
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LXVII, Number 1, 2022
DOI: 10.24193/subbi.2022.1.02

MULTIPLE TYPES OF AI AND THEIR PERFORMANCE IN

VIDEO GAMES

IULIAN PRĂJESCU AND ALINA DELIA CĂLIN

Abstract. In this article, we present a comparative study of Artificial
Intelligence training methods, in the context of a racing video game. The
algorithms Proximal Policy Policy Optimization (PPO), Generative Adver-
sarial Imitation Learning (GAIL) and Behavioral Cloning (BC), present in
the Machine Learning Agents (ML-Agents) toolkit have been used in sev-
eral scenarios. We measured their learning capability and performance in
terms of speed, correct level traversal, number of training steps required
and we explored ways to improve their performance. These algorithms
prove to be suitable for racing games and the toolkit is highly accessible
within the ML-Agents toolkit.

1. Introduction

From their inception in the 1950s, video game started to evolve and to
become more and more complex in terms of better graphics, interaction con-
trollers and game mechanics, audio and visual feedback, progressing at the
same pace with the technology of the time and sometimes even pushing tech-
nology forward, becoming the beautiful pieces of art we think about today.
The industry has been dominated by a small number of companies that es-
tablished specific practices around the development and distribution of video
games. Strategy video games have found an important role due to their effect
on improving hand–eye coordination and visual-motor skills [14].

One of the most important steps in this evolution is marked by adding Arti-
ficial Intelligence (AI) methods, which simulates the presence of other players
or characters, increasing the immersive experience of the game. This aims at
designing agents capable of playing video games without human intervention
[12], often called non-player characters. Thus, the efficiency of an AI agent
in a game is generally evaluated by human experience [9]. The importance of

Received by the editors: 23 September 2021.
2010 Mathematics Subject Classification. 91A10, 68T05.
1998 CR Categories and Descriptors. I.2.1 [Artificial intelligence]: Applications and

Expert Systems – Games; K.8.0 [Personal computing]: General – Gaming .
Key words and phrases. racing game, PPO, GAIL, behavioral cloning, AI in games.

21



22 IULIAN PRĂJESCU AND ALINA DELIA CĂLIN

AI tools in games is not limited to the game experience, but provides a rich
research ground for studying and experimenting how humans interact with AI
agents [21].

However, there is a gap between academic and industrial approach of game
AI that needs addressing. The basic AI algorithms usually used in games
(such as ad hoc authoring, tree search, evolutionary computation, and machine
learning) do not rise to the current demands, meaning that new methods and
techniques are needed [4].

In this paper we aim to encourage a more sophisticated use of AI in in-
dustry (such as neural networks) [20], by presenting the new tools available
(like the Unity ML-Agents Toolkit, Pytorch) and specific case scenarios where
algorithms can be used successfully. Thus, this paper focuses on determining
the best method to train AI agents for a specific type of game: car racing
simulation games, by presenting a specific video game context. The impor-
tance of this type of game is not only recreational, but given the realistic
environment, it is used to develop driving skills in a safe environment. Using
intelligent methods to simulate the required challenges of the environment and
drive progress by competition with non-human agents is the key to success.
Three types of AI agents are compared in simulating car driving agents, us-
ing the game development platform Unity [8] and the machine-learning agents
module based on the PyTorch technology [11]: Proximal Policy Optimiza-
tion (PPO), Behavioral cloning (BC) and Generative Adversarial Imitation
Learning (GAIL) algorithms [18].

2. Background

Some examples of related work in the field would include the idea of a uni-
fied video game AI middleware [15], which was created by The International
Game Developers Association (IGDA) by launching an Artificial Intelligence
Interface Standards Committee (AIISC) in 2002, which had the goal of cre-
ating a standard AI interface for reusing and outsourcing AI code [15]. In
Berndt et al. [1], was proposed an Open AI Standard Interface Specification
(OASIS), which aimed at making the integration of AI in video games easier.
This kind of game AI middleware can now be found in multiple video game
engines [15], such as CryEngine, Havok, Unreal Engine and Unity, these game
engines aiming to provide realistic agents and virtual environments.

In relation to racing games, recent interest has been present in the literature
with the most focus on algorithms such as PPO for vehicles in mixed and full-
autonomy traffic [13, 17], GAIL for modelling a human driver [2, 10], or BC
for robust autonomous vehicles with end-to-end imitation learning [16].



