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DEEP REINFORCEMENT LEARNING FROM SELF-PLAY IN
NO-LIMIT TEXAS HOLD’EM POKER

TIDOR-VLAD PRICOPE

ABSTRACT. Imperfect information games describe many practical applica-
tions found in the real world as the information space is rarely fully avail-
able. This particular set of problems is challenging due to the random fac-
tor that makes even adaptive methods fail to correctly model the problem
and find the best solution. Neural Fictitious Self Play (NFSP) is a pow-
erful algorithm for learning approximate Nash equilibrium of imperfect-
information games from self-play. However, it uses only crude data as in-
put and its most successful experiment was on the in-limit version of Texas
Hold’em Poker. In this paper, we develop a new variant of NFSP that com-
bines the established fictitious self-play with neural gradient play in an
attempt to improve the performance on large-scale zero-sum imperfect-
information games and to solve the more complex no-limit version of
Texas Hold’em Poker using powerful handcrafted metrics and heuristics
alongside crude, raw data. When applied to no-limit Hold’em Poker, the
agents trained through self-play outperformed the ones that used fictitious
play with a normal-form single-step approach to the game. Moreover, we
showed that our algorithm converges close to a Nash equilibrium within
the limited training process of our agents with very limited hardware. Fi-
nally, our best self-play-based agent learnt a strategy that rivals expert
human level.

1. INTRODUCTION

Learning by interacting with a certain environment (or emulator) has its
roots in the way human brain evolved, or how natural intelligence advances
[1]. We can consider a game as a simulation of our real world with its own
set of rules and features. Some games resemble real-world problems on a
smaller scale which means that solutions can provide an intuition for tackling
real applications such as financial trading, traffic control, airport and network
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security, routing ([2], [3], [4]). Most of these real-world games involve decision
making with imperfect information and high-dimensional information state
spaces.

We have experienced the quick advancement of super-human Awe in perfect-
information games like Chess and Go (AlphaGo Zero, [5]; LeelaChessZero [6]),
but researchers have yet to reach the same progress in imperfect-information
games (AlphaStar, [7]). An optimal theoretical solution to these games would
be a Nash equilibrium i.e. a strategy no one can gain extra profit by deviating
from it.

Fictitious play [8] is a popular method for achieving Nash Equilibria in
normal-form (single-step) games. Fictitious Self-Play (FSP) [9] extends this
method to extensive-form (multi-step) games. Neural fictitious Self-Play (NFSP,
[10]) combines FSP with neural network function approximation. It is an ef-
fective algorithm and the first end-to-end reinforcement learning system that
learns approximate Nash Equilibrium in imperfect information games with-
out prior knowledge. It uses anticipatory dynamics; the agents choose their
strategies from a mixture of average (supervised learning network) and greedy
responses (Q-learning network).

With all of that said, it was proven that NFSP provides poor performance in
games with large-scale search space and search depth [11], because it uses only
crude data as input and its core aspect is represented by a Deep Q-Network
which is offline; it doesn’t make any real-time computations during the game.
Solutions to these problems were proposed (MC-NFSP, [11]) that use Monte
Carlo Tree Search instead. This, indeed, provides better and more stable
performance but we are interested in a pure neural approach not using any
brute force search methods. As we are going to apply this algorithm mainly to
Poker, a game where intuition is key in winning, exhaustive search might not
always be necessary. In this paper, we address this issue by adding real-time
heuristics as features to the agents’ field of view and by combining anticipatory
dynamics with neural gradient play which yields, in theory, incremental better
response search for our strategies. We test that in practice as well using as
benchmark the performance against a certain common opponent.

Many Al bots have proven themselves to be above any human in no-limit
Hold’em (Libratus [12], Pluribus [13]) but this does not mean that the game is
completely solved. For that, we need a mathematical way of showing that the
agent will definitely win money, given a certain interval of time or games, which
was actually done with Cepheus [14] for the in-limit version. No-limit variant
of Texas Hold’em is still considered unsolved in different formats to this day.
In this paper, for the main agent we develop, we do provide a mathematical
underpinning for the algorithm behind it, in the context of a 2-player zero-sum
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game; this is later empirically validated through the experiments in which we
successfully approach Nash Equilibrium.

Furthermore, this paper also highlights a direct comparison to some of our
previously developed agents. For this, we refer to our previous published
paper on this matter: A View on Deep Reinforcement Learning in Imperfect
Information Games [15].

