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COGNITIVE MODELING APPROACH FOR DEALING WITH

CHALLENGES IN CYBER-PHYSICAL SYSTEMS

RÓBERT ADRIAN RILL(1,2) AND ANDRÁS LŐRINCZ(1)

Abstract. In this paper, inspired by our previous works, we propose an
architecture for the design and realization of cyber-physical systems (CPS)
that considers the spatio-temporal context of events, promotes anomaly de-
tection, facilitates efficient human-computer interaction and is capable of
discovering novel human and/or machine knowledge. We view deep neural
networks as smart sensors and sensory data from the environment repre-
sents the semantic and episodic input to a consistency seeking component
of the cyber-space. Starting from a knowledge base infused with a deter-
ministic world assumption, this module can detect anomalies and correct
estimation errors by combining the outputs of multiple sensors. We also ex-
ploit an episodic description of ongoing situations by integrating temporal
segmentation with kernel and low-dimensional embedding based methods.
We demonstrate parts of the architecture through illustrative examples on
our self-collected driving dataset. Our framework can be related to cog-
nitive science foundations and may facilitate reliable functioning of CPS
through integrating traditional AI and deep learning methods with deter-
ministic models and reasoning tools. We expect that such knowledge base
and cognition driven approaches of joining deep neural networks will be
adopted in complex CPS. This looks like a scalable, and beneficial match
between human knowledge and the exploding deep learning technologies.

1. Introduction

Cyber-physical systems (CPS) are complex structures of interacting physical
and computational components, where the physical processes are controlled
or monitored by computer-based algorithms. They are networks of sensors
and robotic components equipped with advanced mechanisms and managed
by intelligent software solutions, often including humans in the control loop.
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Requirements of a CPS include usability, functionality, robustness, efficiency,
adaptability, safety and reliability. The design and realization of CPS call
for the integration of theoretical models and engineering techniques originat-
ing from different disciplines. Examples and areas of application include au-
tonomous driving systems, transportation, smart factories, intelligent manu-
facturing [12, 13], healthcare [25], civil infrastructure [3] (electrical power grid,
water resources, communication systems, networked building control), assisted
living (consumer appliances, intelligent homes), entertainment.

The digital revolution of the last decades has governed the long-term tech-
nological and economical trends of CPS. This approach integrates production
in an intelligent computational space, leveraging the interconnectivity of self-
adaptable machines, paving the way for the next generation manufacturing,
namely Industry 4.0 [2], with a significant economic potential [13].

As multidisciplinary systems, CPS combine computation, communication
and control technologies to conduct feedback control on widely distributed
embedded computing systems [15]. They operate with inputs and feedback
from/to the physical environment, which calls for workflow management with
real-time performance requirements. Communication is realized in the form
of sensor-actuator networks. The information represents the abstraction of
the physical world and operations are events composed of states reported by
sensors/humans and actions performed by actuators/humans. CPS realize
the autonomous networking of embedded systems at large scales, and their
interaction with environmental processes. This poses considerable challenges.

In this paper we build upon our previous works. In [16] we presented a
framework of cognition that combines deep neural networks (DNNs) with facts
and rules to correct recognition errors and obtain consistent and determinis-
tic event descriptions. In our follow-up work [17], based on motivations from
neuroscience and psychology, we introduced an architecture called declarative
description that combines DNNs and unsupervised machine learning tech-
niques to provide explanation and reasoning about ongoing situations in a
spatio-temporal context. The contribution of the present paper consists in
combining the concepts of our former efforts to propose a general architec-
ture for the design and implementation of CPS. Our framework tackles the
challenges of CPS: anomaly detection, efficient human-computer interaction
and deterministic decision making and description of events. Furthermore, we
view DNNs as smart sensors and illustrate parts of the architecture on our
self-collected driving data as a simple CPS scenario.

The paper is organized as follows. Section 2 provides a background by
reviewing challenges that CPS face. Section 3 presents the two components
that extend the traditional sensor-controller-actuator CPS network, namely
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consistency seeking and episodic description. Section 4 describes our illus-
trative examples, followed by a discussion in Section 5. Finally, Section 6
concludes the paper.

