STUDIA UNIV. BABES-BOLYAI, INFORMATICA, Volume LXVI, Number 1, 2021
DOI: 10.24193/subbi.2021.1.07

LEADER ELECTION IN A CLUSTER USING ZOOKEEPER

MANUELA PETRESCU

ABSTRACT. This paper presents an algorithm for flexible and fast leader
election in distributed systems using Apache Zookeeper for configuration
management.

The algorithm proposed in this paper is designed for applications that
do not use symmetric nodes so they need a specialized election process or
for applications that require a more flexible approach in the leader election
process. The algorithm proposes a different approach as it allows assigning
prioritizations for servers in the cluster that are candidates to become a
leader. The algorithm is flexible as it takes into consideration during the
leader election process of the different server settings and roles, network
properties, communication latency or specific application requirements.

1. INTRODUCTION

In general, distributed systems are designed to use symmetric nodes - all
nodes have similar roles or responsibilities. However there are situations where
a specific type of processing must be done on a single node, critical processes
or there are situations when it is more efficient to do the processing on a single
node at a time. In this case, in order to ensure a high degree of availability
in case there is a failure of the leader node, any other viable node from the
cluster can and should assume the leader role. So far, most election algorithms
focused on efficiency in terms of size of communication between nodes and
maximum latency until a leader is elected. Also, many algorithms assign a
uniform role to each node during the election procession as each node can vote
either for itself or for any other node, in general leading to a broadcast type
of communication until a leader is elected.

In this paper we propose a different approach, whereby using a third party
coordination tool we can complete the leader election in fewer steps but relying
on a temporary election node.

Received by the editors: 25 September 2020.

2010 Mathematics Subject Classification. 68U99.

1998 CR Categories and Descriptors. C.2.4 [Computer-Communication Network]:
Distributed Systems— Distributed applications;

Key words and phrases. leader election, algorithm, cluster, ZooKeeper.

104

LEADER ELECTION IN A CLUSTER USING ZOOKEEPER 105

Why another algorithm?

The algorithms running over ZooKeeper subject raise interest as the scien-
tific community is still trying to find a solution to improve their consistency
and performance, as recently presented papers prove. In ’Strong and Efficient
Consistency with Consistency-Aware Durability’ (2020), ORCA algorithm is
proposed[1]; ZabAA and ZabAC algorithms were proposed in [6]; ZabCT al-
gorithm in [7]. ORCA is presented as a modified version of ZooKeeper that
implements CAD (Consistency-aware Durability) and also cross-client mono-
tonic reads. There are experimentally results that suggest that ORCA pro-
vides strong consistency while closely matching the performance of weakly
consistent ZooKeeper[1]. The fact that a communication network latency in-
fluences the leader election process is treated in other research papers that
implemented a prototype algorithm based on ZooKeeper in order to emulate
wide area systems in which the transmission delays can have a huge impact
over the efficiency[4]. Other research proposes a model based on watchers in
ZooKeeper and define a watch as a trigger that causes an event to be dis-
patched to the client whenever the watched resource changes its state. Due
to the fact that the processes are asynchronous and as a consequence, the
network latency gives rise to multiple possible orderings of network messages;
so the model was improved in order to enable consistency [2,3]. Another pro-
posal for a leader election algorithm for replicated services that are based
on a leader, updates propagation and client request was POLE (Performance-
Oriented Leader Election)[5], the algorithm selects the leader depending on an
application specificity. The specificity can be defined as a metric, for example
the recovery time or request latency can be used. The Pole algorithm was eval-
uated using ZooKeeper and the results showed that just optimizing the latency
of consensus does not translate into lower latency for clients. An important
conclusion from our results is that obtaining a general strategy that satisfies
a wide range of requirements is difficult, which implies that configurability is
indispensable for practical leader election [5].

However, none of the above algorithms relate to applications that have apart
from generic constraints (server capacity, network latency), other constraints,
for example the new leader should belong to a cluster that is geographically
located in a different cluster from the previous leader. This behaviour differ-
entiates it from the other algorithms, thus, the proposed approach is generic

and flexible.

