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A VIEW ON DEEP REINFORCEMENT LEARNING IN

IMPERFECT INFORMATION GAMES

TIDOR-VLAD PRICOPE

Abstract. Many real-world applications can be described as large-scale
games of imperfect information. This kind of games is particularly harder
than the deterministic one as the search space is even more sizeable. In
this paper, I want to explore the power of reinforcement learning in such an
environment; that is why I take a look at one of the most popular game of
such type, no limit Texas Hold’em Poker, yet unsolved, developing multi-
ple agents with different learning paradigms and techniques and then com-
paring their respective performances. When applied to no-limit Hold’em
Poker, deep reinforcement learning agents clearly outperform agents with
a more traditional approach. Moreover, if these last agents rival a human
beginner level of play, the ones based on reinforcement learning compare
to an amateur human player. The main algorithm uses Fictitious Play in
combination with ANNs and some handcrafted metrics. We also applied
the main algorithm to another game of imperfect information, less com-
plex than Poker, in order to show the scalability of this solution and the
increase in performance when put neck in neck with established classical
approaches from the reinforcement learning literature.

1. Introduction

The idea that we learn by interacting with our environment is probably the
first to occur to us when we think about the nature of learning [15]. We are
thinking about games as simulations of our real world with special, particular
features and rules, that is why, lately, this field represented the perfect play-
ground for machine learning research. Solving particular game environments
can lead to solutions that scale to more complex, real-word challenges such
as airport and network security, financial trading, traffic control, routing ([8],
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[10], [17]). We witnessed the rapid development of computer AI with the mas-
sive success in perfect-information games like Chess and Go (AlphaGo Zero,
2014 [13]; LeelaChessZero 2016 [14],), but researchers have yet to reach the
same progress in imperfect-information games (AlphaStar, Deepmind, [1]).

Before the 2000s, poker solving approaches could have been categorized
(from an architecture point of view) in 3 main classes: expert system, game-
theoretic optimal play and simulations based on enumerations [2]. One of
the most successful poker bots at the time was Loki [2] (the same group later
developed DeepStack [9]), which used the above methods combined with para-
metric models for opponent modelling. Although this approach is very far from
a Nash-equilibrium, it finds locally optimal solutions to certain situations and
its performance can be used as a threshold when comparing our modern ways
of solving imperfect information games. Therefore, I will develop my own
version of Loki Poker bot, as our first agent, in order to use for testing.

Fictitious play [4] is a popular method for achieving Nash Equilibria in
normal-form (single-step) games. For our deep reinforcement agent, we try to
add on a variant of Fictitious play, normally used in self-play scenarios (Neural
Fictitious Self-Play [7]) and show how this approach can be also re-modelled
and applied to a one-player environment. It was proven that NFSP provides
poor performance in games with large-scale search space and search depth
[21], because of the complexity of opponents’ strategy and the fact that a
DQN (Deep Q Network [11]) learns in offline mode and it uses only raw, crude
data as input. Moreover, NFSP wasn’t tested on the more complex variant
no-limit. I try to address these issues by considering some high-level hand-
crafted heuristics to go alongside raw data from a state of play. My approach
uses, in addition, hard coded rankings of card combinations and Monte-Carlo
heuristics for assessing an approximate strength of the opponent hand. This
will represent the main idea behind the second agent I am going to build.

I empirically evaluate each agent in two-player (heads up) zero-sum com-
puter poker games and explain how each one can work even in a multiple-player
scheme with limited performance loss.

2. Background

In this section I provide an overview of reinforcement learning and fictitious
play in extensive-form games. I am going to mark some important mathemat-
ical elements here as they will be used for reference in the next sections.