MULTIPLE TYPES OF AI AND THEIR PERFORMANCE IN VIDEO GAMES 23

2.1. The Unity ML-Agents Toolkit. This Unity toolkit is an open source
project that consists of two elements: the ML-Agents software development
kit (for creating environments within the Unity Editor and with the associated
C# scripts) and a Python package (to help interfacing with the environments
created). ML-Agents presents three components: (1) the Agent, responsible
with collecting observations and taking actions; (2) the Brain, responsible with
making decisions for the linked Agents containing matching observation and
action space configurations; (3) the Academy, responsible for managing the
learning environment by keeping track of the steps performed by the Agents,
setting the target simulation speed and frame rate, and resetting parameters
for eventual configuration changes during run-time.

The Python Unity ML-Agents Trainers Package provided in this toolkit
communicates with Unity by using the included UnityEnvironment class, by
the use of a gRPC communication protocol, which utilises protobuf messages.

2.1.1. Proximal Policy Optimization (PPO). By trying to improve the already
ample scene of reinforcement learning with neural network function approxi-
mators, the OpenAI team introduces a new family of policy gradient methods
with the Proximal Policy Optimization Algorithms [18]. These new methods
share some of the benefits brought by the trust region policy optimization
(TRPO), but have the advantage of having better sample complexity (empir-
ically). While TRPO uses a complex second-order method when confronted
with the problem of trying to improve the step on a policy using the data
it currently has without stepping too far as to cause a performance collapse,
PPO uses a family of first-order methods which use some other algorithmic
approaches to keep the new policies close to old.

The main deviations of PPO are the PPO-Penalty and the PPO-Clip. We
will primarily focus on the PPO-Clip variant as it is the most commonly used
and it is present in the ML-Agents toolkit used in this study. As opposed to
PPO-Penalty, it does not have any constraint or a KL-divergence term in the
objective, but instead relies on specialised clipping in the objective function
to remove incentives for the new policy to get far from the old policy. The
PPO algorithm uses fixed-length trajectory segments, where on each iteration,
every of the N actors collect T timesteps of data in parallel, then constructs the
surrogate loss on the NT timesteps of data and optimises them with minibatch
Stochastic gradient descent (SGD) for a K number of epochs.

2.1.2. Generative Adversarial Imitation Learning (GAIL). Generative Adver-
sarial Imitation Learning (GAIL) is an Inversive Reinforcement Learning al-
gorithm, which, as the name suggests, uses a Generative Adversarial Network
(GAN) to function. This algorithm can be also described as a model-free



24 IULIAN PRĂJESCU AND ALINA DELIA CĂLIN

imitation learning algorithm, and can yield a good performance for complex
behaviours, particularly in big, high-dimensional environments. As presented
in [6], GAN is a type of generative model, which brings a way to learn deep,
hierarchical representations in a semi-supervised or unsupervised manner.

The GAN architecture consist of two different networks working together to
learn from existing datasets. The first network is the generator, which has the
role of generating new data by learning the distribution of the input dataset.
The second network called the discriminator has the role of gathering the
samples from the training data and classifying them either as generated by the
generator or as real data. The Inversive reinforcement learning (IRL) methods
were presented in the idea of helping the reinforcement learning agents to learn
the experts policy and to get reward functions in order to explain the experts
behaviors from their given trajectory [7].

2.1.3. Behavioral Cloning (BC). Behavioral Cloning (BC) represents a form
of “Imitation Learning” which has the goal of creating a model of a human’s
behavior when trying to execute a difficult set of actions. The BC method is
one of the most used approaches in regards to the imitation learning problem
and has been proven powerful in the sense that it can very quickly imitate the
demonstrator without needing to interact with the environment [19].

This method has been used in many different applications, from flying down
a quadrotor on a forest trail [5], to autonomous driving [3]. BC is related with
other methods of learning by imitation [31], such as GAIL [7], IRL and other
methods that use data from human performance. The behavioral cloning al-
gorithm used by the ML-Agents toolkit is one of Behavioral Cloning from
Observation [19] and works in the following fashion: the algorithm needs to
find a good imitation policy from a set of state-only demonstration trajec-
tories. The extraction of the agent-specific part of the demonstrated state
sequence and the forming of a set of demonstrated agent-specific state transi-
tions, in order for the use of the agent-specific inverse dynamic model [19]. For
each transition the algorithm computes the model-predicted distribution over
demonstrator actions and uses the maximum-likelihood action as the inferred
action. We then build the set of complete state-action pairs [19].

