
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 2, 2018
DOI: 10.24193/subbi.2018.2.05

INCREMENTAL DECOMPILATION OF LOOP-FREE

BINARY CODE: ERLANG

GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

Abstract. Decompiling byte code to a human readable format is an im-
portant research field. A proper decompiler can be used to recover lost
source code, helps in different reverse engineering tasks and also enhances
static analyzer tools by refining the calculated static semantic information.
In an era with a lot of advancement in areas such as incremental algorithms
and boolean satisfiability (SAT) solvers, the question of how to properly
structure a decompilation tool to function in a completely incremental
manner has remained an interesting problem.

This paper presents a concise algorithm and structuring design pat-
tern for byte code which has a loop-free representation, as is seen in the
Erlang language. The algorithms presented in this paper were implemented
and verified during the decompilation of the Erlang/OTP library.

1. Introduction

Decompilation of compiled code is the process of transforming a compiled
module typically in a machine readable byte code format, back into a human
readable source code format. A decompiler, is a tool which automates this
process. The practical nature and visible result of a decompiler is an important
tool which is useful for source code recovery, reverse engineering of hostile code,
or for compiler validation. Decompilers have almost exclusively relied upon
an approach which treats the binary as a flat and static block of instruction

Received by the editors: March 31, 2018.
2010 Mathematics Subject Classification. 68W01, 68N20.
1998 CR Categories and Descriptors. code [Computing Methodologies - SYM-

BOLIC AND ALGEBRAIC MANIPULATION]: Algorithms – Nonalgebraic algo-
rithms; code [Software - PROGRAMMING LANGUAGES]: Processors – Incremental
compilers.

Key words and phrases. incremental decompilation, Erlang, dominator tree, post-
dominator tree, code duplication.

The project has been supported by the European Union, co-financed by the European
Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

This paper was presented at the 12th Joint Conference on Mathematics and Computer
Science, Cluj-Napoca, June 14-–17, 2018.

66

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 67

data, and proceeds with various stages also called passes over the byte-code
and iteratively through various graph structures until it achieves source code.
This approach is well understood, yet it is not a general method, and it does
not always produce usable or valid results.

The theoretical limit of decompilation lies at the general computability prob-
lem of decidability, famously highlighted by the halting problem. It is proven
that there exist cases where it is undecidable whether or not a program con-
tinues executing or stops, and this can be generalized to any decision pathway.
The first case needing this level of generality is unreachable code. The other
is that of self-modifying code, where the binary code is able to modify itself.

The motivation for a study in incremental decompilation theory becomes
clear: not only for generality of the decompilation process, but the approach
invariably could be used to make better, more flexible compilers. Compil-
ers and decompilers involve the same theory as both do binary transforma-
tion of code structures, albeit the programming languages utilize context-free
grammars and encourage block structures which is typically far less expres-
sive than byte code which tends to allow any control flow graph (CFG). A
CFG can contain sequences, selections and loops. The language of Erlang [1]
has been chosen as it is an excellent case study for incremental decompilation
for several reasons: no back edges inducing loops in the graph, impossibil-
ity of self-modifying code, and an easy to process byte-code which will be
pre-structured as instructions by its own libraries.

As a main contribution, a framework for incremental decompilation is pre-
sented in this paper based on using a symbolically semantic equivalent rep-
resentation and meticulous graph structuring. This includes algorithms con-
tributed for scanning methods, processing at merge and exit nodes and variable
emission.

Various concepts and tools maintain the incremental cascading of effects.
An analysis of semantic equivalence of byte code in a meta-data enhanced
abstract syntax tree (AST) representation for any language allows for a cross-
language approach. The importance of variable emission scenarios, classifying
side effects and nearly inexpressible byte code operations is demonstrated.
The incremental maintenance of dominator trees, reachability, and common
ancestors are discussed as with minimal processing at merge nodes.

Data interfaces encapsulate the graph structure containing basic blocks, and
another is used for the enhanced AST. Algorithms are considered for overall
decompilation, handling edges not expressible in the target language, merge
nodes with their optimized processing and minimal variable emission. Two
scanning algorithms for overall decompilation are studied. The nuances high-
light the technical challenge of achieving a consistent incremental algorithm.

68 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

Since code copying is a technique which has exponential growth conse-
quences in complexity, simplifications for boolean short circuits are consid-
ered. The clean up of the AST is itself a crucial element of the decompiler for
a readable and usable decompiled output.

2. Background

“Erlang is a programming language originally developed at the Ericsson
Computer Science Laboratory. OTP (Open Telecom Platform) is a collection
of middleware and libraries in Erlang.” [2].

An abstract syntax tree (AST) is a tree containing information directly
corresponding to the grammar of the language. It can be pretty printed to
Erlang source code, or compiled to BEAM, or even emulated by the Erlang eval

library. In fact the Erlang shell uses this eval emulator to execute commands
through evaluating the AST directly without BEAM conversion, albeit with a
performance penalty and possibility to execute code which fails the compilers
more strict validation on things such as variable bindings in block structures.

A decompiler based on a graph rewriting technique was written which shows
that multiple valid approaches to Erlang decompilation are certainly possible
[3]. Both follow further a seminal work for decompiler graph structuring [4].

2.1. BEAM code. The BEAM code, provides a set of opcodes, which op-
erates on a state containing the current instruction location, 1024 registers
{x, 0} through {x, 1023} and a stack starting at ∅ which when initialized has
a head always at {y, 0} and can be of any size limited by the memory of the
system or any emulator configured limit, and 16 special floating point registers
{fr , 0} through {fr , 15}. The current line number is specified in an instruc-
tion and is part of the state, although it is only accessible through stack traces
which should only be accessed when errors occur per documentation recom-
mendation. The BEAM code is contained in a file with the .beam extension
and directly representable by a large tuple containing the whole module, some
attribute information, its functions and their BEAM opcodes.

