
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXV, Number 1, 2020
DOI: 10.24193/subbi.2020.1.07

EVOLUTION OF SOFTWARE QUALITY MODELS FROM

AN NLP PERSPECTIVE

D. LUPŞA, S. MOTOGNA, AND I. CIUCIU

Abstract. The research question addressed in this study is to analyze
the evolution of software quality models, and to investigate the similarities
between the most known quality models. The models are decomposed
according to their inherent structure, then are analyzed based on their
subcharacteristics, at several levels. The focus of the study is on the lexical
analysis of software quality models based on natural language processing,
with the purpose to highlight the similarities in software quality models.
In the end, the current software quality model ISO25010 is compared with
all previous ones.

1. Introduction

As software systems become every day, more and more complex and spread
in different application areas, the interest for software quality (SQ) has in-
creased significantly.

From a business perspective, quality aspects of software applications, such
as reliability, usability, interoperability can bring significant advantages over
the competition. From an industrial perspective, different software quality
characteristics, such as security, safety, maintainability, are essential in some
types of applications: real-time, safety-critical, respectively health support
systems. Even more, there are standardized software quality models for soft-
ware products (ISO25010[9]) and processes. From the research perspective,
the last decade has seen an increased interest of the research community for
software quality aspects, with different conferences and journals focusing on
SQ in general, but also on specific SQ characteristics such as: reliability, se-
curity, safety a.s.o.

A software quality model represents a set of characteristics that completely
characterize a software system. They are classified as external factors (such

Received by the editors: 1 June 2020.
2010 Mathematics Subject Classification. 68N99.
1998 CR Categories and Descriptors. D.2.0 [Software Engineering]: General – Stan-

dards; D.2.9 [Software Engineering]: Management – Software Quality Assurance.
Key words and phrases. Software Quality, quality factors, word similarity.

91



92 D. LUPŞA, S. MOTOGNA, AND I. CIUCIU

as usability, reliability, efficiency a.s.o.) and internal (including maintainabil-
ity, testability, reusability a.s.o.). The characteristics are then divided into
subcharacteristics, with the intent to cover all aspects of software products.

Software development evolution has a direct impact on software models,
with several SQ models proposed, and lately, standardized.

The aim of this article is to study the evolution of software quality models
using an NLP approach. Our aim is to be able to explain the similarities and
variations between existing SQ models by looking at both their syntactical
and semantical structure. More specifically, our approach decomposes a model
according to its inherent structure (i.e. characteristics and subcharacteristics)
and tries to interpret (analyze) it at lexical level, by applying various NLP
metrics. This study is a continuation of our previous work [15], in terms of
the quantitative analysis that is employed and also regarding the software
quality models under investigation.

The rest of the paper is structured as follows: we begin with a short pre-
sentation of the SQ models under review, followed by the Natural Language
Processing (NLP) measurements used in our investigation. The next section
discusses our finding related to models evolution, and presents the similarity
study performed for two models: McCall and ISO 25010. We end with some
concluding remarks and future ideas.

2. SQ Models

The McCall model[12] introduced in 1977 is consider the first software qual-
ity model, defining 11 factors characterizing software products, that are further
decomposed in criteria, as an initiative from aeronautical industry. Several
notable models followed, proposing new factors or modifying the ones from
McCall model. A synthesis of the most important SQ models, including their
component factors, is presented in Table 1.

Our study will include the following SQ models: McCall, Boehm, ISO 9126
and ISO 25010. The decision to exclude FURPS model is based on the fact
that it was initially developed as an ”in–the–house” model at Hewlett Packard,
and although it is widely used in industry the definition of characteristics and
their evaluation varies from company to company.

Looking at the factors, we can notice that some of them, like maintainability
and reliability, are quite ”stable”, namely have been included in all proposed
quality models, while other factors appeared only in a subset of these models.
This can be explained by the dynamics of software domain, which changes very
fast. For example security appeared in the last SQ model, due to the spread
of web and mobile applications. A deeper look also identifies similarities or
differences between subcharacteristics.



