STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LXIV, Number 2,2019
DOI: 10.24193/subbi.2019.2.05

PREDICTING RELIABILITY OF OBJECT-ORIENTED
SYSTEMS USING A NEURAL NETWORK

ALISA BUDUR, CAMELIA SERBAN, AND ANDREEA VESCAN

ABSTRACT. One of the most important quality attributes of computer
systems is reliability, which addresses the ability of the software to perform
its required function under stated conditions for a stated period of time.

The paper aim is twofold. Firstly, the proposed approach explores
how to define a metric to qualify the sub-aspects comprised in ISO 25010
regarding reliability as maturity and availability. Secondly, we investigate
to what extent the internal structure of the system quantified by the Chi-
damber and Kemerer (CK) metrics may be used to predict reliability.

The approach for prediction is a feed-forward neural network with
back-propagation learning.

The results indicate that CK metrics are promising in predicting re-
liability using a neural network method.

1. INTRODUCTION

Quality of a system can be described by different attributes such as relia-
bility, maintainability, usability, etc. Among these attributes, reliability has
an important role because it reveals how stable a system is or, in other words,
how often it fails.

The definition of reliability is based exclusively on the software external
behaviour, although it is well known that the internal structure has an impor-
tant impact on a quality attribute such as reliability. For example, a reliable
system has a complexity minimized as much as possible. Also, coupling in
a reliable system is reduced at maximum because it facilitates testing. Con-
sidering this, we can say that the better we assess the internal structure of
the system, the more accurate will be the prediction of its external behavior.
Several studies [4], [2], [12], [11] reveal that Chidamber and Kemerer (CK) [5]

Received by the editors: October 24, 2019.

2010 Mathematics Subject Classification. 68T05,68M15.

1998 CR Categories and Descriptors. 1.2.6 [Computing methodologies]: Artificial
Intelligence — Learning; D.2.8 [Software engineering]: Metrics — Complezity measures.

Key words and phrases. Reliability, prediction, neural network.

65

66 ALISA BUDUR, CAMELIA SERBAN, AND ANDREEA VESCAN

metrics have a strong impact on software reliability. These metrics are briefly
presented in what follows [5].

Definition 1. Depth of Inheritance Tree (DIT) [5] is defined as the length of
the longest path of inheritance from a given class to the root of the tree.

Definition 2. Weighted Methods per Class (WMC) [5]metric defined as the
sum of the complexity of all methods of a given class. The complexity of a
method is the cyclomatic complexity.

Definition 3. Coupling Between Objects (CBO) [5] for a class ¢ is the num-
ber of other classes that are coupled to the class ¢, namely that Two classes are
coupled when methods declared in one class use methods or instance variables
defined by the other class.

Definition 4. Response for a Class (RFC) [5] metric is defined as the total
number of methods that can be invoked from that class.

Definition 5. Lack of Cohesion in Methods (LCOM) [5] is defined by the dif-
ference between the number of method pairs using common instance variables
and the number of method pairs that do not use any common variables.

Definition 6. Number of children of a class (NOC) [5] s defined as the
number of all direct sub-classes of a given class.

Considering the reliability definition and the fact that the internal struc-
ture is very important for a reliable system, the goal of this paper is twofold.
Firstly, to compute the reliability attribute based on the software external
behavior, i.e number of faults occurred during the testing phase, as well as
the number of faults discovered during the usage of the software - for this
step, the Quality Model, ISO25010 [10] was considered because it addresses
two of the four sub-characteristics related to reliability: Awvailability, Maturity,
Fault Tolerance and Recoverability. Secondly, to investigate whether the neu-
ral networks can predict reliability attribute based on the previously defined
attribute and having as predictors object-oriented design metrics.

The second step is very useful because it allows us to know the reliability
quality attribute as early as possible in the development life cycle. This helps
because it can suggest what classes are more likely to have bugs and the
testing team can focus on testing features that use those classes. In this way,
we identify bugs earlier and the cost of fixing them is lower.

