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EXPERIMENTAL STUDY OF SOME PROPERTIES OF
KNOWLEDGE DISTILLATION

ADAM SZIJARTO, PETER LEHOTAY-KERY, AND ATTILA KISS

ABSTRACT. For more complex classification problems it is inevitable that
we use increasingly complex and cumbersome classifying models. However,
often we do not have the space or processing power to deploy these models.

Knowledge distillation is an effective way to improve the accuracy of
an otherwise smaller, simpler model using a more complex teacher network
or ensemble of networks. This way we can have a classifier with an accuracy
that is comparable to the accuracy of the teacher while small enough to
deploy.

In this paper we evaluate certain features of this distilling method,
while trying to improve its results. These experiments and examinations
and the discovered properties may also help to further develop this oper-
ation.

1. INTRODUCTION

Knowledge distillation is a method to transfer the knowledge of an already
trained neural network to another, possibly a smaller one. The benefit of
this is we can achieve a higher accuracy for the student models as opposed to
training it on their own.

This simple method can significantly boost the accuracy of a model in a
way that could not be achieved with normal training methods or hard outputs.
This distillation technique is especially useful when we have an accurate, but
cumbersome neural network (or ensemble of networks); but do not have the
resources to deploy it.

In this paper, we examine certain features of this method, such as tran-
sitivity and symmetry, by conducting experiments to prove or refute these
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properties. In addition, we evaluate how this method performs using an en-
semble of student networks and how its parameters affect the results by further
experiments.

We are going to evaluate the symmetry of knowledge distillation by distilling
the knowledge back from a trained student network to an untrained teacher
network. We are going to conclude that knowledge distillation is a symmetric
operation if the new model performs better than the student model and its
performance is close to the original model.

We are going to evaluate the transitivity of knowledge distillation by distill-
ing the knowledge from the teacher model to a less complex middle model, and
then distill it further to the original student model. We are going to conclude
that knowledge distillation is a transitive operation if there is no significant
difference between the accuracy of the middle model and the original student
model.

2. RELATED WORKS

In their 1998 paper titled ”Neural network ensembles” [1], Lars Kai and
Peter Salamon argue that building multiple classifier models and evaluating
their results to a given classifying problem can vastly outperform a single
model even if those models are significantly simpler and individually do not
perform as well as the single model. They also found that cross validation
could greatly reduce overfitting while training these models.

This idea was further elaborated in the 2000 paper ” Ensemble methods in
machine learning” [2] by T. G. Dietterich, who reviewed these methods and
explained why ensembles could often perform better than any single classifier.
Furthermore, the author reviewed some previous studies comparing ensemble
methods and presented some new experiments.

Taking this as a basis in their 2015 paper ”Distilling the knowledge in a neu-
ral network” [3] Hinton, Vinyals and Dean found that the "knowledge” from a
trained complex model or even an ensemble of models could be distilled down
into a much simpler model without compromising performance and accuracy.
They argue that the training and deployment of a classifier are two completely
different problems with different requirements. We should not use the same
model, but use a cumbersome one for the training and — as the computational
complexity is a huge factor for end users — we should use a distilled simpler
model for deployment.

This idea has been further improved in the 2017 paper titled 7 A gift from
knowledge transfer distillation: Fast optimization, network minimization and
transfer learning” [4], which proposed a new solution: the knowledge from a
pretrained deep neural network (DNN) is distilled and transferred to another
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DNN. The method uses FSP (flow of solution procedure) matrix, representing
the distilled knowledge from the teacher DNN.

In the “Distillation as a defense to adversarial perturbations against deep
neural networks” [5] paper, the authors found that this method was also ef-
fective against adversarial attacks. They found that training a model, then
distilling its knowledge to one that is structured the same way can significantly
increase its robustness.

However, since then methods have been found for adversarial attacks against
which this kind of distillation does not work. It has been elaborated in the
paper titled " Towards Evaluating the Robustness of Neural Networks” [6] in
2017, where the authors introduced three new attack algorithms that were
successful on both distilled and undistilled neural networks with 100% proba-
bility.

In addition to these, the idea of generating softened outputs with a trained
classifier in order to enhance the performance of another one goes beyond
neural networks. In their 2017 paper ”Distilling a Neural Network Into a
Soft Decision Tree” [7], Nicholas Frosst and Geoffrey Hinton argue that this
method can be applied when distilling knowledge from a neural network to a
decision tree.

"Residual Knowledge Distillation” [8] further distills the knowledge by in-
troducing an assistant which learns residual errors. The experiments of the
authors showed that their approach achieved appealing results on popular
classification datasets.

