
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXIV, Number 1, 2019
DOI: 10.24193/subbi.2019.1.04

USING LATENCY METRICS IN NOSQL DATABASE

PERFORMANCE BENCHMARKING

CAMELIA-FLORINA ANDOR, BAZIL PÂRV, AND DAN MIRCEA SUCIU

Abstract. This paper presents an experimental study evaluating the per-
formance of NoSQL database management systems. The study compares
two NoSQL database management systems (Cassandra and MongoDB)
and considers the following parameters/factors: workload and degree of
parallelism. Two different workloads (update heavy and mostly read) were
used, and different numbers of threads. The measured results are related
to average latency: update latency and read latency. Our study shows
that with the only exception of 1000 operations, both latency indicators
have a quasi-parabolic behavior, where the minimum (i.e. the best perfor-
mance) depends mainly on the number of threads and slightly varies with
the increase in the number of operations. In the case of 1000 operations,
there is also a maximum point (i.e. worst performance) case, after which
the latency decreases.

1. Introduction

NoSQL data models appeared from practical reasons, some industrial solu-
tions becoming de facto standard solutions in the cases where the relational
data model failed to provide acceptable performance in terms of horizontal
scalability and high availability. A lot of different data models (key-value,
document, column-family, graph, etc.) are collectively known today as NoSQL
data models. Different providers offer today a large selection of highly con-
figurable and flexible NoSQL database management systems. They differ in
terms of the data models and distribution models they implement, as well as
the real problems appropriate for their use. Consequently, it is very difficult
to compare them. For the designer of an application using such a NoSQL

Received by the editors: January 8, 2019.
2010 Mathematics Subject Classification. 68P15, 68P99.
1998 CR Categories and Descriptors. H.2.1 [Database Management]: Logical design

– Data models; H.2.4 [Database Management]: Systems – Distributed databases, Parallel
databases.

Key words and phrases. NoSQL database, performance benchmarking, MongoDB,
Cassandra.

39

40 CAMELIA-FLORINA ANDOR, BAZIL PÂRV, AND DAN MIRCEA SUCIU

database management system it is not enough to read the technical documen-
tation in order to make the best design decisions. Instead, the usual approach
is to use some performance benchmarks, which helps to see the actual be-
havior of the database and to choose the appropriate hardware configuration.
This paper is the second describing a series of experimental studies, evalu-
ating different performance indicators of two NoSQL database management
systems: Cassandra and MongoDB. The current paper refers to two aver-
age latency measures, update latency and read latency, while the first one,
[1], discussed the throughput averages. Latency indicators characterize the
time needeed to perform a single operation/request (amount of time the re-
quest takes to complete), and throughput is related to the computational
performance, measured in number of operations/requests performed per sec-
ond. Both performance indicators have an equal importance: latency for
describing the response time, and throughput for the server performance. The
benchmarking tests for experimental studies were performed using the Yahoo!

Cloud Serving Benchmark client, using varied pairs of number of operations,
number of threads and workload on every database server.

2. Background

2.1. NoSQL Data Models. Large companies like Amazon and Google in-
troduced NoSQL data models to collect and manage large quantities of data in
a distributed environment: Google Bigtable[3] and Amazon Dynamo[6]. Their
success gave a new research field - NoSQL data models. In the order of their
complexity, they are: key-value, document, column-family and graph. There
are also combinations/variations of these basic models.

In the key-value model, the key part uniquely identifies the value part,
which is not visible to the database (you cannot directly perform queries on
values). Key-value databases organize data as key-value pairs, allowing arrays
or objects to be stored as values for keys, but their structure is not exposed
at the database level. Amazon Dynamo uses this model.

The column-family and document models are based on the key-value model.
The document model allows you to query the value: a document resembles a
record that belongs to a relational table. Document DBMSs organize docu-
ments in collections. Unlike the relational model, in which all the records have
the same schema and a field can store only simple values, here the documents
can have different schemas and their fields can store complex values like arrays
or embedded documents. The most popular document formats are JSON[11],
XML[21], and YAML[22]. Document DBMSs simplify the application devel-
opment process, as the document’s structure is similar to that of an object
used at the application level.