The structure of the paper is the following: Section 2 presents the software
reliability, Goal Question Metric (GQM) approach and how it is used to de-
termine reliability, neural networks and a short related work section. Section
3 presents in more details how to achieve the two objectives of this paper:

PREDICTING RELIABILITY OF OBJECT-ORIENTED SYSTEMS 67

how to compute reliability attribute and then how to predict it using a neural
network. Section 4 describes the data sets used for validation, the conducted
experiments and obtained results. Finally, the conclusions and future direc-
tions are emphasized in Section 5.

2. SETTING THE CONTEXT

This section presents the theoretical aspects used in this research investiga-
tion, i.e. reliability, the GQM approach to quantify reliability, neural networks
and a short related work.

2.1. Reliability as an important aspect of safety-critical systems. The
official definitions of reliability are: “The ability of the software to perform its
required function under stated conditions for a stated period of time” (IEEE
Standard Glossary of Software Engineering Terminology [17]) and “The prob-
ability of failure-free operation of a computer program for a specified period
of time in a specified environment” (ANSI [14]).

A safety-critical system is a system whose failure might lead to life loss,
financial loss, and/or environmental damage. Many everyday systems can be
dangerous for us and therefore, the software architects and developers should
design and create systems that are very safe. An important question that
raises here is “How can we test that the system is safe?”.

The first approach is to prove that there are no faults in it. This can be
accomplished using formal mathematical methods in the design and proofs of
the design correctness. The disadvantage of this approach is that it works well
only for small systems.

The second approach is to accept that mistakes can appear and to consider
error prediction methods. This is more generally adopted and can be done by
quantifying reliability quality attribute of the system.

2.2. Goal-Question-Metric approach. Software metrics are very impor-
tant in understanding, controlling and improving software quality. Fenton’s
theory of measurement [9] explains that any measurement must have a well
defined goal, but in practice, a lot of measurements are not goal oriented and
therefore, the data collected is not useful at all. Goal Question Metric ap-
proach [3] was introduced to ensure that the measurements are goal oriented.
It has three steps:

(1) Define goals with respect to various points of view: quality, time etc.

(2) Define questions to characterize how the goals defined above could
be achieved.

(3) Determine which metrics must be collected in order to answer the
above questions.

68 ALISA BUDUR, CAMELIA SERBAN, AND ANDREEA VESCAN

Input layer Hidden layer Qutput layer

FIGURE 1. Structure of a feed-forward neural network.

2.3. Neural networks. A neural network is a supervised learning algorithm
[13] that is inspired by biological neural networks. It learns how to perform
tasks by taking into consideration already labeled data. For example, if we
supply a neural network with weather data from the last month, it will learn
how to predict the weather for the next days.

A neural network [13] consists of multiple nodes connected by links. A
numeric weight is associated with each link. The neural network communicates
with the environment through input and output nodes. A layered feed-forward
network is a neural network in which every node is linked only to nodes in
the next layer, for example in Figure 1 node N5 is linked to node N6 but not
back to nodes in the previous layers.

Each node performs the following computation: it takes the input values
from its input links (for example, input values for node N4 in Figure 1 are N1,
n2, N3) and computes a new value (activation value), sending it along each of
its output links. The computation consists of two parts. Firstly, it computes
the weighted sum of the input values of the node. The weighted sum of a node
is the sum of all its input values times their respective weights. Secondly, it
computes the activation value of the node by applying the activation function
to the weighted sum previously computed.

All the above steps are graphically presented in Figure 2.

Usually, learning in a feed-forward neural network is done using the back-
propagation algorithm. Back-propagation learning works in the following way:
the network is supplied with inputs and if it computes an output vector that
matches the expected output, the algorithm terminates. Otherwise, an error is
computed (the difference between the expected output and the actual output),

PREDICTING RELIABILITY OF OBJECT-ORIENTED SYSTEMS 69

() / N4 I

g
Wa, *
ws = N1*w N4 =
@ NZ* N3 :4 output N4output >
Qi N WogHNS W3y g(ws)
ﬁ_/
\—r—/ ;|—/ Node OUtpUt
First computation Second computation

ws = weighted sum
g = activation function

FIGURE 2. Node computation.

