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LOGICAL TIME AND SPACE OF THE NETWORK

INTRUSION

DANIEL MIHÁLYI, JÁN PERHÁČ, AND PATRIK BÁLINT

Abstract. Nowadays, one of the biggest threats for modern computer
networks are the cyber attacks. One of the possible ways how to increase
the level of computer networks security is a deployment of a network intru-
sion detection system. This paper deals with the behavior of the network
intrusion detection system during specific network intrusion. We formally
describe this network intrusion by the modal linear logic formula. Based
on this formula, logical space and logical time is expressed from the at-
tacker, and the network environment point of view in the usage of the
Ludics theory.

1. Introduction

Just as people communicate with each other, so do the computers. This
communication takes place within computer networks. As computer users,
people encounter the term ’computer network’ on a daily basis. Computer
security threats are relentlessly inventive. These threats constantly evolve the
possibilities how to find new ways to annoy, steal, or harm the user’s data.
Intrusion Detection System (IDS) [6] is one of the ways how to protect com-
puter network from security threats. IDS is a device or software application
that monitors a network or computer systems for malicious activities or policy
violations. Each detected activity or violation is typically reported either to
an administrator or collected centrally. A sequence of such causal activities
can be described by a resource-oriented logical system properly.

In our approach, we use Linear Logic, which is a suitable logical system for
usage in the field of computer science. This Logic [1] [2], is a substructural
logic proposed as a refinement of classical and intuitionistic logic. Linear Logic
brings new possibilities how to reason about formulæ in the resource oriented
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form. It means that a formula can be considered as a action or a resource that
is performed in control manner. For example, the linear implication is causal
which means that after performing it, the assumption is consumed.

In our previous work, we have created the network laboratory and described
IDS’s behavior during a ARP spoofing attack by linear logic formula [10].
From the coalgebraic point of view, we have described behavior of a IDS step
by step through the coalgebra for a polynomial endofunctor in [8]. Then we
have translated real network intrusion signatures based to coalgebraic one
[9]. In this paper, we present usage of the Modal Linear Logic, which is a
suitable logic to describe the behavior of state-oriented dynamic of an executed
program system. The whole process of performing network attack and catching
a network intrusion by a IDS is specified by behavioral the resource oriented
logical formula. Then, we apply a logical time and a logical space from the
Ludics theory [3], which was proposed by the J. Y. Girard [1]. In terms of this
theory, we can consider a behavioral formula as a polarized game between an
attacker and a network environment.

2. Modal linear logic

For the exact description of intrusion detection system’s behavior, we have
introduced our new logical system. We have proposed the Modal Linear Logic
for IDS, which results from generalization of the linear logic’s multiplicative
fragment and the coalgebraic logic [2] [7]. Compared to the other logical
systems, the significant feature of linear logic is resource-oriented approach
of dealing with formulæ [1], which creates a strong expressive power for de-
scribing the real processes [2], e.g. causality, pleonasm or parallelism and
many more [5]. These, together with a modal operators of the coalgebraic
modal logic, create an appropriate formalism for describing a behavior of state-
oriented program systems such as IDS.

2.1. Syntax of Modal linear logic. We formulate the syntax of Modal
linear logic in [5], by the following production rule in the Backus-Naur form:

ϕ ::= an | 1 | ⊥ | ϕ ⊗ ψ | ϕ O ψ | ϕ( ψ | ϕ⊥ | �ϕ | ♦ϕ,

where:

• an represents the elementary formulæ, where n = {1,2 ...},
• ϕ ⊗ ψ with its neutral element 1 is the multiplicative conjunction,

which describes the process of performing of both actions simultane-
ously,
• ϕ O ψ with its neutral element ⊥ is the multiplicative disjunction,

which expresses the commutativity of duality between available and
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consumed resources by performing either the action ϕ or the action
ψ,
• ϕ( ψ is the linear implication, which expresses that the (re)action
ψ is the causal consequence of the action ϕ and after performing this
implication, the resource ϕ became consumed (ϕ⊥),
• ϕ⊥ is the linear negation, which expresses duality between action (ϕ)

and reaction (ϕ⊥), in the other words, an available and a consumed
resource, respectively,
• �ϕ is the modal operator expressing necessity of the action ϕ,
• ♦ϕ is the modal operator expressing possibility of the action ϕ.