The state of the system is accessible thanks to external code libraries, so
potentially unknowable values could find their way into these registers when
interacting with the greater system state.

A few special opcodes are used in the emulator itself where it modifies the
original BEAM code but these do not concern the decompiler directly.

The correctness of BEAM code has several levels: syntactic valid when com-
piling it, correctness done by the compiler’s validator to prevent situations that
would crash the emulator, and finally that which runs on the emulator without
crashing. For the sake of generality, it is best to consider the latter correct-
ness as the decompiler could encounter code which is custom crafted with a

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 69

modified Erlang source code which disables the validator. The gold standard
of correctness is very hard to achieve, namely compilability to identical binary
code. Though typically its need is rare, any timing, line number or other
minute side effects require it.

2.2. Incremental Graph Maintenance. There is inefficiency of constantly
recomputing the dominator information which is utilized constantly as soon
as any decidable merging happens in the control flow. It is assumed the reader
understands the shorthand graph notations for edges and dominators.

Maintaining a graph structure upon edge additions is termed as an incre-
mental algorithm, while further including edge deletions which typically is
more complex, is termed as a fully online algorithm.

Algorithms for maintaining a dominator tree incrementally on edge addition,
as well as a fully on-line algorithm which also adds edge deletion are known.
For this purpose, although G. Ramalingam of IBM Research Laboratories
provided the next major break-through [5], the preferred algorithm is the
Sreedhar, Ghao, Lee algorithm which uses a data structure called a DJ-graph
which is a dominator tree with join edge information about the connectivity
of the graph due to the fact that dominator information alone is not enough
to easily determine the scope of how much of the tree is effected by addition
or deletion. Join edges are all edges which are not between ancestors and
descendants in the dominator tree. By introducing the concept of an iterated
dominance frontier (IDF) [6], a relatively simple and elegant algorithm emerges
to incrementally maintain the DJ graph [7].

Reachability of a given graph node to the return node is also important in-
formation to decide how to process when an exception disconnects the control
flow for a node or a subset of nodes to the return node. Determining this
information cumulatively can be performed with a simple depth or breadth
first walk from the return node up the tree to the root where the visited nodes
are the set. Incrementally maintaining this information is trivial for edge ad-
dition, as adding edges does not reduce reachability and nodes always start as
reaching the return node to later not reaching it. For generality, only when
a predecessor not reaching is added to a successor which is reaching, then
the whole reverse subgraph of the predecessor is added to the set. For edge
deletion, the successor if reachable which implies the predecessor is reachable
can check if any of its remaining successors is still in the reaching set, other-
wise remove itself and continue the process recursively up the graph. The two
processes are mirrored as can be seen formally (where REVREACH(X) is the
subgraph reachable from the reverse graph rooted at X):

AddEdgeReachSet(U, V,Rs) :

{
U /∈ Rs, V ∈ Rs Rs ∪ REVREACH(U)

otherwise Rs

70 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

NREVREACH(U,Rs) = [U] ∪ ∀Y ∈ PREDS(U),NREVREACH(Y), @X ∈ SUCCS(Y), X ∈ Rs

RemoveEdgeReachSet(U, V,Rs) :

{
V ∈ Rs, @X ∈ SUCCS(U), X ∈ Rs Rs \NREVREACH(U)

otherwise Rs
.

It should be noted that actual implementations would likely use breadth
first search (BFS) methodology for efficient computation. In fact, this reacha-
bility question is more formally known as a transitive closure, and maintaining
transitive closure for a directed or undirected graph is a problem which has
been studied. Solutions exist such as based on maintaining the order of a
linked list, as this problem efficiency-wise is a data structure problem [8].

The depth first search (DFS) tree is a tool used mostly for efficient compu-
tation of dominators in this context. Its incremental computation is still an
open problem for directed graphs due to the fact that one edge addition or
deletion can cause very far reaching changes, along with the fact that multiple
valid traversals are possible. In the acylic case however, there are algorithms
known [9].

3. Main Contribution: Semantic Equivalence

Various data-flow oriented semantic equivalence of various BEAM opcodes
and their corresponding Erlang code equivalent are analyzed. This is lim-
ited by control flow structures which are not single instructions but various
sequences tied together in certain ways and requires graph analysis. Of impor-
tance to the data flow analysis is the concept of purity. Purity of a function is
an attribute that the code it contains does not change the state of the system
in anyway except that which is returned to the caller.

Three valid approaches to consistent side effect handling are apparent based
on the purity analysis and detection. The first is to always emit variables for
every state change, but this makes the code unreadable requiring later clean
up based on single usage or dead variables, and is expensive as tracing original
values for decidability in these variables requires traversing dominators. The
second approach is to emit variables for any state change except pure built-in
functions (BIFs). This is straightforward and readily implementable. It is the
approach which is taken for simplicity. The last approach and more elegant
is to emit variables for any state change except functions detected as pure
by tools such as PURITY [10]. To not stick to one of these conservative ap-
proaches would ultimately to be emitting code which is in fact not reflective of
the original code. The discussion does not end with side effects as any values
represented as the result of AST emission also must be treated as having a
side-effect or the state itself would need to contain AST entries. To avoid this,
some situations require variable emissions for the entire block structure of the
lambda function creator. The captured variables of the fun expressions also
must have variables emitted, not because of side effects, but because injecting

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 71

side-effect free representational expressions into the captured variables is cer-
tainly different from the original code, where a type of fence exists between
the captures and the lambda function since only variables can be captured,
and compiler be optimization beyond this is not done. Tables of all instruc-
tions with side effects and variable emission fences should be generated and
codified.

