
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIII, Number 2, 2018
DOI: 10.24193/subbi.2018.2.04

INSTRUMENTATION OF C++ PROGRAMS USING

AUTOMATIC SOURCE CODE TRANSFORMATIONS

ZSOLT PARRAGI AND ZOLTÁN PORKOLÁB

Abstract. The main tool for programmers is always the compiler, but
there are also many other tools to help the development process. Some of
these tools work on the source code of the program, analyzing, measuring
or transforming it. Implementing a source based tool is a complex task,
especially for complex languages such as C++. In recent years the C++
language received an easy-to-use library for developing such software, in
the form of clang tooling. However, this library only focuses on processing
a single translational unit of the program, independently to the other parts
of the build process. Tools which ignore this big picture could result in
failures when used on larger projects, or incorrect runtime behavior. In this
paper, we describe some of these challenges encountered in real-world C++
projects and propose possible solutions for future tools to fix or mitigate
the issues.

1. Introduction

There are tools which work on an already built binary, by intercepting
calls (such as strace[13]), running the code on a virtual machine (such as val-
grind[14]), or by transforming the binary before (such as syzygy[6]) or during
(such as orbit profiler[12]) the execution of the program. There are tools which
work within the compiler, using transformations on the intermediate language
in it - for example, sanitizers[10] in the compilers are usually implemented
this way. There are also tools which work by analyzing, and possibly modi-
fying the source code. For example, static analyzers[11] work by performing
more detailed checks on the source code, even providing automatic correction
options for some cases.

Received by the editors: March 31, 2018.
2010 Mathematics Subject Classification. 68N15.
1998 CR Categories and Descriptors. D.3.3 [Software]: PROGRAMMING LAN-

GUAGES – Languages Constructs and Features.
Key words and phrases. C++ programming language, source code transformation,

instrumentation.
This paper was presented at the 12th Joint Conference on Mathematics and Computer

Science, Cluj-Napoca, June 14-–17, 2018.

53



54 ZSOLT PARRAGI AND ZOLTÁN PORKOLÁB

All of these have their disadvantages.
When a tool works on an already existing binary, it lacks information. De-

bug symbols can be generated for any type of builds, but optimizations, such
as inlining limit the options available for tools even then. This can be coun-
tered by running the tool on binaries compiled with special flags and providing
an API that programs can use to share information.

When a tool is integrated into the compiler, it is only available with that
compiler – and as these tools are often under active development, possibly
even limited to recent compiler versions, limits their use especially for software
targeting several compilers, operating systems or platforms.

When a tool works on the source code, it is limited to the capabilities
of the language, and it is subject to the differences between the compilers
and the complexity of interpreting the source code. These disadvantages are
especially crucial in the case of C++: While the C++ standard[7] is detailed,
it leaves choices to the compiler, and there are several examples for the most
used compilers providing different results for simple looking C++ programs
- sometimes even diverging from the standard. Interpreting the language is
also challenging because of the preprocessor: as C/C++ programs tend to
use many different configuration options[1], there is not a single AST to be
analyzed and modified.

Most tools could be implemented using different techniques, and there are
examples for implementing the same tool in different ways: Code coverage
can be measured with in-compiler instrumentation (the -fcoverage option
of clang), with transforming the source code (Coco[Bullseye]), or with a
tool working on a special binary (gcov[5]). On the other hand, it is entirely
possible that a tool can not be implemented in all three ways: Uninitialized
memory reads can be detected by a binary tool (valgrind) or an in-compiler
instrumentation tool (memory sanitizer in clang), but implementing it with a
source transformation is not possible within the limits of the language.

In this article, we focus on the problems and possible solutions when imple-
menting AST level source code instrumentation tools based on clang tooling.
Source-based tools were chosen because of their generality: tools working on
the binary or as part of the compiler are limited to the platforms where the
tool runtime or the compiler is supported. This is often a limiting factor even
on desktop systems - several tools, such as valgrind, or the clang sanitizers
only work on Linux-like systems. On other, especially embedded systems,
the problem is even more significant: these targets often have custom compil-
ers, making compiler based techniques unusable, and possibly limited or no
support for running external runtime tools along the main program.



INSTRUMENTATION OF C++ PROGRAMS USING SOURCE TRANSFORMATIONS 55

Our focus is how these transformations can be integrated into and per-
formed on large-scale projects. We discuss questions like how a source code
transformation tool can be included in the build process, or how the amount of
available configurations increases the complexity or possible problems[16][15].