3. Case study

3.1. The game. The racing game environment we study is built in Unity, em-
ploying several levels (tracks), race configurations, and car models (see Figure
1). The player can compete against multiple AI cars trained and compared
in this case study. The agents used different training methods such as PPO,
GAIL, BC, and Soft Actor-Critic (SAC). After multiple training sessions, the



MULTIPLE TYPES OF AI AND THEIR PERFORMANCE IN VIDEO GAMES 25

SAC models did not manage to train to the point of completing the level so
the other methods were used forward.

Figure 1. Game circuit

3.1.1. Training the AI. After the training process, five models using three dif-
ferent training methods were obtained, one type using PPO, two types using
GAIL and two types using BC. The training of the AIs was done using ML-
Agents. In this framework the necessary components for training an agents in-
clude a virtual environment, the agent component present in the Unity project
and a configuration file which holds all the variables and parameters of the
neural network and training method used.

The specific settings for each training methods are as follows: for the
PPO method the trainer type: ppo and the reward signals need to be
extrinsic; for the GAIL methods one more module needs to be added, which
is the gail: one with multiple specific parameters such as demo path for
showing the location of the demo file used in the training process, strength
value representing how much the agent should copy the demonstration, gamma,
learning rate, use actions and use vail; finally for the BC method the
behavioral cloning module which adds the demo path parameter and the
value representing how much the agents should copy the demonstration and
other BC specific parameters.

3.2. Experiments.

3.2.1. Training PPO. The parameters of the configuration file were adjusted
to train multiple agents using trial and error in order to increase the perfor-
mance of the agents. The best configuration identified (Test 33), which con-
sisted of 40 agents, used a batch size of 120, the learning rate of 0.0003



26 IULIAN PRĂJESCU AND ALINA DELIA CĂLIN

and strength of the extrinsic reward signals of 1(the maximum recom-
mended value). This configuration demonstrated very good performance in
accurately parsing the circuit, with the maximum speed reaching the value of
27. The agents started training with the environment reward at -1.477 and
after training for over 5 million steps they reached the value of 0.7687, being
the highest value achieved with this method, and it had a growth value of
2.2457. The evolution of the training is shown in Figure 2.

Figure 2. Environment cumulative reward of the PPO method

In terms of traversing the level, the final model takes shortcuts by cutting
corners and getting off the track portion of the level in order to complete the
level as fast as possible. This is a good thing in the context of finishing first,
but ultimately decreases the value of the model for not traversing the level
correctly.

3.2.2. Training GAIL. For the GAIL training method two types of demos
were used, one made by a human player, and one made using the PPO trained
method, where one demonstration of traversing the track and one agent using
the PPO Test 33 brain were recorded. This was done in order to determine if
there is a difference in performance between these two kinds of demos.

For both models trained using the GAIL method, along with the 40 agents
used, the extrinsic reward signals module was utilised, with the same values
as the PPOmethod, in collaboration with the gailmodule, which included the
learning rate of 0.0003, the encoding size of 128 and the gail strength
of 0.1. After adding the gail module, the agents started to learn and the
cumulative reward started increasing alongside the performance on the racing
track.



MULTIPLE TYPES OF AI AND THEIR PERFORMANCE IN VIDEO GAMES 27

The performance of the GAIL method using a player demo reached the
speed value of 21, being a very good one for the gaming context, achieved
after a bit over 5.5 million steps, and after starting with the environmental
cumulative reward of -1.486, it reached the value of 0.725, having a growth
value of 2.211. The evolution of this method can be seen in Figure 3.

Figure 3. Environment cumulative reward of the GAIL
method using a player demo versus using an AI demo

The performance of the GAIL method using the AI demo reached the speed
value of 17 after just over 2.5 million steps. Starting with the cumulative
reward of -1.486 and reaching the value of 0.679, it had an approximated
growth value of 2.165, very close to the player made demo method described
above and also the PPO model, used for creating the demo after which this
model learned. We will examine the evolution of the training session present
in Figure 3.

