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ABSTRACT.	‐	Effect	of	Down‐Hole	Lithological	Variation	on	Water	Bearing	
Capacity	of	Some	Boreholes	in	Ilorin,	Nigeria.	The paper attempts to explain 
the effect of downhole lithological variation on water bearing capacity of 
some boreholes in Ilorin Nigeria. Specifically, the study examined the 
lithological characteristics of the boreholes, assessed the variability in weathered 
overburden and analyzed the inter-relationships between lithology, hydrology 
and topography of the boreholes. Data used were extracted from twenty (20) 
borehole logs collected from the archive of Lower Niger Basin Development 
Authority in Ilorin. Information extracted from the borehole logs are: the 
number of lithological units intersected by each of the borehole and their 
depths, the nature of geological materials making up the lithological units and 
their moisture conditions. Information on coordinates and topographic heights 
of the boreholes are not given on the logs and those were collected from the 
field personally by the researcher using handheld GPS (Garmin GPS Channel 
76 Model). The collected data were analyzed using descriptive statistics. 
Results reveal nine downhole lithological units with loamy and lateritic soil 
making up the first layer of lithology in 95% of the boreholes. Thickness of the 
top soil and the saprolite overlying the bedrock, has mean values of 4.2m and 
11.3m respectively. Depth to water in the borehole ranged between 24.7 and 
140m and with a mean value of 55.9m. Three (3) of the boreholes have two 
lenses of aquifer while the remaining seventeen (17) have one aquifer lens 
each. The three (3) boreholes with two aquifer lenses have their minor aquifers 
located within the saprolite. The main aquifer in most (65%) of the boreholes 
is located within the fractured basement while the remaining (35%) boreholes 
have their main aquifer located in the weathered basement. Correlation analysis 
revealed topographic elevation as one of the drivers of hydrology in the study 
area.  
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INTRODUCTION	
 
Groundwater is water existing in the voids of geological formations, in 

the pores and fissures of rocks below the surface of the Earth. It represents 
0.58% of the total water resource available in nature and accounts for about 21% 
of global freshwater reservoirs (Monroe and Wicander, 2005). Okeola and 
Salami (2014) regard it as an important feature of the environment and an 
invisible part of the hydrological cycle. Groundwater remains the preferred 
source of drinking water globally (Guppy et al., 2018) and it makes a critical 
contribution to the progressive realization of the human right globally. According 
to Carrard et al. (2019), its development is considered a key strategy for 
addressing gaps in service delivery especially in developing countries where 
2.1 billion people lack access to safely managed water and 844 million lack 
basic water (Velis et. al., 2017).  

The importance of groundwater in meeting potable water demand in 
both rural and urban settlements in Nigeria cannot be over emphasized. This 
is due to its characteristics of high chemical and bacteriological quality at source, 
availability in-situ and its relatively low cost of development and maintenance 
of its equipment. Groundwater is often considered more reliable than surface 
water and more accessible because it can be directly exploited by users (Margat, 
2013). According to Williams et al. (2014), groundwater could offer a potential 
source of water to supplement surface water sources or be used as a sole 
source supply for small communities and industries.  

Apart from the aforementioned qualities of groundwater, the pathetic 
situation of public water supply through pipes in Nigeria has further endeared 
groundwater usage to many private individuals and some public agencies. Sule 
et al. (2016) observed that most settlements in Nigeria do not have access to 
improve water supply through pipe and where such facility exist according to 
them, they are either malfunctioning or broken down. The World Bank Group 
report as presented by Andres et. al. (2018) linked the non performance of water 
agencies in Nigeria to poor design, implementation and high cost. The report 
observed that the operating cost of most water agencies in Nigeria is too high 
because many of the agencies rely on diesel generators to power equipment 
since power supply in the country is erratic.  

