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COMPILE-TIME FUNCTION CALL INTERCEPTION FOR
TESTING IN C/C++

GABOR MARTON AND ZOLTAN PORKOLAB

ABSTRACT. In C/C++, during the test development process we often have
to modify the public interface of a class to replace existing dependencies;
e.g. supplementary setter or constructor functions or extra template pa-
rameters are added for dependency injection. These solutions may have
serious detrimental effects on the code structure and sometimes on the
run-time performance as well. We introduce a new technique that makes
dependency replacement possible without the modification of the produc-
tion code, thus it provides an alternative way to add unit tests. Our new
compile-time instrumentation technique enables us to intercept function
calls and replace them in runtime. Contrary to existing function call in-
terception (FCI) methods, we instrument the call expression instead of
the callee, thus we can avoid the modification and recompilation of the
function in order to intercept the call. This has a clear advantage in case
of system libraries and third party shared libraries, thus it provides an
alternative way to automatize tests for legacy software. We created a pro-
totype implementation based on the LLVM compiler infrastructure which
is publicly available for testing.

1. INTRODUCTION

In legacy code bases often there are few or no unit tests. Refactoring such
code in order to provide tests is almost impossible because we cannot verify
correctness without having unit tests; hence it is a vicious circle. We can
break the circle with non-intrusive tests, i.e. without actually modifying the
production code [2, 28]. Function call interception (FCI) is often the only tool
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which enables non-intrusive testing by making it possible to replace function
bodies. By replacing functions we can eliminate the unwanted dependencies
in tests. With FCI we are able to intercept function calls at runtime and we
can execute actions before and/or after the original function body or even
completely replace it [11]. The different FCI methods have different advan-
tages and disadvantages. Compared to languages like Java, the C and C++
languages offer less mature solutions for FCI. Java runtime reflection allows
us both introspection and intercession.

In this paper, we investigate a new compile-time instrumentation based FCI
approach for C/C++ programs which enables the replacement of functions and
methods. By applying the instrumentation, the generated binary code will be
different than the original binary program code, but the high-level C/C++
source code remains untouched. Contrary to other instrumentation methods,
we instrument the call expression instead of the callee, thus we can avoid
the necessity of recompilation of the function we would like to intercept. We
implemented a prototype based on the LLVM/Clang compiler infrastructure.

This paper is organized as follows. In Section 2, we show the existing
dynamic and static FCI methods. In Section 3, we present general test au-
tomation patterns and concepts for testing legacy code. We present how our
method simplifies writing unit tests for legacy systems in Section 4. We de-
scribe our new interception technique in details in Section 5 in details. In
Section 6, we describe the current limitations and possible future work. We
have an overview of the related works in Section 7. Our paper concludes in
Section 8.

2. FuncTION CALL INTERCEPTION TECHNIQUES

We differentiate the FCI techniques based on the time FCI is applied [11].
Dynamic techniques perform the interception at program load-time or at run-
time. Contrary to dynamic approaches, static techniques achieve FCI by mod-
ifying the source files (e.g. with the help of the preprocessor), by changing the
linkage order, by generating object files which contains the instrumentation
or by modifying the application binary image; all these modifications happen
before runtime.

Load-time FCI. Most modern operating systems provide the possibility
to specify shared objects to be loaded before all others. This can be used to
selectively override functions in other shared objects. On Linux this behavior is
controlled by the LD_PRELOAD environment variable [17]. With this technique,
calling the original function is cumbersome. We have to use dlsym auxiliary
function with the RTLD_NEXT argument [16]. In case of C++ functions we have
to provide the mangled names. Furthermore, this mechanism is unreliable
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with member functions, because the member function pointer is not expected
to have the same size as a void pointer on some platforms [10].