2. Background: CPS challenges

2.1. Anomalies and decision making. CPS aim for a high level of cer-
tainty in a narrow context, i.e. they are goal-oriented, designed with a well
defined purpose, and they tightly integrate physical and cyber system aspects
both at design time and during operation [3]. However, CPS are exposed
to unexpected events, i.e. anomalies, which need to be recognized and dealt
with in real time and with extreme care in order to limit false alarms and
unobserved faults.

Real-time responsiveness of CPS to the environment is also related to tim-
ing behavior, which emerges from the combination of software and hardware
platforms [11]. Predictable and reliable real-time performance is difficult to
achieve because of the lack of temporal semantics and adequate concurrency
models in computing [1]. Lee [10] summarized this thought as “the program
does not express aspects of behavior that are essential to the system”. CPS
must have unified time, trust quantification and communication mechanisms
at the system level [15].

2.2. Deterministic models: knowledge-base. In order to realize CPS,
we need smart analytical tools to transform experience-based knowledge into
evidence-based decision making for sustainable and reliable operation [25].
Components of a CPS come from multiple vendors in diverse engineering dis-
ciplines with distinct domain expertise [11, 15]. A holistic approach is required
that integrates the physical and computational infrastructures into one unified
model [14] for supporting real-time, reliable and autonomous decision making.

It is the power of deterministic models that gave scientists the ability to
design control systems [11]. In CPS simulation environments they facilitate
control algorithm development and testing, before the deployment into hard-
ware [22]. Starting from a knowledge base that includes domain expertise,
constraints, reasoning tools, facts and rules of the physical world, the realiza-
tion of predictable and understandable models is possible. Moreover, a com-
prehensive knowledge about its own dynamic structure and the infrastructure
of the whole system results in self-monitoring and self-aware CPS [2].

A knowledge-based decision making component can deal with the dynamic
behavior: (i) it can perceive and control the environment, analyze observations
due to the intelligent data management capabilities of the cyber space, and
(ii) can communicate in efficient ways with other modules through wireless
sensor networks [3] and with humans through intelligent user interfaces [13].
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2.3. Deep learning in CPS. Novel engineering solutions exploiting AI and
deep learning are improving at a remarkable pace. AI-based technologies are
being developed for smart machine control [12]. In a networked CPS set-
ting with interactions with the physical environment and humans, conditions
are dynamically changing. This requires greater flexibility in modeling and
optimized decision making. The advancements of the past years creates an
opportunity to add data driven intelligence to the CPS processes.

To complement the available knowledge base, one can make use of DNNs.
In CPS the measurement and monitoring of physical processes (temperature,
pressure or mechanical movements, for instance) are done by sensors which
convert physical or electrochemical properties into an electrical output sig-
nal [2]. So-called smart sensors are utilized for monitoring and control mech-
anisms of the environment. They enable reliable, accurate and automated
data collection with minimal maintenance efforts and flexible networking. In
this sense typical DNNs are sensors that monitor characteristics of CPS com-
ponents and the environment, and provide a signal as output, which serves
decision making and control. In the rest of the paper, smart sensors and DNNs
will be referred to collectively as feedforward input-output (FIO) systems.

To summarize, DNNs may extend the set of intelligent sensors for increasing
flexibility and adaptability in CPS. However, it is still required that humans
remain in the loop in order to complement autonomy technologies for maxi-
mizing performance and limiting risks [21].

2.4. Humans-in-the-loop. CPS often involve humans in decision making
and control loops. Either (i) they have supervisory roles and directly control
the system, or (ii) the system passively monitors humans, collects data to
be analyzed and takes actions if necessary. There are also different levels of
human control depending on how large the task load is for decision making
and how active the involvement is in the autonomy of making decisions [21].

In either case, several challenges need to be tackled. The modeling of human
behaviour is a difficult task due to the complex physiological, psychological
and behavioral aspect of humans [19, 20]. Furthermore, the probability of hu-
man error causing a system failure can be high due to a variety of reasons [21].
Therefore, robust CPS systems call for real-time predictive models that are
able to recognize dangerous situations, control the outcomes, maintain stabil-
ity and accuracy and adapt to changing human behavior.