Although a number of studies such as Parameswari and Padmini (2018), 
Maity and Mandal (2019) and Pande et al. (2019) have reported the potential 
zones of groundwater as being generally determined by climate, landscape 
and environmental parameters of relief, slope, soil, land use/ land cover, etc., 
groundwater occurrence in any region is also influenced by geological and 
geomorphic conditions which ultimately control yields (Adimalla, 2020). Because 
of this, exploration for groundwater in regions underlain by crystalline basement 
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rock such as Ilorin, the study area in this investigation, can be quite challenging. 
More than 90 percent of the area is underlain by crystalline basement rocks of 
Precambrian age (Oyegun, 1983).  

Crystalline rocks belong to the category of hard rocks that are virtually 
devoid of any primary porosity. The occurrence of groundwater in this rock 
type according to Wijesekera (1984) is dependent on the development of 
secondary porosity which might have resulted from structural deformations, 
weathering dissolution and mass movements. According to Gustafon and Krasny 
(1994), hydraulic conductivity in the fractured zone of the basement complex 
rock is spatially variable as the nature of the fractures and faults within the 
rock can make borehole yields differ by several orders of magnitude within 
the same rock unit and often within short distances.  

A detailed study of the effect of lithological characteristics on the 
occurrence of groundwater is crucial to the development and management of 
water resources; this especially germane in basement complex area where 
groundwater occurrence exhibits great variability. Specifically, the study examined 
the lithological characteristics of some boreholes, assessed the variability in 
weathered overburden and analyzed the inter-relationship between lithologic, 
hydrologic and topographic parameters in the study area.  

 
	
THE	STUDY	AREA	
	
Ilorin, the capital city of Kwara State, Nigeria (fig. 1), is the study area 

in this investigation. The city was chosen for investigation for two reasons. 
The first reason is due to the increasing reliance on groundwater by residents 
of the city for various activities because of the failure of the public water 
supply agency in meeting demand. The second reason is due to the high failure 
rate of boreholes constructed in the city. Studies such as Ifabiyi and Ashaolu 
(2013), Aderibigbe et al. (2008) and Ijaiya (2000) have earlier investigated 
the problem of water supply in the city. Ilorin is situated in the north-central 
part of Nigeria and located between latitudes 8˚23' and 8˚34' North of the 
Equator and between longitudes 4˚29' and 4˚42' East of the Greenwich 
Meridian. Wet season is usually experienced in the region between the months 
of May and October while dry season is between November and April. The 
annual mean rainfall for the area is 1,200mm (Olaniran, 2002) and this 
exhibits double maximal pattern with peak periods in the months of July and 
September. Average relative humidity in the area is 79.7% and this varies 
seasonally. 
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Fig.	1.	Map of Ilorin with Kwara State and Nigeria as Insets.	

Source:	Kwara	State	Town	Planning	Authority	(2021)	

 

Ilorin is underlain by Precambrian basement complex, comprising mostly 
gneiss granite, schist and undifferentiated metasediment rock (Azeez, 1972). 
The overburden is composed mainly of clay, sand and silt (Areola, 1978). 
Substantial area of the city is also underlain by sedimentary rocks which 
contain laterites and alluvial deposits (Oyegun, 1983). Precambrian igneous 
and metamorphic rocks of basement complex are neither porous nor 
permeable except in places where they are deeply weathered or fractured 
(Clark, 1985). Lithological logs for the region as analyzed by Adelana and 
Olasehinde (2004) revealed that weathering is fairly deep and rocks have 
been jointed and fractured severely at between 30-68m below the surface. In 
some parts of the study area groundwater is difficult to access, especially 
during the dry season (Aderigbe et al., 2008). The city is drained mainly by 
River Asa which flows from South to North. Tributaries of River Asa in Ilorin 
are rivers Aluko, Okun, Osere, Agba, Atikeke and Amule. These rivers exhibit a 
seasonal flow pattern, with the minor streams drying up during the dry season 
(Oyegun, 1983). 
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METHODS	
	
Data used in this study were obtained from lithological logs of twenty 

(20) drilled boreholes obtained from the Lower Niger Basin Development 
Authority Office in Ilorin. The locational positions of the boreholes are fairly 
distributed in the study area (fig. 2). Information obtained from the borehole 
logs include the number of lithological units intersected by the boreholes and 
their depth, the nature of geological material making up each lithological unit 
and their moisture condition. Information on coordinates and topographic 
height of the boreholes are not given on the logs and these were collected 
from the field personally by the researcher using hand held GPS (Garmin GPS 
Channel 76 Model). 