The whole block of the function has a return value as well which is repre-
sented by a single value which must be denoted as a state item. In Erlang, it is
always {x, 0}. In practice, this could be a group of values but ultimately most
languages allow its expression as a singular value so some type of language
grouping element would need to be used to bundle them regardless, such as
tuples or lists. The generality could thus be extended.

3.1. Byte code and Metadata Enhanced Abstract Syntax Tree. The
classical view of byte code running on a system is that of a Fetch, Decode and
Execute loop, as per the way the central processing unit (CPU) itself works.
The Fetch and Decode step can be considered as one combined unit when not
considering timing issues. For a decompiler, this view is changed to a Decide
how to Fetch and Decode, and Symbolically Execute loop. The state itself is
symbolic of the actual state and does not contain literal values. However the
fetch and decode operation when generalized must decide as specifically as it
can, the set of bits resultant from the current symbolic state.

To maintain the data flow aspects of decompilation in the AST while it
structures itself based on control flow, entries are utilized with a special meta-
data key. These contain the values of the x, y and fr registers representing the
current state. These are guaranteed at the beginning of every block, and where
there are sequences in a block emitted due to side effects including function
calls or variable assignment, an updated meta-data entry appears after it.

A table and then code for the state should be compiled for the target lan-
guage which for Erlang includes the line number and registers as discussed.

3.2. Scanning and Overall Algorithm. The sequential scan for a decom-
piler is not only straightforward to implement, and seems to be a natural
choice for scan order, it leads to a number of consequences when dealing with
incremental algorithms and decidability aspects. In fact for decidability, it is
not sufficient, and cannot be considered as an appropriate algorithm at all,
since the decidability algorithm could effectively decide that it needs to know
more about another pathway before it can make a decision. This is thereby a
dependency and so a different scan ordering addressing these dependencies in
decidability must be looked at. However the incremental theory of both ap-
proaches will be developed hereby, as some very interesting details are gleaned

72 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

from the differences and answering decidability questions is not always a re-
quirement.

The merge nodes are the motivating factor for decisions, and processing of
these nodes which is discussed shortly, can be done best when all recursive
predecessors which reach the merge point are already scanned, as at this point
its post-dominating status is stable. Otherwise if it does not post-dominate,
it may later, or if it does post-dominate, it may post-dominate more nodes
later, in both cases based on exit scenarios. So the best place to scan at any
moment, is any non-merge node, or the un-scanned merge node which is not
reached by any other un-scanned merge node and it is processable meaning a
colliding edge is confirmed not to reach it. Instead of doing a series of negative
reachability checks, a BFS ordering of the graph can provide the topmost node
which would reach all the others, so the first un-scanned and processable merge
node in the BFS is the best candidate to scan. This greatly simplifies the exit
scenarios and even better reduces exponential code copying which occurs as a
result of delayed decisions.

The decompiler should maintain the status of each node in a simple structure
called the ProcessingState which can have values of: Unprocessed, Process-
able, Processed, Colliding, which progresses as it is added and then becomes
processable then processed, and thereafter possibly marked as a colliding for
optimal processing of the node its edge collides, and then it is moved back to
Processed. The BFS ordering scan deals with using the processing state to
chose the next processable node and is guaranteed to mark all as processing if
on jumps it looks ahead to the next node and marks it. The overall algorithm
of the incremental decompiler decidably fetches and decodes, and symbolically
executes in a loop while structuring based on conditionals, merge points, side
effects, or semantic equivalents (see it with example in Appendices B and C).

3.3. Return, Exit Nodes and Conditionals. Due to the difficulty of main-
taining the post-dominator tree as it could have multiple roots, an exit node
is introduced which any node added to the graph maintains connectivity to
at all times including the entry node. And also due to the nature of func-
tional languages returning a value upon exit, another placeholder node called
a return node representing the emission of a return value is also added. The
return node will be permanently connected to the exit node, and all nodes
who are being processed or not yet processed will maintaining a successor of
the return node. Any exceptions or errors, will cause a node to redirect from
the return node to the exit node.

However, the exit node functions differently as it is completely symbolic and
no merge occurs. Therefore it does not make sense for it to post-dominate any
nodes in the graph, beyond those in the subset of nodes which do not reach

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 73

the return node. Therefore the reverse graph needs to be maintained slightly
differently than the graph, and a technique for doing this, is that any node
which is a predecessor of the exit node has its successor drawn as the successors
to its set of predecessors which are part of the return node reaching set Rs.
These nodes are chosen by the nearest predecessors reaching the return node
or formally as PredSetReach(U, Rs).

The obvious caveat, is that in certain cases, the return node may not be
needed, if all code paths go to the exit node. In this case, the return node
could either be deleted or more conveniently made to be the sole successor of
the exit node. Figure 1 indicates the presumed structuring first, and then one
of them becomes the final structure.

Basic BlocksBasic BlocksBasic Blocks

Entry

Return

Exit Exit

Return

Entry

Return

Exit

Entry

Figure 1. Three control flows: the latter two only for final
CFG with no exceptions/exits or no normal returns

For the dominator tree, the prior strategy introduces a problem. The exit
node should not dominate any node except the return node, as this is a special
allowed control flow transfer which can exit the function regardless of where
it is in the AST. To deal with this, when computing the dominator tree, all
nodes succeeded by the exit node, have all of their predecessors’ successors,
replaced with the exit node successor. In effect, this makes the node have no
effect on the dominator tree, as if it were deleted.

The exception/exit incidence including the relevant opcodes, their context,
semantic equivalence and whether they are singular pathways which effect Rs

should be compiled in a table and then coded.
No effect on post-dominator of nearest return reaching node, as the decision

node itself is the nearest return reaching node, since by definition its continua-
tion path is unexplored and thus still reaching the return node, and previously
the node itself was unexplored thus reaching the return node.