Human behavior models need to be incorporated into the system architec-
ture itself and, as several researchers suggest, human interaction will have a
critical role in the foreseeable future (see, e.g., [21]).
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3. Methods: cognitive architecture for CPS

3.1. Events in deterministic environments. CPS deal with scheduled op-
erations and involve decision making in a goal-oriented context, often with
humans in the loop. Any operation in the physical system can be described as
an initial state and an action to be executed leading to a final desired state,
where the action may involve several sub-processes (see Figure 1). We call the
transition from the actual state to another one after executing the action an
event, or episode. Two remarks have to be made. Firstly, the final state may
differ from the desired state giving rise to an error term. We will turn back
to this point later in the paper. Secondly, episodes can have different proper-
ties depending on their interrelationships: they can follow each other, can be
concurrent, can be composed of other smaller episodes, can be combined into
higher-order episodes.

Physical System

Initial
Sub-process

Sub-process

Sub-process

Sub-process

State
Desired
State

Action

Figure 1. Operations in a physical system as events.

An event is independent if the state-action-state transition is not affected
by other concurrent actions. An event is non-stochastic if the desired state
is reached with 100% probability in the prescribed execution time. Deter-
ministic behavior presumes independent and non-stochastic events. However,
because of their complexity and interactions with the environment, events are
less likely to be non-stochastic. Stochastic problems arise from anomalies, un-
predictability of execution time and uncertainties from the environment, e.g.
non-modelled side-effects of the surroundings.

Problem solving in such complex systems is a combinatorial problem and
lowering of the number of variables is highly desired due to the exponential
dependence of the state space on those. Because CPS are goal oriented, the
deterministic world assumption points towards the ability of reaching goals and
desired states with 100%. If anomalous events/episodes occur, deterministic
models built upon the available knowledge base provide real-time decision
making capabilities for recognizing and resolving them. Moreover, the spatio-
temporal dependencies of the processes in a complex CPS constrain possible
state-desired state pairs limiting the number of variables to be considered.
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3.2. Consistency seeking component of the cyber space. In a typi-
cal CPS setting, sensors collect information from the environment, the cyber
layer stores information and carries out abstract computations to examine
the collected signals, controllers make decisions, which are transmitted to the
actuators in order to change the physical processes [3, 14].

To extend the cyber space capabilities, we propose a consistency seeking
module for decision making and control in a spatio-temporal context, making
use of the available knowledge base. The contextual environment is given
by sensory information – events taking place at a given location at a given
time – and also incorporates the knowledge of experts. The sensory input
is converted by the FIO systems into semantic and episodic input and this
enters the consistency seeking module of the cyber space (see Figure 2). The
semantic and episodic output of the consistency seeking component may be
used to overwrite the collected signal to obtain consistent representations of
the physical processes, or may be combined to produce the actual state. The
difference between the actual and desired state gives rise to an error term,
used to induce changes in the physical world.
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Figure 2. The traditional closed-loop sensor-controller-actuator CPS net-
work extended with a consistency seeking component.

The consistency seeking component can facilitate anomaly detection. We
propose to combine the outputs of multiple FIO systems to discover and re-
solve conflicts, to take into account the spatio-temporal context and the avail-
able knowledge base for improving recognition. Facts and rules, the structure
and meaning of information, semantic relations among the components of the
physical and cyber infrastructures can be injected into ontologies that also
describe the interdependencies across the cyber-physical boundary [14].

The consistency seeking component of our architecture assumes a determin-
istic world. In stochastic environments other approaches might be necessary,



COGNITIVE MODELING APPROACH FOR CPS 57

e.g. probability maximization. However, if sufficient information is available,
the deterministic world assumption holds, and prediction errors and persisting
contradictions should lead to searches for finding the missing causes.

To summarize, consistency seeking and the assumption of determinism to-
gether become powerful tools for anomaly detection and learning, if we can rec-
ognize components and have episodic knowledge about their spatio-temporal
relationships.

3.3. Episodic description of ongoing situations. Anomalies are changes
in behavior that negatively affect performance. They are outliers that cor-
respond to short time intervals within a larger episode, e.g. texting while
driving.