EVOLUTION OF SOFTWARE QUALITY MODELS FROM AN NLP PERSPECTIVE 93

Table 1. Software quality models [15]

SQ Model Year Factors
McCall 1977 Correctness, Reliability, Efficiency, Integrity,
[12] Usability, Maintainability,Testability,

Flexibility, Portability, Reusab., Interoperability
Boehm 1977 Portability, As in Utility - containing Reliability,
[2] Efficiency, Human Engineering, Maintainability

- including Testability, Understandab., Flexibility
FURPS 1987 Functionality(F), Usability (U), Reliability (R),
[8] Performance (P) and Support (S)
ISO 9126 2001 Functionality, Reliability, Usability, Efficiency,
[1] Maintainability, Portability
ISO 25010 2011 Functional Suitability, Performance Efficiency,
[9] Compatibility, Usability, Reliability,

Security, Maintainability, Portability
Analyzing the SQ models, we can conclude the following:

• The domain of software quality uses several concepts and terms with
different definitions and meaning;
• The domain of software quality is dynamic: software development

rapid growth directly influences SQ domain.

2.1. State of the art. Regarding the evolution of SQ models, a study taking
into account the hierarchy of characteristics-subcharacteristics, relations of
subordination between them and special metrics is performed in [6] in the
context of ISO 25010, where the need of a more detailed semantic analysis
for the disambiguation of quality model components is recognized. The same
study was applied in the context of “green software” in [7], and managed to
predict the complexity for the next software quality model and to propose
variants of green software attributes to be included in the model.

It is agreed within the software quality community that in order to apply
semantic analysis on SQ models, it is necessary to have a commonly agreed-
upon model, i.e. an ontology. However, such model is currently not completely
available. Several contributions address the topic of constructing a common
set of concepts that are incorporated in quality models. A study [11] that em-
ploys extraction of a condensed model for software product quality attributes
is using the frequency and association of terminology and concepts that ap-
pear in different sources such as models, standards and related documents to
software quality. Based on this, an ontology involving semantics of quality
attributes is built. This ontology was the starting point for further studies
targeting a common understanding and agreed models to be used by software



94 D. LUPŞA, S. MOTOGNA, AND I. CIUCIU

engineers, researchers, stakeholders and practitioners. A three-dimensional
ontology model was proposed in [3], SQuAP-Ont (https://w3id.org/squap/),
based on current standards in place for software quality, processes and archi-
tecture. For software quality, SQuAP is using the ISO25010 standard, and
can be easily extendable. Kara et al. [10] proposed a generic software quality
model based on existing software standards that can be instantiated using an
algorithm based on fuzzy logic.

The novelty of our study is given by the fact that the analysis is considering
all significant SQ models, in an attempt to identify similarities and differences
from a NLP perspective, which will help unify the terminology used in this
domain.

3. Introducing NLP measures

As discussed in [15], several NLP approaches can be considered for software
quality domain, computing similarities between characteristics and subchar-
acteristics. These computations can be classified in:

• set–based similarities [5]: they are using mostly the number of com-
mon words. No semantic information is considered. The intuition
behind them is that the more common words two texts share, the
more similar they are;
• lexical similarities: they can be computed based on existing ontolo-

gies (such as WordNet [4]) or can be computed based on the word
co-occurrences in texts, as in the case of word embedding techniques.

The experiments from [15] showed that set-based measures, based on key-
words, give the most accurate results for set-based similarity. That is the
argument why the rest of the study will consider characteristics and subchar-
acteristics as keywords and use only them to compute similarity between SQ
models.

3.1. Set-based measures. Overlap, Jaccard and Dice are set-based similar-
ity measures that can be used.

Overlap coefficient is computed based on the number of common terms and
uses a normalization factor, but it considers two sets a full match, having
maximum similarity value, which is 1, if one is a subset of the other.

Jaccard similarity is computed as the number of shared (common) keywords
over the number of all unique keywords (union) in two sets, and can be de-
fined in terms of what is the same (common) and what is modified (added or
removed) when having a SQ model SQM1 and creating a second model SQM2.

Dice′s coefficient is defined as twice the number of common terms in the
compared sets divided by the total number of terms in both sets, which is also:



EVOLUTION OF SOFTWARE QUALITY MODELS FROM AN NLP PERSPECTIVE 95

(1)

Dice(SQM1, SQM2) =

2×common(SQM1,SQM2)
2×common(SQM1,SQM2)+added(SQM1,SQM2)+removed(SQM1,SQM2)

Both Dice and Jaccard depend on the number of items that are modified
(added or removed) and they decrease when this number increases, but Dice
has higher values than Jaccard. It is also proven that Jaccard and Dice are
monotonic in one another, meaning that it not exists 3 sets A, B and C such
that: Jaccard(A;B) > Jaccard(A;C) and Dice(A;B) < Dice(A;C).

