, if the result of size
/ 2 is positive, then it is already floored because of the integer division. There-
fore, calling Ceiling will not return the expected result.

int size = // ...

if ((int)decimal.Ceiling(size / 2) == x) { /* ... */ }

Listing 16. Integer disivision

5.5. Incorrectly implemented properties. The getters and setters of the
properties should access the correct backing fields. As shown in Listing 17, the
student may want to write a read-only property, but the setter is still present
with an empty body. The correct solution would be a property without a
setter, because assigning a value to a property will not generate a compile-
time error and the user may think that the property is writable. In contrast,
if the setter is not present, then both the compiler and the IDE will show an
error upon assignment.

private int property;

public int Property { get { return property; } set {} }

Listing 17. Read-only property: set should be omitted

5.6. Infinite recursion. A trivial example of this error, when the setter tries
to assign the vale to the property itself (Listing 18). This may be the result
of a typo in the source code, as backing fields often have the same name as
the property, but with a different case. Calling the setter of such a property
would lead to an infinite recursion.

private int property;

public int Property {

get { return property; }

set { Property = value; }

}

Listing 18. Incorrectly implemented setter: infinite recursion



50 PÉTER KASZAB AND MÁTÉ CSERÉP

5.7. Incorrect overrides of Equals(object) and GetHashCode(). When
overriding Equals(object) and GetHashCode() certain rules should be fol-
lowed, such as:

• Equals(object) and GetHashCode() should be overridden in pairs.
• Classes directly extending object should not call base in GetHashCode
or Equals. The implementation in object are based on object ref-
erence.

In Listing 19, the student overrides both methods, but the GetHashCode

calls the implementation from the object class.

class ClassName {

public override int Equals () {

// correct implementation

}

public override int GetHashCode () {

base.GetHashCode (); // Calls GetHashCode from object

}

}

Listing 19. Incorrect override of GetHashCode()

5.8. Mistakes related to disposable objects. While C# has automatic
garbage collector, the unmanaged resources taken by certain classes should be
freed. For instance (Listing 20), if a file opened by the StreamReader class,
then it should be closed after usage. The Dispose should be called (or Close
in this case), preferably in a finally block. A using statement or declaration
would be an even better option, as it ensures the correct usage of disposable
objects.

List <string > values = new List <string >();

StreamWriter sw = new StreamWriter("output.txt");

foreach (string line in values) { sw.WriteLine(line); }

Listing 20. The file is not closed after usage

It is also important that the objects cannot be used after they are disposed.
In the example in Listing 21, the Dispose method is automatically called
after the execution leaves the block of the using statement. So, the returned
StreamReader instance will not be able to read the file, as its methods will
throw an ObjectDisposedException.



DETECTING PROGRAMMING FLAWS IN STUDENT SUBMISSIONS 51

public StreamReader CreateReader(string filename) {

using (StreamReader sr = new StreamReader(filename)) {

return sr;

}

}

Listing 21. sr is returned after disposal

6. Integration with automated evaluator systems

We developed a prototype-implementation as part of the open-source TMS
task management system developed at ELTE FI [7], which already contains a
custom developed Docker-based automated evaluator and integrates the static
analysis tool CodeCompass [20], but for code comprehension purposes.

We extended the evaluator system with the tools mentioned in Section 3.
CodeChecker is an important part of our solution, because apart from running
static analysis on C/C++ solutions with Clang SA, Clang Tidy, and Cppcheck
it can also process the output of more than 20 third-party analyzers and
convert it to its own format. Thus, it is enough if TMS can process only
one report format. Moreover, we could take advantage of the additional tools
provided by CodeChecker, such as the HTML report viewer.