2.2. The proof system. The proof system of Modal linear logic is defined in
the Gentzen’s double side sequent calculus. The building block of this calculus
is a sequent, which has the following form:

(1) Γ ` ∆,

where Γ, ∆ represent (finite) sets of formula(e).
The inference rules have following

(2)
assumption(s)

conclusion
(rule name),

where the assumption(s) and the conclusion are sequents. There is a spe-
cial type of rules without assumption, called axioms.

They are defined as follows:

• The identity rule:

ϕ ` ϕ
(id)

• The structural rules are a cut rule and exchange rules:

Γ ` ϕ ∆, ϕ ` ψ
Γ,∆ ` ψ

(cut)

Γ, ϕ, ψ ` ∆

Γ, ψ, ϕ ` ∆
(exl)

Γ ` ϕ,ψ,∆
Γ ` ψ,ϕ,∆

(exr)

• The logical rules deal with logical connectives:

Γ ` ∆

Γ, 1 ` ∆
(1l) ` 1

(1r) ⊥ `
(⊥l)

Γ ` ⊥,∆
(⊥r)

Γ, ϕ, ψ ` ∆

Γ, ϕ� ψ ` ∆
(�l)

Γ ` ϕ,∆ Φ ` ψ,Σ
Γ,Φ ` ϕ� ψ,∆,Σ

(�r)
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Γ ` ϕ,∆ Φ, ψ ` Σ

Γ,Φ, ϕ( ψ ` ∆,Σ
((l)

Γ, ϕ ` ψ,∆
Γ ` ϕ( ψ,∆

((r)

Γ, ϕ ` ∆ Φ, ψ ` Σ

Γ,Φ, ϕ O ψ ` ∆,Σ
(Ol)

Γ ` ϕ,ψ,∆
Γ ` ϕ O ψ,∆

(Or)

Γ ` ϕ,∆
Γ, ϕ⊥ ` ∆

(()⊥l )
Γ, ϕ ` ∆

Γ ` ϕ⊥,∆
(()⊥r )

Γ ` ϕ,∆
Γ ` �ϕ,∆

(�r)
Γ, ϕ ` ∆

Γ,�ϕ ` ∆
(�l)

Γ ` ϕ,∆
Γ ` ♦ϕ,∆

(♦r)
Γ, ϕ ` ∆

Γ,♦ϕ ` ∆
(♦l)

The proof of a formula is proof tree, constructed from the root (the bottom
of the tree) up to the leaves. The proof tree leaves have to be axioms, which
implies that Gentzen’s style proof tree is constructed correctly. When all leaves
are axioms, the formula is proven.

3. Motivation Example

In this section, we briefly introduce basic notions of the used methods re-
lated to the detection of a network intrusion by the intrusion detection system,
and an informal description of the particular attack, that we demonstrate in
the motivation example bellow.

IDS is a security system that monitors the computer system’s activities
and its network traffic, and analyzes that traffic for possible hostile attacks
originating from outside of an organization, and also for a system misuse or
attacks originating from inside of an organization. It provides the three sig-
nificant functions: monitoring, detecting, and responding [4] to unauthorized
activities by company insiders and outsider intrusions. IDS uses policies to
define certain events that if detected, will issue an alert.

Our motivation example is based on the execution of a Distributed Denial of
Service (DDOS) type of attack, which is ”extended” Denial of Service (DOS)
attack type. The point of the DOS is flooding a target (e.g. server) by
requesting attempts to overload it. In case of a DDOS, the attack is performed
from more hosts at the same target(s) at the same time. Nowadays there are
plethora of DDOS attacks. We have chosen the Syn Flood attack. This attack
exploits the Transmission Control Protocol’s (TCP) ”three way handshake”,
during a client attempt to connect with a server. The server first passively
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listens at a port for possible connections. To establish a connection, the client
sends a SYN to the server. The SYN contains various information, but
what is important, it contains IP address of the client. The server allocate
resources for possible connection for the IP address for a some time (half-open
connection). Then the server responses by sending the SYN-ACK, to which
the client response with ACK. After that a connection is established. The
SYN Flood attack exploits the first step of this process. It sends multiple
requests (SYN) for connections to the server, but with spoofed IP addresses.
This can result into the server’s overload, which cause its malfunction.

To demonstrate the SYN Flood attack, we have created the laboratory
environment (as shown in Figure 1), where we can see the Attacker’s machine,
its Terminals, the Victim’s machine (with a localhost running) and the Router.
Attacker uses five terminals to flood the Victim’s web server services.

Figure 1. Laboratory network environment.

