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GENERALIZED CELLULAR AUTOMATA FOR EDGE

DETECTION

ALINA ENESCU

Abstract. Cellular Automata (CA) are simple, easily parallelizable mod-
els that have been used extensively for various computational tasks. Such
models are especially useful for image processing, as mapping automaton
cells to image pixels is straightforward and intuitive. This paper proposes
a novel optimization framework for CA rules based on evolutionary algo-
rithms and used in edge detection. This approach addresses the problem
of optimizing an individual CA rule for one image and extends it to the
optimization of a generic CA rule for a set of similar images. In order
to maximize the transferability of the optimized rule, the algorithm is
trained on sets of images using a curriculum learning approach. A study
of the supervised fitness function as well as batch optimization experiments
show that the algorithm is robust and competitive with the state-of-the-art
methods.

1. Introduction

Cellular Automata (CA) are simple models of parallel computation easy
to be mapped on images which makes them suitable to be used in image
processing. The image processing task that will be tackled in the paper is
edge detection in greyscale images. The scope is to find the most suitable edge
detector for sets of images. The proposed approach uses a Genetic Algorithm
(GA) to evolve the CA’s rule to detect edges both on images individually and
on sets of images using a curriculum learning setting.

The proposed approach is an improved version of a previous approach (7).
Compared to this approach where only two parameters of the CA’s rule are
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optimized, in the proposed approach all three parameters of the CA’s rule are
optimized by the means of a GA.

Many edge detectors were proposed in the literature, among which several
based on gradient and also several based on CA. As gradient based methods,
the ones that are the most known are Canny detetctor (1), Sobel operator (22),
while as CA based methods, there are two categories: simple CA (15; 5; 3) and
evolved CA (26; 13; 8). The main difference between the proposed approach
and the gradient based methods is that the proposed approach adapts to each
image or sets of images, while the gradient based methods do not. Adaptability
to images individually or to sets of images represents an advantage in image
processing, leading to shorter time spent on new batches of images. The
same property of adaptability may be seen at the evolved CA compared to
simple CA where the rule is usually fixed and directly applied to the images.
Compared to a similar evolved CA method (26) where one parameter of the
CA’s rule, the linear rule, is fixed and only the other two parameters are
evolved by the means of a Particle Swarm Optimization (PSO) algorithm, in
the proposed approach all three parameters are evolved by the means of a GA.
Moreover, there are differences in the methodologies chosen to search for the
optimal CA’s rule compared to similar evolved CA approaches, GA instead of
Learning Automata (LA) or PSO.

The experiments along with the results shown in this paper are meant to
assess the capabilities of the proposed edge detector based on evolved CA.

The rest of the paper is structured as follows: Section 2 is a theoretical
overview on the edge detection problem, cellular automata and the quality
metric; related work in the field is briefly presented in section 3; section 4
details the proposed edge detection approach and the results are presented in
Section 5; a summary of the experiments together with future improvements
are discussed in Section 6.

2. Theoretical background

Before describing the methods proposed in the current literature, the prob-
lem of edge detection is formulated, followed by a brief introduction to Cellular
Automata (CA) and some theoretical aspects regarding the performance mea-
sure of the methods.

2.1. Edge detection problem. A given point P0 of a greyscale image having
values within {0, 1, . . . , 255} and eight neighbours Pi, i ∈ {1, 2, . . . , 8} as in
Figure 1a, may be classified as an edge (11) if a significant local change in the
intensity of the neighbours Pi, i ∈ {1, 2, . . . , 8} is observed. The curve that
contains the points classified as edges is called a contour.
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The system meant to extract the set of edge points for a given image is an
algorithm called edge detector. Given a set of images, finding an edge detector
for them is what the edge detection problem refers to.

(a) (b)

Figure 1. Visual representations of Moore neighbourhood.
(A) A visual representation of a point P0 and its eight sur-
rounding neighbors Pi, i ∈ {1, 2, . . . , 8}. (B) A visual represen-
tation of the nine fundamental rules for a 2D cellular automa-
ton with a Moore neighbourhood, based on which a linear rule
is obtained.