It is also important to mention that source code transformations could easily
result in behavior changes of the program[4], and ensuring that these are not
happening is a similarly important aspect of tool development. In some cases,
this is impossible. In this situation, it is important to minimize and document
these - as in the case of the previous Coco example, which results in behavior
changes with specific operators. While we mention that this is an issue, further
analysis of the question is out of scope for of article.

2. Transformation overview

A C++ program is built by transforming every C++ source file separately
into an object file, then linking those object files, and dependencies together
into a library or executable. This process is also layered: the dependencies
used by the linking step are built similarly, but often provided only in the
final, binary form. Larger projects usually consist of multiple components,
each built this way, depending on each other. Based on this, we can split
dependencies into two categories: internal, which are built by the project, and
external, which are expected to be found in a compatible binary format.

The first issue with program instrumentation is handling the dependencies:
when the instrumentation changes the build process – as in the case of in-
compiler or source based instrumentations –, it is possible that changes have
to be made in the dependencies. An extreme example for this is the mem-
ory sanitizer[10]: it requires every dependency, including the C++ standard
library, to be built using the memory sanitizer.

This is, even more, an issue when using source transformation tools: in this
case, the task is not only the addition of some compiler flags into the build
process of the dependency, but the actual execution of another tool during its
build. It is also important to note that some dependencies are only provided
in a binary form, making transformations in them impossible.

While the tool itself can not make the task of building everything in the
necessary way more manageable, the problem can be mitigated by limiting
what parts of the software transform. In case of the memory sanitizer example,
there are no better choices because the way it is designed, but most software
should be implemented in a way that would allow at least limited usage without
rebuilding everything. To achieve this, tools either need a way to decide which
files they can safely change, or they should not rely on any change that would
change the ”interface” of a file.



56 ZSOLT PARRAGI AND ZOLTÁN PORKOLÁB

Clang tools generally use a compilation database for executing the tool: a
JSON file containing every compilation command with all of their parameters.
This file can be generated by commonly used C++ build systems, and then
the tool can look up the specific compilation parameters from it. This process
is executed as follows:

(1) Configure the project. For some tools, like CMake[8], this step also
generates the compilation database.

(2) Build the project. For some tools, like bear[9] with make, this is the
step that generates the compilation database. If it was generated by
the compilation step, and the project uses no generated source files,
this step could be skipped.

(3) Run the tool on some or all of the source files.

This process works perfectly with read-only tools, that do not change the
source code. It is also suitable for some transformation tools, by repeating the
second step once more after the transformation and compiling the modified
program. Unfortunately, this approach leads to issues in some special cases.

Focusing on a single component of the build process, C++ sources include
other files, handled by the preprocessor. A header file can be, and often will
be included by more than one source file. While this usually does not result
in any issues, it is possible that different source files include the headers in the
context of varying preprocessor definitions. It is also possible that a source
file includes a header multiple times with a different preprocessor definition
context, or simply a build can include a source file multiple time with different
compilation flags, providing a different name to the resulting object file.

These all could cause problems when changing the source code:
#ifdef SOMETIHNG_DEFINED
int foo(SOMETHING_DEFINED a);
#else
void foo();
#endif

With a simple transformation approach, it is possible that this file is trans-
formed twice:

• first, when included with the definition set, only the first part is
transformed

• after that, when included with the definition not set, only the second
part is transformed

With the transformation process implemented the previously described way,
depending on the exact sources, this could cause compile or runtime errors:
As the process performs in-place transformations, the execution of the second
compilation would work on the source file already transformed by the first
execution of the tool. This is often the desired behavior: if the tools result



INSTRUMENTATION OF C++ PROGRAMS USING SOURCE TRANSFORMATIONS 57

is permanent – such as when using automatic refactoring tools –, in the ideal
outcome the transformation should include every sub-transformation required
by any used configuration, and further runs of the tools should not result in
additional changes. In this case, if the results conflict, the developer could be
expected to look at them and fix the remaining issues manually.

