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INTUITIVE ESTIMATION OF SPEED USING MOTION AND

MONOCULAR DEPTH INFORMATION

RÓBERT ADRIAN RILL(1,2)

Abstract. Advances in deep learning make monocular vision approaches
attractive for the autonomous driving domain. This work investigates a
method for estimating the speed of the ego-vehicle using state-of-the-art
deep neural network based optical flow and single-view depth prediction
models. Adopting a straightforward intuitive approach and approximating
a single scale factor, several application schemes of the deep networks are
evaluated and meaningful conclusions are formulated, such as: combining
depth information with optical flow improves speed estimation accuracy
as opposed to using optical flow alone; the quality of the deep neural net-
work results influences speed estimation performance; using the depth and
optical flow data from smaller crops of wide images degrades performance.
With these observations in mind, a RMSE of less than 1 m/s for ego-speed
estimation was achieved on the KITTI benchmark using monocular images
as input. Limitations and possible future directions are discussed as well.

1. Introduction

The significant progress in recent years makes deep learning solutions at-
tractive in automotive industry applications [24]. In intelligent transportation
systems, self-driving cars, advanced driver-assistance systems (ADAS) vehicle
speed is one of the most important parameters for vehicle control and safety
considerations. It can be measured using wheel sensor, Inertial Navigation
System (INS) or Global Positioning System (GPS). Although these methods
achieve high accuracy, they have limitations. Speed sensors involve a trade-off
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between accuracy and cost. INS suffers from integration drift, i.e. small errors
accumulate over time. GPS is prone to signal interference and loss in blocked
areas, and may provide unreliable data when accelerating or decelerating.
Some researchers also propose model-based approaches (see, e.g., [22]), which,
however, may be significantly affected by incorrect parameter estimates.

Other methods for automotive sensing technologies, including speed esti-
mation, are Radio Detection and Ranging (RADAR) or Light Detection and
Ranging (LiDAR) systems that use radio frequency or laser signals, respec-
tively [1]. Although both systems are popular in the industry, they have defi-
ciencies. LiDAR systems can identify fine details of the 3D environment, but
are greatly affected by unfavorable weather conditions and more importantly
they are costly to produce and maintain. In contrast, RADAR systems are
more robust, lightweight and cheap, but have lower accuracy and resolution.

To address the limitations of conventional speed estimation methods, com-
puter vision based approaches have become attractive alternatives in recent
years. Powerful hardware is available for autonomous vehicles to run deep
learning algorithms in real-time [16]. In this work a simple monocular vision-
based speed estimation approach is presented that exploits the recent advances
in deep learning-based optical flow and monocular depth prediction methods.
Optical flow is the pattern of apparent motion of objects in a visual scene
caused by the relative motion between an observer and the scene. Monocular
depth estimation aims to obtain a representation of the spatial structure of
a scene by determining the distance of objects from a single image. The two
problems are fundamental in computer vision and represent highly correlated
tasks (see, e.g., [25]). The proposed method relies on the intuition that the
magnitude of optical flow is positively correlated with the moving speed of the
observer and that objects closer to the camera appear to move faster than the
more distant ones. Different schemes of the proposed approach are investi-
gated on a representative subset of the KITTI dataset [6, 5], and a RMSE of
less than 1 m/s is achieved.

The rest of the paper is organized as follows. Section 2 presents related
works providing a background and motivation for this study. Section 3 intro-
duces the KITTI dataset and the deep learning methods used, and details the
speed estimation pipeline. The quantitative and qualitative results are pre-
sented in Section 4. Section 5 discusses the results and limitations, highlights
future directions and finally Section 6 concludes the paper.

2. Related work

Vision based approaches represent a promising direction for vehicle speed
estimation that may replace or complement traditional methods. Most of the
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works are concerned with estimating the speed of the vehicles in traffic using
a camera mounted for traffic surveillance. These methods involve different
image processing techniques: background extraction [3, 20, 23, 14], image rec-
tification [3, 20, 23, 12], detecting and tracking reference points [3, 20, 14]
or centroids [23] over successive frames, converting the displacement vectors
from the image to the real-world coordinate system. The state-of-the-art re-
sults of deep learning in vision tasks makes object detection and tracking [12],
locating license plates on vehicles [14], 3D convolutional networks [4] other
promising directions in the task of speed estimation. Disadvantages of these
approaches and of the traffic enforcement solutions already in use, such as
speed or point-to-point cameras, include the need for calibration processes,
meticulous positioning of the devices at predefined locations, investment in
infrastructure and maintenance.