2.1. Reinforcement Learning.
Reinforcement learning [15] agents typically learn to maximize their ex-

pected future rewards from interaction with an environment. The environ-
ment is usually modelled as a Markov decision process (MDP). Reinforcement
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learning algorithms can learn in many ways, but we are interested in the ones
that learn from sequential experience in the form of transition tuples from one
state (s) to another taking into account the action (a) necessary to reach the
new state and the respective reward of that operation (r): (st, at, rt+1, st+1).
The goal of the agents is to maximize their rewards, this is typically done by
learning the action-value function Q, defined as the expected gain of taking ac-
tion a in state s and following the policy π: Q (s, a) = Eπ [Gt|St = s,At = a].

Here, Gt =
T∑
i=t

Ri+1is a random variable of the agent’s cumulative future re-

wards starting from time t [15]. From this, it easily follows that we may want
to take the action of the highest estimated value Q, that’s why Q-learning [20]
was invented as a way to learn about the greedy policy storing and replaying
past experience. To approximate the action-value function, a neural network
can be used and this approach is one of the most popular when dealing with
more complex games and the system is called a DQN [18].

2.2. Fictitious Play.
Fictitious play (FP) [4] is a game-theoretic model of learning from self-play.

Fictitious play is commonly defined in normal form (single-step games), which
is exponentially less efficient for extensive-form games (multi-step games). To
provide more context, fictitious players choose their best response against the
other players’ (opponents’) average behaviour; in normal-form, this defines
a player’s behavioural strategy π̂ as a probability distribution over all the
possible actions. Heinrich et al. (2015) [6] introduced Full-Width Extensive-
Form Fictitious Play (XFP) that enables fictitious players to update their
strategies in behavioral, extensive form, resulting in linear time and space
complexity. In extensive-form fictitious play, we have a convex combination
of normal-form strategies σ̂ = λ1π̂1 + λ2π̂2, that was proven it can achieve a
realization-equivalent behavioral strategy σ, by setting it to be proportional
to the respective convex combination of realization-probabilities: σ (s, a) ∝
λ1xπ1 (s)π1 (s, a) + λ2xπ2 (s)π2 (s, a) ∀s, a [6] [7], where λ1xπ1 (s) + λ2xπ2 (s)
is the normalizing constant for the strategy at information state s. This is
important as it provides strong theoretical background for approximating the
behavioural normal-form strategies in order for a convex combination to work
in extensive-form games.

In order to define a family of probability distributions, let ∆ (n) a standard
simplex in Rn, vi ∈ ∆ (n) being the i-th vertex and let H : Int (∆ (n))→ R the
entropy function H (p) = −pT log (p). In a two-player game, where there is the
concept of an opponent, each player chooses its strategy pi ∈ ∆ (mi), mi ∈ N∗
and collects the associate reward given by the value-function: Vi (pi, p−i) =
pi
TMip−i+τ ·H (pi), where −i, i ∈ {1, 2, ..., n} refers to the complementary set
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{1, 2, ..., i− 1, i+ 1, ...n} [12]. Mi is the game-specific reward matrix of shape
(mi,m−i) that holds entries with the numerical compensation for player 1
having the strategy pi and the opponent having the strategy p2. Note that we
shall use reinforcement learning to approximate this value-function through
sampling and observing the reward at each state. If follows that we can define
player i ’s best response as a function βi : ∆ (m−i) → ∆ (mi), βi (p−i) =
arg max V (pi, p−i) and player i’s average response until step k in the game
as empirical frequencies πi (k) : N → ∆ (mi) of player Pi [12].

Depending of the game type, there are multiple Fictitious Play (FP) ab-
stractions: in discrete time, continuous and dynamic continuous. For discrete
time FP, we can define the strategy at step k as the best response to the
empirical frequencies of opponent actions:

pi (k) = βi (π−i (k)) (1)

In continuous time FP, the following equations are used:

d

dt
πi = βi (π−i (t))− πi (t) , i = 1, 2 (2)

The difference that comes with the third type of abstraction, in which Poker
falls in (as a multi-step, multi-player game in which our strategy and our op-
ponent’s are continuously and dynamically changing at each step), is that each
player has access to the derivative of his empirical frequency d

dtπi, therefore
the strategy at moment t can be defined as:

pi (t) = βi
(
π−i (t) + η ddtπ−i (t)

)
, with η positive parameter (3)

We interpret this formula as a player choosing his best response based on
current opponent’s average strategy profile combined with a possible change
of it that may appear in the future.