When comparing the two GAIL methods we can see that they have similar
results but also big differences. Starting with the similarities, they both have
very close growth values and the learning process is very similar, both with
the cumulative reward slowly decreasing until the second half of the session
where they started to reach their maximum value very fast, then very slightly
increasing until the end of the training session. Considering this, the second
method, using the AI made demo, learned twice as fast as the first one, but
ultimately had a smaller speed performance.

With all this said, we can see that using the player made demo was better
than the AI made one, even after considering the inefficiency in time.

3.2.3. Training BC. Just like the GAIL agents, the BC method was used to
create two types of AI using the same demos as before to determine if the
type of demo affects the performance of the AIs and what differences can be



28 IULIAN PRĂJESCU AND ALINA DELIA CĂLIN

found. The best configuration found so far for this method used 40 agents
and the same values for the extrinsic reward signal as the PPO and GAIL
methods, with the exception of the batch size which was increased to 512
and the behavioral cloning module was added which included a strength of
0.1. The best session of the BC method using a player demo was the fourth
one with the maximum speed of 6. This result was achieved after 6 million
steps, starting with the environment cumulative reward of -5.534 and reaching
the value of -4.053 by the end of the training session. The growth value of this
method was 1.481 and we can see the evolution of the agent in Figure 4.

Figure 4. Environment cumulative reward of the BC method
using a player demo versus using an AI demo

Unfortunately, when traversing the environment, this model also takes short-
cuts, going off the track part and onto the surrounding environment, losing
value.

As the aforementioned GAIL agent that used an AI made demo, this one
also uses the same demo made from the performance of the PPO trained AI.
Just like the agents trained with a player demo, the AI demo trained agents
achieved a speed performance value of 6 but in this case, the training session
was much shorter, ending after just over 1 million steps. Within this period,
the agents grew the environment cumulative reward from -5.531 to the value
of -4.863, having the final growth value of 0.668.This method had the poorest
growth while training and we can visualise it in Figure 4.

Even though both models using the BC training method had the same
maximum speed value, the difference between these two methods is the one
of training session length and efficiency, the agents using the AI made demo
reached the same performance almost 6 times faster than the one trained with
the player made demo even though the latter had a bigger growth value.



MULTIPLE TYPES OF AI AND THEIR PERFORMANCE IN VIDEO GAMES 29

Overall, we can say that using an AI made demo is better than using a
human player demo for the BC training method.

3.3. Results. When comparing all five models trained for this experiment,
we can see exactly how different the training methods perform and which one
has the best performance.

The methods with the fastest growth of their reward value are the BC meth-
ods (Player demo red, AI demo dark blue) reaching values close to maximum
in just 1 million steps, after that, the GAIL method using an AI made demo
(green) is in third place, followed by the PPO method (orange) and finally the
GAIL method using a player made demo (light blue).

For the criteria of correctness while traversing the level, all five models have
a bad performance, taking shortcuts and cutting corners through the level by
going off the track onto the surrounding environment (leading to incorrect
level traversal). This fact will not be taken into consideration in the current
comparison.

All results are compared in Table 1 below, in terms of speed of circuit
traversal, growth value (based on starting and ending reward) and number of
steps involved in the training.

Table 1. Comparison of all five initial AIs specifications

Speed Starting
reward

Ending
reward

Growth
value

No. of
steps

PPO 27 -1.477 0.7687 2.2457 5 mil
GAIL& player demo 21 -1.486 0.725 2.211 5.5 mil
GAIL & AI demo 17 -1.486 0.679 2.165 2.5 mil
BC & player demo 6 -5.534 -4.053 1.481 6 mil
BC & AI demo 6 -5.531 -4.863 0.668 1 mil

This table shows us all the properties of each model in the order of which
they were trained. Coincidentally, the order also represents the performance
order of the models. The PPO model had the best performance of all the
trained AIs with the biggest speed and growth values. The next best perfor-
mance is of the GAIL method with both models having a good performance
and as stated in subchapter 3.2.2, the model using a player made demo had a
better performance than the one using the AI made demo in both speed and
growth value.

The method with the least performance is the BC one, with both models
reaching the low speed value of 6 and having suboptimal growth values com-
pared to the other two methods. Even though the BC model using the AI
agent demo has the smaller growth value than the one trained with a a human



30 IULIAN PRĂJESCU AND ALINA DELIA CĂLIN

player demo, it managed to train about 6 times faster reaching the same speed
performance, therefore we conclude that it is a much better model.