As opposed to traffic surveillance purposes, few studies address the problem
from an ADAS perspective, namely estimating speed using monocular images
from a camera mounted on the car. Some works estimate the relative speed
of other participants in traffic (see, e.g., [18] or [11]). The present study is
concerned with estimating the absolute speed of the car the camera is mounted
on, also called the ego/forward/longitudinal speed.

In [17] the authors used sparse optical flow to track feature points on images
from a downward-looking camera mounted on the rear axle of the car and
achieved a mean error relative to GPS measurement of 0.121 m/s. However,
the method works only in restricted conditions and was evaluated on self-
collected data at low speed values. Han [8] used projective geometry concepts
to estimate relative and absolute speed in different case studies. Using black
box footages, a maximum of 3% difference was reported for higher ego-speed
values when compared to GPS measurements. The major limitation of this
study is the assumption of known distances between stationary objects such
as lane markings. Banerjee et al. [2] used a rather complicated neural network
architecture trained on self-collected data and reported an RMSE of 10 mph
on the KITTI benchmark [5].

In this work a simple intuitive approach for ego-speed estimation is in-
vestigated using state-of-the-art deep neural network-based optical flow and
monocular depth prediction methods. The proposed method achieves a RMSE
of less than 1 m/s on recordings from the KITTI dataset.

3. Methods

3.1. Dataset and deep neural networks. The KITTI Vision Benchmark
Suite1 [6, 5] is a popular real-world dataset consisting of 6 hours of traffic

1http://www.cvlibs.net/datasets/kitti
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scenario recordings captured while driving in and around a mid-size city. The
traffic situations range from highways over rural areas to inner-city scenes with
many static and dynamic objects. To evaluate speed estimation 15 recordings
of rectified images were manually selected from the left input color camera of
the KITTI dataset. The list of drive numbers are: 1, 2, 5, 9, 14, 19, 27, 48, 56,
59, 84, 91, 95, 96, 104, all from 2011.09.26. These are representative videos
where the car is moving almost always.

In the experiments presented in this paper two optical flow estimation meth-
ods are compared: FlowNet22 [9] and PWC-Net3 [19]. FlowNet2 is a consoli-
dation of the original FlowNet idea that proposed to use convolutional neural
networks to learn optical flow and poses the problem as an end-to-end super-
vised learning task. FlowNet2, compared to its initial versions, shows large
improvements in quality and speed. While it achieves impressive performance
by stacking basic models into a large capacity model, the much smaller and
easier to train PWC-Net obtains similar or better results by embedding clas-
sical and well-established principles into the network itself.

Similarly, two single-view depth estimation methods are examined:
MonoDepth4 [7] and MegaDepth5 [13]. MonoDepth innovates beyond existing
learning based single image depth estimation methods by replacing the use
of large quantities and difficult to obtain quality training data with easier to
obtain binocular stereo footage. It poses the task as an image reconstruc-
tion problem. On the other hand, MegaDepth refers to a large depth dataset
generated via modern structure-from-motion and multi-view stereo methods
from Internet photo collections. The models trained on MegaDepth exhibit
high accuracy and strong generalization ability to novel scenes. One impor-
tant difference is that while MonoDepth predicts disparity values, MegaDepth
models predict ordinal depth defined up to a scale factor.

For more details about the four deep learning algorithms investigated in
this work and related methods please see the cited works and the references
therein. Before applying the methods for speed estimation, their performance
was evaluated quantitatively on test data from KITTI. Note, however, that
in order to obtain dense optical flow and depth information the 1242 × 375
resolution input images in the KITTI dataset need to be resized accordingly.
The output of the deep neural networks was resized back to the original res-
olution as summarized in Table 1. To run the neural networks pre-trained
weights were used, provided in the corresponding Github repositories. The
quantitative results obtained are reported in Section 4.

2https://github.com/lmb-freiburg/flownet2
3https://github.com/sniklaus/pytorch-pwc
4https://github.com/mrharicot/monodepth
5https://github.com/lixx2938/MegaDepth



INTUITIVE ESTIMATION OF SPEED FROM MOTION AND MONOCULAR DEPTH 37

Table 1. Deep neural network technicalities. *For de-
tails see the references and/or the Github repositories.