Fig.	2.	Map of Ilorin showing Location of Studied Boreholes.	
Source:	author’s	fieldwork	(2021)	

Descriptive statistics were used to analyze the data. The means were 
used to measure the central location while the range, standard deviation, 
coefficient of variation were used to measure the degree to which the data 
collected deviate from average. Correlation matrix was generated to establish 
the inter-relationship between the hydrology (depth to water and borehole 
depth), lithology (number of lithological units and depth of regolith) and 
topography (elevation) of the study area. 
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RESULTS	AND	PRESENTATION	
	
Location	and	Hydrogeological	Characteristics	of	the	Studied	Boreholes	
	
Table 1 presents the locational position of the studied boreholes, their 

elevations, depths and number of lithological units penetrated. 

Table	1:	Location and Hydrogeological Characteristics of the Studied Boreholes	

Lithological units: ll = Loose laterite, hl = Hard laterite, fwb = Fairly weathered basement, 
wb = Weathered basement, bs = Basement rock, sc = Sandy clay, s = Silt,  

l = Laterite, ls = Loamy Soil, c = clay 
Source:	Author’s	Fieldwork,	2021.	

S/N	 Location	Site	 Longitude	(O0)	
Latitude
(O0)	

Ground	
surface
elevation
(m)	

Depth	of	
wells	
(m)	

Depth	to	
water	

table	(m)	

Lithological	
Units	

Penetrated	

1	 Ojaoba	 8029’13” 4029’39” 297 53.00 45.0 ll,hl,bsfwb,wb,bs 

2	 Budo	Fulani	 8028’19” 4036’56” 354 100.00 85.0 ll,hl,sc,s,bs,fb 

3	 Apata	
Yakuba	 8032’55” 4039’04” 365 96.60 74.4 ls,l,c,bs,wb 

4	 Alalubosa	 8029’35” 4034’18” 287 58.00 50.0 ll,hl,bs,fwb,wb 
5	 New	Market	 8029’24” 4032’16” 294 30.70 24.0 ls,l,c,bs,wb 

6	 Maternity	 8026’05” 4035’38” 348 89.00 79.0 ls,hl,bs,wb 
7	 Ganmo	 8025’08” 4036’03” 360 150.00 140.0 ls,l,s,bs,fb 
8	 Okaka	 8028’22” 4035’26” 329 70.00 61.0 ls,l,sc,bs,fb 

9	 Gaa‐Akanbi	 8027’47” 4034’48” 324 31.00 25.0 ls,l,s,bs,fb 
10	 Tanke	Bubu	 8028’35” 4036’53” 346 40.70 35.7 l,c,s,wb,bs,fb 
11	 Mandate	 8028’18” 4030’07” 355 40.00 31.5 c,sc,c,s,fb 

12	 Oke	Andi	 8031’06” 4036’20” 284 64.40 57.2 ls,bs,fb 
13	 Fate	 8029’16” 4036’02” 340 65.00 55.0 ls,c,bs,fb,bs,fb 
14	 Zango	 8030’44” 4034’28” 275 38.00 31.0 ll,hl,bs,wb 

15	 Sobi	 8032’30” 4033’25” 303 85.00 75.0 ls,ll,hl,bs,fb 
16	 Odota	 8027’19” 4031’03” 319 55.00 50.6 l,sc,bs,fb,bs 

17	 Balogun	
Fulani	 8029’49” 4033’11” 311 42.00 35.0 ls,sc,bs,wb,fb 

18	 Fufu	 8029’35” 4034’17” 286 48.70 41.0 ls,cs,bs,fb 
19	 Osere	 8028’01” 4032’14” 310 35.00 33.5 ls,c,wb,br 
20	 Airport	 8026’38” 4030’28” 331 100.00 91.0 ls,l,s,bs,fb,bs 