Run-time FCI. In Unix like systems, runtime dynamic interception is
implemented with the help of the ptrace system call [19, 27]. If ptrace is
used with the PEEKTEXT or POKETEXT argument then it is possible to attach
to a running process and to read or write different segments of its memory.
For instance, the GNU debugger (gdb) [7] and Intel Pin [15] both use this
approach. A disadvantage of these tools is that they rely on a specific kernel
functionality; thus porting these implementations to other operating systems
may be hard. E.g. Intel Pin currently does not support function replacement
on macOS [9]. Another property of this technique is that we cannot instrument
inline functions.

Pre-compilation-time FCI. We consider some use of the C/C++ pre-
processor as pre-compilation-time interception. A typical use case is to replace
the malloc and the free functions from the standard C library to collect sta-
tistics about the heap usage. This approach can be applied conveniently in C,
but not in C++. As soon as we use namespaces, the preprocessor might gen-
erate code which cannot be compiled because of the ambiguous use of names.
Hazardous side effects of macros are also well known.

Link-time FCI. One example for the link-time static interception is the
wrap command line option of the GNU linker (1d) [8]. When this program
option is applied then the linker uses a wrapper function for the specified
symbol, any undefined reference to symbol will be resolved to __wrap_symbol
and any undefined reference to __real_symbol will be resolved to symbol.
This approach makes it possible to replace a function and call the original.
However, in case of C++ we have to specify the mangled names as symbols.
We cannot use this approach if the symbol is defined within the very same
translation unit where it is referenced.

Post-compilation-time FCI. There exist tools to modify the compiled
binary code for interception. As an example, in [1] the authors describe a
method which is a mixture of Link-time and Post-compilation-time techniques
used to avoid typical security vulnerabilities, like buffer overflow. A modified
compiler can be applied on a binary executable (or shared library) to extract
type information from the debugging data and reinsert it in the same binary
which is then available at runtime in a special data structure. At runtime a
pre-loaded shared library intercepts the possibly dangerous calls and validates
them using the data structure stored in the first step.

Compile-time FCI. Perhaps the most widely used static FCI technique
is to configure the compiler to emit instrumented code in a way that intercep-
tion is possible. The GNU/GCC and LLVM/Clang compilers both provide the
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-finstrument-function program option to instrument each and every func-
tion call in a way to execute code before and after the body of the functions
[6]. Actually, when this instrumentation is enabled then the compiler emits
two extra calls for each function body. The prototypes of these two called
functions are the following:

void __cyg_profile_func_enter(void *this_fn, void *call_site);

void __cyg_profile_func_exit(void *this_fn, void *call_site);
The arguments for these functions represent the address of the original func-
tion and the address of the instruction from where it was called. A serious
limitation of this technique is that we cannot replace an intercepted function
with another function; the original function will be called anyway.

3. TEST AUTOMATION CONVENTIONS

The FCI techniques discussed above are frequently used in the process of
creating automated tests. Thus, in this section we overview the general test
automation patterns and we show the more specialized concepts about testing
legacy code.

The four-phase test pattern is driven by the observation that each test
requires some sort of setup and tear down routines. This pattern splits each
test into four phases [24]. In the first phase, we set up everything that is
required for the system under test (SUT) to exhibit the expected behavior.
In the second phase, we interact with the SUT. In the third phase, we do
whatever is necessary to determine whether the expected outcome has been
obtained. In the fourth phase, we tear down the test to put the world back
into the state in which we found it. This pattern is also known as the build-
operate-check-clear pattern [31].

The given-when-then pattern of representing tests is originated from be-
havior-driven development [26, 3]. The given part describes the pre-conditions
to the test. In these pre-conditions we present the state of the world before
we begin the behavior we specify in the test. The when section represents the
behavior we specify. The then section describes the changes we expect due to
the specified behavior. We can also look at this pattern as a reformulation of
the four-phase test pattern. Essentially these three states are equal to the first
three states of the four-phase pattern. In the context of the four-phase pattern,
Robert C. Martin states that anyone who reads the tests should be able to
work out what they do very quickly, without being misled or overwhelmed
by details [20]. Consequently, both the four-phase and the given-when-then
patterns imply that the test setup should be strictly part of the visible test
code and should not be separated from the rest of the test code. For instance,
using load-time FCI to set up a test separates the ”given” phase from the rest
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of the test code, thus it violates both patterns and makes the test hard to
understand.

