STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LXII, Number 1, 2017
DOI: 10.24193/subbi.2017.1.07

IDENTIFYING HIDDEN DEPENDENCIES IN SOFTWARE
SYSTEMS

ISTVAN GERGELY CZIBULA, GABRIELA CZIBULA, DIANA-LUCIA MIHOLCA,
AND ZSUZSANNA MARIAN

ABSTRACT. The maintenance and evolution of software systems are highly
impacted by activities such as bug fixing, adding new features or function-
alities and updating existing ones. Impact analysis contributes to improv-
ing the maintenance activities by determining those parts from a software
system which can be affected by changes to the system. There exist hidden
dependencies in the software projects which cannot be found using common
coupling measures and are due to the so called indirect coupling. In this
paper we aim to provide a comprehensive review of existing methods for
hidden dependencies identification, as well as to highlight the limitations of
the existing state-of-the-art approaches. We also propose an unsupervised
learning based computational model for the problem of hidden dependen-
cies identification and give some incipient experimental results. The study
performed in this paper supports our broader goal of developing machine
learning methods for automatically detecting hidden dependencies.

1. INTRODUCTION

Maintenance activities such as bug fixes, updating existing features and
adding new ones make up the majority of time and costs allocated to a soft-
ware project. Each of these changes usually affects only parts of the system,
and determining the affected components (classes, modules, methods etc.) is
not a trivial problem. Impact analysis tries to identify, given a component of
a software system, the other components that would be affected by changes
to the former [7]. Existing methods for impact analysis usually consider only
direct coupling between components, but there also exists indirect coupling
[36], which creates hidden dependencies, that cannot be found using regular

Received by the editors: May 3, 2017.

2010 Mathematics Subject Classification. 68N30, 68T05, 62H30.

1998 CR Categories and Descriptors. K.6.3 [Management of computing and in-
formation systems]: Software Management — Software maintenance; 1.2.6 [Computing
Methodologies]: Artificial Intelligence — Learning; 1.5.3 [Computing Methodologies]:
Pattern Recognition — Clustering.

Key words and phrases. Impact analysis, hidden dependencies identification, machine
learning, clustering.

90

IDENTIFYING HIDDEN DEPENDENCIES IN SOFTWARE SYSTEMS 91

coupling measures. Yet, not identifying them can have serious negative con-
sequences [8].

Analyzing program dependencies has an essential role in program compre-
hension, change propagation, or impact analysis [22]. The software compo-
nents need to be understood in the context in which they are defined and this
context is expressed by the dependencies between the software components.
It is fundamental for the software maintainers to discover the system’s de-
pendencies and make corresponding changes to ensure that change has been
correctly spread out and the software remains stable [37]. Among the software
component dependencies, hidden dependencies are relationships between two
seemingly independent components and are produced by a data flow inside of
a third software component [37].

The aim of this paper is to provide a systematic literature review on hidden
dependencies identification (HDI), highlighting the difficulty of the problem
as well as the limitations of the current state-of-the-art in this field. We are
also proposing a new computational model based on unsupervised learning
for the problem of hidden dependencies identification. With the broader goal
of applying machine learning [23, 24] methods for detecting parts of a soft-
ware system which are not directly coupled, we also describe the evaluation
measures usually used for assessing the performance of methods for detecting
hidden dependencies.

The remainder of the paper is organized as follows. The description of
the HDI problem, together with an illustrative example, are given in Sec-
tion 2. Section 3 presents the current state-of-the-art in hidden dependencies
identification. Section 4 contains a discussion on the limitations of existing
approaches, introduces our new machine learning perspective upon the prob-
lem and gives our incipient experimental results. We outline the conclusions
of our paper and the directions to continue the research in Section 5.

2. PROBLEM STATEMENT AND IMPORTANCE

A special class of program dependencies, called hidden dependencies (HD)
were introduced by Yu and Rajlich in [37]. The authors have also given ex-
amples of the software changes that these kinds of dependencies propagate in
the code [37]. HDs are particular type of data flows [31] which have an im-
portant role in software maintenance and evolution. HDs propagate changes
among the application classes of a software system and these changes are hard
to detect. As shown in [31], hidden dependencies are found even in well de-
signed software systems like JUnit, Drawlets, and Apache FtpServer. Thus, it
is of crucial importance for software developers to detect and understand such
dependencies.

92 I.G. CZIBULA, G. CZIBULA, D.L. MIHOLCA, AND ZS. MARIAN

A task of major importance for software developers is to understand HDs
since it contributes to ease the software maintenance and evolution process.
Among the software change activities that consider software dependencies we
mention [31]: impact analysis [7, 27|, change propagation [28], regression test-
ing [32].

Data flows are considered to be the basis of hidden dependencies [31]. Since
the process of analyzing the data flow in a software is not an easy task, it
is very likely that software developers omit HDs rather than more explicit
dependencies, introducing, in this way, bugs into the software [31].

The omission of HDs has a major impact particularly for critical computing
systems. An example is a bug that was introduced during the evolution of the
Minimum Safe Altitude Warning software system (MSAW) and which caused,
in 1997, an aircraft crash at the Guam International Airport [9]. It has been
shown that a missed HD between two software components which seemed
independent has caused the bug in MSAW software: one component activated
the alarm at 55 nautical miles and another component deactivated the alarm
at 54 nautical miles [9].