2.2. Cellular Automata. Cellular Automata (CA) are simple models of par-
allel computation (16). A CA is usually represented by a five tuple

CA = {C,N, S, s0, F},

where C is the set of cells, N is the set of neighbors of size n: n =| N |, S
is the set of states, s0 is the initial state of the CA and F : Sn → S is the
transition rule. The state of the cells are synchronously (or asynchronously)
updated by the transition rule according to the state of the neighbor cells and
the state of the cells themselves. The equation of the transition rule is:

si(t+ 1) = F (si(t), Si(t)),

where si(t) and si(t+ 1) are the states of the ith cell at time t and time t+ 1,
respectively, and Si(t) is the state set of the ith cell’s neighbors at time t.

2.3. Performance measure. The Baddeley’s Delta Metric (BDM), presented
in (19) measures the dissimilarity between two binary images, but besides other
metrics, it considers the spatial distribution of the pixels that differ.

Given I1 and I2, two binary images with the same sizes M × N and Ω =
{1, ..,M} × {1, .., N} the set of each pixel’s position in the images, one may
define the l-BDM between these two images for a 0 < l < ∞ as Equation 1
(denoted Πl(I1, I2)):
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(1) Πl(I1, I2) =

[
1

|Ω|
∑
t∈Ω

|w(d(t, b(I1)))− w(d(t, b(I2)))|

]l

where b(Ii) is the set of feature (edge) points in Ii, d(t, b(Ii)) represents the
distance between a position t and the closest feature point and w : [0,∞] →
[0,∞] is a concave function. In the experiments the Euclidean distance was
used, while w(x) = x and l = 2.

3. Related work

There are multiple edge detection approaches in the literature which involve
the use of Cellular Automata (CA). For greyscale edge detection, there are
approaches such as (18) which applies on only one image the 512 linear rules
and split them in three groups: no edge detection rules, strong edge detection
rules and weak edge detection rules. In (14), the authors identifies only 4 rules
out of the 512 linear rules as being the best for edge detection.

EAs have also been proposed for optimizing CA rules for edge detection.
An edge detection approach based on CA, fuzzy logic and Particle Swarm
Optimization (PSO) is presented in (26). Similar to (21), the authors uses
a heuristic membership function to decide the cell’s state according to its
neighbours. Then a threshold is used to classify the cell as an edge or a non–
edge by comparing it with the value obtained by the heuristic membership
function.

Apart from these methods, we mention the classic well-known methods
based on computing the gradient: Canny edge detector (1), Sobel operator
and Prewitt operator (17). The Canny edge detector presented in (1) is a
method characterized by three principles: detection, localization and single
edge response. The first step of the Canny method is to smooth the greyscale
image by Gaussian filtering, then to compute the first derivative in both ver-
tical and horizontal directions. As the second step, it finds the magnitude and
direction of each pixel. As a final step, it uses a non-maximal suppression to
ensure that the edges have one-pixel width and it uses two thresholds to select
the final edge points and to trace them.

4. Proposed approach

4.1. Cellular Automata Model. As described in the introduction, the pro-
posed approach is an edge detector based on evolved CA. This method uses
a 2D-CA for which the cells are arranged as a grid, the states values are
S = {0, 1, ..., 255}, the neighborhood N is the Moore neighborhood and the
initial state s0 is extracted from the input image. To compute the next state,
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first an edge membership function (24; 25) is applied. The edge membership
for a pixel P0 ∈ {0, 1, ..., 255} and its eight neighbours Pi ∈ {0, 1, ..., 255} is
defined as:

(2) µ(P0) =

∑
i |P0 − Pi|

∆ +
∑

i |P0 − Pi|
,

where i ∈ {1, 2, ..., 8} is selected according to a linear rule. The parameter
∆ ∈ {0, ..., 255} (one of the possible gray values for a pixel represented on 8
bits) is inversely proportional to the number of detected edges. The higher
its value, the fewer edges will be detected. The transition rule is a function
F : P 7→ {0, 1} given by Equation 3 (26) which gives the final edge map. The
value of the threshold τ ∈ [0, 1) controls the number of pixels that pass as
edges, therefore the higher the threshold the fewer values will pass.

(3) F (P0) =
{

1, if µ(P0) > τ
0, if µ(P0) ≤ τ

The quality of the edge detection is influenced by the ∆ and τ parameters as
well as the linear rule. Choosing these values, however, is a non-trivial task,
therefore automatizing the search for the best values is necessary.