LATENCY METRICS IN NOSQL DATABASE PERFORMANCE BENCHMARKING 41

In the column-family model, data is organized as rows that belong to column
families. A column family is like a relational table, but has a flexible schema.
Each column contains a key-value pair and a timestamp. The key is in fact
the name of the column and the value is the column itself. The value of
a column can be complex, like a collection or a tuple. Rows that contain
different columns are allowed to be part of the same column family. A good
practice in application development that involves the use of column-family
DBMSs is to know the queries in advance, in order to optimize the database
schema around those queries. Column-family DBMSs are generally optimized
for write operations. Google Bigtable was the first implementation of this data
model.

The graph model is the most complex, being appropriate for heavy intercon-
nected data. In such a property graph, both nodes and edges have properties.
If data are heavy interconnected, this affects the horizontal scalability, because
it is difficult to decide where to split the graph into several sub-graphs stored
into a distributed environment.

2.2. NoSQL tools. For our benchmarking study, two data models were con-
sidered: the document model (implemented by MongoDB[14]) and the column-
family model (implemented by Cassandra[2]). Among other DBMSs imple-
menting these models and available on the market we mention CouchDB[5],
OrientDB[16] for the document model, and Bigtable[3], HBase[10] for the
column-family model. OrientDB also supports other data models.

MongoDB is an open source distributed database developed by 10Gen,
known today as MongoDB Inc. Its main features are: horizontal scalability,
flexible schema, high availability, replication and an expressive query language.
Ad hoc queries are very well supported. A MongoDB cluster is made up of
shards, configuration servers and query routers. Shards or nodes are used to
store data, config servers store cluster metadata, while query routers route
queries to the shards.

The other open source distributed database considered is Cassandra, ini-
tially developed at Facebook[13]. Its main features are: high availability, data
replication and horizontal scalability. Unlike MongoDB, which performs bet-
ter in the case of read operations, its core query language is not so rich, and it
offers better support for write operations. Cassandra’s data model is column-
family, based on Bigtable[3] and Dynamo[6]. A Cassandra cluster is made up
of identical servers, which means each node can accept both read and write
operations. Also, there is no downtime when adding or removing a node from
the cluster.

In our case study, Apache Cassandra 3.11.0 and MongoDB 3.4.4 versions
were installed on our servers.

42 CAMELIA-FLORINA ANDOR, BAZIL PÂRV, AND DAN MIRCEA SUCIU

2.3. NoSQL benchmarking. If many options (i.e. in our case many open
source NoSQL database management systems) are available to the application
developer, it is a difficult decision to choose the right one, which gives the best
performance on a given hardware configuration and for a specific application
use case. In these situations, where it is difficult to make comparisons between
the performance of different NoSQL database servers, benchmarking is very
useful. As it is the case in other similar situations, the benchmarking process
needs its own tools, and there are not so many options in the open source
movement.

The functionality of a benchmarking tool covers two different areas: work-
load generation and performance measurement using different workload sce-
narios. A workload is the load that is put by a certain application on the
database management system, i.e. a batch of all requests a given application
is sending to the server during a working session. For benchmarking purposes,
the workload definition needs some clarifications, as we’ll see below.

In database performance benchmarking, there are three important met-
rics: throughput, measured in operations per second, latency, measured in
microseconds per operation, and total runtime, also measured in milliseconds.
Throughput measures the number of operations per time unit (second), while
latency measures the duration of a single operation (expressed in microsec-
onds). The total runtime expresses the entire duration of a test. Higher
throughput and lower latency and lower total runtime values are better from
the performance viewpoint.

There are two categories of NoSQL database benchmarking tools: database-
specific and database-independent. In the database-specific category we can
mention cassandra-stress tool[19] for Cassandra, and cbc-pillowfight[18]
for Couchbase. These tools cannot be used in our study, which aims to compare
performances of different databases on the same workload. In the database-
independent category we mention YCSB[4] and BigBench[9]. YCSB runs on
both Windows and Linux, while BigBench runs only on Linux. Moreover,
YCSB offers more flexibility than BigBench in terms of data models and work-
load configurations. The fact that BigBench resembles TPC-DS[15] makes it
less oriented on big data or NoSQL workloads, while YCSB focuses on NoSQL
systems and their specific workload types. Also, YCSB can be used to test the
performance of many NoSQL DBMSs, including MongoDB and Cassandra,
which makes it a good choice for our study.