The problem of identifying HDs is a very complex one. This is primarily
because there is no exact definition for what a hidden dependency is.

Different methods existing in the literature were developed for detecting
particular types of hidden dependencies. For example, Kagdi and Maletic
considered in [17] that there is a HD between two software entities (methods
or application classes) if the entities were changed at the same time in the
past. Two application classes were considered by Gall et al. to be dependent
[11] if they were changed by the same author and in the same time interval.

Beer et al. [5] have proposed a method for generating test data for problems
involving complex linear dependencies between variables. The authors have
suggested that software developers could specify restrictions on the values of
variables in the source code and use them to generate the test cases. The
dependencies that the authors called “complex dependencies” are able to cap-
ture semantic information that is hard to detect using traditional techniques
for program analysis.

Jenkov defines in [16] a hidden dependency as a dependency which cannot
be seen from a class’s interface. Another example of a hidden dependency is
the dependency on a static singleton, or static methods from within a method.
One cannot observe from the interface if a class depends on static methods
or static singletons [16]. These type of dependencies are hard to detect for
software developers, they can be discovered only by inspecting the code [16].

2.1. Examples of HDs. As shown in Figure 1, in JUnit 4.4, there is a hidden
dependency between the methods getTestHeader() of class Failure (Figure 2)
and the method getDescription() of class CompositeRunner (Figure 3).

IDENTIFYING HIDDEN DEPENDENCIES IN SOFTWARE SYSTEMS 93

0.~ Description

CompositeRunner -fChildren:Callection=Description=

-fName: String L - - .> -fDisplayMame:String

+getDe§ript\on(}: Description

Failure

-fDescription:Description

+gefTestHeader(): String

Ficure 1. Hidden dependency in JUnit 4.4

package org.junit.runner.notification;
lpublic class Failure{

private f£inal Description fDescription;

/*% @return a user—understandable label for the test¥*/
public String getTestHeader() {
return fDescription.getDisplayName() ;

}

FIGURE 2. Failure.java

A Description object (see Figure 4) describes a test case or a test suite
which is to be run or has been run. After execution, in case of failure, the
name is printed after being decoded by the method getTestHeader() of the
class Fuailure.

The method getDescription() creates a Description object and encodes
fName in it. So, the method getTestHeader() will return it as a user-under-
standable label for the failed test. The methods share the test case/suite
concept.

A justification considering pre- and postconditions, for the exemplified hid-
den dependency, is provided by Vanciu and Rajlich in [31].

3. LITERATURE REVIEW

In this section we present a literature review on the problem of hidden
dependencies identification (HDI). Despite the importance of finding hidden

94 I.G. CZIBULA, G. CZIBULA, D.L. MIHOLCA, AND ZS. MARIAN

public class CompositeRunner extends Runner implements Filterable, Sortable {
private final List<Runner> fRunners= new ArrayList<Runner>() ;

private £f£inal String fName;
public CompositeRunner (String name) {
fName= name;

}

public void add(Runner runner) {
fRunners.add (runner) ;

H

@override

public Description getDescription() {
Description spec = Description.createSuiteDescription(fName) ;
for (Runner runner : fRunners)

spec.addChild (runner.getDescription()) ;
return spec;

F1cure 3. CompositeRunner.java

public class Description implements Serializable {

private final Collection<Description’> fChildren = new ConcurrentlinkedQueue<Description>();
private final String fDisplayName;

/%% Create a <code>Description</code> named <code>name</code>.*/

public static Description createSuiteDescription(String name, Ennotation... annotations) {
return new Description(name, annotations);

i

private Description(final String displayName, Annotation... annotations) {
fDisplayName= displayName;
fAnnotations= annotations;

}

/** Breturn a user-understandable labsl*/

public String getDisplayName() {
return f£DisplayName;

}

/%% Bdd <coderDescription</code> as a child of the receiver.¥*/
public void addChild(Description description) {

fChildren.add (description) ;
}

FIGURE 4. Description.java

dependencies, the approaches existing in the literature for this problem have
moderate precision and recall values.

There are approaches which use previous versions of the software system and
try to identify those classes which were changed together with respect to the
same bug report [12]. Gall et al. have introduced in [12] an approach, called

IDENTIFYING HIDDEN DEPENDENCIES IN SOFTWARE SYSTEMS 95

CAESAR, that uses information about previous versions of a system to dis-
cover logical dependencies and change patterns among modules. The proposed
method is experimentally evaluated on 20 releases of a large Telecommunica-
tions Switching System. Information such as version numbers of programs,
modules and subsystems together with change reports are used for identifying
common change patterns of software modules. CAESAR, determines hidden
dependencies which are not obvious in the source code, like modules that
should be restructured. Instead of using the lines of code for the previous ver-
sions of the software, the authors use structural information about programs,
modules and subsystems, together with change reports for the releases and
their version numbers. The method proposed in [12] has been proved to be
capable to identify bugs which were fixed in one version of the system but
have appeared again, in other parts of the software, in later versions.