1 |Network NeuralNetworkLearning (trainingData)
2

3 network <— a network with random assigned
4 weights;

5

6 while(prediction is incorrect or

7 termination condition not reached)

8 foreach item in trainingData

9 networkOutput =

10 network . ComputeOutput (item);

11 expectedOutput =

12 item . GetExpectedOutput ();

13 UpdateWeightsBasedOn (networkOutput ,
14 expectedOutput);

15 end foreach

16 end while

17

18 return network

LisTING 1. Generic learning in a neural network

then this error is used to adjust each weight in the network such that the next
error to be smaller than the current one. The back-propagation uses gradient-
descendant for dividing the error among all weights. The generic learning in
a neural network is presented in Listing 1.

70 ALISA BUDUR, CAMELIA SERBAN, AND ANDREEA VESCAN

2.4. Related work. Reliability is one of the most important quality at-
tributes when we describe safety-critical systems. It is so important because
a fail in such a system could produce significant losses. This subject was of
major interest in last years and several studies investigated its impact on soft-
ware safety, as well as searched for methods through which we can predict and
accomplish a reliability value from the earliest development stages.

How reliability prediction can increase trust in reliability of safety-critical
systems was studied in paper [15]. The author determines a prediction model
for different reliability measures (remaining failure, maximum failures, total
test time required to reach a given number of remaining failures, time to next
failure), concluding that they are useful for assuring that software is safe and
for determining how long to test a piece of software.

Another approach [6] defined a classifier (with 37 software metrics) and
use it to classify the software modules as fault-none or fault-prone. They
compared their works with others and concluded that their model has the
best performance.

The work described in [8] investigates how to solve the problem of deter-
mining the error rate of the electronic parts of a track circuit system (which
is a safety critical system) by using Markov chains in order to predict the
reliability of the fault-tolerant system.

An approach for assessing and predicting reliability of an object oriented
system, taking a statistical approach by using multiple linear regression was
proposed in [16].

In relation to existing approaches, ours investigates how we can use CK
metrics to predict reliability and relates to approach [6], with the difference
that we use CK metrics instead of cyclomatic complexity, decision count, deci-
sion density, etc. and we predict a reliability value for each class in the project,
instead of classifying the modules in two categories.

3. PROPOSED APPROACH FOR PREDICTING RELIABILITY

This section presents our approach for reducing the time necessary to com-
pute reliability of a software system. The approach is based on GQM and has
the following structure:

e Goal: To reduce the time necessary to compute reliability of a soft-
ware system.

e Question: Can the internal structure of a software affect the relia-
bility?

e Metrics:
(1) Collect CK metrics.

PREDICTING RELIABILITY OF OBJECT-ORIENTED SYSTEMS 71

(2) Collect bugs (with severity and priority) from testing, operation
and maintenance phases for a period of time.
(3) Predict reliability using CK metrics.

The data collected in the measurement phase (i.e. CK metrics and bugs
data) are processed in two steps: Reliability Assessment and Reliability pre-
diction. These two steps are graphicaly detailed in Figure 3.

Estimation Goal-Question-Metric Model Reliability Quality Attribute
Reliability Reliability Assessment CK Metrics
Metric
Definition WMC, RFC, NOC, LCOM, DIT, CBO
Reliability = (0.50*#BP + 0.10*#BNT+ 0.20*#BM-+ 0.20*#8C)

Prediction \ /

Neural Network Reliability Prediction

Validation

Validation Datasets

Projects: PDE, Equinox, Lucene, Mylyn

Ficure 3. The two steps applied in processing the data col-
lected using the GQM approach