Unwanted dependencies embody a critical problem in software development;
we often have to break existing dependencies before we can change some piece
of code [28]. Breaking existing dependencies is also an important prerequisite
to introduce unit tests for legacy code [2].

A seam is an abstract concept introduced by Feathers to identify points
where we can break dependencies [2]. The goal is to have a place where we
can alter the behavior of a program without modifying it in that place; this is
important because editing the source code is often not an option [28]. Feathers,
Riiegg and Sommerlad define four different kinds of seams for C++ [2, 28].
Link seam: Change the definition of a function via some linker specific setup.
Preprocessor seam: With the help of the preprocessor, redefine function names
to use an alternative implementation. Object seam: Based on inheritance to
inject a subclass with an alternative implementation. Compile seam: Inject
dependencies at compile-time through template parameters. The enabling
point of a seam is the place where we can make the decision to use one behavior
or another. Different seams have different enabling points.

Link and preprocessor seams can be used to write non-intrusive tests. How-
ever, object and compile seams may be used for such purpose only if the unit
under test already has the proper architecture. For example, in case of ob-
ject seams the unit must have a constructor (or setter) function to setup a
different implementation for the dependency. In case of compile seams, the
unit must be a template and it must have a template parameter via which
we can mock the dependency. Often, these architectural requirements are not
satisfied, therefore the use of object and compile seams ofttimes demand that
we intrusively change the source code of the unit.

Some seams are realized with FCI techniques. For instance, preprocessor
seams are implemented with pre-compilation-time FCI. Link seams are real-
ized with load-time and link-time FCI. The existence of compile-time, post-
compile-time and run-time FCI drives us to further extend the list of existing
seams. We define a new class of seams, the FCI seams. More specifically we
introduce three new seams for each FCI technique: compile-time FCI seam,
post-compile-time FCI seam and run-time FCI seam.

4. CoMPILE-TIME FCI SEAM

In Figure 1 we present a legacy graphics program that relies on a LOGO-like
API for drawing. The API is realized as a class named the Turtle. Also, there
is Painter class which is responsible for drawing lines and shapes. This class
has a hard-wired dependency on the concrete Turtle class. Still, we would
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1 // Turtle.hpp 14 class Painter {
2 class Turtle { 15 Turtle turtle;
3 int x = 0, y = 0; 16 public:
4 public: 17 void DrawLine(int x0, int yO0, int x1,
5 void PenUp() { /* ... */} 18 int y1) {
6  void PenDown() { /* ... #*/} 19 turtle.GoTo(x0, yO0);
7 void Forward(int distance) { /* ... #*/ } 20 turtle.PenDown();
8 void Turn(int degrees) { /* ... */ } 21 turtle.GoTo(x1, y1);
9 void GoTo(int x, int y) { /* ... %/} 22 turtle.PenUp();
10 int GetX() comnst { return x; } 23 }
11  int GetY() comnst { return y; } 24 /...
12 }; 25 };
13
FIGURE 1. A legacy graphics program
1 #include "Turtle.hpp" 27 // Similarly to PenDown, Forward, ...
2 #include <gmock/gmock.h> 28 }
3 #include <access_private.hpp> 29 };
4 #include <hook.hpp> // for SUBSTITUTE 30
5 31 ACCESS_PRIVATE_FIELD(Painter, Turtle,
6 class MockTurtle { 32 turtle)
7 public: 33
8 MOCK_METHODO (PenUp, void()); 34 TEST_F(TurtleTest, TestDrawLine) {
9 // PenDouwn, Forward, ... 35 using ::testing::AtLeast;
10 }; 36
11 37  Painter painter;
12 MockTurtle &GetMockObject(Turtle *) { 38 Turtle &turtle =
13 static MockTurtle m; 39 access_private::turtle(painter);
14 return m; 40 MockTurtle &mockTurtle =
15 %} 41 GetMockObject (&turtle);
16 42
17 namespace proxy { 43 EXPECT_CALL (mockTurtle, PenDown())
18 void PenUp(Turtle *self) { 44 .Times (AtLeast(1));
19 return GetMockObject(self).PenUp(); 45 painter.DrawLine(0, 0, 10, 10);
20 } 46 }
21 // Similarly to PenDown, Forward, ... 47
22 } 48 int main(int argc, char *xargv) {
23 49 ::testing::InitGoogleTest (%arge, argv);
24 struct TurtleTest : ::testing::Test { 50  return RUN_ALL_TESTSQ);
25 TurtleTest() { 51 %}
26 SUBSTITUTE(Turtle: :PenUp, proxy::PenUp);