One of the early works is [37], where Yu and Rajlich have transformed
System Dependence Graphs into Abstract System Dependence Graphs to de-
termine which class pairs have hidden dependencies. The paper discusses how
hidden dependencies impact the process of change propagation and also dis-
cusses an algorithm that indicates the possible presence of hidden dependen-
cies. Hidden dependencies are considered to be design faults which contradict
the rule “if a class A is unaware of the existence of class B, it is also uncon-
cerned about any change to B”. More exactly, a dependence between Class A
and B is a hidden dependence if: (1) class A and B are not neighbors in the
ASDG, i.e there is no direct dependence between A and B; and (2) there is a
third class C, which is dependent on both classes, and there is data flow inside
the class C that occurs between instance of class A and instance of class B.
A simple algorithm for determining hidden dependencies is introduced and a
JAVA example consisting of three classes collaborating to manage a session is
considered.

In 2004, Hassan and Holt [14] have studied change propagation in software
development. They have proposed several heuristics to predict change propa-
gation by suggesting software entities that should be modified in accordance
to the changes an entity has suffered. The heuristics have been empirically
evaluated using historical data related to several open source projects. It has
been experimentally shown that co-change data can be used to develop models
for assisting software developers during change propagation process.

Orso et. al [25] have performed an empirical comparison of two existing
dynamic impact analysis algorithms. Both algorithms use static analysis on
the call-graph of the system, but they also use traces from the execution of
the system to be analyzed. The first algorithm, Coveragelmpact, constructs,
for each execution, a vector with as many elements as methods in the system
to be analyzed, and simply sets the value 1 for each executed method in this

96 I.G. CZIBULA, G. CZIBULA, D.L. MIHOLCA, AND ZS. MARIAN

vector. These vectors are used to determine the list of methods that were ex-
ecuted together with the method(s) that will be changed. This list is filtered
using a static forward slice starting from each method to be changed. The
second algorithm, PathImpact, constructs a so-called whole-path DAG (Di-
rected Acyclic Graph) from the execution traces and this DAG is traversed,
starting from the point that denotes the method to be changed, to determine
which methods are impacted by the change. The authors have performed
experiments using several versions of three Java systems to compare the pre-
cision, time and space cost of these two algorithms. The results showed that
PathImpact is more precise (it returns a shorter list of methods affected by the
changes to be performed in the system), but this precision comes at a signifi-
cant cost of space (the whole-path DAGs need a lot more space to be stored
than the binary vectors) and time. In [4], the same authors have introduced
an approach that combines the precision of the PathImpact with the speed
and small space overhead of the Coveragelmpact method. In order to achieve
this, they introduce the Execute After relation, defined for two entities, which
is true if the first entity is executed after the second one. An entity can be im-
pacted by a change to another entity only if this relation is true for them. The
authors also propose a simple and fast algorithm to compute this relationship
for every pair of entities and this can be done by keeping in memory only two
vectors having as many elements as entities in the systems. Comparing the
performance of this new algorithm to PathImpact, they conclude that it is as
precise as PathImpact, but it is only slightly slower than Coveragelmpact.
There are many different metrics to measure coupling between components
of a software system, but most of these metrics measure direct coupling (ac-
cording to [34], in a description containing almost 30 coupling metrics, only
two mention indirect coupling). Indirect coupling is often considered to be
simply the transitive closure of entities in direct coupling, but in many cases
such transitive closures contain most of the entities from the system. Since
indirect coupling can affect the maintainability of a software system as well,
the authors of [34] have proposed an algorithm to detect one type of indi-
rect coupling, which they call use-def coupling. By a simple example, they
show that such use-def coupling can occur when a method returns a value (in
their example this value is a String representing the type of a book), which
is given as parameter to another method (in their example a method which
checks whether the type of a book is suitable to the person who wants to
borrow it from the library). Even if the two methods are not directly coupled
(there is no direct connection between them), if the values returned by the first
method are changed, errors can be introduced into the second method. They
propose an algorithm to detect for each variable the point where the variable

IDENTIFYING HIDDEN DEPENDENCIES IN SOFTWARE SYSTEMS 97

was initialized (to see the entities to which it is coupled) and implement this
algorithm in an Eclipse plug-in, called ICD (Indirect Coupling Detector).

Yang and Tempero investigate in [33] the notion of indirect dependence
and argue that it is an important criteria for evaluating modularity. The
authors claim the importance of understanding indirect coupling (IC) due to
its “hidden” nature. They highlight the importance of determining which
forms of indirect coupling may be avoided, arguing that a system with high
levels of avoidable indirect coupling is “unmodular” [33]. The same authors,
Yang and Tempero extend in [35] their previous study and propose metrics
which express the relationship between indirect coupling and maintainability.
The proposed metrics are applied to existing Java applications.

While traditional coupling measures cannot be used for finding hidden de-
pendencies, Poshyvanyk et al. [27] have presented how a conceptual coupling
measure that considers identifier names, comments and other textual elements
of code can be used for impact analysis and can find hidden dependencies as
well. The study reports precision and recall around 20%.

Petrenko and Raylich [26] have introduced an interactive tool called JRip-
ples which is useful for iterative impact analysis. The proposed tool does
not discover HD, the software developer having the responsibility to correctly
identify the hidden dependecies during impact analysis.

In case of large software systems, computing Abstract System Dependence
Graphs can be expensive, so other approaches which are based on the order
in which different methods are called (call trace) have been introduced: if a
method is always called after another method, there might be a dependency
(hidden or not) between the classes where these methods are, as presented in
[31]. Vanciu and Rajlich [31] have proposed a dynamic technique for iden-
tifying hidden dependencies. It is based on computing ”execute completely
after” relations which are filtered based on pre- and postconditions that are
generated dynamically. For evaluation, open source software systems like JU-
nit, Drawlets and Apache FtpServer are used. The authors show that hidden
dependencies exist even in well-designed software, like the ones considered for
evaluation. For the case studies used for evaluation, the technique proposed
in [31] obtained a precision between 46% and 59% for discovering hidden de-
pendencies.