	 Sum	   6418 2030 1118  

	 𝒙ഥ	   320.9 101.5 55.9  

	 SD	   24.04 68.58 27.72  

	 CV	   7.49 67.6 40.64  
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The topographical height of the studied boreholes range between 294 
and 365m and with mean value of 320.9m. The coefficient of variation of 7.6% 
reveals no great disparity in topographical heights of the studied boreholes. 
Borehole depth range between 31 and 150m with a mean value of 101.5m and 
a coefficient of variation of 67.6%. This result shows that well depth is highly 
variable in the study area. Reason for this may not be unconnected with the 
nature of fracturing and weathering of the rock in the area.  

Although the weathering profile of the study area can broadly be classified 
into three layers of top soil, saprolite and bedrock (Oluyide et al., 1998), a total 
of nine (9) different lithological units were penetrated by the twenty (20) 
boreholes investigated. These lithological units are loose laterite, hard laterite, 
fairly weathered basement, weathered basement and basement rock. Others 
include sandy-clay, silt, loamy soil and clay. The number of lithological units 
penetrated by each of the boreholes however ranged between three and six. 
While boreholes located in areas such as Tanke Bubu, Oja Oba, Budo Fulani, 
Balogun Fulani and Airport intersected the highest number of lithological 
units of six, boreholes located in Apata Yakuba, New Market, Ganmo, Okaka, 
Gaa-Akanbi, Mandate, Sobi, Odota and Balogun Fulani areas intersected five 
lithological units. Areas such as Zango, Fufu, Osere, and Maternity intersected 
four units and the borehole located in Oke Andi intersected the lowest number 
of lithological units of three.  

The lithological succession in the study area as obtained from the 
borehole logs shows that loamy soil make up the first layer of the lithology in 
twelve (60%) of the boreholes, lateritic material in seven (35%) and clay in 
the remaining one (5%). Nature of top soil is very important in influencing 
infiltration process. Surface water is lost to the underground aquifers through 
the top soil (direct recharge) especially in places where the overburden has 
been weathered. The thickness of the top soil which has a mean value of 4.2m, 
is greater than 5m in four (20%) of the boreholes while it is less than 5m in 
seven (35%) of the boreholes. 

The first lithological units in the boreholes are generally underlain 
either by clay or lateritic material. The nature of these two materials (clay and 
laterite) have resulted in the development of perched water table in four of 
the boreholes which are located in Gaa-Akanbi, Tanke Bubu, Adewole and 
Osere. Studies by Wright (1992) and Adelana and Olasehinde (2004) have 
earlier identified clay and laterite as the two main materials that can be found 
in the first two lithological sequences above crystalline basement rocks in 
tropical regions. The British Geological survey recognized these first two units 
in lithological sequences of weathering profile in crystalline basement rocks of 
tropical regions as the collapse zone (Gilespie et al., 2011). 
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The thickness of the saprolite in the studied boreholes ranged between 
5 and 27.8m and with a mean value of 11.3m. Five (25%) of the studied 
boreholes have two aquifer lenses with the first (minor) lens located within 
the saprolite. This is understandable, because the saprolite is the weathered 
layer and one of the water bearing zones in basement area; according to 
Akanbi (2018), the saprolite is characterized by high porosity, and when the 
bedrocks are not fractured, it is the only alternative water bearing zones in 
basement area. LeGrand (1989) identified the saprolite as being characterized 
by low permeability and high porosity and thus functions as a reservoir that 
feeds water into fractures within the underlying bedrock.  

According to Carrier et al. (2008), the most productive zone of groundwater, 
especially in basement complex area, is the lower part of the saprolite and the 
upper part of the fractured bedrock; with two parts generally complementing 
each other in terms of permeability and storage. The lower part of the saprolite 
is more productive in terms of groundwater because the upper part is usually 
more clayey and thus, have relatively low permeability and specific yield when 
saturated. Permeability in saprolite according to Wright (1992), commonly 
increases at lower levels because of lesser development of secondary clay 
minerals. For good ground water productivity, Akanbi (2018) observed that 
the saprolite should be more sandy to gravelly especially in areas underlain by 
unfractured and unweathered basement rock.  