The authors of this study, anticipatory dynamics of continuous-time dy-
namic fictitious play [12] show that, depending on the game, for a good choice
of η, the stability in Nash equilibrium points can be improved. The challenge
that comes with it though is the fact that the derivative cannot be directly
measured and needs to be approximated or reconstructed by empirical fre-
quencies measurements.

Formula (3) will stay at the basis of our Reinforcement Learning agent,
in the following sections, we will explain how we tackle the aforementioned
problem and how we define the best and average response through supervised
and reinforcement learning.

3. Developing the Agents

In this section, I am going to address the technical details and the main
process of building my 2 agents mentioned in the introduction. Therefore, my
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first agent should be a reinforcement learning free one, that’s why I am going to
build it as my own mini remake version of Loki [2] featuring betting decisions
with card heuristics and opponent-modelling. The second agent will learn
Poker training with the first agent trying to consistently beat him, treating
the opponent as part of the environment.

3.1. Agent 1.
We construct this agent mainly as an expert system at its core with heuris-

tics for betting decisions and opponent-modelling for exploitations. Agent 1
defines his policy π depending on the street of the game, on the hand strength
metrics and whether an opponent model was found or not. We got a look-up
table for the preflop stage containing the rankings of all 2-card pairs. Starting
with the flop, we maliciously evaluate the win rate in a particular situation by
enumerating all possible 5-card combinations with the current board and us-
ing another look-up table that contains the rankings of all 7462 such distinct
combinations of card, with 1 being a royal flush and 7462 being 7-5-4-3-2 with
at least 2 different suits.

Figure 1.
Hand strength

distribution over

1000 games

This is not really enough as we need
to take into account possible future hand
strength increase or decrease. That’s why
we also compute positive hand potential by
Monte-Carlo simulation of states that can
derive from the current one and assessing
those with the look-up table mentioned ear-
lier. In order to be completely sure when
to place a bet/raise, we need to analyze the
limit break points in such a hand strength
metric distribution. For that, I simulated
1000 games of Poker and assessed the hand
strength of the best 5-card combination that
includes the two hole cards. The results can
be observed in the figure 1. As expected,
most of the hands are really weak, but we
can expect great results of our hand strength metric indicates at least 0.8/1.

Opponent modelling

The goal of this part is to find a good approximation of opponent average
strategy π−i with a good accuracy of predicting the fold moves. I do that by
training two separate supervised classification models which are active during
the games, collecting data about the opponent.

I use a näıve Bayes classifier (to replicate the Bayesian analysis presented in
the Loki paper), after a certain number of actions taken, minstepsbayes, the
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model will train and try to guess opponent’s next move. The input for this
classifier consists of a 1D array containing an expected average hand strength
of the opponent (obtained from Monte-Carlo simulations), raise demand, the
opponent stack, the number of consecutive and same-suits cards on the board
and the street number.

I also use a deep neural network as our second classifier. I decided to use
a CNN architecture, the input being represented as an image of the current
board state alongside some of the scalar features mentioned at the other clas-
sifier. This will also have a minstepsCNN parameter set at the beginning,
usually at least two times higher than minstepsbayes, after which, the model
will be ready to start predicting.

The main reason that I use this configuration is that the Bayes model shines
when less data is available, taking into consideration class probabilities but
then is really outperformed by a neural network when much more data units
are available, so in the long run, we shall keep the neural model active as we
deactivate the first one.