Kirbas et al. [19] have investigated the influence of the evolutionary coupling
on defect proneness. A positive correlation between evolutionary coupling and
defect measures, such as number of defects and defect density, have been con-
firmed by numerical experiments performed for a large financial legacy soft-
ware system. Two evolutionary coupling measures derived from modification
requests (MR) have been used in this study.

98 I.G. CZIBULA, G. CZIBULA, D.L. MIHOLCA, AND ZS. MARIAN

He et al. [15] have proposed Coverage and Program Structure Slicing
(CPSS) as a novel solution to fault localization. CPSS is based on Reverse
Data Dependence Analysis Model and integrates Coverage Based Fault Local-
ization (CBFL) and Program Slicing by analyzing the program structure. The
proposed method has been experimentally proven to be more effective than
existing related methods.

Kouroshfar et al. [20] have studied the effects of architecturally dispersed
co-changes on software quality. It has been experimentally shown that the
changes involving multiple architectural modules are more correlated with de-
fects than the intra-module co-changes. The study corroborates the relevance
of considering architecture in predicting software defects.

Akbarinasaji et al. [3] have proposed a suite of six metrics of logical depen-
dency among source files in a software system. The impact of these metrics
on defect prediction performance has been evaluated by applying two learning
models, the Logistic Regression and the Naive Bayes, on three different soft-
ware projects. The metrics have been used as features of the training data,
their values being derived from the timestamp information in the change his-
tory of files. The experimental results have confirmed that, if the values of
logical dependency are high, they significantly improve the performance of the
defect prediction models.

Bell [6] has studied the influence of hidden dependencies identification on
software testing. The author has shown that increasing the efficiency and the
effectiveness of testing through a good knowledge of the hidden dependen-
cies between tests improves the software reliability. In real software systems,
there are hidden dependencies between tests, which makes the testing process
harder. In such situations, the tests cannot be run in parallel, since they are
not independent (i.e. a test outcome is influenced by the execution of other
test). It has been shown in the software engineering literature [6] that these
dependencies are often difficult and hidden from the software developers. Bell
has developed a software system called VMVM for detecting different types of
dependencies between tests and has used detected information to significantly
reduce the testing time (with around 60% in average). VMVM is a Java imple-
mentation of a technique called Unit Test Virtualization, a technique which
isolates the side-effects of each unit test from other tests. It is based on a
hybrid static-dynamic analysis and automatically identifies the code segments
that may create side-effects. These segments are isolated in a container similar
to a virtual machine.

Due to the complexity of the HDI problem, there is a continuous interest
in the software engineering literature to develop more performant detectors.

IDENTIFYING HIDDEN DEPENDENCIES IN SOFTWARE SYSTEMS 99

4. DISCUSSION

The evaluation measure which is usually used for estimating the perfor-
mance of a process that detects hidden dependencies is the precision of the
detection [31]. The precision of a HDI process is computed as the percentage
of dependencies that were correctly reported as hidden. Since the entire set of
HDs is unknown, the recall measure is impractical in this context.

After the in-depth analysis of the related work we presented in Section 3, we
can conclude that there are a number of limitations of the approaches existing
in the literature for hidden dependencies identification.

Regarding the performance of the identification process, the existing ap-
proaches have moderate precision values: in [26] the precision ranges from 6%
to 18%, [27] reports precision around 20%, while in [4], it ranges from 30% to
40%. An improvement of the performance of HDI is achieved in [31] which
reports precision between 46% and 60%.

Besides, some existing approaches rely on historical data, which is not al-
ways available (and knowledge extracted from it cannot be used for other
projects), or on the creation of different graphs which can be expensive for
large systems.

Even if there are a lot of approaches existing in the literature in the direc-
tion of impact analysis and hidden dependencies identification, to the best of
our knowledge, the applicability of machine learning methods has not been
investigated yet. Due to their ability to unconver hidden patterns in data,
we consider that machine learning models would be appropriate for detecting
hidden dependencies in software projects and that this direction may provide
valuable results in the field.

4.1. Our approach. Our first objective to achieve the long-term goal of this
research is to investigate how to improve impact analysis approaches. We are
planning to reach this objective by developing new coupling measurements to
improve the performance of estimating the impacts of future changes in soft-
ware systems. We aim to capture in the coupling measures both the structural
and conceptual aspects of coupling.

Our second research direction will be to propose machine learning meth-
ods for detecting hidden dependencies in software systems. As we deduced
from reviewing the problem of hidden dependencies identification, none of the
approaches from the literature use machine learning algorithms. Out of the
existing approaches, using call trace information seems promising. We believe
that relational association rules (RARs) [29] can be used to mine relevant
patterns in the call traces. Based on our previous experience with relational
association rule mining, we consider that RARs have the potential to improve
the precision and recall values, since low values make the existing approaches

100 I.G. CZIBULA, G. CZIBULA, D.L. MIHOLCA, AND ZS. MARIAN

impractical to be used for real systems. Besides relational association rules,
we will also investigate the applicability of unsupervised learning techniques,
such as clustering or self-organizing maps [18].