Figure 3. The workflow of automated static code analysis in TMS

The Docker environment and the selected tools can be individually con-
figured for each assignment. So, instructors can adapt the tools to the need
of their courses. The system regularly checks for new submissions from tasks
with valid evaluator configuration. When there is a new untested solution, the
system runs the selected tools in Docker containers and converts the reports to
a common report format if necessary. Finally, when the reports are available
in the required format, TMS persists them for the given solution, and notifies
the student about the completion of the analysis. The described workflow is
illustrated in Figure 3.



52 PÉTER KASZAB AND MÁTÉ CSERÉP

Both the students and the instructors can view the results on the page of
the given submission. It is important that the results should be presented in
a legible format. They are prioritized by severity to help students identify the
more serious issues first. The HTML reports produced by CodeChecker are
also available from the user interface, so the reports can be viewed without
downloading the submissions.

7. Conclusions and Future Work

In our paper, we have evaluated over 5000 student submission written in
C++ and C#, by running static code analyzer tools on them. We have found
violations of conventions and various programming bugs which could have been
filtered with static analysis, but were overlooked by the teachers, probably due
to the high number of student submissions they had to evaluate and grade.
In these cases, the feedback provided by the analyzers could help students to
fix their mistakes before the deadlines and learn from them. Furthermore, the
usage of these tools would allow a more thorough assessment by teachers and
speed up the grading process.

While analyzing solutions from previous semesters helped us to create the
initial prototype implementation, choose the right tools, and configure them,
we believe our solution can be improved further by testing it during an aca-
demic semester. First, it should be observed what is the impact of such a tool
on the students’ behavior, how much the quality of their submissions improved.
Furthermore, it should also be determined if the students really understand
and use correctly the provided feedback. The current implementation shows
the reports to both students and instructors, but some tips might be applied
too easily without understating them. It might be beneficial to make the de-
tail of the feedback configurable or add an option to hide it from the students
completely, so instructors can choose according to their preferences. Another
possible approach could be adding an option to limit the number of possible
uploads, thus students have to rethink twice before re-upload their solutions
just to check if they managed to solve the reported problems. Finally, after the
testing is completed and the previous questions are issued, we aim to introduce
our solution for other courses at ELTE FI.

References

[1] Babati, B., Horváth, G., Májer, V., and Pataki, N. Static analysis toolset with
Clang. In Proceedings of the 10th International Conference on Applied Informatics
(2017), pp. 23–29.

[2] Bardas, A. G., et al. Static code analysis. Journal of Information Systems & Oper-
ations Management 4, 2 (2010), 99–107.



DETECTING PROGRAMMING FLAWS IN STUDENT SUBMISSIONS 53

[3] Birillo, A., Vlasov, I., Burylov, A., Selishchev, V., Goncharov, A.,
Tikhomirova, E., Vyahhi, N., and Bryksin, T. Hyperstyle: A tool for assessing
the code quality of solutions to programming assignments. In Proceedings of the 53rd
ACM Technical Symposium on Computer Science Education V. 1 (New York, NY, USA,
2022), SIGCSE 2022, Association for Computing Machinery, pp. 307––313.

[4] Blau, H., and Moss, J. E. B. Frenchpress gives students automated feedback on
java program flaws. In Proceedings of the 2015 ACM Conference on Innovation and
Technology in Computer Science Education (New York, NY, USA, 2015), ITiCSE ’15,
Association for Computing Machinery, pp. 15—-20.

[5] Clang Team. LLVM - Clang-tidy - cppcoreguidelines-slicing.
https://releases.llvm.org/13.0.0/tools/clang/tools/extra/docs/clang-
tidy/checks/cppcoreguidelines-slicing.html, Accessed: 2023-02-25.

[6] Edwards, S. H., Kandru, N., and Rajagopal, M. B. Investigating static analy-
sis errors in student java programs. In Proceedings of the 2017 ACM Conference on
International Computing Education Research (New York, NY, USA, 2017), ICER ’17,
Association for Computing Machinery, pp. 65—-73.

[7] ELTE. TMS – Task Management System. https://tms-elte.gitlab.io/,
Accessed: 2023-02-27.