With automatic, temporary transformations, however, user interactions
during the build should be avoided, but keeping the same number of source files
as initially is not a requirement: different translation units could use different
versions of the sources, as long as these provide the same result a correctly
implemented single file would. As the changes presented by the preprocessor
definitions are limited to the current unit, this statement will hold. Based on
this, the previous process can be generalized as follows:

(1) Configure the project.
(2) For every compiler invocation in the source code:

(a) Invoke the transformation tool with the same parameters as the
compiler, providing an out of place transformation in a unique
temporary directory: every input file used by the compilation
process should be written to a different location

(b) Invoke the original compiler command, on the modified files
(c) (Optional) Remove the temporary files

This change in the execution of the tool solves most of the mentioned issues:
by doing an out-of-place transformation, always based on the original source
codes, different transformation processes will not be based on the previous
outputs – the tool will not accidentally transform the same source location
multiple times. And by invoking the tool just before the original compilation
program, we prevent accidental overrides: each compilation will be executed
immediately after the required source codes are transformed. Finally, by re-
quiring a unique temporary directory, we guarantee that parallel builds will
not cause issues when the same file is used by multiple translational units
transformed at the same time.

While these transformations increase the IO bandwidth required by the
compilation commands, a memory file system could be used to avoid actual
disk writes.

This approach also gives the advantage that it can be implemented as a
wrapper around the compilation command. While the previous version re-
quired the generation of a compilation database and a separate run for the
tool based on that database, the modified version does not need any change
in the build script, except for a change in the compiler executable. This ap-
proach is used for example by the Coco coverage tool, which merely changes
the system PATH seen by the build process.



58 ZSOLT PARRAGI AND ZOLTÁN PORKOLÁB

The disadvantage is that this approach assumes that at least the transfor-
mation tool and the compiler can be run on the same platform. As our goal is
constructing tools with clang tooling, which supports most Unix-like systems
and windows, this is likely achievable.

We also have to note that with this simple modification, we did not solve
the issue when a file is included multiple times, but differently within a single
translational unit. Related issues are addressed later.

3. A note on compiler specific preprocessor definitions

The process we described is limited when the source code contains compiler-
specific conditional blocks. While these are not common in high-level code, as
the transformation process works on the entire source code, it will encounter
these: they are commonly used in standard library implementations, and also
in several widely used C++ libraries, such as boost[2].

In our experience, most transformations do not require changes in these
parts of the code. If for some reason this is required, an AST transformation
based tool can not be used. While it is possible to modify the predefined
definitions for a clang tool, these conditions are not there without reasons
in the source code. While it is possible that the only reason behind them
is a compiler specific optimization or a compile-time optimization, the more
likely reason is that other compilers can not understand the code within the
condition.

An excellent example for this is the boost preprocessor library, which has
numerous preprocessor conditions because of the slight differences between
the preprocessors in different compilers. Trying to parse a different branch of
that library other than what is designed for that compiler will likely result in
errors during the early stages of compilation, and the inability of the compiler
to produce a valid AST.

If such a macro is in the code base of the project the tool has to modify,
and it is an uncommon case, the tool could get away be reporting a diagnostic,
and provide developers the ability to manually resolve it. For transformations
in third-party libraries and common occurrences, and when the tool has to
guarantee that it will not miss any instrumentation, this is not an option.

As an example, the Coco[3] code coverage tool falls into this category: miss-
ing covered code would not be acceptable in a code coverage tool. On the other
hand, coverage analysis also falls into the category where AST information is
not required. While the tool is based on source transformations, it does so
based on the token stream.



INSTRUMENTATION OF C++ PROGRAMS USING SOURCE TRANSFORMATIONS 59

As it does not have to be able to construct a complete AST from the to-
kens, only to find the blocks and conditions in the code, it could change the
transformation process to the following:

(1) Run the original compiler with an additional flag, which instructs it
only to preprocess the source code, and output the result

(2) Instrument this preprocessed source code
(3) Run the original compiler using the modified sources

This process defers the preprocessing of the sources to the original compiler,
to avoid any possibility of interpreting preprocessors definitions differently.
The result should be a C++ source code, possibly referencing builtins specific
to the used compilers. While these builtins will likely prevent another compiler
from completely parsing and validating the source code, any compiler should
be able to tokenize the result.

4. Mixing C and C++ code

Another issue is presented when C and C++ code is intermixed. While our
goal is the instrumentation of C++ programs, C++ projects sometimes also
contain C source files, which can not be built by a compiler in C++ mode.

If a C++ program also contains C source files, it adds additional questions
when developing a tool. The first is, should the tool also have C support?

Some tools instrument code fragments that are only valid in C++ – in which
case, they may safely ignore the question, as they will never have to modify
a source code fragment which fails be parsed by a C compiler. Tools however
often do not fall into this category.

Some tools could instrument C sources too, but the transformations done
by the tool require a C++ compiler – it is possible that instrumenting C
code in a similar manner is impossible, or will not be completely reliable. For
example, RAII is unavailable in C sources, but it is possible for exceptions to
pass through C code if it calls a C++ function.