In our view, the problem of HDI can be formalized as a clustering problem.
Clustering [13] (also known as unsupervised classification) is able to differenti-
ate groups of similar objects inside a given data set through detecting hidden
patterns in data. Thus, we consider that a clustering approach may be useful
in detecting hidden dependencies.

Let us consider that a software system S is represented as a set of software
entities, S = {ej1,ea,... ,en}. Depending on the granularity of the approach,
a software entity e; € S can be a software component, an application class, a
method or an attribute from a class, etc. The clustering approach we propose
for HDI consists of three main steps and is depicted in Figure 5:

e Data representation. The software entities and the existing rela-
tionships between them (inheritance, dependency, aggregation, etc.)
are extracted from the analyzed software system. Each software en-
tity will be represented by a high-dimensional vector. The challenge
will be to determine a set of software metrics relevant for deciding if
a hidden dependency exists between two entities.

e Grouping. The set of entities extracted at the previous step are
grouped in clusters using an unsupervised learning method (e.g. clus-
tering [13] or self-organizing map [30]). The goal of this step is to
obtain groups (clusters) which will contain software entities which
depend on each other (considering both direct and hidden dependen-
cies).

e HD extraction. The clusters obtained after the Grouping step will
be filtered in order to remove the direct dependencies. The remaining
entities from each cluster will provide a list of HDs.

Figure 5 contains a graphical representation of the solution we propose for
hidden dependencies identification.

4.2. Preliminary experimental results. In this section we give some in-
cipient experimental results which underline the effectiveness of using unsuper-
vised learning for detecting software dependencies. We consider an experiment
on an open source software framework, Commons DbUtils (version 1.3), a li-
brary consisting of a small set of classes which are designed to make working
with JDBC easier [1]. It consists of 22 classes, placed in three packages:

e default package - contains the core classes and interfaces of the sys-
tem.

e handlers - contains implementations for the ResultSetHandler inter-
face from the default package.

IDENTIFYING HIDDEN DEPENDENCIES IN SOFTWARE SYSTEMS 101

Software metrics

Software System .
Data Representation

S={eies, .. en}

v_en=[vi_ez vz e, .., vm_ez}

N
HD Extraction
Hidden dependencies . Clusters
, Remove direct
inS dependencies

FiGURrE 5. The proposed solution.

| Package | Class Name

BasicRowProcessor(BRP),

BeanProcessor (BP), DbUtils,

default ProxyFactory (PF), QueryLoader (QL),
QueryRunner (QR), ResultSetHandler (RSH),
ResultSetIterator (RSI), RowProcessor (RP)

AbstractKeyedHandler (AKH), AbstractListHandler (ALH)
ArrayHandler (AH), ArrayListHandler (ALH),
BeanHandler (BH), BeanListHandler (BLH),

handlers KeyedHandler (KH), ColumnListHandler (CLH),
MapListHandler (MPH), MapHandler (MH),
ScalarHandler (SH)
SqlNullCheckedResultSet (SNCRS),
wrappers

StringTrimmedResultSet (STRS)
TABLE 1. Packages and classes in the DbUtils 1.3 system.

e wrappers - contains two wrappers for the ResultSet class from the
java.sql package.

The exact classes from each package are presented on Table 1.

The application classes from DbUtils 1.3 are converted into a text cor-
pus containing the elements of the implementation code (including comments,
identifiers, etc.). Then, the corpus associated to the class is represented as a
fixed-length feature vector of numerical values. These feature vectors are unsu-
pervisedly learned using the implementation of Paragraph Vector (or Doc2Vec)
offered by Gensim [2]. Doc2Vec, a model proposed by Le and Mikolov [21],
is useful for expressing variable-length textual information as a fixed-length
dense numeric vector (paragraph vector), being an alternative to common mod-
els such as bag-of-words and bag-of-n-grams. A first advantage of Doc2Vec