Method Input resolution Input resize Output resize Model used*

FlowNet2 divisible by 64 pad with zeros trim zeros FlowNet2
PWC-Net 1024× 436 bilinear interpolation anti-aliasing default network
MonoDepth 512× 256 anti-aliasing anti-aliasing city2kitti
MegaDepth 512× 384 anti-aliasing anti-aliasing best generalization

3.2. Speed estimation pipeline. In order to estimate speed from a moving
camera, two observations should be made: (i) optical flow is expected to highly
correlate with moving speed, and (ii) the apparent motion of objects closer to
the camera is faster than those of more distant ones. Therefore, to obtain the
speed of a given object on the image – that is the moving speed of the camera
– it is reasonable to multiply optical flow magnitude by depth.

After extensively considering variations of the above intuitive idea with re-
spect to deep learning based optical flow and single-view depth estimation
methods, the following base multistep process is proposed, and some modifi-
cations will be inspected as well. In a first step the results of one optical flow
and one depth estimation algorithm are retrieved for a given image frame. The
magnitude of optical flow vectors will be denoted by OF, and the disparity
by DISP in the following. In the second step, the OF and DISP values are
considered at valid pixels from a predefined crop of the original image, and the
mean OF is divided by the mean DISP to get a scaled speed estimate. The
valid pixels are obtained by imposing thresholds: OF > 0.1 and DISP > 0.02,
which were selected after extensive experiments. Note, however, that selecting
other close values gave similar results and does not affect the conclusions of the
paper. The next step is the concatenation of the scaled speed estimates over
the temporal dimension, i.e. over frames of a video. The aggregated vectors
are temporally smoothed using a 1D convolution of size 25 with equal weights.
Finally, the resulting smoothed lists are taken for multiple recordings and a
scaling factor is approximated that minimizes the ratio between the ground
truth and predicted speed. This scaling factor is used to convert speed from
the image domain to real-world units.

To summarize, the steps of the base speed estimation algorithm (denoted
by A) are as follows:

(1) Run optical flow and depth estimation methods on a given image.
(2) Compute the scaled speed for the given frame: consider the OF and

DISP values at valid pixels from a predefined image crop, and com-
pute the quotient between their means.
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(3) Repeat the previous steps for all the frames from a video and apply
temporal smoothing.

(4) Repeat previous step for multiple videos and determine scaling factor.

In Section 4 several modifications of the above base pipeline are experimented
with. These are summarized below.

(A1) Neglect depth information completely, and use optical flow alone.
(A2) Replace OF by the magnitude of horizontal optical flow only (which is

expected to highly correlate with the moving speed especially towards
the edges of the image).

(A3) Apply temporal smoothing at the pixel-level separately for OF and
DISP, before computing their means.

(A4) Run the neural networks directly on the image crop, as opposed to
using the full frame as input first and extracting OF and DISP for
the crop after.

(A5) Investigate different image crops in the base algorithm, including the
full wide frame.

In experiment A5 defined above the modification of the base speed estima-
tion pipeline is evaluated on three different image crops and the full frame.
They are defined in Table 2. Reasons for using crops only include the possible
unavailability of wide images, or memory and run-time considerations.

Table 2. Definition of image crops used in the experi-
ments. (x, y) defines the upper left corner and w, h the width
and height of the bounding boxes in pixels.

Image crop
bounding box
x y w h

crop1 720 180 200 120
crop2 700 100 400 240
crop3 640 20 580 340

4. Experiments and results

Figure 1 shows visualizations of the deep neural network methods on one
sample frame from the KITTI dataset. Both optical flow estimation methods
produce smooth flow fields with sharp motion boundaries. PWC-Net seems
to be more robust against shadow effects. The depth prediction methods
also show good visual quality, with MonoDepth being able to capture object
boundaries and thin structures more reliably.
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Figure 1. Sample visualisation of network results.
From left to right and top to bottom: frame 71 of drive 0095,
FlowNet2, PWC-Net, MonoDepth, MegaDepth. The colored
square represents the color coding of optical flow.