An important routine of the decompiler is conditional structuring which
revolves around laying out the edges in the graph for conditionals and exits

74 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

which comprise the control flow instructions as well as any block structure
instructions which require further analysis due to the fact that they are not
single instructions but sequences thereof, and adding various AST emissions
as well as meta-data embedded within.

Another table should be compiled of all the control flow instructions which
structure each opcode as series of AST modifications and graph changes, while
keeping track of the next node for sequential scanning over binary condition-
als. Figure 3 demonstrates the equivalent non-block re-structuring of multi-
selection conditionals to binary conditionals. Since variable assignment is
allowed consistently within conditionals, using binary conditionals, and vari-
able assignment, avoids what is termed a block structure, a language structure
requiring a single return value and consistent entry and exit from the struc-
ture. The return values can simply be unused as hence ignored by avoiding
block structuring. Block structuring has a solution albeit complex and not
discussed. The cost is that exponential code duplication can occur.

TestValue

Branch1 Branch2 ... BranchN Default

Value1 ValueNValue2a Value2b ...

Figure 2. BEAM style select branching structure

TestValue

...

TestValue

Branch2

TestValue

Branch1
TestValue

Default

BranchNValueN

...

Value2a

Value2b

Value1

Figure 3. Select semantic equivalent for nested, non-block
style structuring

3.4. Merge Nodes, Cross Edges and AST Mapping. Anytime two or
more edges are incumbent on a node, a merge occurs where the data flows
through different paths in the graph must be coalesced. The single static
assignment (SSA) form has been used to represent this using a φ-function to
represent state values at these collision places.

An optimization can occur at this stage when the merge node is reached
by an implicit edge referred to hereby as a colliding edge and this edge is

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 75

also classified as a cross edge. This is an optimization over merely using the
equivalent jump control flow semantic equivalent.

The incremental theory develops by first realizing that the importance of
the merge nodes is underscored by the fact that they post-dominate other
nodes. Variable assignments at appropriate places can be done in a consistent
way such that these merge nodes are not important unless they are also post-
dominators. Two events can occur which cause a merge node to become a
post-dominator: 1) Most common is that a label is reached where a prior basic
block is implicitly added as a colliding edge, or alternatively it could be solely
a merge from prior basic block jump targets. 2) An exception or exit occurs.
This potentially causes a chain of potential post-dominator merge nodes which
must be checked. However these do not merge in the same sense as having a
colliding edge. Reprocessing of already processed post-dominators is possible,
since an already processed post-dominator can become a post-dominator of an
additional node when its exit is realized. In this case, no variable assignments
can occur but cross edge processing must proceed. A node which is processed
and all that it reaches is immediately post-dominated by a node which is also
processed are not further processable and do not risk an exit occurring on
them, a stable and decided set of the nodes.

Timing Node State Action

On Reach Not post-dominating any node Do nothing

On Reach Post dominated ≥ 1 nodes Process fully

Exit Unprocessed Do nothing
Exit Processed and not post-dominating any node Process fully

Exit Processed and post-dominating ≥ 1 nodes Process w/o
∃N ∈ REVREACH(Node), variable

get processed(PIDOM(N)) 6= Processed assignment

Table 1. Post Dominating Node Incidence Classifier for Se-
quential Scanning

Table 1 and a HandleExit function is thereby a consequence of a sequential
scan through the code. This is a convenience and shortcut taking approach
for Erlang BEAM code since it can be safely assumed if emitted from the
compiler to be all reachable and since it is not able to self-reference and hence
self-modify itself, a sequential scan only need know that a given label is reach-
able from the EntryLabel. An alternative and improved incremental approach
could keep a queue of un-scanned locations, and not scan them until they can
be processed and hence post-dominate some nodes, while at the same time all
nodes reaching it area also processed. In this case, the whole table is unneces-
sary as there is only a single case that processes fully when post-dominating
according to these conditions. This is a more general and more ideal way of

76 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

decompiling, but in some contexts, Table 1 can also be a relatively easy to
implement and workable methodology.

These are filtered so only the already visited ones are considered. Finally
the merge node processing occurs for all of them, as it would normally. Block
structures which have only exit paths should also be identified and processed
at this point for maximizing incremental effect unless all of their processing
would be done at once at the end. This discussion cannot continue without
introducing the effect of cross edges as they are the most important aspect
towards the resolution before variable assignment occurs.

The DFS-based cross edges and inexpressible forward edges – from the per-
spective of the AST which reflects valid edges – must be processed to determine
where copying of code can resolve these situations. In general, the AST entries
are allowed edges in a language when moving: forward to any ancestor, up to a
any descendant, to an immediate sibling, or to an exit/exception. Other edges
are considered to be a cross edge, and is represented hereby as EdgeClassifier.

A DFS is needed which given that the AST is an ordered tree, is unique
and a sorting of the paths of the nodes. Edges which are cross edges will be
represented by variable CrossEdges ← E \ EdgeClassifier(E).

The cross edges must be classified based on their significance for processing
based on the current node. Therefore the CrossEdges are further mapped by
a function to the nearest post-dominator or nearest common ancestor (NCA)
which is the longest common suffix (LCS) between dominator paths, except
that the node in consideration has included itself in its dominator sequence:
NCA(PathX, PathY) = hd(LCS(PathX, PathY))

NearPDom(P, S, Node) = NCA(

{
DOM(P) P = Node

SDOM(P) otherwise
, DOM(S))

NearCrossPDom(Node) ← ∀(P, S) ∈ CrossEdges, NearPDom(P, S, Node)

The cross edges are then filtered so that CopyEdges ← ∀(P, S) ∈ CrossEdges,
Node = NearPDom(P, S, Node). These are further sorted based on the DFS,
where the greater successors or in case of equality, greater predecessors are
processed first, hence a bottom up strategy, for convenience and consistency
which allows certain data structure optimizations. These values are incremen-
tally computable and as for the NCA, it could be recalculated based on the
set of changed nodes in incremental dominator recomputation.