FIGURE 2. Testing the legacy program with compile-time FCI

like to write a test which checks the DrawLine() function. In this example
let us suppose that the turtle functions are quite expensive to use. Generally
speaking, a dependency may represent a database, or a network connection,
whose usage can be hard, or very expensive. Therefore, in our test we want
to mock the Turtle class (or at least its member functions).

Our new instrumentation technique makes it possible to write non-intrusive
tests easily. Figure 2 lists the test which uses our new instrumentation method.
We define our mock class (MockTurtle) with the help of the gmock macros
(lines 6-10). Our test-case is defined from line 34 to 46. In the test-case we
create an instance of the Painter class, then we get a reference to its private
turtle member (lines 38-39). Note that there are several different techniques
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to access a private member, we use a method which relies on explicit template
instantiations [21]. Then we get a reference to an instance of the MockTurtle
class which acts as a test double for the Turtle instance (lines 40-41). We state
our expectations on the mock object (lines 43-44). In line 45 we exercise our
unit under test by calling the DrawLine () method. With the help of our tool
we setup replacement functions for each member function of the Turtle class
(lines 26-28). These replacement functions behave as a proxy; they forward
each function call on a given Turtle instance to a corresponding test double
(lines 17-22). The way we get the reference for a relevant test double is pretty
simple in this test: we return a reference to a static instance of the MockTurtle
class (lines 12-15). We can use this simplification because we know that there
is only one Turtle object over the lifetime of our test-case. If there were
several Turtle objects then we should solve the mapping differently, perhaps
with the help of a static hash map. Lines 48-50 contains the definition for
the main() function which uses the functions and macros from googletest to
initialize and run the test.

The most important property of this test is that the test setup is included in
the test application itself. During the compilation of our test binary we have
to include a header file from our auxiliary runtime library which provides the
SUBSTITUTE macro, and we have to enable the mentioned instrumentation with
a compiler switch. Also, during linking we have to link with our given run-
time library. Our method has clear advantages compared to the LD_PRELOAD
approach where we can substitute functions only if they are defined in shared
libraries. With our technique it is possible to write non-intrusive tests and re-
place even inline functions. However, this new method requires rebuilding the
application (or unit) we want to test with the specific compiler option which
will disable inlining. Our technique has the following advantages: (1) The test
setup is part of the test application and clearly visible together with the rest
of the test code, thus it does not violate the given-when-then test automation
pattern. (2) It does not introduce a new tool into the existing build chain.
The functionality is embedded into the compiler. (3) On platforms where the
compiler is supported, the new instrumentation could be supported as well.
(4) There is no need to use mangled names. (5) We can use the ordinary unit
test building tools and we can group unit tests into the same test application.