Depth to water in the studied boreholes range from the 24.7m observed 
in New Market to 140m observed in Ganmo. The mean depth to water is 
55.9m. Adelana et al. (2008) have earlier observed that only few boreholes tap 
water below 60m in the study area. The 40.64% coefficient of variation on 
depth to water shows that the variability of water bearing capacity of the 
underlying geology in Ilorin is fairly high. Omoribola (1982) and Azeez (1972) 
have earlier identified crystalline basement rock which underlain the study 
area as poor aquifer because of its zero level of porosity and permeability. 

The main aquifer in thirteen (65%) of the investigated boreholes is 
located within the fractured basement while the remaining seven boreholes 
(35%) have their main aquifers located within the weathered basement. Akanbi 
(2016) observed that sustainable groundwater supply is best guaranteed when 
the bedrock in basement region is fractured and there are good connections 
between the fractured rock and the weathered layer. According to Oladunjoye 
et al. (2019), groundwater yield in fractured basements is more productive 
than in weathered basements because they are more porous and permeable 
than weathered basements that consist of clay material. 
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Variability	of	Weathered	Overburden	and	Implications	on		
Groundwater	Location	
	
Table 2 shows the variability in lithology of the twenty (20) studied 

boreholes. The table revealed weathered and fractured rocks as the two main 
aquifer units in the study area. Studies such as Srinivasa et al. (2000), Chiton 
and Foster (1995), Wright (1992), Wright and Burgess (1992) have earlier 
identified joints, faults, fractures and weathered zones as sources of groundwater 
occurrence in areas underlain by basement complex rocks. 

Table	2:	Boreholes Logs for the Studied Wells	

S/N	
Borehole	
Location	

No	of	
Lithological	

Units	
Intersected	

Nature	of	Lithological	
Units	

Depth	
(m)	

Colour	 Remarks	

1	 Ojaoba 6 

Loose Laterite
Hard Laterite 

Basement Rock 
Fairly Weathered Rock

Weathered Rock 
Basement Rock 

5
6 

29 
5 
5 
3 

Reddish Brown 
Reddish Brown 

 

Dry 
Dry 
Dry 
Wet 

Water Zone 

2	 Budo Fulani 7 

Loose Laterite
Hard Laterite 

Sandy Clay 
Silt 

Basement Rock 
Basement Rock 

Fractured Basement 

5
7 
5 
3 

55 
10 
15 

Reddish Brown 
Reddish Brown 

Yellow 
Ash 
Dry 
Wet 

Water Zone 

Dry 

3	 Apata Yakuba 5 

Loamy Soil
Laterite 

Clay 
Basement Rock 

Weathered Basement

5
11 
7 

50.6 
23.0 

Brown 
Reddish Brown 

Yellow 

Dry 
Dry 

Moist 
Dry 

Water Zone 

4	 Alalubosa 5 

Loose Laterite
Hard Laterite 

Basement Rock 
Fairly Weathered 

Basement 
Weathered Basement

5 
5 

30 
10 
8 

Brownish Red 

Dry 
Dry 
Dry 
Wet 

Water Zone 

5	 Ojatuntun 5 

Loamy Soil
Laterite 

Clay 
Hard Basement 

Weathered Basement

0.50
0.50 

19.62 
4.08 

6 

Brownish 
Red 
Red 

Dry 
Dry 
Dry 
Dry 

Water Zone 

6	 Maternity 5 
Top Loamy Soil
Hard Laterite 

Hard Basement Rock 

3
12 
54 

Brown 
Reddish Brown 

Dry 
Dry 
Dry 
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S/N	
Borehole	
Location	