The human visual system relies on temporal dependencies among frames
from the visual input to conduct recognition. Based on this observation,
"Tkd: Temporal knowledge distillation for active perception” [9] proposes
the Temporal Knowledge Distillation framework, which distills the tempo-
ral knowledge from a neural network-based model over selected video frames
to a light model. Results of the authors showed consistent improvement in
accuracy-speed trade-offs for object detection, compared to other modern ob-
ject recognition methods.

"Explaining Knowledge Distillation by Quantifying the Knowledge” [10]
presents a method to qualify and analyze task-relevant and task-irrelevant
visual concepts that are encoded in intermediate layers of a Deep Neural Net-
work. Authors designed mathematical metrics to evaluate feature represen-
tations of the Deep Neural Network and diagnosed Deep Neural Networks as
experiments.

”Learning an Evolutionary Embedding via Massive Knowledge Distillation”
[11] proposes an Evolutionary Embedding Learning framework to learn a fast
and accurate student network for open-set problems via Massive Knowledge
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Distillation. Authors introduced a novel correlated embedding loss to match
embedding spaces between the teacher and student network. EEL achieved
better performance with other state-of-the-art methods for various large-scale
open-set problems.

"Feature-map-level Online Adversarial Knowledge Distillation” [12] pro-
poses an online knowledge distillation method that transfers the knowledge
of the feature map using the adversarial training framework. Authors trained
multiple networks simultaneously by employing discriminators to distinguish
the feature map distributions of different networks. Furthermore, they pro-
posed a novel cyclic learning scheme for training more than two networks
together.

3. BACKGROUND

3.1. Convolutional Neural Networks. For our experiments we used a CNN
(Convolutional Neural Network)[13][14], which is a class of deep neural net-
works, a regularized multilayer perceptron. They are most often applied to
analyze images, by learning filters independently from prior knowledge. CNNs
consist of an input, an output and multiple hidden layers.

In neural networks, each neuron produces the output value by applying a
function to the input values that come from the previous layer. Weights and
biases determine this function and their iterative adjustments progress the
learning.

In CNN, most of the hidden layers are convolutions, which are special linear
operations. When data are passing through a convolutional layer, it becomes
abstracted to a feature map.

CNNs may also include some pooling layers to reduce the dimensions of
data. In our experiments we used max pooling[15][16]. Pooling combines the
outputs of neurons in one layer into a single neuron in the next layer. Max
pooling uses the maximum value as combination.

In order to reduce overfitting, we used Dropout [17][18] in each layer.
Dropout means that at each training stage, nodes together with their edges
are dropped out of the net with probability 1-p, so that a reduced network
is left. Omnly this network is trained on the data at this stage. The removed
nodes and edges are reinserted at the next stage.
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3.2. Knowledge distillation. The knowledge distillation method uses a spe-
cial activation function to produce ”softened” probabilities, which are then
used to train the student network, on which we also apply the previously
mentioned activation function. This special function is a parameterized ver-
sion of the widely used softmax[19] function, which is used to convert the last
layer of the network into probabilities.
Softmax can be given in the following form|3]:
Z;

+)

5 eap(Z)

where t is a parameter called temperature, which converts z; logit value to
q; probability. For a standard softmax, ¢ is normally set to 1. The higher we
set this parameter, the softer the output probabilities are going to be, and this
way we can preserve more features of the input than the teacher net learned,
meaning that the student receives more information as opposed to using hard
outputs.

The distilled model will be the smaller network we have trained on a transfer
set, which is not the same dataset as the one we used to train the larger model.
As loss function, cross entropy is used between the output of the distilled model
and the output of the larger model.

exp(
q; =

4. EXPERIMENTS

For the experiments we used the GTSRB (German Traffic Sign Recognition
Benchmark) dataset[20]. The teacher net was a CNN (Convolutional Neural
Network) with three layers, each with 128 nodes, using rectified linear activa-
tion functions.

With this model we managed to achieve an 0.9473 accuracy on the test
set. This served as a baseline for our further experiments. As for the student,
we used a dense neural network with one hidden layer with rectified linear
activation function.

Training it normally with the hard outputs and traditional softmaz output
layer, we had an accuracy on the test set that is not higher than 0.1635. The
results of the distillation process, in relation to the temperature parameter,
can be seen in Figure 1.