2. APACHE ZOOKEEPER

Zookeeper is an open source Apache project, which was designed as a ser-
vice that propagates changes in the distributed systems using an improved,

106 MANUELA PETRESCU

reliable and easy to understand method. It offers a centralized service that pro-
vides configuration management capabilities, naming information, distributed
synchronization, group services, configuration information and leader election
receipts over clusters in distributed systems [10,11,14].

2.1. Leader Election Process in Zookeeper.

As soon as a new leader is elected, it begins to serve the client’s requests.
Each client request contains a command with data to be applied to the state
machine. The leader appends the command to its log and begins the notifi-
cation process for the other servers. After the log entry from the leader was
replicated on the majority of servers, the leader applies the command in its
state machine. In fact, the entry is committed and the leader sends an ac-
knowledge message to the client and informs the other read replicas servers
(followers). When a follower receives the acknowledge message regarding a
committed entry, it updates its own state machine based on that message.
The inconsistencies that might appear between the leader’s log and the fol-
lower’s logs are solved by pushing the server’s log version to the follower’s log
versions [8,9]. The protocol used in case of network errors is that the leader
should try indefinitely to send messages to the followers. Data consistency is
guaranteed by timers usage, so the followers logs will contain only valid data
[12].

In the following we present some definitions related to Zookeeper [15]:

e znode - The basic data structure used by Zookeeper. It can con-
tain some data, additional z-nodes children and several attributes
(creation time, version number, so on.)

e zk-session - A standard TCP session established between the client
and the Zookeeper server. The Zookeeper server permanently mon-
itors the session for interruptions or timeouts by sending periodical
probes. If the client fails to respond within the configured time-
frame, a session may be expired and all the ephemeral z-nodes are au-
tomatically removed. A connection is established with any Zookeeper
node from the cluster. If the chosen node fails, the connection mi-
grates to another available node. This is transparent for the client.

e watches - A zookeeper client can configure various watches on se-
lected z-nodes so it is informed of any change happening on these
z-nodes.

LEADER ELECTION IN A CLUSTER USING ZOOKEEPER 107

2.2. Consistency guarantees. According to the specification [15], Zookeeper
provides the following consistency guarantees:

e ”Sequential Consistency : Updates from a client will be applied
in the order that they were sent.

e Atomicity : Updates either succeed or fail — there are no partial
results.

e Single System Image : A client will see the same view of the
service regardless of the server that it connects to. i.e., a client will
never see an older view of the system even if the client fails over to
a different server with the same session.

e Reliability : Once an update has been applied, it will persist from
that time forward until a client overwrites the update. This guaran-
tee has two corollaries:

— If a client gets a successful return code, the update will have been
applied. On some failures (communication errors, timeouts, etc)
the client will not know if the update has been applied or not.
We take steps to minimize the failures, but the guarantee is only
present with successful return codes.

— Any updates that are seen by the client, through a read request
or successful update, will never be rolled back when recovering
from server failures.

e Timeliness: The clients view of the system is guaranteed to be up-
to-date within a certain time bound (on the order of tens of seconds).
Either system changes will be seen by a client within this bound, or
the client will detect a service outage.”

By providing the above mentioned consistency guarantees Zookeeper can be
used to build higher-order primitives such as queues, locks, two-phase commit
protocols and leader elections for other solutions.

2.3. Leader election in ZooKeeper using SEQUENCE—EPHEMERAL
flags algorithm. In
ZooKeeper documentation, the proposed leader election algorithm is based on
the usage of two flags called SEQUENCE |[EPHEMFERAL. The flags are used
when creating znodes that represent ”proposals” of clients. The ephemeral
znodes exist as long as the session that created the znodes is active; when
the session ends the ephemeral znodes are deleted. For the sequence znodes:
based on a request issued to Zookeeper when creating a z-node, Zookeeper can
append a monotonically increasing counter to the end of path. The appended
counter is unique to the parent znode [16].

108 MANUELA PETRESCU

The basic idea is to have a znode, named ” /election”, and that each zn-
ode creates a child znode ” /election/guid-n_” with both flags Sequence and
Ephemeral. The sequence flag is used to automatically append a sequence
number greater than any one number previously appended to a child of ” /elec-
tion”. The implications are that the process that created the znode having
the smallest appended sequence number is the leader node [13].