Figure 2. Agent 1 architecture (our mini version of Loki.)
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Algorithm 1 | Agent 1, expert system with neural opponent-modelling and
Bayes classifier method

Initialize Bayes memory MBayes

Initialize CNN memory MCNN

Initialize acc← 0

for 1 : nogames do
Initialize new game G and execute agent via RUNAGENT for each player in the game

function RUNAGENT(G)

wr← getwinrate (currentposition)
if a 6= â then

nomistakes← nomistakes+ 1

Set policy σ ←
{

acc− greedy (exploiting − expert− system (wr) policy) , with probability acc
simple− expert− system (wr) policy, with probability 1− acc

Observe initial information state s and opponent action a

Store behaviour tuple (s, a) in supervized learning memory MBayes and MCNN

if MBayes.size % minstepsbayes then :
acc← train Naive− Bayes− Classifier

if MCNN .size % minstepscnn then :

acc← train Neural−Network− Classifier
if agent follows targeted response policy σ=acc− greedy then

Save our prediction â
end function

The agent functions as an expert system with betting decisions based on
mentioned hand strength heuristics at first and then, after it collects enough
data to start the Bayes classifier it changes its policy (in an accuracy greedy
way) to another expert system for exploitation. This system will be deacti-
vated as we gather enough information to start the neural model and use this
one for opponent’s moves prediction. We shall choose to use the opponent
modelling part based on the number of mistakes the classifies make during a
few games.

This agent will be important in testing by adversarial reasoning, as it offers a
measurement to opponent’s exploitability through the opponent modelling part.

3.2. Agent 2.
This deep reinforcement learning agent will continuously learn to play Poker

by training with Agent 1 from scratch. Its strategy of play combines the
greedy strategy β offered by the action-value function with the average strat-
egy π obtained though supervised classification.

Recall the equation (3), subtracting πi from both sides and using (1) yields:

d

dt
πi = βi

(
π−i (t) + η

d

dt
π−i (t)

)
− πi (t) (4)
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In NSFP [7], the authors chose a discrete time approximation of the derivative:
βt+1

i − πit ≈ d
dtπi

t. Their motivation for this is the fact that a change in π̂i
at step t + 1 is proportional to βt+1

i − πit which is the normal-form update
direction of discrete-time FP. If substituted in (4) yields:

pi (t) ≈ βi (π−i (t) + η (βi (π−i (t+ 1))− π−i (t))) ⇔
pi (t) ≈ βi ((1− η)π−i (t) + ηβi (π−i (t+ 1)))

and this is how we arrive at the combined policy approach σ ≡ (1− η) π̂+ ηβ̂
which was proven to be really good in practice [7], being tested successfully on
Leduc and Limit version Hold’em Poker for self-play agents. We will use this
formula for our Agent 2, however compared to the referenced experiments,
this time, we are applying it to the no-limit version of the game with hand-
crafted inputs and we are going to treat it as a single player game considering
the opponent as part of the environment. The definition of the combined
policy approach, in theory, allows for such a change of perspective and to my
knowledge, these exact experiments haven’t been conducted in Texas Hold’em
Poker.

Therefore, Agent 2 uses 3 neural networks. First, a DDQN system [18]
with a value network Q

(
s, a

∣∣θQ ) for predicting the Q values for each action
based on data fromMRL. It trains through backpropagation using the Bellman

equation with future Q values obtained through a target network Q′
(
s, a|θQ′

)
.

Secondly, we use a policy network Π
(
s, a

∣∣θΠ
)

to define our agent’s average
response based on data from MSL. Note that MRL and MSL are two reser-
voirs of data that are updated frequently in the game, the first one storing
transitions and the second one storing state-action tuples used for supervised
classification (Algorithm 2). MRL is implemented as a circular buffer as it
needs much more memory to operate. We choose our main policy σ from a
mixture of strategies: β = ε − greedy (Q) and π = Π: σ ≡ (1− η) π̂ + ηβ̂,
η ∈ (0, 1].
Observe that the algorithm used has general scope and may be used in other
games, MDPs with imperfect information or to practical real-life problems.