The first step, named Reliability Assessment, aims to find a formula for
computing the reliability quality attribute taking into account the informa-
tion collected about bugs. It is known that the bugs found the in system are
classified by severity and priority in the following way: bugs considered to
be priority, bugs being non trivial, bugs considered to be critical and bugs
that have a major importance. So, it is known the number in each category
of bugs, for each class. For this, the ISO25010 Quality Model [10] was used.
Four reliability sub-characteristics are related to this model: Maturity, Avail-
ability, Fault Tolerance and Recoverability. The main aspects for Maturity
and Awailability are related to the post release faults/bugs found in the ana-
lyzed system. We claim that these sub-characteristics of reliability could be
correlated to bugs discovered during testing and maintenance phase of the
development, considering their severity and priority. number of bugs found in
the source code of a class. An important remark that should be emphasized
here, is that various aspects should be considered to assess the reliability of
a class, not only those aspects related to bugs. Finding a perfect metric is a
very difficult problem, thus the proposed metric does not claim an equality

72 ALISA BUDUR, CAMELIA SERBAN, AND ANDREEA VESCAN

relation between bugs and reliability. Others aspects related to reliability can
be added to improve the metric effectiveness.

Having this in mind, we establish weights for each of the above four cate-
gories of bugs having into account the priority in treating these faults/bugs.
Thus, we considered assigning a greater impact for high priority bugs #BHP,
major bugs #BM and for critical ones, #BC, with weights of 0.25. Common
bugs are the lowest priority and we consider the weights of 0.15 for non-trivial
bugs and 0.10 for common bugs. The pairs of (weight, bug category) are
the following: {(0.50,#BP), (0.20,#BM), (0.20,#BC), (0.10,#BNT)}, where
(#BP) represents the number of bugs viewed as being priority, (#BNT) is
the number of bugs considered to be non trivial, (#BM) denotes the number
of bugs with a major importance, and (#BC) is number of bugs treated as
being critical. The reliability of a class is defined as an aggregate measure by
means of Equation 1 that linearly combines the number of different categories
of bugs.

(1) Reliability = 0.5« #:BP + 0.10 * #BNT + 0.2 « #BM + 0.2 * #BC

The reliability measured in above described way can be only computed in
the latest stages of development, when we have a functional piece of software.
The goal of the GQM approach is to find a way to compute reliability as early
as possible, so in the second step of processing the data collected, named Re-
liability Prediction, we investigate the potential of system’s internal structure,
expressed by CK metrics, to predict reliability.

To predict reliability, a feed-forward neural network with back-propagation
learning is used, with the following structure (see Figure 4): six nodes on the
input layer, one node on the output layer and two hidden layers, each of them
having four nodes. Each node uses the Bipolar Sigmoid activation function,
given by the following formula:

1— e hi

(2) g(h;) = T o

This investigation uses a neural network for the following reasons: it has
the ability to learn non-linear and complex relationships, after learning it can
generalize [13], which means that it shows good results even for unseen data
and the way that it works is simple and understandable.

When the algorithm training terminates, we want to know how well the
algorithm will work on an unseen dataset. In some cases, it is quite difficult
to achieve this because of insufficient data. The concept of cross-validation [7]
is used in order to help us to solve this problem.

PREDICTING RELIABILITY OF OBJECT-ORIENTED SYSTEMS 73

RFC .
7

NOC \\Mw;
X5 \«0»

Reliability

Input layer Hidden layer 1 Hidden layer 2 Output layer

FIGURE 4. Structure of the feed-forward neural network used.

The idea of cross-validation is to put aside a part of the training data and
use it later to test the trained model. In this way, the model is validated on an
unseen dataset. This technique causes another problem: by removing a part
of the training data, we may lose some patterns. In order to solve the second
problem, the concept of k-fold cross-validation is used. K-fold cross-validation
involves that the entire dataset to be split into k subsets. We will train the
model k times and each time we will use a different subset for testing and the
rest k-1 subsets for training. The total error of the model will be the average
error of all k trials. Our investigation considered splitting the entire data set
into ten subsets: nine of them are used for training and the remaining one is
used for testing. The model is trained ten times and each time the testing
set is changed. That means that each subset is used once for testing and nine
times (k-1) for training. Figure 5 presents how cross-validation was applied
in our experiments. Black rectangles represent the testing subsets and white
rectangles represent the training subsets.