In our case, it is necessary to do the following steps to perform chosen
attack:

(1) examination of the Local Area Network (LAN) topology (address
space, network mask, default gateway etc.), e.g. by the tool nmap,

(2) perform a check for open ports on clients (potential victims) con-
nected to the LAN by port scan,

(3) execution of the Syn Flood attack at chosen client, from the 5 ter-
minals simultaneously.
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3.1. Formula in Modal Linear Logic. Now, we can describe the formula
(see Figure 3) of the network intrusion by Modal Linear Logic for IDS (section
2):

(3) (((N ( S1)( ♦UM )�(((((H1�H2)�H3)�H4)�H5)( S2))(�UN ,

where:

• N represents a vertical port scan of the victim’s host port,
• S1 is a reaction of IDS to vertical scanning of the victim’s host ports

by creating a log about a potential attack,
• ♦UM represents possible network intrusion,
• elements H1 ... H5 represent executing the SYN Flood attack from

Attacker’s five terminals to the Victim’s machine,
• S2 is a reaction to the SYN Flood attack from the Attacker’s termi-

nals,
• �UN represents the necessity of successful network attack.

The formula (3) can be interpreted as follows.

• ”Vertical port scan executed by the attacker (N)
• implies (()
• an action of the IDS by creating a log (S1),
• and that implies (
• a possible network intrusion (♦ UM ),
• and (⊗)
• performing the SYN Flood attack from the attacker’s five terminals

(H1⊗, . . . ,⊗H5),
• implies (()
• an action of IDS by creating a log (S2),
• and that all implies (()
• the necessity of the network intrusion. (�UN )”

Next step is to create a proof tree in Linear Logic proof system, which is
constructed from the root to leaves, as shown in Figure 2. All leaves have
to be identities. The whole proof tree represents a process of the SYN Flood
attack from the Attacker’s point of view. The contexts in the proof tree are
defined in Figure (3). Every deduction step in the proof tree above (Figure
2) is realized by using an appropriate rule (defined in the Section 2.2) of the
linear Gentzen’s calculus.

3.2. De Morgan’s form. The original formula (3) demonstrate a process of
the attack from the attacker’s point of view. To show the same process from
the network environment, it is necessary to transform it to the orthogonal one.
It can be done by application of the De Morgan’s laws Table 1. By applying
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Figure 2. Proof tree in Linear Logic.

Figure 3. Contexts for the proof tree (2)

them, we can obtain dual view between the two participants: in our case, the
attacker and the environment.

Table 1. De Morgan’s rules

1⊥ ≡dm1 ⊥
⊥⊥ ≡dm2 1

(ϕ⊥)⊥ ≡dm3 ϕ
(ϕ � ψ)⊥ ≡dm4 ϕ⊥ O ψ⊥

(ϕ O ψ)⊥ ≡dm5 ϕ⊥ � ψ⊥

(ϕ � ψ) ≡dm6 (ϕ⊥ O ψ⊥)⊥

ϕ ( ψ ≡dm7 ϕ⊥ O ψ
ϕ O ψ ≡dm8 (ϕ⊥ � ψ⊥)⊥

(♦ ϕ)⊥ ≡dm9 ♦ (ϕ)⊥

(� ϕ)⊥ ≡dm10 � (ϕ)⊥
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To achieve this, we must use the following De Morgan rules (see Table 1
above) to the original formula (3).

Figure 4. De Morganized formula.

In the Figure (4), we have translated the formula (3) in Modal linear logic
(from the attacker point of view) to the De Morganized one (from the network
environment point of view). In every step of the formula translation, we un-
derline the appropriate part, where a particular De Morgan’s law was applied.
Later, we construct a polarized proof tree (see Figure 5), where the root of
tree is De Morganized formula and every derivation step is realized by using
an appropriate rule applied to obtain a new proof instance.

3.3. Logical space and logical time. To successfully express the logical
space and time, it is necessary to identify changes in the polarity within the
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proof tree. Logical connectives are divided into the two groups depending on
their polarity. The positive connectives are ⊗, 1, � and the connectives O, ⊥,
♦, are the negative ones.

The polarity of formula depends on its outermost connective [11]. Change
of polarity within the proof tree instance of a linear formula characterizes an
incrementation of time. The steps of a proof with the same polarity can be
enclosed into a cluster [11]. The actions in a cluster can be performed simulta-
neously. Application of the negation rule is causing a leaping of an appropriate
formula or its subformula between left and right side of the turnstile. It occurs
when a new cluster of the same polarity passes. To achieve this, a polarized
proof tree must be created with the root of De Morganized formula as shown in
the Figure (4). At the end all the leaves of the proof tree have to be identities.