3.4. Improvements.

3.4.1. Improving PPO. For this training session, the parameters batch size

and learning rate were increased to 2048 and 0.0005 respectively and 20
agents were used, which at the beginning of the session had a cumulative
environment reward of -1.562 and after just 5 million steps, reached the reward
value of 0.7193, having an approximate growth value of 2.2813 and an average
speed value of 24.

In Figure 5, we can see how the second version (blue) started the training
session very close to the first one and oscillated until the 1.7 million steps
mark, compared to the 2 million steps mark of the first version (grey). After
that point, it slowly started to learn, oscillating until the 3.5 million steps
mark where it reached its maximum potential and until the end of the episode
maintained its value close to the maximum like the first version.

Figure 5. Environment cumulative reward of the PPO
method initial versus final model

When comparing the first model with the improved one, the improved one
has a slower speed value, 24 versus 27, but a slightly bigger growth value
2.2813 versus 2.2457. While traversing the level, the improved model has a
better understanding of the environment, maintaining its traversing pattern
almost exclusively on the track part of the level, compared to the first model
which cuts corners in order to complete the level faster. This adds more value
to the improved model, making it more realistic and better suited for this
genre of video games.

3.4.2. Improving GAIL. Compared to the first models trained with the GAIL
method, the improved ones used 20 agents, new demos and had the same
configuration with only a slight increase in the gail strength, having the value
of 0.15. The performance of the improved GAIL model using a player made



MULTIPLE TYPES OF AI AND THEIR PERFORMANCE IN VIDEO GAMES 31

demo is very good, reaching the speed value of 21 after 5 million steps and
after starting with the cumulative environment reward of -1.486, it reached
the value of 0.8046, having an approximate growth value of 2.2906.

In Figure 6 we can see the training evolution of the model, compared to the
previous version.

Figure 6. Environment cumulative reward of the GAIL
method using a player demo initial versus final model

As we can see, the improved model (orange) learned faster due to the in-
crease in the learning rate, from around the 2.1 million steps mark compared
to the 3 millions steps mark of the first version (blue). It reached its maxi-
mum potential around the 3 million steps mark and from there, maintaining
its value close to its maximum until the end of the session.

Both the first and the improved models have relatively the same perfor-
mance, with average speed of 21, but the improved model has a slightly bigger
growth value. When comparing the models while traversing the level, the
improved one has a better understanding of the environment, traversing the
level almost exclusively on the track part. This again adds more value to the
improved model, making it more realistic and better suited for this genre of
video game.

The performance of the improved GAIL model using an AI made demo
is very good, reaching the speed value of 21 after 5 million steps and after
starting with the cumulative environment reward of -1.527, it reached the
value of 0.7133, having an approximate growth value of 2.2403.

In Figure 7 we can see the training evolution of the model, compared to the
initial experiment. When comparing the two versions, the improved one has
an approximately 23% increase in speed performance, going from 17 to 21, and
it has a bigger growth value. While traversing the level, both the models take
shortcuts, going off the track part and on to the surrounding environment, so
there is no significant improvement in this department.



32 IULIAN PRĂJESCU AND ALINA DELIA CĂLIN

Figure 7. Environment cumulative reward of the GAIL
method using an AI demo initial versus final model

3.4.3. Improving BC. Regarding the improved BC configuration, the only dif-
ferences consisted of using 20 agents, just like the improved PPO and GAIL
models, and using new demos from which the agents learned.

The performance of the improved BC model using a player made demo
did not increase in terms of speed, having the average speed of 6, like the
model before it. In terms of environmental cumulative reward, it started with
the value of -1.499 and had a maximum value of 0.4614 with an approximate
growth value of 1.9604.

As we can see from Figure 8, the improved version of this method started
to slowly learn until reaching close to its maximum potential at the 1 million
steps mark. From there until the 2.5 million steps mark held its value very
steady, but after that it had an unpredictable behaviour and slowly decreased
until the end of the training session.

Figure 8. Environment cumulative reward of the BC method
using a player demo initial versus final model



MULTIPLE TYPES OF AI AND THEIR PERFORMANCE IN VIDEO GAMES 33

When compared to the previous model, the improved one has the same
average speed but a bigger growth value, 1.9604 versus 1.481. While traversing
the level, the improved model learned to take fewer shortcuts, by cutting less
corners and staying more on the track part of the level, this in turn increases
the value of the model.