Tools also have to be aware that header files may be shared between C and
C++ source files. For this, the header file has to be compatible with both
C and C++ compilation: Every C++ specific language has to be behind a
conditional preprocessor directive. While the standard way to do this is the
__cplusplus definition, some project uses their specific definitions provided
by the build system.

The file also has to contain at least one global variable, or one function with
extern C linkage when compiled with a C++ compiler, and these have to be in
conditional sections which do not contain any not conditionally defined C++
symbols. Otherwise, even if the file is used by both a C and a C++ compiler,



60 ZSOLT PARRAGI AND ZOLTÁN PORKOLÁB

the name mangling in C++ would ensure that the different language object
files use different symbol names, preventing any possible issues.

The process described in the previous section ensures that the tool can not
break the compilation of a header when it is used by a C or a C++ compiler: if
a header is included in multiple translation units, it will be translated multiple
times, differently. When used in a C compilation, the transformation process
may either ignore it or could provide a C compatible transformation.

However, it also provides no information the way different headers are used:
as it only wraps the compiler command and builds no external database about
the files, it has no way to check if a source file is used with both languages.
Compared to the previous example, where if a source code fragment was not
disabled by a preprocessor definition, it was always transformed in the same
way, in this case a program could end up with both a modified and an un-
modified version of the source code, causing linking errors, or possible runtime
problems.

One issue is caused by the linker: if an inline function has definitions in
several object files, the linker will choose only one of them. In this scenario,
when the C compiler does not instrument a function, but a C++ compiler
does, the linker could choose any of the implementations.

// some_header.h
#ifdef __cplusplus__
extern "C" {
#endif
inline foo() {
CPP_ONLY_INSTRUMENTATIN_MACRO;
printf("bar\n");

}
#ifdef __cplusplus__
}
#endif

A possible workaround that during the compilation, the tool could convert
global inline functions it has to modify to static functions. The issue with
this approach is that with this change, the address of the function will be
different in every object file, possibly changing the behavior of the program,
if it depends on equality checks of the function addresses. This limitation
has no possible automatic fix: While a wrapper function could guarantee
that the same object address is used in every translational unit, it would also
reintroduce the original issue in a more limited form. A tool also has no
reliable way if the function pointer is used in a comparison. For this the best
a transformation tool could do is to provide a diagnostic if it encounters the
situation, and require the developer to solve it or silence the warning.

Another issue is presented by functions which only have declarations in the
source file, and only affects tools that change function signatures: In this case,



INSTRUMENTATION OF C++ PROGRAMS USING SOURCE TRANSFORMATIONS 61

it is possible that the tool correctly updates the signature, and changes the
implementation of the function, which is in a C++ source file but does not
update calls to the function in C code. Similarly, it is possible that the function
is implemented in C, in which case the implementation will be unchanged, but
the C++ callers will provide an additional parameter to it. As this is an
extern C function, none of the above would result in linker errors – but both
would result in runtime issues, where the exact results depend on the used
calling conventions. While this is a more limited issue compared to the inline
functions, it similarly has no automatic solution.

5. Dealing with conditional macro expansions

In the previous sections we discussed several issues presented by conditional
preprocessor directives, but only in the context, that preprocessor directives
will cause different parts of the source code to be compiled. Another issue
presented by the preprocessor is macro expansion: when the transformation
code has to modify a source code fragment which is at least partially is a result
of the expansion of one or more preprocessor macro.

#define FACTORY_FUNCTION(T) \
T* create_or_return() { \
static T* instance = new T(); \
return instance; \

}

// ...

INLINE_MACRO FACTORY_FUNCTION(TYPE_NAME_MACRO(foo,bar));

In a permanent transformation, the goal would be the transformation of the
code behind the macro - so the code using it would remain the same, but the
macros would expand to a different source. In an automatic tool, however,
it could be easier to expand the macros to the actual source code generated
by them, and then transform that source code. This could prevent several
edge cases which could not be solved by the tool: for example, if the macro is
defined in a header file, the tool can not be sure that every single of its use
has to be instrumented.

Also, as every file is transformed uniquely by every translation unit, expan-
sion will not cause issues even when a macro is defined differently for different
compiler invocations. However it does not solve the previously mentioned is-
sue, where one header, without an include guard, is included multiple times
in a translational unit, but with differently expanding macros. In this case,
the macros are expanded multiple times differently in the same file and could
cause problems during the source code transformation.