Dice and Jaccard give a similar kind of information and we decided to use
one of them, namely Dice.

3.2. Lexical information. One of the things we are aiming at is to identify
renaming of the same concept in SQ models, for example, to identify words like
maintainability and changeability as being synonyms (that is lexically similar).

There are a lot of measures to determine the similarity between words. Some
of them use existing ontologies (such as WordNet) to compute the semantic
distance between words. Others are based on the word co-occurrences in texts,
such as word embedding techniques.

Word embedding techniques were introduced around 2013 by a team led by
Mikolov that proposed the word2vec algorithm [13], [14]. It was followed by the
apparition of other unsupervised learning algorithms for obtaining vector rep-
resentations for words, such as GloVe [16]. These methods obtain good results,
but they rely on having a very large corpus. But How large the corpus should
be? in order to cover the semantic information that is present in human-build
ontologies (such as WordNet). For example, we would expect to get a high
similarity value between words like change and modify, but let us look to the
data. By using one of Standford GloVe word embeddings vectors (Wikipedia
2014 + Gigaword 5) the similarity between change and modify is 0.461, while
the most 5 similar words with modify and their similarity are: (modifying,
0.791), (amend, 0.751), (revise, 0.728), (alter, 0.717), (rework, 0.672) and the
most 5 similar words with change are: (changes, 0.904), (changing, 0.809),
(this, 0.787), (shift, 0.787), (move, 0.785).

The amount of data corresponding to this study is limited, so we decided
that such an approach may lead to false results, and as a consequence we
decied to use WordNet.

Since we aim at identifying the renaming of the same concept in SQ models
and we need information about synonymy between words, and we choose to
use WordNet. WordNet has the advantage that is human build ontology (and



96 D. LUPŞA, S. MOTOGNA, AND I. CIUCIU

it means that we can trust the data), it covers our needs and it is ready-to-
use. If two words appear in the same WordNet synset, they are considered
synonyms and describe the same concept.

We cannot identify all the synonymy relations that we need directly by
searching WordNet, because there are a lot of missing words. But we ex-
pect that most of the missing words in WordNet to be derivations of others,
which we are going to call base word. For example, we can’t find modifiability
in WordNet, but we can find its base word: modify and also can find that
change and modify are synonyms. With this approach, we were able to find
in WordNet all the (base) words that are important for us.

So, in this study, in order to find and use lexical information, we first took
all the base words for all the names of characteristics and subcharacteristics
and then verify if they are synonyms or not.

Another problem we had to face is the use of multi-word expression for
characteristics and subcharacteristics names. As they could be considered as
containing only key-names for a concept, our choice was to consider as being
lexically similar, expressions that have at least one (base) word in common or,
at least, lexically similar.

By associating all these key-names that are similar from a lexical perspective
to a given key-name, many times there will be more than one association to
a name. Consider that we have a number na of names that are in set A, and
for which there is at least a similar name in a set B. Denote with nb all the
words from B that are lexical associations to A. We have to remark that, many
times, nb 6= na.

When we compare a model SQM1 to SQM2, we consider the number of key-
expressions from the SQM1 for which we find a lexically similar key-expression
in SQM2. For example, in Table 7, column Boehm vs. 9126, second half of
the table, named: use lexical information, we found lexical association for 5 char-
acteristics from Boehm into 9126 and we didn’t find any for 4 characteristics
of Boehm. So, there are 5 lexical matches and 4 removed ones. On the line
lexical match there is also a number put in paranthesis: (vs. 6). That number
6 means that for all the 6 characteristics from 9126 there are lexical associ-
ations in Boehm and that is nothing left in 9126 that has no association in
Boehm. This also means that there is no new characteristic added to Boehm.

We cannot directly use Dice as a metric. We are modifying it as follows:
instead of counting the common names, we are going to number all the names
from the two sets for which there are lexically similar names in the other set.
For example, Table 7, Boehm vs. 916, modified Dice is (5 + 6)/(5 + 6 + 0 + 4).



EVOLUTION OF SOFTWARE QUALITY MODELS FROM AN NLP PERSPECTIVE 97

4. Evaluation data. Comparative analysis of SQ models

We considered an investigation of transformations between the models. A
first aspect of the analysis takes into consideration questions like: how many
properties remain the same, how many are added and how many are removed.
Another question to be answered is: how do we define the properties of a
model? In this approach we are going to look at the characteristics and sub-
characteristics names and relations among names from a lexical perspective.