4.2. Evolved Cellular Automata. The GA used to evolve the CA’s rule to
detect edge points is presented in the following.

The chromosome encodes the three parameters that need to be optimized:
the gray encoding (9; 2; 20) of the two parameters, ∆ and τ , and the binary
encoding of a linear rule. In order to use the gray encoding for the real pa-
rameter τ , it was encoded an integer value within {0, 1, . . . , 127} and divided
it by 128 to obtain the real value when the Equation 3 is applied. The choice
of using the gray encoding of the two parameters was to keep the genetic
operators, crossover and mutation, used in the binary encoding and to over-
come the Hamming Cliff (20) problem when using the binary encoding of an
integer. Figure 2 shows an example of a chromosome encoding the binary rep-
resentation of linear rule 35, highlighted in blue, the grey code of threshold,
highlighted in purple and the grey code of parameter ∆, highlighted in red.

Figure 2. An example of a chromosome encoding linear rule
35, the threshold τ = 120 (for Equation 3 will be 120/128 =
0.9375) and the parameter ∆ = 218.

In order to assess the quality of the individuals a fitness function is needed.
The fitness function is computed as the Dice Similarity Coefficient (DSC)
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(4; 23) from Equation 4. Because DSC quantifies the correctly detected edge
points more precisely, it becomes more effective.

(4) DSC =
2 · TP

2 · TP + FP + FN
,

where TP is the number of true positives, FP is the number of false positives
and FN is the number of false negatives.

For crossover, the binary tournament selection is used to select two chromo-
somes and three random cross–point are chosen such as all three components
to be crossed. The three–points crossover applied to the chromosomes is ex-
pressed in Figure 3. Then the bit flip mutation is applied to each offspring:
for each component of the offspring, a random bit of the gene is selected and
inverted by a probability. Both offspring are added to the new population.
These genetic operators are applied to the population until the new popula-
tion reaches the same size as the old one and replaces it completely.

Figure 3. Three-points crossover between two chromosomes
encoding linear rule 35 with threshold τ = 120 and ∆ = 218,
and linear rule 452 with threshold τ = 27 and ∆ = 163, respec-
tively. The two offspring that are obtained encode the linear
rule 388 with threshold τ = 24 and ∆ = 220, and linear rule
456 with threshold τ = 123 and ∆ = 165, respectively.

4.3. Framework. The input of the proposed approach is a greyscale image
on which the evolving process is performed.

Firstly, the initial configuration of the CA, called the input state, is ex-
tracted from the input image. The state of each CA’s cell is given by the pixel
value, while the neighbours of each CA’s cell is a list of its eight surrounding
pixels.
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Further, the steps of the GA that optimizes the rules to detect edge points
are described. The first step is generating the initial population: PopSize
chromosomes, each encoding the binary representation of a linear rule, the
gray code of a threshold and the gray code of ∆, are generated. Each chromo-
some is evaluated by the means of fitness function, then selection, crossover
and mutation are applied producing a new population to which the best chro-
mosome is added. These steps are repeated for G generations. At the end of
the execution of the GA, one best chromosome is obtained.

5. Experiments and comparisons

In the following experiments, 22 images of sizes 321 × 481 (or 481 × 321)
from Berkely dataset (BSD) (12), along with the available ground truth, and
a synthetic data set containing geometric shapes, were used. Only 22 images
from Berkely dataset (12) were used in these experiments, the same subset
used in Uguz et al. (26), so that the proposed approach could be compared
with the one presented in (26).

In the first part of experiments, the 22 images of the BSD subset are given
as input to the GA that evolves the CA’s rule and several runs are performed
for each image. The GA runs for 100 generations, having a population of 50
chromosomes.

Figure 4. Best fitness values for the first 100 generations.
Each line corresponds to a different image from the BSD subset.

A first analyse is aimed towards the convergence of the GA that evolves the
CA’s rule to detect edge points. The scope of this analysis is to emphasize that
the GA proposed for this task keeps improving during the evolving process and
reaches a maximum stable state. In the graph displayed in Figure 4, the best
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values of the fitness were extracted for the first 100 generations of the GA run
on each of the 22 images of the BSD subset.

According to the graph, the GA used in the optimization process of the
CA’s rule, converges due to the elitism that keeps at a high level the quality
of the chromosomes. To ensure the diversity of the population, the mutation
probability was set to 0.7 and the crossover operator was applied to each
parameter encoded of the chromosome (see Figure 3).