Yahoo! Cloud Serving Benchmark[4] (or YCSB) is an open source bench-
marking framework for NoSQL and cloud systems. It was developed in Java
and includes two main components: the workload generator known as the

LATENCY METRICS IN NOSQL DATABASE PERFORMANCE BENCHMARKING 43

YCSB client, and the Core workloads that represent a set of workload scenar-
ios to be executed by the generator[23]. These components can be extended.
In the context of YCSB, a workload has two components: a data set and a
transaction set. The data set represents the set of records that are loaded into
the database before any transaction is performed on it. The transaction set
contains all read and write operations to be run on the database server. Main
parameters of the transaction set are: the number of operations in it (i.e. the
number of operations to be performed in a test run), the ratio between read
and write operations, and the number of client threads.

Besides Core workloads, YCSB allows the user to define new workloads. For
our performance benchmark, YCSB version 0.12.0 was used as benchmarking
framework. In the literature, there are other benchmarking studies that use
YCSB: [7], [8] and [12]. These studies employ a testing environment that in-
volves a cloud-based infrastructure, which greatly differs of our approach. Our
testing environment is not cloud-based, and it uses Windows operating sys-
tem on both client and server machines. Other differences refer to the use
of physical machines instead of virtual ones, DBMS versions, operating sys-
tem, workload types, the size of the data sets, and hardware configurations.
The case study presented in [12] uses a proprietary data set that belongs to a
healthcare organization and custom workloads. The data sets used in [7] and
[8] are generated by the YCSB client, but the actual size of the data sets used in
[8] is not clearly specified. The study presented in [7] specifies the size of the
data sets used, but it does not include MongoDB in the study, it only includes
Datastax’s variant of Cassandra. Also, the software versions of the DBMSs
and YCSB used in [7], [8] and [12] are older than those used in our study and,
especially in the case of MongoDB, the difference between version 2 and ver-
sion 3 is very significant. Starting with version 3, MongoDB uses a different
storage engine, called Wired Tiger, which greatly improves performance.

3. Case study

3.1. Experimental setting. Our experiment used a total of three servers
having the same hardware configuration, each of them running a different
application: YCSB client on the first server, Apache Cassandra on the second
one and MongoDB on the third. The configuration of each server is as follows:

• HDD: 500 GB
• RAM: 16 GB
• CPU: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz, 8 logical proces-

sors, 4 cores
• OS: Windows 7 Professional 64-bit.

44 CAMELIA-FLORINA ANDOR, BAZIL PÂRV, AND DAN MIRCEA SUCIU

All workloads used the same data set, composed of 4 million records. The
YCSB client was used to generate the data set. Each record contains 10 fields
and every field stores a 100 byte string value that was randomly generated. The
data set could fit within internal memory due to its size. The chosen workloads
belong to the YCSB Core workloads set: Workload A (the ratio between read
and write operations in the transaction set is 1 - 50% updates, 50% reads), an
update-heavy workload[20], and Workload B (the ratio between read and write
operations in the transaction set is 1

19 - 5% updates, 95% reads), a read-mostly
workload[20]. An application that has a workload similar to Workload A could
be a session store in which recent actions are recorded, while Workload B is
similar to the workload of an application that involves photo tagging, as stated
in [20]. Every workload was tested with the following values for the number
of operations (NO): 1000, 10000, 100000 and 1000000, and with 1, 2, 4, 8, 16,
32, 64, 128, 256 and 512 client threads (NT). Each test was repeated three
times.

MongoDB was installed with default settings, which implies that the storage
engine used is Wired Tiger (the default storage engine for MongoDB version
3.4.4).

Cassandra was also installed with default settings, but we followed a setting
recommendation found in [7], so that write timeouts can be avoided:

• write request timeout in ms increased to 100000
• read request timeout in ms increased to 50000
• range request timeout in ms increased to 100000
• counter write request timeout in ms increased to 100000.

The asynchronous Java driver was used for both MongoDB and Cassandra.
A batch of tests contains all tests with the same workload, number of opera-
tions, and database server, varying the number of client threads. Before the
execution of every batch of tests, the database server was restarted. Informa-
tion about database server status was captured before running a batch of tests
and after. The data set corresponding to the first workload was deleted after
all combinations of tests related to it were executed. A data set having the
same parameters but corresponding to the second workload was loaded before
executing the tests for the second workload.

3.2. Results. Every batch of tests was repeated three times, and the average
values of average update latency (AUL) and average read latency (ARL) were
computed. Figures 1 and 2 show the AUL results for Workload A and Work-
load B, respectively. Figures 3 and 4 refer to ARL. Here the x-axis represents
log2(NT).