5. FCI wiTH CALL EXPRESSION INSTRUMENTATION

Our new interception technique and the prototype consists of two parts: a
compiler instrumentation module and a runtime library. The instrumentation
module modifies the code to check whether a function has to be replaced or
not. The runtime library provides functions to setup the replacements.
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char* funptr = __fake_hook(&foo); char* funptr = __fake_hook(&foo);
if (funptr) using ReturnType = decltype(foo(args...));

funptr(args...); ReturnType ret;
else if (funptr) ret = funptr(args...);

foo(args...); else ret = foo(args...);

return ret;
A
(a) (8)

FiGurE 3. Call expression substitution

5.1. Instrumentation. During the code generation we modify each and ev-
ery function call expression to call an auxiliary function. Let us consider the
following function call expression: foo(args...);. When our instrumenta-
tion is in action, the emitted code is equal to the pseudo code in Figure 3a.
The call to __fake_hook resolves at runtime if we should replace the callee
with another function or not. We replace a function if the returned value of
__fake_hook is not zero, in this case the returned value is a pointer to the
function we call as a substitution. If the return type of the callee function is
not void then we create an additional storage for the return value as presented
in Figure 3b. Our prototype is based on LLVM/Clang [12]. The implementa-
tion modifies the emitted LLVM Intermediate Representation (IR) [14] code.
For instance, let us consider the definition of the bar C++ function in Figure
4a. The LLVM IR of bar after optimization is presented in Figure 4b. The
generated code is very straightforward: there is only one basic block (entry)
which stores the return value from the call of foo and then it returns with it.
Note that the function names are mangled thus we see the _Z3 prefix for the
function names. When we enable our instrumentation and optimization, then
the IR has the form presented in Figure 4c. Now we have four different basic
blocks. The first block (entry) evaluates the return value of the __fake_hook
function, compares it to zero and emits a branch based on the comparison.
The then block is executed if the callee shall be replaced. We call the sub-
stituting function pointer, then we jump to the last basic block(cont). The
else block is executed if the callee shall not be substituted; we just simply
call the original function then jump to the cont block. At last, in the cont
block, we store the result of either the callee or the replaced function, and we
return with that.

Clang’s internal architecture is built in such a way that the code generation
for all kind of call expressions are eventually handled in one common routine.
For example, in the case of virtual function calls the adjustment of the this
pointer happens before calling that routine. We placed the emission of our
instrumentation code inside that routine. As a result, special cases such as
the this adjustment are automatically handled; we do not have to manually
adjust the this pointer when we substitute a virtual function.
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int foo(int); define i32 @_Z3bari(i32 %p) #0 {
int bar(int p) { entry:
return foo(p); %call = tail call i32 @_Z3fooi(i32 %p)
¥ ret i32 %call
}
(A) C++

(B) Original LLVM IR

define i32 @_Z3bari(i32 %p) #0 {
entry:
%fake_hook_result = tail call i8* @__fake_hook(i8* bitcast (i32 (i32)* @_Z3fooi to i8%))
%0 = icmp eq i8% fake_hook_result, null
br i1 %0, label %else, label %then
then: ; preds = Jentry
%1 = bitcast i8# fake_hook_result to i32 (i32)*
%subst_fun_result = tail call i32 %1(i32 %p)
br label Ycont
else: ; preds = Jentry
%call = tail call i32 @_Z3fooi(i32 %p)
br label Ycont
cont: ; preds = Y%else, Ythen
%call_res.0 = phi i32 [ Y%subst_fun_result, %then ], [ %call, %else ]
ret i32 %call_res.0 1}

(¢) Modified LLVM IR
FiGURE 4. LLVM IR modification for function replacement

Contradictory to ~-finstrument-functions, by instrumenting the call ex-
pressions (and not the function body) we have the convenience that we do
not have to recompile dependant libraries if the call expression is in a code
outside of the library. This has a clear advantage in case of system libraries,
third party shared libraries and security critical applications where we have
to evade library interposing. We have evaluated the prototype using various
benchmarks. We measured the runtime overhead is similar to the overhead
caused by the other compile-time instrumentation, ~finstrument-functions.
Detailed measurement results are available online at [23].