_[INNRREEEE
i [HERREEEE

OON00000.

FIGURE 5. Cross-validation process used.

74 ALISA BUDUR, CAMELIA SERBAN, AND ANDREEA VESCAN

4. EXPERIMENTS DESCRIPTION

This section expose the datasets used to develop the reliability neural net-
work prediction model. In order to validate our model, we used the Root
Mean Square Error.

4.1. Datasets. The data set used is ” Bug prediction dataset” and is described
in [1]. For this research, the chosen data are collected from the last version
of five different software systems: JDT (Java development tool - release 3.4,
version 91), PDE (Plug-in Development Environment - release 3.4.1, version
97), Equinox (release 3.4, version 91), Lucene (release 2.4.0, version 99), and
Mylyn (release 3.1, version 98). Table 1 compares the characteristics of each
project: JDT includes an index-based search infrastructure used for refactor-
ing, PDE yields solutions for Eclipse plug-ins, Equinox is an implementation
of the OSGi R6 framework, Lucene implement an indexing and search tech-
nology, and Mylyn is a task management tool for developers.

TABLE 1. Characteristics of investigated Projects

Metrics Characteristics of projects

UT | Framework Indexing | Plug-in | Task
and search | manag. | manag.
JDT Y N Y N N
PDE Y N N Y N
Equinox | Y Y N N N
Lucene | Y N Y N N
Mylyn | Y N N N Y

These data contain CK metrics and number of bugs categorized (with sever-
ity and priority) for each class of the system. Data are collected during the
testing, operational and maintenance phases.

More information about the number of classes in each project and number
of bugs may be visualized in Table 2 (C=number of total classes with no
bugs, CB=number of classes with bugs, #B=number of bugs, #BNT=number
of bugs Non Trivial, #BM=number of bugs Major, #BC=number of bugs
Critical, #BHP=number of bugs High Priority)

4.2. Experiments methodology. This investigation used five experiments,
using the five projects/datasets. In each experiment, a neural network-based
prediction model was trained using 9/10 data from a single dataset (each
experiment used a different dataset for training). Each prediction model was

PREDICTING RELIABILITY OF OBJECT-ORIENTED SYSTEMS 75

TABLE 2. Data sets information

Metrics Data sets information
#C | #CB | #B | #BNT | #BM | #BC | #+BHP
JDT 44 997 | 11605 | 10119 | 1135 432 459
PDE 426 | 1497 | 5803 4191 362 100 96
Equinox | 120 | 324 1496 1393 156 71 14
Lucene | 197 | 691 1714 1714 0 0 0
Mylyn | 701 | 1862 | 14577 | 6806 592 235 8004

then validated in two steps. The first step was to validate it using the cross-
validation technique, which means that we used for validation the remaining
1/10 data from the dataset that was used for training. The second step was
to validate the model using data from the other four projects/datasets. More
information about each experiment is listed in Table 3.

TABLE 3. Training and testing data for each experiment

Experiments Training data Validation data
Experiment 1 9/10 of JDT 1/10 of JDT,
PDE, Equinox,
Lucene, Mylyn
Experiment 2 9/10 of PDE 1/10 of PDE,
JDT, Equinox,
Lucene, Mylyn
Experiment 3 9/10 of Equinox | 1/10 of Equinox,
JDT, PDE,
Lucene, Mylyn
Experiment 4 | 9/10 of Lucene 1/10 of Lucene,
JDT, PDE,
Equinox, Mylyn
Experiment 5 9/10 of Mylyn 1/10 of My-
lyn, JDT, PDE,
Equinox, Lucene

4.3. Results. The mean reliability values computed using the bugs-based for-
mula for each project, are listed in Table 4. The mean reliability values com-
puted using the neural network based prediction model for each project and
for each experiment are listed in Table 5. The bolded values are obtained in

76 ALISA BUDUR, CAMELIA SERBAN, AND ANDREEA VESCAN

the cross-validation step, while the others are obtained in the second step of
validation. A visual representation of the results is listed in Figure 6.