(a) (b) (c) (d) (e)

Figure 5. Images obtained by individual parameter optimiza-
tion: (A) Input image. (B) Ground truth. (C) Canny (1)
result. (D) Uguz et al. (26) result. (E) Proposed approach
result.

A second analysis is performed on the performance of the proposed approach
compared with the methods proposed in the current literature. The BDM
values computed for the images obtained by applying the best parameters
obtained by the proposed method, for the images obtained by applying the
Canny edge detector (1) and for the images obtained by Uguz et al. (26)
are compared. Best parameters found by this method along with the best
parameters proposed by Uguz et al. (26) and BDM values obtained for the
three methods are displayed in Table 1. The differences in the obtained values
are explained by the differences in the proposed method compared to Uguz et
al. (26) and Canny (1). Firstly, in the experiment conducted on the proposed
approach, the ∆ and τ parameters are optimized as well as the linear rule
while Uguz et al. (26) only optimizes the first two. Secondly, the fitness
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function used in this experiment is the Dice Similarity Coefficient (DSC). On
average, the proposed method performs better than Uguz et al. (26) and
Canny (1), however measuring the results on a larger data set would provide
more significant insight. Three examples of the obtained images can be seen
in Figure 5.

Table 1. All parameters values for Uguz et al. (26) and the
ones found as best for the proposed approach, and BDM values
for our proposed approach versus Canny (1) and Uguz et al.
(26) on the 22 selected images in (26), with p-values computed
based on Wilcoxon Signed-Ranks Test.

Canny Uguz et al. Proposed approach
Img. BDM ∆ τ rule BDM ∆ τ rule BDM
Im 1 101.7416 110 0.62 47 74.9449 192 0.4687 436 74.5924
Im 2 36.2963 39 0.472 35 33.5381 181 0.0625 258 35.0743
Im 3 16.1734 59 0.414 139 5.1064 172 0.4140 156 4.4463
Im 4 41.01326 68 0.6078 154 24.2914 218 0.2578 132 31.9772
Im 5 28.7809 136 0.3889 60 41.8038 85 0.3437 285 27.911
Im 6 25.467 83 0.6642 194 72.0194 190 0.3515 150 19.7797
Im 7 15.956 104 0.194 50 14.6908 159 0.164 4 14.0289
Im 8 40.6465 107 0.4209 265 37.5357 113 0.414 4 35.4066
Im 9 26.6485 98 0.6854 309 20.9226 99 0.4218 134 19.0317
Im 10 19.8602 54 0.203 140 20.2130 174 0.3593 200 23.3961
Im 11 100.6888 87 0.45 66 86.2903 199 0.4296 468 81.0943
Im 12 29.0242 92 0.628 87 29.2202 110 0.4687 18 28.6511
Im 13 43.9345 29 0.3673 19 31.1133 251 0.3437 180 16.1749
Im 14 22.4603 76 0.3506 89 22.0495 218 0.125 204 21.4574
Im 15 13.892 103 0.5097 434 7.2010 106 0.3281 394 7.9008
Im 16 66.2486 70 0.55 75 63.2492 124 0.3984 286 60.9771
Im 17 78.2544 103 0.3818 104 3.5905 154 0.2656 30 13.6351
Im 18 21.0141 62 0.6186 46 17.8882 78 0.5546 157 16.7753
Im 19 42.8603 47 0.336 136 54.2173 79 0.164 6 37.0839
Im 20 22.1191 64 0.6141 195 19.2414 154 0.2656 30 21.4092
Im 21 33.3709 112 0.65 252 25.2466 80 0.375 6 25.9750
Im 22 24.0112 76 0.54 412 21.7873 187 0.2421 8 21.9363
Avg. 38.6574 33.0073 29.0325
p-value 0.1886 0.2234

In this second part of the experiments, the focus is moved to evaluating
the ability to generalize the behaviour of the proposed approach on multiple
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images. An input dataset is selected to learn the parameters and a test dataset
to evaluate the previously optimized parameters.

circle1 circle16 comp 19 comp 35 rectangle13 rectangle4

comp 6 rectangle6 comp 42 rectangle7 triangle8 triangle14

Figure 6. Subset of the synthetic training set.

circle5 rectangle1 triangle3 comp 4 circle9 rectangle1

triangle3 comp 24 rectangle5 rectangle2 comp 5 comp 3

Figure 7. Subset of the synthetic test set.