5.2. Runtime Library. The main purpose of the runtime library is to im-
plement the __fake_hook function which is referenced from the instrumented
code. The realization of this hook function has to find the related function
pointer in case of an active substitution. Essentially, it is a simple pointer
to pointer mapping which may be implemented with a simple hash function.
However, in order to make the lookup as fast as possible, we chose to imple-
ment the mapping with a simple offsetting into the virtual memory (shadow
memory). During program startup — more precisely, when our shared object
is loaded — we initialize the shadow memory with the help of the mmap [18]
system call. We assume that a size of a function definition is at least 1 byte,
since it has to contain at least a return instruction. Let N denote the size of
a pointer in bytes of a specific architecture. Since we have to store a function
pointer for every function, we have to reserve a shadow memory which is NV
times bigger than the normal virtual address space which holds the function



26 GABOR MARTON AND ZOLTAN PORKOLAB

definitions. If the mmap system call is called with the MAP_ANONYMOUS argu-
ment then it guarantees that the reserved memory is initialized to zero. Note
that in practice the OS does not zero out the mapped region during the map-
ping, only at the moment when a virtual addressed is being accessed the first
time. We divide the user-space virtual memory into two different regions. Low
memory and high memory. We handle the memory mapping differently for
each region. For instance, on macOS the memory is partitioned as follows:

[0x7£0000000000, Ox7Tfffffffffff] || HighMem

[0x120000000000, Ox19ffffffffff] || HighShadow

[0x020000000000, Ox11ffffffffff] || LowShadow

[0x000000000000, OxO1ffffffffff] || LowMem
Let addr denote the original address ,shadowAddr the address of the corre-
sponding shadow and shadowO f f set the offset for a region. With this formula
shadowAddr = addr = N + shadowO f f set(region(addr)) we can calculate the
shadow address. By using the shadow memory instead of a simple hash map
we trade execution time for space. The program occupies terabytes in virtual
memory, however the resident (physical) memory usage is equal to the number
of used substitutions multiplied with N. More specifically, operating systems
do not reserve the specific physical pages to the process until there is no write
to that memory area. Consequently, those memory pages which contain the
shadow values of substituted functions will be resident physical pages regis-
tered in the process page table. In practice, this means only a few kilobytes of
additional physical memory usage (given a page has 4kb size and not taking
into account the Linux specific huge pages). During program startup we must
make sure that our shared object gets initialized before the first function call.
Our prototype achieves this by setting the constructor attribute [4] on the
initializer function of the shared object. If there are other shared libraries
linked to the final executable with such initializer functions, then it is the
user’s responsibility to ensure that our library is initialized first.

Another purpose of the runtime library is to provide the user interface to
setup the function substitutions. Replacing a function in C is pretty simple,
the shared object defines a function for that:

_substitute_function((const char*)&foo, (const charx*)&fake_foo);

We may use the SUBSTITUTE macro in case of C+—+ to replace functions; this
construct is more generic because it also supports member functions. Note
that we have to include the header file attached to the runtime library, also we
have to link with it. Our implementation is thread safe if there are multiple
threads calling the very same function. Although, there is a race condition if
one thread is calling the specified function while another thread is setting up
the substitution; in such cases, the user code must ensure thread safety.
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template <typename Class, typename MemPtr>
const char *address_of_virtual_fun(const Class *aClass, MemPtr memptr) {
const char **vtable = *(const char ***)aClass;
struct pointerToMember {
size_t pointerOrOffset;
ptrdiff_t thisAdjustment;
};
pointerToMember p;
memcpy (&p, &memptr, sizeof(p));
static const size_t pfnAdjustment = 1;
size_t offset = (p.pointerOrOffset - pfnAdjustment) / sizeof(char *);
return vtable[offset];

FIGURE 5. Get the address of a virtual function

5.3. Virtual Functions. A pointer-to-member function may have a different
layout in case of virtual functions than in case of regular member functions.
Therefore, we cannot just simply cast a virtual function pointer to a void
pointer.