The experiments explored how the obtained neural network model differs
in terms of performance when using projects with different characteristics.

TABLE 4. Mean reliability value for each project computed
with the bugs based formula

Projects | Reliability values by bugs
JDT 0.048582
PDE 0.023806
Equinox 0.062020
Lucene 0.030623
Mylyn 0.049389

TABLE 5. Mean reliability value for each project predicted by
neural network prediction model

Projects Reliability values
Experiment 1 2 3 4 5
JDT 0.046973 | 0.026686 | 0.029756 | 0.037569 | 0.068397
PDE 0.054409 | 0.020266 | 0.046260 | 0.049615 | 0.061642
Equinox 0.070716 | 0.043553 | 0.061428 | 0.073883 | 0.118110
Lucene 0.043030 | 0.0022160 | 0.031426 | 0.025880 | 0.066846
Mylyn 0.023523 | 0.018856 | 0.015811 | 0.031991 | 0.038243

To validate our model we use the Root Mean Squared Error (RMSE) met-
ric. It is computed as the square root of the average of squared differences
between prediction and actual observation. The metric represents the stan-
dard deviation of prediction errors (the residuals).

The RMSE formula is:

3) RMSE =/(f — o),
Where:
f = forecasts (expected values or unknown results),

o = observed values (known results).

The model is better in its predictions when RMSE is lower, thus the pre-
dicted values are close to the observed values.

PREDICTING RELIABILITY OF OBJECT-ORIENTED SYSTEMS

012 ¥
0.08
}
0.06 e : '
]
0.04 ® | : '
0.2 L fa "
0]
10T PDE Equinox Lucene My hm
Experiment 1 BExperiment 2 Experiment 3
Experiment 4 ¥ Experiment 5 @®Bugs based formula

FIGURE 6. Mean reliability value for each project predicted by

neural network prediction model.

77

The RMSE analysis for each experiment is listed in Table 6. Also, a visual
representation of the results is listed in Figure 7.

TABLE 6. RMSE analysis for each experiment

Projects RMSE
Experiment 1 2 3 4 5
JDT 0.047940 | 0.075931 | 0.096312 | 0.075865 | 0.090505
PDE 0.060582 | 0.043147 | 0.155933 | 0.063116 | 0.091675
Equinox 0.113011 | 0.110130 | 0.109097 | 0.097998 | 0.174369
Lucene 0.068518 | 0.051839 | 0.102805 | 0.043320 | 0.112893
Mylyn 0.069323 | 0.072348 | 0.103535 | 0.070011 | 0.063391

Our findings on predicting reliability using CK metrics considering various
projects with different characteristics as a basis for the neural network model
construction identified best RMSE for the PDE project, thus with Ul and
plug in management characteristics. Worst value is obtained with Equinox
project, thus with Ul and Framework characteristics. Overall these findings
are in accordance with findings reported in [16] where a statistical approach
by using multiple linear regression was used for the same set of data.

5. CONCLUSION

We have proposed in the current paper an approach to measure and investi-
gate reliability of an object oriented system, employing two steps: estimating

78 ALISA BUDUR, CAMELIA SERBAN, AND ANDREEA VESCAN

0.2
018 I
0.16
014
0.12 L

01

7 }
0.08
0.06 % hd .
004 *
ooz
0
0T PDE Equinox Lucene Myhn
Experiment 1 WExperiment 2 Experiment 3 Experiment 4 i Experiment 5

FiGURE 7. RMSE analysis for each experiment.

reliability using the numbers of bugs and predicting reliability using a neu-
ral network model based on CK metrics values. The present study confirmed
the findings about the relevance and impact of CK metrics to quantify the
reliability quality attribute.