When testing Workload A (Figure 1), the evolution of AUL with respect
to the number of threads has a quasi-parabolic shape, with the exception of

LATENCY METRICS IN NOSQL DATABASE PERFORMANCE BENCHMARKING 45

the case with 1000 operations. There is an optimal number of threads thrmin

for which AUL has a minimum value. This point is slightly shifting to the
right as the number of operations grows. This leads us to the conclusion that
for a fixed number of operations there is a threshold thrmin producing the
minimum AUL value. When the number of threads exceeds this thrmin, AUL
grows: in the case of Cassandra, the slope of the curve decreases with the
number of operations; in the case of MongoDB, the slope is increasing as the
number of threads grows. In the case with 1000 operations, the minimum AUL
value is obtained for thrmin = 22, and the growth at some maximum value
(thrmax = 27 for Cassandra, thrmax = 28 for MongoDB) after which it starts
diminishing. MongoDB and Cassandra produce almost the same AUL value
for 10000 operations when NT ≥ 25. For a number of threads less than 28,
AUL for 10000 operations is greater than AUL for 100000 operations in the
case of MongoDB. The maximum AUL value is obtained for 10000 operations
(Cassandra), respectively 1000000 operations (MongoDB).

For Workload B tests (Figure 2), the quasi-parabolic shape is preserved,
again with the only exception of 1000 operations test case. The threshold
thrmin has a slower shift to the right than in the case of Workload A. The way
AUL values grow is the same for both workloads in the case of Cassandra,
while in the case of MongoDB the AUL growth rate is slower for Workload B
than in the case of Workload A, and AUL slightly diminishes with the number
of operations. In the case with 1000 operations, the minimum AUL is obtained
for thrmin = 21 (MongoDB), respectively thrmin = 22 (Cassandra), and the
growth stops at thrmax = 28 (for both databases). In the case of MongoDB
and Workload B, almost identical AUL values were obtained when number
of operations was 100000, respectively 1000000. The maximum AUL value is
obtained for 1000 operations and 28 client threads for both databases (AUL
= 20588 for Cassandra, and AUL = 11854 for MongoDB). The worst perfor-
mance in terms of AUL for Cassandra is almost double the similar MongoDB’s
one.

Figures 3 and 4 show the variation of ARL for workloads A and B. At first
sight, the shapes are almost identical with those referring to corresponding
AUL values. For 1000 operations and Workload A, the maximum ARL value
is obtained for thrmax = 27 (Cassandra), respectively thrmax = 28 (Mon-
goDB), while in the case of Workload B thrmax = 28 for both databases.
For all cases considered when testing Workload A, maximum ARL value is
obtained for thrmax = 29 with 1000000 operations (MongoDB), respectively
10000 operations (Cassandra). For Workload B, global ARL maximum values
are obtained in the case thrmax = 28 and 1000 operations for both databases.

46 CAMELIA-FLORINA ANDOR, BAZIL PÂRV, AND DAN MIRCEA SUCIU

Figure 1. 4 Million Records Workload A - Average Update Latency

Figure 2. 4 Million Records Workload B - Average Update Latency

Table 1. Analysis of variance - update latency results

Wrk No Database No of threads DB:NT
ld ops F-value Pr(>F) Sgf F-value Pr(>F) Sgf F-value Pr(>F) Sgf
A 1000 0.1131 0.7378 20.0319 3.784e-05 *** 2.0400 0.1588
A 10000 3.8686 0.05416 . 851.0068 <2e-16 *** 0.3264 0.57005
A 100000 59.212 2.46e-10 *** 2700.088 <2.2e-16 *** 402.539 <2.2e-16 ***
A 1000000 109.56 8.514e-15 *** 2960.81 <2.2e-16 *** 633.90 <2.2e-16 ***
B 1000 8.6920 0.004654 ** 26.1476 3.984e-06 *** 0.7462 0.391370
B 10000 196.81 <2.2e-16 *** 1141.68 <2.2e-16 *** 210.28 <2.2e-16 ***
B 100000 315.01 <2.2e-16 *** 1623.29 <2.2e-16 *** 254.34 <2.2e-16 ***
B 1000000 352.39 <2.2e-16 *** 1879.47 <2.2e-16 *** 242.42 <2.2e-16 ***