62 ZSOLT PARRAGI AND ZOLTÁN PORKOLÁB

As this can not happen when the pragma once compiler extension is used –
that would prevent the second, different expansion –, we can provide a perfect
workaround by cloning the file: when a transformation problem as described
earlier is detected – a macro expansion is detected, but at a location where
a macro was already expanded previously, but differently –, the file should
be duplicated, and the include before, and after the conflicting should be
changed to refer to the second file. The downside of this approach is that it
assumes that the transformation tool has a detailed data structure about its
transformations, and can perform this detection.

Alternatively, a simpler approach can be implemented in two separate phases:

(1) The first hooks into the preprocessing phase of clang tooling
(a) It collects every source file used by the preprocessor into a list
(b) If it detects that a source file was already used, and it again

emits non-whitespace tokens, it also marks the location where
it happened

(2) If it detected a multiply used source file, it creates multiple clones
of that file and changes the invocing include directives. This can be
implemented using a virtual in-memory filesystem in clang tooling,
without writing anything to a file system handled by the operating
system. After that, it starts over with using this virtual file system.

(3) if it did not detect any source file used multiple times, it runs the
second phase, which is the real tool as previously described, after the
AST was parsed.

In this process, we can guarantee that the second rerun will not contain
any source files used multiple times and that the preprocessor tool should not
result in any noticeable change in the behavior of the program. The AST
tool also requires no modifications, as if a macro in the source is expanded
differently multiple times, it is hidden behind the preprocessor tool.

The disadvantage of this approach is that the tool will duplicate files even
when it did not have to, as it can not tell if the tool will modify them. However
this is a rarely used possibility in the language, and as such, will not result
in any noticeable performance hit for most projects. In the detection step, it
also assumes that the process only transforms actual C++ code, not macro
definitions - it will not duplicate files which have no header guard, but only
change preprocessor symbols.

After these modifications, the tool will be able to safely expand macros
that have possibly different results but depend only on information defined
by the project. However, macros depending on external information result in
different issues:



INSTRUMENTATION OF C++ PROGRAMS USING SOURCE TRANSFORMATIONS 63

• There are standard macros, which could be possibly changed by the
tool, such as __FILE__ or __LINE__.

• There are nonstandard macros, which in practice work the same way
for every compiler, such as __COUNTER__

• There are macros which are often different for compilers, such as
__clang__ or _MSC_VER.

A transformation tool has to deal two possible situations with these: macros
conditionally depending on these expressions – either directly, or indirectly,
by a used macro –, or macros using these macros in expansions.

Some answers are clear in the previous list – for example, unless the tool
can be sure that the real compiler will do the same steps as the clang tool, it
should not expand a macro. In this case, the good answer is most likely only
providing a diagnostic – based on that the developer or the tool developer may
investigate the issue further, and possibly improve it. As an example, if the
tool detects that the real compiler is GCC, and the condition is only based on
GNUC macro, without depending on a clang specific macro, the expansion can be
safely done. However, if the preprocessor did not take a previous condition only
because while it allowed GCC, but disallowed clang, it is no longer expandable.
This analysis requires a rather complex logic and understanding of different
compiler internals. These decisions also require logging how the preprocessor
evaluates conditions in the clang tool, making it realistic only for tools that
often encounter these special cases.

Other decisions are not easy to decide: expanding macros such as __COUNTER__
or __PRETTY_FUNCTION__ could be perfectly safe even if the real compiler
would interpret them somewhat differently. Another good example for this is
the __DATE__ macro, which is provided by every compiler, but it is evaluated
differently every time.

Instead of expanding them, however, another approach is a more limited,
and slower macro expansion: while the mentioned macros are often used in
various C/C++ projects, it is unlikely that a tool has to transform the actual
tokens generated by these macros. A more likely situation is that these macros
are used in another macro - which also generates the source code which has
to be transformed. In this case, instead of the full expansion of the source
code fragment the tool has to transform, it could try to use a more restrained
approach by only expanding macros one level at a time, and stopping as soon
as the source locations where the transformation hat to take place are actual
tokens.

This also means that if a transformation has to modify two locations – for
example, wrapping a function call in another –, only the macros that contain



64 ZSOLT PARRAGI AND ZOLTÁN PORKOLÁB

the location before and after the function call has to be expanded - macros
within the function parameter list can stay unexpanded.

While this limitation does not solve the original issue, as there can be still
situations the tool can not handle, it will greatly reduce their number. By
implementing a similar approach, a tool has to emit fewer diagnostics about
unexpandable locations.