A second aspect of the analysis is the perspective from which we look at
the data. We consider the SQ models: McCall, Boehm, ISO 9126, ISO 25010
taken in historical order, but also analyze how close models are relative to the
latest model among them, which is ISO 25010. The data has been collected
using naming of characteristics and subcharacteristics.

Table 2. Naming of the characteristics and subcharacteristics. Evolution

McCall to Boehm Boehm to 9126 9126 to 25010
names common 11 7 18

added 12 20 21
removed 23 16 9
Dice 0.39 0.28 0.55

use lexical match 20 9 23
lexical added 7 15 11

information removed 14 14 4
modified Dice 0.63 0.42 0.77

4.1. Quantitative analysis based on all names of characteristics and
subcharacteristics. We can see in Table 2 that, from McCall to Boehm, 35
naming were changed (added or removed), which are a little less than from
Boehm to ISO 9126 (36), and only 30 are changed between ISO 9126 and ISO
25010, which seemed to be the most similar software quality models among
those considered here. This behaviour of the evolution is even more pregnant
if we look at the values obtained by using lexical information.

When compared with ISO 25010, the biggest differences are found for
Boehm model. We can also notice that ISO25010 is the model that preserved
the most of characteristics (Tables 2 and 3 ) during all models history.

If we look to the common names (words) chosen for characteristics and
subcharacteristics in all four models, we see that there are only four names that
appear in all of them, and these are: maintainability, portability, reliability,
testability, and only two of them remained as characteristics in all models.



98 D. LUPŞA, S. MOTOGNA, AND I. CIUCIU

Table 3. Naming of characteristics and subcharacteristics
compared to ISO 25010

McCall vs. 25010 Boehm vs. 25010 9126 vs. 25010

names common 10 7 18
added 29 32 21
removed 24 16 9
Dice 0.27 0.23 0.55

use lexical match 19 11 23
lexical added 18 21 11

information removed 15 12 4
modified Dice 0.55 0.47 0.77

Table 4. Common characteristics and subcharacteristics in
SQ Models

McCall Boehm 9126 25010
maintainability factor superfactor factor characteristic
portability factor factor factor characteristic
reliability factor factor factor characteristic
testability factor factor subfactor subcharacteristic

4.2. Quantitative analysis based on all names of subcharacteristics.
In this section we consider only subcharacteristics names, as a characteristics
can be considered satisfied when all its subcharacteristics are satisfied. An
interesting remark: no subcharacteristics appears in all models as subcharac-
teristics. Only Testability, which is a subcharacteristic of Maintainability in
both ISO 9126 and in ISO 25010, appears in McCall and in Boehm models,
but as a subcharacteristics.

More than that, only two subcharacteristics appear (by the same name)
in three of the four models: accuracy (in McCall, Boehm, ISO 9126) and
operability (McCall, ISO 9126, ISO 25010). An interesting fact is that 43
subcharacteristics names (from 65) are used only in one model, and 20 are
used in two.

4.3. Quantitative analysis based on all names of characteristics. The
list of characteristics of a SQ model can give an overview of the aspects on
which that model focus on. A comparison of what is added, removed or kept
along time and how it differs from ISO 25010, in the same style as before, is
presented in what follows.

This analysis shows that if we look only at the level of characteristics the SQ
models may seem more similar than they really are. As presented in Table 7,



EVOLUTION OF SOFTWARE QUALITY MODELS FROM AN NLP PERSPECTIVE 99

Table 5. Naming of the subcharacteristics. Evolution

McCall to Boehm Boehm to 9126 9126 to 25010

names common 6 1 13
added 8 20 18
removed 17 13 8
Dice 0.32 0.06 0.50

use lexical match 20 9 18
lexical added 7 15 10

information removed 14 14 9
modified Dice 0.63 0.42 0.67

Table 6. Naming of the subcharacteristics versus ISO 25010

McCall vs. 25010 Boehm vs. 25010 9126 vs. 25010
names common 2 2 13

added 29 29 18
removed 21 12 8
Dice 0.07 0.09 0.50

use lexical match 14 8 18
lexical added 16 19 10

information removed 20 15 9
modified Dice 0.45 0.37 0.67

Table 7. Naming of the characteristics. Evolution

McCall to Boehm Boehm to 9126 9126 to 25010

names common 5 4 4
added 4 2 4
removed 6 5 2
Dice 0.50 0.53 0.57

use lexical match 6 (vs. 6) 5 (vs. 6) 6 (vs. 6)
lexical added 3 0 2

information removed 5 4 0
modified Dice 0.6 0.73 0.86

the Dice similarity values are very close to each other and, in case of comparing
McCall with Boehm, respectively Boehm with ISO 9126 models, much greater
than the values from the previous comparisons.