We empirically evaluate the agents in heads up computer poker games and
explain how an agent trained this way can work even in a multiple-player
scheme with some performance loss. As input, we use raw data, as an image
of cards from the current visible board combined with two hand-crafted scalar
inputs: hard coded rankings of card combinations and Monte-Carlo heuristics
for assessing an approximate strength of the opponent hand. The best agent
built (with our modest hardware) learnt a strategy close to human expert play.

2. BACKGROUND

There are two main theoretical parts this research project is based upon -
fictitious self-play in extensive-form games and reinforcement learning [1] . In
this chapter, we aim to provide some mathematical underlying that is going
to be referenced in the main chapters.

2.1. Reinforcement learning. Reinforcement learning (RL) [1] is widely
considered as the third paradigm of learning where an environment is funda-
mentally defined and there are agent(s) that interact with it having a certain
goal in mind. Hence, reinforcement learning can be viewed as a tool of solv-
ing optimization problems; these are usually modelled as a Markov Decisiion
Process (MDP) [1]. Usually, in RL, optimization algortihms makes use of
sequential experience. This is a form of history of states and actions that
each agent possesses. Appropriately, it is modelled as transition tuples: (7):
(S¢yag, 441, St+1). The goal is to maximize the rewards. To represent that, an
action-value function @) is used - defined as the expected gain of taking action
a in state s and following the policy 7: Q (s,a) = E™ [G¢|S: = s, At = a]. Here,
Gy = ZiT:t R;+1is a random variable of the agent’s cumulative future rewards
starting from time ¢ [1]. Ideally, we would want to follow the action that gives
the highest estimated value @Q,that’s why Q-learning [21] was introduced as
a way to learn this greedy policy and replaying past experience. In order to
approximate the action-value function (or any function for that matter), a
wide and deep enough neural network can be employed which seems to be the
preferred way nowadays of using Q-learning for solving more complex games:
deep Q network (DQN) [16].
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2.2. Neural Fictitious Self-Play. Neural Fictitious Self-Play [10] is a model
of learning approximate Nash Equilibrium in imperfect-information games us-
ing deep learning.
At each iteration, the agents choose their best response (greedy strategy) with
a DQN and update their average strategy by supervised learning through a
policy network. That is done by storing datasets of each agent’s experience in
self-play as transition tuples (s¢, ag, 441, S¢+1) in a memory Mpy, (designed for
RL) and by storing agent’s own behavior (s, a;) in a memory Mgy, (designed
for supervised learning). If we set the self-play sampling in a way that an
agent’s reinforcement learning memory approximates data of an MDP defined
by the other players’ average strategy profile, then we can be sure that we find
an approximate best response from an approximate solution of the MDP by
reinforcement learning.
As we can see, the respective data necessary to train the neural networks
through backpropagation is collected within the simulated games during the
training process which is offline so it naturally has problems in on-policy games
where we need to sample opponents’ changing strategy while we play. To see
how we can improve on this and take more into consideration the opponents’
ever-changing strategies, we need to look deeper at how NFSP uses antici-
patory dynamics [17] to stabilize the convergence around Nash Equilibrium
points.
Define A (n) as a standard simplex in R", v; € A (n) being the i-th vertex
and let H : Int (A (n)) — R the entropy function H(p) = —p’ log (p). In
a two-player game, each player chooses its strategy p; € A(m;), m; € N*
and accumulates its reward according to the value-function: V; (p;,p—;) =
pil Mip_; + 7 - H(p;), where—i, i € {1,2,...,n} refers to the complemen-
tary set{1,2,...,a—1,i+1,..n} [17] and M; is the game-dependent reward
matrix. Consequently, we can define player i’s best response as a function
Bi + A(m—;) = A(m;),Bi (p—;) = argmax V (p;,p—;) and player i’s average
response until step k in the game as empirical frequencies m; (k) : N — A (m;)
of player P;, [17].

In our previous work, we defined the differnt time abstractization of Ficti-
tious Play (FP). Recall that in continuous time FP, we need to consider the
derivative of the policy change over time:

d J—
prith Bi(m—i(t)) —mi(t),i=1,2 (2)

Poker falls in this type of abstraction, in which each player has access to the
derivative of his empirical frequency %m. The strategy at moment ¢ can be
defined as:

pi (t) = Bi (7 () + n%ﬂ_i (t)), n positive parameter (3)
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We interpret this formula as a player choosing his best response based on
current opponent’s average strategy profile combined with a possible change
of it that may appear in the future [15].