Additionally, the leader failure case must be treated in order to insure the
selection of a new node to become a leader. The simplest solution is to have
all application processes checking constantly the current smallest znode, and
in case the smallest znode is not replying checking if they should be the new
leader. However this approach causes an undesired effect as all the processes
receive a notification after the leader has failed, and they initiate the process
to obtain the current list of children nodes from ” /election”. The number of
the servers/znodes is directly proportional with the number of operations that
ZooKeeper servers have to process. The optimization used in order to avoid
this scenario is to check the next znode down on the znodes sequence. The
algorithm written in pseudocode is the following [13]:

Create znode z with path "ELECTION /quid-n_" with both SEQUENCE and
EPHEMERAL flags;

Let C be the children of "ELECTION”, and i be the sequence number of z;

Watch for changes on "ELECTION/quid-n_j”, where j is the largest se-
quence number such that j j i and n_j is a znode in C;

Upon receiving a notification of znode deletion:

Let C be the new set of children of ELECTION;

If z is the smallest node in C, then execute leader procedure;

Otherwise, watch for changes on "ELECTION/quid-n_j”, where j is the
largest sequence number such that j <i and n_j is a znode in C;

Although we understand that this algorithm is just a basic example and it
was not designed to be used directly in production as is, we believe that it is
useful to analyse some of the shortcomings of this proposed algorithm and to
provide an improved alternative.

Based on our experience the algorithm proposed by Zookeeper team has the
following issues:

e No flexibility regarding leader election - the oldest node alive, with
the lowest sequence is always elected as leader.

e The fact that a leader is elected does not always translate into that
node actually becoming a leader. Depending on application the tran-
sition to leader status can be an elaborate process which may last

LEADER ELECTION IN A CLUSTER USING ZOOKEEPER 109

longer or it may fail. Only this transition has completed the leader
is actually active and this moment should be used to notify the other
nodes that the election process has been completed.

3. ALGORITHM DESCRIPTION

As the previous paragraph detailed, most of the election algorithms in dis-
tributed systems were focused on efficiency in terms of size of communication
between nodes and maximum latency until a leader is elected. However the
efficiency in the election process does not guarantee the efficiency of the sys-
tem during the processing phase. Moreover, many algorithms assign a uniform
role to each node during the election process, the nodes are equals and each
node can vote either for itself or for any other node. This approach is leading
in general to a broadcast type of communication until a leader is elected. In
this paper we propose a different approach, in which the nodes are assigned
different priorities, their vote can have a different impact and weight. The
algorithm uses Zookeeper as a third party coordination tool; using this tool,
the leader election process can be completed using node’s predefined priorities
and can provide additional guarantees regarding the election process.

3.1. Node roles. Although, in general, all the nodes in the cluster can be
identical, they perform various roles during the operational lifetime.

e Election node - This node runs the election process.
e Leader node - This node performs some critical activity which must
be done on a single instance at a time.

These roles are dynamic and transitory, meaning that, in general, there is no
static configuration regarding which node is a leader or an elector node. Any
valid node can assume these roles.

3.2. Zookeeper data structure. In order to manage the cluster configura-
tion and the election process the algorithm uses three parent znodes:

e nodes - contains one ephemeral znode for each active node. Each
znode contains more detailed information about each cluster member.
e election - contains one znode with emphflags ephemeral [sequential
for each active node. Used to select the election node, by default the
node with the lowest sequence.
e leader - contains only two znodes:
— elected - created by the election algorithm, identifies the next
leader candidate
— current - created by the leader candidate

110 MANUELA PETRESCU

3.3. Leaders. Both solutions use the concept of Leaders for long-term, steady
operations. This decision is in contrast with Paxos family of algorithms where
each operation is voted by a majority of nodes, a method which requires
more round-trip communications between nodes. Using a master node, on the
other hand, involves a much simpler communication between the leader and
its followers. The leaders are elected using a consensus algorithm between the
candidates or the up-to-date replicas.