102 I.G. CZIBULA, G. CZIBULA, D.L. MIHOLCA, AND ZS. MARIAN

AKH ALH AH ALH BRP BH BLH BP CLH DU KH MH MLH PF QL QR RSH RSI RP SH SNCRS STR
AKH 1.000 0.654 0.711 0.714 0.463 0.758 0.769 0.416 0.632 0.533 0.728 0.785 0.769 0.475 0.427 0.115 0.668 0.572 0.834 0.597 0.091 0.439
ALH 0.654 1.000 0.668 0.736 0.360 0.765 0.779 0.323 0.503 0.287 0.301 0.731 0.726 0.425 0.264 0.127 0.853 0.521 0.669 0.477 0.368 0.606
AH 0.711 0.668 1.000 0.950 0.511 0.918 0.900 0.269 0.814 0.473 0.644 0.956 0.941 0.616 0.485 0.253 0.769 0.727 0.704 0.812 0.382 0.585
ALH 0.714 0.736 0.950 1.000 0.481 0.895 0.899 0.328 0.792 0.556 0.561 0.952 0.978 0.695 0.558 0.341 0.840 0.682 0.698 0.760 0.455 0.614
BRP 0.463 0.511 0.481 1.000 0.547 0.557 0.373 0.418 0.147 0.547 0.501 0.447 0.160 0.473 0.286 0.413 0.322 0.489 0.395 0.254 0.523
BH 0.758 5 0.918 0.895 0.547 1.000 0.979 0.384 0.825 0.360 0.628 0.915 0.897 0.589 0.414 0.116 0.771 0.547 0.760 0.822 0.342 0.592
BLH 0.769 0.900 0.899 0.557 0.979 1.000 0.380 0.787 0.408 0.579 0.899 0.902 0.398 0.042 0.774 0.548 0.769 0.781 0.330 0.582
BP 0.416 3 0.269 0.328 0.373 0.384 0.380 1.000 0.271 0.093 0.334 0.286 0.293 0.321 0.111 0.410 0.061 0.326 0.322 0.125 0.258
CLH 0.632 3 0.814 0.792 0.418 0.825 0.787 0.271 1.000 0.248 0.747 0.824 0.805 0.460 0.314 0.614 0.468 0.602 0.973 0.365 0.453
DU 0.533 0.473 0.556 0.147 0.360 0.408 0.093 0.248 1.000 0.236 0.533 0.590 0.563 0.293 0.402 0.430 0.434 0.517 0.211 0.175 0.347
KH 0.728 0.644 0.561 0.547 0.628 0.579 0.334 0.747 0.236 1.000 0.673 0.617 0.186 0.479 0.153 0.440 0.489 0.602 0.715 0.057 0.195
MH 0.785 0.956 0.952 0.501 0.915 0.899 0.286 0.824 0.533 0.673 1.000 0.969 0.592 0.488 0.299 0.808 0.718 0.734 0.802 0.366 0.580
MLH 0.769 0.941 0.978 0.447 0.897 0.902 0.293 0.805 0.590 0.617 0.969 1.000 0.682 0.516 0.337 0.804 0.658 0.713 0.767 0.372 0.553
PF 0.475 425 0.616 0.695 0.160 0.589 0.610 0.339 0.514 3 0.186 0.592 0.682 1.000 0.278 0.349 0.594 0.194 0.530 0.538 0.475 0.569
QL 0.427 4 0.485 0.558 0.473 0.414 0.398 0.321 0.460 3 0.479 0.488 0.516 0.278 1.000 0.303 0.375 0.310 0.290 0.381 0.221 0.230
QR 0.115 0.253 0.341 0.286 0.116 0.042 0.111 0.314 0.153 0.299 0.337 0.349 0.303 1.000 0.330 0.266 0.138 0.292 0.221 0.119
RSH 0.668 53 0.769 0.840 0.413 0.771 0.774 0.410 0.614 0.440 0.808 0.804 594 0.375 0.330 1.000 0.618 0.768 0.629 0.466 0.662
RSI 0.572 0.727 0.682 0.322 0.547 0.548 0.061 0.468 0.489 0.718 0.658 4 0.310 0.266 0.618 1.000 0.503 0.468 0.199 0.418

RP 0.83 0.704 0.698 0.489 0.760 0.769 0.326 0.602 0.602 0.734 0.713 0.290 0.138 0.768 0.503 1.000 0.592 0.145 0.483
SH 0.597 0.477 0.812 0.760 0.395 0.822 0.781 0.322 0.973 0.211 0.715 0.802 0.767 0.381 0.292 0.629 0.468 0.592 1.000 0.393 0.484
SNCRS 0.091 0.368 0.382 0.455 0.254 0.342 0.330 0.125 0.365 0.175 0.057 0.366 0.372 0.475 0.221 0.221 0.466 0.199 0.145 0.393 1.000 0.815
STRS 0439 0.606 0.585 0.614 0.523 0.592 0.582 0.258 0.453 0.347 0.195 0.580 0.553 0.569 0.230 0.119 0.662 0.418 0.483 0.484 0.815 1.000

TABLE 2. The absolute values of cosine similarities between
the classes from DBUtils 1.3.

over the traditional models is that it considers the semantics of the words or,
more formally, the distance between the words [21]. Therefore, private will
be closer to protected than to boolean. An additional advantage over bag-of-
words is that it also takes into consideration the words order, at least in a
small context.

In our experiment with DBUtils 1.3, we computed feature vectors consisting
of 300 numerical features. We give in Table 2 the absolute values of the cosine
similarities between all pairs of feature vectors.

Our focus is to test if an unsupervised learning model is able to capture the
coupling relationship between the application classes thus avoiding to limit the
definition of coupling to a predefined similarity function (like cosine similar-
ity). A self-organizing map will be used in our experiment as an unsupervised
learning model. SOMs [30] are a type of artificial neural network which are
trained to provide a low-dimensional representation of the input space, called
a map [10]. The main characteristic of a SOM is that it preserves the topo-
logical ordering of the input data, more exactly the input instances which are
close to each other in the input space will also be close to each other on the
output map.

The 22 application classes from DbUtils 1.3 are mapped on a SOM having
a torus topology. For visualizing the SOM, the U-Matrix method [18] is used.
Figure 6 illustrates the U-Matrix visualization of the SOM trained on the
application classes from DbUtils 1.3. The darker regions on the U-Matrix
represent data that are similar while the data falling in the lighter regions are
dissimilar. Visualizing the U-Matrix for the resulting map, we observe three
regions corresponding to the three packages presented in Table 1. The classes
from the default package are displayed in red, those from the handlers package
in green, while the third package wrappers is marked with blue.

IDENTIFYING HIDDEN DEPENDENCIES IN SOFTWARE SYSTEMS 103

|£:) UMatrix — O X

FIGURE 6. U-Matrix visualization.