The neural network model obtained to predict reliability is validated using
a date set containing over 5000 instances/classes, grouped in 5 projects. The
experiments revealed that a Ul and indexing and search (JDT) project obtain
the “best” neural network reliability prediction model.

Future work will investigate the reliability prediction problem by aggregat-
ing the results obtained using regression equation and neural networks predic-
tion model. Another future direction refers to apply the equation prediction
for other quality attributes.

REFERENCES

[1] M. D’Ambros, M. Lanza, R. Robbes,” An Extensive Comparison of Bug Prediction Ap-
proaches” ,Proceedings of MSR, 2010, pp. 31-41.

[2] V.R. Basili, L.C. Briand, W.L. Melo, A Validation of Object-Oriented Design Metrics as
Quality Indicators. Technical Report, Univ. of Maryland, 1995. p. 1-24.

[3] V. Basili, D. Rombach. The TAME project: Towards Improvement-Oriented Software
Environments. IEEE Transactions on Softw. Engineering, 14(6), jun 1988.

[4] F. Brito e Abreu and W. Melo, Fvaluating the impact of object-oriented design on software
quality, Proceedings Third Int. Software Metrics Symposium, 1996., 90-99

[5] S. R. Chidamber, C. F. Kemerer, A Metric Suite for Object- Oriented Design, IEEE
Transactions on Software Engineering. 20 (6), 476-493 (1994)

[6] S. Chitra, K. Thiagarajan, M. Rajaram: Data collection and Analysis for the Relia-
bility Prediction and Estimation of a Safety Critical System Using AIRS. International
Conference on Computing, Communication and Networking, (2008)

PREDICTING RELIABILITY OF OBJECT-ORIENTED SYSTEMS 79

[7] Cross-Validation in Machine Learning, https://towardsdatascience.com/cross-validation-
in-machine-learning-72924a69872f. Last accessed 17 Feb 2019

[8] M. Danhel, Prediction and Analysis of Mission Critical Systems Dependability, PhD
Thesis, Faculty of Information Technology, Czech Technical University (2018)

[9] N. Fenton. Software Measurement: A Necessary Scientific Base. IEEE Transactions on
Softw. Engineering, 20(3), 1994.

[10] ISO25010 description information, https://www.iso.org/standard/35733.html,
https://is025000.com/index.php/en/iso-25000-standards/iso-25010

[11] B. Kitchenham, S. L. Pfleeger, N. E. Fenton, Towards a Framework for Software Mea-
surement Validation, IEEE Trans. on Software Engineering, 21(12), 929-944 (1995)

[12] W. Li, S. Henry, Object-oriented metrics that predict maintainability. Journal of Sys-
tems and Software, 23(2):111-122, 1993

[13] S. Russel, P. Norvig, : Artificial intelligence: a modern approach. Alan Apt, Englewood
Cliffs, New Jersey 07632 (1995)

[14] A. Quyoum, UdM. Din Dar, SSM.K. Quadr: Improving software reliability using soft-
ware engineering approach—a review. I.J. Comput. Appl. 10(5), 0975— 8887 (2010).

[15] N. Schneidewind: Reliability Modeling for Safety-Critical Software. IEEE Transactions
on Reliability 46(1), 88-98 (1997)

[16] C. Serban, A. Vescan, ”Predicting Reliability by Severity and Priority of Defects”,
Proceedings of the 2Nd ACM SIGSOFT International Workshop on Software Qualities
and Their Dependencies, 2019, pp. 27-34.

[17] Standards Coordinating Committee of the IEEE Computer Society, IEEE Standard
Glossary of Software Engineering Terminology, IEEE-STD-610.12-1990 (1991)

BABES-BoLYAI UNIVERSITY, DEPARTMENT OF COMPUTER SCIENCE, 1 M. KOGALNICEANU
STREET, 400084 CLUJ-NAPOCA, ROMANIA
Email address: {camelia, avescan}@cs.ubbcluj.ro, abudur@riasolutionsgroup.com