The methods were evaluated quantitatively as well. The optical flow esti-
mation algorithms are evaluated on the 200 training images from the KITTI
2015 benchmark [15]. The results displayed in Table 3 show that PWC-Net
outperforms FlowNet2. The depth prediction algorithms are evaluated on
the given 1000 manually selected images from the full validation split of the
derived depth prediction and completion KITTI dataset [21]. According to
Table 4, MonoDepth achieves better performance in several metrics compared
to MegaDepth. In all four cases the results are in correspondence with those
reported in the references presenting the methods.

Table 3. Evaluation of optical flow estimation meth-
ods. The KITTI 2015 benchmark [15] was used. AEPE: aver-
age endpoint error; Fl-all: Ratio of pixels where flow estimate
is wrong by both ≥ 3 pixels and ≥ 5%.

Method AEPE Fl-all
FlowNet2 11.686 32.183%
PWC-Net 2.705 9.187%

Table 5 shows the speed estimation results for the experimental algorithms
A1 – A4. Inspecting the values in detail allows to draw the following con-
clusions. According to A1, using depth information as well improves speed
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Table 4. Evaluation of depth estimation methods. The
manual selection of the validation split of the derived depth
prediction and completion KITTI 2017 dataset [21] was used.

Method RMSE RMSE(log) Abs Rel Sq Rel log10 Scale-inv.
MonoDepth 4.532 0.150 0.090 0.749 0.040 0.142
MegaDepth 6.719 0.336 0.322 1.994 0.124 0.289

estimation performance, as opposed to considering optical flow alone. A2

shows that replacing OF with horizontal optical flow results in slightly higher
RMSE values. As demonstrated by A3, applying temporal smoothing at the
pixel level increases performance in some cases but only marginally. Finally,
according to experiment A4, running the neural networks on smaller image
crops degrades performance considerably.

Table 5. Results of speed estimation experiments.
RMSE values are shown using crop2 defined in Table 2.
Ai, i ∈ {1, 2, 3, 4} refers to the algorithms from Section 3.

Method
Base Horizontal Pixel-level Methods

algorithm optical flow smoothing only on crop
A (A2) (A3) (A4)

FlowNet2 (A1) 2.921 3.005 2.919 3.093
PWC-Net (A1) 2.472 2.621 2.472 3.170
FlowNet2 & MonoDepth 2.305 2.448 2.399 2.618
PWC-Net & MegaDepth 1.915 2.059 1.908 3.180
FlowNet2 & MegaDepth 2.485 2.526 2.475 2.901
PWC-Net & MonoDepth 1.467 1.707 1.865 2.967

Furthermore, from Table 5 it can be seen that the best results are obtained
when PWC-Net is combined with MonoDepth. Figure 2 shows speed esti-
mation results for two KITTI recordings using the base pipeline. This simple
method captures speed changes with low error in straight travel scenarios (Fig-
ure 2a), but having difficulty in cases when the car is taking a turn (around
frame 200 on Figure 2b speed decreases as the car is turning left, yet optical
flow increases on the right side – and in crop2 too – of the wide KITTI images).

Modification A5 of the base algorithm is evaluated on three image crops and
the full frame. Table 6 illustrates that speed estimation accuracy improves
in general as the size of the image increases. The best results are obtained
again by the PWC-Net – MonoDepth combination. When the full frame is
used errors moderately decrease at car turning events (around frame 200 on
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Figure 2. Speed estimation on sample KITTI videos.
Results are shown for the base pipeline with PWC-Net and
MonoDepth; crop2: defined in Table 2; Full frame: full wide
image; GT: ground truth speed; TC: compensating for car turn-
ing events. For details see text.

Figure 2b), but overestimations are still present in dynamic scenes due to the
motion of other cars for instance (after frame 400 on Figure 2b).

Table 6. Results using different image crops. RMSE
values are shown for A5. Image crops are defined in Table 2.
TC: compensating for car turning events (for details see text).

Method crop1 crop2 crop3 Full frame TC
FlowNet2 & MonoDepth 2.170 2.305 2.558 2.370 2.138
PWC-Net & MegaDepth 2.363 1.915 2.015 1.786 1.445
FlowNet2 & MegaDepth 2.671 2.485 2.583 2.544 2.125
PWC-Net & MonoDepth 1.735 1.467 1.505 1.178 0.977
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In order to decrease speed overestimations at car turning events an addi-
tional modification of the base pipeline was experimented with. In such cases
the average horizontal optical flow from the left part of the image has the
same direction as the average from the right side. Whenever this condition
is true, instead of the mean optical flow magnitude from the full wide frame,
the absolute value of the difference between the means of horizontal optical
flow of the left and right sides is computed, and divided by the mean disparity
corresponding to the whole frame. Applying this heuristic compensation for
turning events (TC) decreases the RMSE to under 1 m/s, as shown in Table 6.
The performance improvement is illustrated by Figure 2b as well.