The authors of the study that we have used to borrow these mathematical
notations (anticipatory dynamics of continuous-time dynamic fictitious play
[17]) prove that for a good choice of 7, the stability in Nash equilibrium points
can be improved. Of course, this choice of n is game-dependent. The challenge
that comes with it though is the fact that the derivative cannot be directly
measured and needs to be approximated or reconstructed by empirical fre-
quencies measurements [15].

Recall the equation (3), subtracting m; from both sides and using (1) yields:

=5 (ma O+ gm0 - m () )

In NFSP [10], the authors chose a discrete time approximation of the deriva-
tive: gt —mt &~ %mt which, if substituted in (4) yields:

pi () = Bi (m—i (8) + 0 (Bi (7 (t + 1)) =7 (1)) &

pi (t) = Bi (L —mn) m—; () +npBs (m— (t + 1))

That’s how the authors reach the combined policy method: o = (1 —n) 7+

n,@’ which was empirically porved to be successful for games like in-limit Texas
Hold’em Poker.
However, a discrete time approximation does have its limitations, that is why
we suggest using an approach that borrows elements from dynamic gradient
play [17] in order to approximate the derivative taking into consideration the
opponents’ average strategies as well.

3. DEVELOPING THE AGENTS

We are going to address the technical details and the main process of build-
ing the self-play agents mentioned in the introduction. It is important to
recall our last published research article on this subject, A View on Deep Re-
inforcement Learning in Imperfect Information Game [15] because we will use
some of the agents developed there for direct comparison with the new ones.
Only a short introduction of each one will be provided as for more details we
recommend reading the original paper.

3.1. Agent 1 (previously developed) [15]. This first agent is a reinforce-
ment learning free one, we built it as our own mini remake version of Loki
[18] featuring betting decisions with card heuristics and opponent-modelling.
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We constructed this agent mainly as an expert system at its core with heuris-
tics for betting decisions and opponent-modelling for exploitations [15]. For
opponent modelling, this agent uses 2 classifiers: a naive Bayes classifier (to
replicate the Bayesian analysis presented in the Loki paper) and a deep neural
network with a CNN architecture, the input being represented as an image of
the current board state alongside some scalar associated features.

3.2. Agent 2 (previously developed) [15]. This deep reinforcement learn-
ing agent learnt to play Poker by training with Agent 1 from scratch. Its
strategy of play combines the greedy strategy S offered by the action-value
function with the average strategy m obtained though supervised classifica-
tion. The second agent managed to learn Poker training with the first agent
trying to consistently beat him, treating the opponent as part of the environ-
ment.

Therefore, it uses 3 neural networks. First, a DDQN system [19] with a value
network Q (s,a ‘GQ) for predicting the @ values for each action based on
data from Mpr. It trains through backpropagation using the Bellman equa-

tion with future @) values obtained through a target network Q' (s,a|9Ql>.

Secondly, we use a policy network I1 (s,a ‘OH) to define our agent’s average
response based on data from Mgr. We choose our main policy ¢ from a mix-
ture of strategies:f = e —greedy (Q) and 7 = II: o = (1 —n) 7413, n € (0,1].
This actually represents the same approximation of anticipatory dynamics in
discrete time fictitious play used in NFSP [10], but here we are using it to de-
fine our agent in a one-player game, we are not trying to approximate a Nash
Equilibrium in this context. The other differences come from the model ar-
chitectures, inputs and from how often we use each strategy of play to sample
games. Moreover, unlike NFSP, we mainly considered a Poker game iteration
to be just a hand of play here and reset the main policy accordingly.

3.3. Agent 3 (our proposed approach in this paper). Compared to the
other two, the third agent, the main focus of this paper, shall decipher poker
playing against itself using a new variant of fictitious self-play that employs
deep learning.

To clarify, this agent will be based on self-play only, using deep neural nets,
without any external help from other players for training and without brute
force, real-time exhaustive search. This agent will learn by playing with itself,
from scratch, both constantly trying to achieve better rewards. Below (figure
1), we can see the architecture of this self-play system and how the strategies
are generated.