6. Conclusion

In this article, we presented a methodology for developing C(++) source
transformation tools, which is simple for developers to implement but also
reduces the possible compilation or runtime issues caused by it. While we
were not able to provide an automatic solution for every possible corner case,
we provided workarounds to reduce the times the software has to provide
diagnostic and/or require active interaction from the developer using it.

The methods we described are primarily intended for automatic AST based
source code transformations, but most of the techniques we described could
be adapted for other tools: for example, while most of our used methods
are unsuitable for automatic refactoring, or permanent transformations, the
described ideas could be used to implement the error detection and recovery
capabilities of these tools in large projects.

We also have to note that while our results improve the usability and preci-
sion of these source transformation tools, it could be improved – both with the
open questions in the mixed language projects and macro expansions. There
are interesting improvement possibilities, such as logging the possible trans-
formation conflicts during the build process, using an external code-database
for finding how functions or headers are used or reconstructing actual macro
expansions based on the differences between the preprocessor output of the
actual compiler and clang.

We also only described the methods of these techniques without providing
an actual library implementing these features: most of the methods described
are generic and could be implemented in a generic reusable way for any tool,
but current implementations only exist as a part of actual code instrumen-
tation tools. The development of a ready to be used simple toolset would
certainly reduce the cost of writing code transformation tools.

We only focused on the build process and the preprocessor, without men-
tioning the additional issues caused by accidental semantic changes in the
program. With the capabilities of clang tooling, it would be possible to de-
velop a framework which could validate that a given source change would not
result in any unintended side effect - that is, apart from adding the additional



REFERENCES 65

instrumentation, logging, or validation, it will not cause changes in the original
program flow.

While code transformation and analysis is part of the development process
for a long time, the increasing number of available tools for developing such
software makes it an interesting research area and makes the development of
usable and reliable tools easier.

References

[1] “An Empirical Analysis of C Preprocessor Use”. In: Software Engineering, IEEE
Transactions on 28 (Jan. 2003), pp. 1146–1170.

[2] boost. Boost C++ libraries. 2018. url: https://www.boost.org/ (visited on 03/31/2018).
[3] FrogLogic. Coco coverage analysis tool. 2018. url: http://www.froglogic.com/coco

(visited on 03/31/2018).
[4] Alejandra Garrido and Ralph Johnson. “Challenges of Refactoring C Programs”. In:

International Workshop on Principles of Software Evolution (IWPSE) (Jan. 2002),
pp. 6–14.

[5] GCC. gcov - A test coverage plarform. 2018. url: https://gcc.gnu.org/onlinedocs/
gcc/Gcov.html (visited on 03/31/2018).

[6] Google. Syzygy Transformation Toolchain. 2018. url: http://github.com/google/
syzygy/ (visited on 03/31/2018).

[7] ISO. “ISO/IEC 14882:2014 Information technology — Programming languages —
C++”. In: Geneva, Switzerland: International Organization for Standardization, 2014.

[8] Kitware. CMake. 2018. url: https://cmake.org (visited on 03/31/2018).
[9] Nagy Laszlo. Build EAR. 2018. url: http://github.com/riszotto/Bear/ (visited on

03/31/2018).
[10] LLVM. Clang Memory Sanitizer. 2018. url: https://clang-analyzer.llvm.org/

(visited on 03/31/2018).
[11] LLVM. Clang Static Analyzer. 2018. url: https : / / clang - analyzer . llvm . org/

(visited on 03/31/2018).
[12] pierricgimmig. Orbit Profiler. 2018. url: http://github.com/pierricgimmig/orbitprofiler/

(visited on 03/31/2018).
[13] strace. strace. 2018. url: https://strace.io/ (visited on 03/31/2018).
[14] Valgrind. Valgrind instrumentation framework. 2018. url: http://valgrind.org/

(visited on 03/31/2018).
[15] Laszlo Vidacs. “ICSOFT 2009 - 4th International Conference on Software and Data

Technologies, Proceedings”. In: vol. 1. Jan. 2009, pp. 232–237.
[16] Daniel Waddington and Bin Yao. “High-fidelity C/C++ code transformation”. In: Sci-

ence of Computer Programming 68.2 (2007). Special Issue on ETAPS 2005 Workshop
on Language Descriptions, Tools, and Applications, pp. 64–78. issn: 0167-6423. url:
http://www.sciencedirect.com/science/article/pii/S0167642307000718.

Department of Programming Languages and Compilers, Eötvös Loránd Uni-
versity

Email address: zsoltparragi@caesar.elte.hu, gsd@elte.hu