3.4. Process startup. First of all, during startup each process must register
in the cluster by connecting to a common Zookeeper cluster. This involves the
following steps:

e Connecting to Zookeeper which starts a zk-session.

e Creating a znode under a certain path with node information (nodeld).
This z-node is ephemeral, meaning that is automatically removed
when the zk-session times out. This node is not used in the election
process, but it only contains some useful instance information such
as IP address, location (site) and possible other info.

e Creating a znode in order to register as a potential election node.
This node is created with a sequential flag, meaning that Zookeeper
will allocate a unique, sequential id to each node. The data value for
this node is also the nodeld. This is used to select the election node
- the node which will run the election process.

e Registering Zookeeper watches on cluster znode, election znode and
leader znode.

3.5. Election process. The election process is triggered by any change in
the list of znodes under the election path. Every time a new node is added to
the cluster or there is a failure and one node stops, the associated zk-session is
timed-out and the ephemeral znodes created by this process are removed from
the Zookeeper repository. These changes are notified immediately to all the
remaining nodes. By reading the remaining election z-nodes and comparing
its own nodeld only the oldest process alive (with the lowest sequence assigned
by Zookeeper) will execute the election process. This node will assume the
temporary role of elector node.

The election process can be designed to be highly flexible by assigning differ-
ent priorities to different nodes. Some of these election strategies are discussed
in the next section. But, in all cases, at the end of the election process the
algorithm chooses one candidate as the next leader. There are cases when this
candidate is the actual leader because a non-leader node exited the cluster, so
nothing else happens and the process stops here.

LEADER ELECTION IN A CLUSTER USING ZOOKEEPER 111

At the end of the election process, if the elected node is different from the
current leader, we create a new elected znode with the nodeld of the new
leader candidate.

From here the next processing happens in parallel as all the nodes also
monitor the znodes under the leader path:

The existing leader node: For it, the presence of a new elected leader
may mean that it must voluntarily give up the leader role. At the end of this
process it deletes the leader znode. A leader or candidate node monitors the
Zelected znode” and if it was replaced by a different z-node it must immediately
stop the leader role or the leader transition process.

The elected leader node: When a node detects the presence of a new
elected zone which matches its own id, it automatically starts a process to
become a leader. But, before that, it announces its intention to become a
leader by creating the leader znode with a specific status - PROGRESS.
If the leader znode already exists - maybe because the existing leader has
not removed it yet, then this creation is retried after a short delay. After
successfully creating the leader znode it executes the required procedures and
after that it updates the leader znode with status READY, meaning that the
cluster has a new leader which is ready for processing.

3.6. Leader transition watchdog. Additionally, for improved robustness of
the solution we can include a leader transition watchdog. If an elected leader
does not manage to become leader in X seconds, the election node will run
the algorithm again by excluding the previously selected leader.

3.7. Additional considerations. The election algorithm runs in the call-
back thread used by Zookeeper client library for notifications, which means
that the process is not re-entrant. If the cluster configuration changes while
the election process is running, the process simply runs again when the next
notification is delivered. This implies that an elected node must always be
ready to abort the leader transition at any time, even if just started.

3.8. Principal methods. A. Node startup:

Node N connects to Zookeeper and creates a new zk-session

Create znode (flags=EPHEMERAL) as /cluster/nodes/<nodeld>

Create znode (flags=EPHEMERAL|SEQUENTIAL) as /cluster/election/<nodeld>
Create watches on cluster /cluster/nodes/, /cluster/election/, /cluster/leader/
Start election process

L ol e

Election process is also triggered when any node under /cluster/election/

112 MANUELA PETRESCU

changes, which means when one node disconnects or when a new one re-joins
the cluster.

B. Election:

1. Cluster configuration under /cluster/election changed
2. All nodes receive notification from Zookeeper
3. EachNodeN

3.1. Listfirst node under /cluster/election

3.3. elseexit
4. Only election runs the following process

leader)

4.2. IfNL == CL (current leader) then
4.21. stop the process;

4.3. else

4.3.21. CL -» processExistingLeaderNode()
4.3.2.2. NL -> processElectedLeaderNode()

3.2. If N == nodeld continue election process; N = Election Node EN

4.1. Use configured election algorithm to elect a leader node - NL (new

4.3.1. Create or Update /cluster/election/electedNode = NL

4.3.2. The following methods run in parallel on different nodes

4.3.2.3. EN (election node) -> runTransitionWatchdog()

C. ProcessExistingl.eaderNode

1. If CL !=/cluster/election/electedNode
2. Stop the processes it coordinates as leader
3. Delete the leader znode: /cluster/leader