5. Discussion

Two optical flow estimation (FlowNet2 [9] and PWC-Net [19]) and two
depth estimation (MonoDepth [7] and MegaDepth [13]) algorithms were in-
vestigated. Evaluating them on ground truth data from the KITTI dataset
showed that PWC-Net and MonoDepth achieved better performance in sev-
eral error metrics. The reason for this is presumably some combination of the
following: the MonoDepth model used was fine-tuned on data from KITTI,
MegaDepth does not predict metric depth but ordinal depth, it seems that dur-
ing training of the PWC-Net model KITTI data was used as well. Nonetheless,
the conclusion is that better performance optical flow and depth estimation
methods result in better speed estimates. Besides, continuous efforts are made
to improve these two fundamental computer vision algorithms, including their
joint training in an unsupervised manner (see, e.g., [25]). Accordingly, fine-
tuning to arbitrary images becomes accessible without the need for difficult to
obtain ground truth labels.

After evaluating several modifications of the intuitive approach presented
in this paper, meaningful conclusions were formulated: combining optical flow
with depth information improves accuracy, using only the horizontal compo-
nent of optical flow is not beneficial, applying temporal smoothing helps since
it reduces the noise present in optical flow and depth estimation methods,
using the full wide image frames as input to the deep neural networks and
these results for speed estimation provides better approximations as opposed
to using smaller image crops. It should be noted that other experiments were
carried out as well, the results of which are not presented in the current paper.

There are two major limitations of the proposed method. Firstly, speed is
erroneously estimated when the car is turning. However, in such cases esti-
mation errors can be corrected by taking into account that horizontal optical
flow on the left and right side of the wide images has the same direction (see
the last column of Table 6 and Figure 2b). Secondly, the proposed method is
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most reliable when the background is static. For example in heavy traffic sce-
narios when the surrounding cars are moving as well, the correlation of optical
flow with ego-speed might be small and speed can be over- (see Figure 2b)
or underestimated. In such scenarios combining monocular depth estimation
with semantic segmentation [10] represents one promising direction; and the
estimation of relative speed can help, which is another problem where recent
advances are being made (see, e.g., [18] or [11]). One might also argue that
the deep neural network methods providing the best speed estimates were fine-
tuned on ground truth data from KITTI. But, as explained above, efforts are
being made to train such methods on unlabelled data [25].

To improve the presented method, future works can treat the task as a
regression problem and adopt for example a lightweight multilayer perceptron
using as input the aggregated optical flow and depth results from different
smaller regions of the original image. Another possibility is the exploitation
of the more sophisticated convolutional neural network, which, however would
possibly require a larger amount of training data [4].

6. Conclusion

In this work a simple algorithm was investigated for ego-speed estimation
from images of a camera mounted on the moving car, using state-of-the-art
deep neural network based optical flow estimation and monocular depth pre-
diction. The method relies on the intuition that optical flow magnitude is
highly correlated with the moving speed of the observer and that the closer
objects are to the observer the faster they appear to be moving. Extensive
evaluations of the intuitive algorithm lead to a RMSE of less than 1 m/s on
a representative subset of the widely exploited KITTI dataset. As a closing
remark, it is noteworthy that due to the recent and ongoing advancements in
deep learning, monocular vision-based approaches are a promising direction
for ego-speed estimation, and autonomous driving in general.
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44 RÓBERT ADRIAN RILL

References

[1] Abuella, H., Miramirkhani, F., Ekin, S., Uysal, M., and Ahmed, S. ViLDAR -
visible light sensing based speed estimation using vehicle’s headlamps. arXiv e-prints
(2018), arXiv:1807.05412.

[2] Banerjee, K., Van Dinh, T., and Levkova, L. Velocity estimation from monocular
video for automotive applications using convolutional neural networks. In IEEE IV
Symposium (2017), pp. 373–378.
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