No	of	
Lithological	

Units	
Intersected	

Nature	of	Lithological	
Units	

Depth	
(m)	 Colour	 Remarks	

Weathered Basement
Weathered Basement

10
10 

Dry 
Water Zone 

7	 Ganmo 5 

Top Loamy Soil
Laterite 

Silt 
Basement Rock 
Fractured Rock 

5
7 
3 

1.25 
10 

Brownish Red 
Red 

Brownish 

Dry 
Dry 
Dry 
Dry 

Water Zone 

8	 Okaka 5 

Top Loamy Soil
Laterite 

Sandy Clay 
Basement Rock 

Fractured Basement 

3
6 
2 

50 
9 

Brown 
Brownish 

Yellow 

Dry 
Dry 
Dry 
Dry 

Water Zone 

9	 Gaa-Akanbi 6 

Laterite 
Silt Clay 

Hard Silty Rock 
Basement Rock 
Basement Rock 
Fracture Rock 

3 
2 
1 
9 
9 
6 

Brownish 
Brownish 

Dark Brownish 
Brownish 

Dry 
Dry 
Dry 

Moist 
Moist and 

Wet 
Water Zone 

10	 Tanke Bubu 6 

Laterite
Clay 
Silt 

Weathered Rock 
Basement Rock 
Fractured Rock 

5.7
3 
9 
9 
9 
5 

Brown 
Brown 

Dry 
Moist 
Dry 
Dry 
Dry 

Water Zone 

11	
Mandate/
Adewole 

6 

Clay
Silt Clay 

Clay 
Silt 

Basement Rock 
Fractured/Weathered 

Rock 

7 
1.63 
2.9 
8 

11.47 
9 

Brownish 
Greenish 

Dark 

Dry 
Dry 

Moist 
Moist 
Dry 

Water Zone 

12	 Oke-Andi 3 
Top Loamy Soil
Basement Rock 
Fractured Rock 

9.6
47.6 
7.2 

Brownish 
Dry 

Dry 
Dry 

Water Zone 

13	 Fate Basin 4 

Loamy Soil
Clay 

Basement Rock 
Fractured Rock 

1
6 

48 
10 

Dark 
Reddish 

Dry 
Dry 
Dry 

Water Zone 

14	 Zango 5 

Loose Laterite
Hard Laterite 

Basement Rock 
Weathered Basement
Weathered Basement

5
6 

15 
5 
7 

Brownish 
Brownish 

Dry 
Dry 
Dry 
Wet 

Water Zone 
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S/N	
Borehole	
Location	

No	of	
Lithological	

Units	
Intersected	

Nature	of	Lithological	
Units	

Depth	
(m)	 Colour	 Remarks	

15	 Sobi 5 

Top loamy soil
Loose Laterite 
Hard Laterite 

Basement Rock 
Fractured Basement 

5
5 
5 

60 
10 

Brownish 
Red 
Red 

Dry 
Dry 
Dry 
Dry 

Water Zone 

16	 Odota 6 

Laterite
Sandy Clay 

Weathered Basement
Basement Rock 

Fracture Basement 
Fractured Basement 

5
10 
5 

20 
10 
5 

Reddish 
Brownish 

Dry 
Dry 
Dry 
Dry 
Dry 

Water Zone 

17	
Balogun/
Fulani 

5 

Top Loamy Soil
Sandy Clay 

Hard Basement 
Weathered Basement
Fractured Basement 

5
5 

20 
5 
7 

Brownish 
Brownish 

Dry 
Dry 
Dry 
Wet 

Water Zone 

18	 Fufu 4 

Laterite
Clay Soil 

Basement Rock 
Fractured Basement 

7.2
6.6 

27.2 
7.7 

Brownish 

Dry 
Dry 

Water Zone 

19	 Osere 4 

Top Loamy Soil
Clay 

Weathered Basement
Basement Rock 

0.50
27.8 
5.2 

1.50 

Dark 
Reddish 

Dry 
Moist 

Water Zone 
Water 

20	 Airport 5 

Top Loamy Soil
Laterite 

Silt 
Basement Rock 

Fractured Basement 

1
4 
1 

85 
9 

Brownish 
Brownish Red 

Ash 

Dry 
Dry 
Dry 
Dry 

Water Zone 

Source:	Archive	of	Lower	Niger	Basin	Development	Authority,	Ilorin	(2021)	