The same increase in similarity for characteristics can be observed when
comparing previous SQ models with ISO 25010, as shown in Table 8.



100 D. LUPŞA, S. MOTOGNA, AND I. CIUCIU

Table 8. Naming of the characteristics versus ISO 25010

McCall vs. 25010 Boehm vs. 25010 9126 vs. 25010

names common 4 3 4
added 4 5 4
removed 7 6 2
Dice 0.42 0.35 0.57

use lexical match 5 (vs. 6) 5 (vs. 6) 6 (vs.6)
lexical added 2 2 2

information removed 6 4 0
modified Dice 0.58 0.65 0.86

5. Comparative analysis of ISO25010

A conclusion of the evaluations from the last section, when comparing mod-
els with ISO 25010, can be summarized in:

The most similar model is ISO 9126, the direct predecessor in terms of
evolution, as shown in Tables 3, 6, 8. This is something to be expected, but
however if we make the comparison with the modifications between the other
consecutive models, we notice that in almost all the cases (the exception is
the total number of characteristics and subcharacteristics added, as shown in
Table 2) the modifications are fewer and the common elements are the most.
Thus, we can conclude that we tend to see a stability in the evolution of SQ
models.

Another interesting perspective is to analyze the influence of characteristics
from all previous models into the ISO 25010 model. Based on characteristic
naming, we put in correspondence the factors of the models. More precisely:
considering a given SQ model with characteristics and their subcharacteristics,
we associate characteristics of a second model to the characteristics of the first
model. We do this on two steps: first consider the naming of the character-
istics, then a set-based similarity is computed over the set of all keywords of
the characteristics (that is the set consisting of characteristic name and sub-
characteristics) . The higher similarity is considered in order to associate the
characteristics of the two models. The evaluation presented here uses Dice
similarity measure. The final score for a characteristic is the sum of all the
association score. This evaluation has highlighted the following interesting re-
marks: the only SQ model that contains similarities for all 8 characteristics of
ISO 25010 is the McCall model. Also the highest similarity score is obtained
for Maintainability characteristics from this model (significantly higher than
the rest). This is explained due to the fact that similarities has been found
not only performing lexical comparison between characteristics, but also com-
puting similarities between subcharacteristics of maintainability with other



EVOLUTION OF SOFTWARE QUALITY MODELS FROM AN NLP PERSPECTIVE 101

Figure 1. Analysis of characteristics in ISO 25010 based on
similarity score

subcharacteristics of ISO 25010. The results prove the accuracy of the McCall
model and also its completeness, even if it was proposed over 40 years ago and
considering the dynamics of evolution of software systems.

6. Conclusions and future work

The terminology and concepts corresponding to software quality models and
standards can be characterized by a significant degree of variation. The soft-
ware quality community cannot refer to a unique set of concepts and associated
meanings when assessing the software quality domain or when introducing a
new software quality model. As predicted by [7], since in the near future we
expect a new SQ model to be proposed and standardized, an evaluation of the
evolution of these models so far is an important assessment of the domain.
This paper has used NLP techniques in order to determine similarity mea-
sures, which are then used to compare the evolution of consecutive SQ models
and to compare the current standard, ISO 25010, with the previous ones.

The conclusions of our study can be summarized in: there are still significant
modifications between models (added and removed terms), so a special care
should be taken in order to avoid overloading the domain lexical set: when
adding a characteristics, a survey of the previous models should be carried in
order to identify if it is significantly different from the previous terms.

A second conclusion will give credits to the first SQ model introduced by
McCall [12]. The similarity displayed with the current standard shows that
McCall model was a very solid one, and the aspects considered in evaluating
different characteristics are still valid nowadays.



102 D. LUPŞA, S. MOTOGNA, AND I. CIUCIU

As a continuation of this study, we intend to automate the process of
SQ standard compliance. When a new standard will be proposed (consid-
ering that the last one, ISO 25010 was introduced in 2011, this is to be ex-
pected), software products should comply with the new standard. Instead of
fulfilling all characteristics from scratch, our approach can be used to deter-
mine the set of characteristics, respectively subcharacteristics that need to be
changed/added/moved or removed in order to comply the new standard.