Like the Agent 2, we are devising the greedy and average strategies, this
time through self-play, though, but we also have a reference to the opponent’s
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FIGURE 1. Agent 3, self-play system architecture

average strategy to construct a better response search. To understand how
this is mathematically done, take the gradient of the value function:

VVi (pisp—i) = Mip—;
We are interested in the differential equations system that defines the dynamic
gradient play:
Ly =Pa[m (t) + Mym_; (t)] — m; (t) with i = 1,2,
where Po : R" — A(n) is the projection on the simplex A (n): Py [z] =

arg min [z — s|.
s€A(n)

Therefore, we can obtain a parametrized approximation of %m using two
forms of behavioral evolution of strategy of play in FP (DT — discrete time
FP, GP — gradient play). Using the definition, we get:

d  wi(t+n)—m(@) PN

= . Ao (t+1) T (t)=
d () ot
%Wi—i-ﬂi(t):Bi(?T,i(t—l—l)) ~B;"1=1,2(5)

Let S (t) € A (n) such that S (t) = Pa [m; (t) + M;m_; (t)] i.e.
|7 (t) + Mm—; (t) — S (t)| < e with ¢ as small as possible.
Then it follows that:

d
%’M—i—?ﬁ (t) = S(t)

Combining this with (5) yields that for every p € [0, 1] we have:

d

TP (B =i () + (1= p) (S () —mi (1)) ,i =

1,2
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Substituting now %m in (3), we get the final formula:

pi(t) = Bi (L=n)m_i (1) + 1 (p- B + (1= p)- S (1))

which means our agent can choose their actions from a mixture of strategies:

o= =nr+n(pb+(1-p)s).

The motivation behind this choice is that the evolution of the GP strategy
follows a better response search, adjusting the strategy of play in the direction
of the gradient from the empirical frequencies of the opponent. Thus, using
this form, especially in a game with imperfect information, where the best
answer is harder to find, it is important that we don’t stagnate and we always
try to find a better solution than the current one (and if we have already found
the best solution then the gradient should suggest so).

We want to favor finding the best response though, that is why are going to
set thep parameter to be:

p~1—n+ewith 0 <e <2/100.

Below, we present Algorithm 1, the main algorithm that agent 3 uses to get
learn Poker from self-play.

Algorithm 1 — Agent 3, reinforcement learning (self-play) agent
with fitted Q-learning

for 1:nogames do
Initialize new game G and execute agent via RUNAGENT for each
player in the game

end for

function RUNAGENT(G)
Initialize replay memories Mgy (circular buffer) and Mgy (own be-
haviour reservoir)
Initialize average-policy network II(s, a|0™) with random weights 6'!
Iniitalize opponennt average-policy network II'(s,a|6") with random
weights O
Initialize action-value network Q(s,al6?) with random weights %9
Initialize target network with weights 69 « 69
Initialize parameters 7, p.
for each episode do
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{e — greedy(Q) w/ prob p w/ prob 1

S = PAPZ + Qemtended(mi,mi) -1 W/ pI'Ob 1- P

I w/ prob 1 —n

Observe initial information state s; and reward r;
for t=1,minreplaymemorysize do
Sample action a; from policy o
Execute action a; in emulator and observe reward 7:4+1 and next
information state syy1
Store transition (¢, at, 741, S¢+1) in reinforcement learning mem-

ory MRL
if agent follows best response policy 0 = (= € — greedy(Q))
then:
Store behaviour tuple (s¢, a;) in supervised learning memory
Msr,

Update 6 with gradient descent on loss
L(0") = E(s 0)wnig, [ LDivergencell(s, al6tP)]
Update 09 with gradient descent on loss
L(HQ) = E(s,a,r,s’)NMRL [(T’ + mama/Q(a’, ale/) - Q(37 a|9Q))2]
Periodically update target network parameters 09" — o9
end for
end function

We are using 3 deep neural networks: a DDQN [19] system to approximate
the action-value function and a policy network to approximate the player’s
own average behaviour. The architecture for these neural nets for the two
strategies (greedy and average) are the same. The input is represented by a
172179 3D array containing the images of the last two board states and the
scalar features that we mentioned the Developing The Agents section — note
that this is the same input as the one Agent 2 uses. As we said in [15], we add
the last board state to the input because of the inspiration from AlphaGo Zero
[5] interpreting it as an attention mechanism. The actual architecture of the
networks is represented as a CNN with 4 layers of convolution. 2 MaxPooling
and 1 fully connected as hidden layers. For the reinforcement learning part,
we use MSE as loss (together with the Bellman equation to calculate the value
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of a state to get the predicted part). For the policy network we use Kullback-
Lewbler Divergence between two probability distributions as it is usually a good
loss measurement, also used by the creators of AlphaGo Zero.