D. ProcessElectedLeaderNode(candidate znode)

1. do
1.1. create /cluster/leader znode (status=PROGRESS)
2. while SUCCESS; // if FAIL (old znode still present, wait and retry)
3. execute leader takeover procedures
4. change leader znode status from PROGRESS to READY

E. RunTransitionWatchdog

1. Mark time when leader election started

2. After x seconds, if process is not finalized (NL== /cluster/leader)
2.1. exclude previously selected leader
2.2. force new leader election

LEADER ELECTION IN A CLUSTER USING ZOOKEEPER 113

3.9. Election strategies or policies. The most simple election strategies
would be to simply pick the first available node, based on their nodeld order
or, alternatively, to use a round-robin method.

Another possibility is to assign all the nodes to different sites or data centers,
based on their geographical location. For various reasons, nodes belonging to
a particular site are preferred over others. This site preference or priority is
not static, but it change dynamically during normal operation:

e If some critical error disables an entire site, for instance due to failure
of some shared network or storage equipment. In these cases, even if
there are nodes available in the primary site, it may be better/safer
to move the processing to the backup site.

e If there is a planned maintenance operation which impacts all the
nodes in site, the administrator can simply move the leader to an-
other site by temporarily assigning a higher priority to the backup
site.

The election algorithm can be configured to support multiple strategies and
pick the most appropriate one based on the exact circumstances when the
election is run.

4. CONCLUSION AND FUTURE WORK

There are applications that have specific rules, applications that are pro-
cessing sensitive data and for which a cloud installation is out of discussion.
For contingency reasons, the servers are split into clusters located in different
places and have additional constraints such as: the new leader should belong to
a different cluster from the previous leader. None of the mentioned algorithms
is enough flexible to allow this approach. All the algorithms have a prede-
fined standard set of constraints and they adjust the election process and the
algorithm behavior based on the same parameter or set of parameters. Our
algorithm permits to set different priorities for the znodes, influencing the
chances to be elected and offering a wider set of methods to customize the
election process.

The proposed algorithm was designed to offer a lot of flexibility regarding
the criterias used in a leader election process, so it maps on a range of ap-
plications that require a customized approach. Even if it adds a new layer
of processing, it allows to prioritize the servers in the election process, thus
enabling a high degree of customization for each application type, taking into
account not only different metrics such as latency, but also requirements such
as the locations of the leader server. There are critical applications that re-
quire a DR site (disaster recovery site), where the nodes should replicate the

114 MANUELA PETRESCU

information posted and processed in the live site. For these types of applica-
tions, the leader election process has other constraints: in case a leader fails,
the processing should be automatically moved to the other site and the new
leader should be selected as one of the nodes from that site. The proposed
algorithm addresses these requirements and can also accommodate other ap-
plication’s specific requirements.

Another benefit added by our proposed algorithm is that the leader transi-
tion happens in two stages: first the new leader is notified and second, only
after the successful completion of the transition process the new leader an-
nounces that the new leader is ready to receive requests. This ensures that if
the leader transition does not proceed as planned, the process can be retried
by another candidate.

The algorithm can be easily extended into a multi-tenant operation, where
there are multiple leaders at the same time, one for each critical resource.
This can be achieved simply by using the Zookeeper znode hierarchy which
is modeled like a tree. In such a multi-tenant operation we would have one
dedicated data structure as described in the Process Startup phase for each
tenant, so that each tenant runs completely isolated from others.

Another possibility is to slightly change the algorithms to support more than
one leader at the same time for the same resource. Such an approach is similar
to a configuration with multiple Active and Spare nodes (or primary/backup
architectures) - where spare nodes are not actually stopped, but idle and
waiting to resume processing or take over the leader/active node as required.

The future work will consist in developing and running a set of tests in order
to check how the system will behave under heavy loading and also to try to
find out if there are vulnerabilities in the proposed algorithm.