Analyzing the U-matrix from Figure 6 we observe two application classes
(RowProcessor and ResultSetHandler) which seem to be misplaced in the han-
dlers package. But these two misplacements are explainable, considering the
conceptual coupling measurement we used in our experiment. The Result-
SetHandler class is conceptually coupled to the classes from the handlers
package and this type of coupling is deduced from its source code. The Row-
Processor class is close on the map to the BeanHandler class. Analyzing the
source code of the BeanHandler class we found that it contains an attribute
of type RowProcessor, which justifies their closeness on the map. Moreover,
inspecting the source code of RowProcessor class, we observe that it operates
with (Java) beans and this is expressed in its code (identifiers, comments, etc).
Thus, the representation of the classes using Doc2Vec captured the concep-
tual relationship between the classes. We can conclude that the map depicted
in Figure 6 empirically confirms our hypothesis that unsupervised machine
learning models (the self-organizing map, in our case) are able to express de-
pendencies (conceptual, in our case) between software entities. For capturing
the direct coupling between software entities, we should consider not only the
conceptual coupling, but also the structural one.

In our experiment we have focused only on direct dependencies, but we are
confident that using an appropriate data representation (i.e. vectorial rep-
resentation of the application classes), a SOM will be effective for depicting
more complex dependencies (like hidden dependencies) from a software sys-
tem. Further work will investigate different vectorial representations for the

104 I.G. CZIBULA, G. CZIBULA, D.L. MIHOLCA, AND ZS. MARIAN

software entities which are appropriate for capturing more complex software
dependencies.

5. CONCLUSIONS AND FUTURE WORK

This paper presented in detail the problem of identifying hidden dependen-
cies in software systems, a problem of major importance during the mainte-
nance and evolution of software systems. We discussed about evaluating the
performance of the detection process and we identified the main limitations of
the existing state-of-the-art approaches.

We proposed a new computational model based on clustering for the prob-
lem of hidden dependencies identification. Such a machine learning perspec-
tive has not been proposed in the literature so far. As further work we will
investigate software metrics useful in the Data representation step from our
approach, as well as different clustering algorithms useful in the Grouping step.
Regarding the impact analysis, we target to develop coupling measurements
which capture both the structural and the conceptual aspects of coupling.

ACKNOWLEDGMENTS

This work was supported by a grant of the Romanian National Authority for
Scientific Research, CNCS—UEFISCDI, project number PN-II-RU-TE-2014-
4-0082.

REFERENCES

[1] Commons DbUtils. http://commons.apache.org/proper/commons-dbutils/index.html.

[2] RaRe TECHNOLOGIES. https://github.com/RaRe-Technologies/gensim.

[3] Shirin Akbarinasaji, Behjat Soltanifar, Bora Caglayan, Ayse Basar Bener, Andriy Mi-
ranskyy, Asli Filiz, Bryan M. Kramer, and Ayse Tosun. A metric suite proposal for log-
ical dependency. In Proceedings of the 7th International Workshop on Emerging Trends
in Software Metrics, WETSoM ’16, pages 5763, New York, NY, USA, 2016. ACM.

[4] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. Efficient and
precise dynamic impact analysis using execute-after sequences. In Proceedings of the
27th International Conference on Software Engineering, ICSE ’05, pages 432-441, New
York, NY, USA, 2005. ACM.

[5] A. Beer and S. Mohacsi. Efficient test data generation for variables with complex de-
pendencies. In 2008 1st International Conference on Software Testing, Verification, and
Validation, pages 3—-11, April 2008.

[6] Jonathan Bell. Making Software More Reliable by Uncovering Hidden Dependencies.
PhD thesis, Graduate School of Art and Sciences, Columbia University, 2016.

[7] Lionel C. Briand, Juergen Wuest, and Hakim Lounis. Using coupling measurement for
impact analysis in object-oriented systems. In Proceedings of the IEEE International
Conference on Software Maintenance, ICSM ’99, pages 475482, Washington, DC, USA,
1999. IEEE Computer Society.

(8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

22]

IDENTIFYING HIDDEN DEPENDENCIES IN SOFTWARE SYSTEMS 105

Daniel Conte de Leon and Jim Alves-Foss. Hidden implementation dependencies in high
assurance and critical computing systems. IEEE Trans. Softw. Eng., 32(10):790-811,
October 2006.

D. Conte de Leon and J. Alves-Foss. Hidden implementation dependencies in high as-
surance and critical computing systems. IEEE Transactions on Software Engineering,
32(10):790-811, Oct 2006.

N. Elfelly, J.-Y. Dieulot, and P. Borne. A neural approach of multimodel representation
of complex processes. International Journal of Computers, Communications & Control,
I11(2):149-160, 2008.

Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling based
on product release history. In Proceedings of the International Conference on Software
Maintenance, ICSM 98, pages 190—, Washington, DC, USA, 1998. IEEE Computer
Society.

Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling based
on product release history. In Proceedings of the International Conference on Software
Maintenance, ICSM 98, pages 190-198, Washington, DC, USA, 1998. IEEE Computer
Society.

Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2005.

Ahmed E. Hassan and Richard C. Holt. Predicting change propagation in software sys-
tems. In Proceedings of the 20th IEEE International Conference on Software Mainte-
nance, ICSM ’04, pages 284—293, Washington, DC, USA, 2004. IEEE Computer Society.
Hui He, Dongyan Zhang, Min Liu, Weizhe Zhang, and Dongmin Gao. A coverage and
slicing dependencies analysis for seeking software security defects. The Scientific World
Journal, 2014:1-10, 2014.