4. EXPERIMENTS

The computer code is available at: link (backup directory for the whole
project). Everyone can play against the agents at request at: poker.ptidor.com.

We are mainly testing the algorithm on heads-up no-limit variant of the
game of Poker. The choice of heads-up is also determined by the limited
resources of this research project. For evaluation, we are going to measure
the performance of each agent against previously developed ones and some
generic players that we previously defined in [15]. We also paired the final
agent against a human player to get an intuition of its level of play in real
world.

4.1. General specifications. The format we are using for the games is heads-
up, no-limit with 100 chips as starting stack and 5 chips small blind. To
evaluate the agents, we use two metrics: average stack over a fixed number
of games and mbb/h (milli big blinds per hand) [15]. A mili big blind per
hand is 1/1000 of a big blind, if a player wins a big blind it gets 1000 points,
if a player wins a small blind it gets 500 points (and it loses the same amounts
for the negative case). So, a player that always folds is expected to lose at a
rate of 750 mbb/h — we obtain this figure by taking the mean over the big and
small blinds. Therefore, the intuition is that the values for a mbb/h metric
will usually stay in the interval [-750, 750]. This metric is a standard for Poker
research nowadays and many other studies ([10], [13], [14], [11]) make use of
it. It is regarded that a human professional player would aim for winnings of
50 mbb/h, at a minimum.

For comparison reasons, we use a couple of generic Poker players:

(1) A player that only calls (Callplayer)

(2) A player that chooses its actions randomly: 3 times out of 5 calls
and in the remaining it can equally raise with a random amount or
fold (Randomplayer)

(3) A player that chooses its actions based only on Monte-Carlo simula-
tions and not look-up tables (HeruristicMCplayer)

4.2. No-limit Texas Hold’em Poker. We want our self-play agent to be
unbeatable in the long run, so now an episode will be represented by a game
(which can have several hands) and not an only hand of play as we considered
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in Agent 2. Also, Agent 3 will receive an immediate reward of O for each
move and only at the end of a hand / end of a game, he will receive a non-
zero reward depending on how many chips it won. Thus, Agent 3 will not be
penalized immediately for a raise of 100 (all-in), for example, but if he loses
that hand, then he will receive a reward of negative 100 at the end of it, which
is very high. In this way, we tell the AI that it doesn’t matter what moves he
chooses as long as the reward at the end of the game is maximized.

We let the algorithm train for roughly 3 days straight (80 hours to be exact).
For compute, we used an NVIDIA Tesla T4 Workstation with 32GB of RAM
and a NVIDIA GTX 1050t with 16 GB of RAM. However, at inference, the
artificial players can be run on day-to-day hardware.

The algorithm descendance to Nash-Equilibrium can be observed in figure 2.
Parameters 1 and € were set to 0.1, 0.9, respectively, p was set to 0.92, max
length for Mgy to 200k and for Mgy, at 1m. We make one stochastic gradient
update of mini-batch size of 256 per network for every 64 steps and the target
network parameters were reset every 1000 updates.

The choice of the hyper-parameters (apart from p) was inspired by the NSFP
paper [10]. Little effort was put into experimenting with hyper-parameter
search because of time constrains and the fact that similar hyper-parameters
already existed within the NSFP context. However, note that even in this
paper (NSFP), the choice of hyper-parameters wasn’t clearly reasoned. The
architecture of the neural networks was not explored in this paper but it was
inspired by standard image classification neural networks.

In order for the copies of the same agent to be in Nash-Equilibrium, we have
to observe a convergence towards 0 of the difference in modulus in winnings
(mbb/h - aggregated over a batch of recent games) of the two players. This is
actually what we plot in figure 2 and as we can see, that measurement value
narrows down and starts to approach 0 after the 250’s batch. Note that we
calculate the mean of the absolute difference in winnings over the most recent
500 games for the y-axis in the figure. That’s why we have 300 iterations for
150k games.
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FIGURE 2. Training evolution (mbb/h) of Agent 3 (p= 0.92),
with hand-crafted metrics as input, in 3 days straight.
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FIGURE 3. Training evolution (mbb/h) of Agent 3 (p= 0.92),
without hand-crafted metrics as input, in 3 days straight.