The merge structuring algorithm is divided into three stages where when
a colliding edge is a cross edge, a special merge node is added as a place
holder for code copying and variable assignments, followed by cross edge code
duplication, and then variable assignment. The graph copying going on here
removes cross edges, but otherwise has no effect on the post-dominator tree
of the original nodes, so intermediate re-computation is not necessary.

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 77

Shortcuts are possible here where recognizing the nested, geometrically op-
posite diamond like shape of andalso as well as orelse is the most prevalent
and most useful one as this causes an exponential blow up in the graph and
therefore also the AST which makes processing slower even if it can be cleaned
up at the end. Otherwise the only illegal edges generally seen are the result
of compiler optimizations which reduced copied code, and hence copying the
code again becomes necessary. The basic structures are easy patterns to find
and can be recursively applied ideally in a bottom to top order.

A bijective mapping between the state nodes in the generated AST and the
control flow graph is needed which also must be incrementally maintained.
A simple method is to use an indexed path down the tree. The DFS of the
tree then is nothing more than a sort operation over of these labels based on
their indexed paths. This is incrementally maintained via a two-way indexing
scheme for binary search and insertion in sorted order.

The data structure to encapsulate the AST would include not only the
actual AST, but the mapping and a sorted two-way indexing for efficiency in
lookups and ranking when doing operations on the graph where a DFS ordering
based on the AST is necessary. The path of the nodes in the tree would be
encapsulated and efficiently implemented in some format. The enhanced AST
structure should provide operations for inserting nodes, child nodes, getting
or setting the meta-data, getting the DFS of the ordered tree, and copying
from a node into another node part of the AST with respect to the NCA.

As for the graph, adding edges, removing edges, getting a BFS, the reverse
graph DFS ordering, and the same copy graph operation as for the AST is
needed. Symbols for the entry, return, exit nodes and the next node and
current node should be a part of this. The graph should be able to answer
the various mathematically represented queries for edges, (post-)dominators,
reachability, CrossEdges, NearCrossPDom(Node) (see Appendix A).

3.5. Variable Assignment. Variable assignment takes all the merge nodes
that are post-dominators, after cross edges have been processed, and assigned
variables to the minimal consistent set of nodes necessary based on the domi-
nator tree. The merge node itself has its dominator used as a reference point,
as variables would not need to be assigned beyond the dominator. But all of
its predecessors, and their recursive dominators up to this top dominator need
to be considered. If changes or the lack of changes are consistent between all
children of a dominator, then the dominator itself can be chosen instead of the
child nodes, which is a key reduction in avoiding excessive variable emission.
The naive strategy would be to assign variables to all predecessors if there is
a change in any one of them.

78 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

A very useful optimization is that it is possible to only perform variable
assignment on merge nodes that are post-dominators, after cross edges have
been processed, but then the algorithm needs to be adjusted to go through
the predecessors of these nodes that do not post-dominate.

First the set of changed nodes is determined by recursively going through
the dominator tree, and then one more traversal determines the nodes that did
not change minimally with respect to the ones that did, so a variable emission
always occurs to ensure that a variable is present at the merge node in all
pathways. The state information should be maintained therefore by having
symbolic current state information for every node as it would be expensive
and undesirable to recompute something so easily maintained incrementally.

Algorithm 1 finds the minimal set of changed nodes with regards to the
predecessors and their dominators, while Algorithm 2 does this for the nodes
which did not change with respect to the nodes which did change in a similar
way with this additional exclusion and not needing to query for state changes.
Finally Algorithm 3 gives routines used in the merge algorithm for emitting
a single value on return, or going through all state item values otherwise. A
summary example is provided in Figure 4.

Algorithm 1 Find Minimal Set of Changed Nodes

Require: Candidates is a queue (not a set)

1: procedure FindChangedNodes(Candidates, Top, StateItem)
2: Changed ← ∅
3: while Candidates 6= ∅ do
4: (C, Candidates) ← (head of Candidates, pop Candidates)
5: if C = Top then . No Processing

6: else if StateChange(IDOM(C), C, StateItem) then

7: Changed ← {C}∪ Changed
8: Candidates ← Candidates \IDOM(C)

9: else
10: Candidates ← add IDOM(C) to end of Candidates

11: end if

12: end while
13: return Changed

14: end procedure

• EmitVariable(X, Y, S) is a routine which returns a pair (Assignment, Vari-
able) by assigning a variable for the state item S of node set X based on its
current state, and then emitting the symbolic representation of the assign-
ment of that variable in the state storage for node Y, the post-dominator,
along with symbolic representation of the variable without the assignment.
• StateChange(X, Y, S) is a routine which determines if the stored state has

a symbolic difference between nodes X and Y for state item S.