5.3.1. The naive approach. Without compiler support, we can get the address
of a virtual function in an architecture dependent way. On Figure 5 we present
how we can get the address in case of the Itanium C++ ABI [10]. First, we
receive the vtable from an object by dereferencing its vpointer (line 3). The
vpointer is the first element in the object. We interpret the bits of the pointer
to member (memptr) as an instance of the aggregate class pointerToMember
(lines 4-9). Next, we setup the architecture dependent function pointer adjust-
ment (line 10). Then, we get the offset and return with the appropriate element
in the vtable (lines 11-12). We could replace virtual functions by exploiting
this technique. Let us suppose we have a macro named SUBSTITUTE_VIRTUAL
which use this technique and the following class hierarchy:

struct B { virtual void foo(); }; struct D : B { void foo() override; };

If we wanted to replace the foo() function when the dynamic type was D then
we would have to get a pointer to such an instance:
B* dummy = new D; SUBSTITUTE_VIRTUAL(&D::foo, dummy, &D_fake_foo);

However, to replace the function in the base class as well, we would have to
get a pointer to an instance whose dynamic type was B:
B+ dummy = new B; SUBSTITUTE_VIRTUAL(&B::foo, dummy, &B_fake_foo);

5.3.2. New compiler intrinsic. The previous naive approach is ABI dependent
and it also requires a reference to an existing object. Thus, we tried to find
a better alternative without these restrictions. Generally speaking, in order
to replace functions we just need an identifier for each function — virtual or
not — which is unique in the program. Actually, each function has such a
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unique identifier, and it is its own address in the program’s virtual memory.
Unfortunately, there is no valid C++ language construct to get this unique
identifier. Nevertheless, GCC has implemented this feature [5], but sadly
Clang did not. Clang developers claim that this feature is fundamentally
broken, because when we use it then the proper adjustment of the this pointer
may be elided [13]. Still, our technique could use this feature since our compiler
instrumentation intervenes after the this adjustment thunk is emitted. Thus,
we implemented this functionality in the Clang compiler, so we are able to use
it within our implementation, hidden from the users and enabled only in test
code. With this approach, the replacement of the foo() function when the
dynamic type is D has the following form:
SUBSTITUTE(D: :foo, D_fake_foo);

This is the very same form which we can use to replace free functions or
non-virtual member functions.

Internally, the SUBSTITUTE macro expands to a call to
_substitute_function and the arguments of that function are generated by
our new compiler intrinsic:

#define SUBSTITUTE(src, dst) \
do { _substitute_function((const char *)__function_id src, \
(const char *)__function_id dst); } while (0)
We modified the compiler to parse a new kind of unary expression when the
__function_id literal is given and the test specific instrumentation is enabled.
In case of free functions and static member functions this unary expression
has the very same type which we would get in case of the ”address of” unary
expression:

void foo();
void bar() {

auto p = & foo; // woid (*)()

auto q = __function_id foo; // woid (*)()
}

However in case of non-static member functions the two expressions yield
different types:

struct X { void foo(); virtual void bar(); };
void bar() {

auto p = & X::foo; // void (X::%)()
auto q = __function_id X::foo; // wvoid (*)()
auto r = __function_id X::bar; // woid (*)()

}

At runtime the value of these expressions are evaluated to hold the address of
the specific raw function which can be identified by the corresponding mangled
name in the compiled binary’s text section.
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5.4. Overload Resolution. We may have several functions with the same
name but with different parameters. Let us consider the below code:

struct X { int foo(int); int foo(double); };

int X_fake_foo_i(X*, int);
Normally, if we would like to get the address of X::foo(int) we have to
explicitly cast a function pointer to the appropriate type:

int (X: :*mfp) (int) = & X::foo;