Note that we can also set the main policy σ every step t in the game for a
more stochastic approach. I will actually do that in the experiments to test
this small change to the NFSP algorithm.
The neural networks for the two strategies are implemented as CNNs and will
have mainly the same architecture, the only difference appearing at the last
layer
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Algorithm 2 | Agent 2, reinforcement learning agent with fitted Q-learning

for 1 : nogames do

Initialize new game G and execute agent via RUNAGENT for each player in the game

function RUNAGENT(G)

Initialize replay memories MRL (circular buffer) and MSL (own behaviour dataset)

Initialize average− policy network Π
(
s, a|θΠ

)
with random weights θΠ

Initialize action− value network Q
(
s, a|θQ

)
with random weights θQ

Initialize target network with weights θQ
′ ← θQ

Initialize π−β parameter η
for each episode do

Set policy σ ←
{

ε− greedy (Q) , with probability η
Π, with probability 1− η

Observe initial information state s1 and reward r1

for t = 1,minreplaymemorysize do
Sample action at from policy σ

Execute action at in emulator and observe reward rt+1 and next information state st+1

Store transition (st, at, rt+1, st+1) in reinforcement learning memeory MRL

if agent follows best response policy σ = β (= ε− greedy (Q)) then :

Store behaviour tuple (st, at) in supervised learning memory MSL

Update θΠ with gradient descent on loss
L
(
θΠ

)
=E(s,a)∼MSL

[
KL Divergence Π

(
s, a|θΠ

) ]
Update θQ with gradient descent on loss

L
(
θQ

)
=E(s,a,r,s′)∼MRL

[(
r + maxa′ Q

(
s′, a′|θQ′

)
−Q

(
s, a|θQ

))2
]

Periodically update target network parameters θQ
′ ← θQ

end function

Figure 3. Overview of Agent 2 architecture.
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The input is represented as a 17x17x9 3D array containing the images of
the last two board states joined by the scalar features we mentioned at Agent
1 where we add the opponent last action. The fact that we add the last board
state and the opponent last action is due to wanting to test an attention mech-
anism similar to the one used for AlphaGo Zero [13]. The CNN is composed of
5 hidden layers: 4 layers of convolution, 2 MaxPooling and 1 fully-connected.
The loss for the value network remains the classic MSE and for the policy net-
work, we use KL divergence. MSL will be updated using reservoir sampling
[19] and MRL will function as a circular buffer. Above (figure 3), we can see
the architecture of this agent.

4. Experiments

I am mainly focused on no-limit variant of Poker for experiments, but I
am also going to test the algorithm on another imperfect information game
to solidify our claim of general scalability and applicability. I devised a less
complex game than Poker and verify the necessity of the essential components
by rigorously evaluating the respective performances. In case of Poker, we are
going to measure each agent’s performance against some generic players and
against each other.

4.1. A pilot experiment.

Figure
4. Blop
Game.

Introducing Blop game (figure 4), originally a per-
fect information game that consists of a quadratic
matrix/image where a pixel is colored as blue (our
player), another as green (the exit) and the third one
as red (the enemy). The player can move in all 8 di-
rections associated with the grid, or may choose to
stay still. The player receives a negative 1 reward for
moving in any direction and a positive 20 for reach-
ing the exit, but it gains negative 300 if it hits the
enemy moment when also the game ends. The ob-
jective of this game is to reach the destination as
efficient as possible.

Without any additional rules, this forms a deter-
ministic game that can be solved quite easily by popular search methods such
as A∗. Because we want to observe the functionality of the algorithm in
the field of games with imperfect information, we will make a fundamental
change in terms of the base rules used. Thus, we will poison 5 out of the
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9 basic moves: when the player tries to stand still or move vertically or hori-
zontally, he will make a random move instead. Thus, only the 4 movements
(diagonally) would work as intended.

For this experiment, the initial configuration uses a 10x10 image and is
always the same: the player in the upper left corner, the exit in the center and
with enemy steady near the exit on the segment formed by the initial points
of the player and the exit. This way, the max reward that we are aiming for
is 20, obtained only through diagonal moves.