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 79

Algorithm 2 Find Minimal Set of Unchanged Nodes Relative to a Set of
Changed Nodes

1: procedure FindNotChangedNodes(Changed, Candidates, Top, DominatorNodes)
2: NotChanged ← ∅
3: while Candidates 6= ∅ do
4: NotChanged ← NotChanged ∪∀C ∈ Candidates, C = Top ∨ IDOM(C) ∈ DominatorN-

odes ∧ IDOM(C) /∈ Changed

5: Candidates ← {IDOM(C)|C ∈ Candidates, C 6= Top, IDOM(C) /∈ DominatorNodes}
6: end while
7: return NotChanged

8: end procedure

Algorithm 3 Variable Assignment Routines

1: procedure AssignVariable(X, StateItem)

2: Nodes ← FindChangedNodes(PREDS(X), IDOM(X) StateItem)
3: EmitVariable(∀N ∈ Nodes ∪ FindNotChangedNodes(Nodes, PREDS(X) \ Nodes, IDOM(X),⋃

{DOM(C)|C ∈ Nodes}), X, StateItem)

4: end procedure
5: procedure AssignVariables(X)

6: ∀ StateItem ∈ State, AssignVariable(X, StateItem)

7: end procedure

X=1

Merge Node: X=1

X=1

X=1

Entry

...

Top: X=1

X=1

X=1 X=2

X=2

X=2 X=2

Figure 4. Example of the variable assignment algorithm

3.6. Graph Correction, Clean up and Correctness. The graph correc-
tions required for a correct AST, which involve removing the meta-data anno-
tations, and the list to tuple transformations of catch blocks and some function

80 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

calls for receive which kept a list then tuple nesting structure must be fixed
first and manually so a valid AST results. Next comes the various graph
corrections required for compilable code, which are the empty values in case
structure pathways where a single path went through due to an error in the
other path. Any amount of sibling code which comes after can be considered
to go into this area. This could be improved but more useful is a totally sepa-
rate sequence for optimization. Based on this, what emerges is a dependency
order for a minimal ambiguity in the cleanup actions.

Line numbers would be very difficult to match, and a novel approach would
be needed for true generality.

A proof of correctness of the algorithm has a basis in that variable as-
signments are processed on merge nodes using a classical dominator-based
approach only a single time when its decided the dominator tree for a merge
node cannot further change. For the cross edges, they are handled only when
they post-dominate some nodes or have an increase therein. The two process-
ing orders will guarantee all predecessor edges recursively are known, so no
cross edges will remain when the remaining set to process is empty.

4. Conclusion and Future Work

In this paper we presented a methodology to demonstrate that not only
is incremental decompilation possible and feasible, but it can be practically
implemented with good results. The technical considerations and details laid
forth provide a framework for correct CFG structuring via binary conditionals,
and can be extended to block structures like catch or receive, along with
setting forth a code clean-up framework. Due to the close relationship between
refactoring of code, and program transformation, this project is to become of
the RefactorErl toolkit released by ELTE [11].

We have successfully evaluated and validated our methodology on the source
of the Erlang/OTP libraries and the compiler test suite [12]. The details of
the evaluation was presented in [13].

In the future, a study should deal with complicated incremental structuring
induced by introduction of loops. They have their own theory and ambiguity in
determining nesting, along with interference in conditionals studied here where
multi-entry/exit loops are concerned. Decidability issues through the use of
tools such as boolean satisfiability (SAT) solvers could be incorporated. As for
Erlang, the possibility of writing obfuscators based on identified decompilation
weaknesses is also an open challenge.

References

[1] Joe Armstrong. Programming Erlang. The Pragmatic Bookshelf, 2nd edition,
October 2013. ISBN 978-1-93778-553-6.

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 81

[2] Ericsson AB. Erlang Programming Language. http://www.erlang.org, 2018.
[Accessed: 2018.03.14].

[3] Dániel Lukács and Melinda Tóth. Structuring Erlang BEAM Control Flow. In
Proc. of the 16th ACM SIGPLAN International Workshop on Erlang, Erlang
2017, pages 31–42, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5179-9.

[4] Cristina Cifuentes. Structuring decompiled graphs, pages 91–105. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1996. ISBN 978-3-540-49939-8.

[5] G. Ramalingam and Thomas Reps. An incremental algorithm for maintaining the
dominator tree of a reducible flowgraph. In Proc. of the 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’94, pages
287–296, New York, NY, USA, 1994. ACM. ISBN 0-89791-636-0.

[6] Vugranam C. Sreedhar and Guang R. Gao. A linear time algorithm for placing
φ-nodes. In Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’95, pages 62–73, New York, NY,
USA, 1995. ACM. ISBN 0-89791-692-1.

[7] Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. Incremental com-
putation of dominator trees. ACM Trans. Program. Lang. Syst., 19(2):239–252,
March 1997. ISSN 0164-0925.

[8] Paul F. Dietz. Maintaining order in a linked list. In Proc. of the Fourteenth
Annual ACM Symposium on Theory of Computing, STOC ’82, pages 122–127,
New York, NY, USA, 1982. ACM. ISBN 0-89791-070-2.

[9] Paolo G. Franciosa, Giorgio Gambosi, and Umberto Nanni. The incremental
maintenance of a depth-first-search tree in directed acyclic graphs. Information
Processing Letters, 61(2):113 – 120, 1997. ISSN 0020-0190.

[10] Mihalis Pitidis and Konstantinos Sagonas. Purity in Erlang. In Jurriaan Hage
and Marco T. Morazán, editors, Implementation and Application of Functional
Languages, pages 137–152, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
ISBN 978-3-642-24276-2.

[11] István Bozó, Dániel Horpácsi, Zoltán Horváth, Róbert Kitlei, Judit Kőszegi,
Máté Tejfel, and Melinda Tóth. RefactorErl - Source Code Analysis and Refac-
toring in Erlang. In Proc. of the 12th Symposium on Programming Languages
and Software Tools, ISBN 978-9949-23-178-2, pages 138–148, Tallin, Estonia,
October 2011.

[12] Ericsson AB. Erlang/OTP (source code). https://github.com/erlang/otp,
2018. [Accessed: 2018.03.14].