CPS require real-time capabilities to keep updated about the current states
of physical devices and to intervene if necessarry in applications such as ob-
servation, monitoring, control, forecasting [15]. Therefore, in a CPS setting,
sensors continuously monitor physical processes such as traffic information in
intelligent transportation, patients’ blood pressure or blood sugar level in the
healthcare domain, soil temperature and humidity in environmental detection.
In the physical world the passing of time is inevitable and concurrency of pro-
cesses is naturally present. Our framework integrates these properties in the
computing capabilities of the cyber space.

Particularly, we propose to further extend the cyber space capabilities with
an episodic description of ongoing situations illustrated on Figure 3. The sen-
sory data and semantic and episodic output of the consistency seeking module
are considered time series and temporal segmentation is applied. The result is
a series of episodes, which can be consecutive or overlapping. Segmentation is
followed by the comparison of episodes with each other, and the obtained sim-
ilarity vectors are embedded into low-dimension. The resulting clusters can be
further inspected by intelligent algorithms or humans using smart interfaces.

Episodic description could be applied for example in manufacturing, where
most production planning decisions are based on historical data [2]. If past
information of a production machine is provided in terms of time series, the
episodic description module is capable to track the changes and infer addi-
tional knowledge by searching for similarities with other machine records and
analyzing performance. This gives the possibility for the cyber space to predict
future behavior. Another example is in the healthcare domain, where semantic
knowledge needs to be integrated with manually and automatically collected
low-cost clinical patient data towards clinical decision support [20, 25]. Tem-
poral segmentation and/or clustering of episodes can be applied to historical
information of patient data to analyze behavior patterns and predict possible
future diseases or recovery status.
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Figure 3. Extension of the cyber space with an episodic description com-
ponent to detect anomalies and to bring temporality into focus.

4. Results: description of illustrative examples

Autonomous driving represents one area of application for CPS [5, 7]. Our
choice of the CPS aims the illustration of correcting sensory observations via
consistency seeking. Our purpose was well served by means of self-collected
data. Reasons include risk considerations, the lack of data about monitored
humans, and the simplicity of illustration during driving, as a CPS scenario.
We recorded videos while driving between Budapest and Martonvásár in Hun-
gary, using a spherical camera attached to the dashboard of the car1.

To illustrate the consistency seeking module of our architecture we extracted
frontal view videos from our collected spherical videos and ran state-of-the-art
DNNs on them. Figure 4 shows how the consistency seeking module can com-
bine the outputs of two state-of-the-art DNNs to correct estimation errors and
obtain new samples for fine-tuning: (i) the OpenPose version of the Convo-
lutional Pose Machine (CPM) [24] is used to estimate body joint coordinates
and (ii) the mismatches are corrected by predicting the movement of pixels
from one frame to the next with optical flow, using the FlowNet2 version [9].

Figure 5 illustrates how the consistency seeking module can combine the
outputs of DNNs to complement each other: (i) the state-of-the-art Yolo [23]
object detector is used to recognize vehicles on videos; (ii) if the detection is
lost on one frame, FlowNet2 [9] can be applied to predict the movement of the
bounding box using the detection from the previous frame.

1Ricoh R Development Kit: https://ricohr.ricoh/en/
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Figure 4. Correction of Convolutional Pose Machine (CPM) results by
optical flow (OF). Two instances are shown in rows. The columns from
left to right are: current frame with CPM visualized, next frame with
mismatched CPM, same frame as second column with corrected CPM,
and OF from current to next frame visualized. The square represents
color coding of OF.

To demonstrate the episodic description component of our architecture we
show how it can be applied to detect anomalies. Namely, we used it to recog-
nize and cluster overtaking events, i.e. time segments when other cars pass by
ours during driving. The spherical videos were pre-processed as follows: (i)
extract side-views so that the car’s side window is in the center of the frames,
(ii) apply video stabilization to reduce the oscillation due to the movement of
the camera, (iii) extract center of frames containing only the side window of
the car, (iv) run FlowNet2 [9] on these small resolution videos and (v) compute
OF features to obtain time-series subject to temporal segmentation. The fea-
tures are 5-dimensional: for each frame we computed the two-bin histogram of
the horizontal OF and choose the two bin heights and the three bin endpoints
as features.