We use algorithm 2, all we feed the algorithm is the RGB images of states,
we therefore use convolutional neural networks with 3 hidden layers (2 con-
volutions and 1 fully-connected). The parameter η was set to 0.1, ε to 0.12,
max size of MSLto 2m and for MRL to 20k. We updated the parameters of
Q and Π networks once every 4 steps (for each one) and the target network
parameters were reset once every 5 episodes.

In order to study the performance and the speed of convergence, I compare
the results with the results obtained by a standard Double DQN [11], a very
popular system for solving games. This was implemented through setting the
parameter η to 1 (always selecting the greedy strategy).

Figure 5 shows a crushing victory for our implementation that uses a com-
bination of greedy and average strategies.

(a) Standard DDQN training process.
Each stat point represents the aggregate
performance in last 50 episodes

(b) Algorithm 2 training process. Each
stat point represents the aggregate perfor-
mance in last 50 episodes

Figure 5. Comparison between algorithm 2 performance in
Blop Game and a standard method of solving games from lit-
erature.

It learns much quicker that it should not rely on anything apart from diag-
onal moves for reaching the goal - note that the very first reward is different.
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Both greedy and average strategies of Agent 2 converge to the same optimal
solution of reaching the exit in 5 moves with only diagonal moves. However,
while at episode 5000, the algorithm 2 was pretty much done, the DDQN
aggregate reward was still in the negatives 50.

I then modified the game to allow the enemy to randomly move, as the
player moves, in order to add even more imperfect information to the game.
This did not pose a challenge to our agent though, as it solved the game almost
as fast as the previous version with quicker convergence speeds than DDQN’s.

4.2. General specifications for the Poker games.
The format I am using for the games is heads-up, no-limit with 100 chips

as starting stack and 5 chips small blind. For performance evaluations I am
using two metrics: average stack over a fixed number of games and mbb/h
(milli big blinds per hand = 1/1000 of a big blind). This is normally the metric
to use for addressing performance in Poker, very many articles use this one
for their experiments ([21], [7], [5], [3]). To provide some intuition, the values
for a mbb/h metric will usually stay in the interval [-750, 750] and a human
professional player would aim for winnings of 40-50 mbb/h. An average
stack of over 100 guarantees, most of the time, a match win rate of at least
50%.

The generic players used are the following: Randomplayer (a player that
chooses call 3 times out of 5 and the other actions 2 times out of 5 with
equal probable chance), a Callplayer (a players that always calls) and Heuris-
ticMCplayer (a player that chooses its actions based only on Monte-Carlo sim-
ulations and not look-up tables). We expect the last generic artificial player
described above to be the strongest challenger as simulations are generally
very useful in Poker because it is important to know, objectively, what are
your chances to win to make a bet, excluding the physchological element and
the concept of bluffing. However, the way you use that information is also
crucial, that’s why this player is still not that great - it will always raise when
the simulations show that it’s winning.

4.3. Agent 1.
I am going to refer to the Agent 1 without opponent modelling as BaseAgent1

player. We can clearly see an improvement in the performance of Agent 1 (Ta-
ble 1), using the opponent modelling part compared to when we don’t use it.
Although I expected a higher gain in winnings, we should not forget that we
are limited by how good and exploitable the expert systems behind Agent 1
are. After 250 games against HeuristicMC, we got 85.71% test set accuracy
for predicting moves which provided a 2% increase in performance during this
length of play.
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Results after 250 games Texas Hold’em Poker per player-match, statistical error +/- 2

Player 1 Player 2 Avg. Stack (Player

1)

Result (winrate

P1)

HeuristicMCplayer Randomplayer 107 52%

BaseAgent1player Randomplayer 141 72%

BaseAgent1player Callplayer 163 81.6%

Agent 1 Callplayer 167 84.8%

BaseAgent1player HeuristicMCplayer 111 57.6%

Agent 1 HeuristicMCplayer 119 59.2%
Table 1 Results of some experiments with artificial players

Experiment with a human player
I’ve invited a friend, Catalin, to take on this first agent. The test subject

has an advanced beginner to low intermediate level at Poker, he knows
the rules of the game very well and can make educated decisions during most
of the situations, but lacks the experience of more advanced players. Catalin
accepted to play a total of 29 games against Agent 1 in which he adopted an
anti-computer strategy, constantly changing his style of play and testing for
bluffs.