The overburden in Oja Oba has a total depth of 11m with loose lateritic 
soil making up the first 5m depth followed by hard brownish red lateritic soil 
of 6m depth. Ground water in Oja Oba can only be accessed at a depth of 40m. 
Budo Fulani borehole has an overburden depth of 20m with loose lateritic soil 
making up the top 5m depth. Hard reddish brown laterite of 7m depth follows 
the lateritic layer before the occurrence of sandy clay and silt at the third and 
fourth layers of the lithology. Residents of Budo Fulani will need to dig more 
than 70m to access borehole water from fractured basement because of the 
nature of geology in the area.  
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While thickness of overburden of the borehole in Apata Yakuba represents 
almost a quarter (23.8%) of total borehole depth, substantial (82.8%) depth of 
the borehole in Alalubosa is made up of basement complex rock. The Alalubosa 
borehole contrast well with the borehole in New Market where depth of 
overburden represents almost 70% of the borehole depth. Groundwater from 
this particular borehole can be obtained from weathered basement lying at a 
depth of over 96m. The high depth of overburden in this particular borehole 
may be the reason why the aquifer is located within the weathered basement 
instead of the fractured basement.  

Basement complex rocks make up 74m depth out of the 89m depth of 
the borehole in Maternity and 135m depth out of the 150m depth borehole in 
Ganmo. Residents of Ganmo may need to dig up to 140m to access groundwater 
because of the nature of lithology which is neither weathered nor fractured to 
a great depth. The depth of overburden and depth to water table at Okaka are 
11 and 61m respectively. Two lenses of aquifer can be found in boreholes 
located in Apata Yakuba, Tanke Bubu and Adewole areas of the city with the 
first aquifer in all the three boreholes located in the saprolitic layer made up 
of clay material while the second aquifer in all the three wells can be found at 
deeper locations in the fractured bedrock.  

Borehole in Oke Andi has the least number of lithological units of 
three. Water in this borehole can be accessed from the aquifer located at 57.2m 
depth in the fractured rock. Groundwater in Fate Basin can be accessed in 
fractured rock located at 48m depth below the 7m depth of overburden. 
Although the boreholes located in Zango and Sobi areas of the city intersected 
six lithological units each, the depth of overburden in Zango when compared 
to that of Sobi is shallow and the depth to water table in Sobi is more than 
twice the value of depth to water table in Zango.  

Odota borehole intersected six lithological units with two layers of 
fractured zone. While the first fractured zone which is found between 41 and 
50m depth is dry, the aquifer in this particular borehole can be found in the 
second fractured zone which commences at 51m depth.  

Shapiro et al. (1999) have earlier revealed that water availability in 
fractured rock terrain can be spatially and vertically variable to the extent of 
ranging over several orders of magnitude among lithologies and over relatively 
short distances due to heterogeneous fracture distribution and variable 
degrees of interconnectivity between the structural features. Although the 
boreholes in Balogun Fulani and Fufu intersected five and four lithological 
units respectively, the aquifers in the two boreholes can be found within the 
fractured basements located at 31 and 41m depth respectively. While the  
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presence of water can be felt at less than 1m depth in the borehole located  
at Osere, depth to water in the borehole located at the Airport is 91m. Fig. 3 
shows the downhole lithological logs of the studied boreholes. 

 

	
Fig.	3.	Downhole Lithological Logs of Studied Boreholes.	