[8] Ericsson Ltd. CodeChecker. https://codechecker.readthedocs.io/,
Accessed: 2023-02-25.

[9] Eurostat. ICT education - a statistical overview.
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=ICT education -
a statistical overview,
Accessed: 2023-04-16.

[10] Gomes, I., Morgado, P., Gomes, T., and Moreira, R. An overview on the static
code analysis approach in software development. Faculdade de Engenharia da Univer-
sidade do Porto, Portugal (2009).

[11] Ihantola, P., Ahoniemi, T., Karavirta, V., and Seppälä, O. Review of recent
systems for automatic assessment of programming assignments. In Proceedings of the
10th Koli Calling International Conference on Computing Education Research (New
York, NY, USA, 2010), Koli Calling ’10, Association for Computing Machinery.

[12] Keuning, H., Heeren, B., and Jeuring, J. Code quality issues in student programs.
In Proceedings of the 2017 ACM Conference on Innovation and Technology in Computer
Science Education (New York, NY, USA, 2017), ITiCSE ’17, Association for Computing
Machinery, pp. 110—-115.

[13] Kremenek, T. Finding software bugs with the clang static analyzer. Apple Inc (2008).
[14] Loyalka, P., Liu, O. L., Li, G., Chirikov, I., Kardanova, E., Gu, L., Ling,

G., Yu, N., Guo, F., Ma, L., Hu, S., Johnson, A. S., Bhuradia, A., Khanna,
S., Froumin, I., Shi, J., Choudhury, P. K., Beteille, T., Marmolejo, F., and
Tognatta, N. Computer science skills across china, india, russia, and the united states.
Proceedings of the National Academy of Sciences 116, 14 (2019), 6732–6736.

[15] Marjamäki, D. Cppcheck. https://cppcheck.sourceforge.io/, Accessed: 2023-02-23.
[16] Martignano, M., and Spazio, I. A new static analyzer: The compiler. ADA USER

40, 2 (2019), 99–103.
[17] Microsoft. Async return types (C#). https://learn.microsoft.com/en-

us/dotnet/csharp/asynchronous-programming/async-return-types,
Accessed: 2023-02-23.



54 PÉTER KASZAB AND MÁTÉ CSERÉP

[18] Molnar, A.-J., Motogna, S., and Vlad, C. Using static analysis tools to assist stu-
dent project evaluation. In Proceedings of the 2nd ACM SIGSOFT International Work-
shop on Education through Advanced Software Engineering and Artificial Intelligence
(New York, NY, USA, 2020), EASEAI 2020, Association for Computing Machinery,
pp. 7––12.

[19] Orr, J. W. Automatic assessment of the design quality of student python and java
programs. arXiv e-prints (2022).

[20] Porkoláb, Z., Brunner, T., Krupp, D., and Csordás, M. Codecompass: an open
software comprehension framework for industrial usage. In Proceedings of the 26th Con-
ference on Program Comprehension (2018), pp. 361–369.

[21] Quinlan, D., Vuduc, R., Panas, T., Haerdtlein, J., and Saebjoernsen, A. Sup-
port for whole-program analysis and the verification of the one-definition rule in C++.
In Static Analysis Summit 2006 (6 2006).

[22] Striewe, M., and Goedicke, M. A review of static analysis approaches for pro-
gramming exercises. In Computer Assisted Assessment. Research into E-Assessment
(07 2014), vol. 439, Springer, pp. 100–113.

[23] Sundström, J. Assessment of Roslyn analyzers for Visual Studio, 2019.
[24] Vasani, M. Roslyn Cookbook. Packt Publishing Ltd., 2017.

ELTE Eötvös Loránd University, Faculty of Informatics, Department of
Software Technology and Methodology, H-1117 Budapest, Pázmány P. sny 1/C.

Email address: t5mop2@inf.elte.hu
Email address: mcserep@inf.elte.hu