With all of that said, Agent 1 managed to beat him both in the first 22
games where an opponent model wasn’t available and in the next 7 games at
full power. Even on such a small sample size of games, the neural network
signaled a 60% accuracy in predicting the opponent’s next move.

Player 1 Score Player 2 No games Win-rate

Base Agent 1 +13 -9 Catalin 22 59.09%

Agent 1 +6 -1 Catalin 7 85.71%

Agent 1 total +19 -10 Catalin 29 65.51% Total

Table 2 Agent 1 and BaseAgent1 performance against a human (low intermediate) player

The majority of losses came from all-ins in the preflop stage of the game,
but as the model learnt more about Catalin’s playing style, it became more
resilient in calling bluffs and started to aim for a turn-river finish. The mbb/h
winnings were over 150 mbb/h for the artificial player. One other thing that
Catalin told us is that he became very surprised of the playing style in the
last 7 games, during which the agent tried to exploit him.

4.4. Agent 2.
We are ready to apply the algorithm in no-limit Texas Hold’em Poker, by

considering the opponent as part of the environment and trying to consistently
beat him. η and ε were both set to 0.1, max length of MRL to 300k and for
MSL to 1.2 m, the learning rate fir reinforcement learning and supervised
learning were set to 0.05, 0.005, respectively. The exploration rate ε decays
to 0 proportionally to the inverse square root of the number of games in the
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training process. The agent performs 2 stochastic gradient updates of mini-
batch size 256 per network for every game. The target network-ul parameters
were reset once every 128 hands of play.
The training process was performed several times from scratch to confirm that
the results are indeed consistent. The ultimate goal of this agent is to beat
Agent 1 in at least 250 games match, for this we first trained an agent to beat
Random player (to first get a small sense of how Poker works) and then, we
saved that version to next train with BaseAgent1player.
Finally, this version of Agent 2 will be the starting point to train against Agent
1.

Below (figure 6) we can see the performance of algorithm 2 training against
the Randomplayer, it quickly crushes him. In the testing phase afterwards, the
average strategy of this agent recorded an average stack of 173.02 (84.8%-win
rate), while the combined strategies approach recorded a close 166.23.

(a) Agent 2 training process. Each stat
point = the aggregate performance (stack)
in last 50 episodes

(b) Agent 2 training process. Each
stat point = the aggregate performance
(mbb/h) in last 250

Figure 6. Measuring Agent 2 training performance in stack
and mbb metrics. The axis are different for each one.

The greedy strategy (Q-network strength) is a little lower at 137.82. It is
nice to see that already Agent 2 became more successful in defeating Ran-
domplayer than Agent 1 ever was. Below (figure 7), we can clearly see how
the agent won, by analyzing his play style.

It seems that in general, the agent is aggressive, always trying to increase
the pot and earn more. This is indeed the right strategy against a player who
does not rely on any relevant game information. But obviously, call or fold
decisions must be made at least occasionally, when the game hand / current
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situation of the board is unlucky for us (in order to stop the opponent from
winning through luck).

Figure 7. Play style in

250 games vs Randomplayer

Going after Agent 1 now (figure 8),
we can see that in the first 15k games,
the performance is pretty much sim-
ilar to BaseAgent1player, but after
another 15k games of training Agent
2 completely outshines him. He wins,
apparently by finding a way to ex-
ploit the expert systems that both
BaseAgent1 and Agent 1 are based
on. This effect seems more severe
when training against Agent 1 where
the winnings cross over 600 mbb/h.
We can deduct that from this agent
playing style, using only raise average, calls and folds. On the other hand,
the version of the Agent 2 that won against BaseAgent1 has a more balanced
playing style and it is more destined to do well against human players. The
strategies do not converge to the same locally optimal one, which means there
is still space for improvement by increasing the number of iterations. However,
due to the nature of the study and limited resources, the current results are
good enough to call a victory for reinforcement learning.