Compared to the traditional training approach, we can clearly see a signif-
icant improvement in the graph. However, the temperature parameter does
not seem to show much influence on the results if it is greater than 4. In fact
the accuracy appears to be quite random between the range of 0.5 and 0.8. It
will serve as a baseline in our further experimentation.
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FIGURE 1. Results of the distillation

4.1. Symmetry. To test the symmetry of the method, we investigated if we
could reverse the distillation process by taking a student model that had been
trained with this technique, then we distilled its knowledge into the original
(untrained) teacher model. For this experiment we took the best performing
student network — which we received with temperature 17, and had an accuracy
of 0.7827 — then used it to generate the softened outputs.

They were used to train the teacher model with the modified softmax output
layer. If we presume that the distillation process is symmetric, we expect the
new model to perform better than the student model, and nearly as good as
the original one we started with. We trained 10 models going from 1 to 10.
The results can be seen in Figure 2.

We can see the accuracy is significantly better than our best student model
with an average accuracy of around 0.84. However, it is not even close to the
original accuracy of 0.9473.

It is also important to note that there is no significant deviation among the
performance of the models, meaning the temperature parameter has little to
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FI1GURE 2. Results of distilling the knowledge back to the orig-
inal model

no influence on the accuracy of the given model, and using this special pa-
rameterized softmax function provides no improvement as opposed to training
traditionally on the output of the student model. With all that said, we can
conclude that this method does not in fact keep symmetry.

4.2. Student ensembles. In this paragraph we are discussing whether we
can improve the accuracy of the network in which we distilled the knowledge
to, by creating an ensemble of networks of the same architecture, but using
different distilling temperature parameter. To generate the predictions of the
ensembles, we used a simple majority voting.

Using all 29 student networks, after evaluation, we achieved an overall ac-
curacy of 0.7712 on our test set, which is certainly worse than our best student
network (0.7827), but better than the average accuracy (0.65014). In order
to improve this, we evaluated the best N networks. The results are shown in
Figure 3.
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Here we can clearly see that after 10 networks the accuracy is slowly, but
steadily declining, and after 18 it goes below the best result of our individual
student networks. It might be due to the fact that the models in our ensemble
are structurally quite similar (the only difference is the temperature parame-
ter) and the fact that they all were trained on the same data results in models
that mostly make the same mistake during classification.

Considering that even if we find the best student models in relation to the
temperature, then find the ideal number of networks for the ensemble and
increase the complexity of the model, the boost in accuracy is not significant
enough for this kind of trade off.
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4.3. Transitivity. To test the transitivity of this technique, we first created a
new model structure, which stood between the teacher and the student model
in terms of complexity. It is a deep neural network with 2 hidden layers, with
50 nodes each. Then we distilled the knowledge with the discussed technique
to the middle model.

21 different models were trained; one in the traditional way with hard out-
puts, and 20 with distillation with the temperature parameter ranging from
1 to 20. We then took the best performing model and distilled its knowledge
further to the original student model.

Ideally, these results are comparable to the ones we received from directly
distilling the knowledge to the student model. The results of the performance
of the middle models in relation to the temperature can be seen in Figure 4
(0 being the one trained on hard outputs).
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FIGURE 4. Results of distilling the knowledge to the middle model
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After the experiment we saw that the best performing model was the one
with temperature 6, which we used further in this experiment. Interesting to
note that the improvement provided by the distillation method was insignifi-
cant as the performance of the non-distilled model was just slightly lower than
the average of the distilled ones with very little standard deviation.
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FIGURE 5. Results of the distillation

In Figure 5 we can see the accuracy of the transitively distilled models
in relation to the originals, as well as the baseline model and our highest
performing middle model. Although the numbers are not exact, the overall
distribution of the results are actually quite similar to the ones we had from
the direct distillation.

We can claim that as long as the middle model achieves good enough accu-
racy — close to the original one — this distillation method keeps the transitive

property.
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5. CONCLUSION

In this paper we investigated multiple features and behaviours of the knowl-
edge distillation method. We experimented with symmetry by distilling the
knowledge back from our trained student network to our untrained teacher
network. We conclude that even though it outperformed the best student, it
did not come close to the model trained in the traditional way, and acted more
as a noise rather than useful additional information, proving that this method
is not symmetric.

Experiments for creating an ensemble of student networks were also con-
ducted by using student networks trained with different temperatures. We
were able to achieve very little improvement, which is due to the fact that be-
sides the temperature there were no structural differences between the models,
which resulted in similar cases of misclassification in every net. This leads us
to believe that even though the temperature can affect the performance of the
model, it has little to no effect on the behaviour.

Lastly, we investigated the transitive feature of this method by distilling
the knowledge to a slightly more complex model than our student model, then
distilled it further to our original student model. According to our experiment,
the difference was not remarkable between these students and our baseline
students, proving that this method is transitive.
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