For this experiment, a dataset of images containing different geometric
shapes was generated. These images were then split into an input set (Figure
6) and a test set (Figure 7). The model was evolved using a curriculum learn-
ing strategy (6), meaning that the algorithm is fed new input examples in an
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ascending order of difficulty. In this case, the difficulty was measured by the
magnitude of the gradient between the shapes and the background. It was
reported in the literature that feeding simpler examples first and then gradu-
ally increasing difficulty helps a learner generalize better (6; 10), which fits the
aim to achieve transferability of the optimized parameters. For this reason,
in the optimization process there were fed examples to the optimizer starting
with high gradient images (edges easier to detect) and gradually progressing
towards low gradient images (edges harder to detect).

(a) (b)

Figure 8. The proposed approach is compared with the other
methods used in comparison in terms of a Wilcoxon Signed-
Ranks Test. (A) BDM results on images used for the testing
process. (B) BDM values for results obtained by applying the
edge detector optimised on synthetic images versus Canny (1),
Uguz et al.(26) and results obtained by individually training
with the proposed approach on the 22 selected images in (26).

Figure 8a shows for the three compared methods, the average BDM values
computed on the test set along with the p-values computed with the Wilcoxon
Signed-Ranks Test. As may be seen, overall the proposed approach performs
better than both Canny edge detector (1) and Sobel operator (17). Several
examples of the obtained images can be seen in Figure 9. The main difference
between the three methods may be seen in the last row, on images that contain
more than one shape, where the proposed approach detects all edges, while
the Canny edge detector (1) struggles to find the circle and Sobel operator
(17) struggles to find both the circle and the triangle.

In order to assess the generalization capabilities of the model the param-
eters obtained on the synthetic dataset were also tested on the BSD subset
used in Uguz et al. (26). One configuration used to evolve the parameters
for the synthetic dataset had the best results on the BSD subset. For this
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(a) (b) (c) (d) (e)

Figure 9. Batch optimization results on the synthetic test
set. (A) Input image. (B) Ground truth. (C) Canny edge de-
tector (1) result. (D) Sobel operator (17) result. (E) Proposed
approach result.

configuration, 100 individuals were used. The graph from Figure 8b shows
the average of the BDM values obtained for images in the BSD subset. It can
be seen that, on average, the method proposed in Uguz et al. (26) and the
proposed approach for individually evolving performs better than our model
by a small margin, but our model performs better than Canny detector (1).
However, the results from Uguz et al. (26) and of the proposed approach are
obtained by supervised optimization on each individual image, whereas in the
proposed model the rule is generalized for multiple images. This means that
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the generalization capacity of the proposed model using a curriculum learning
setting is comparable to individual optimization of the parameters on the test
image. Sets of example images are presented in Figure 10. The main differ-
ence between these four methods may be seen in the first two rows, where
both Uguz et al. (26) and proposed method on individual evolving detects the
least edge points that makes them the most similar to the ground truth, while
the proposed approach trained to generalize detects too many edge points in
terms of BDM.

(a) (b) (c) (d) (e) (f)

Figure 10. Images obtained by individual parameter opti-
mization: (A) Input image. (B) Ground truth. (C) Canny
(1) result. (D) Uguz et al. (26) result. (E) Proposed approach
result. (F) Proposed approach results of training on the syn-
thtic dataset.
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6. Conclusions

In this paper it was presented an edge detector designed for greyscale im-
ages, based on evolved CA. The proposed method used one GA to optimize
the three parameters of the CA’s rule: the parameter ∆, the threshold τ and
the linear rule r.

The proposed approach distinguishes from the methods presented in the
literature by optimizing all the parameters by encoding all of them in a single
chromosome, using both binary and grey encoding. The results obtained on
both individual and batch optimization experiments indicate that the algo-
rithm is robust and competitive with the best related method, such as Canny
edge detector (1) and Uguz et al. (26). Moreover, the generalization capacity
using a curriculum learning setting reached competitive performance related
to individual optimization, which supports the idea of using transferable pa-
rameters.

As future work, more improvements can be done to both individual and
batch optimization, such as using larger and more complex datasets.
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