After the pre-processing procedure the steps of the episodic description were
applied. Similarly to our previous works [16, 17, 18], for temporal segmenta-
tion we used the Group Fused LASSO [4] method to detect change-points co-
occurring across the dimensions of multivariate signals. Then segments were
compared with the Global Alignment Kernel (GAK) technique [6], able to
compare different length segments by using time warping. Finally, the t-SNE
algorithm [26] was applied to embed the columns of the similarity matrix into
low-dimensions. Figure 6 shows an example of temporal segmentation on a
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Figure 5. Complementing Yolo object detection by optical flow (OF).
Three instances are shown in rows. The columns from left to right are:
current frame with detected Yolo bounding box, next frame with predicted
bounding box, OF from current to next frame visualized. The square
represents color coding of OF.

short video, where three overtaking episodes (around frames 310, 790, 960)
are clearly detected.

For the purposes of illustrating the results of the whole episodic description
pipeline, we selected a 30 minute long driving video and hand-annotated the
overtaking and the stopped segments (this latter refers to the time intervals
when our car was stopped in traffic). The results are displayed on Figure 7,
where each point corresponds to a time segment, as determined by tempo-
ral segmentation. There are a total of 44 overtaking episodes in this video.
They are clustered together and separated from the rest to a large extent (red
points).

It must be noted that long episodes can be segmented into multiple parts
by the GFLASSO algorithm. Therefore, trajectories are also visualized on
Figure 7, i.e. temporally consecutive points are connected with lines to reveal
the difference between the three categories from the small cluster. Continuous
colored lines connect consecutive segments of the same overtaking episode and
they settle in the upper small cluster, with only one exception: in the lower
right part of the figure the lightblue trajectory – this actually corresponds to
two separate very long and consecutive overtaking events. All points from
the small cluster corresponding to stopped segments (black) have their next
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Figure 6. Example of Group Fused LASSO temporal segmentation on a
1000 frame long video. From top to bottom: raw Optical Flow (OF) fea-
tures normalized, GFLASSO segmentation, finite differences of GFLASSO
corresponding to change-points.

segment as stopped, connected by dashed grey lines (only three are shown for
visual clarity). Dotted grey lines connect three other category points (blue)
from the small cluster with their next segment: one is red inside and two are
black outside the small cluster. Also three blue points from the small cluster
have their next segment not overtaking nor stopped (these trajectories are not
shown).

To sum up, assuming that stopped episodes are known and making use of
trajectories, episodic description recognized the overtaking events with high
probability as illustrated by Figure 7:

• 42 episodes out of 44 were separated from the rest in the small cluster
(some of these episodes are composed from multiple segments but the
trajectories settle in the small cluster);

• there are two false negatives (two long consecutive overtaking events
connected by the lightblue line);

• there are three false positives (in the small cluster three blue points
can not be excluded because their next segment is also blue).

Omitting the stopped segments from calculation and connecting the segments
of the same event with trajectories, the problem of recognizing overtaking
events can be treated as binary classification. Our relatively small example
analyzed in detail happens to bring high accuracy (99%), precision (93%),
recall (95%) and F1 score (94%) for classifying overtaking upon segmentation.
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Figure 7. t-SNE embedding results for episodic description in the case of
a 30 minute long video.

5. Discussion

Our illustrative examples show how the consistency seeking module can
combine the outputs of multiple FIO systems to correct estimation errors
and to complement each other, and how the episodic description component
can be used for event/anomaly detection. The overtaking episode represents a
dangerous situation in an autonomous driving system and should be recognized
in time in order to take appropriate actions.

The episodic description involves events that concern observations and in-
teractions between components. The events are localized in space and time
and reflect the physical reality. This enables reasoning at higher levels while
integrating with a human/machine knowledge base. Not only does episodic
description bring temporality into focus, but it has another important conse-
quence. Although large volumes of data are collected in a CPS, not all of it is
relevant, thus reducing the region of interest is essential [3].

The architecture presented in this paper tackles the problem of combina-
torial explosion by limiting the number of variables to be considered during
decision making in two ways: (i) the consistency seeking component considers
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the spatio-temporal context, which constrains the number of possible state-
desired state pairs, and (ii) the episodic description contributes to eliminating
irrelevant intervals of the state space.