The performance of the improved BC model using an AI made demo did
not increase in terms of speed, having the average speed of 6, like the model
before it. In terms of environmental cumulative reward, the model started
with the value of -1.541 and had a maximum value of 0.5802 after 5 million
steps with an approximate growth value of 2.1212.

In Figure 9 we can see how the improved model started to learn slowly,
reaching its maximum potential at around the 1 million steps mark and keeping
its value pretty consistent throughout the training session, until approximately
around the 3.3 million steps mark where it started to raise and fall until the
end of the session. Compared to the previous version it had a more stable
learning rate, the first version having a very unpredictable learning pattern.

Figure 9. Environment cumulative reward of the BC method
using an AI demo initial versus final model

When compared to the previous model, the improved one has the same
average speed but a bigger growth value, 2.1212 versus 0.668. While traversing
the level, the improved model follows along relatively the same pattern as the
previous version, taking shortcuts, leaving the track part of the level and
traversing the surrounding environment. Other than the increase in growth
value, the model did not receive an increase in its value compared to the
previous version.



34 IULIAN PRĂJESCU AND ALINA DELIA CĂLIN

3.5. Final results. When comparing the improved version of the five models
trained for this experiment, we can see even more clearly how different the
training methods perform and which one has the best performance.

The method with the fastest growth is the BC method (red for BC using a
player demo and dark blue for BC using an AI demo), with both its models
reaching their maximum potential by the 1 million steps mark. Following we
have the GAIL model using an AI demo (brown), reaching its maximum at
around the 2.5 million steps mark. Finally, we have the PPO (light blue)
and GAIL using a player demo (orange) models, which both reached their
maximum around the 3 million steps mark.

In the context of traversing the environment, the models of PPO, GAIL
using a player demo and BC using a player demo have improved by staying
more on the track and not taking shortcuts on their way to complete the level,
with the BC model only having a slight improvement in this regard.

In Table 2, we have the values of the performance for all the five improved
models (with 5 mil number of steps for each) with correct level traversal for
some (does not cut through the environment like before). The best model was
the one of the PPO method, which had the biggest speed value out of all five
models, with the value 24. The PPO model is followed again by the GAIL
models, both having the speed value of 21. Lastly, the BC models had again
the poorest performance with the average speed value of 6.

Table 2. Comparison of all five improved AIs specifications

Speed Starting
reward

Ending
reward

Growth
value

Correct
level tra-
versal

PPO 27 -1.562 0.7193 2.2813 Yes
GAIL& player demo 21 -1.486 0.8046 2.2906 Yes
GAIL & AI demo 21 -1.527 0.7133 2.2403 No
BC & player demo 6 -1.499 0.4614 1.9604 Yes
BC & AI demo 6 -1.541 0.5802 2.1212 No

The reason behind this ranking is that the PPO model had the best speed
performance in both the original and improved model, with the increase in
value coming from the improved model, which learned to traverse the environ-
ment more correctly. Next, we have the GAIL models, which had the same
speed performance in the improved model, but ultimately the model using a
player made demo learned to traverse the environment more correctly than
the model using an AI made demo. For the final places, the BC method had
the poorest performance of all five model, but the model using a player made



MULTIPLE TYPES OF AI AND THEIR PERFORMANCE IN VIDEO GAMES 35

demo learned a little bit better to traverse the environment and ultimately
this put it at an advantage compared to the one using an AI made demo.

4. Conclusions

The purpose of this article is firstly to present the power of the ML-Agents
toolkit, which, as we have seen, is a very competent and accessible tool for
training multiple types of intelligent agents using different training methods.
This is thanks to the use of a high-level framework such as PyTorch, work-
ing in the background. This is a facilitating tool in the process of creating,
training and adding artificial intelligence to video games, supporting the game
development industry.

Moreover, we have shown how different methods of AI perform compared
to one another in the context of a racing video game and which would be the
best option to choose when developing this type of video games. The PPO
method, using reinforcement learning, had the best performance of all the
trained models, followed by GAIL and BC respectively. The results found in
this experiment may not be definitive, as there is always room for improvement
and every training game environment is different, but they are a good reference
point on how each of these methods performs. The implemented application
also shows the simplicity and efficiency of the training process and it is a very
good graphical representation of the results found in this experiment.