It is also our intent to extend the SQ model evaluation to construct and
ontology of SQ models, such that the evaluation can be enhanced at the graph
(ontology) level using the semantic meaning of its constituents.

References

[1] 9126-1, I. Software engineering – product quality. https://www.iso.org/standard/

22749.html, 2001. Accessed: 2015.
[2] Boehm, B. W., Brown, J. R., and Lipow, M. Quantitative evaluation of software

quality. In Proceedings of the 2nd International Conference on Software Engineering
(1976), ICSE ’76, IEEE Computer Society Press, p. 592–605.

[3] Ciancarini, P., Nuzzolese, A. G., Presutti, V., and Russo, D. Squap-ont:
an ontology of software quality relational factors from financial systems. CoRR
abs/1909.01602 (2019).

[4] Fellbaum, C. WordNet – An Electronical Lexical Database, vol. 25. 01 1998.
[5] Gomaa, W. H., and Fahmy, A. A. Article: A survey of text similarity approaches.

International Journal of Computer Applications 68, 13 (2013), 13–18. Full text available.
[6] Gordieiev, O., Kharchenko, V., Fominykh, N., and Sklyar, V. Evolution of

software quality models in context of the standard iso 25010. In Proceedings of the
Ninth International Conference DepCoS-RELCOMEX, Advances in Intelligent Systems
and Computing (2014), pp. 223–232.

[7] Gordieiev, O., Kharchenko, V., and Fusani, M. Software quality standards and
models evolution: Greenness and reliability issues. In Information and Communication
Technologies in Education, Research, and Industrial Applications (2016), pp. 38–55.

[8] Grady, R. B. Practical Software Metrics for Project Management and Process Im-
provement. Prentice-Hall, Inc., USA, 1992.

[9] ISO/IEC 25010:2011. Systems and software engineering. http://www.iso.org, 2011.
Accessed: 2015.

[10] Kara, M., Lamouchi, O., and Ramdane-Cherif, A. Ontology software quality
model for fuzzy logic evaluation approach. Procedia Computer Science 83 (2016), 637
– 641. The 7th International Conference on Ambient Systems, Networks and Technolo-
gies (ANT 2016) / The 6th International Conference on Sustainable Energy Information
Technology (SEIT-2016) / Affiliated Workshops.

[11] Kayed, A., Hirzalla, N., Samhan, A. A., and Alfayoumi, M. Towards an ontology
for software product quality attributes. In Proceedings of the 2009 Fourth International
Conference on Internet and Web Applications and Services (Washington, DC, USA,
2009), ICIW ’09, IEEE Computer Society, pp. 200–204.

[12] McCall, J., Richards, P., and Walters, G. Factors in software quality. Nat
Tech.Information Service 1 (1977), 0–0.

https://www.iso.org/standard/22749.html
https://www.iso.org/standard/22749.html
http://www.iso.org


EVOLUTION OF SOFTWARE QUALITY MODELS FROM AN NLP PERSPECTIVE 103

[13] Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient estimation of word
representations in vector space. In 1st International Conference on Learning Represen-
tations, ICLR 2013 (2013), Y. Bengio and Y. LeCun, Eds.

[14] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems 26. 2013, pp. 3111–3119.

[15] Motogna, S., Lupsa, D., and Ciuciu, I. A NLP approach to software quality mod-
els evaluation. In On the Move to Meaningful Internet Systems: OTM 2018 Work-
shops - Confederated International Workshops: EI2N, FBM, ICSP, and Meta4eS 2018,
Valletta, Malta, October 22-26, 2018, Revised Selected Papers (2018), C. Debruyne,
H. Panetto, W. Guédria, P. Bollen, I. Ciuciu, and R. Meersman, Eds., vol. 11231 of
Lecture Notes in Computer Science, Springer, pp. 207–217.

[16] Pennington, J., Socher, R., and Manning, C. D. Glove: Global vectors for word
representation. In EMNLP (2014), vol. 14, pp. 1532–1543.

Babeş-Bolyai University, Department of Computer Science, 1 M. Kogălniceanu
Street, 400084 Cluj-Napoca, Romania

Email address: dana@cs.ubbcluj.ro, motogna@cs.ubbcluj.ro, oana@cs.ubbcluj.ro