[13] Gregory Morse. Towards a General Theory of Incremental Decompilation. TDK
Thesis, Budapest, Hungary, May 2018.

Department of Programming Languages and Compilers, Faculty of Informat-
ics, ELTE, Eötvös Loránd University, 1/C Pázmány Péter sétány, Budapest,
1117, Hungary

Email address: morse@inf.elte.hu dlukacs@caesar.elte.hu toth m@inf.elte.hu

82 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

Appendix Appendix A Merge and Exit Incidence Algorithms

Algorithm 4 Algorithms to Process Merge Nodes

1: procedure HandleMerge(Node, IsExit)

Phase 1 - Add place holder node

2: if Node = ReturnNode or IsExit then

3: InsertNode ← ExitNode, SearchNode ← Node

4: else if (CurrentNode, Node) ∈ NearestCrossPdom then
5: InsertNode ← NextNode(), SearchNode ← InsertNode,

6: insert ast node (Node, get ast node(Node), InsertNode)
7: if CurrentNode ∈ PREDS(Node) then

8: add edge(CurrentNode, InsertNode), remove edge(CurrentNode, Node)
9: end if

10: add edge(Node, InsertNode), add edge(InsertNode, ReturnNode)
11: remove edge(Node, ReturnNode)
12: else

13: InsertNode ← NextNode(), SearchNode ← Node,
14: end if

Phase 2 - Resolve cross edges via code duplication

15: CrossPairs← ∀(X,Y) ∈ CrossEdges, X 6= SearchNode ∧ (NearestCrossPDom(X, Y) = Node

∨ NearestCrossPDom(X, Y) = InsertNode)

16: while CrossPairs 6= ∅ do
17: (From, To) ← arg max(X,Y)∈CrossPairs (get ast dfs (Y), get ast dfs (X))
18: CrossPairs ← CrossPairs \ {(From, To)}, NodeSet ← REACH(From) \ REACH(Node)

19: copy ast node(X, Y, NodeSet), copy graph nodes(X, Y, NodeSet)
20: end while

Phase 3 - Variable assignment

21: AfterNode ←
{

Node Node = ReturnNode ∨ IsExit

InsertNode otherwise

22: if Node = ReturnNode then

23: insert ast node (Node, AssignVariable(AfterNode, ReturnRegister))
24: else if ¬ IsExit then

25: set ast node(

{
Node IsExit

InsertNode otherwise
, AssignVariables(AfterNode))

26: end if
27: return AfterNode

28: end procedure

• insert ast node (Node, EmitValue, NewValue, NewNode) where EmitValue and

NewNode are optional, must insert at the next available AST path after Node, EmitValue
if present, and NewValue always, and if NewValue was a meta-data, then NewNode spec-

ifies the graph node path into which the meta-data path will be stored for later lookup
or removal.

• insert ast node child (Node, Kind, NewValue, NewNode) is identifical to the

previous one except Kind gives an additional path information to be traversed based on
what type of child is being added such as a conditional or block structure.

• get ast node(Node) fetches the node data specified.

• set ast node(Node, Data) replaces the data at the node specified.

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 83

Algorithm 5 Algorithms to Process Exit Nodes

1: procedure HandleExit
2: NewPDoms ← PotentialNewPDoms
3: while N doewPDoms 6= ∅
4: C ← arg minX∈NewPDoms get rev dfs (X)
5: HandleMerge(C, true), NewPDoms ← NewPDoms \C
6: end while
7: end procedure

• get ast dfs (X) returns the simple tree walk ordering of node X to allow a non-

conflicting order when copying. In fact this is an approximation ordering that will
not always work, without continuing to recompute nearest cross edge post dominators

until a fixed point is reached. Technically there is a subgraph induced by FromPath

which is copied to ToPath, and any of these subgraphs which contains a ToPath creates
a dependency. The optimal scenario is therefore to avoid iterative calculation by adding

all the cross edge pairs to a list in dependency order by not adding them until their

dependencies are first added which also induces a proper partial ordering. It is a very
important point as the algorithm simplifies and hides this fact.

• copy ast node(FromNode, ToNode, NodeSet) surgically copies all the contiguous

set of the AST tree entries at the same level as FromPath and including it, which contains
NodeSet, into ToPath and which must be inserted as new mapped entries for all the meta-

data that was copied into ToNode to maintain the integrity and consistency of the AST

structure.

As for the graph, the following corresponding operations must be implemented and maintained:

• add edge(X, Y) adds the edge from node X to node Y.

• remove edge(X, Y) removes the edge between node X and node Y.

• get bfs (X) gets a comparable breath first search ordering of node X for the scanning

algorithm.

• get rev dfs (X) gets a comparable depth first search ordering of node X in the reverse
graph rooted at ReturnNode.

• copy graph nodes(FromNode, ToNode, NodeSet) copies all the nodes in sub-

graph NodeSet replacing all edges between nodes in the set with the new nodes, and

maintaining all edges which were to outside the subgraph except any nodes preceded
by FromNode which are changed to ToNode. This is the corresponding operation to

copy ast node which deals with the AST on copy.

• EntryNode symbolizes the entry node, ReturnNode symbolizes the return node,
ExitNode symbolizes the exit node, and NextNode() symbolizes the next node which

is to be newly added to the graph, and CurrentNode is the current node being processed
or considered, while CurInst is the current instruction.