REFERENCES

[1] Artho, C., Banzai, K., Gros, Q., Rousset, G., Ma, L., Kitamura, T., Yamamoto, M.,
Model based testing of Apache ZooKeeper: Fundamental API usage and watchers. Soft-
ware Testing, Verification and Reliability, 2019, DOI:10.1002/stvr.1720

[2] Artho C, Gros Q, Rousset G, Banzai K, Ma L, Kitamura T, Hagiya M, Tanabe Y,
Yamamoto M. Model-based API testing of Apache ZooKeeper. Proc. 2017 IEEE Int.
Conf. on Software Testing, Verification and Validation (ICST 2017): Tokyo, Japan, 2017;
pp. 288-298.

[3] Becker D., Junqueira F., Serafini M., Leader Election for Replicated Services Using
Application Scores.,2011, DOI 7049. 289-308. 10.1007/978-3-642-25821-3 15.

[4] EL-Sanosi I.,Ezhilchelvan P..Improving the Latency and Throughput of ZooKeeper
Atomic Broadcast, Imperial College Computing Student Workshop, 2018, pp. 3:1-3:10,
ISBN 978-3-95977-059-0, DOI 10.4230/0OASIcs. ICCSW.2017.3

[5] EL-Sanosi I. , Ezhilchelvan, P., Improving ZooKeeper Atomic Broadcast Performance by
Coin Tossing, Lecture Notes in Computer Science, 2017, pp.249-265. DOI1:10.1007/978-
3-319-66583-2_16

LEADER ELECTION IN A CLUSTER USING ZOOKEEPER 115

[6] Ganesan A., Alagappan R., Arpaci-Dusseau A., Arpaci-Dusseau R., Strong and Efficient
Consistency with Consistency-Aware Durability, 18th USENIX Conference on File and
Storage Technologies, Santa Clara, CA, 2020, ISBN 978-1-939133-12-0

[7] Hunt P, Konar M, Junqueira F, Reed B. ZooKeeper: Wait-free Coordination for Internet-
scale Systems. Proc. USENIX Annual Technical Conf., USENIXATC, USENIX Associa-
tion: Boston, USA, 2010; 11°11. DOI:doi=10.1.1.178.5750

[8] Junqueira F., Reed B. ZooKeeper: Distributed Process Coordination. O’Reilly, 2013,
ISBN-13: 978-1449361303

[9] Medeiros A., ZooKeeper’s atomic broadcast protocol: Theory and practice, Helsinki
University of Technology, 2012, DOI: 10.1.1.473.1373

[10] Medeiros A., ZooKeeper’s atomic broadcast protocol: Theory and prac-
tice,2012, retrieved from http://www.tcs.hut.fi/Studies/T-79.5001 /reports/2012-
deSouzaMedeiros.pdf

[11] Petrescu M., Replication in Raft vs Apache Zookeeper, Advances in Intelligent Systems
and Computing, 2020, ISSN 2194-5357

[12] Petrescu M., Petrescu R., Log replication in Raft vs Kafka, Studia Universitas Babes-
Bolyai, 2020, DOI 10.24193/subbi.2020.2.05

[13] Santos, N. H., Andre M.S., Latency-aware Leader Election.,2009, DOI
10.1145/1529282.1529513.

[14] ZooKeeper 3.6 Documentation / ZooKeeper Recipes and Solutions, 2020, retrieved from
https://zookeeper.apache.org/doc/r3.6.2 /recipes.html

[15] ZooKeeper 3.6 Documentation / ZooKeeper Programmer’s Guide, 2020, retrieved from
https://zookeeper.apache.org/doc/r3.6.2/zookeeperProgrammers.html

[16] ZooKeeper 3.6 Documentation / The ZooKeeper Data Model, 2020, retrieved from
https://zookeeper.apache.org/doc/current /zookeeperProgrammers.html#Ephemeral+Nodes

DEPARTMENT OF COMPUTER SCIENCE, FACULTY OF MATHEMATICS AND COMPUTER SCI-
ENCE, BABES-BOLYAT UNIVERSITY, 1 KOGALNICEANU ST., 400084 CLUJ-NAPOCA, ROMA-
NIA

Email address: mpetrescu@cs.ubbcluj.ro