Source:	Author’s	Finding	(2021)	
	
	
Inter‐relationship	between	Lithology,	Topography	and	Hydrology		
in	the	Studied	Boreholes	 
 
Explanation of the hydrology of fractured rock terrains according to 

Bailey et al. (2018) remains one of the most challenging and complex problems 
in water resources management and development, and this is because of the 
structural complexities of aquifer in such regions (Moore et al., 2020). Attempt 
at explaining the hydrology of the study area towards ameliorating problems 
induced by increasing water demand calls for the understanding of the inter-
relationships between lithology, topography and hydrology in the study area 
(table 3). This effort will not only help groundwater prospecting activity in the 
study area but will also assist in the promotion of sustainable groundwater 
development in similar geological regions. 
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Table	3.	Inter-relationship between Hydrological, Topographical  
and Lithological Parameters 

	
No.	of	

Lithological	
Units	

Depth	of	
Saprolite	

Depth	to	
Water	table

Topographic	
Elevation	

Borehole	
Depth	

Number	of	
Lithological	Units	

1  

Depth	of	
Saprolite	

0.065 1  

Depth	to	Water	
table	

0.277 -0.069 1  

Topographic	
Elevation	

-0.575 -0.310 0.498* 1  

Borehole	Depth 0.296 -0.055 0.992 0.534* 1 

*Correlation Significant at 0.05 Level 
Source:	Author’s	Finding	(2021)	

The matrix (table 3) revealed a strong correlation value (r > ± 0.7) 
only in one relationship i.e. between borehole depth and depth to water table 
(r= 0.992). However, two of the relationships, i.e. between topographic height 
and depth to water table (r= 0.498) and between topographic height and 
borehole depth (r= 0.534) are statistically significant at 0.05 confidence level. 
These two relationships thus show that the higher the topographic height, the 
deeper the depth to water and the deeper the borehole depth.  

The positive relationship between topographic height and depth to water 
is understandable; topography affects groundwater through slope exposure 
(Grinevsky, 2014). Higher slope areas discourage infiltration process by generating 
quick runoff. High relief areas thus offer little volume of water for groundwater 
recharge; hence the statistically positive significant relationship between topographical 
height and depth to water table. 

The positive relationship between topographic height and borehole 
depth is expected. Borehole depth in this study is strongly correlated positively 
with depth to water table. The fact that water table is positively correlated 
with topographic height, borehole depth is thus positively correlated with 
topographic height. Studies such as Akanbi (2018), Plummer and Carlson (2008), 
Marklund and Worman (2007), Condon and Maxwell (2015), Devito et al. (2005), 
Wolock et al. (2004) and Hatjema and Mitchell-Bruker (2005) have all identified 
topography as one of the factors that determine groundwater configuration.  

The weak negative correlation (r = -0.069) between depth of regolith 
and depth to water table shows that depth to water table in areas with deep 
depth of regolith are high while depth to water table in thin regolith are low. 
This result is expected; the deeper the regolith, the greater is the ability to 
store water and the higher the water table. Studies such as Olaniyan et al. 
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(2010), Ifabiyi et al. (2016), Akanbi (2017), Adelana et al. (2008) and Wright 
(1992) have linked borehole productivity in basement complex regions to 
thickness of regolith.  

The weak inverse relationship (r = -0.069) between depth of saprolite 
and depth to water table mean that the thicker the depth of weathered regolith, 
the lower the water table. This finding is understandable; though the weathered 
regolith is highly permeable, it is also highly porous. Thus infiltrated water into 
thick regolith will continue to percolate into either fractured or weathered 
rock below.  

	
	
CONCLUSION	
	
The study has related down-hole lithographic variation with water 

bearing capacity of some boreholes in Ilorin, Nigeria. Although the weathering 
profile of the studied area can broadly be classified into three layers of top 
soil, saprolite and bed rock, nine lithological units were identified in the 
studied boreholes. Three of the investigated boreholes have two aquifers 
lenses each (minor and major) while the remaining seventeen have one aquifer 
lens each. The minor lens in each of the three boreholes with two aquifer 
lenses are located in lithological units composed of clay material found within 
the saprolite. The main aquifer in most of the boreholes is located within the 
fractured basement while only few of the boreholes have their main aquifer 
located within the weathered basement. Statistical evaluation shows that 
topographic height is of great significance in influencing water table in the study 
area. 
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