• PREDS, SUCCS, DOM, SDOM, PDOM, PSDOM, IDOM, PIDOM, REACH,

REVREACH, CrossEdges, NearestCrossPdom(Node).
PotentialNewPDoms ← ∀C ∈ (

⋃
∀X ∈ PredSetReach(Node, Rs), SPDOM(X)) \ [Re-

turnNode, ExitNode], get processed(C)=Processed

84 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

Appendix Appendix B Overall and Scanning Algorithms

Algorithm 6 Sequential and Breadth First Oriented Scanning

1: procedure ContinueScan
2: if Jumped and IsBFSScan then

3: set processed(GetNextLabel(), Processable)
4: Candidates ← ∀C ∈ PREDS(ReturnNode), get processed(C) = Processable

5: if Candidates = ∅ then
6: return (∅, ReturnNode)

7: else

8: NextNode ← arg minX∈Candidates get bfs (X)
9: CollideNode ← ∀C ∈ PREDS(NextNode), get processed(C) = Colliding

10: return (GetInstructionAt(NextNode,

{
hd(CollideNode) CollideNode 6= ∅
NextNode otherwise

)

11: end if
12: else

13: return (GetNextInstruction(), CurrentNode)

14: end if
15: end procedure

• get processed(Node) returns either Unprocessed, Processable, Processed or
Colliding.

• set processed(Node, State) sets Node’s processing status to State.

• SemanticEquivalence(C) provides the symbolic net effect on the state of
instruction C.

• IsBranching(C) indicates if the C instruction is a branching or exit/excep-
tion instruction.

• IsLabel(C) indicates if the C instruction is a label and hence merging point.
• NodeFromLabel(C) returns an already mapped node for the label C, whether

pre-existing or requiring a new graph node assignment.
• HasSideEffect(C) classifies if any side effect or other condition arises re-

quires variable assignment.
• UpdateState(Data, StateDifference) updates the state in Data based on the

difference.
• Output(C) gets the state.
• GetNextInstruction() gets the next instruction after instruction CurInst

unless it is empty and then the entry instruction.
• GetNextLabel() scans forward after a jump for the next label to mark a

node as not collided and hence processable.
• GetInstructionAt(Label) gets the instruction at location specified by Label.
• IsBFSScan represents the option for a breath first scan versus sequential.

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 85

Algorithm 7 Overall Decompile to AST

1: procedure DecompileToAST

2: AST ← [EntryMetadata], Graph ← [EntryNode, ReturnNode, ExitNode]
3: CurInst ← ∅, CurrentNode ← EntryPoint, Jumped ← false

4: while (CurInst, CurrentNode) = ContinueScan(Jumped), CurInst 6= ∅ do
5: if IsBranching(CurInst) then
6: Jumped ← DoBranchingStructuring()

7: else if IsLabel(CurInst) then

8: NewNode ← NodeFromLabel(CurInst)

9: if IsBFSScan ∧ get processed(CurrentNode) = Processed then

10: set processed(CurrentNode, Colliding)
11: else
12: add edge(CurrentNode, NewNode), remove edge (CurrentNode, ReturnN-

ode), set processed(CurrentNode, Processed), set processed(NewNode, Processed), Han-

dleMerge(NewNode, false)
13: end if

14: else if HasSideEffect(CurInst) then

15: (Emit, NewVariable) ← AssignVariable(SemanticEquivalent(CurInst))
16: insert ast node (CurrentNode, Emit, UpdateState(get ast node(CurrentNode),

NewVariable), CurrentNode)

17: else
18: set ast node(CurrentNode, UpdateState(get ast node (CurrentNode), Seman-

ticEquivalent(CurInst)))
19: end if

20: end while

21: if ExitNode /∈ PREDS(ReturnNode) then
22: HandleMerge(ReturnNode)

23: end if

24: return Changed
25: end procedure

Appendix Appendix C Example

An overall example of a program in Figure 5 will highlight several of the
key ideas with a special view of the final AST with super-imposed cross edge
arrows in Figure 6 corresponding to the graph view of the prior step in Figure
7.

1 incstruct(A, B, C, D, E) ->

2 if not A -> A;

3 A andalso B orelse C ->

4 if D + E =:= 1 -> B; true -> error(D + E) end;

5 true -> A end.

Figure 5. Example code highlighting cross edge identifica-
tion, merge node, code copying and variable assignment

86 GREGORY MORSE, DÁNIEL LUKÁCS, AND MELINDA TÓTH

1: case Arg1 of end

4: true -> case Arg2 =/= true of end

8: true -> case Arg3 =:= true of end

16: true -> case Arg4 + Arg5 =:= 1 of end

18: true -> Var1 = Arg2

19: false -> error(Arg4 + Arg5)

17: false -> Var1 = Arg1

9: false -> case Arg4 + Arg5 =:= 1 of end

12: true -> Var1 = Arg2

13: false -> error(Arg4 + Arg5)

5: -> case Arg1 of end

6: false -> Var1 = Arg1

7: -> case Arg3 =:= true of end

10: true -> case Arg4 + Arg5 =:= 1 of end

14: true -> Var1 = Arg2

15: false -> error(Arg4 + Arg5)

11: false -> Var1 = Arg1

2: Var1

3:

Figure 6. Example program after final structuring step at
return node with arrows showing where copying occurred

INCREMENTAL DECOMPILATION OF LOOP-FREE BINARY CODE: ERLANG 87

true

false

true

true

false false

true

false

false

true false

12

%X1=Arg2

13

error(Arg4 + Arg5)

10

%X1=Arg4 + Arg5

case Arg4 + Arg5 =:= 1 of end

11

14

%X1=Arg2

15

error(Arg4 + Arg5)

1

%X1=Arg1

%X2=Arg2

%X3=Arg3

%X4=Arg4

%X5=Arg5

case Arg1 of end

2

3

4

case Arg2 =/= true of end

5

case Arg1 of end

6

7

case Arg3 =:= true of end

8

9

%X1=Arg4 + Arg5

case Arg4 + Arg5 =:= 1 of end

Figure 7. Graph derived from example program in final struc-
turing step at return node