There are obvious spikes that disturb the balance as we can see around the
100s and 200s iteration, this is because both copies are continuously learning
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by playing one another and it is possible that one learnt a clever strategy
faster and it is able to exploit that for a brief moment. Of course, one can
argue that huge spikes like these can appear again if we let it train for more
iterations. This is possible; however, it is unluckily - note that for the last
approximatively 50 iterations (or 25,000 games) the mean absolute difference
in mbb/h stayed steady in the range 0 to 20, which wasn’t the case until
then. Moreover, this range is good enough to call this an approximation of
the Nash-Equilibrium because if we recall the critical value 50 mbb/h that a
professional player usually aims to achieve in a match, everything below that
would still be considered indecisive.

We also trained the algorithm with raw data, without hand-crafted input
metrics, just like in NFSP [10], to see if the algorithm still converges without
any prior knowledge of the domain (figure 3). And if so, how does it compare
to the version above in which we are actually using solid prior knowledge of
the game?

After the same amount of training time, it seems the algorithm still converges
to approximate Nash-Equilibrium, but slower than our main proposed version.
We base this claim on the range of the y-axis values for the last 50 iterations.
It also concludes a little smaller number of games in 72 hours. This experi-
ment does seem to suggest that hand-crafted metrics do really help a self-play
algorithm train better.

4.2.1. Ezxperimenting with an expert Poker player. For this experiment, I've
invited a semi-professional human Poker player, Serban. He is very experienced
with the game, playing constantly on real high money stakes but lacks the
tournament play.

He played 56 hands against our agent, from figure 2, (during a 10-game
match) and the results were crushing. our agent recorded winnings of 241.07
mbb /h with the final score 7-3.

The human player said he was very impressed with the style of play of
our agent but he recognized some mistakes during the match regarding the
preflop stage of the game, which can be very costly during a professional match.
Mainly, the agent does not recognize very weak cards in the preflop, such as
7-8, at which point he should not call for a raise.

A temporary solution could be a Monte-Carlo search, which immediately
draws attention to very weak combinations of cards at any stage of the game.
Indeed, this version is still not perfect, or close to perfect, but training on
more iterations should strengthen our Al bot considerably. It is an important
victory, though, all things considered.

4.2.2. Comparison with NFSP and other artificial Poker players.
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Results using greedy + average strategy against Agent 2
Player No. No. Final Winnings
hours Games Average (mbb/h)
trained Played Stack
Agent3GP 6 250 117.83 263.37
Agent3GP 11 250 117.48 318.51
Agent3GP 17 250 117.1 338.82
Agent3GP 45 250 110 340.18
Agent3DP 11 250 120.71 318.93
Agent3DP 17 250 115.43 309.82
Agent3DP 45 250 99.2 192.55
Agent3GP 6 1000 118.45 248.35
Agent3GP 17 1000 116.54 356.17
Agent3GP 45 1000 111.9 361.08
Agent3DP 11 1000 116.42 299.03
Agent3DP 45 1000 102.3 234.22

TABLE 1. Results of different versions of Agent 3 vs Agent 2.

Since we want to test the effect of that better response search through
gradient play proposed in the theoretical part, we will analyze the behavior /
performance of an Agent 3 trained against a copy of itself taking into account
the policy 8, (p < 1) and the behavior performance of an Agent 3 trained
against a copy of itself without regard to the policy 8, (p = 1), as of Algorithm
1. We will therefore call these two agents: Agent3 GP, Agent3 DP, from
gradient play, discrete play respectively (which refers to the method used to
approximate the CDP derivative). Note that Agent3DP is a theoretically a
replica of NFSP.

We tested (table 1) multiple versions of these agents against Agent 2 (the one
that beat an amateur human player). In this match-up, it is easier to see
the difference between the two versions of Agent 3. In 250 matches played
against Agent 2, both variants won, but the one that uses better response
search exceeds the threshold of 320 mbb / h, and the situation improves when
we increase the number of iterations. For some reason, the performance of
Agent3DP decreases at 45 hours compared to less trained versions. This
trend remains consistent for the experiment with 1000 games as well, in which
Agent3GP reaches over 360 mbb/h in winnings but Agent3DP can’t cross
300mbb/h.