Here, we define a pointer variable with the name mfp which has the type
int (X::*) (int) and it holds the address of X: : foo. With the __function_id
intrinsic we have to do the same, but the type will be different:

int (*mfid) (int) = __function_id X::foo;

For safety reasons, the __function _id is hidden from the users of our in-

strumentation, but they can use the three parameter form of the provided

SUBSTITUTE macro to replace an overloaded function. For example, to replace

X::foo with the X_fake_foo_i free function one have to write:
SUBSTITUTE(int(int), X::foo, X_fake_foo_i);

6. LIMITATIONS AND FUTURE WORK

Our prototype is implemented in the code generation part of the Clang
compiler, however it would be architecturally better if we realized that as a
transforming optimizer pass. This pass should run before all other optimizer
passes. By having an optimizer pass, all the logic related to this instrumen-
tation would be well separated and self contained. Also, it would make it
possible to use our tool with other language frontends, thus this is our most
important future work. Currently we do not have any check to enforce that
the original function and its replacement have the same signature. In the fu-
ture we plan to create a checking function template for the substitutions. The
prototype works only on 64 bit x86 systems.

Replace the operator() of a lambda is not supported unless we can take
the address of the lambda. Similarly, member functions of structs/classes
which are defined inside a function cannot be replaced, because there is no
valid expression to get their address. Our technique relies on that we should
be able to get the address of the function we want to substitute. In case of
constructors and destructors we cannot get their address with any standard
C++ expression. Still, replacing constructors or destructors would be a valu-
able contribution in the domain of testing, thus this is an important area for
further research.
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7. RELATED WORK

The different function call interception techniques are explained in details
by Kang [11]. The author also discusses aspect-oriented programming imple-
mentation techniques for intercepting method calls.

The four-phase test automation pattern is introduced by Meszaros [24] and
the given-when-then pattern is described by North [26]. Feathers describes
different techniques about testing legacy code in his book [2]. He introduces
the concept of seams via we can alter behavior without changing the original
unit. Rilegg and Sommerlad elaborate this concept in C++ [28].

There are plenty of software error checking tools which are based on some
kind of instrumentation. A large number of memory error detectors are based
on binary instrumentation. For example, Valgrind (Memcheck) [25] or Dr.
Memory. The most popular compiler instrumentation based error checker
tools are the AddressSanitizer [30] and the ThreadSanitizer [29]. Our instru-
mentation technique was inspired by the AddressSanitizer, we reused many
ideas from its implementation (e.g shadow memory). Shadow memory is often
used by different error checker software. The above mentioned AddressSani-
tizer and ThreadSanitizer both use shadow memory to store metadata for a
specific piece of memory. AddressSanitizer uses a shadow space scaled down
to one eight of the normal address space and can be easily used on 32 bit sys-
tems. However, ThreadSanitizer uses 8 times larger shadow memory than the
normal address range, therefore support for 32-bit platforms is problematic
and is not planned by the maintainers.

8. CONCLUSION

Test seams are used to create non-intrusive tests for legacy systems, some of
these seams are often realized via an FCI technique. We introduced our new
compiler instrumentation for C and C++ programs, which makes it possible
to replace the intercepted function call. While most of the existing instrumen-
tation methods modify the function to call we instrument the caller side. We
substitute the actual call with a small code snippet in compilation time, which
decides at runtime whether the original or a replacement function is about to
call. The decision is made using shadow memory and an offset to minimize
runtime overhead. In contrast to other seams, our new instrumentation seam
keeps the test setup code close to the other phases of the test. The technique
makes it feasible to write non-intrusive tests which follow the given-when-then
test pattern. This way, our method could help to implement high-quality tests
for legacy software systems.

Compared to existing compile-time instrumentation solutions, our technique
does not require the modification or even the recompilation of the intercepted
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functions, which is a possible advantage in case of legacy code, system li-
braries, third party shared libraries or in situations when we have to avoid
library interposing. We have created a prototype implementation using the
LLVM/Clang compiler infrastructure, which is publicly available at [22].
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