To give a simple example, the spatially limited OF between a few frames is
an instance of the extremes of short episodes. It limits efficiently the space of
potential future outcomes due to Newtonian laws. In case of object tracking it
means that a bounding box may not appear at any given position in the next
frames. Thus the set of potential positions of the bounding box may be reduced
considerably due to the “OF episode”. More is expected for deterministic
processes in the long run if the potential next episodes are learned and can be
identified during progress.

High accuracy, recall and F1 score values for event recognition mean that
high probability warning signals can be provided to the driver. Furthermore,
the driver may train the system for personal use if their behavior is monitored.
See for instance the examples provided in [16], which include talking to a
person in the car or over the phone, or drinking. In this case the driver
can train the system conditioned on their behavior, by providing feedback if
the warning signal is not needed. Moreover, if the attention of the driver
is overloaded then the warning signal may be desired in the same or similar
situations. Feedback should help the step-by-step learning about the proper
level of interaction. This can be the subject of future data collection, since
the spherical camera enables the monitoring of the driver as well.

We close this section by noting that present CPS researches are still at the
beginning, and are mostly limited to specific applications. Further investiga-
tions and studies are required to realize a unified framework of computational
and physical resources [1, 15]. Since future CPS will cover aspects of social
and economic lives [3], it is crucial to establish easy to abstract models so that
the complexity of design can be reduced.

5.1. Relation to cognitive psychology. Our architecture can be related to
fundamentals of the human cognitive system, namely declarative (semantic
and episodic) and procedural memory (for details on this topic see, e.g., [8]).
Semantic memory assumes a collection of facts and concepts encoded with
specific meaning independently from the spatio-temporal context. Episodic
memory on the other hand represents experiences and events in a serial form
from which the situation can be reconstructed only if the surrounding context
is also present. The procedural memory involves slow and gradual acquisi-
tion of skills that often occurs without conscious attention to learning. The
concept of cognition is more than a single input-output mapping, it includes
information processing, acquiring knowledge and the capability of reasoning.
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In relation to our architecture, every event is an episode and it can be
saved in the episodic ‘memory’ for data mining, anomaly detection, model
construction, and for learning to predict and control the event. This event
may be concurrent with other events and it is probably embedded into a larger
one. The method of dealing with an ongoing event is the procedure, composed
of actions and sub-events. This procedure may evolve over time as knowledge
is collected. Reliable functioning is possible if the semantic knowledge base is
large enough. If not, than new concepts, sensors and additional control tools
can be introduced to overcome disturbances of the events provided that the
details of the event are comprehensible, time is available and the related costs
and savings justify the effort.

6. Conclusion

In this paper, inspired by our previous works, we presented an architec-
ture for CPS that can be related to fundamentals of the human cognition
system. To extend the traditional sensor-controller-actuator network, we pro-
posed two novel components to enhance the cyber space capabilities: (i) con-
sistency seeking and (ii) episodic description. The consistency seeking module
is capable of detecting anomalies and correcting estimation errors by combin-
ing the outputs of multiple smart sensors and/or deep neural networks taking
into consideration the spatio-temporal context and the available knowledge
base (facts, rules of the physical world, domain-specific ontologies etc.). The
episodic description module considers timing behavior, combines sparsity, ker-
nel and low-dimensional embedding methods for anomaly detection, facilitates
efficient human-computer interaction and is capable of discovering novel hu-
man and/or machine knowledge. By integrating deep learning and traditional
AI methods with reasoning tools and deterministic assumption, our approach
facilitates understandable and reliable decision making.

Our framework points to goal-oriented systems, an essential property of
CPS. It considers anomaly detection and their resolution, i.e. noticing discrep-
ancies in space and time and seeking for consistency based on the assumption
of determinism. We expect that such knowledge base and cognition driven
approach of joining deep neural networks will be adopted in complex CPS.
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tion: The meeting point of artificial intelligence, deep neural networks, and human in-
telligence. In IJCAI/ECAI 2018 Workshop on Explainable Artificial Intelligence (XAI),
2018.
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