References

[1] Berndt, C., Watson, I., and Guesgen, H. Oasis: an open ai standard interface
specification to support reasoning, representation and learning in computer games. In
IJCAI-05 Workshop on Reasoning, Representation, and Learning in Computer Games
(2005), Citeseer, pp. 19–24.

[2] Bhattacharyya, R., Wulfe, B., Phillips, D., Kuefler, A., Morton, J.,
Senanayake, R., and Kochenderfer, M. Modeling human driving behavior through
generative adversarial imitation learning. arXiv preprint arXiv:2006.06412 (2020).

[3] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal,
P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., et al. End to end
learning for self-driving cars. arXiv preprint arXiv:1604.07316 (2016).

[4] Fan, X., Wu, J., and Tian, L. A review of artificial intelligence for games. Artificial
Intelligence in China (2020), 298–303.

[5] Giusti, A., Guzzi, J., Cireşan, D. C., He, F.-L., Rodŕıguez, J. P., Fontana, F.,
Faessler, M., Forster, C., Schmidhuber, J., Caro, G. D., Scaramuzza, D., and
Gambardella, L. M. A machine learning approach to visual perception of forest trails
for mobile robots. IEEE Robotics and Automation Letters 1, 2 (2016), 661–667.

[6] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., and Bengio, Y. Generative adversarial nets. Advances in
neural information processing systems 27 (2014).



36 IULIAN PRĂJESCU AND ALINA DELIA CĂLIN

[7] Ho, J., and Ermon, S. Generative adversarial imitation learning. Advances in neural
information processing systems 29 (2016), 4565–4573.

[8] Juliani, A., Berges, V.-P., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C.,
Gao, Y., Henry, H., Mattar, M., et al. Unity: A general platform for intelligent
agents. arXiv preprint arXiv:1809.02627 (2018).

[9] Kreminski, M., Samuel, B., Melcer, E., and Wardrip-Fruin, N. Evaluating ai-
based games through retellings. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (2019), vol. 15, pp. 45–51.

[10] Kuefler, A., Morton, J., Wheeler, T., and Kochenderfer, M. Imitating dri-
ver behavior with generative adversarial networks. In 2017 IEEE Intelligent Vehicles
Symposium (IV) (2017), IEEE, pp. 204–211.

[11] Nandy, A., and Biswas, M. Unity ml-agents. In Neural Networks in Unity. Springer,
2018, pp. 27–67.

[12] Perez-Liebana, D., Liu, J., Khalifa, A., Gaina, R. D., Togelius, J., and Lucas,
S. M. General video game ai: A multitrack framework for evaluating agents, games, and
content generation algorithms. IEEE Transactions on Games 11, 3 (2019), 195–214.

[13] Quang Tran, D., and Bae, S.-H. Proximal policy optimization through a deep re-
inforcement learning framework for multiple autonomous vehicles at a non-signalized
intersection. Applied Sciences 10, 16 (2020), 5722.

[14] Rollings, A., and Adams, E. Andrew Rollings and Ernest Adams on game design.
New Riders, 2003.

[15] Safadi, F., Fonteneau, R., and Ernst, D. Artificial intelligence in video games:
Towards a unified framework. International Journal of Computer Games Technology
2015 (2015).

[16] Samak, T. V., Samak, C. V., and Kandhasamy, S. Robust behavioral cloning for au-
tonomous vehicles using end-to-end imitation learning. arXiv preprint arXiv:2010.04767
(2020).

[17] Sander, R. Emergent autonomous racing via multi-agent proximal policy optimization.
Embodied Intelligence (2020).

[18] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

[19] Torabi, F., Warnell, G., and Stone, P. Behavioral cloning from observation. arXiv
preprint arXiv:1805.01954 (2018).

[20] Yannakakis, G. N. Game ai revisited. In Proceedings of the 9th conference on Com-
puting Frontiers (2012), pp. 285–292.

[21] Zhu, J., Villareale, J., Javvaji, N., Risi, S., Löwe, M., Weigelt, R., and
Harteveld, C. Player-ai interaction: What neural network games reveal about ai
as play. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems (2021), pp. 1–17.

Babeş-Bolyai University, Faculty of Mathematics and Computer Science, Cluj-
Napoca, Romania

Email address: alina.calin@ubbcluj.ro