LATENCY METRICS IN NOSQL DATABASE PERFORMANCE BENCHMARKING 47

Figure 3. 4 Million Records Workload A - Average Read Latency

Figure 4. 4 Million Records Workload B - Average Read Latency

Table 2. Analysis of variance - read latency results

Wrk No Database No of threads DB:NT
ld ops F-value Pr(>F) Sgf F-value Pr(>F) Sgf F-value Pr(>F) Sgf
A 1000 0.6449 0.4253 21.0577 2.558e-05 *** 1.7397 0.1925
A 10000 9.1106 0.003821 ** 727.9405 <2.2e-16 *** 0.0037 0.952034
A 100000 39.508 5.196e-08 *** 2496.036 <2.2e-16 *** 369.484 <2.2e-16 ***
A 1000000 81.258 1.71e-12 *** 2692.374 <2.2e-16 *** 578.117 <2.2e-16 ***
B 1000 6.3605 0.01454 * 25.9703 4.241e-06 *** 0.6839 0.41175
B 10000 160.54 <2.2e-16 *** 1045.30 <2.2e-16 *** 172.17 <2.2e-16 ***
B 100000 267.69 <2.2e-16 *** 1422.88 <2.2e-16 *** 211.16 <2.2e-16 ***
B 1000000 257.98 <2.2e-16 *** 1381.54 <2.2e-16 *** 170.57 <2.2e-16 ***

48 CAMELIA-FLORINA ANDOR, BAZIL PÂRV, AND DAN MIRCEA SUCIU

3.3. Statistical analysis. The two-way ANOVA (Analysis of Variance) pro-
cedure from R Statistics Package[17] was used to perform the statistical anal-
ysis of the experimental results. Table 1 (for AUL) and Table 2 (for ARL)
present a synthesis of the results. For every experiment, two factors were
taken into consideration: database and number of threads. The interactions
between database and number of threads (DB:NT) were considered as well.
The database factor (DB) has two levels: Cassandra and MongoDB. The num-
ber of threads (NT) has ten levels: 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512.
The column labeled ”Sgf” refers to the P-value and describes textually the
level of significance, 0.1%, 1%, 5%, and 10%, following the usual conventions:
0 ∗∗∗ 0.001 ∗∗ 0.01 ∗ 0.05 . 0.1 (blank space) 1. A P-value less than or equal
to 0.1% (i.e. ∗∗∗ conforming to the legend) shows that the differences between
means have a strongest statistical significance, while a P-value greater than
10% (i.e. blank space) indicates that the differences between the means of the
levels considered are within the experimental error.

With respect to the number of threads, the differences in variation of AUL
and ARL have the strongest statistical significance for both workloads. In the
same time, for 1000 operations and Workload A, the differences of means with
respect to DB levels for AUL and ARL are within the experimental error.
All interactions DB:NT lead to strongest significance between means, except
for Workload A with 1000 and 10000 operations and Workload B with 1000
operations, for which there is no statistical significance.

4. Conclusions and further work

As we stated above, the performance of Cassandra and MongoDB database
servers was measured for two different workloads: update-heavy (Workload A)
and read-mostly (Workload B) and two performance indicators were measured
and analyzed, average update latency (AUL) and average read latency (ARL).
All test cases with NO ≥ 10000 proved a quasi-parabolic behavior of AUL and
ARL with respect to NT. This means that the best performance is achieved
with a right combination of NO and NT. As NT exceeds these optimal values,
the performance in terms of latency diminishes. In the case NO = 1000, the
minimum AUL is obtained at thrmin = 22 for Workload A and both databases,
respectively at thrmin = 21 (MongoDB) and thrmin = 22 (Cassandra) for
Workload B. There is also a global maximum AUL value obtained for Workload
A at thrmax = 29 and NO = 10000 for Cassandra, respectively at thrmax = 29

and NO = 1000000 for MongoDB. For Workload B, maximum AUL values were
obtained at thrmax = 28 and NO = 1000 for both databases. These figures
are almost the same for ARL, basic trends being preserved. Global maximum

LATENCY METRICS IN NOSQL DATABASE PERFORMANCE BENCHMARKING 49

ARL values are obtained for the same combination of (DB, workload, NO,
NT).

As further work, we intend to analyze other metrics obtained from this
experiment, and to perform post-hoc ANOVA tests. Also, we plan to perform
other experimental studies using data sets that do not fit within the internal
memory on cluster and single server configurations. Another direction in the
experimental work will deal with the use of SSDs as disk storage and the
replication for database servers, in order to measure how these configurations
affect performance. Finally, another variable in our future case studies will be
the operating system, so that we can use other NoSQL DBMSs that are not
available on Windows.