(a) Training vs BaseAgent1, first 15k games (b) Training vs Agent 1 after 10k games

Figure 8. Training evolution against the two versions of
Agent 1. Note how the scale for (b) is so much higher.
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Figure 9. Results of some previous players against
BaseAgent1player compared with Agent 2; statistical error
+/-10.

It is interesting to visualize the overall performance of all the agents against
one of the best build until now (figure 9). The version used in that chart was
the one trained for 30k games against Agent 1.

As we can see, the one agent developed through reinforcement learning
completely outperforms the other ones in head-up no-limit Texas Hold’em
Poker.

Experiment with a human player

I’ve invited another friend who has a much higher level than Catalin at
Poker. The test subject has an amateur level of play, advanced intermediate
to advanced. He is experienced, but lacks the real money high stakes expe-
rience of play that professional players possess. Expectations are not high,
because in the end, our artificial player knows the game of poker only by
training with other artificial players. Do note that I am using the version of
Agent 2 whose performance can be visualized in figure 9.

In 10 games arranged for this match, Agent 2 won 7 and lost 3, with an
estimated winnings of 120 mbb/h. First of all, analyzing the games, Agent 2
really taught himself the basic, trivial strategies of the game:
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- never fold if the opponent does not raise after preflop.
- mostly raise a good hand but also bluff from time to time if you have good

potential for the next streets.
- usually all-in when the hand is very good and the pot is significant.
- never fold in the next round after a big raise of your own, if the opponent

does not put pressure.
Secondly, I noticed a very aggressive tendency in preflop, which is also

present in other artificial players such as Cepheus [3], but what is even more
interesting, although the AI prefers to raise in this part of the game, in most
cases he does not accept this exact behavior from his opponent, folding to a
raise greater than 20-30 in preflop (but not all the time).

Third, it’s pretty tricky to accurately report whether the AI really does
intentionally bluff or not, but from what I’ve noticed, even when going all-in
on the flop or turn, it always has at least one pair, probably fail-safe. There
were, however, a few isolated cases, when he put a lot of pressure but had
nothing in his hand, probably estimating that the opponent, most likely, has
nothing.

This agent can actually play a multi-player Poker game, although not as
well as in heads-up, by making a small change in our inputs when we use the
predict function to get a move. The only input components that we use, rele-
vant to a multi-player game, is the average estimated opponent strength, which
can be recomputed with respect to the number of players through Monte-Carlo
simulations and the opponent’s stack which can be substituted with the aver-
age stack of all the opponents.

Note that for these experiments, I used a NVIDIA Tesla T4 Workstation
with 32 GB of RAM and a NVIDIA GTX 1050ti w ith 16 GB of RAM, but
the resulting artificial players can be run on a less impressive machine even
without a GPU, with 8GB of RAM.

5. Conclusion and Further Research

I have successfully showed the power and utility of deep reinforcement learn-
ing in imperfect information games, compared to other methods. When ap-
plied to no-limit hold’em Poker, deep reinforcement learning agents clearly
outperform agents with a more traditional approach.

The human experiments, although successful, were conducted on a really
small scale, where statistical error or selection bias may have played a role in
the outcome. However, in future work, we can switch our current aim (that
being to observe, intuitively, how our agents might fair against a human op-
ponent) to an extensive testing against more professional individuals and over
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a very high number of games. Experiments against state-of-the-art artificial
poker players would also represent something to be considered in the future.

Further research on this matter may consists in developing a Poker agent
trained completely through self-play. It would be interesting to see how an ar-
tificial player that learns only by playing with a decent opponent to get better
at a game stands against a player trained by playing only against itself.
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