Jakob Jenkov. Understanding Dependencies. Technical report, Tech and Media Labs,
2014.

Huzefa Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey and taxonomy
of approaches for mining software repositories in the context of software evolution. J.
Softw. Maint. Evol., 19(2):77-131, March 2007.

S. Kaski and T. Kohonen. Exploratory data analysis by the self-organizing map: Struc-
tures of welfare and poverty in the world. In Neural Networks in Financial Engineering.
Proceedings of the Third International Conference on Neural Networks in the Capital
Markets, pages 498-507. World Scientific, 1996.

Serkan Kirbas, Alper Sen, Bora Caglayan, Ayse Bener, and Rasim Mahmutogullari. The
effect of evolutionary coupling on software defects: An industrial case study on a legacy
system. In Proceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM ’14, pages 6:1-6:7, New York, NY, USA,
2014. ACM.

Ehsan Kouroshfar, Mehdi Mirakhorli, Hamid Bagheri, Lu Xiao, Sam Malek, and Yuan-
fang Cai. A study on the role of software architecture in the evolution and quality of
software. In Proceedings of the 12th Working Conference on Mining Software Reposito-
ries, MSR 15, pages 246257, Piscataway, NJ, USA, 2015. IEEE Press.

Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and docu-
ments. CoRR, abs/1405.4053, 2014.

Steffen Lehnert. A taxonomy for software change impact analysis. In Proceedings of the
12th International Workshop on Principles of Software Evolution and the 7th Annual
ERCIM Workshop on Software Evolution, IWPSE-EVOL ’11, pages 41-50, New York,
NY, USA, 2011. ACM.

106

23]
[24]
[25]

[26]

[27]

28]

[29]

[30]
31]

32]

33]

[34]

[35]

[36]

37]

I.G. CZIBULA, G. CZIBULA, D.L. MIHOLCA, AND ZS. MARIAN

Thomas M. Mitchell. Machine learning. McGraw-Hill, Inc. New York, USA, 1997.
Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.
Alessandro Orso, Taweesup Apiwattanapong, James Law, Gregg Rothermel, and
Mary Jean Harrold. An empirical comparison of dynamic impact analysis algorithms.
In Proceedings of the 26th International Conference on Software Engineering, ICSE 04,
pages 491-500, Washington, DC, USA, 2004. IEEE Computer Society.

Maksym Petrenko and Vclav Rajlich. Variable granularity for improving precision of
impact analysis. In ICPC, pages 10-19. IEEE Computer Society, 2009.

Denys Poshyvanyk, Andrian Marcus, Rudolf Ferenc, and Tibor Gyiméthy. Using infor-
mation retrieval based coupling measures for impact analysis. Empirical Softw. Engg.,
14(1):5-32, February 2009.

Vaclav Rajlich. A model for change propagation based on graph rewriting. In Proceed-
ings of the International Conference on Software Maintenance, ICSM ’97, pages 84-91,
Washington, DC, USA, 1997. IEEE Computer Society.

Gabriela Serban, Alina Campan, and Istvan Gergely Czibula. A programming interface
for finding relational association rules. International Journal of Computers, Communi-
cations & Control, 1(S.):439-444, June 2006.

Panu Somervuo and Teuvo Kohonen. Self-organizing maps and learning vector quanti-
zation for feature sequences. Neural Processing Letters, 10:151-159, 1999.

R. Vanciu and V. Rajlich. Hidden dependencies in software systems. In Software Main-
tenance (ICSM), 2010 IEEE International Conference on, pages 1-10, Sept 2010.

Lee White, Khaled Jaber, Brian Robinson, and Véclav Rajlich. Extended firewall for re-
gression testing: An experience report. J. Softw. Maint. Evol., 20(6):419-433, November
2008.

H.Y. Yang and E. Tempero. Indirect coupling as a criteria for modularity. In Assessment
of Contemporary Modularization Techniques, 2007. ICSE Workshops ACoM ’07. First
International Workshop on, pages 10-10, May 2007.

Hong Yul Yang, E. Tempero, and R. Berrigan. Detecting indirect coupling. In 2005
Australian Software Engineering Conference, pages 212-221, March 2005.

Hong Yul Yang and Ewan Tempero. Measuring the strength of indirect coupling. In
Proceedings of the 2007 Australian Software Engineering Conference, ASWEC ’07, pages
319-328, Washington, DC, USA, 2007. IEEE Computer Society.

Hong Yul Yang, Ewan Tempero, and Rebecca Berrigan. Detecting indirect coupling. In
Proceedings of the 2005 Australian Conference on Software Engineering, ASWEC 05,
pages 212-221, Washington, DC, USA, 2005. IEEE Computer Society.

Zhifeng Yu and V. Rajlich. Hidden dependencies in program comprehension and change
propagation. In Program Comprehension, 2001. IWPC 2001. Proceedings. 9th Interna-
tional Workshop on, pages 293-299, 2001.

DEPARTMENT OF COMPUTER SCIENCE, FACULTY OF MATHEMATICS AND COMPUTER SCI-
ENCE, BABES-BoLYAT UNIVERSITY, CLUJ-NAPOCA, ROMANIA
E-mail address: {istvanc,gabis,marianzsu}@cs.ubbcluj.ro,mdir1308@scs.ubbcluj.ro