Acknowledgments

Parts of this work were supported through the MADECIP project Dis-
aster Management Research Infrastructure Based on HPC. This project was
granted to Babeş-Bolyai University, its funding being provided by the Sec-
toral Operational Programme Increase of Economic Competitiveness, Priority
Axis 2, co-financed by the European Union through the European Regional
Development Fund Investments in Your Future (POSCEE COD SMIS CSNR
488061862).

References

[1] C. F. Andor and B. Pârv. NoSQL Database Performance Benchmarking - A Case Study.
Studia Informatica, LXIII(1):80–93, 2018.

[2] Apache Cassandra. http://cassandra.apache.org/. Accessed: 2017-09-25.
[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chan-

dra, A. Fikes, and R. E. Gruber. Bigtable: A Distributed Storage System for Structured
Data. OSDI ’06 Proceedings of the 7th USENIX Symposium on Operating Systems De-
sign and Implementation, 7, 2006.

[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
Cloud Serving Systems with YCSB. Proceedings of the 1st ACM Symposium on Cloud
Computing, pages 143–154, 2010.

[5] CouchDB. http://couchdb.apache.org/. Accessed: 2017-09-25.
[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly Available
Key-value Store. Proceedings of 21st ACM SIGOPS Symposium on Operating Systems
Principles, oct 2007.

[7] Fixstars. GridDB and Cassandra Performance and Scalability. A YCSB Performance
Comparison on Microsoft Azure. Technical report, Fixstars Solutions, 2016.

[8] A. Gandini, M. Gribaudo, W. J. Knottenbelt, R. Osman, and P. Piazzolla. Performance
Evaluation of NoSQL Databases. EPEW 2014: Computer Performance Engineering,
Lecture Notes in Computer Science, 8721:16–29, 2014.

50 CAMELIA-FLORINA ANDOR, BAZIL PÂRV, AND DAN MIRCEA SUCIU

[9] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A. Jacobsen. Big-
Bench: Towards an Industry Standard Benchmark for Big Data Analytics. Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data, pages
1197–1208, 2013.

[10] HBase. https://hbase.apache.org/. Accessed: 2017-09-25.
[11] JSON. https://www.json.org/. Accessed: 2018-03-16.
[12] J. Klein, I. Gorton, N. Ernst, P. Donohoe, K. Pham, and C. Matser. Performance

Evaluation of NoSQL Databases: A Case Study. Proceedings of the 1st Workshop on
Performance Analysis of Big Data Systems, pages 5–10, 2015.

[13] A. Lakshman and P. Malik. Cassandra: A Decentralized Structured Storage System.
ACM SIGOPS Operating Systems Review, 44:35–40, 2010.

[14] MongoDB. https://www.mongodb.com/. Accessed: 2017-09-25.
[15] R. O. Nambiar and M. Poess. The Making of TPC-DS. VLDB ’06 Proceedings of the

32nd International Conference on Very Large Data Bases, pages 1049–1058, 2006.
[16] OrientDB. http://orientdb.com/. Accessed: 2017-09-25.
[17] R Statistics Package. https://www.r-project.org/. Accessed: 2017-09-25.
[18] Stress Test for Couchbase Client and Cluster. http://docs.couchbase.com/sdk-api/

couchbase-c-client-2.4.8/md_doc_cbc-pillowfight.html. Accessed: 2019-01-03.
[19] The cassandra-stress tool. https://docs.datastax.com/en/cassandra/3.0/

cassandra/tools/toolsCStress.html. Accessed: 2019-01-03.
[20] The YCSB Core Workloads. https://github.com/brianfrankcooper/YCSB/wiki/

Core-Workloads. Accessed: 2017-09-25.
[21] XML. https://www.w3.org/TR/2008/REC-xml-20081126/. Accessed: 2018-03-16.
[22] YAML. http://yaml.org/. Accessed: 2018-03-16.
[23] YCSB Github Wiki. https://github.com/brianfrankcooper/YCSB/wiki. Accessed:

2017-09-25.

Department of Computer Science, Faculty of Mathematics and Computer Sci-
ence, Babeş-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania

Email address: {andorcamelia, bparv, tzutzu}@cs.ubbcluj.ro