We need to mention that Agent3GP took 6h to train for 50k games, whilst
Agent3DP took 11h, that’s why we have no measurement for Agent3DP for
less than 11 hours. Note that Agent3GP consistently beats Agent 2, in both
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experiments (250 and 1000 games, respectively), this makes Agent 3 take the
status of the best agent developed so far, after only 6 hours of self-play!
We have repeated the experiments many times to assure the consistency of
the results, there is a statistical error of around +/- 4.5 in terms of average
stack and around + /- 40 for mbb/h for the 250 games case. These figures get
roughly halved for the more stable experiments with 1000 games played.

It is important to clarify that this does not necessarily mean that Agent3DP
is definitely worse; however, we have established in the introduction section
that such a benchmark will be used to draw interpretations. Agent 2 is the
previous best agent we have developed that can rival amateur human play
[15], so it is a decent artificial opponent for these 2 agents. It is good practice
to evaluate poker bots against each other as we can make use of a bigger
amount of sample games (compared to matches against humans) and we can
also compute statistical significance.

Out of curiosity, we paired up Agent3GP after 30 hours of training against
Agent 1. The results are not surprising at all, getting a win rate of 88.46%
and an average stack of 175 after 130 games against the expert system with
neural opponent modeling.

Results against Random_player in 250 games (average stack)

FIGURE 4. Results of some previous players against Ran-
domplayer compared to Agent 3; statistical error +/-4.5
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Next up, we compared the performance of Agent3GP and Agent3DP against
the Randomplayer. Both versions are the ones trained on 50k games - this is
an important threshold as both agents seem the overpower all the other ones
after crossing this limit.

In figure 4, we can observe the performance of most of the agents we have tested
during our study (against the Randomplayer). It is clear that both Agent3GP
and Agent3DP crush in the benchmarks, however, Agent3GP reaches almost
180 average stack in 250 games, which hasn’t been done by any of our agents
until now. This is another bonus point for the better response search technique
that Agent3GP uses.

What is very impressive here (figure 4) is the fact that we used the version of
Agent 2 that trained with Randomplayer, having as sole objective to defeat it.
Although Agent 3 had no interaction with Randomplayer, learning the game
of poker only through self-play, he achieves a performance almost identical
to that of Agent 2, even surpassing the performance of all the other deep
reinforcement learning agents, after just 17 hours of training!

No times taking each action

RAISE MAX
RAISE AVERAGE

RAISE MIN Agent3_DP

m Agent3_GP

i} 100 200 300 400 500 600 700 800 500 1000

FIGURE 5. Agent 3 play style in 250 games vs Randomplayer

This match-up was also an opportunity to study the differences between
Agent3GP’s style of play and Agent3DP’s. Agent3DP plays much safer and
is much more reserved about a raise, mainly choosing to wait through calls,
very rarely choosing to go all-in (figure 5). Instead, Agent3GP is much more
aggressive, bouncing back between calls (predominant action) and raises.
The proposed approach can be adapted to play a multi-player Poker game.
Although it may lose performance compared to the heads-up variant, we can
make a small change in the inputs that are fed to the predict function to
get the next action. The only input components that we use, relevant to a
multi-player game, are the average estimated opponent strength, which can
be recalculated with respect to the number of players through Monte-Carlo
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simulations and the opponent’s stack which can be replaced with the average
stack of all the opponents.

5. DISCUSSION AND FURTHER RESEARCH

Although the results looked pretty successful, it is very hard to correctly
assess the level of play of the best agents. Until we test them against a
professional player or top computer programs like Hyperborean, We can’t know
for sure that they are indeed at top human level. Furthermore, due to time
and hardware constrains, we couldn’t experiment on more iterations, we can
maybe descend even more closer to a Nash-Equilibrium in optimal conditions.
Improvements can also be made regarding the format of the game. All the
agents were trained in heads-up, no-limit, 100-100 starting stack with 5 small
blind formats, but for more general play, it is recommended to consider the
small blind as percentage of the starting stack.

6. CONCLUSIONS

We have showed the power and utility of deep reinforcement learning in
imperfect information games and we have developed an alternate new approach
to learning approximate Nash equilibria from self-play that does not use any
brute force search and only relies on the intuition provided by deep neural
networks. When applied to no-limit Hold’em Poker, training through self-play
drastically increased the performance compared to fictitious play training with
a normal-form singe-step approach to the game. The experiments have shown
the self-play agent to converge reliably to approximate Nash equilibria with
crude data and limited hand-crafted metrics as input and the final artificial
player can rival expert human play.
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