Figure 5. Polarized proof tree.

where the contexts are defined as follows:

Figure 6. Contexts for the polarized proof tree.
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In the polarized proof tree Figure (5), we observe the change of polarity.
We identify the clusters of polarities determined by the linear negation rule.
Where it is applied, a proof step expresses a time incrementation. The actions
enclosed in clusters can be performed simultaneously. The time incrementa-
tion reflects the fact, that the use of the negation rule causes tilting of the
corresponding formula between the right and left sides of the turnstile. The
following proof tree Figure (7) is constructed from its clusters. Proof trees
with clusters are not only simpler but also indicate the time incrementation.
The cluster proof tree (depicted in the Figure (7)), is derived from the polar-
ized proof tree (depicted in the Figure (5)) in such a way, that it contains only
those tree forms where the rule of linear negation was used.

Figure 7. Cluster proof tree.

Appropriate contexts are depicted in the Figure (8).

Figure 8. Cluster proof tree contexts.

In the linear logic, we consider a space in terms of locations. Every formula
has a location, i.e. its address [11]. Based on that, we remove the content of
subformulæ, and we replace it by its locations. Proof trees containing only
locations are called designs, where any logical information about the original
subformula is substituted by appropriate locative addresses, i.e. loci in the
design (Figure 9).
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The following rules are used in the process of constructing a proof tree in
the time-spatial Ludics theory.

• Positive rule is used when the outermost formula has positive polar-
ity,

(4)
. . . , ξ ∗ i, . . . ` Λi, . . .

` Λ, ξ
(+,ξ,I),

where the ξ is the address of a formula, and for every i ∈ I, and the
Λi is set of addresses of every immediate subformulas.
• Negative rule is used when the outermost formula has negative po-

larity:

(5)
. . . ` ΛI , ξ ∗ I, . . .

ξ ` Λ
(−,ξ,N),

where the N is set of ramifications, where for the every I ∈ N holds,
that ξ ∗ I.
• The daemon rule is used otherwise, mostly in the leaves:

(6)
` Λ, ξ

(z).

A location of proved formula in the design is denoted by ξ, where ξ is
the location address. If the formula has its immediate subformula ξ1, their
locations are called biases (the bias Λ1 or the concentrated biases Λ11, Λ12

etc.). The structure of space occupied by a formula is uniquely identified by
a finite sequence of biases [11].

Figure 9. Design.

Appropriate contexts are depicted below.

∆ = ξ
∆1 = ξ1

∆11 = ξ11

∆12 = ξ12

∆111 = ξ111

∆112 = ξ112
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Finally, we obtain the design on the network attack as shown in Figure (9)
for expressing the locative structure of the network intrusion. Designs are the
significant objects of the Ludics theory. The design in the Figure (9) consists
of the three time lines of comparable loci with respect to ordering relation v.

(1) ξ v ξ1 v ξ11 v ξ111, represents the linear time line of the possibility
of the vertical portscan intrusion,

(2) ξ v ξ1 v ξ11 v ξ112, represents the linear time line of necessity of the
SYN Flood network attack,

(3) ξ v ξ1 v ξ12, represents the linear time line of neccessity of network
intrusion.

A design can have one or more branches and it expresses two relation-
ships [11]: time and space. The addresses in the same branch of design are
comparable addresses and they have time relationship. The addresses in dif-
ferent branches are incomparable, i.e. they have space relationship in order to
relation v.

We can also interpret this design as the polarized game, where the linear
negation is conductive to move alternation between the proponent (attacker)
and the opponent (network environment). From the computer science point
of view, we were able to express logical space that represents the computer
memory and also logical time, which represents the calculation of computer
processor.

4. Conclusion

In this contribution, we show how the resource-oriented logical system can
be used to describe real processes in network environment, such as network
intrusion. We have expressed IDS’s behavior during network intrusion by a
formula of Modal Linear Logic. Our method is helpful that proof of such a
formula ensures the correctness of component software system design.

The main goal of this paper is to apply the time-spatial calculus from
Girard’s Ludics theory. Finally, we were able to express logical space that
represents the computer memory and also logical time, which represents the
calculation time of operation.

In the future, we would like to extend our approach by joining the host-based
intrusion detection systems with the network-based one i.e. create a complex
security of program systems. Such a combination of the both types of IDSs
will secure computer systems even more. The next step in our work, will be
extending IDS by applying the resource oriented Belief-Desire-Intention logical
system. We plan to create a BDI architecture, that will perform automated
IDSs reactions, instead of a system administrator intervention as it is now.
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